| 1 | /* |
| 2 | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include "../ssl_local.h" |
| 11 | #include "internal/constant_time.h" |
| 12 | #include <openssl/trace.h> |
| 13 | #include <openssl/rand.h> |
| 14 | #include "record_local.h" |
| 15 | #include "internal/cryptlib.h" |
| 16 | |
| 17 | static const unsigned char ssl3_pad_1[48] = { |
| 18 | 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, |
| 19 | 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, |
| 20 | 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, |
| 21 | 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, |
| 22 | 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, |
| 23 | 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36 |
| 24 | }; |
| 25 | |
| 26 | static const unsigned char ssl3_pad_2[48] = { |
| 27 | 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, |
| 28 | 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, |
| 29 | 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, |
| 30 | 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, |
| 31 | 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, |
| 32 | 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c |
| 33 | }; |
| 34 | |
| 35 | /* |
| 36 | * Clear the contents of an SSL3_RECORD but retain any memory allocated |
| 37 | */ |
| 38 | void SSL3_RECORD_clear(SSL3_RECORD *r, size_t num_recs) |
| 39 | { |
| 40 | unsigned char *comp; |
| 41 | size_t i; |
| 42 | |
| 43 | for (i = 0; i < num_recs; i++) { |
| 44 | comp = r[i].comp; |
| 45 | |
| 46 | memset(&r[i], 0, sizeof(*r)); |
| 47 | r[i].comp = comp; |
| 48 | } |
| 49 | } |
| 50 | |
| 51 | void SSL3_RECORD_release(SSL3_RECORD *r, size_t num_recs) |
| 52 | { |
| 53 | size_t i; |
| 54 | |
| 55 | for (i = 0; i < num_recs; i++) { |
| 56 | OPENSSL_free(r[i].comp); |
| 57 | r[i].comp = NULL; |
| 58 | } |
| 59 | } |
| 60 | |
| 61 | void SSL3_RECORD_set_seq_num(SSL3_RECORD *r, const unsigned char *seq_num) |
| 62 | { |
| 63 | memcpy(r->seq_num, seq_num, SEQ_NUM_SIZE); |
| 64 | } |
| 65 | |
| 66 | /* |
| 67 | * Peeks ahead into "read_ahead" data to see if we have a whole record waiting |
| 68 | * for us in the buffer. |
| 69 | */ |
| 70 | static int ssl3_record_app_data_waiting(SSL *s) |
| 71 | { |
| 72 | SSL3_BUFFER *rbuf; |
| 73 | size_t left, len; |
| 74 | unsigned char *p; |
| 75 | |
| 76 | rbuf = RECORD_LAYER_get_rbuf(&s->rlayer); |
| 77 | |
| 78 | p = SSL3_BUFFER_get_buf(rbuf); |
| 79 | if (p == NULL) |
| 80 | return 0; |
| 81 | |
| 82 | left = SSL3_BUFFER_get_left(rbuf); |
| 83 | |
| 84 | if (left < SSL3_RT_HEADER_LENGTH) |
| 85 | return 0; |
| 86 | |
| 87 | p += SSL3_BUFFER_get_offset(rbuf); |
| 88 | |
| 89 | /* |
| 90 | * We only check the type and record length, we will sanity check version |
| 91 | * etc later |
| 92 | */ |
| 93 | if (*p != SSL3_RT_APPLICATION_DATA) |
| 94 | return 0; |
| 95 | |
| 96 | p += 3; |
| 97 | n2s(p, len); |
| 98 | |
| 99 | if (left < SSL3_RT_HEADER_LENGTH + len) |
| 100 | return 0; |
| 101 | |
| 102 | return 1; |
| 103 | } |
| 104 | |
| 105 | int early_data_count_ok(SSL *s, size_t length, size_t overhead, int send) |
| 106 | { |
| 107 | uint32_t max_early_data; |
| 108 | SSL_SESSION *sess = s->session; |
| 109 | |
| 110 | /* |
| 111 | * If we are a client then we always use the max_early_data from the |
| 112 | * session/psksession. Otherwise we go with the lowest out of the max early |
| 113 | * data set in the session and the configured max_early_data. |
| 114 | */ |
| 115 | if (!s->server && sess->ext.max_early_data == 0) { |
| 116 | if (!ossl_assert(s->psksession != NULL |
| 117 | && s->psksession->ext.max_early_data > 0)) { |
| 118 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_EARLY_DATA_COUNT_OK, |
| 119 | ERR_R_INTERNAL_ERROR); |
| 120 | return 0; |
| 121 | } |
| 122 | sess = s->psksession; |
| 123 | } |
| 124 | |
| 125 | if (!s->server) |
| 126 | max_early_data = sess->ext.max_early_data; |
| 127 | else if (s->ext.early_data != SSL_EARLY_DATA_ACCEPTED) |
| 128 | max_early_data = s->recv_max_early_data; |
| 129 | else |
| 130 | max_early_data = s->recv_max_early_data < sess->ext.max_early_data |
| 131 | ? s->recv_max_early_data : sess->ext.max_early_data; |
| 132 | |
| 133 | if (max_early_data == 0) { |
| 134 | SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE, |
| 135 | SSL_F_EARLY_DATA_COUNT_OK, SSL_R_TOO_MUCH_EARLY_DATA); |
| 136 | return 0; |
| 137 | } |
| 138 | |
| 139 | /* If we are dealing with ciphertext we need to allow for the overhead */ |
| 140 | max_early_data += overhead; |
| 141 | |
| 142 | if (s->early_data_count + length > max_early_data) { |
| 143 | SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE, |
| 144 | SSL_F_EARLY_DATA_COUNT_OK, SSL_R_TOO_MUCH_EARLY_DATA); |
| 145 | return 0; |
| 146 | } |
| 147 | s->early_data_count += length; |
| 148 | |
| 149 | return 1; |
| 150 | } |
| 151 | |
| 152 | /* |
| 153 | * MAX_EMPTY_RECORDS defines the number of consecutive, empty records that |
| 154 | * will be processed per call to ssl3_get_record. Without this limit an |
| 155 | * attacker could send empty records at a faster rate than we can process and |
| 156 | * cause ssl3_get_record to loop forever. |
| 157 | */ |
| 158 | #define MAX_EMPTY_RECORDS 32 |
| 159 | |
| 160 | #define 2 |
| 161 | /*- |
| 162 | * Call this to get new input records. |
| 163 | * It will return <= 0 if more data is needed, normally due to an error |
| 164 | * or non-blocking IO. |
| 165 | * When it finishes, |numrpipes| records have been decoded. For each record 'i': |
| 166 | * rr[i].type - is the type of record |
| 167 | * rr[i].data, - data |
| 168 | * rr[i].length, - number of bytes |
| 169 | * Multiple records will only be returned if the record types are all |
| 170 | * SSL3_RT_APPLICATION_DATA. The number of records returned will always be <= |
| 171 | * |max_pipelines| |
| 172 | */ |
| 173 | /* used only by ssl3_read_bytes */ |
| 174 | int ssl3_get_record(SSL *s) |
| 175 | { |
| 176 | int enc_err, rret; |
| 177 | int i; |
| 178 | size_t more, n; |
| 179 | SSL3_RECORD *rr, *thisrr; |
| 180 | SSL3_BUFFER *rbuf; |
| 181 | SSL_SESSION *sess; |
| 182 | unsigned char *p; |
| 183 | unsigned char md[EVP_MAX_MD_SIZE]; |
| 184 | unsigned int version; |
| 185 | size_t mac_size; |
| 186 | int imac_size; |
| 187 | size_t num_recs = 0, max_recs, j; |
| 188 | PACKET pkt, sslv2pkt; |
| 189 | size_t first_rec_len; |
| 190 | int is_ktls_left; |
| 191 | |
| 192 | rr = RECORD_LAYER_get_rrec(&s->rlayer); |
| 193 | rbuf = RECORD_LAYER_get_rbuf(&s->rlayer); |
| 194 | is_ktls_left = (rbuf->left > 0); |
| 195 | max_recs = s->max_pipelines; |
| 196 | if (max_recs == 0) |
| 197 | max_recs = 1; |
| 198 | sess = s->session; |
| 199 | |
| 200 | do { |
| 201 | thisrr = &rr[num_recs]; |
| 202 | |
| 203 | /* check if we have the header */ |
| 204 | if ((RECORD_LAYER_get_rstate(&s->rlayer) != SSL_ST_READ_BODY) || |
| 205 | (RECORD_LAYER_get_packet_length(&s->rlayer) |
| 206 | < SSL3_RT_HEADER_LENGTH)) { |
| 207 | size_t sslv2len; |
| 208 | unsigned int type; |
| 209 | |
| 210 | rret = ssl3_read_n(s, SSL3_RT_HEADER_LENGTH, |
| 211 | SSL3_BUFFER_get_len(rbuf), 0, |
| 212 | num_recs == 0 ? 1 : 0, &n); |
| 213 | if (rret <= 0) { |
| 214 | #ifndef OPENSSL_NO_KTLS |
| 215 | if (!BIO_get_ktls_recv(s->rbio)) |
| 216 | return rret; /* error or non-blocking */ |
| 217 | switch (errno) { |
| 218 | case EBADMSG: |
| 219 | SSLfatal(s, SSL_AD_BAD_RECORD_MAC, |
| 220 | SSL_F_SSL3_GET_RECORD, |
| 221 | SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); |
| 222 | break; |
| 223 | case EMSGSIZE: |
| 224 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, |
| 225 | SSL_F_SSL3_GET_RECORD, |
| 226 | SSL_R_PACKET_LENGTH_TOO_LONG); |
| 227 | break; |
| 228 | case EINVAL: |
| 229 | SSLfatal(s, SSL_AD_PROTOCOL_VERSION, |
| 230 | SSL_F_SSL3_GET_RECORD, |
| 231 | SSL_R_WRONG_VERSION_NUMBER); |
| 232 | break; |
| 233 | default: |
| 234 | break; |
| 235 | } |
| 236 | #endif |
| 237 | return rret; |
| 238 | } |
| 239 | RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_BODY); |
| 240 | |
| 241 | p = RECORD_LAYER_get_packet(&s->rlayer); |
| 242 | if (!PACKET_buf_init(&pkt, RECORD_LAYER_get_packet(&s->rlayer), |
| 243 | RECORD_LAYER_get_packet_length(&s->rlayer))) { |
| 244 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD, |
| 245 | ERR_R_INTERNAL_ERROR); |
| 246 | return -1; |
| 247 | } |
| 248 | sslv2pkt = pkt; |
| 249 | if (!PACKET_get_net_2_len(&sslv2pkt, &sslv2len) |
| 250 | || !PACKET_get_1(&sslv2pkt, &type)) { |
| 251 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, |
| 252 | ERR_R_INTERNAL_ERROR); |
| 253 | return -1; |
| 254 | } |
| 255 | /* |
| 256 | * The first record received by the server may be a V2ClientHello. |
| 257 | */ |
| 258 | if (s->server && RECORD_LAYER_is_first_record(&s->rlayer) |
| 259 | && (sslv2len & 0x8000) != 0 |
| 260 | && (type == SSL2_MT_CLIENT_HELLO)) { |
| 261 | /* |
| 262 | * SSLv2 style record |
| 263 | * |
| 264 | * |num_recs| here will actually always be 0 because |
| 265 | * |num_recs > 0| only ever occurs when we are processing |
| 266 | * multiple app data records - which we know isn't the case here |
| 267 | * because it is an SSLv2ClientHello. We keep it using |
| 268 | * |num_recs| for the sake of consistency |
| 269 | */ |
| 270 | thisrr->type = SSL3_RT_HANDSHAKE; |
| 271 | thisrr->rec_version = SSL2_VERSION; |
| 272 | |
| 273 | thisrr->length = sslv2len & 0x7fff; |
| 274 | |
| 275 | if (thisrr->length > SSL3_BUFFER_get_len(rbuf) |
| 276 | - SSL2_RT_HEADER_LENGTH) { |
| 277 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
