1 | /* |
2 | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
3 | * |
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | * this file except in compliance with the License. You can obtain a copy |
6 | * in the file LICENSE in the source distribution or at |
7 | * https://www.openssl.org/source/license.html |
8 | */ |
9 | |
10 | #include "../ssl_local.h" |
11 | #include "internal/constant_time.h" |
12 | #include <openssl/trace.h> |
13 | #include <openssl/rand.h> |
14 | #include "record_local.h" |
15 | #include "internal/cryptlib.h" |
16 | |
17 | static const unsigned char ssl3_pad_1[48] = { |
18 | 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, |
19 | 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, |
20 | 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, |
21 | 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, |
22 | 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, |
23 | 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36 |
24 | }; |
25 | |
26 | static const unsigned char ssl3_pad_2[48] = { |
27 | 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, |
28 | 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, |
29 | 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, |
30 | 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, |
31 | 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, |
32 | 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c |
33 | }; |
34 | |
35 | /* |
36 | * Clear the contents of an SSL3_RECORD but retain any memory allocated |
37 | */ |
38 | void SSL3_RECORD_clear(SSL3_RECORD *r, size_t num_recs) |
39 | { |
40 | unsigned char *comp; |
41 | size_t i; |
42 | |
43 | for (i = 0; i < num_recs; i++) { |
44 | comp = r[i].comp; |
45 | |
46 | memset(&r[i], 0, sizeof(*r)); |
47 | r[i].comp = comp; |
48 | } |
49 | } |
50 | |
51 | void SSL3_RECORD_release(SSL3_RECORD *r, size_t num_recs) |
52 | { |
53 | size_t i; |
54 | |
55 | for (i = 0; i < num_recs; i++) { |
56 | OPENSSL_free(r[i].comp); |
57 | r[i].comp = NULL; |
58 | } |
59 | } |
60 | |
61 | void SSL3_RECORD_set_seq_num(SSL3_RECORD *r, const unsigned char *seq_num) |
62 | { |
63 | memcpy(r->seq_num, seq_num, SEQ_NUM_SIZE); |
64 | } |
65 | |
66 | /* |
67 | * Peeks ahead into "read_ahead" data to see if we have a whole record waiting |
68 | * for us in the buffer. |
69 | */ |
70 | static int ssl3_record_app_data_waiting(SSL *s) |
71 | { |
72 | SSL3_BUFFER *rbuf; |
73 | size_t left, len; |
74 | unsigned char *p; |
75 | |
76 | rbuf = RECORD_LAYER_get_rbuf(&s->rlayer); |
77 | |
78 | p = SSL3_BUFFER_get_buf(rbuf); |
79 | if (p == NULL) |
80 | return 0; |
81 | |
82 | left = SSL3_BUFFER_get_left(rbuf); |
83 | |
84 | if (left < SSL3_RT_HEADER_LENGTH) |
85 | return 0; |
86 | |
87 | p += SSL3_BUFFER_get_offset(rbuf); |
88 | |
89 | /* |
90 | * We only check the type and record length, we will sanity check version |
91 | * etc later |
92 | */ |
93 | if (*p != SSL3_RT_APPLICATION_DATA) |
94 | return 0; |
95 | |
96 | p += 3; |
97 | n2s(p, len); |
98 | |
99 | if (left < SSL3_RT_HEADER_LENGTH + len) |
100 | return 0; |
101 | |
102 | return 1; |
103 | } |
104 | |
105 | int early_data_count_ok(SSL *s, size_t length, size_t overhead, int send) |
106 | { |
107 | uint32_t max_early_data; |
108 | SSL_SESSION *sess = s->session; |
109 | |
110 | /* |
111 | * If we are a client then we always use the max_early_data from the |
112 | * session/psksession. Otherwise we go with the lowest out of the max early |
113 | * data set in the session and the configured max_early_data. |
114 | */ |
115 | if (!s->server && sess->ext.max_early_data == 0) { |
116 | if (!ossl_assert(s->psksession != NULL |
117 | && s->psksession->ext.max_early_data > 0)) { |
118 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_EARLY_DATA_COUNT_OK, |
119 | ERR_R_INTERNAL_ERROR); |
120 | return 0; |
121 | } |
122 | sess = s->psksession; |
123 | } |
124 | |
125 | if (!s->server) |
126 | max_early_data = sess->ext.max_early_data; |
127 | else if (s->ext.early_data != SSL_EARLY_DATA_ACCEPTED) |
128 | max_early_data = s->recv_max_early_data; |
129 | else |
130 | max_early_data = s->recv_max_early_data < sess->ext.max_early_data |
131 | ? s->recv_max_early_data : sess->ext.max_early_data; |
132 | |
133 | if (max_early_data == 0) { |
134 | SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE, |
135 | SSL_F_EARLY_DATA_COUNT_OK, SSL_R_TOO_MUCH_EARLY_DATA); |
136 | return 0; |
137 | } |
138 | |
139 | /* If we are dealing with ciphertext we need to allow for the overhead */ |
140 | max_early_data += overhead; |
141 | |
142 | if (s->early_data_count + length > max_early_data) { |
143 | SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE, |
144 | SSL_F_EARLY_DATA_COUNT_OK, SSL_R_TOO_MUCH_EARLY_DATA); |
145 | return 0; |
146 | } |
147 | s->early_data_count += length; |
148 | |
149 | return 1; |
150 | } |
151 | |
152 | /* |
153 | * MAX_EMPTY_RECORDS defines the number of consecutive, empty records that |
154 | * will be processed per call to ssl3_get_record. Without this limit an |
155 | * attacker could send empty records at a faster rate than we can process and |
156 | * cause ssl3_get_record to loop forever. |
157 | */ |
158 | #define MAX_EMPTY_RECORDS 32 |
159 | |
160 | #define 2 |
161 | /*- |
162 | * Call this to get new input records. |
163 | * It will return <= 0 if more data is needed, normally due to an error |
164 | * or non-blocking IO. |
165 | * When it finishes, |numrpipes| records have been decoded. For each record 'i': |
166 | * rr[i].type - is the type of record |
167 | * rr[i].data, - data |
168 | * rr[i].length, - number of bytes |
169 | * Multiple records will only be returned if the record types are all |
170 | * SSL3_RT_APPLICATION_DATA. The number of records returned will always be <= |
171 | * |max_pipelines| |
172 | */ |
173 | /* used only by ssl3_read_bytes */ |
174 | int ssl3_get_record(SSL *s) |
175 | { |
176 | int enc_err, rret; |
177 | int i; |
178 | size_t more, n; |
179 | SSL3_RECORD *rr, *thisrr; |
180 | SSL3_BUFFER *rbuf; |
181 | SSL_SESSION *sess; |
182 | unsigned char *p; |
183 | unsigned char md[EVP_MAX_MD_SIZE]; |
184 | unsigned int version; |
185 | size_t mac_size; |
186 | int imac_size; |
187 | size_t num_recs = 0, max_recs, j; |
188 | PACKET pkt, sslv2pkt; |
189 | size_t first_rec_len; |
190 | int is_ktls_left; |
191 | |
192 | rr = RECORD_LAYER_get_rrec(&s->rlayer); |
193 | rbuf = RECORD_LAYER_get_rbuf(&s->rlayer); |
194 | is_ktls_left = (rbuf->left > 0); |
195 | max_recs = s->max_pipelines; |
196 | if (max_recs == 0) |
197 | max_recs = 1; |
198 | sess = s->session; |
199 | |
200 | do { |
201 | thisrr = &rr[num_recs]; |
202 | |
203 | /* check if we have the header */ |
204 | if ((RECORD_LAYER_get_rstate(&s->rlayer) != SSL_ST_READ_BODY) || |
205 | (RECORD_LAYER_get_packet_length(&s->rlayer) |
206 | < SSL3_RT_HEADER_LENGTH)) { |
207 | size_t sslv2len; |
208 | unsigned int type; |
209 | |
210 | rret = ssl3_read_n(s, SSL3_RT_HEADER_LENGTH, |
211 | SSL3_BUFFER_get_len(rbuf), 0, |
212 | num_recs == 0 ? 1 : 0, &n); |
213 | if (rret <= 0) { |
214 | #ifndef OPENSSL_NO_KTLS |
215 | if (!BIO_get_ktls_recv(s->rbio)) |
216 | return rret; /* error or non-blocking */ |
217 | switch (errno) { |
218 | case EBADMSG: |
219 | SSLfatal(s, SSL_AD_BAD_RECORD_MAC, |
220 | SSL_F_SSL3_GET_RECORD, |
221 | SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); |
222 | break; |
223 | case EMSGSIZE: |
224 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, |
225 | SSL_F_SSL3_GET_RECORD, |
226 | SSL_R_PACKET_LENGTH_TOO_LONG); |
227 | break; |
228 | case EINVAL: |
229 | SSLfatal(s, SSL_AD_PROTOCOL_VERSION, |
230 | SSL_F_SSL3_GET_RECORD, |
231 | SSL_R_WRONG_VERSION_NUMBER); |
232 | break; |
233 | default: |
234 | break; |
235 | } |
236 | #endif |
237 | return rret; |
238 | } |
239 | RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_BODY); |
240 | |
241 | p = RECORD_LAYER_get_packet(&s->rlayer); |
242 | if (!PACKET_buf_init(&pkt, RECORD_LAYER_get_packet(&s->rlayer), |
243 | RECORD_LAYER_get_packet_length(&s->rlayer))) { |
244 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD, |
245 | ERR_R_INTERNAL_ERROR); |
246 | return -1; |
247 | } |
248 | sslv2pkt = pkt; |
249 | if (!PACKET_get_net_2_len(&sslv2pkt, &sslv2len) |
250 | || !PACKET_get_1(&sslv2pkt, &type)) { |
251 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, |
252 | ERR_R_INTERNAL_ERROR); |
253 | return -1; |
254 | } |
255 | /* |
256 | * The first record received by the server may be a V2ClientHello. |
257 | */ |
258 | if (s->server && RECORD_LAYER_is_first_record(&s->rlayer) |
259 | && (sslv2len & 0x8000) != 0 |
260 | && (type == SSL2_MT_CLIENT_HELLO)) { |
261 | /* |
262 | * SSLv2 style record |
263 | * |
264 | * |num_recs| here will actually always be 0 because |
265 | * |num_recs > 0| only ever occurs when we are processing |
266 | * multiple app data records - which we know isn't the case here |
267 | * because it is an SSLv2ClientHello. We keep it using |
268 | * |num_recs| for the sake of consistency |
269 | */ |
270 | thisrr->type = SSL3_RT_HANDSHAKE; |
