1 | /** |
2 | * Licensed to the Apache Software Foundation (ASF) under one |
3 | * or more contributor license agreements. See the NOTICE file |
4 | * distributed with this work for additional information |
5 | * regarding copyright ownership. The ASF licenses this file |
6 | * to you under the Apache License, Version 2.0 (the |
7 | * "License"); you may not use this file except in compliance |
8 | * with the License. You may obtain a copy of the License at |
9 | * |
10 | * http://www.apache.org/licenses/LICENSE-2.0 |
11 | * |
12 | * Unless required by applicable law or agreed to in writing, software |
13 | * distributed under the License is distributed on an "AS IS" BASIS, |
14 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
15 | * See the License for the specific language governing permissions and |
16 | * limitations under the License. |
17 | */ |
18 | |
19 | #include "orc/Int128.hh" |
20 | #include "Adaptor.hh" |
21 | |
22 | #include <algorithm> |
23 | #include <iomanip> |
24 | #include <iostream> |
25 | #include <sstream> |
26 | |
27 | namespace orc { |
28 | |
29 | Int128 Int128::maximumValue() { |
30 | return Int128(0x7fffffffffffffff, 0xfffffffffffffff); |
31 | } |
32 | |
33 | Int128 Int128::minimumValue() { |
34 | return Int128(static_cast<int64_t>(0x8000000000000000), 0x0); |
35 | } |
36 | |
37 | Int128::Int128(const std::string& str) { |
38 | lowbits = 0; |
39 | highbits = 0; |
40 | size_t length = str.length(); |
41 | if (length > 0) { |
42 | bool isNegative = str[0] == '-'; |
43 | size_t posn = isNegative ? 1 : 0; |
44 | while (posn < length) { |
45 | size_t group = std::min(static_cast<size_t>(18), length - posn); |
46 | int64_t chunk = std::stoll(str.substr(posn, group)); |
47 | int64_t multiple = 1; |
48 | for(size_t i=0; i < group; ++i) { |
49 | multiple *= 10; |
50 | } |
51 | *this *= multiple; |
52 | *this += chunk; |
53 | posn += group; |
54 | } |
55 | if (isNegative) { |
56 | negate(); |
57 | } |
58 | } |
59 | } |
60 | |
61 | Int128& Int128::operator*=(const Int128 &right) { |
62 | const uint64_t INT_MASK = 0xffffffff; |
63 | const uint64_t CARRY_BIT = INT_MASK + 1; |
64 | |
65 | // Break the left and right numbers into 32 bit chunks |
66 | // so that we can multiply them without overflow. |
67 | uint64_t L0 = static_cast<uint64_t>(highbits) >> 32; |
68 | uint64_t L1 = static_cast<uint64_t>(highbits) & INT_MASK; |
69 | uint64_t L2 = lowbits >> 32; |
70 | uint64_t L3 = lowbits & INT_MASK; |
71 | uint64_t R0 = static_cast<uint64_t>(right.highbits) >> 32; |
72 | uint64_t R1 = static_cast<uint64_t>(right.highbits) & INT_MASK; |
73 | uint64_t R2 = right.lowbits >> 32; |
74 | uint64_t R3 = right.lowbits & INT_MASK; |
75 | |
76 | uint64_t product = L3 * R3; |
77 | lowbits = product & INT_MASK; |
78 | uint64_t sum = product >> 32; |
79 | product = L2 * R3; |
80 | sum += product; |
81 | highbits = sum < product ? CARRY_BIT : 0; |
82 | product = L3 * R2; |
83 | sum += product; |
84 | if (sum < product) { |
85 | highbits += CARRY_BIT; |
86 | } |
87 | lowbits += sum << 32; |
88 | highbits += static_cast<int64_t>(sum >> 32); |
89 | highbits += L1 * R3 + L2 * R2 + L3 * R1; |
90 | highbits += (L0 * R3 + L1 * R2 + L2 * R1 + L3 * R0) << 32; |
91 | return *this; |
92 | } |
93 | |
94 | /** |
95 | * Expands the given value into an array of ints so that we can work on |
96 | * it. The array will be converted to an absolute value and the wasNegative |