| 278 | SSL_R_PACKET_LENGTH_TOO_LONG); |
| 279 | return -1; |
| 280 | } |
| 281 | |
| 282 | if (thisrr->length < MIN_SSL2_RECORD_LEN) { |
| 283 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, |
| 284 | SSL_R_LENGTH_TOO_SHORT); |
| 285 | return -1; |
| 286 | } |
| 287 | } else { |
| 288 | /* SSLv3+ style record */ |
| 289 | if (s->msg_callback) |
| 290 | s->msg_callback(0, 0, SSL3_RT_HEADER, p, 5, s, |
| 291 | s->msg_callback_arg); |
| 292 | |
| 293 | /* Pull apart the header into the SSL3_RECORD */ |
| 294 | if (!PACKET_get_1(&pkt, &type) |
| 295 | || !PACKET_get_net_2(&pkt, &version) |
| 296 | || !PACKET_get_net_2_len(&pkt, &thisrr->length)) { |
| 297 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, |
| 298 | ERR_R_INTERNAL_ERROR); |
| 299 | return -1; |
| 300 | } |
| 301 | thisrr->type = type; |
| 302 | thisrr->rec_version = version; |
| 303 | |
| 304 | /* |
| 305 | * Lets check version. In TLSv1.3 we only check this field |
| 306 | * when encryption is occurring (see later check). For the |
| 307 | * ServerHello after an HRR we haven't actually selected TLSv1.3 |
| 308 | * yet, but we still treat it as TLSv1.3, so we must check for |
| 309 | * that explicitly |
| 310 | */ |
| 311 | if (!s->first_packet && !SSL_IS_TLS13(s) |
| 312 | && s->hello_retry_request != SSL_HRR_PENDING |
| 313 | && version != (unsigned int)s->version) { |
| 314 | if ((s->version & 0xFF00) == (version & 0xFF00) |
| 315 | && !s->enc_write_ctx && !s->write_hash) { |
| 316 | if (thisrr->type == SSL3_RT_ALERT) { |
| 317 | /* |
| 318 | * The record is using an incorrect version number, |
| 319 | * but what we've got appears to be an alert. We |
| 320 | * haven't read the body yet to check whether its a |
| 321 | * fatal or not - but chances are it is. We probably |
| 322 | * shouldn't send a fatal alert back. We'll just |
| 323 | * end. |
| 324 | */ |
| 325 | SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD, |
| 326 | SSL_R_WRONG_VERSION_NUMBER); |
| 327 | return -1; |
| 328 | } |
| 329 | /* |
| 330 | * Send back error using their minor version number :-) |
| 331 | */ |
| 332 | s->version = (unsigned short)version; |
| 333 | } |
| 334 | SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_F_SSL3_GET_RECORD, |
| 335 | SSL_R_WRONG_VERSION_NUMBER); |
| 336 | return -1; |
| 337 | } |
| 338 | |
| 339 | if ((version >> 8) != SSL3_VERSION_MAJOR) { |
| 340 | if (RECORD_LAYER_is_first_record(&s->rlayer)) { |
| 341 | /* Go back to start of packet, look at the five bytes |
| 342 | * that we have. */ |
| 343 | p = RECORD_LAYER_get_packet(&s->rlayer); |
| 344 | if (strncmp((char *)p, "GET " , 4) == 0 || |
| 345 | strncmp((char *)p, "POST " , 5) == 0 || |
| 346 | strncmp((char *)p, "HEAD " , 5) == 0 || |
| 347 | strncmp((char *)p, "PUT " , 4) == 0) { |
| 348 | SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD, |
| 349 | SSL_R_HTTP_REQUEST); |
| 350 | return -1; |
| 351 | } else if (strncmp((char *)p, "CONNE" , 5) == 0) { |
| 352 | SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD, |
| 353 | SSL_R_HTTPS_PROXY_REQUEST); |
| 354 | return -1; |
| 355 | } |
| 356 | |
| 357 | /* Doesn't look like TLS - don't send an alert */ |
| 358 | SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD, |
| 359 | SSL_R_WRONG_VERSION_NUMBER); |
| 360 | return -1; |
| 361 | } else { |
| 362 | SSLfatal(s, SSL_AD_PROTOCOL_VERSION, |
| 363 | SSL_F_SSL3_GET_RECORD, |
| 364 | SSL_R_WRONG_VERSION_NUMBER); |
| 365 | return -1; |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | if (SSL_IS_TLS13(s) && s->enc_read_ctx != NULL) { |
| 370 | if (thisrr->type != SSL3_RT_APPLICATION_DATA |
| 371 | && (thisrr->type != SSL3_RT_CHANGE_CIPHER_SPEC |
| 372 | || !SSL_IS_FIRST_HANDSHAKE(s)) |
| 373 | && (thisrr->type != SSL3_RT_ALERT |
| 374 | || s->statem.enc_read_state |
| 375 | != ENC_READ_STATE_ALLOW_PLAIN_ALERTS)) { |
| 376 | SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, |
| 377 | SSL_F_SSL3_GET_RECORD, SSL_R_BAD_RECORD_TYPE); |
| 378 | return -1; |
| 379 | } |
| 380 | if (thisrr->rec_version != TLS1_2_VERSION) { |
| 381 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, |
| 382 | SSL_R_WRONG_VERSION_NUMBER); |
| 383 | return -1; |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | if (thisrr->length > |
| 388 | SSL3_BUFFER_get_len(rbuf) - SSL3_RT_HEADER_LENGTH) { |
| 389 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
| 390 | SSL_R_PACKET_LENGTH_TOO_LONG); |
| 391 | return -1; |
| 392 | } |
| 393 | } |
| 394 | |
| 395 | /* now s->rlayer.rstate == SSL_ST_READ_BODY */ |
| 396 | } |
| 397 | |
| 398 | if (SSL_IS_TLS13(s)) { |
| 399 | if (thisrr->length > SSL3_RT_MAX_TLS13_ENCRYPTED_LENGTH) { |
| 400 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
| 401 | SSL_R_ENCRYPTED_LENGTH_TOO_LONG); |
| 402 | return -1; |
| 403 | } |
| 404 | } else { |
| 405 | size_t len = SSL3_RT_MAX_ENCRYPTED_LENGTH; |
| 406 | |
| 407 | #ifndef OPENSSL_NO_COMP |
| 408 | /* |
| 409 | * If OPENSSL_NO_COMP is defined then SSL3_RT_MAX_ENCRYPTED_LENGTH |
| 410 | * does not include the compression overhead anyway. |
| 411 | */ |
| 412 | if (s->expand == NULL) |
| 413 | len -= SSL3_RT_MAX_COMPRESSED_OVERHEAD; |
| 414 | #endif |
| 415 | |
| 416 | if (thisrr->length > len && !BIO_get_ktls_recv(s->rbio)) { |
| 417 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
| 418 | SSL_R_ENCRYPTED_LENGTH_TOO_LONG); |
| 419 | return -1; |
| 420 | } |
| 421 | } |
| 422 | |
| 423 | /* |
| 424 | * s->rlayer.rstate == SSL_ST_READ_BODY, get and decode the data. |
| 425 | * Calculate how much more data we need to read for the rest of the |
| 426 | * record |
| 427 | */ |
| 428 | if (thisrr->rec_version == SSL2_VERSION) { |
| 429 | more = thisrr->length + SSL2_RT_HEADER_LENGTH |
| 430 | - SSL3_RT_HEADER_LENGTH; |
| 431 | } else { |
| 432 | more = thisrr->length; |
| 433 | } |
| 434 | |
| 435 | if (more > 0) { |
| 436 | /* now s->packet_length == SSL3_RT_HEADER_LENGTH */ |
| 437 | |
| 438 | rret = ssl3_read_n(s, more, more, 1, 0, &n); |
| 439 | if (rret <= 0) |
| 440 | return rret; /* error or non-blocking io */ |
| 441 | } |
| 442 | |
| 443 | /* set state for later operations */ |
| 444 | RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_HEADER); |
| 445 | |
| 446 | /* |
| 447 | * At this point, s->packet_length == SSL3_RT_HEADER_LENGTH |
| 448 | * + thisrr->length, or s->packet_length == SSL2_RT_HEADER_LENGTH |
| 449 | * + thisrr->length and we have that many bytes in s->packet |
| 450 | */ |
| 451 | if (thisrr->rec_version == SSL2_VERSION) { |
| 452 | thisrr->input = |
| 453 | &(RECORD_LAYER_get_packet(&s->rlayer)[SSL2_RT_HEADER_LENGTH]); |
| 454 | } else { |
| 455 | thisrr->input = |
| 456 | &(RECORD_LAYER_get_packet(&s->rlayer)[SSL3_RT_HEADER_LENGTH]); |
| 457 | } |
| 458 | |
| 459 | /* |
| 460 | * ok, we can now read from 's->packet' data into 'thisrr' thisrr->input |
| 461 | * points at thisrr->length bytes, which need to be copied into |
| 462 | * thisrr->data by either the decryption or by the decompression When |
| 463 | * the data is 'copied' into the thisrr->data buffer, thisrr->input will |
| 464 | * be pointed at the new buffer |
| 465 | */ |
| 466 | |
| 467 | /* |
| 468 | * We now have - encrypted [ MAC [ compressed [ plain ] ] ] |
| 469 | * thisrr->length bytes of encrypted compressed stuff. |
| 470 | */ |
| 471 | |
| 472 | /* decrypt in place in 'thisrr->input' */ |
| 473 | thisrr->data = thisrr->input; |
| 474 | thisrr->orig_len = thisrr->length; |
| 475 | |
| 476 | /* Mark this record as not read by upper layers yet */ |
| 477 | thisrr->read = 0; |
| 478 | |
| 479 | num_recs++; |
| 480 | |
| 481 | /* we have pulled in a full packet so zero things */ |
| 482 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
| 483 | RECORD_LAYER_clear_first_record(&s->rlayer); |
| 484 | } while (num_recs < max_recs |
| 485 | && thisrr->type == SSL3_RT_APPLICATION_DATA |
| 486 | && SSL_USE_EXPLICIT_IV(s) |
| 487 | && s->enc_read_ctx != NULL |
| 488 | && (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(s->enc_read_ctx)) |
| 489 | & EVP_CIPH_FLAG_PIPELINE) |
| 490 | && ssl3_record_app_data_waiting(s)); |
| 491 | |
| 492 | if (num_recs == 1 |
| 493 | && thisrr->type == SSL3_RT_CHANGE_CIPHER_SPEC |
| 494 | && (SSL_IS_TLS13(s) || s->hello_retry_request != SSL_HRR_NONE) |
| 495 | && SSL_IS_FIRST_HANDSHAKE(s)) { |
| 496 | /* |
| 497 | * CCS messages must be exactly 1 byte long, containing the value 0x01 |
| 498 | */ |
| 499 | if (thisrr->length != 1 || thisrr->data[0] != 0x01) { |
| 500 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL3_GET_RECORD, |
| 501 | SSL_R_INVALID_CCS_MESSAGE); |
| 502 | return -1; |
| 503 | } |
| 504 | /* |
| 505 | * CCS messages are ignored in TLSv1.3. We treat it like an empty |
| 506 | * handshake record |
| 507 | */ |
| 508 | thisrr->type = SSL3_RT_HANDSHAKE; |
| 509 | RECORD_LAYER_inc_empty_record_count(&s->rlayer); |
| 510 | if (RECORD_LAYER_get_empty_record_count(&s->rlayer) |
| 511 | > MAX_EMPTY_RECORDS) { |
| 512 | SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, |
| 513 | SSL_R_UNEXPECTED_CCS_MESSAGE); |
| 514 | return -1; |
| 515 | } |
| 516 | thisrr->read = 1; |
| 517 | RECORD_LAYER_set_numrpipes(&s->rlayer, 1); |
| 518 | |
| 519 | return 1; |
| 520 | } |
| 521 | |
| 522 | /* |
| 523 | * KTLS reads full records. If there is any data left, |
| 524 | * then it is from before enabling ktls |
| 525 | */ |
| 526 | if (BIO_get_ktls_recv(s->rbio) && !is_ktls_left) |
| 527 | goto skip_decryption; |
| 528 | |
| 529 | /* |
| 530 | * If in encrypt-then-mac mode calculate mac from encrypted record. All |
