| 1 | /* |
| 2 | * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | /* |
| 11 | * Refer to "The TLS Protocol Version 1.0" Section 5 |
| 12 | * (https://tools.ietf.org/html/rfc2246#section-5) and |
| 13 | * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 |
| 14 | * (https://tools.ietf.org/html/rfc5246#section-5). |
| 15 | * |
| 16 | * For TLS v1.0 and TLS v1.1 the TLS PRF algorithm is given by: |
| 17 | * |
| 18 | * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR |
| 19 | * P_SHA-1(S2, label + seed) |
| 20 | * |
| 21 | * where P_MD5 and P_SHA-1 are defined by P_<hash>, below, and S1 and S2 are |
| 22 | * two halves of the secret (with the possibility of one shared byte, in the |
| 23 | * case where the length of the original secret is odd). S1 is taken from the |
| 24 | * first half of the secret, S2 from the second half. |
| 25 | * |
| 26 | * For TLS v1.2 the TLS PRF algorithm is given by: |
| 27 | * |
| 28 | * PRF(secret, label, seed) = P_<hash>(secret, label + seed) |
| 29 | * |
| 30 | * where hash is SHA-256 for all cipher suites defined in RFC 5246 as well as |
| 31 | * those published prior to TLS v1.2 while the TLS v1.2 protocol is in effect, |
| 32 | * unless defined otherwise by the cipher suite. |
| 33 | * |
| 34 | * P_<hash> is an expansion function that uses a single hash function to expand |
| 35 | * a secret and seed into an arbitrary quantity of output: |
| 36 | * |
| 37 | * P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) + |
| 38 | * HMAC_<hash>(secret, A(2) + seed) + |
| 39 | * HMAC_<hash>(secret, A(3) + seed) + ... |
| 40 | * |
| 41 | * where + indicates concatenation. P_<hash> can be iterated as many times as |
| 42 | * is necessary to produce the required quantity of data. |
| 43 | * |
| 44 | * A(i) is defined as: |
| 45 | * A(0) = seed |
| 46 | * A(i) = HMAC_<hash>(secret, A(i-1)) |
| 47 | */ |
| 48 | #include <stdio.h> |
| 49 | #include <stdarg.h> |
| 50 | #include <string.h> |
| 51 | #include <openssl/evp.h> |
| 52 | #include <openssl/kdf.h> |
| 53 | #include <openssl/core_names.h> |
| 54 | #include <openssl/params.h> |
| 55 | #include "internal/cryptlib.h" |
| 56 | #include "internal/numbers.h" |
| 57 | #include "crypto/evp.h" |
| 58 | #include "prov/provider_ctx.h" |
| 59 | #include "prov/providercommonerr.h" |
| 60 | #include "prov/implementations.h" |
| 61 | #include "prov/provider_util.h" |
| 62 | #include "e_os.h" |
| 63 | |
| 64 | static OSSL_OP_kdf_newctx_fn kdf_tls1_prf_new; |
| 65 | static OSSL_OP_kdf_freectx_fn kdf_tls1_prf_free; |
| 66 | static OSSL_OP_kdf_reset_fn kdf_tls1_prf_reset; |
| 67 | static OSSL_OP_kdf_derive_fn kdf_tls1_prf_derive; |
| 68 | static OSSL_OP_kdf_settable_ctx_params_fn kdf_tls1_prf_settable_ctx_params; |
| 69 | static OSSL_OP_kdf_set_ctx_params_fn kdf_tls1_prf_set_ctx_params; |
| 70 | |
| 71 | static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx, |
| 72 | const unsigned char *sec, size_t slen, |
| 73 | const unsigned char *seed, size_t seed_len, |
| 74 | unsigned char *out, size_t olen); |
| 75 | |
| 76 | #define TLS1_PRF_MAXBUF 1024 |
| 77 | |
| 78 | /* TLS KDF kdf context structure */ |
| 79 | typedef struct { |
| 80 | void *provctx; |
| 81 | |
| 82 | /* MAC context for the main digest */ |
| 83 | EVP_MAC_CTX *P_hash; |
| 84 | /* MAC context for SHA1 for the MD5/SHA-1 combined PRF */ |
| 85 | EVP_MAC_CTX *P_sha1; |
| 86 | |
| 87 | /* Secret value to use for PRF */ |
| 88 | unsigned char *sec; |
| 89 | size_t seclen; |
| 90 | /* Buffer of concatenated seed data */ |
| 91 | unsigned char seed[TLS1_PRF_MAXBUF]; |
| 92 | size_t seedlen; |
| 93 | } TLS1_PRF; |
| 94 | |