97 | * flag will be set appropriately. The array will remove leading zeros from |
98 | * the value. |
99 | * @param array an array of length 4 to set with the value |
100 | * @param wasNegative a flag for whether the value was original negative |
101 | * @result the output length of the array |
102 | */ |
103 | int64_t Int128::fillInArray(uint32_t* array, bool &wasNegative) const { |
104 | uint64_t high; |
105 | uint64_t low; |
106 | if (highbits < 0) { |
107 | low = ~lowbits + 1; |
108 | high = static_cast<uint64_t>(~highbits); |
109 | if (low == 0) { |
110 | high += 1; |
111 | } |
112 | wasNegative = true; |
113 | } else { |
114 | low = lowbits; |
115 | high = static_cast<uint64_t>(highbits); |
116 | wasNegative = false; |
117 | } |
118 | if (high != 0) { |
119 | if (high > UINT32_MAX) { |
120 | array[0] = static_cast<uint32_t>(high >> 32); |
121 | array[1] = static_cast<uint32_t>(high); |
122 | array[2] = static_cast<uint32_t>(low >> 32); |
123 | array[3] = static_cast<uint32_t>(low); |
124 | return 4; |
125 | } else { |
126 | array[0] = static_cast<uint32_t>(high); |
127 | array[1] = static_cast<uint32_t>(low >> 32); |
128 | array[2] = static_cast<uint32_t>(low); |
129 | return 3; |
130 | } |
131 | } else if (low >= UINT32_MAX) { |
132 | array[0] = static_cast<uint32_t>(low >> 32); |
133 | array[1] = static_cast<uint32_t>(low); |
134 | return 2; |
135 | } else if (low == 0) { |
136 | return 0; |
137 | } else { |
138 | array[0] = static_cast<uint32_t>(low); |
139 | return 1; |
140 | } |
141 | } |
142 | |
143 | |
144 | /** |
145 | * Find last set bit in a 32 bit integer. Bit 1 is the LSB and bit 32 is |
146 | * the MSB. We can replace this with bsrq asm instruction on x64. |
147 | */ |
148 | int64_t fls(uint32_t x) { |
149 | int64_t bitpos = 0; |
150 | while (x) { |
151 | x >>= 1; |
152 | bitpos += 1; |
153 | } |
154 | return bitpos; |
155 | } |
156 | |
157 | /** |
158 | * Shift the number in the array left by bits positions. |
159 | * @param array the number to shift, must have length elements |
160 | * @param length the number of entries in the array |
161 | * @param bits the number of bits to shift (0 <= bits < 32) |
162 | */ |
163 | void shiftArrayLeft(uint32_t* array, int64_t length, int64_t bits) { |
164 | if (length > 0 && bits != 0) { |
165 | for(int64_t i=0; i < length-1; ++i) { |
166 | array[i] = (array[i] << bits) | (array[i+1] >> (32 - bits)); |
167 | } |
168 | array[length-1] <<= bits; |
169 | } |
170 | } |
171 | |
172 | /** |
173 | * Shift the number in the array right by bits positions. |
174 | * @param array the number to shift, must have length elements |
175 | * @param length the number of entries in the array |
176 | * @param bits the number of bits to shift (0 <= bits < 32) |
177 | */ |
178 | void shiftArrayRight(uint32_t* array, int64_t length, int64_t bits) { |
179 | if (length > 0 && bits != 0) { |
180 | for(int64_t i=length-1; i > 0; --i) { |
181 | array[i] = (array[i] >> bits) | (array[i-1] << (32 - bits)); |
182 | } |
183 | array[0] >>= bits; |
184 | } |
185 | } |
186 | |
187 | /** |
188 | * Fix the signs of the result and remainder at the end of the division |
189 | * based on the signs of the dividend and divisor. |
190 | */ |
191 | void fixDivisionSigns(Int128 &result, Int128 &remainder, |
192 | bool dividendWasNegative, bool divisorWasNegative) { |