| 531 | * the details below are public so no timing details can leak. |
| 532 | */ |
| 533 | if (SSL_READ_ETM(s) && s->read_hash) { |
| 534 | unsigned char *mac; |
| 535 | /* TODO(size_t): convert this to do size_t properly */ |
| 536 | imac_size = EVP_MD_CTX_size(s->read_hash); |
| 537 | if (!ossl_assert(imac_size >= 0 && imac_size <= EVP_MAX_MD_SIZE)) { |
| 538 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD, |
| 539 | ERR_LIB_EVP); |
| 540 | return -1; |
| 541 | } |
| 542 | mac_size = (size_t)imac_size; |
| 543 | for (j = 0; j < num_recs; j++) { |
| 544 | thisrr = &rr[j]; |
| 545 | |
| 546 | if (thisrr->length < mac_size) { |
| 547 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, |
| 548 | SSL_R_LENGTH_TOO_SHORT); |
| 549 | return -1; |
| 550 | } |
| 551 | thisrr->length -= mac_size; |
| 552 | mac = thisrr->data + thisrr->length; |
| 553 | i = s->method->ssl3_enc->mac(s, thisrr, md, 0 /* not send */ ); |
| 554 | if (i == 0 || CRYPTO_memcmp(md, mac, mac_size) != 0) { |
| 555 | SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_SSL3_GET_RECORD, |
| 556 | SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); |
| 557 | return -1; |
| 558 | } |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | first_rec_len = rr[0].length; |
| 563 | |
| 564 | enc_err = s->method->ssl3_enc->enc(s, rr, num_recs, 0); |
| 565 | |
| 566 | /*- |
| 567 | * enc_err is: |
| 568 | * 0: (in non-constant time) if the record is publicly invalid. |
| 569 | * 1: if the padding is valid |
| 570 | * -1: if the padding is invalid |
| 571 | */ |
| 572 | if (enc_err == 0) { |
| 573 | if (ossl_statem_in_error(s)) { |
| 574 | /* SSLfatal() already got called */ |
| 575 | return -1; |
| 576 | } |
| 577 | if (num_recs == 1 && ossl_statem_skip_early_data(s)) { |
| 578 | /* |
| 579 | * Valid early_data that we cannot decrypt might fail here as |
| 580 | * publicly invalid. We treat it like an empty record. |
| 581 | */ |
| 582 | |
| 583 | thisrr = &rr[0]; |
| 584 | |
| 585 | if (!early_data_count_ok(s, thisrr->length, |
| 586 | EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) { |
| 587 | /* SSLfatal() already called */ |
| 588 | return -1; |
| 589 | } |
| 590 | |
| 591 | thisrr->length = 0; |
| 592 | thisrr->read = 1; |
| 593 | RECORD_LAYER_set_numrpipes(&s->rlayer, 1); |
| 594 | RECORD_LAYER_reset_read_sequence(&s->rlayer); |
| 595 | return 1; |
| 596 | } |
| 597 | SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_SSL3_GET_RECORD, |
| 598 | SSL_R_BLOCK_CIPHER_PAD_IS_WRONG); |
| 599 | return -1; |
| 600 | } |
| 601 | OSSL_TRACE_BEGIN(TLS) { |
| 602 | BIO_printf(trc_out, "dec %lu\n" , (unsigned long)rr[0].length); |
| 603 | BIO_dump_indent(trc_out, rr[0].data, rr[0].length, 4); |
| 604 | } OSSL_TRACE_END(TLS); |
| 605 | |
| 606 | /* r->length is now the compressed data plus mac */ |
| 607 | if ((sess != NULL) && |
| 608 | (s->enc_read_ctx != NULL) && |
| 609 | (!SSL_READ_ETM(s) && EVP_MD_CTX_md(s->read_hash) != NULL)) { |
| 610 | /* s->read_hash != NULL => mac_size != -1 */ |
| 611 | unsigned char *mac = NULL; |
| 612 | unsigned char mac_tmp[EVP_MAX_MD_SIZE]; |
| 613 | |
| 614 | mac_size = EVP_MD_CTX_size(s->read_hash); |
| 615 | if (!ossl_assert(mac_size <= EVP_MAX_MD_SIZE)) { |
| 616 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD, |
| 617 | ERR_R_INTERNAL_ERROR); |
| 618 | return -1; |
| 619 | } |
| 620 | |
| 621 | for (j = 0; j < num_recs; j++) { |
| 622 | thisrr = &rr[j]; |
| 623 | /* |
| 624 | * orig_len is the length of the record before any padding was |
| 625 | * removed. This is public information, as is the MAC in use, |
| 626 | * therefore we can safely process the record in a different amount |
| 627 | * of time if it's too short to possibly contain a MAC. |
| 628 | */ |
| 629 | if (thisrr->orig_len < mac_size || |
| 630 | /* CBC records must have a padding length byte too. */ |
| 631 | (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE && |
| 632 | thisrr->orig_len < mac_size + 1)) { |
| 633 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, |
| 634 | SSL_R_LENGTH_TOO_SHORT); |
| 635 | return -1; |
| 636 | } |
| 637 | |
| 638 | if (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE) { |
| 639 | /* |
| 640 | * We update the length so that the TLS header bytes can be |
| 641 | * constructed correctly but we need to extract the MAC in |
| 642 | * constant time from within the record, without leaking the |
| 643 | * contents of the padding bytes. |
| 644 | */ |
| 645 | mac = mac_tmp; |
| 646 | if (!ssl3_cbc_copy_mac(mac_tmp, thisrr, mac_size)) { |
| 647 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD, |
| 648 | ERR_R_INTERNAL_ERROR); |
| 649 | return -1; |
| 650 | } |
| 651 | thisrr->length -= mac_size; |
| 652 | } else { |
| 653 | /* |
| 654 | * In this case there's no padding, so |rec->orig_len| equals |
| 655 | * |rec->length| and we checked that there's enough bytes for |
| 656 | * |mac_size| above. |
| 657 | */ |
| 658 | thisrr->length -= mac_size; |
| 659 | mac = &thisrr->data[thisrr->length]; |
| 660 | } |
| 661 | |
| 662 | i = s->method->ssl3_enc->mac(s, thisrr, md, 0 /* not send */ ); |
| 663 | if (i == 0 || mac == NULL |
| 664 | || CRYPTO_memcmp(md, mac, (size_t)mac_size) != 0) |
| 665 | enc_err = -1; |
| 666 | if (thisrr->length > SSL3_RT_MAX_COMPRESSED_LENGTH + mac_size) |
| 667 | enc_err = -1; |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | if (enc_err < 0) { |
| 672 | if (ossl_statem_in_error(s)) { |
| 673 | /* We already called SSLfatal() */ |
| 674 | return -1; |
| 675 | } |
| 676 | if (num_recs == 1 && ossl_statem_skip_early_data(s)) { |
| 677 | /* |
| 678 | * We assume this is unreadable early_data - we treat it like an |
| 679 | * empty record |
| 680 | */ |
| 681 | |
| 682 | /* |
| 683 | * The record length may have been modified by the mac check above |
| 684 | * so we use the previously saved value |
| 685 | */ |
| 686 | if (!early_data_count_ok(s, first_rec_len, |
| 687 | EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) { |
| 688 | /* SSLfatal() already called */ |
| 689 | return -1; |
| 690 | } |
| 691 | |
| 692 | thisrr = &rr[0]; |
| 693 | thisrr->length = 0; |
| 694 | thisrr->read = 1; |
| 695 | RECORD_LAYER_set_numrpipes(&s->rlayer, 1); |
| 696 | RECORD_LAYER_reset_read_sequence(&s->rlayer); |
| 697 | return 1; |
| 698 | } |
| 699 | /* |
| 700 | * A separate 'decryption_failed' alert was introduced with TLS 1.0, |
| 701 | * SSL 3.0 only has 'bad_record_mac'. But unless a decryption |
| 702 | * failure is directly visible from the ciphertext anyway, we should |
| 703 | * not reveal which kind of error occurred -- this might become |
| 704 | * visible to an attacker (e.g. via a logfile) |
| 705 | */ |
| 706 | SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_SSL3_GET_RECORD, |
| 707 | SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); |
| 708 | return -1; |
| 709 | } |
| 710 | |
| 711 | skip_decryption: |
| 712 | |
| 713 | for (j = 0; j < num_recs; j++) { |
| 714 | thisrr = &rr[j]; |
| 715 | |
| 716 | /* thisrr->length is now just compressed */ |
| 717 | if (s->expand != NULL) { |
| 718 | if (thisrr->length > SSL3_RT_MAX_COMPRESSED_LENGTH) { |
| 719 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
| 720 | SSL_R_COMPRESSED_LENGTH_TOO_LONG); |
| 721 | return -1; |
| 722 | } |
| 723 | if (!ssl3_do_uncompress(s, thisrr)) { |
| 724 | SSLfatal(s, SSL_AD_DECOMPRESSION_FAILURE, SSL_F_SSL3_GET_RECORD, |
| 725 | SSL_R_BAD_DECOMPRESSION); |
| 726 | return -1; |
| 727 | } |
| 728 | } |
| 729 | |
| 730 | if (SSL_IS_TLS13(s) |
| 731 | && s->enc_read_ctx != NULL |
| 732 | && thisrr->type != SSL3_RT_ALERT) { |
| 733 | size_t end; |
| 734 | |
| 735 | if (thisrr->length == 0 |
| 736 | || thisrr->type != SSL3_RT_APPLICATION_DATA) { |
| 737 | SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, |
| 738 | SSL_R_BAD_RECORD_TYPE); |
| 739 | return -1; |
| 740 | } |
| 741 | |
| 742 | /* Strip trailing padding */ |
| 743 | for (end = thisrr->length - 1; end > 0 && thisrr->data[end] == 0; |
| 744 | end--) |
| 745 | continue; |
| 746 | |
| 747 | thisrr->length = end; |
| 748 | thisrr->type = thisrr->data[end]; |
| 749 | if (thisrr->type != SSL3_RT_APPLICATION_DATA |
| 750 | && thisrr->type != SSL3_RT_ALERT |
| 751 | && thisrr->type != SSL3_RT_HANDSHAKE) { |
| 752 | SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, |
| 753 | SSL_R_BAD_RECORD_TYPE); |
| 754 | return -1; |
| 755 | } |
| 756 | if (s->msg_callback) |
| 757 | s->msg_callback(0, s->version, SSL3_RT_INNER_CONTENT_TYPE, |
| 758 | &thisrr->data[end], 1, s, s->msg_callback_arg); |
| 759 | } |
| 760 | |
| 761 | /* |
| 762 | * TLSv1.3 alert and handshake records are required to be non-zero in |
| 763 | * length. |
| 764 | */ |
| 765 | if (SSL_IS_TLS13(s) |
| 766 | && (thisrr->type == SSL3_RT_HANDSHAKE |
| 767 | || thisrr->type == SSL3_RT_ALERT) |
| 768 | && thisrr->length == 0) { |
| 769 | SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, |
| 770 | SSL_R_BAD_LENGTH); |
| 771 | return -1; |
| 772 | } |
| 773 | |
| 774 | if (thisrr->length > SSL3_RT_MAX_PLAIN_LENGTH && !BIO_get_ktls_recv(s->rbio)) { |
| 775 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
| 776 | SSL_R_DATA_LENGTH_TOO_LONG); |
| 777 | return -1; |
| 778 | } |
| 779 | |
| 780 | /* If received packet overflows current Max Fragment Length setting */ |
| 781 | if (s->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(s->session) |
| 782 | && thisrr->length > GET_MAX_FRAGMENT_LENGTH(s->session) |
| 783 | && !BIO_get_ktls_recv(s->rbio)) { |
| 784 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