| 95 | static void *kdf_tls1_prf_new(void *provctx) |
| 96 | { |
| 97 | TLS1_PRF *ctx; |
| 98 | |
| 99 | if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) == NULL) |
| 100 | ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); |
| 101 | ctx->provctx = provctx; |
| 102 | return ctx; |
| 103 | } |
| 104 | |
| 105 | static void kdf_tls1_prf_free(void *vctx) |
| 106 | { |
| 107 | TLS1_PRF *ctx = (TLS1_PRF *)vctx; |
| 108 | |
| 109 | if (ctx != NULL) { |
| 110 | kdf_tls1_prf_reset(ctx); |
| 111 | OPENSSL_free(ctx); |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | static void kdf_tls1_prf_reset(void *vctx) |
| 116 | { |
| 117 | TLS1_PRF *ctx = (TLS1_PRF *)vctx; |
| 118 | |
| 119 | EVP_MAC_CTX_free(ctx->P_hash); |
| 120 | EVP_MAC_CTX_free(ctx->P_sha1); |
| 121 | OPENSSL_clear_free(ctx->sec, ctx->seclen); |
| 122 | OPENSSL_cleanse(ctx->seed, ctx->seedlen); |
| 123 | memset(ctx, 0, sizeof(*ctx)); |
| 124 | } |
| 125 | |
| 126 | static int kdf_tls1_prf_derive(void *vctx, unsigned char *key, |
| 127 | size_t keylen) |
| 128 | { |
| 129 | TLS1_PRF *ctx = (TLS1_PRF *)vctx; |
| 130 | |
| 131 | if (ctx->P_hash == NULL) { |
| 132 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST); |
| 133 | return 0; |
| 134 | } |
| 135 | if (ctx->sec == NULL) { |
| 136 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SECRET); |
| 137 | return 0; |
| 138 | } |
| 139 | if (ctx->seedlen == 0) { |
| 140 | ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SEED); |
| 141 | return 0; |
| 142 | } |
| 143 | |
| 144 | return tls1_prf_alg(ctx->P_hash, ctx->P_sha1, |
| 145 | ctx->sec, ctx->seclen, |
| 146 | ctx->seed, ctx->seedlen, |
| 147 | key, keylen); |
| 148 | } |
| 149 | |
| 150 | static int kdf_tls1_prf_set_ctx_params(void *vctx, const OSSL_PARAM params[]) |
| 151 | { |
| 152 | const OSSL_PARAM *p; |
| 153 | TLS1_PRF *ctx = vctx; |
| 154 | OPENSSL_CTX *libctx = PROV_LIBRARY_CONTEXT_OF(ctx->provctx); |
| 155 | |
| 156 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_DIGEST)) != NULL) { |
| 157 | if (strcasecmp(p->data, SN_md5_sha1) == 0) { |
| 158 | if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params, |
| 159 | OSSL_MAC_NAME_HMAC, |
| 160 | NULL, SN_md5, libctx) |
| 161 | || !ossl_prov_macctx_load_from_params(&ctx->P_sha1, params, |
| 162 | OSSL_MAC_NAME_HMAC, |
| 163 | NULL, SN_sha1, libctx)) |
| 164 | return 0; |
| 165 | } else { |
| 166 | EVP_MAC_CTX_free(ctx->P_sha1); |
| 167 | if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params, |
| 168 | OSSL_MAC_NAME_HMAC, |
| 169 | NULL, NULL, libctx)) |
| 170 | return 0; |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SECRET)) != NULL) { |
| 175 | OPENSSL_clear_free(ctx->sec, ctx->seclen); |
| 176 | ctx->sec = NULL; |
| 177 | if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->sec, 0, &ctx->seclen)) |
| 178 | return 0; |
| 179 | } |
| 180 | /* The seed fields concatenate, so process them all */ |
| 181 | if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SEED)) != NULL) { |
| 182 | OPENSSL_cleanse(ctx->seed, ctx->seedlen); |
| 183 | ctx->seedlen = 0; |
| 184 | |
| 185 | for (; p != NULL; p = OSSL_PARAM_locate_const(p + 1, |
| 186 | OSSL_KDF_PARAM_SEED)) { |
| 187 | const void *q = ctx->seed + ctx->seedlen; |
| 188 | size_t sz = 0; |
| 189 | |
| 190 | if (p->data_size != 0 |
| 191 | && p->data != NULL |
| 192 | && !OSSL_PARAM_get_octet_string(p, (void **)&q, |
| 193 | TLS1_PRF_MAXBUF - ctx->seedlen, |
| 194 | &sz)) |
| 195 | return 0; |
| 196 | ctx->seedlen += sz; |
| 197 | } |
| 198 | } |
| 199 | return 1; |
| 200 | } |
| 201 | |
| 202 | static const OSSL_PARAM *kdf_tls1_prf_settable_ctx_params(void) |
| 203 | { |