271 | thisrr->rec_version = SSL2_VERSION; |
272 | |
273 | thisrr->length = sslv2len & 0x7fff; |
274 | |
275 | if (thisrr->length > SSL3_BUFFER_get_len(rbuf) |
276 | - SSL2_RT_HEADER_LENGTH) { |
277 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
278 | SSL_R_PACKET_LENGTH_TOO_LONG); |
279 | return -1; |
280 | } |
281 | |
282 | if (thisrr->length < MIN_SSL2_RECORD_LEN) { |
283 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, |
284 | SSL_R_LENGTH_TOO_SHORT); |
285 | return -1; |
286 | } |
287 | } else { |
288 | /* SSLv3+ style record */ |
289 | if (s->msg_callback) |
290 | s->msg_callback(0, 0, SSL3_RT_HEADER, p, 5, s, |
291 | s->msg_callback_arg); |
292 | |
293 | /* Pull apart the header into the SSL3_RECORD */ |
294 | if (!PACKET_get_1(&pkt, &type) |
295 | || !PACKET_get_net_2(&pkt, &version) |
296 | || !PACKET_get_net_2_len(&pkt, &thisrr->length)) { |
297 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, |
298 | ERR_R_INTERNAL_ERROR); |
299 | return -1; |
300 | } |
301 | thisrr->type = type; |
302 | thisrr->rec_version = version; |
303 | |
304 | /* |
305 | * Lets check version. In TLSv1.3 we only check this field |
306 | * when encryption is occurring (see later check). For the |
307 | * ServerHello after an HRR we haven't actually selected TLSv1.3 |
308 | * yet, but we still treat it as TLSv1.3, so we must check for |
309 | * that explicitly |
310 | */ |
311 | if (!s->first_packet && !SSL_IS_TLS13(s) |
312 | && s->hello_retry_request != SSL_HRR_PENDING |
313 | && version != (unsigned int)s->version) { |
314 | if ((s->version & 0xFF00) == (version & 0xFF00) |
315 | && !s->enc_write_ctx && !s->write_hash) { |
316 | if (thisrr->type == SSL3_RT_ALERT) { |
317 | /* |
318 | * The record is using an incorrect version number, |
319 | * but what we've got appears to be an alert. We |
320 | * haven't read the body yet to check whether its a |
321 | * fatal or not - but chances are it is. We probably |
322 | * shouldn't send a fatal alert back. We'll just |
323 | * end. |
324 | */ |
325 | SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD, |
326 | SSL_R_WRONG_VERSION_NUMBER); |
327 | return -1; |
328 | } |
329 | /* |
330 | * Send back error using their minor version number :-) |
331 | */ |
332 | s->version = (unsigned short)version; |
333 | } |
334 | SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_F_SSL3_GET_RECORD, |
335 | SSL_R_WRONG_VERSION_NUMBER); |
336 | return -1; |
337 | } |
338 | |
339 | if ((version >> 8) != SSL3_VERSION_MAJOR) { |
340 | if (RECORD_LAYER_is_first_record(&s->rlayer)) { |
341 | /* Go back to start of packet, look at the five bytes |
342 | * that we have. */ |
343 | p = RECORD_LAYER_get_packet(&s->rlayer); |
344 | if (strncmp((char *)p, "GET " , 4) == 0 || |
345 | strncmp((char *)p, "POST " , 5) == 0 || |
346 | strncmp((char *)p, "HEAD " , 5) == 0 || |
347 | strncmp((char *)p, "PUT " , 4) == 0) { |
348 | SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD, |
349 | SSL_R_HTTP_REQUEST); |
350 | return -1; |
351 | } else if (strncmp((char *)p, "CONNE" , 5) == 0) { |
352 | SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD, |
353 | SSL_R_HTTPS_PROXY_REQUEST); |
354 | return -1; |
355 | } |
356 | |
357 | /* Doesn't look like TLS - don't send an alert */ |
358 | SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD, |
359 | SSL_R_WRONG_VERSION_NUMBER); |
360 | return -1; |
361 | } else { |
362 | SSLfatal(s, SSL_AD_PROTOCOL_VERSION, |
363 | SSL_F_SSL3_GET_RECORD, |
364 | SSL_R_WRONG_VERSION_NUMBER); |
365 | return -1; |
366 | } |
367 | } |
368 | |
369 | if (SSL_IS_TLS13(s) && s->enc_read_ctx != NULL) { |
370 | if (thisrr->type != SSL3_RT_APPLICATION_DATA |
371 | && (thisrr->type != SSL3_RT_CHANGE_CIPHER_SPEC |
372 | || !SSL_IS_FIRST_HANDSHAKE(s)) |
373 | && (thisrr->type != SSL3_RT_ALERT |
374 | || s->statem.enc_read_state |
375 | != ENC_READ_STATE_ALLOW_PLAIN_ALERTS)) { |
376 | SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, |
377 | SSL_F_SSL3_GET_RECORD, SSL_R_BAD_RECORD_TYPE); |
378 | return -1; |
379 | } |
380 | if (thisrr->rec_version != TLS1_2_VERSION) { |
381 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, |
382 | SSL_R_WRONG_VERSION_NUMBER); |
383 | return -1; |
384 | } |
385 | } |
386 | |
387 | if (thisrr->length > |
388 | SSL3_BUFFER_get_len(rbuf) - SSL3_RT_HEADER_LENGTH) { |
389 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
390 | SSL_R_PACKET_LENGTH_TOO_LONG); |
391 | return -1; |
392 | } |
393 | } |
394 | |
395 | /* now s->rlayer.rstate == SSL_ST_READ_BODY */ |
396 | } |
397 | |
398 | if (SSL_IS_TLS13(s)) { |
399 | if (thisrr->length > SSL3_RT_MAX_TLS13_ENCRYPTED_LENGTH) { |
400 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
401 | SSL_R_ENCRYPTED_LENGTH_TOO_LONG); |
402 | return -1; |
403 | } |
404 | } else { |
405 | size_t len = SSL3_RT_MAX_ENCRYPTED_LENGTH; |
406 | |
407 | #ifndef OPENSSL_NO_COMP |
408 | /* |
409 | * If OPENSSL_NO_COMP is defined then SSL3_RT_MAX_ENCRYPTED_LENGTH |
410 | * does not include the compression overhead anyway. |
411 | */ |
412 | if (s->expand == NULL) |
413 | len -= SSL3_RT_MAX_COMPRESSED_OVERHEAD; |
414 | #endif |
415 | |
416 | if (thisrr->length > len && !BIO_get_ktls_recv(s->rbio)) { |
417 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
418 | SSL_R_ENCRYPTED_LENGTH_TOO_LONG); |
419 | return -1; |
420 | } |
421 | } |
422 | |
423 | /* |
424 | * s->rlayer.rstate == SSL_ST_READ_BODY, get and decode the data. |
425 | * Calculate how much more data we need to read for the rest of the |
426 | * record |
427 | */ |
428 | if (thisrr->rec_version == SSL2_VERSION) { |
429 | more = thisrr->length + SSL2_RT_HEADER_LENGTH |
430 | - SSL3_RT_HEADER_LENGTH; |
431 | } else { |
432 | more = thisrr->length; |
433 | } |
434 | |
435 | if (more > 0) { |
436 | /* now s->packet_length == SSL3_RT_HEADER_LENGTH */ |
437 | |
438 | rret = ssl3_read_n(s, more, more, 1, 0, &n); |
439 | if (rret <= 0) |
440 | return rret; /* error or non-blocking io */ |
441 | } |
442 | |
443 | /* set state for later operations */ |
444 | RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_HEADER); |
445 | |
446 | /* |
447 | * At this point, s->packet_length == SSL3_RT_HEADER_LENGTH |
448 | * + thisrr->length, or s->packet_length == SSL2_RT_HEADER_LENGTH |
449 | * + thisrr->length and we have that many bytes in s->packet |
450 | */ |
451 | if (thisrr->rec_version == SSL2_VERSION) { |
452 | thisrr->input = |
453 | &(RECORD_LAYER_get_packet(&s->rlayer)[SSL2_RT_HEADER_LENGTH]); |
454 | } else { |
455 | thisrr->input = |
456 | &(RECORD_LAYER_get_packet(&s->rlayer)[SSL3_RT_HEADER_LENGTH]); |
457 | } |
458 | |
459 | /* |
460 | * ok, we can now read from 's->packet' data into 'thisrr' thisrr->input |
461 | * points at thisrr->length bytes, which need to be copied into |
462 | * thisrr->data by either the decryption or by the decompression When |
463 | * the data is 'copied' into the thisrr->data buffer, thisrr->input will |
464 | * be pointed at the new buffer |
465 | */ |
466 | |
467 | /* |
468 | * We now have - encrypted [ MAC [ compressed [ plain ] ] ] |
469 | * thisrr->length bytes of encrypted compressed stuff. |
470 | */ |
471 | |
472 | /* decrypt in place in 'thisrr->input' */ |
473 | thisrr->data = thisrr->input; |
474 | thisrr->orig_len = thisrr->length; |
475 | |
476 | /* Mark this record as not read by upper layers yet */ |
477 | thisrr->read = 0; |
478 | |
479 | num_recs++; |
480 | |
481 | /* we have pulled in a full packet so zero things */ |
482 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
483 | RECORD_LAYER_clear_first_record(&s->rlayer); |
484 | } while (num_recs < max_recs |
485 | && thisrr->type == SSL3_RT_APPLICATION_DATA |
486 | && SSL_USE_EXPLICIT_IV(s) |
487 | && s->enc_read_ctx != NULL |
488 | && (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(s->enc_read_ctx)) |
489 | & EVP_CIPH_FLAG_PIPELINE) |
490 | && ssl3_record_app_data_waiting(s)); |
491 | |
492 | if (num_recs == 1 |
493 | && thisrr->type == SSL3_RT_CHANGE_CIPHER_SPEC |
494 | && (SSL_IS_TLS13(s) || s->hello_retry_request != SSL_HRR_NONE) |
495 | && SSL_IS_FIRST_HANDSHAKE(s)) { |
496 | /* |
497 | * CCS messages must be exactly 1 byte long, containing the value 0x01 |
498 | */ |
499 | if (thisrr->length != 1 || thisrr->data[0] != 0x01) { |
500 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL3_GET_RECORD, |
501 | SSL_R_INVALID_CCS_MESSAGE); |
502 | return -1; |
503 | } |
504 | /* |
505 | * CCS messages are ignored in TLSv1.3. We treat it like an empty |
506 | * handshake record |
507 | */ |
508 | thisrr->type = SSL3_RT_HANDSHAKE; |
509 | RECORD_LAYER_inc_empty_record_count(&s->rlayer); |
510 | if (RECORD_LAYER_get_empty_record_count(&s->rlayer) |
511 | > MAX_EMPTY_RECORDS) { |
512 | SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, |
513 | SSL_R_UNEXPECTED_CCS_MESSAGE); |
514 | return -1; |
515 | } |
516 | thisrr->read = 1; |
517 | RECORD_LAYER_set_numrpipes(&s->rlayer, 1); |
518 | |
519 | return 1; |
520 | } |
521 | |
522 | /* |
523 | * KTLS reads full records. If there is any data left, |
524 | * then it is from before enabling ktls |