| 785 | SSL_R_DATA_LENGTH_TOO_LONG); |
| 786 | return -1; |
| 787 | } |
| 788 | |
| 789 | thisrr->off = 0; |
| 790 | /*- |
| 791 | * So at this point the following is true |
| 792 | * thisrr->type is the type of record |
| 793 | * thisrr->length == number of bytes in record |
| 794 | * thisrr->off == offset to first valid byte |
| 795 | * thisrr->data == where to take bytes from, increment after use :-). |
| 796 | */ |
| 797 | |
| 798 | /* just read a 0 length packet */ |
| 799 | if (thisrr->length == 0) { |
| 800 | RECORD_LAYER_inc_empty_record_count(&s->rlayer); |
| 801 | if (RECORD_LAYER_get_empty_record_count(&s->rlayer) |
| 802 | > MAX_EMPTY_RECORDS) { |
| 803 | SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, |
| 804 | SSL_R_RECORD_TOO_SMALL); |
| 805 | return -1; |
| 806 | } |
| 807 | } else { |
| 808 | RECORD_LAYER_reset_empty_record_count(&s->rlayer); |
| 809 | } |
| 810 | } |
| 811 | |
| 812 | if (s->early_data_state == SSL_EARLY_DATA_READING) { |
| 813 | thisrr = &rr[0]; |
| 814 | if (thisrr->type == SSL3_RT_APPLICATION_DATA |
| 815 | && !early_data_count_ok(s, thisrr->length, 0, 0)) { |
| 816 | /* SSLfatal already called */ |
| 817 | return -1; |
| 818 | } |
| 819 | } |
| 820 | |
| 821 | RECORD_LAYER_set_numrpipes(&s->rlayer, num_recs); |
| 822 | return 1; |
| 823 | } |
| 824 | |
| 825 | int ssl3_do_uncompress(SSL *ssl, SSL3_RECORD *rr) |
| 826 | { |
| 827 | #ifndef OPENSSL_NO_COMP |
| 828 | int i; |
| 829 | |
| 830 | if (rr->comp == NULL) { |
| 831 | rr->comp = (unsigned char *) |
| 832 | OPENSSL_malloc(SSL3_RT_MAX_ENCRYPTED_LENGTH); |
| 833 | } |
| 834 | if (rr->comp == NULL) |
| 835 | return 0; |
| 836 | |
| 837 | /* TODO(size_t): Convert this call */ |
| 838 | i = COMP_expand_block(ssl->expand, rr->comp, |
| 839 | SSL3_RT_MAX_PLAIN_LENGTH, rr->data, (int)rr->length); |
| 840 | if (i < 0) |
| 841 | return 0; |
| 842 | else |
| 843 | rr->length = i; |
| 844 | rr->data = rr->comp; |
| 845 | #endif |
| 846 | return 1; |
| 847 | } |
| 848 | |
| 849 | int ssl3_do_compress(SSL *ssl, SSL3_RECORD *wr) |
| 850 | { |
| 851 | #ifndef OPENSSL_NO_COMP |
| 852 | int i; |
| 853 | |
| 854 | /* TODO(size_t): Convert this call */ |
| 855 | i = COMP_compress_block(ssl->compress, wr->data, |
| 856 | (int)(wr->length + SSL3_RT_MAX_COMPRESSED_OVERHEAD), |
| 857 | wr->input, (int)wr->length); |
| 858 | if (i < 0) |
| 859 | return 0; |
| 860 | else |
| 861 | wr->length = i; |
| 862 | |
| 863 | wr->input = wr->data; |
| 864 | #endif |
| 865 | return 1; |
| 866 | } |
| 867 | |
| 868 | /*- |
| 869 | * ssl3_enc encrypts/decrypts |n_recs| records in |inrecs|. Will call |
| 870 | * SSLfatal() for internal errors, but not otherwise. |
| 871 | * |
| 872 | * Returns: |
| 873 | * 0: (in non-constant time) if the record is publicly invalid (i.e. too |
| 874 | * short etc). |
| 875 | * 1: if the record's padding is valid / the encryption was successful. |
| 876 | * -1: if the record's padding is invalid or, if sending, an internal error |
| 877 | * occurred. |
| 878 | */ |
| 879 | int ssl3_enc(SSL *s, SSL3_RECORD *inrecs, size_t n_recs, int sending) |
| 880 | { |
| 881 | SSL3_RECORD *rec; |
| 882 | EVP_CIPHER_CTX *ds; |
| 883 | size_t l, i; |
| 884 | size_t bs, mac_size = 0; |
| 885 | int imac_size; |
| 886 | const EVP_CIPHER *enc; |
| 887 | |
| 888 | rec = inrecs; |
| 889 | /* |
| 890 | * We shouldn't ever be called with more than one record in the SSLv3 case |
| 891 | */ |
| 892 | if (n_recs != 1) |
| 893 | return 0; |
| 894 | if (sending) { |
| 895 | ds = s->enc_write_ctx; |
| 896 | if (s->enc_write_ctx == NULL) |
| 897 | enc = NULL; |
| 898 | else |
| 899 | enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx); |
| 900 | } else { |
| 901 | ds = s->enc_read_ctx; |
| 902 | if (s->enc_read_ctx == NULL) |
| 903 | enc = NULL; |
| 904 | else |
| 905 | enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx); |
| 906 | } |
| 907 | |
| 908 | if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) { |
| 909 | memmove(rec->data, rec->input, rec->length); |
| 910 | rec->input = rec->data; |
| 911 | } else { |
| 912 | l = rec->length; |
| 913 | /* TODO(size_t): Convert this call */ |
| 914 | bs = EVP_CIPHER_CTX_block_size(ds); |
| 915 | |
| 916 | /* COMPRESS */ |
| 917 | |
| 918 | if ((bs != 1) && sending) { |
| 919 | i = bs - (l % bs); |
| 920 | |
| 921 | /* we need to add 'i-1' padding bytes */ |
| 922 | l += i; |
| 923 | /* |
| 924 | * the last of these zero bytes will be overwritten with the |
| 925 | * padding length. |
| 926 | */ |
| 927 | memset(&rec->input[rec->length], 0, i); |
| 928 | rec->length += i; |
| 929 | rec->input[l - 1] = (unsigned char)(i - 1); |
| 930 | } |
| 931 | |
| 932 | if (!sending) { |
| 933 | if (l == 0 || l % bs != 0) |
| 934 | return 0; |
| 935 | /* otherwise, rec->length >= bs */ |
| 936 | } |
| 937 | |
| 938 | /* TODO(size_t): Convert this call */ |
| 939 | if (EVP_Cipher(ds, rec->data, rec->input, (unsigned int)l) < 1) |
| 940 | return -1; |
| 941 | |
| 942 | if (EVP_MD_CTX_md(s->read_hash) != NULL) { |
| 943 | /* TODO(size_t): convert me */ |
| 944 | imac_size = EVP_MD_CTX_size(s->read_hash); |
| 945 | if (imac_size < 0) { |
| 946 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_ENC, |
| 947 | ERR_R_INTERNAL_ERROR); |
| 948 | return -1; |
| 949 | } |
| 950 | mac_size = (size_t)imac_size; |
| 951 | } |
| 952 | if ((bs != 1) && !sending) |
| 953 | return ssl3_cbc_remove_padding(rec, bs, mac_size); |
| 954 | } |
| 955 | return 1; |
| 956 | } |
| 957 | |
| 958 | #define MAX_PADDING 256 |
| 959 | /*- |
| 960 | * tls1_enc encrypts/decrypts |n_recs| in |recs|. Will call SSLfatal() for |
| 961 | * internal errors, but not otherwise. |
| 962 | * |
| 963 | * Returns: |
| 964 | * 0: (in non-constant time) if the record is publicly invalid (i.e. too |
| 965 | * short etc). |
| 966 | * 1: if the record's padding is valid / the encryption was successful. |
| 967 | * -1: if the record's padding/AEAD-authenticator is invalid or, if sending, |
| 968 | * an internal error occurred. |
| 969 | */ |
| 970 | int tls1_enc(SSL *s, SSL3_RECORD *recs, size_t n_recs, int sending) |
| 971 | { |
| 972 | EVP_CIPHER_CTX *ds; |
| 973 | size_t reclen[SSL_MAX_PIPELINES]; |
| 974 | unsigned char buf[SSL_MAX_PIPELINES][EVP_AEAD_TLS1_AAD_LEN]; |
| 975 | int i, pad = 0, ret, tmpr; |
| 976 | size_t bs, mac_size = 0, ctr, padnum, loop; |
| 977 | unsigned char padval; |
| 978 | int imac_size; |
| 979 | const EVP_CIPHER *enc; |
| 980 | |
| 981 | if (n_recs == 0) { |
| 982 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| 983 | ERR_R_INTERNAL_ERROR); |
| 984 | return 0; |
| 985 | } |
| 986 | |
| 987 | if (sending) { |
| 988 | if (EVP_MD_CTX_md(s->write_hash)) { |
| 989 | int n = EVP_MD_CTX_size(s->write_hash); |
| 990 | if (!ossl_assert(n >= 0)) { |
| 991 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| 992 | ERR_R_INTERNAL_ERROR); |
| 993 | return -1; |
| 994 | } |
| 995 | } |
| 996 | ds = s->enc_write_ctx; |
| 997 | if (s->enc_write_ctx == NULL) |
| 998 | enc = NULL; |
| 999 | else { |
| 1000 | int ivlen; |
| 1001 | enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx); |
| 1002 | /* For TLSv1.1 and later explicit IV */ |
| 1003 | if (SSL_USE_EXPLICIT_IV(s) |
| 1004 | && EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE) |
| 1005 | ivlen = EVP_CIPHER_iv_length(enc); |
| 1006 | else |
| 1007 | ivlen = 0; |
| 1008 | if (ivlen > 1) { |
| 1009 | for (ctr = 0; ctr < n_recs; ctr++) { |
| 1010 | if (recs[ctr].data != recs[ctr].input) { |
| 1011 | /* |
| 1012 | * we can't write into the input stream: Can this ever |
| 1013 | * happen?? (steve) |
| 1014 | */ |
| 1015 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| 1016 | ERR_R_INTERNAL_ERROR); |
| 1017 | return -1; |
| 1018 | } else if (RAND_bytes(recs[ctr].input, ivlen) <= 0) { |
| 1019 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| 1020 | ERR_R_INTERNAL_ERROR); |
| 1021 | return -1; |
| 1022 | } |
| 1023 | } |
| 1024 | } |
| 1025 | } |
| 1026 | } else { |
| 1027 | if (EVP_MD_CTX_md(s->read_hash)) { |
| 1028 | int n = EVP_MD_CTX_size(s->read_hash); |
| 1029 | if (!ossl_assert(n >= 0)) { |
| 1030 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| 1031 | ERR_R_INTERNAL_ERROR); |
| 1032 | return -1; |
| 1033 | } |
| 1034 | } |
| 1035 | ds = s->enc_read_ctx; |
| 1036 | if (s->enc_read_ctx == NULL) |
| 1037 | enc = NULL; |
| 1038 | else |
| 1039 | enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx); |
| 1040 | } |
| 1041 | |
| 1042 | if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) { |
| 1043 | for (ctr = 0; ctr < n_recs; ctr++) { |
| 1044 | memmove(recs[ctr].data, recs[ctr].input, recs[ctr].length); |
| 1045 | recs[ctr].input = recs[ctr].data; |
| 1046 | } |
| 1047 | ret = 1; |
| 1048 | } else { |
| 1049 | bs = EVP_CIPHER_block_size(EVP_CIPHER_CTX_cipher(ds)); |
| 1050 | |
| 1051 | if (n_recs > 1) { |
| 1052 | if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ds)) |
| 1053 | & EVP_CIPH_FLAG_PIPELINE)) { |
| 1054 | /* |
| 1055 | * We shouldn't have been called with pipeline data if the |
| 1056 | * cipher doesn't support pipelining |
| 1057 | */ |
| 1058 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| 1059 | SSL_R_PIPELINE_FAILURE); |
| 1060 | return -1; |
| 1061 | } |
| 1062 | } |
| 1063 | for (ctr = 0; ctr < n_recs; ctr++) { |
| 1064 | reclen[ctr] = recs[ctr].length; |
| 1065 | |
| 1066 | if (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ds)) |
| 1067 | & EVP_CIPH_FLAG_AEAD_CIPHER) { |
| 1068 | unsigned char *seq; |
| 1069 | |
| 1070 | seq = sending ? RECORD_LAYER_get_write_sequence(&s->rlayer) |