193 | if (dividendWasNegative != divisorWasNegative) { |
194 | result.negate(); |
195 | } |
196 | if (dividendWasNegative) { |
197 | remainder.negate(); |
198 | } |
199 | } |
200 | |
201 | /** |
202 | * Build a Int128 from a list of ints. |
203 | */ |
204 | void buildFromArray(Int128& value, uint32_t* array, int64_t length) { |
205 | switch (length) { |
206 | case 0: |
207 | value = 0; |
208 | break; |
209 | case 1: |
210 | value = array[0]; |
211 | break; |
212 | case 2: |
213 | value = Int128(0, (static_cast<uint64_t>(array[0]) << 32) + array[1]); |
214 | break; |
215 | case 3: |
216 | value = Int128(array[0], |
217 | (static_cast<uint64_t>(array[1]) << 32) + array[2]); |
218 | break; |
219 | case 4: |
220 | value = Int128((static_cast<int64_t>(array[0]) << 32) + array[1], |
221 | (static_cast<uint64_t>(array[2]) << 32) + array[3]); |
222 | break; |
223 | case 5: |
224 | if (array[0] != 0) { |
225 | throw std::logic_error("Can't build Int128 with 5 ints." ); |
226 | } |
227 | value = Int128((static_cast<int64_t>(array[1]) << 32) + array[2], |
228 | (static_cast<uint64_t>(array[3]) << 32) + array[4]); |
229 | break; |
230 | default: |
231 | throw std::logic_error("Unsupported length for building Int128" ); |
232 | } |
233 | } |
234 | |
235 | /** |
236 | * Do a division where the divisor fits into a single 32 bit value. |
237 | */ |
238 | Int128 singleDivide(uint32_t* dividend, int64_t dividendLength, |
239 | uint32_t divisor, Int128& remainder, |
240 | bool dividendWasNegative, bool divisorWasNegative) { |
241 | uint64_t r = 0; |
242 | uint32_t resultArray[5]; |
243 | for(int64_t j=0; j < dividendLength; j++) { |
244 | r <<= 32; |
245 | r += dividend[j]; |
246 | resultArray[j] = static_cast<uint32_t>(r / divisor); |
247 | r %= divisor; |
248 | } |
249 | Int128 result; |
250 | buildFromArray(result, resultArray, dividendLength); |
251 | remainder = static_cast<int64_t>(r); |
252 | fixDivisionSigns(result, remainder, dividendWasNegative, |
253 | divisorWasNegative); |
254 | return result; |
255 | } |
256 | |
257 | Int128 Int128::divide(const Int128 &divisor, Int128 &remainder) const { |
258 | // Split the dividend and divisor into integer pieces so that we can |
259 | // work on them. |
260 | uint32_t dividendArray[5]; |
261 | uint32_t divisorArray[4]; |
262 | bool dividendWasNegative; |
263 | bool divisorWasNegative; |
264 | // leave an extra zero before the dividend |
265 | dividendArray[0] = 0; |
266 | int64_t dividendLength = fillInArray(dividendArray + 1, dividendWasNegative)+1; |
267 | int64_t divisorLength = divisor.fillInArray(divisorArray, divisorWasNegative); |
268 | |
269 | // Handle some of the easy cases. |
270 | if (dividendLength <= divisorLength) { |
271 | remainder = *this; |
272 | return 0; |
273 | } else if (divisorLength == 0) { |
274 | throw std::range_error("Division by 0 in Int128" ); |
275 | } else if (divisorLength == 1) { |
276 | return singleDivide(dividendArray, dividendLength, divisorArray[0], |
277 | remainder, dividendWasNegative, divisorWasNegative); |
278 | } |
279 | |
280 | int64_t resultLength = dividendLength - divisorLength; |
281 | uint32_t resultArray[4]; |
282 | |
283 | // Normalize by shifting both by a multiple of 2 so that |
284 | // the digit guessing is better. The requirement is that |
285 | // divisorArray[0] is greater than 2**31. |
286 | int64_t normalizeBits = 32 - fls(divisorArray[0]); |