525 | */ |
526 | if (BIO_get_ktls_recv(s->rbio) && !is_ktls_left) |
527 | goto skip_decryption; |
528 | |
529 | /* |
530 | * If in encrypt-then-mac mode calculate mac from encrypted record. All |
531 | * the details below are public so no timing details can leak. |
532 | */ |
533 | if (SSL_READ_ETM(s) && s->read_hash) { |
534 | unsigned char *mac; |
535 | /* TODO(size_t): convert this to do size_t properly */ |
536 | imac_size = EVP_MD_CTX_size(s->read_hash); |
537 | if (!ossl_assert(imac_size >= 0 && imac_size <= EVP_MAX_MD_SIZE)) { |
538 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD, |
539 | ERR_LIB_EVP); |
540 | return -1; |
541 | } |
542 | mac_size = (size_t)imac_size; |
543 | for (j = 0; j < num_recs; j++) { |
544 | thisrr = &rr[j]; |
545 | |
546 | if (thisrr->length < mac_size) { |
547 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, |
548 | SSL_R_LENGTH_TOO_SHORT); |
549 | return -1; |
550 | } |
551 | thisrr->length -= mac_size; |
552 | mac = thisrr->data + thisrr->length; |
553 | i = s->method->ssl3_enc->mac(s, thisrr, md, 0 /* not send */ ); |
554 | if (i == 0 || CRYPTO_memcmp(md, mac, mac_size) != 0) { |
555 | SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_SSL3_GET_RECORD, |
556 | SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); |
557 | return -1; |
558 | } |
559 | } |
560 | } |
561 | |
562 | first_rec_len = rr[0].length; |
563 | |
564 | enc_err = s->method->ssl3_enc->enc(s, rr, num_recs, 0); |
565 | |
566 | /*- |
567 | * enc_err is: |
568 | * 0: (in non-constant time) if the record is publicly invalid. |
569 | * 1: if the padding is valid |
570 | * -1: if the padding is invalid |
571 | */ |
572 | if (enc_err == 0) { |
573 | if (ossl_statem_in_error(s)) { |
574 | /* SSLfatal() already got called */ |
575 | return -1; |
576 | } |
577 | if (num_recs == 1 && ossl_statem_skip_early_data(s)) { |
578 | /* |
579 | * Valid early_data that we cannot decrypt might fail here as |
580 | * publicly invalid. We treat it like an empty record. |
581 | */ |
582 | |
583 | thisrr = &rr[0]; |
584 | |
585 | if (!early_data_count_ok(s, thisrr->length, |
586 | EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) { |
587 | /* SSLfatal() already called */ |
588 | return -1; |
589 | } |
590 | |
591 | thisrr->length = 0; |
592 | thisrr->read = 1; |
593 | RECORD_LAYER_set_numrpipes(&s->rlayer, 1); |
594 | RECORD_LAYER_reset_read_sequence(&s->rlayer); |
595 | return 1; |
596 | } |
597 | SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_SSL3_GET_RECORD, |
598 | SSL_R_BLOCK_CIPHER_PAD_IS_WRONG); |
599 | return -1; |
600 | } |
601 | OSSL_TRACE_BEGIN(TLS) { |
602 | BIO_printf(trc_out, "dec %lu\n" , (unsigned long)rr[0].length); |
603 | BIO_dump_indent(trc_out, rr[0].data, rr[0].length, 4); |
604 | } OSSL_TRACE_END(TLS); |
605 | |
606 | /* r->length is now the compressed data plus mac */ |
607 | if ((sess != NULL) && |
608 | (s->enc_read_ctx != NULL) && |
609 | (!SSL_READ_ETM(s) && EVP_MD_CTX_md(s->read_hash) != NULL)) { |
610 | /* s->read_hash != NULL => mac_size != -1 */ |
611 | unsigned char *mac = NULL; |
612 | unsigned char mac_tmp[EVP_MAX_MD_SIZE]; |
613 | |
614 | mac_size = EVP_MD_CTX_size(s->read_hash); |
615 | if (!ossl_assert(mac_size <= EVP_MAX_MD_SIZE)) { |
616 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD, |
617 | ERR_R_INTERNAL_ERROR); |
618 | return -1; |
619 | } |
620 | |
621 | for (j = 0; j < num_recs; j++) { |
622 | thisrr = &rr[j]; |
623 | /* |
624 | * orig_len is the length of the record before any padding was |
625 | * removed. This is public information, as is the MAC in use, |
626 | * therefore we can safely process the record in a different amount |
627 | * of time if it's too short to possibly contain a MAC. |
628 | */ |
629 | if (thisrr->orig_len < mac_size || |
630 | /* CBC records must have a padding length byte too. */ |
631 | (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE && |
632 | thisrr->orig_len < mac_size + 1)) { |
633 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, |
634 | SSL_R_LENGTH_TOO_SHORT); |
635 | return -1; |
636 | } |
637 | |
638 | if (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE) { |
639 | /* |
640 | * We update the length so that the TLS header bytes can be |
641 | * constructed correctly but we need to extract the MAC in |
642 | * constant time from within the record, without leaking the |
643 | * contents of the padding bytes. |
644 | */ |
645 | mac = mac_tmp; |
646 | if (!ssl3_cbc_copy_mac(mac_tmp, thisrr, mac_size)) { |
647 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD, |
648 | ERR_R_INTERNAL_ERROR); |
649 | return -1; |
650 | } |
651 | thisrr->length -= mac_size; |
652 | } else { |
653 | /* |
654 | * In this case there's no padding, so |rec->orig_len| equals |
655 | * |rec->length| and we checked that there's enough bytes for |
656 | * |mac_size| above. |
657 | */ |
658 | thisrr->length -= mac_size; |
659 | mac = &thisrr->data[thisrr->length]; |
660 | } |
661 | |
662 | i = s->method->ssl3_enc->mac(s, thisrr, md, 0 /* not send */ ); |
663 | if (i == 0 || mac == NULL |
664 | || CRYPTO_memcmp(md, mac, (size_t)mac_size) != 0) |
665 | enc_err = -1; |
666 | if (thisrr->length > SSL3_RT_MAX_COMPRESSED_LENGTH + mac_size) |
667 | enc_err = -1; |
668 | } |
669 | } |
670 | |
671 | if (enc_err < 0) { |
672 | if (ossl_statem_in_error(s)) { |
673 | /* We already called SSLfatal() */ |
674 | return -1; |
675 | } |
676 | if (num_recs == 1 && ossl_statem_skip_early_data(s)) { |
677 | /* |
678 | * We assume this is unreadable early_data - we treat it like an |
679 | * empty record |
680 | */ |
681 | |
682 | /* |
683 | * The record length may have been modified by the mac check above |
684 | * so we use the previously saved value |
685 | */ |
686 | if (!early_data_count_ok(s, first_rec_len, |
687 | EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) { |
688 | /* SSLfatal() already called */ |
689 | return -1; |
690 | } |
691 | |
692 | thisrr = &rr[0]; |
693 | thisrr->length = 0; |
694 | thisrr->read = 1; |
695 | RECORD_LAYER_set_numrpipes(&s->rlayer, 1); |
696 | RECORD_LAYER_reset_read_sequence(&s->rlayer); |
697 | return 1; |
698 | } |
699 | /* |
700 | * A separate 'decryption_failed' alert was introduced with TLS 1.0, |
701 | * SSL 3.0 only has 'bad_record_mac'. But unless a decryption |
702 | * failure is directly visible from the ciphertext anyway, we should |
703 | * not reveal which kind of error occurred -- this might become |
704 | * visible to an attacker (e.g. via a logfile) |
705 | */ |
706 | SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_SSL3_GET_RECORD, |
707 | SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); |
708 | return -1; |
709 | } |
710 | |
711 | skip_decryption: |
712 | |
713 | for (j = 0; j < num_recs; j++) { |
714 | thisrr = &rr[j]; |
715 | |
716 | /* thisrr->length is now just compressed */ |
717 | if (s->expand != NULL) { |
718 | if (thisrr->length > SSL3_RT_MAX_COMPRESSED_LENGTH) { |
719 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
720 | SSL_R_COMPRESSED_LENGTH_TOO_LONG); |
721 | return -1; |
722 | } |
723 | if (!ssl3_do_uncompress(s, thisrr)) { |
724 | SSLfatal(s, SSL_AD_DECOMPRESSION_FAILURE, SSL_F_SSL3_GET_RECORD, |
725 | SSL_R_BAD_DECOMPRESSION); |
726 | return -1; |
727 | } |
728 | } |
729 | |
730 | if (SSL_IS_TLS13(s) |
731 | && s->enc_read_ctx != NULL |
732 | && thisrr->type != SSL3_RT_ALERT) { |
733 | size_t end; |
734 | |
735 | if (thisrr->length == 0 |
736 | || thisrr->type != SSL3_RT_APPLICATION_DATA) { |
737 | SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, |
738 | SSL_R_BAD_RECORD_TYPE); |
739 | return -1; |
740 | } |
741 | |
742 | /* Strip trailing padding */ |
743 | for (end = thisrr->length - 1; end > 0 && thisrr->data[end] == 0; |
744 | end--) |
745 | continue; |
746 | |
747 | thisrr->length = end; |
748 | thisrr->type = thisrr->data[end]; |
749 | if (thisrr->type != SSL3_RT_APPLICATION_DATA |
750 | && thisrr->type != SSL3_RT_ALERT |
751 | && thisrr->type != SSL3_RT_HANDSHAKE) { |
752 | SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, |
753 | SSL_R_BAD_RECORD_TYPE); |
754 | return -1; |
755 | } |
756 | if (s->msg_callback) |
757 | s->msg_callback(0, s->version, SSL3_RT_INNER_CONTENT_TYPE, |
758 | &thisrr->data[end], 1, s, s->msg_callback_arg); |
759 | } |
760 | |
761 | /* |
762 | * TLSv1.3 alert and handshake records are required to be non-zero in |
763 | * length. |
764 | */ |
765 | if (SSL_IS_TLS13(s) |
766 | && (thisrr->type == SSL3_RT_HANDSHAKE |
767 | || thisrr->type == SSL3_RT_ALERT) |
768 | && thisrr->length == 0) { |
769 | SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, |
770 | SSL_R_BAD_LENGTH); |
771 | return -1; |
772 | } |
773 | |
774 | if (thisrr->length > SSL3_RT_MAX_PLAIN_LENGTH && !BIO_get_ktls_recv(s->rbio)) { |
775 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
776 | SSL_R_DATA_LENGTH_TOO_LONG); |
777 | return -1; |
778 | } |
779 | |
780 | /* If received packet overflows current Max Fragment Length setting */ |
781 | if (s->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(s->session) |