| 1071 | : RECORD_LAYER_get_read_sequence(&s->rlayer); |
| 1072 | |
| 1073 | if (SSL_IS_DTLS(s)) { |
| 1074 | /* DTLS does not support pipelining */ |
| 1075 | unsigned char dtlsseq[9], *p = dtlsseq; |
| 1076 | |
| 1077 | s2n(sending ? DTLS_RECORD_LAYER_get_w_epoch(&s->rlayer) : |
| 1078 | DTLS_RECORD_LAYER_get_r_epoch(&s->rlayer), p); |
| 1079 | memcpy(p, &seq[2], 6); |
| 1080 | memcpy(buf[ctr], dtlsseq, 8); |
| 1081 | } else { |
| 1082 | memcpy(buf[ctr], seq, 8); |
| 1083 | for (i = 7; i >= 0; i--) { /* increment */ |
| 1084 | ++seq[i]; |
| 1085 | if (seq[i] != 0) |
| 1086 | break; |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | buf[ctr][8] = recs[ctr].type; |
| 1091 | buf[ctr][9] = (unsigned char)(s->version >> 8); |
| 1092 | buf[ctr][10] = (unsigned char)(s->version); |
| 1093 | buf[ctr][11] = (unsigned char)(recs[ctr].length >> 8); |
| 1094 | buf[ctr][12] = (unsigned char)(recs[ctr].length & 0xff); |
| 1095 | pad = EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_AEAD_TLS1_AAD, |
| 1096 | EVP_AEAD_TLS1_AAD_LEN, buf[ctr]); |
| 1097 | if (pad <= 0) { |
| 1098 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| 1099 | ERR_R_INTERNAL_ERROR); |
| 1100 | return -1; |
| 1101 | } |
| 1102 | |
| 1103 | if (sending) { |
| 1104 | reclen[ctr] += pad; |
| 1105 | recs[ctr].length += pad; |
| 1106 | } |
| 1107 | |
| 1108 | } else if ((bs != 1) && sending) { |
| 1109 | padnum = bs - (reclen[ctr] % bs); |
| 1110 | |
| 1111 | /* Add weird padding of up to 256 bytes */ |
| 1112 | |
| 1113 | if (padnum > MAX_PADDING) { |
| 1114 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| 1115 | ERR_R_INTERNAL_ERROR); |
| 1116 | return -1; |
| 1117 | } |
| 1118 | /* we need to add 'padnum' padding bytes of value padval */ |
| 1119 | padval = (unsigned char)(padnum - 1); |
| 1120 | for (loop = reclen[ctr]; loop < reclen[ctr] + padnum; loop++) |
| 1121 | recs[ctr].input[loop] = padval; |
| 1122 | reclen[ctr] += padnum; |
| 1123 | recs[ctr].length += padnum; |
| 1124 | } |
| 1125 | |
| 1126 | if (!sending) { |
| 1127 | if (reclen[ctr] == 0 || reclen[ctr] % bs != 0) |
| 1128 | return 0; |
| 1129 | } |
| 1130 | } |
| 1131 | if (n_recs > 1) { |
| 1132 | unsigned char *data[SSL_MAX_PIPELINES]; |
| 1133 | |
| 1134 | /* Set the output buffers */ |
| 1135 | for (ctr = 0; ctr < n_recs; ctr++) { |
| 1136 | data[ctr] = recs[ctr].data; |
| 1137 | } |
| 1138 | if (EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_SET_PIPELINE_OUTPUT_BUFS, |
| 1139 | (int)n_recs, data) <= 0) { |
| 1140 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| 1141 | SSL_R_PIPELINE_FAILURE); |
| 1142 | return -1; |
| 1143 | } |
| 1144 | /* Set the input buffers */ |
| 1145 | for (ctr = 0; ctr < n_recs; ctr++) { |
| 1146 | data[ctr] = recs[ctr].input; |
| 1147 | } |
| 1148 | if (EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_SET_PIPELINE_INPUT_BUFS, |
| 1149 | (int)n_recs, data) <= 0 |
| 1150 | || EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_SET_PIPELINE_INPUT_LENS, |
| 1151 | (int)n_recs, reclen) <= 0) { |
| 1152 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| 1153 | SSL_R_PIPELINE_FAILURE); |
| 1154 | return -1; |
| 1155 | } |
| 1156 | } |
| 1157 | |
| 1158 | /* TODO(size_t): Convert this call */ |
| 1159 | tmpr = EVP_Cipher(ds, recs[0].data, recs[0].input, |
| 1160 | (unsigned int)reclen[0]); |
| 1161 | if ((EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ds)) |
| 1162 | & EVP_CIPH_FLAG_CUSTOM_CIPHER) |
| 1163 | ? (tmpr < 0) |
| 1164 | : (tmpr == 0)) |
| 1165 | return -1; /* AEAD can fail to verify MAC */ |
| 1166 | |
| 1167 | if (sending == 0) { |
| 1168 | if (EVP_CIPHER_mode(enc) == EVP_CIPH_GCM_MODE) { |
| 1169 | for (ctr = 0; ctr < n_recs; ctr++) { |
| 1170 | recs[ctr].data += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| 1171 | recs[ctr].input += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| 1172 | recs[ctr].length -= EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| 1173 | } |
| 1174 | } else if (EVP_CIPHER_mode(enc) == EVP_CIPH_CCM_MODE) { |
| 1175 | for (ctr = 0; ctr < n_recs; ctr++) { |
| 1176 | recs[ctr].data += EVP_CCM_TLS_EXPLICIT_IV_LEN; |
| 1177 | recs[ctr].input += EVP_CCM_TLS_EXPLICIT_IV_LEN; |
| 1178 | recs[ctr].length -= EVP_CCM_TLS_EXPLICIT_IV_LEN; |
| 1179 | } |
| 1180 | } |
| 1181 | } |
| 1182 | |
| 1183 | ret = 1; |
| 1184 | if (!SSL_READ_ETM(s) && EVP_MD_CTX_md(s->read_hash) != NULL) { |
| 1185 | imac_size = EVP_MD_CTX_size(s->read_hash); |
| 1186 | if (imac_size < 0) { |
| 1187 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| 1188 | ERR_R_INTERNAL_ERROR); |
| 1189 | return -1; |
| 1190 | } |
| 1191 | mac_size = (size_t)imac_size; |
| 1192 | } |
| 1193 | if ((bs != 1) && !sending) { |
| 1194 | int tmpret; |
| 1195 | for (ctr = 0; ctr < n_recs; ctr++) { |
| 1196 | tmpret = tls1_cbc_remove_padding(s, &recs[ctr], bs, mac_size); |
| 1197 | /* |
| 1198 | * If tmpret == 0 then this means publicly invalid so we can |
| 1199 | * short circuit things here. Otherwise we must respect constant |
| 1200 | * time behaviour. |
| 1201 | */ |
| 1202 | if (tmpret == 0) |
| 1203 | return 0; |
| 1204 | ret = constant_time_select_int(constant_time_eq_int(tmpret, 1), |
| 1205 | ret, -1); |
| 1206 | } |
| 1207 | } |
| 1208 | if (pad && !sending) { |
| 1209 | for (ctr = 0; ctr < n_recs; ctr++) { |
| 1210 | recs[ctr].length -= pad; |
| 1211 | } |
| 1212 | } |
| 1213 | } |
| 1214 | return ret; |
| 1215 | } |
| 1216 | |
| 1217 | int n_ssl3_mac(SSL *ssl, SSL3_RECORD *rec, unsigned char *md, int sending) |
| 1218 | { |
| 1219 | unsigned char *mac_sec, *seq; |
| 1220 | const EVP_MD_CTX *hash; |
| 1221 | unsigned char *p, rec_char; |
| 1222 | size_t md_size; |
| 1223 | size_t npad; |
| 1224 | int t; |
| 1225 | |
| 1226 | if (sending) { |
| 1227 | mac_sec = &(ssl->s3.write_mac_secret[0]); |
| 1228 | seq = RECORD_LAYER_get_write_sequence(&ssl->rlayer); |
| 1229 | hash = ssl->write_hash; |
| 1230 | } else { |
| 1231 | mac_sec = &(ssl->s3.read_mac_secret[0]); |
| 1232 | seq = RECORD_LAYER_get_read_sequence(&ssl->rlayer); |
| 1233 | hash = ssl->read_hash; |
| 1234 | } |
| 1235 | |
| 1236 | t = EVP_MD_CTX_size(hash); |
| 1237 | if (t < 0) |
| 1238 | return 0; |
| 1239 | md_size = t; |
| 1240 | npad = (48 / md_size) * md_size; |
| 1241 | |
| 1242 | if (!sending && |
| 1243 | EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE && |
| 1244 | ssl3_cbc_record_digest_supported(hash)) { |
| 1245 | /* |
| 1246 | * This is a CBC-encrypted record. We must avoid leaking any |
| 1247 | * timing-side channel information about how many blocks of data we |
| 1248 | * are hashing because that gives an attacker a timing-oracle. |
| 1249 | */ |
| 1250 | |
| 1251 | /*- |
| 1252 | * npad is, at most, 48 bytes and that's with MD5: |
| 1253 | * 16 + 48 + 8 (sequence bytes) + 1 + 2 = 75. |
| 1254 | * |
| 1255 | * With SHA-1 (the largest hash speced for SSLv3) the hash size |
| 1256 | * goes up 4, but npad goes down by 8, resulting in a smaller |
| 1257 | * total size. |
| 1258 | */ |
| 1259 | unsigned char [75]; |
| 1260 | size_t j = 0; |
| 1261 | memcpy(header + j, mac_sec, md_size); |
| 1262 | j += md_size; |
| 1263 | memcpy(header + j, ssl3_pad_1, npad); |
| 1264 | j += npad; |
| 1265 | memcpy(header + j, seq, 8); |
| 1266 | j += 8; |
| 1267 | header[j++] = rec->type; |
| 1268 | header[j++] = (unsigned char)(rec->length >> 8); |
| 1269 | header[j++] = (unsigned char)(rec->length & 0xff); |
| 1270 | |
| 1271 | /* Final param == is SSLv3 */ |
| 1272 | if (ssl3_cbc_digest_record(hash, |
| 1273 | md, &md_size, |
| 1274 | header, rec->input, |
| 1275 | rec->length + md_size, rec->orig_len, |
| 1276 | mac_sec, md_size, 1) <= 0) |
| 1277 | return 0; |
| 1278 | } else { |
| 1279 | unsigned int md_size_u; |
| 1280 | /* Chop the digest off the end :-) */ |
| 1281 | EVP_MD_CTX *md_ctx = EVP_MD_CTX_new(); |
| 1282 | |
| 1283 | if (md_ctx == NULL) |
| 1284 | return 0; |
| 1285 | |
| 1286 | rec_char = rec->type; |
| 1287 | p = md; |
| 1288 | s2n(rec->length, p); |
| 1289 | if (EVP_MD_CTX_copy_ex(md_ctx, hash) <= 0 |
| 1290 | || EVP_DigestUpdate(md_ctx, mac_sec, md_size) <= 0 |
| 1291 | || EVP_DigestUpdate(md_ctx, ssl3_pad_1, npad) <= 0 |
| 1292 | || EVP_DigestUpdate(md_ctx, seq, 8) <= 0 |
| 1293 | || EVP_DigestUpdate(md_ctx, &rec_char, 1) <= 0 |
| 1294 | || EVP_DigestUpdate(md_ctx, md, 2) <= 0 |
| 1295 | || EVP_DigestUpdate(md_ctx, rec->input, rec->length) <= 0 |
| 1296 | || EVP_DigestFinal_ex(md_ctx, md, NULL) <= 0 |
| 1297 | || EVP_MD_CTX_copy_ex(md_ctx, hash) <= 0 |
| 1298 | || EVP_DigestUpdate(md_ctx, mac_sec, md_size) <= 0 |
| 1299 | || EVP_DigestUpdate(md_ctx, ssl3_pad_2, npad) <= 0 |
| 1300 | || EVP_DigestUpdate(md_ctx, md, md_size) <= 0 |
| 1301 | || EVP_DigestFinal_ex(md_ctx, md, &md_size_u) <= 0) { |
| 1302 | EVP_MD_CTX_free(md_ctx); |
| 1303 | return 0; |
| 1304 | } |
| 1305 | |
| 1306 | EVP_MD_CTX_free(md_ctx); |
| 1307 | } |
| 1308 | |
| 1309 | ssl3_record_sequence_update(seq); |
| 1310 | return 1; |
| 1311 | } |
| 1312 | |
| 1313 | int tls1_mac(SSL *ssl, SSL3_RECORD *rec, unsigned char *md, int sending) |
| 1314 | { |
| 1315 | unsigned char *seq; |
| 1316 | EVP_MD_CTX *hash; |
| 1317 | size_t md_size; |
| 1318 | int i; |
| 1319 | EVP_MD_CTX *hmac = NULL, *mac_ctx; |
| 1320 | unsigned char [13]; |
| 1321 | int stream_mac = (sending ? (ssl->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM) |
| 1322 | : (ssl->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM)); |
| 1323 | int t; |
| 1324 | |
| 1325 | if (sending) { |
| 1326 | seq = RECORD_LAYER_get_write_sequence(&ssl->rlayer); |