287 | shiftArrayLeft(divisorArray, divisorLength, normalizeBits); |
288 | shiftArrayLeft(dividendArray, dividendLength, normalizeBits); |
289 | |
290 | // compute each digit in the result |
291 | for(int64_t j=0; j < resultLength; ++j) { |
292 | // Guess the next digit. At worst it is two too large |
293 | uint32_t guess = UINT32_MAX; |
294 | uint64_t highDividend = static_cast<uint64_t>(dividendArray[j]) << 32 | |
295 | dividendArray[j+1]; |
296 | if (dividendArray[j] != divisorArray[0]) { |
297 | guess = static_cast<uint32_t>(highDividend / divisorArray[0]); |
298 | } |
299 | |
300 | // catch all of the cases where guess is two too large and most of the |
301 | // cases where it is one too large |
302 | uint32_t rhat = |
303 | static_cast<uint32_t>(highDividend - guess * |
304 | static_cast<uint64_t>(divisorArray[0])); |
305 | while (static_cast<uint64_t>(divisorArray[1]) * guess > |
306 | (static_cast<uint64_t>(rhat) << 32) + dividendArray[j+2]) { |
307 | guess -= 1; |
308 | rhat += divisorArray[0]; |
309 | if (static_cast<uint64_t>(rhat) < divisorArray[0]) { |
310 | break; |
311 | } |
312 | } |
313 | |
314 | // subtract off the guess * divisor from the dividend |
315 | uint64_t mult = 0; |
316 | for(int64_t i=divisorLength-1; i >= 0; --i) { |
317 | mult += static_cast<uint64_t>(guess) * divisorArray[i]; |
318 | uint32_t prev = dividendArray[j+i+1]; |
319 | dividendArray[j+i+1] -= static_cast<uint32_t>(mult); |
320 | mult >>= 32; |
321 | if (dividendArray[j+i+1] > prev) { |
322 | mult += 1; |
323 | } |
324 | } |
325 | uint32_t prev = dividendArray[j]; |
326 | dividendArray[j] -= static_cast<uint32_t>(mult); |
327 | |
328 | // if guess was too big, we add back divisor |
329 | if (dividendArray[j] > prev) { |
330 | guess -= 1; |
331 | uint32_t carry = 0; |
332 | for(int64_t i=divisorLength-1; i >= 0; --i) { |
333 | uint64_t sum = static_cast<uint64_t>(divisorArray[i]) + |
334 | dividendArray[j+i+1] + carry; |
335 | dividendArray[j+i+1] = static_cast<uint32_t>(sum); |
336 | carry = static_cast<uint32_t>(sum >> 32); |
337 | } |
338 | dividendArray[j] += carry; |
339 | } |
340 | |
341 | resultArray[j] = guess; |
342 | } |
343 | |
344 | // denormalize the remainder |
345 | shiftArrayRight(dividendArray, dividendLength, normalizeBits); |
346 | |
347 | // return result and remainder |
348 | Int128 result; |
349 | buildFromArray(result, resultArray, resultLength); |
350 | buildFromArray(remainder, dividendArray, dividendLength); |
351 | fixDivisionSigns(result, remainder, |
352 | dividendWasNegative, divisorWasNegative); |
353 | return result; |
354 | } |
355 | |
356 | std::string Int128::toString() const { |
357 | // 10**18 - the largest power of 10 less than 63 bits |
358 | const Int128 tenTo18(0xde0b6b3a7640000); |
359 | // 10**36 |
360 | const Int128 tenTo36(0xc097ce7bc90715, 0xb34b9f1000000000); |
361 | Int128 remainder; |
362 | std::stringstream buf; |
363 | bool needFill = false; |
364 | |
365 | // get anything above 10**36 and print it |
366 | Int128 top = divide(tenTo36, remainder); |
367 | if (top != 0) { |
368 | buf << top.toLong(); |
369 | remainder.abs(); |
370 | needFill = true; |
371 | } |
372 | |
373 | // now get anything above 10**18 and print it |
374 | Int128 tail; |
375 | top = remainder.divide(tenTo18, tail); |
376 | if (needFill || top != 0) { |
377 | if (needFill) { |
378 | buf << std::setw(18) << std::setfill('0'); |