782 | && thisrr->length > GET_MAX_FRAGMENT_LENGTH(s->session) |
783 | && !BIO_get_ktls_recv(s->rbio)) { |
784 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
785 | SSL_R_DATA_LENGTH_TOO_LONG); |
786 | return -1; |
787 | } |
788 | |
789 | thisrr->off = 0; |
790 | /*- |
791 | * So at this point the following is true |
792 | * thisrr->type is the type of record |
793 | * thisrr->length == number of bytes in record |
794 | * thisrr->off == offset to first valid byte |
795 | * thisrr->data == where to take bytes from, increment after use :-). |
796 | */ |
797 | |
798 | /* just read a 0 length packet */ |
799 | if (thisrr->length == 0) { |
800 | RECORD_LAYER_inc_empty_record_count(&s->rlayer); |
801 | if (RECORD_LAYER_get_empty_record_count(&s->rlayer) |
802 | > MAX_EMPTY_RECORDS) { |
803 | SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, |
804 | SSL_R_RECORD_TOO_SMALL); |
805 | return -1; |
806 | } |
807 | } else { |
808 | RECORD_LAYER_reset_empty_record_count(&s->rlayer); |
809 | } |
810 | } |
811 | |
812 | if (s->early_data_state == SSL_EARLY_DATA_READING) { |
813 | thisrr = &rr[0]; |
814 | if (thisrr->type == SSL3_RT_APPLICATION_DATA |
815 | && !early_data_count_ok(s, thisrr->length, 0, 0)) { |
816 | /* SSLfatal already called */ |
817 | return -1; |
818 | } |
819 | } |
820 | |
821 | RECORD_LAYER_set_numrpipes(&s->rlayer, num_recs); |
822 | return 1; |
823 | } |
824 | |
825 | int ssl3_do_uncompress(SSL *ssl, SSL3_RECORD *rr) |
826 | { |
827 | #ifndef OPENSSL_NO_COMP |
828 | int i; |
829 | |
830 | if (rr->comp == NULL) { |
831 | rr->comp = (unsigned char *) |
832 | OPENSSL_malloc(SSL3_RT_MAX_ENCRYPTED_LENGTH); |
833 | } |
834 | if (rr->comp == NULL) |
835 | return 0; |
836 | |
837 | /* TODO(size_t): Convert this call */ |
838 | i = COMP_expand_block(ssl->expand, rr->comp, |
839 | SSL3_RT_MAX_PLAIN_LENGTH, rr->data, (int)rr->length); |
840 | if (i < 0) |
841 | return 0; |
842 | else |
843 | rr->length = i; |
844 | rr->data = rr->comp; |
845 | #endif |
846 | return 1; |
847 | } |
848 | |
849 | int ssl3_do_compress(SSL *ssl, SSL3_RECORD *wr) |
850 | { |
851 | #ifndef OPENSSL_NO_COMP |
852 | int i; |
853 | |
854 | /* TODO(size_t): Convert this call */ |
855 | i = COMP_compress_block(ssl->compress, wr->data, |
856 | (int)(wr->length + SSL3_RT_MAX_COMPRESSED_OVERHEAD), |
857 | wr->input, (int)wr->length); |
858 | if (i < 0) |
859 | return 0; |
860 | else |
861 | wr->length = i; |
862 | |
863 | wr->input = wr->data; |
864 | #endif |
865 | return 1; |
866 | } |
867 | |
868 | /*- |
869 | * ssl3_enc encrypts/decrypts |n_recs| records in |inrecs|. Will call |
870 | * SSLfatal() for internal errors, but not otherwise. |
871 | * |
872 | * Returns: |
873 | * 0: (in non-constant time) if the record is publicly invalid (i.e. too |
874 | * short etc). |
875 | * 1: if the record's padding is valid / the encryption was successful. |
876 | * -1: if the record's padding is invalid or, if sending, an internal error |
877 | * occurred. |
878 | */ |
879 | int ssl3_enc(SSL *s, SSL3_RECORD *inrecs, size_t n_recs, int sending) |
880 | { |
881 | SSL3_RECORD *rec; |
882 | EVP_CIPHER_CTX *ds; |
883 | size_t l, i; |
884 | size_t bs, mac_size = 0; |
885 | int imac_size; |
886 | const EVP_CIPHER *enc; |
887 | |
888 | rec = inrecs; |
889 | /* |
890 | * We shouldn't ever be called with more than one record in the SSLv3 case |
891 | */ |
892 | if (n_recs != 1) |
893 | return 0; |
894 | if (sending) { |
895 | ds = s->enc_write_ctx; |
896 | if (s->enc_write_ctx == NULL) |
897 | enc = NULL; |
898 | else |
899 | enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx); |
900 | } else { |
901 | ds = s->enc_read_ctx; |
902 | if (s->enc_read_ctx == NULL) |
903 | enc = NULL; |
904 | else |
905 | enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx); |
906 | } |
907 | |
908 | if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) { |
909 | memmove(rec->data, rec->input, rec->length); |
910 | rec->input = rec->data; |
911 | } else { |
912 | l = rec->length; |
913 | /* TODO(size_t): Convert this call */ |
914 | bs = EVP_CIPHER_CTX_block_size(ds); |
915 | |
916 | /* COMPRESS */ |
917 | |
918 | if ((bs != 1) && sending) { |
919 | i = bs - (l % bs); |
920 | |
921 | /* we need to add 'i-1' padding bytes */ |
922 | l += i; |
923 | /* |
924 | * the last of these zero bytes will be overwritten with the |
925 | * padding length. |
926 | */ |
927 | memset(&rec->input[rec->length], 0, i); |
928 | rec->length += i; |
929 | rec->input[l - 1] = (unsigned char)(i - 1); |
930 | } |
931 | |
932 | if (!sending) { |
933 | if (l == 0 || l % bs != 0) |
934 | return 0; |
935 | /* otherwise, rec->length >= bs */ |
936 | } |
937 | |
938 | /* TODO(size_t): Convert this call */ |
939 | if (EVP_Cipher(ds, rec->data, rec->input, (unsigned int)l) < 1) |
940 | return -1; |
941 | |
942 | if (EVP_MD_CTX_md(s->read_hash) != NULL) { |
943 | /* TODO(size_t): convert me */ |
944 | imac_size = EVP_MD_CTX_size(s->read_hash); |
945 | if (imac_size < 0) { |
946 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_ENC, |
947 | ERR_R_INTERNAL_ERROR); |
948 | return -1; |
949 | } |
950 | mac_size = (size_t)imac_size; |
951 | } |
952 | if ((bs != 1) && !sending) |
953 | return ssl3_cbc_remove_padding(rec, bs, mac_size); |
954 | } |
955 | return 1; |
956 | } |
957 | |
958 | #define MAX_PADDING 256 |
959 | /*- |
960 | * tls1_enc encrypts/decrypts |n_recs| in |recs|. Will call SSLfatal() for |
961 | * internal errors, but not otherwise. |
962 | * |
963 | * Returns: |
964 | * 0: (in non-constant time) if the record is publicly invalid (i.e. too |
965 | * short etc). |
966 | * 1: if the record's padding is valid / the encryption was successful. |
967 | * -1: if the record's padding/AEAD-authenticator is invalid or, if sending, |
968 | * an internal error occurred. |
969 | */ |
970 | int tls1_enc(SSL *s, SSL3_RECORD *recs, size_t n_recs, int sending) |
971 | { |
972 | EVP_CIPHER_CTX *ds; |
973 | size_t reclen[SSL_MAX_PIPELINES]; |
974 | unsigned char buf[SSL_MAX_PIPELINES][EVP_AEAD_TLS1_AAD_LEN]; |
975 | int i, pad = 0, ret, tmpr; |
976 | size_t bs, mac_size = 0, ctr, padnum, loop; |
977 | unsigned char padval; |
978 | int imac_size; |
979 | const EVP_CIPHER *enc; |
980 | |
981 | if (n_recs == 0) { |
982 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
983 | ERR_R_INTERNAL_ERROR); |
984 | return 0; |
985 | } |
986 | |
987 | if (sending) { |
988 | if (EVP_MD_CTX_md(s->write_hash)) { |
989 | int n = EVP_MD_CTX_size(s->write_hash); |
990 | if (!ossl_assert(n >= 0)) { |
991 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
992 | ERR_R_INTERNAL_ERROR); |
993 | return -1; |
994 | } |
995 | } |
996 | ds = s->enc_write_ctx; |
997 | if (s->enc_write_ctx == NULL) |
998 | enc = NULL; |
999 | else { |
1000 | int ivlen; |
1001 | enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx); |
1002 | /* For TLSv1.1 and later explicit IV */ |
1003 | if (SSL_USE_EXPLICIT_IV(s) |
1004 | && EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE) |
1005 | ivlen = EVP_CIPHER_iv_length(enc); |
1006 | else |
1007 | ivlen = 0; |
1008 | if (ivlen > 1) { |
1009 | for (ctr = 0; ctr < n_recs; ctr++) { |
1010 | if (recs[ctr].data != recs[ctr].input) { |
1011 | /* |
1012 | * we can't write into the input stream: Can this ever |
1013 | * happen?? (steve) |
1014 | */ |
1015 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
1016 | ERR_R_INTERNAL_ERROR); |
1017 | return -1; |
1018 | } else if (RAND_bytes(recs[ctr].input, ivlen) <= 0) { |
1019 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
1020 | ERR_R_INTERNAL_ERROR); |
1021 | return -1; |
1022 | } |
1023 | } |
1024 | } |
1025 | } |
1026 | } else { |
1027 | if (EVP_MD_CTX_md(s->read_hash)) { |
1028 | int n = EVP_MD_CTX_size(s->read_hash); |
1029 | if (!ossl_assert(n >= 0)) { |
1030 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
1031 | ERR_R_INTERNAL_ERROR); |
1032 | return -1; |
1033 | } |
1034 | } |
1035 | ds = s->enc_read_ctx; |
1036 | if (s->enc_read_ctx == NULL) |
1037 | enc = NULL; |
1038 | else |
1039 | enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx); |
1040 | } |
1041 | |
1042 | if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) { |
1043 | for (ctr = 0; ctr < n_recs; ctr++) { |
1044 | memmove(recs[ctr].data, recs[ctr].input, recs[ctr].length); |
1045 | recs[ctr].input = recs[ctr].data; |
1046 | } |
1047 | ret = 1; |
1048 | } else { |
1049 | bs = EVP_CIPHER_block_size(EVP_CIPHER_CTX_cipher(ds)); |
1050 | |
1051 | if (n_recs > 1) { |
1052 | if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ds)) |
1053 | & EVP_CIPH_FLAG_PIPELINE)) { |
1054 | /* |
1055 | * We shouldn't have been called with pipeline data if the |
1056 | * cipher doesn't support pipelining |
1057 | */ |
1058 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
1059 | SSL_R_PIPELINE_FAILURE); |
1060 | return -1; |
1061 | } |
1062 | } |
1063 | for (ctr = 0; ctr < n_recs; ctr++) { |
1064 | reclen[ctr] = recs[ctr].length; |
1065 | |
1066 | if (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ds)) |
1067 | & EVP_CIPH_FLAG_AEAD_CIPHER) { |
1068 | unsigned char *seq; |