| 1327 | hash = ssl->write_hash; |
| 1328 | } else { |
| 1329 | seq = RECORD_LAYER_get_read_sequence(&ssl->rlayer); |
| 1330 | hash = ssl->read_hash; |
| 1331 | } |
| 1332 | |
| 1333 | t = EVP_MD_CTX_size(hash); |
| 1334 | if (!ossl_assert(t >= 0)) |
| 1335 | return 0; |
| 1336 | md_size = t; |
| 1337 | |
| 1338 | /* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */ |
| 1339 | if (stream_mac) { |
| 1340 | mac_ctx = hash; |
| 1341 | } else { |
| 1342 | hmac = EVP_MD_CTX_new(); |
| 1343 | if (hmac == NULL || !EVP_MD_CTX_copy(hmac, hash)) { |
| 1344 | EVP_MD_CTX_free(hmac); |
| 1345 | return 0; |
| 1346 | } |
| 1347 | mac_ctx = hmac; |
| 1348 | } |
| 1349 | |
| 1350 | if (SSL_IS_DTLS(ssl)) { |
| 1351 | unsigned char dtlsseq[8], *p = dtlsseq; |
| 1352 | |
| 1353 | s2n(sending ? DTLS_RECORD_LAYER_get_w_epoch(&ssl->rlayer) : |
| 1354 | DTLS_RECORD_LAYER_get_r_epoch(&ssl->rlayer), p); |
| 1355 | memcpy(p, &seq[2], 6); |
| 1356 | |
| 1357 | memcpy(header, dtlsseq, 8); |
| 1358 | } else |
| 1359 | memcpy(header, seq, 8); |
| 1360 | |
| 1361 | header[8] = rec->type; |
| 1362 | header[9] = (unsigned char)(ssl->version >> 8); |
| 1363 | header[10] = (unsigned char)(ssl->version); |
| 1364 | header[11] = (unsigned char)(rec->length >> 8); |
| 1365 | header[12] = (unsigned char)(rec->length & 0xff); |
| 1366 | |
| 1367 | if (!sending && !SSL_READ_ETM(ssl) && |
| 1368 | EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE && |
| 1369 | ssl3_cbc_record_digest_supported(mac_ctx)) { |
| 1370 | /* |
| 1371 | * This is a CBC-encrypted record. We must avoid leaking any |
| 1372 | * timing-side channel information about how many blocks of data we |
| 1373 | * are hashing because that gives an attacker a timing-oracle. |
| 1374 | */ |
| 1375 | /* Final param == not SSLv3 */ |
| 1376 | if (ssl3_cbc_digest_record(mac_ctx, |
| 1377 | md, &md_size, |
| 1378 | header, rec->input, |
| 1379 | rec->length + md_size, rec->orig_len, |
| 1380 | ssl->s3.read_mac_secret, |
| 1381 | ssl->s3.read_mac_secret_size, 0) <= 0) { |
| 1382 | EVP_MD_CTX_free(hmac); |
| 1383 | return 0; |
| 1384 | } |
| 1385 | } else { |
| 1386 | /* TODO(size_t): Convert these calls */ |
| 1387 | if (EVP_DigestSignUpdate(mac_ctx, header, sizeof(header)) <= 0 |
| 1388 | || EVP_DigestSignUpdate(mac_ctx, rec->input, rec->length) <= 0 |
| 1389 | || EVP_DigestSignFinal(mac_ctx, md, &md_size) <= 0) { |
| 1390 | EVP_MD_CTX_free(hmac); |
| 1391 | return 0; |
| 1392 | } |
| 1393 | } |
| 1394 | |
| 1395 | EVP_MD_CTX_free(hmac); |
| 1396 | |
| 1397 | OSSL_TRACE_BEGIN(TLS) { |
| 1398 | BIO_printf(trc_out, "seq:\n" ); |
| 1399 | BIO_dump_indent(trc_out, seq, 8, 4); |
| 1400 | BIO_printf(trc_out, "rec:\n" ); |
| 1401 | BIO_dump_indent(trc_out, rec->data, rec->length, 4); |
| 1402 | } OSSL_TRACE_END(TLS); |
| 1403 | |
| 1404 | if (!SSL_IS_DTLS(ssl)) { |
| 1405 | for (i = 7; i >= 0; i--) { |
| 1406 | ++seq[i]; |
| 1407 | if (seq[i] != 0) |
| 1408 | break; |
| 1409 | } |
| 1410 | } |
| 1411 | OSSL_TRACE_BEGIN(TLS) { |
| 1412 | BIO_printf(trc_out, "md:\n" ); |
| 1413 | BIO_dump_indent(trc_out, md, md_size, 4); |
| 1414 | } OSSL_TRACE_END(TLS); |
| 1415 | return 1; |
| 1416 | } |
| 1417 | |
| 1418 | /*- |
| 1419 | * ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC |
| 1420 | * record in |rec| by updating |rec->length| in constant time. |
| 1421 | * |
| 1422 | * block_size: the block size of the cipher used to encrypt the record. |
| 1423 | * returns: |
| 1424 | * 0: (in non-constant time) if the record is publicly invalid. |
| 1425 | * 1: if the padding was valid |
| 1426 | * -1: otherwise. |
| 1427 | */ |
| 1428 | int ssl3_cbc_remove_padding(SSL3_RECORD *rec, |
| 1429 | size_t block_size, size_t mac_size) |
| 1430 | { |
| 1431 | size_t padding_length; |
| 1432 | size_t good; |
| 1433 | const size_t overhead = 1 /* padding length byte */ + mac_size; |
| 1434 | |
| 1435 | /* |
| 1436 | * These lengths are all public so we can test them in non-constant time. |
| 1437 | */ |
| 1438 | if (overhead > rec->length) |
| 1439 | return 0; |
| 1440 | |
| 1441 | padding_length = rec->data[rec->length - 1]; |
| 1442 | good = constant_time_ge_s(rec->length, padding_length + overhead); |
| 1443 | /* SSLv3 requires that the padding is minimal. */ |
| 1444 | good &= constant_time_ge_s(block_size, padding_length + 1); |
| 1445 | rec->length -= good & (padding_length + 1); |
| 1446 | return constant_time_select_int_s(good, 1, -1); |
| 1447 | } |
| 1448 | |
| 1449 | /*- |
| 1450 | * tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC |
| 1451 | * record in |rec| in constant time and returns 1 if the padding is valid and |
| 1452 | * -1 otherwise. It also removes any explicit IV from the start of the record |
| 1453 | * without leaking any timing about whether there was enough space after the |
| 1454 | * padding was removed. |
| 1455 | * |
| 1456 | * block_size: the block size of the cipher used to encrypt the record. |
| 1457 | * returns: |
| 1458 | * 0: (in non-constant time) if the record is publicly invalid. |
| 1459 | * 1: if the padding was valid |
| 1460 | * -1: otherwise. |
| 1461 | */ |
| 1462 | int tls1_cbc_remove_padding(const SSL *s, |
| 1463 | SSL3_RECORD *rec, |
| 1464 | size_t block_size, size_t mac_size) |
| 1465 | { |
| 1466 | size_t good; |
| 1467 | size_t padding_length, to_check, i; |
| 1468 | const size_t overhead = 1 /* padding length byte */ + mac_size; |
| 1469 | /* Check if version requires explicit IV */ |
| 1470 | if (SSL_USE_EXPLICIT_IV(s)) { |
| 1471 | /* |
| 1472 | * These lengths are all public so we can test them in non-constant |
| 1473 | * time. |
| 1474 | */ |
| 1475 | if (overhead + block_size > rec->length) |
| 1476 | return 0; |
| 1477 | /* We can now safely skip explicit IV */ |
| 1478 | rec->data += block_size; |
| 1479 | rec->input += block_size; |
| 1480 | rec->length -= block_size; |
| 1481 | rec->orig_len -= block_size; |
| 1482 | } else if (overhead > rec->length) |
| 1483 | return 0; |
| 1484 | |
| 1485 | padding_length = rec->data[rec->length - 1]; |
| 1486 | |
| 1487 | if (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(s->enc_read_ctx)) & |
| 1488 | EVP_CIPH_FLAG_AEAD_CIPHER) { |
| 1489 | /* padding is already verified */ |
| 1490 | rec->length -= padding_length + 1; |
| 1491 | return 1; |
| 1492 | } |
| 1493 | |
| 1494 | good = constant_time_ge_s(rec->length, overhead + padding_length); |
| 1495 | /* |
| 1496 | * The padding consists of a length byte at the end of the record and |
| 1497 | * then that many bytes of padding, all with the same value as the length |
| 1498 | * byte. Thus, with the length byte included, there are i+1 bytes of |
| 1499 | * padding. We can't check just |padding_length+1| bytes because that |
| 1500 | * leaks decrypted information. Therefore we always have to check the |
| 1501 | * maximum amount of padding possible. (Again, the length of the record |
| 1502 | * is public information so we can use it.) |
| 1503 | */ |
| 1504 | to_check = 256; /* maximum amount of padding, inc length byte. */ |
| 1505 | if (to_check > rec->length) |
| 1506 | to_check = rec->length; |
| 1507 | |
| 1508 | for (i = 0; i < to_check; i++) { |
| 1509 | unsigned char mask = constant_time_ge_8_s(padding_length, i); |
| 1510 | unsigned char b = rec->data[rec->length - 1 - i]; |
| 1511 | /* |
| 1512 | * The final |padding_length+1| bytes should all have the value |
| 1513 | * |padding_length|. Therefore the XOR should be zero. |
| 1514 | */ |
| 1515 | good &= ~(mask & (padding_length ^ b)); |
| 1516 | } |
| 1517 | |
| 1518 | /* |
| 1519 | * If any of the final |padding_length+1| bytes had the wrong value, one |
| 1520 | * or more of the lower eight bits of |good| will be cleared. |
| 1521 | */ |
| 1522 | good = constant_time_eq_s(0xff, good & 0xff); |
| 1523 | rec->length -= good & (padding_length + 1); |
| 1524 | |
| 1525 | return constant_time_select_int_s(good, 1, -1); |
| 1526 | } |
| 1527 | |
| 1528 | /*- |
| 1529 | * ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in |
| 1530 | * constant time (independent of the concrete value of rec->length, which may |
| 1531 | * vary within a 256-byte window). |
| 1532 | * |
| 1533 | * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to |
| 1534 | * this function. |
| 1535 | * |
| 1536 | * On entry: |
| 1537 | * rec->orig_len >= md_size |
| 1538 | * md_size <= EVP_MAX_MD_SIZE |
| 1539 | * |
| 1540 | * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with |
| 1541 | * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into |
| 1542 | * a single or pair of cache-lines, then the variable memory accesses don't |
| 1543 | * actually affect the timing. CPUs with smaller cache-lines [if any] are |
| 1544 | * not multi-core and are not considered vulnerable to cache-timing attacks. |
| 1545 | */ |
| 1546 | #define CBC_MAC_ROTATE_IN_PLACE |
| 1547 | |
| 1548 | int ssl3_cbc_copy_mac(unsigned char *out, |
| 1549 | const SSL3_RECORD *rec, size_t md_size) |
| 1550 | { |
| 1551 | #if defined(CBC_MAC_ROTATE_IN_PLACE) |
| 1552 | unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE]; |
| 1553 | unsigned char *rotated_mac; |
| 1554 | #else |
| 1555 | unsigned char rotated_mac[EVP_MAX_MD_SIZE]; |
| 1556 | #endif |
| 1557 | |
| 1558 | /* |
| 1559 | * mac_end is the index of |rec->data| just after the end of the MAC. |
| 1560 | */ |
| 1561 | size_t mac_end = rec->length; |
| 1562 | size_t mac_start = mac_end - md_size; |
| 1563 | size_t in_mac; |
| 1564 | /* |
| 1565 | * scan_start contains the number of bytes that we can ignore because the |
| 1566 | * MAC's position can only vary by 255 bytes. |