| 204 | static const OSSL_PARAM known_settable_ctx_params[] = { |
| 205 | OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0), |
| 206 | OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_DIGEST, NULL, 0), |
| 207 | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SECRET, NULL, 0), |
| 208 | OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SEED, NULL, 0), |
| 209 | OSSL_PARAM_END |
| 210 | }; |
| 211 | return known_settable_ctx_params; |
| 212 | } |
| 213 | |
| 214 | static int kdf_tls1_prf_get_ctx_params(void *vctx, OSSL_PARAM params[]) |
| 215 | { |
| 216 | OSSL_PARAM *p; |
| 217 | |
| 218 | if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) |
| 219 | return OSSL_PARAM_set_size_t(p, SIZE_MAX); |
| 220 | return -2; |
| 221 | } |
| 222 | |
| 223 | static const OSSL_PARAM *kdf_tls1_prf_gettable_ctx_params(void) |
| 224 | { |
| 225 | static const OSSL_PARAM known_gettable_ctx_params[] = { |
| 226 | OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL), |
| 227 | OSSL_PARAM_END |
| 228 | }; |
| 229 | return known_gettable_ctx_params; |
| 230 | } |
| 231 | |
| 232 | const OSSL_DISPATCH kdf_tls1_prf_functions[] = { |
| 233 | { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_tls1_prf_new }, |
| 234 | { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_tls1_prf_free }, |
| 235 | { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_tls1_prf_reset }, |
| 236 | { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_tls1_prf_derive }, |
| 237 | { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, |
| 238 | (void(*)(void))kdf_tls1_prf_settable_ctx_params }, |
| 239 | { OSSL_FUNC_KDF_SET_CTX_PARAMS, |
| 240 | (void(*)(void))kdf_tls1_prf_set_ctx_params }, |
| 241 | { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, |
| 242 | (void(*)(void))kdf_tls1_prf_gettable_ctx_params }, |
| 243 | { OSSL_FUNC_KDF_GET_CTX_PARAMS, |
| 244 | (void(*)(void))kdf_tls1_prf_get_ctx_params }, |
| 245 | { 0, NULL } |
| 246 | }; |
| 247 | |
| 248 | /* |
| 249 | * Refer to "The TLS Protocol Version 1.0" Section 5 |
| 250 | * (https://tools.ietf.org/html/rfc2246#section-5) and |
| 251 | * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 |
| 252 | * (https://tools.ietf.org/html/rfc5246#section-5). |
| 253 | * |
| 254 | * P_<hash> is an expansion function that uses a single hash function to expand |
| 255 | * a secret and seed into an arbitrary quantity of output: |
| 256 | * |
| 257 | * P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) + |
| 258 | * HMAC_<hash>(secret, A(2) + seed) + |
| 259 | * HMAC_<hash>(secret, A(3) + seed) + ... |
| 260 | * |
| 261 | * where + indicates concatenation. P_<hash> can be iterated as many times as |
| 262 | * is necessary to produce the required quantity of data. |
| 263 | * |
| 264 | * A(i) is defined as: |
| 265 | * A(0) = seed |
| 266 | * A(i) = HMAC_<hash>(secret, A(i-1)) |
| 267 | */ |
| 268 | static int tls1_prf_P_hash(EVP_MAC_CTX *ctx_init, |
| 269 | const unsigned char *sec, size_t sec_len, |
| 270 | const unsigned char *seed, size_t seed_len, |
| 271 | unsigned char *out, size_t olen) |
| 272 | { |
| 273 | size_t chunk; |
| 274 | EVP_MAC_CTX *ctx = NULL, *ctx_Ai = NULL; |
| 275 | unsigned char Ai[EVP_MAX_MD_SIZE]; |
| 276 | size_t Ai_len; |
| 277 | int ret = 0; |
| 278 | OSSL_PARAM params[2], *p = params; |
| 279 | |
| 280 | *p++ = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, |
| 281 | (void *)sec, sec_len); |
| 282 | *p = OSSL_PARAM_construct_end(); |
| 283 | if (!EVP_MAC_CTX_set_params(ctx_init, params)) |
| 284 | goto err; |
| 285 | if (!EVP_MAC_init(ctx_init)) |
| 286 | goto err; |
| 287 | chunk = EVP_MAC_size(ctx_init); |