1069 | |
1070 | seq = sending ? RECORD_LAYER_get_write_sequence(&s->rlayer) |
1071 | : RECORD_LAYER_get_read_sequence(&s->rlayer); |
1072 | |
1073 | if (SSL_IS_DTLS(s)) { |
1074 | /* DTLS does not support pipelining */ |
1075 | unsigned char dtlsseq[9], *p = dtlsseq; |
1076 | |
1077 | s2n(sending ? DTLS_RECORD_LAYER_get_w_epoch(&s->rlayer) : |
1078 | DTLS_RECORD_LAYER_get_r_epoch(&s->rlayer), p); |
1079 | memcpy(p, &seq[2], 6); |
1080 | memcpy(buf[ctr], dtlsseq, 8); |
1081 | } else { |
1082 | memcpy(buf[ctr], seq, 8); |
1083 | for (i = 7; i >= 0; i--) { /* increment */ |
1084 | ++seq[i]; |
1085 | if (seq[i] != 0) |
1086 | break; |
1087 | } |
1088 | } |
1089 | |
1090 | buf[ctr][8] = recs[ctr].type; |
1091 | buf[ctr][9] = (unsigned char)(s->version >> 8); |
1092 | buf[ctr][10] = (unsigned char)(s->version); |
1093 | buf[ctr][11] = (unsigned char)(recs[ctr].length >> 8); |
1094 | buf[ctr][12] = (unsigned char)(recs[ctr].length & 0xff); |
1095 | pad = EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_AEAD_TLS1_AAD, |
1096 | EVP_AEAD_TLS1_AAD_LEN, buf[ctr]); |
1097 | if (pad <= 0) { |
1098 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
1099 | ERR_R_INTERNAL_ERROR); |
1100 | return -1; |
1101 | } |
1102 | |
1103 | if (sending) { |
1104 | reclen[ctr] += pad; |
1105 | recs[ctr].length += pad; |
1106 | } |
1107 | |
1108 | } else if ((bs != 1) && sending) { |
1109 | padnum = bs - (reclen[ctr] % bs); |
1110 | |
1111 | /* Add weird padding of up to 256 bytes */ |
1112 | |
1113 | if (padnum > MAX_PADDING) { |
1114 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
1115 | ERR_R_INTERNAL_ERROR); |
1116 | return -1; |
1117 | } |
1118 | /* we need to add 'padnum' padding bytes of value padval */ |
1119 | padval = (unsigned char)(padnum - 1); |
1120 | for (loop = reclen[ctr]; loop < reclen[ctr] + padnum; loop++) |
1121 | recs[ctr].input[loop] = padval; |
1122 | reclen[ctr] += padnum; |
1123 | recs[ctr].length += padnum; |
1124 | } |
1125 | |
1126 | if (!sending) { |
1127 | if (reclen[ctr] == 0 || reclen[ctr] % bs != 0) |
1128 | return 0; |
1129 | } |
1130 | } |
1131 | if (n_recs > 1) { |
1132 | unsigned char *data[SSL_MAX_PIPELINES]; |
1133 | |
1134 | /* Set the output buffers */ |
1135 | for (ctr = 0; ctr < n_recs; ctr++) { |
1136 | data[ctr] = recs[ctr].data; |
1137 | } |
1138 | if (EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_SET_PIPELINE_OUTPUT_BUFS, |
1139 | (int)n_recs, data) <= 0) { |
1140 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
1141 | SSL_R_PIPELINE_FAILURE); |
1142 | return -1; |
1143 | } |
1144 | /* Set the input buffers */ |
1145 | for (ctr = 0; ctr < n_recs; ctr++) { |
1146 | data[ctr] = recs[ctr].input; |
1147 | } |
1148 | if (EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_SET_PIPELINE_INPUT_BUFS, |
1149 | (int)n_recs, data) <= 0 |
1150 | || EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_SET_PIPELINE_INPUT_LENS, |
1151 | (int)n_recs, reclen) <= 0) { |
1152 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
1153 | SSL_R_PIPELINE_FAILURE); |
1154 | return -1; |
1155 | } |
1156 | } |
1157 | |
1158 | /* TODO(size_t): Convert this call */ |
1159 | tmpr = EVP_Cipher(ds, recs[0].data, recs[0].input, |
1160 | (unsigned int)reclen[0]); |
1161 | if ((EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ds)) |
1162 | & EVP_CIPH_FLAG_CUSTOM_CIPHER) |
1163 | ? (tmpr < 0) |
1164 | : (tmpr == 0)) |
1165 | return -1; /* AEAD can fail to verify MAC */ |
1166 | |
1167 | if (sending == 0) { |
1168 | if (EVP_CIPHER_mode(enc) == EVP_CIPH_GCM_MODE) { |
1169 | for (ctr = 0; ctr < n_recs; ctr++) { |
1170 | recs[ctr].data += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
1171 | recs[ctr].input += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
1172 | recs[ctr].length -= EVP_GCM_TLS_EXPLICIT_IV_LEN; |
1173 | } |
1174 | } else if (EVP_CIPHER_mode(enc) == EVP_CIPH_CCM_MODE) { |
1175 | for (ctr = 0; ctr < n_recs; ctr++) { |
1176 | recs[ctr].data += EVP_CCM_TLS_EXPLICIT_IV_LEN; |
1177 | recs[ctr].input += EVP_CCM_TLS_EXPLICIT_IV_LEN; |
1178 | recs[ctr].length -= EVP_CCM_TLS_EXPLICIT_IV_LEN; |
1179 | } |
1180 | } |
1181 | } |
1182 | |
1183 | ret = 1; |
1184 | if (!SSL_READ_ETM(s) && EVP_MD_CTX_md(s->read_hash) != NULL) { |
1185 | imac_size = EVP_MD_CTX_size(s->read_hash); |
1186 | if (imac_size < 0) { |
1187 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
1188 | ERR_R_INTERNAL_ERROR); |
1189 | return -1; |
1190 | } |
1191 | mac_size = (size_t)imac_size; |
1192 | } |
1193 | if ((bs != 1) && !sending) { |
1194 | int tmpret; |
1195 | for (ctr = 0; ctr < n_recs; ctr++) { |
1196 | tmpret = tls1_cbc_remove_padding(s, &recs[ctr], bs, mac_size); |
1197 | /* |
1198 | * If tmpret == 0 then this means publicly invalid so we can |
1199 | * short circuit things here. Otherwise we must respect constant |
1200 | * time behaviour. |
1201 | */ |
1202 | if (tmpret == 0) |
1203 | return 0; |
1204 | ret = constant_time_select_int(constant_time_eq_int(tmpret, 1), |
1205 | ret, -1); |
1206 | } |
1207 | } |
1208 | if (pad && !sending) { |
1209 | for (ctr = 0; ctr < n_recs; ctr++) { |
1210 | recs[ctr].length -= pad; |
1211 | } |
1212 | } |
1213 | } |
1214 | return ret; |
1215 | } |
1216 | |
1217 | int n_ssl3_mac(SSL *ssl, SSL3_RECORD *rec, unsigned char *md, int sending) |
1218 | { |
1219 | unsigned char *mac_sec, *seq; |
1220 | const EVP_MD_CTX *hash; |
1221 | unsigned char *p, rec_char; |
1222 | size_t md_size; |
1223 | size_t npad; |
1224 | int t; |
1225 | |
1226 | if (sending) { |
1227 | mac_sec = &(ssl->s3.write_mac_secret[0]); |
1228 | seq = RECORD_LAYER_get_write_sequence(&ssl->rlayer); |
1229 | hash = ssl->write_hash; |
1230 | } else { |
1231 | mac_sec = &(ssl->s3.read_mac_secret[0]); |
1232 | seq = RECORD_LAYER_get_read_sequence(&ssl->rlayer); |
1233 | hash = ssl->read_hash; |
1234 | } |
1235 | |
1236 | t = EVP_MD_CTX_size(hash); |
1237 | if (t < 0) |
1238 | return 0; |
1239 | md_size = t; |
1240 | npad = (48 / md_size) * md_size; |
1241 | |
1242 | if (!sending && |
1243 | EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE && |
1244 | ssl3_cbc_record_digest_supported(hash)) { |
1245 | /* |
1246 | * This is a CBC-encrypted record. We must avoid leaking any |
1247 | * timing-side channel information about how many blocks of data we |
1248 | * are hashing because that gives an attacker a timing-oracle. |
1249 | */ |
1250 | |
1251 | /*- |
1252 | * npad is, at most, 48 bytes and that's with MD5: |
1253 | * 16 + 48 + 8 (sequence bytes) + 1 + 2 = 75. |
1254 | * |
1255 | * With SHA-1 (the largest hash speced for SSLv3) the hash size |
1256 | * goes up 4, but npad goes down by 8, resulting in a smaller |
1257 | * total size. |
1258 | */ |
1259 | unsigned char [75]; |
1260 | size_t j = 0; |
1261 | memcpy(header + j, mac_sec, md_size); |
1262 | j += md_size; |
1263 | memcpy(header + j, ssl3_pad_1, npad); |
1264 | j += npad; |
1265 | memcpy(header + j, seq, 8); |
1266 | j += 8; |
1267 | header[j++] = rec->type; |
1268 | header[j++] = (unsigned char)(rec->length >> 8); |
1269 | header[j++] = (unsigned char)(rec->length & 0xff); |
1270 | |
1271 | /* Final param == is SSLv3 */ |
1272 | if (ssl3_cbc_digest_record(hash, |
1273 | md, &md_size, |
1274 | header, rec->input, |
1275 | rec->length + md_size, rec->orig_len, |
1276 | mac_sec, md_size, 1) <= 0) |
1277 | return 0; |
1278 | } else { |
1279 | unsigned int md_size_u; |
1280 | /* Chop the digest off the end :-) */ |
1281 | EVP_MD_CTX *md_ctx = EVP_MD_CTX_new(); |
1282 | |
1283 | if (md_ctx == NULL) |
1284 | return 0; |
1285 | |
1286 | rec_char = rec->type; |
1287 | p = md; |
1288 | s2n(rec->length, p); |
1289 | if (EVP_MD_CTX_copy_ex(md_ctx, hash) <= 0 |
1290 | || EVP_DigestUpdate(md_ctx, mac_sec, md_size) <= 0 |
1291 | || EVP_DigestUpdate(md_ctx, ssl3_pad_1, npad) <= 0 |
1292 | || EVP_DigestUpdate(md_ctx, seq, 8) <= 0 |
1293 | || EVP_DigestUpdate(md_ctx, &rec_char, 1) <= 0 |
1294 | || EVP_DigestUpdate(md_ctx, md, 2) <= 0 |
1295 | || EVP_DigestUpdate(md_ctx, rec->input, rec->length) <= 0 |
1296 | || EVP_DigestFinal_ex(md_ctx, md, NULL) <= 0 |
1297 | || EVP_MD_CTX_copy_ex(md_ctx, hash) <= 0 |
1298 | || EVP_DigestUpdate(md_ctx, mac_sec, md_size) <= 0 |
1299 | || EVP_DigestUpdate(md_ctx, ssl3_pad_2, npad) <= 0 |
1300 | || EVP_DigestUpdate(md_ctx, md, md_size) <= 0 |
1301 | || EVP_DigestFinal_ex(md_ctx, md, &md_size_u) <= 0) { |
1302 | EVP_MD_CTX_free(md_ctx); |
1303 | return 0; |
1304 | } |
1305 | |
1306 | EVP_MD_CTX_free(md_ctx); |
1307 | } |
1308 | |
1309 | ssl3_record_sequence_update(seq); |
1310 | return 1; |
1311 | } |
1312 | |
1313 | int tls1_mac(SSL *ssl, SSL3_RECORD *rec, unsigned char *md, int sending) |
1314 | { |
1315 | unsigned char *seq; |
1316 | EVP_MD_CTX *hash; |
1317 | size_t md_size; |
1318 | int i; |
1319 | EVP_MD_CTX *hmac = NULL, *mac_ctx; |
1320 | unsigned char [13]; |
1321 | int stream_mac = (sending ? (ssl->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM) |
1322 | : (ssl->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM)); |
1323 | int t; |
1324 | |
1325 | if (sending) { |
1326 | seq = RECORD_LAYER_get_write_sequence(&ssl->rlayer); |