| 1567 | */ |
| 1568 | size_t scan_start = 0; |
| 1569 | size_t i, j; |
| 1570 | size_t rotate_offset; |
| 1571 | |
| 1572 | if (!ossl_assert(rec->orig_len >= md_size |
| 1573 | && md_size <= EVP_MAX_MD_SIZE)) |
| 1574 | return 0; |
| 1575 | |
| 1576 | #if defined(CBC_MAC_ROTATE_IN_PLACE) |
| 1577 | rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf) & 63); |
| 1578 | #endif |
| 1579 | |
| 1580 | /* This information is public so it's safe to branch based on it. */ |
| 1581 | if (rec->orig_len > md_size + 255 + 1) |
| 1582 | scan_start = rec->orig_len - (md_size + 255 + 1); |
| 1583 | |
| 1584 | in_mac = 0; |
| 1585 | rotate_offset = 0; |
| 1586 | memset(rotated_mac, 0, md_size); |
| 1587 | for (i = scan_start, j = 0; i < rec->orig_len; i++) { |
| 1588 | size_t mac_started = constant_time_eq_s(i, mac_start); |
| 1589 | size_t mac_ended = constant_time_lt_s(i, mac_end); |
| 1590 | unsigned char b = rec->data[i]; |
| 1591 | |
| 1592 | in_mac |= mac_started; |
| 1593 | in_mac &= mac_ended; |
| 1594 | rotate_offset |= j & mac_started; |
| 1595 | rotated_mac[j++] |= b & in_mac; |
| 1596 | j &= constant_time_lt_s(j, md_size); |
| 1597 | } |
| 1598 | |
| 1599 | /* Now rotate the MAC */ |
| 1600 | #if defined(CBC_MAC_ROTATE_IN_PLACE) |
| 1601 | j = 0; |
| 1602 | for (i = 0; i < md_size; i++) { |
| 1603 | /* in case cache-line is 32 bytes, touch second line */ |
| 1604 | ((volatile unsigned char *)rotated_mac)[rotate_offset ^ 32]; |
| 1605 | out[j++] = rotated_mac[rotate_offset++]; |
| 1606 | rotate_offset &= constant_time_lt_s(rotate_offset, md_size); |
| 1607 | } |
| 1608 | #else |
| 1609 | memset(out, 0, md_size); |
| 1610 | rotate_offset = md_size - rotate_offset; |
| 1611 | rotate_offset &= constant_time_lt_s(rotate_offset, md_size); |
| 1612 | for (i = 0; i < md_size; i++) { |
| 1613 | for (j = 0; j < md_size; j++) |
| 1614 | out[j] |= rotated_mac[i] & constant_time_eq_8_s(j, rotate_offset); |
| 1615 | rotate_offset++; |
| 1616 | rotate_offset &= constant_time_lt_s(rotate_offset, md_size); |
| 1617 | } |
| 1618 | #endif |
| 1619 | |
| 1620 | return 1; |
| 1621 | } |
| 1622 | |
| 1623 | int dtls1_process_record(SSL *s, DTLS1_BITMAP *bitmap) |
| 1624 | { |
| 1625 | int i; |
| 1626 | int enc_err; |
| 1627 | SSL_SESSION *sess; |
| 1628 | SSL3_RECORD *rr; |
| 1629 | int imac_size; |
| 1630 | size_t mac_size; |
| 1631 | unsigned char md[EVP_MAX_MD_SIZE]; |
| 1632 | |
| 1633 | rr = RECORD_LAYER_get_rrec(&s->rlayer); |
| 1634 | sess = s->session; |
| 1635 | |
| 1636 | /* |
| 1637 | * At this point, s->packet_length == SSL3_RT_HEADER_LNGTH + rr->length, |
| 1638 | * and we have that many bytes in s->packet |
| 1639 | */ |
| 1640 | rr->input = &(RECORD_LAYER_get_packet(&s->rlayer)[DTLS1_RT_HEADER_LENGTH]); |
| 1641 | |
| 1642 | /* |
| 1643 | * ok, we can now read from 's->packet' data into 'rr' rr->input points |
| 1644 | * at rr->length bytes, which need to be copied into rr->data by either |
| 1645 | * the decryption or by the decompression When the data is 'copied' into |
| 1646 | * the rr->data buffer, rr->input will be pointed at the new buffer |
| 1647 | */ |
| 1648 | |
| 1649 | /* |
| 1650 | * We now have - encrypted [ MAC [ compressed [ plain ] ] ] rr->length |
| 1651 | * bytes of encrypted compressed stuff. |
| 1652 | */ |
| 1653 | |
| 1654 | /* check is not needed I believe */ |
| 1655 | if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH) { |
| 1656 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_DTLS1_PROCESS_RECORD, |
| 1657 | SSL_R_ENCRYPTED_LENGTH_TOO_LONG); |
| 1658 | return 0; |
| 1659 | } |
| 1660 | |
| 1661 | /* decrypt in place in 'rr->input' */ |
| 1662 | rr->data = rr->input; |
| 1663 | rr->orig_len = rr->length; |
| 1664 | |
| 1665 | if (SSL_READ_ETM(s) && s->read_hash) { |
| 1666 | unsigned char *mac; |
| 1667 | mac_size = EVP_MD_CTX_size(s->read_hash); |
| 1668 | if (!ossl_assert(mac_size <= EVP_MAX_MD_SIZE)) { |
| 1669 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD, |
| 1670 | ERR_R_INTERNAL_ERROR); |
| 1671 | return 0; |
| 1672 | } |
| 1673 | if (rr->orig_len < mac_size) { |
| 1674 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_DTLS1_PROCESS_RECORD, |
| 1675 | SSL_R_LENGTH_TOO_SHORT); |
| 1676 | return 0; |
| 1677 | } |
| 1678 | rr->length -= mac_size; |
| 1679 | mac = rr->data + rr->length; |
| 1680 | i = s->method->ssl3_enc->mac(s, rr, md, 0 /* not send */ ); |
| 1681 | if (i == 0 || CRYPTO_memcmp(md, mac, (size_t)mac_size) != 0) { |
| 1682 | SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_DTLS1_PROCESS_RECORD, |
| 1683 | SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); |
| 1684 | return 0; |
| 1685 | } |
| 1686 | } |
| 1687 | |
| 1688 | enc_err = s->method->ssl3_enc->enc(s, rr, 1, 0); |
| 1689 | /*- |
| 1690 | * enc_err is: |
| 1691 | * 0: (in non-constant time) if the record is publicly invalid. |
| 1692 | * 1: if the padding is valid |
| 1693 | * -1: if the padding is invalid |
| 1694 | */ |
| 1695 | if (enc_err == 0) { |
| 1696 | if (ossl_statem_in_error(s)) { |
| 1697 | /* SSLfatal() got called */ |
| 1698 | return 0; |
| 1699 | } |
| 1700 | /* For DTLS we simply ignore bad packets. */ |
| 1701 | rr->length = 0; |
| 1702 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
| 1703 | return 0; |
| 1704 | } |
| 1705 | OSSL_TRACE_BEGIN(TLS) { |
| 1706 | BIO_printf(trc_out, "dec %zd\n" , rr->length); |
| 1707 | BIO_dump_indent(trc_out, rr->data, rr->length, 4); |
| 1708 | } OSSL_TRACE_END(TLS); |
| 1709 | |
| 1710 | /* r->length is now the compressed data plus mac */ |
| 1711 | if ((sess != NULL) && !SSL_READ_ETM(s) && |
| 1712 | (s->enc_read_ctx != NULL) && (EVP_MD_CTX_md(s->read_hash) != NULL)) { |
| 1713 | /* s->read_hash != NULL => mac_size != -1 */ |
| 1714 | unsigned char *mac = NULL; |
| 1715 | unsigned char mac_tmp[EVP_MAX_MD_SIZE]; |
| 1716 | |
| 1717 | /* TODO(size_t): Convert this to do size_t properly */ |
| 1718 | imac_size = EVP_MD_CTX_size(s->read_hash); |
| 1719 | if (imac_size < 0) { |
| 1720 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD, |
| 1721 | ERR_LIB_EVP); |
| 1722 | return 0; |
| 1723 | } |
| 1724 | mac_size = (size_t)imac_size; |
| 1725 | if (!ossl_assert(mac_size <= EVP_MAX_MD_SIZE)) { |
| 1726 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD, |
| 1727 | ERR_R_INTERNAL_ERROR); |
| 1728 | return 0; |
| 1729 | } |
| 1730 | |
| 1731 | /* |
| 1732 | * orig_len is the length of the record before any padding was |
| 1733 | * removed. This is public information, as is the MAC in use, |
| 1734 | * therefore we can safely process the record in a different amount |
| 1735 | * of time if it's too short to possibly contain a MAC. |
| 1736 | */ |
| 1737 | if (rr->orig_len < mac_size || |
| 1738 | /* CBC records must have a padding length byte too. */ |
| 1739 | (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE && |
| 1740 | rr->orig_len < mac_size + 1)) { |
| 1741 | SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_DTLS1_PROCESS_RECORD, |
| 1742 | SSL_R_LENGTH_TOO_SHORT); |
| 1743 | return 0; |
| 1744 | } |
| 1745 | |
| 1746 | if (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE) { |
| 1747 | /* |
| 1748 | * We update the length so that the TLS header bytes can be |
| 1749 | * constructed correctly but we need to extract the MAC in |
| 1750 | * constant time from within the record, without leaking the |
| 1751 | * contents of the padding bytes. |
| 1752 | */ |
| 1753 | mac = mac_tmp; |
| 1754 | if (!ssl3_cbc_copy_mac(mac_tmp, rr, mac_size)) { |
| 1755 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD, |
| 1756 | ERR_R_INTERNAL_ERROR); |
| 1757 | return 0; |
| 1758 | } |
| 1759 | rr->length -= mac_size; |
| 1760 | } else { |
| 1761 | /* |
| 1762 | * In this case there's no padding, so |rec->orig_len| equals |
| 1763 | * |rec->length| and we checked that there's enough bytes for |
| 1764 | * |mac_size| above. |
| 1765 | */ |
| 1766 | rr->length -= mac_size; |
| 1767 | mac = &rr->data[rr->length]; |
| 1768 | } |
| 1769 | |
| 1770 | i = s->method->ssl3_enc->mac(s, rr, md, 0 /* not send */ ); |
| 1771 | if (i == 0 || mac == NULL |
| 1772 | || CRYPTO_memcmp(md, mac, mac_size) != 0) |
| 1773 | enc_err = -1; |
| 1774 | if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH + mac_size) |
| 1775 | enc_err = -1; |
| 1776 | } |
| 1777 | |
| 1778 | if (enc_err < 0) { |
| 1779 | /* decryption failed, silently discard message */ |
| 1780 | rr->length = 0; |
| 1781 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
| 1782 | return 0; |
| 1783 | } |
| 1784 | |
| 1785 | /* r->length is now just compressed */ |
| 1786 | if (s->expand != NULL) { |
| 1787 | if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH) { |
| 1788 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_DTLS1_PROCESS_RECORD, |
| 1789 | SSL_R_COMPRESSED_LENGTH_TOO_LONG); |
| 1790 | return 0; |
| 1791 | } |
| 1792 | if (!ssl3_do_uncompress(s, rr)) { |
| 1793 | SSLfatal(s, SSL_AD_DECOMPRESSION_FAILURE, |
| 1794 | SSL_F_DTLS1_PROCESS_RECORD, SSL_R_BAD_DECOMPRESSION); |
| 1795 | return 0; |
| 1796 | } |
| 1797 | } |
| 1798 | |
| 1799 | if (rr->length > SSL3_RT_MAX_PLAIN_LENGTH) { |
| 1800 | SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_DTLS1_PROCESS_RECORD, |
| 1801 | SSL_R_DATA_LENGTH_TOO_LONG); |
| 1802 | return 0; |
| 1803 | } |
| 1804 | |
| 1805 | rr->off = 0; |
| 1806 | /*- |
| 1807 | * So at this point the following is true |
| 1808 | * ssl->s3.rrec.type is the type of record |
| 1809 | * ssl->s3.rrec.length == number of bytes in record |
| 1810 | * ssl->s3.rrec.off == offset to first valid byte |