| 288 | if (chunk == 0) |
| 289 | goto err; |
| 290 | /* A(0) = seed */ |
| 291 | ctx_Ai = EVP_MAC_CTX_dup(ctx_init); |
| 292 | if (ctx_Ai == NULL) |
| 293 | goto err; |
| 294 | if (seed != NULL && !EVP_MAC_update(ctx_Ai, seed, seed_len)) |
| 295 | goto err; |
| 296 | |
| 297 | for (;;) { |
| 298 | /* calc: A(i) = HMAC_<hash>(secret, A(i-1)) */ |
| 299 | if (!EVP_MAC_final(ctx_Ai, Ai, &Ai_len, sizeof(Ai))) |
| 300 | goto err; |
| 301 | EVP_MAC_CTX_free(ctx_Ai); |
| 302 | ctx_Ai = NULL; |
| 303 | |
| 304 | /* calc next chunk: HMAC_<hash>(secret, A(i) + seed) */ |
| 305 | ctx = EVP_MAC_CTX_dup(ctx_init); |
| 306 | if (ctx == NULL) |
| 307 | goto err; |
| 308 | if (!EVP_MAC_update(ctx, Ai, Ai_len)) |
| 309 | goto err; |
| 310 | /* save state for calculating next A(i) value */ |
| 311 | if (olen > chunk) { |
| 312 | ctx_Ai = EVP_MAC_CTX_dup(ctx); |
| 313 | if (ctx_Ai == NULL) |
| 314 | goto err; |
| 315 | } |
| 316 | if (seed != NULL && !EVP_MAC_update(ctx, seed, seed_len)) |
| 317 | goto err; |
| 318 | if (olen <= chunk) { |
| 319 | /* last chunk - use Ai as temp bounce buffer */ |
| 320 | if (!EVP_MAC_final(ctx, Ai, &Ai_len, sizeof(Ai))) |
| 321 | goto err; |
| 322 | memcpy(out, Ai, olen); |
| 323 | break; |
| 324 | } |
| 325 | if (!EVP_MAC_final(ctx, out, NULL, olen)) |
| 326 | goto err; |
| 327 | EVP_MAC_CTX_free(ctx); |
| 328 | ctx = NULL; |
| 329 | out += chunk; |
| 330 | olen -= chunk; |
| 331 | } |
| 332 | ret = 1; |
| 333 | err: |
| 334 | EVP_MAC_CTX_free(ctx); |
| 335 | EVP_MAC_CTX_free(ctx_Ai); |
| 336 | OPENSSL_cleanse(Ai, sizeof(Ai)); |
| 337 | return ret; |
| 338 | } |
| 339 | |
| 340 | /* |
| 341 | * Refer to "The TLS Protocol Version 1.0" Section 5 |
| 342 | * (https://tools.ietf.org/html/rfc2246#section-5) and |
| 343 | * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 |
| 344 | * (https://tools.ietf.org/html/rfc5246#section-5). |
| 345 | * |
| 346 | * For TLS v1.0 and TLS v1.1: |
| 347 | * |
| 348 | * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR |
| 349 | * P_SHA-1(S2, label + seed) |
| 350 | * |
| 351 | * S1 is taken from the first half of the secret, S2 from the second half. |
| 352 | * |
| 353 | * L_S = length in bytes of secret; |
| 354 | * L_S1 = L_S2 = ceil(L_S / 2); |
| 355 | * |
| 356 | * For TLS v1.2: |
| 357 | * |
| 358 | * PRF(secret, label, seed) = P_<hash>(secret, label + seed) |
| 359 | */ |
| 360 | static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx, |
| 361 | const unsigned char *sec, size_t slen, |
| 362 | const unsigned char *seed, size_t seed_len, |
| 363 | unsigned char *out, size_t olen) |
| 364 | { |
| 365 | if (sha1ctx != NULL) { |
| 366 | /* TLS v1.0 and TLS v1.1 */ |
| 367 | size_t i; |
| 368 | unsigned char *tmp; |
| 369 | /* calc: L_S1 = L_S2 = ceil(L_S / 2) */ |
| 370 | size_t L_S1 = (slen + 1) / 2; |
| 371 | size_t L_S2 = L_S1; |
| 372 | |
| 373 | if (!tls1_prf_P_hash(mdctx, sec, L_S1, |
| 374 | seed, seed_len, out, olen)) |
| 375 | return 0; |
| 376 | |
| 377 | if ((tmp = OPENSSL_malloc(olen)) == NULL) { |
| 378 | ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); |
| 379 | return 0; |
| 380 | } |
| 381 | |
| 382 | if (!tls1_prf_P_hash(sha1ctx, sec + slen - L_S2, L_S2, |
| 383 | seed, seed_len, tmp, olen)) { |
| 384 | OPENSSL_clear_free(tmp, olen); |
| 385 | return 0; |
| 386 | } |
| 387 | for (i = 0; i < olen; i++) |
| 388 | out[i] ^= tmp[i]; |
| 389 | OPENSSL_clear_free(tmp, olen); |
| 390 | return 1; |
| 391 | } |
| 392 | |
| 393 | /* TLS v1.2 */ |
| 394 | if (!tls1_prf_P_hash(mdctx, sec, slen, seed, seed_len, out, olen)) |
| 395 | return 0; |
| 396 | |
| 397 | return 1; |
| 398 | } |
| 399 | |