1327 | hash = ssl->write_hash; |
1328 | } else { |
1329 | seq = RECORD_LAYER_get_read_sequence(&ssl->rlayer); |
1330 | hash = ssl->read_hash; |
1331 | } |
1332 | |
1333 | t = EVP_MD_CTX_size(hash); |
1334 | if (!ossl_assert(t >= 0)) |
1335 | return 0; |
1336 | md_size = t; |
1337 | |
1338 | /* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */ |
1339 | if (stream_mac) { |
1340 | mac_ctx = hash; |
1341 | } else { |
1342 | hmac = EVP_MD_CTX_new(); |
1343 | if (hmac == NULL || !EVP_MD_CTX_copy(hmac, hash)) { |
1344 | EVP_MD_CTX_free(hmac); |
1345 | return 0; |
1346 | } |
1347 | mac_ctx = hmac; |
1348 | } |
1349 | |
1350 | if (SSL_IS_DTLS(ssl)) { |
1351 | unsigned char dtlsseq[8], *p = dtlsseq; |
1352 | |
1353 | s2n(sending ? DTLS_RECORD_LAYER_get_w_epoch(&ssl->rlayer) : |
1354 | DTLS_RECORD_LAYER_get_r_epoch(&ssl->rlayer), p); |
1355 | memcpy(p, &seq[2], 6); |
1356 | |
1357 | memcpy(header, dtlsseq, 8); |
1358 | } else |
1359 | memcpy(header, seq, 8); |
1360 | |
1361 | header[8] = rec->type; |
1362 | header[9] = (unsigned char)(ssl->version >> 8); |
1363 | header[10] = (unsigned char)(ssl->version); |
1364 | header[11] = (unsigned char)(rec->length >> 8); |
1365 | header[12] = (unsigned char)(rec->length & 0xff); |
1366 | |
1367 | if (!sending && !SSL_READ_ETM(ssl) && |
1368 | EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE && |
1369 | ssl3_cbc_record_digest_supported(mac_ctx)) { |
1370 | /* |
1371 | * This is a CBC-encrypted record. We must avoid leaking any |
1372 | * timing-side channel information about how many blocks of data we |
1373 | * are hashing because that gives an attacker a timing-oracle. |
1374 | */ |
1375 | /* Final param == not SSLv3 */ |
1376 | if (ssl3_cbc_digest_record(mac_ctx, |
1377 | md, &md_size, |
1378 | header, rec->input, |
1379 | rec->length + md_size, rec->orig_len, |
1380 | ssl->s3.read_mac_secret, |
1381 | ssl->s3.read_mac_secret_size, 0) <= 0) { |
1382 | EVP_MD_CTX_free(hmac); |
1383 | return 0; |
1384 | } |
1385 | } else { |
1386 | /* TODO(size_t): Convert these calls */ |
1387 | if (EVP_DigestSignUpdate(mac_ctx, header, sizeof(header)) <= 0 |
1388 | || EVP_DigestSignUpdate(mac_ctx, rec->input, rec->length) <= 0 |
1389 | || EVP_DigestSignFinal(mac_ctx, md, &md_size) <= 0) { |
1390 | EVP_MD_CTX_free(hmac); |
1391 | return 0; |
1392 | } |
1393 | } |
1394 | |
1395 | EVP_MD_CTX_free(hmac); |
1396 | |
1397 | OSSL_TRACE_BEGIN(TLS) { |
1398 | BIO_printf(trc_out, "seq:\n" ); |
1399 | BIO_dump_indent(trc_out, seq, 8, 4); |
1400 | BIO_printf(trc_out, "rec:\n" ); |
1401 | BIO_dump_indent(trc_out, rec->data, rec->length, 4); |
1402 | } OSSL_TRACE_END(TLS); |
1403 | |
1404 | if (!SSL_IS_DTLS(ssl)) { |
1405 | for (i = 7; i >= 0; i--) { |
1406 | ++seq[i]; |
1407 | if (seq[i] != 0) |
1408 | break; |
1409 | } |
1410 | } |
1411 | OSSL_TRACE_BEGIN(TLS) { |
1412 | BIO_printf(trc_out, "md:\n" ); |
1413 | BIO_dump_indent(trc_out, md, md_size, 4); |
1414 | } OSSL_TRACE_END(TLS); |
1415 | return 1; |
1416 | } |
1417 | |
1418 | /*- |
1419 | * ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC |
1420 | * record in |rec| by updating |rec->length| in constant time. |
1421 | * |
1422 | * block_size: the block size of the cipher used to encrypt the record. |
1423 | * returns: |
1424 | * 0: (in non-constant time) if the record is publicly invalid. |
1425 | * 1: if the padding was valid |
1426 | * -1: otherwise. |
1427 | */ |
1428 | int ssl3_cbc_remove_padding(SSL3_RECORD *rec, |
1429 | size_t block_size, size_t mac_size) |
1430 | { |
1431 | size_t padding_length; |
1432 | size_t good; |
1433 | const size_t overhead = 1 /* padding length byte */ + mac_size; |
1434 | |
1435 | /* |
1436 | * These lengths are all public so we can test them in non-constant time. |
1437 | */ |
1438 | if (overhead > rec->length) |
1439 | return 0; |
1440 | |
1441 | padding_length = rec->data[rec->length - 1]; |
1442 | good = constant_time_ge_s(rec->length, padding_length + overhead); |
1443 | /* SSLv3 requires that the padding is minimal. */ |
1444 | good &= constant_time_ge_s(block_size, padding_length + 1); |
1445 | rec->length -= good & (padding_length + 1); |
1446 | return constant_time_select_int_s(good, 1, -1); |
1447 | } |
1448 | |
1449 | /*- |
1450 | * tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC |
1451 | * record in |rec| in constant time and returns 1 if the padding is valid and |
1452 | * -1 otherwise. It also removes any explicit IV from the start of the record |
1453 | * without leaking any timing about whether there was enough space after the |
1454 | * padding was removed. |
1455 | * |
1456 | * block_size: the block size of the cipher used to encrypt the record. |
1457 | * returns: |
1458 | * 0: (in non-constant time) if the record is publicly invalid. |
1459 | * 1: if the padding was valid |
1460 | * -1: otherwise. |
1461 | */ |
1462 | int tls1_cbc_remove_padding(const SSL *s, |
1463 | SSL3_RECORD *rec, |
1464 | size_t block_size, size_t mac_size) |
1465 | { |
1466 | size_t good; |
1467 | size_t padding_length, to_check, i; |
1468 | const size_t overhead = 1 /* padding length byte */ + mac_size; |
1469 | /* Check if version requires explicit IV */ |
1470 | if (SSL_USE_EXPLICIT_IV(s)) { |
1471 | /* |
1472 | * These lengths are all public so we can test them in non-constant |
1473 | * time. |
1474 | */ |
1475 | if (overhead + block_size > rec->length) |
1476 | return 0; |
1477 | /* We can now safely skip explicit IV */ |
1478 | rec->data += block_size; |
1479 | rec->input += block_size; |
1480 | rec->length -= block_size; |
1481 | rec->orig_len -= block_size; |
1482 | } else if (overhead > rec->length) |
1483 | return 0; |
1484 | |
1485 | padding_length = rec->data[rec->length - 1]; |
1486 | |
1487 | if (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(s->enc_read_ctx)) & |
1488 | EVP_CIPH_FLAG_AEAD_CIPHER) { |
1489 | /* padding is already verified */ |
1490 | rec->length -= padding_length + 1; |
1491 | return 1; |
1492 | } |
1493 | |
1494 | good = constant_time_ge_s(rec->length, overhead + padding_length); |
1495 | /* |
1496 | * The padding consists of a length byte at the end of the record and |
1497 | * then that many bytes of padding, all with the same value as the length |
1498 | * byte. Thus, with the length byte included, there are i+1 bytes of |
1499 | * padding. We can't check just |padding_length+1| bytes because that |
1500 | * leaks decrypted information. Therefore we always have to check the |
1501 | * maximum amount of padding possible. (Again, the length of the record |
1502 | * is public information so we can use it.) |
1503 | */ |
1504 | to_check = 256; /* maximum amount of padding, inc length byte. */ |
1505 | if (to_check > rec->length) |
1506 | to_check = rec->length; |
1507 | |
1508 | for (i = 0; i < to_check; i++) { |
1509 | unsigned char mask = constant_time_ge_8_s(padding_length, i); |
1510 | unsigned char b = rec->data[rec->length - 1 - i]; |
1511 | /* |
1512 | * The final |padding_length+1| bytes should all have the value |
1513 | * |padding_length|. Therefore the XOR should be zero. |
1514 | */ |
1515 | good &= ~(mask & (padding_length ^ b)); |
1516 | } |
1517 | |
1518 | /* |
1519 | * If any of the final |padding_length+1| bytes had the wrong value, one |
1520 | * or more of the lower eight bits of |good| will be cleared. |
1521 | */ |
1522 | good = constant_time_eq_s(0xff, good & 0xff); |
1523 | rec->length -= good & (padding_length + 1); |
1524 | |
1525 | return constant_time_select_int_s(good, 1, -1); |
1526 | } |
1527 | |
1528 | /*- |
1529 | * ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in |
1530 | * constant time (independent of the concrete value of rec->length, which may |
1531 | * vary within a 256-byte window). |
1532 | * |
1533 | * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to |
1534 | * this function. |
1535 | * |
1536 | * On entry: |
1537 | * rec->orig_len >= md_size |
1538 | * md_size <= EVP_MAX_MD_SIZE |
1539 | * |
1540 | * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with |
1541 | * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into |
1542 | * a single or pair of cache-lines, then the variable memory accesses don't |
1543 | * actually affect the timing. CPUs with smaller cache-lines [if any] are |
1544 | * not multi-core and are not considered vulnerable to cache-timing attacks. |
1545 | */ |
1546 | #define CBC_MAC_ROTATE_IN_PLACE |
1547 | |
1548 | int ssl3_cbc_copy_mac(unsigned char *out, |
1549 | const SSL3_RECORD *rec, size_t md_size) |
1550 | { |
1551 | #if defined(CBC_MAC_ROTATE_IN_PLACE) |
1552 | unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE]; |
1553 | unsigned char *rotated_mac; |
1554 | #else |
1555 | unsigned char rotated_mac[EVP_MAX_MD_SIZE]; |
1556 | #endif |
1557 | |
1558 | /* |
1559 | * mac_end is the index of |rec->data| just after the end of the MAC. |
1560 | */ |
1561 | size_t mac_end = rec->length; |
1562 | size_t mac_start = mac_end - md_size; |
1563 | size_t in_mac; |
1564 | /* |
1565 | * scan_start contains the number of bytes that we can ignore because the |