| 1811 | * ssl->s3.rrec.data == where to take bytes from, increment |
| 1812 | * after use :-). |
| 1813 | */ |
| 1814 | |
| 1815 | /* we have pulled in a full packet so zero things */ |
| 1816 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
| 1817 | |
| 1818 | /* Mark receipt of record. */ |
| 1819 | dtls1_record_bitmap_update(s, bitmap); |
| 1820 | |
| 1821 | return 1; |
| 1822 | } |
| 1823 | |
| 1824 | /* |
| 1825 | * Retrieve a buffered record that belongs to the current epoch, i.e. processed |
| 1826 | */ |
| 1827 | #define dtls1_get_processed_record(s) \ |
| 1828 | dtls1_retrieve_buffered_record((s), \ |
| 1829 | &(DTLS_RECORD_LAYER_get_processed_rcds(&s->rlayer))) |
| 1830 | |
| 1831 | /*- |
| 1832 | * Call this to get a new input record. |
| 1833 | * It will return <= 0 if more data is needed, normally due to an error |
| 1834 | * or non-blocking IO. |
| 1835 | * When it finishes, one packet has been decoded and can be found in |
| 1836 | * ssl->s3.rrec.type - is the type of record |
| 1837 | * ssl->s3.rrec.data - data |
| 1838 | * ssl->s3.rrec.length - number of bytes |
| 1839 | */ |
| 1840 | /* used only by dtls1_read_bytes */ |
| 1841 | int dtls1_get_record(SSL *s) |
| 1842 | { |
| 1843 | int ssl_major, ssl_minor; |
| 1844 | int rret; |
| 1845 | size_t more, n; |
| 1846 | SSL3_RECORD *rr; |
| 1847 | unsigned char *p = NULL; |
| 1848 | unsigned short version; |
| 1849 | DTLS1_BITMAP *bitmap; |
| 1850 | unsigned int is_next_epoch; |
| 1851 | |
| 1852 | rr = RECORD_LAYER_get_rrec(&s->rlayer); |
| 1853 | |
| 1854 | again: |
| 1855 | /* |
| 1856 | * The epoch may have changed. If so, process all the pending records. |
| 1857 | * This is a non-blocking operation. |
| 1858 | */ |
| 1859 | if (!dtls1_process_buffered_records(s)) { |
| 1860 | /* SSLfatal() already called */ |
| 1861 | return -1; |
| 1862 | } |
| 1863 | |
| 1864 | /* if we're renegotiating, then there may be buffered records */ |
| 1865 | if (dtls1_get_processed_record(s)) |
| 1866 | return 1; |
| 1867 | |
| 1868 | /* get something from the wire */ |
| 1869 | |
| 1870 | /* check if we have the header */ |
| 1871 | if ((RECORD_LAYER_get_rstate(&s->rlayer) != SSL_ST_READ_BODY) || |
| 1872 | (RECORD_LAYER_get_packet_length(&s->rlayer) < DTLS1_RT_HEADER_LENGTH)) { |
| 1873 | rret = ssl3_read_n(s, DTLS1_RT_HEADER_LENGTH, |
| 1874 | SSL3_BUFFER_get_len(&s->rlayer.rbuf), 0, 1, &n); |
| 1875 | /* read timeout is handled by dtls1_read_bytes */ |
| 1876 | if (rret <= 0) { |
| 1877 | /* SSLfatal() already called if appropriate */ |
| 1878 | return rret; /* error or non-blocking */ |
| 1879 | } |
| 1880 | |
| 1881 | /* this packet contained a partial record, dump it */ |
| 1882 | if (RECORD_LAYER_get_packet_length(&s->rlayer) != |
| 1883 | DTLS1_RT_HEADER_LENGTH) { |
| 1884 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
| 1885 | goto again; |
| 1886 | } |
| 1887 | |
| 1888 | RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_BODY); |
| 1889 | |
| 1890 | p = RECORD_LAYER_get_packet(&s->rlayer); |
| 1891 | |
| 1892 | if (s->msg_callback) |
| 1893 | s->msg_callback(0, 0, SSL3_RT_HEADER, p, DTLS1_RT_HEADER_LENGTH, |
| 1894 | s, s->msg_callback_arg); |
| 1895 | |
| 1896 | /* Pull apart the header into the DTLS1_RECORD */ |
| 1897 | rr->type = *(p++); |
| 1898 | ssl_major = *(p++); |
| 1899 | ssl_minor = *(p++); |
| 1900 | version = (ssl_major << 8) | ssl_minor; |
| 1901 | |
| 1902 | /* sequence number is 64 bits, with top 2 bytes = epoch */ |
| 1903 | n2s(p, rr->epoch); |
| 1904 | |
| 1905 | memcpy(&(RECORD_LAYER_get_read_sequence(&s->rlayer)[2]), p, 6); |
| 1906 | p += 6; |
| 1907 | |
| 1908 | n2s(p, rr->length); |
| 1909 | rr->read = 0; |
| 1910 | |
| 1911 | /* |
| 1912 | * Lets check the version. We tolerate alerts that don't have the exact |
| 1913 | * version number (e.g. because of protocol version errors) |
| 1914 | */ |
| 1915 | if (!s->first_packet && rr->type != SSL3_RT_ALERT) { |
| 1916 | if (version != s->version) { |
| 1917 | /* unexpected version, silently discard */ |
| 1918 | rr->length = 0; |
| 1919 | rr->read = 1; |
| 1920 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
| 1921 | goto again; |
| 1922 | } |
| 1923 | } |
| 1924 | |
| 1925 | if ((version & 0xff00) != (s->version & 0xff00)) { |
| 1926 | /* wrong version, silently discard record */ |
| 1927 | rr->length = 0; |
| 1928 | rr->read = 1; |
| 1929 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
| 1930 | goto again; |
| 1931 | } |
| 1932 | |
| 1933 | if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH) { |
| 1934 | /* record too long, silently discard it */ |
| 1935 | rr->length = 0; |
| 1936 | rr->read = 1; |
| 1937 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
| 1938 | goto again; |
| 1939 | } |
| 1940 | |
| 1941 | /* If received packet overflows own-client Max Fragment Length setting */ |
| 1942 | if (s->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(s->session) |
| 1943 | && rr->length > GET_MAX_FRAGMENT_LENGTH(s->session)) { |
| 1944 | /* record too long, silently discard it */ |
| 1945 | rr->length = 0; |
| 1946 | rr->read = 1; |
| 1947 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
| 1948 | goto again; |
| 1949 | } |
| 1950 | |
| 1951 | /* now s->rlayer.rstate == SSL_ST_READ_BODY */ |
| 1952 | } |
| 1953 | |
| 1954 | /* s->rlayer.rstate == SSL_ST_READ_BODY, get and decode the data */ |
| 1955 | |
| 1956 | if (rr->length > |
| 1957 | RECORD_LAYER_get_packet_length(&s->rlayer) - DTLS1_RT_HEADER_LENGTH) { |
| 1958 | /* now s->packet_length == DTLS1_RT_HEADER_LENGTH */ |
| 1959 | more = rr->length; |
| 1960 | rret = ssl3_read_n(s, more, more, 1, 1, &n); |
| 1961 | /* this packet contained a partial record, dump it */ |
| 1962 | if (rret <= 0 || n != more) { |
| 1963 | if (ossl_statem_in_error(s)) { |
| 1964 | /* ssl3_read_n() called SSLfatal() */ |
| 1965 | return -1; |
| 1966 | } |
| 1967 | rr->length = 0; |
| 1968 | rr->read = 1; |
| 1969 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
| 1970 | goto again; |
| 1971 | } |
| 1972 | |
| 1973 | /* |
| 1974 | * now n == rr->length, and s->packet_length == |
| 1975 | * DTLS1_RT_HEADER_LENGTH + rr->length |
| 1976 | */ |
| 1977 | } |
| 1978 | /* set state for later operations */ |
| 1979 | RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_HEADER); |
| 1980 | |
| 1981 | /* match epochs. NULL means the packet is dropped on the floor */ |
| 1982 | bitmap = dtls1_get_bitmap(s, rr, &is_next_epoch); |
| 1983 | if (bitmap == NULL) { |
| 1984 | rr->length = 0; |
| 1985 | RECORD_LAYER_reset_packet_length(&s->rlayer); /* dump this record */ |
| 1986 | goto again; /* get another record */ |
| 1987 | } |
| 1988 | #ifndef OPENSSL_NO_SCTP |
| 1989 | /* Only do replay check if no SCTP bio */ |
| 1990 | if (!BIO_dgram_is_sctp(SSL_get_rbio(s))) { |
| 1991 | #endif |
| 1992 | /* Check whether this is a repeat, or aged record. */ |
| 1993 | /* |
| 1994 | * TODO: Does it make sense to have replay protection in epoch 0 where |
| 1995 | * we have no integrity negotiated yet? |
| 1996 | */ |
| 1997 | if (!dtls1_record_replay_check(s, bitmap)) { |
| 1998 | rr->length = 0; |
| 1999 | rr->read = 1; |
| 2000 | RECORD_LAYER_reset_packet_length(&s->rlayer); /* dump this record */ |
| 2001 | goto again; /* get another record */ |
| 2002 | } |
| 2003 | #ifndef OPENSSL_NO_SCTP |
| 2004 | } |
| 2005 | #endif |
| 2006 | |
| 2007 | /* just read a 0 length packet */ |
| 2008 | if (rr->length == 0) { |
| 2009 | rr->read = 1; |
| 2010 | goto again; |
| 2011 | } |
| 2012 | |
| 2013 | /* |
| 2014 | * If this record is from the next epoch (either HM or ALERT), and a |
| 2015 | * handshake is currently in progress, buffer it since it cannot be |
| 2016 | * processed at this time. |
| 2017 | */ |
| 2018 | if (is_next_epoch) { |
| 2019 | if ((SSL_in_init(s) || ossl_statem_get_in_handshake(s))) { |
| 2020 | if (dtls1_buffer_record (s, |
| 2021 | &(DTLS_RECORD_LAYER_get_unprocessed_rcds(&s->rlayer)), |
| 2022 | rr->seq_num) < 0) { |
| 2023 | /* SSLfatal() already called */ |
| 2024 | return -1; |
| 2025 | } |
| 2026 | } |
| 2027 | rr->length = 0; |
| 2028 | rr->read = 1; |
| 2029 | RECORD_LAYER_reset_packet_length(&s->rlayer); |
| 2030 | goto again; |
| 2031 | } |
| 2032 | |
| 2033 | if (!dtls1_process_record(s, bitmap)) { |
| 2034 | if (ossl_statem_in_error(s)) { |
| 2035 | /* dtls1_process_record() called SSLfatal */ |
| 2036 | return -1; |
| 2037 | } |
| 2038 | rr->length = 0; |
| 2039 | rr->read = 1; |
| 2040 | RECORD_LAYER_reset_packet_length(&s->rlayer); /* dump this record */ |
| 2041 | goto again; /* get another record */ |
| 2042 | } |
| 2043 | |
| 2044 | return 1; |
| 2045 | |
| 2046 | } |
| 2047 | |
| 2048 | int dtls_buffer_listen_record(SSL *s, size_t len, unsigned char *seq, size_t off) |
| 2049 | { |
| 2050 | SSL3_RECORD *rr; |
| 2051 | |
| 2052 | rr = RECORD_LAYER_get_rrec(&s->rlayer); |
| 2053 | memset(rr, 0, sizeof(SSL3_RECORD)); |
| 2054 | |
| 2055 | rr->length = len; |
| 2056 | rr->type = SSL3_RT_HANDSHAKE; |
| 2057 | memcpy(rr->seq_num, seq, sizeof(rr->seq_num)); |
| 2058 | rr->off = off; |
| 2059 | |
| 2060 | s->rlayer.packet = RECORD_LAYER_get_rbuf(&s->rlayer)->buf; |
| 2061 | s->rlayer.packet_length = DTLS1_RT_HEADER_LENGTH + len; |
| 2062 | rr->data = s->rlayer.packet + DTLS1_RT_HEADER_LENGTH; |
| 2063 | |
| 2064 | if (dtls1_buffer_record(s, &(s->rlayer.d->processed_rcds), |
| 2065 | SSL3_RECORD_get_seq_num(s->rlayer.rrec)) <= 0) { |
| 2066 | /* SSLfatal() already called */ |
| 2067 | return 0; |
| 2068 | } |
| 2069 | |
| 2070 | return 1; |
| 2071 | } |
| 2072 | |