1566 | * MAC's position can only vary by 255 bytes. |
1567 | */ |
1568 | size_t scan_start = 0; |
1569 | size_t i, j; |
1570 | size_t rotate_offset; |
1571 | |
1572 | if (!ossl_assert(rec->orig_len >= md_size |
1573 | && md_size <= EVP_MAX_MD_SIZE)) |
1574 | return 0; |
1575 | |
1576 | #if defined(CBC_MAC_ROTATE_IN_PLACE) |
1577 | rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf) & 63); |
1578 | #endif |
1579 | |
1580 | /* This information is public so it's safe to branch based on it. */ |
1581 | if (rec->orig_len > md_size + 255 + 1) |
1582 | scan_start = rec->orig_len - (md_size + 255 + 1); |
1583 | |
1584 | in_mac = 0; |
1585 | rotate_offset = 0; |
1586 | memset(rotated_mac, 0, md_size); |
1587 | for (i = scan_start, j = 0; i < rec->orig_len; i++) { |
1588 | size_t mac_started = constant_time_eq_s(i, mac_start); |
1589 | size_t mac_ended = constant_time_lt_s(i, mac_end); |
1590 | unsigned char b = rec->data[i]; |
1591 | |
1592 | in_mac |= mac_started; |
1593 | in_mac &= mac_ended; |
1594 | rotate_offset |= j & mac_started; |
1595 | rotated_mac[j++] |= b & in_mac; |
1596 | j &= constant_time_lt_s(j, md_size); |
1597 | } |
1598 | |
1599 | /* Now rotate the MAC */ |
1600 | #if defined(CBC_MAC_ROTATE_IN_PLACE) |
1601 | j = 0; |
1602 | for (i = 0; i < md_size; i++) { |
1603 | /* in case cache-line is 32 bytes, touch second line */ |
1604 | ((volatile unsigned char *)rotated_mac)[rotate_offset ^ 32]; |
1605 | out[j++] = rotated_mac[rotate_offset++]; |
1606 | rotate_offset &= constant_time_lt_s(rotate_offset, md_size); |
1607 | } |
1608 | #else |
1609 | memset(out, 0, md_size); |
1610 | rotate_offset = md_size - rotate_offset; |
1611 | rotate_offset &= constant_time_lt_s(rotate_offset, md_size); |
1612 | for (i = 0; i < md_size; i++) { |
1613 | for (j = 0; j < md_size; j++) |
1614 | out[j] |= rotated_mac[i] & constant_time_eq_8_s(j, rotate_offset); |
1615 | rotate_offset++; |
1616 | rotate_offset &= constant_time_lt_s(rotate_offset, md_size); |
1617 | } |
1618 | #endif |
1619 | |
1620 | return 1; |
1621 | } |
1622 | |
1623 | int dtls1_process_record(SSL *s, DTLS1_BITMAP *bitmap) |
1624 | { |
1625 | int i; |
1626 | int enc_err; |
1627 | SSL_SESSION *sess; |
1628 | SSL3_RECORD *rr; |
1629 | int imac_size; |
1630 | size_t mac_size; |
1631 | unsigned char md[EVP_MAX_MD_SIZE]; |
1632 | |
1633 | rr = RECORD_LAYER_get_rrec(&s->rlayer); |
1634 | sess = s->session; |
1635 | |
1636 | /* |
1637 | * At this point, s->packet_length == SSL3_RT_HEADER_LNGTH + rr->length, |
1638 | * and we have that many bytes in s->packet |
1639 | */ |
1640 | rr->input = &(RECORD_LAYER_get_packet(&s->rlayer)[DTLS1_RT_HEADER_LENGTH]); |
1641 | |
1642 | /* |
1643 | * ok, we can now read from 's->packet' data into 'rr' rr->input points |
1644 | * at rr->length bytes, which need to be copied into rr->data by either |
1645 | * the decryption or by the decompression When the data is 'copied' into |
1646 | * the rr->data buffer, rr->input will be pointed at the new buffer |
1647 | */ |
1648 | |
1649 | /* |
1650 | * We now have - encrypted [ MAC [ compressed [ plain ] ] ] rr->length |
1651 | * bytes of encrypted compressed stuff. |
1652 | */ |
1653 | |
1654 | /* check is not needed I believe */ |
1655 | if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH) { |
1656 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_DTLS1_PROCESS_RECORD, |
1657 | SSL_R_ENCRYPTED_LENGTH_TOO_LONG); |
1658 | return 0; |
1659 | } |
1660 | |
1661 | /* decrypt in place in 'rr->input' */ |
1662 | rr->data = rr->input; |
1663 | rr->orig_len = rr->length; |
1664 | |
1665 | if (SSL_READ_ETM(s) && s->read_hash) { |
1666 | unsigned char *mac; |
1667 | mac_size = EVP_MD_CTX_size(s->read_hash); |
1668 | if (!ossl_assert(mac_size <= EVP_MAX_MD_SIZE)) { |
1669 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD, |
1670 | ERR_R_INTERNAL_ERROR); |
1671 | return 0; |
1672 | } |
1673 | if (rr->orig_len < mac_size) { |
1674 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_DTLS1_PROCESS_RECORD, |
1675 | SSL_R_LENGTH_TOO_SHORT); |
1676 | return 0; |
1677 | } |
1678 | rr->length -= mac_size; |
1679 | mac = rr->data + rr->length; |
1680 | i = s->method->ssl3_enc->mac(s, rr, md, 0 /* not send */ ); |
1681 | if (i == 0 || CRYPTO_memcmp(md, mac, (size_t)mac_size) != 0) { |
1682 | SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_DTLS1_PROCESS_RECORD, |
1683 | SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); |
1684 | return 0; |
1685 | } |
1686 | } |
1687 | |
1688 | enc_err = s->method->ssl3_enc->enc(s, rr, 1, 0); |
1689 | /*- |
1690 | * enc_err is: |
1691 | * 0: (in non-constant time) if the record is publicly invalid. |
1692 | * 1: if the padding is valid |
1693 | * -1: if the padding is invalid |
1694 | */ |
1695 | if (enc_err == 0) { |
1696 | if (ossl_statem_in_error(s)) { |
1697 | /* SSLfatal() got called */ |
1698 | return 0; |
1699 | } |
1700 | /* For DTLS we simply ignore bad packets. */ |
1701 | rr->length = 0; |
1702 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
1703 | return 0; |
1704 | } |
1705 | OSSL_TRACE_BEGIN(TLS) { |
1706 | BIO_printf(trc_out, "dec %zd\n" , rr->length); |
1707 | BIO_dump_indent(trc_out, rr->data, rr->length, 4); |
1708 | } OSSL_TRACE_END(TLS); |
1709 | |
1710 | /* r->length is now the compressed data plus mac */ |
1711 | if ((sess != NULL) && !SSL_READ_ETM(s) && |
1712 | (s->enc_read_ctx != NULL) && (EVP_MD_CTX_md(s->read_hash) != NULL)) { |
1713 | /* s->read_hash != NULL => mac_size != -1 */ |
1714 | unsigned char *mac = NULL; |
1715 | unsigned char mac_tmp[EVP_MAX_MD_SIZE]; |
1716 | |
1717 | /* TODO(size_t): Convert this to do size_t properly */ |
1718 | imac_size = EVP_MD_CTX_size(s->read_hash); |
1719 | if (imac_size < 0) { |
1720 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD, |
1721 | ERR_LIB_EVP); |
1722 | return 0; |
1723 | } |
1724 | mac_size = (size_t)imac_size; |
1725 | if (!ossl_assert(mac_size <= EVP_MAX_MD_SIZE)) { |
1726 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD, |
1727 | ERR_R_INTERNAL_ERROR); |
1728 | return 0; |
1729 | } |
1730 | |
1731 | /* |
1732 | * orig_len is the length of the record before any padding was |
1733 | * removed. This is public information, as is the MAC in use, |
1734 | * therefore we can safely process the record in a different amount |
1735 | * of time if it's too short to possibly contain a MAC. |
1736 | */ |
1737 | if (rr->orig_len < mac_size || |
1738 | /* CBC records must have a padding length byte too. */ |
1739 | (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE && |
1740 | rr->orig_len < mac_size + 1)) { |
1741 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_DTLS1_PROCESS_RECORD, |
1742 | SSL_R_LENGTH_TOO_SHORT); |
1743 | return 0; |
1744 | } |
1745 | |
1746 | if (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE) { |
1747 | /* |
1748 | * We update the length so that the TLS header bytes can be |
1749 | * constructed correctly but we need to extract the MAC in |
1750 | * constant time from within the record, without leaking the |
1751 | * contents of the padding bytes. |
1752 | */ |
1753 | mac = mac_tmp; |
1754 | if (!ssl3_cbc_copy_mac(mac_tmp, rr, mac_size)) { |
1755 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD, |
1756 | ERR_R_INTERNAL_ERROR); |
1757 | return 0; |
1758 | } |
1759 | rr->length -= mac_size; |
1760 | } else { |
1761 | /* |
1762 | * In this case there's no padding, so |rec->orig_len| equals |
1763 | * |rec->length| and we checked that there's enough bytes for |
1764 | * |mac_size| above. |
1765 | */ |
1766 | rr->length -= mac_size; |
1767 | mac = &rr->data[rr->length]; |
1768 | } |
1769 | |
1770 | i = s->method->ssl3_enc->mac(s, rr, md, 0 /* not send */ ); |
1771 | if (i == 0 || mac == NULL |
1772 | || CRYPTO_memcmp(md, mac, mac_size) != 0) |
1773 | enc_err = -1; |
1774 | if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH + mac_size) |
1775 | enc_err = -1; |
1776 | } |
1777 | |
1778 | if (enc_err < 0) { |
1779 | /* decryption failed, silently discard message */ |
1780 | rr->length = 0; |
1781 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
1782 | return 0; |
1783 | } |
1784 | |
1785 | /* r->length is now just compressed */ |
1786 | if (s->expand != NULL) { |
1787 | if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH) { |
1788 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_DTLS1_PROCESS_RECORD, |
1789 | SSL_R_COMPRESSED_LENGTH_TOO_LONG); |
1790 | return 0; |
1791 | } |
1792 | if (!ssl3_do_uncompress(s, rr)) { |
1793 | SSLfatal(s, SSL_AD_DECOMPRESSION_FAILURE, |
1794 | SSL_F_DTLS1_PROCESS_RECORD, SSL_R_BAD_DECOMPRESSION); |
1795 | return 0; |
1796 | } |
1797 | } |
1798 | |
1799 | if (rr->length > SSL3_RT_MAX_PLAIN_LENGTH) { |
1800 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_DTLS1_PROCESS_RECORD, |
1801 | SSL_R_DATA_LENGTH_TOO_LONG); |
1802 | return 0; |
1803 | } |
1804 | |
1805 | rr->off = 0; |
1806 | /*- |
1807 | * So at this point the following is true |
1808 | * ssl->s3.rrec.type is the type of record |
1809 | * ssl->s3.rrec.length == number of bytes in record |
1810 | * ssl->s3.rrec.off == offset to first valid byte |
1811 | * ssl->s3.rrec.data == where to take bytes from, increment |
1812 | * after use :-). |
1813 | */ |
1814 | |
1815 | /* we have pulled in a full packet so zero things */ |
1816 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
1817 | |
1818 | /* Mark receipt of record. */ |
1819 | dtls1_record_bitmap_update(s, bitmap); |
1820 | |
1821 | return 1; |
1822 | } |
1823 | |
1824 | /* |
1825 | * Retrieve a buffered record that belongs to the current epoch, i.e. processed |
1826 | */ |
1827 | #define dtls1_get_processed_record(s) \ |
1828 | dtls1_retrieve_buffered_record((s), \ |
1829 | &(DTLS_RECORD_LAYER_get_processed_rcds(&s->rlayer))) |
1830 | |
1831 | /*- |
1832 | * Call this to get a new input record. |
1833 | * It will return <= 0 if more data is needed, normally due to an error |
1834 | * or non-blocking IO. |
1835 | * When it finishes, one packet has been decoded and can be found in |
1836 | * ssl->s3.rrec.type - is the type of record |
1837 | * ssl->s3.rrec.data - data |
1838 | * ssl->s3.rrec.length - number of bytes |
1839 | */ |
1840 | /* used only by dtls1_read_bytes */ |
1841 | int dtls1_get_record(SSL *s) |
1842 | { |
1843 | int ssl_major, ssl_minor; |
1844 | int rret; |
1845 | size_t more, n; |
1846 | SSL3_RECORD *rr; |
1847 | unsigned char *p = NULL; |
1848 | unsigned short version; |
1849 | DTLS1_BITMAP *bitmap; |
1850 | unsigned int is_next_epoch; |
1851 | |
1852 | rr = RECORD_LAYER_get_rrec(&s->rlayer); |
1853 | |
1854 | again: |
1855 | /* |
1856 | * The epoch may have changed. If so, process all the pending records. |
1857 | * This is a non-blocking operation. |
1858 | */ |
1859 | if (!dtls1_process_buffered_records(s)) { |
1860 | /* SSLfatal() already called */ |
1861 | return -1; |
1862 | } |
1863 | |
1864 | /* if we're renegotiating, then there may be buffered records */ |
1865 | if (dtls1_get_processed_record(s)) |
1866 | return 1; |
1867 | |
1868 | /* get something from the wire */ |
1869 | |
1870 | /* check if we have the header */ |
1871 | if ((RECORD_LAYER_get_rstate(&s->rlayer) != SSL_ST_READ_BODY) || |
1872 | (RECORD_LAYER_get_packet_length(&s->rlayer) < DTLS1_RT_HEADER_LENGTH)) { |
1873 | rret = ssl3_read_n(s, DTLS1_RT_HEADER_LENGTH, |
1874 | SSL3_BUFFER_get_len(&s->rlayer.rbuf), 0, 1, &n); |
1875 | /* read timeout is handled by dtls1_read_bytes */ |
1876 | if (rret <= 0) { |
1877 | /* SSLfatal() already called if appropriate */ |
1878 | return rret; /* error or non-blocking */ |
1879 | } |
1880 | |
1881 | /* this packet contained a partial record, dump it */ |
1882 | if (RECORD_LAYER_get_packet_length(&s->rlayer) != |
1883 | DTLS1_RT_HEADER_LENGTH) { |
1884 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
1885 | goto again; |
1886 | } |
1887 | |
1888 | RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_BODY); |
1889 | |
1890 | p = RECORD_LAYER_get_packet(&s->rlayer); |
1891 | |
1892 | if (s->msg_callback) |
1893 | s->msg_callback(0, 0, SSL3_RT_HEADER, p, DTLS1_RT_HEADER_LENGTH, |
1894 | s, s->msg_callback_arg); |
1895 | |
1896 | /* Pull apart the header into the DTLS1_RECORD */ |
1897 | rr->type = *(p++); |
1898 | ssl_major = *(p++); |
1899 | ssl_minor = *(p++); |
1900 | version = (ssl_major << 8) | ssl_minor; |
1901 | |
1902 | /* sequence number is 64 bits, with top 2 bytes = epoch */ |
1903 | n2s(p, rr->epoch); |
1904 | |
1905 | memcpy(&(RECORD_LAYER_get_read_sequence(&s->rlayer)[2]), p, 6); |
1906 | p += 6; |
1907 | |
1908 | n2s(p, rr->length); |
1909 | rr->read = 0; |
1910 | |
1911 | /* |
1912 | * Lets check the version. We tolerate alerts that don't have the exact |
1913 | * version number (e.g. because of protocol version errors) |
1914 | */ |
1915 | if (!s->first_packet && rr->type != SSL3_RT_ALERT) { |
1916 | if (version != s->version) { |
1917 | /* unexpected version, silently discard */ |
1918 | rr->length = 0; |
1919 | rr->read = 1; |
1920 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
1921 | goto again; |
1922 | } |
1923 | } |
1924 | |
1925 | if ((version & 0xff00) != (s->version & 0xff00)) { |
1926 | /* wrong version, silently discard record */ |
1927 | rr->length = 0; |
1928 | rr->read = 1; |
1929 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
1930 | goto again; |
1931 | } |
1932 | |
1933 | if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH) { |
1934 | /* record too long, silently discard it */ |
1935 | rr->length = 0; |
1936 | rr->read = 1; |
1937 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
1938 | goto again; |
1939 | } |
1940 | |
1941 | /* If received packet overflows own-client Max Fragment Length setting */ |
1942 | if (s->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(s->session) |
1943 | && rr->length > GET_MAX_FRAGMENT_LENGTH(s->session)) { |
1944 | /* record too long, silently discard it */ |
1945 | rr->length = 0; |
1946 | rr->read = 1; |
1947 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
1948 | goto again; |
1949 | } |
1950 | |
1951 | /* now s->rlayer.rstate == SSL_ST_READ_BODY */ |
1952 | } |
1953 | |
1954 | /* s->rlayer.rstate == SSL_ST_READ_BODY, get and decode the data */ |
1955 | |
1956 | if (rr->length > |
1957 | RECORD_LAYER_get_packet_length(&s->rlayer) - DTLS1_RT_HEADER_LENGTH) { |
1958 | /* now s->packet_length == DTLS1_RT_HEADER_LENGTH */ |
1959 | more = rr->length; |
1960 | rret = ssl3_read_n(s, more, more, 1, 1, &n); |
1961 | /* this packet contained a partial record, dump it */ |
1962 | if (rret <= 0 || n != more) { |
1963 | if (ossl_statem_in_error(s)) { |
1964 | /* ssl3_read_n() called SSLfatal() */ |
1965 | return -1; |
1966 | } |
1967 | rr->length = 0; |
1968 | rr->read = 1; |
1969 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
1970 | goto again; |
1971 | } |
1972 | |
1973 | /* |
1974 | * now n == rr->length, and s->packet_length == |
1975 | * DTLS1_RT_HEADER_LENGTH + rr->length |
1976 | */ |
1977 | } |
1978 | /* set state for later operations */ |
1979 | RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_HEADER); |
1980 | |
1981 | /* match epochs. NULL means the packet is dropped on the floor */ |
1982 | bitmap = dtls1_get_bitmap(s, rr, &is_next_epoch); |
1983 | if (bitmap == NULL) { |
1984 | rr->length = 0; |
1985 | RECORD_LAYER_reset_packet_length(&s->rlayer); /* dump this record */ |
1986 | goto again; /* get another record */ |
1987 | } |
1988 | #ifndef OPENSSL_NO_SCTP |
1989 | /* Only do replay check if no SCTP bio */ |
1990 | if (!BIO_dgram_is_sctp(SSL_get_rbio(s))) { |
1991 | #endif |
1992 | /* Check whether this is a repeat, or aged record. */ |
1993 | /* |
1994 | * TODO: Does it make sense to have replay protection in epoch 0 where |
1995 | * we have no integrity negotiated yet? |
1996 | */ |
1997 | if (!dtls1_record_replay_check(s, bitmap)) { |
1998 | rr->length = 0; |
1999 | rr->read = 1; |
2000 | RECORD_LAYER_reset_packet_length(&s->rlayer); /* dump this record */ |
2001 | goto again; /* get another record */ |
2002 | } |
2003 | #ifndef OPENSSL_NO_SCTP |
2004 | } |
2005 | #endif |
2006 | |
2007 | /* just read a 0 length packet */ |
2008 | if (rr->length == 0) { |
2009 | rr->read = 1; |
2010 | goto again; |
2011 | } |
2012 | |
2013 | /* |
2014 | * If this record is from the next epoch (either HM or ALERT), and a |
2015 | * handshake is currently in progress, buffer it since it cannot be |
2016 | * processed at this time. |
2017 | */ |
2018 | if (is_next_epoch) { |
2019 | if ((SSL_in_init(s) || ossl_statem_get_in_handshake(s))) { |
2020 | if (dtls1_buffer_record (s, |
2021 | &(DTLS_RECORD_LAYER_get_unprocessed_rcds(&s->rlayer)), |
2022 | rr->seq_num) < 0) { |
2023 | /* SSLfatal() already called */ |
2024 | return -1; |
2025 | } |
2026 | } |
2027 | rr->length = 0; |
2028 | rr->read = 1; |
2029 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
2030 | goto again; |
2031 | } |
2032 | |
2033 | if (!dtls1_process_record(s, bitmap)) { |
2034 | if (ossl_statem_in_error(s)) { |
2035 | /* dtls1_process_record() called SSLfatal */ |
2036 | return -1; |
2037 | } |
2038 | rr->length = 0; |
2039 | rr->read = 1; |
2040 | RECORD_LAYER_reset_packet_length(&s->rlayer); /* dump this record */ |
2041 | goto again; /* get another record */ |
2042 | } |
2043 | |
2044 | return 1; |
2045 | |
2046 | } |
2047 | |
2048 | int dtls_buffer_listen_record(SSL *s, size_t len, unsigned char *seq, size_t off) |
2049 | { |
2050 | SSL3_RECORD *rr; |
2051 | |
2052 | rr = RECORD_LAYER_get_rrec(&s->rlayer); |
2053 | memset(rr, 0, sizeof(SSL3_RECORD)); |
2054 | |
2055 | rr->length = len; |
2056 | rr->type = SSL3_RT_HANDSHAKE; |
2057 | memcpy(rr->seq_num, seq, sizeof(rr->seq_num)); |
2058 | rr->off = off; |
2059 | |
2060 | s->rlayer.packet = RECORD_LAYER_get_rbuf(&s->rlayer)->buf; |
2061 | s->rlayer.packet_length = DTLS1_RT_HEADER_LENGTH + len; |
2062 | rr->data = s->rlayer.packet + DTLS1_RT_HEADER_LENGTH; |
2063 | |
2064 | if (dtls1_buffer_record(s, &(s->rlayer.d->processed_rcds), |
2065 | SSL3_RECORD_get_seq_num(s->rlayer.rrec)) <= 0) { |
2066 | /* SSLfatal() already called */ |
2067 | return 0; |
2068 | } |
2069 | |
2070 | return 1; |
2071 | } |
2072 | |