379 | } else { |
380 | needFill = true; |
381 | tail.abs(); |
382 | } |
383 | buf << top.toLong(); |
384 | } |
385 | |
386 | // finally print the tail, which is less than 10**18 |
387 | if (needFill) { |
388 | buf << std::setw(18) << std::setfill('0'); |
389 | } |
390 | buf << tail.toLong(); |
391 | return buf.str(); |
392 | } |
393 | |
394 | std::string Int128::toDecimalString(int32_t scale) const { |
395 | std::string str = toString(); |
396 | if (scale == 0) { |
397 | return str; |
398 | } else if (*this < 0) { |
399 | int32_t len = static_cast<int32_t>(str.length()); |
400 | if (len - 1 > scale) { |
401 | return str.substr(0, static_cast<size_t>(len - scale)) + "." + |
402 | str.substr(static_cast<size_t>(len - scale), |
403 | static_cast<size_t>(scale)); |
404 | } else if (len - 1 == scale) { |
405 | return "-0." + str.substr(1, std::string::npos); |
406 | } else { |
407 | std::string result = "-0." ; |
408 | for(int32_t i=0; i < scale - len + 1; ++i) { |
409 | result += "0" ; |
410 | } |
411 | return result + str.substr(1, std::string::npos); |
412 | } |
413 | } else { |
414 | int32_t len = static_cast<int32_t>(str.length()); |
415 | if (len > scale) { |
416 | return str.substr(0, static_cast<size_t>(len - scale)) + "." + |
417 | str.substr(static_cast<size_t>(len - scale), |
418 | static_cast<size_t>(scale)); |
419 | } else if (len == scale) { |
420 | return "0." + str; |
421 | } else { |
422 | std::string result = "0." ; |
423 | for(int32_t i=0; i < scale - len; ++i) { |
424 | result += "0" ; |
425 | } |
426 | return result + str; |
427 | } |
428 | } |
429 | } |
430 | |
431 | std::string Int128::toHexString() const { |
432 | std::stringstream buf; |
433 | buf << std::hex << "0x" |
434 | << std::setw(16) << std::setfill('0') << highbits |
435 | << std::setw(16) << std::setfill('0') << lowbits; |
436 | return buf.str(); |
437 | } |
438 | |
439 | const static int32_t MAX_PRECISION_64 = 18; |
440 | const static int64_t POWERS_OF_TEN[MAX_PRECISION_64 + 1] = |
441 | {1, |
442 | 10, |
443 | 100, |
444 | 1000, |
445 | 10000, |
446 | 100000, |
447 | 1000000, |
448 | 10000000, |
449 | 100000000, |
450 | 1000000000, |
451 | 10000000000, |
452 | 100000000000, |
453 | 1000000000000, |
454 | 10000000000000, |
455 | 100000000000000, |
456 | 1000000000000000, |
457 | 10000000000000000, |
458 | 100000000000000000, |
459 | 1000000000000000000}; |
460 | |
461 | Int128 scaleUpInt128ByPowerOfTen(Int128 value, |
462 | int32_t power, |
463 | bool &overflow) { |
464 | overflow = false; |
465 | Int128 remainder; |
466 | |
467 | while (power > 0) { |
468 | int32_t step = std::min(power, MAX_PRECISION_64); |
469 | if (value > 0 && Int128::maximumValue().divide(POWERS_OF_TEN[step], remainder) < value) { |
470 | overflow = true; |
471 | return Int128::maximumValue(); |
472 | } else if (value < 0 && Int128::minimumValue().divide(POWERS_OF_TEN[step], remainder) > value) { |
473 | overflow = true; |
474 | return Int128::minimumValue(); |
475 | } |
476 | |
477 | value *= POWERS_OF_TEN[step]; |
478 | power -= step; |
479 | } |
480 | |
481 | return value; |
482 | } |
483 | |
484 | Int128 scaleDownInt128ByPowerOfTen(Int128 value, int32_t power) { |
485 | Int128 remainder; |
486 | while (power > 0) { |
487 | int32_t step = std::min(std::abs(power), MAX_PRECISION_64); |
488 | value = value.divide(POWERS_OF_TEN[step], remainder); |
489 | power -= step; |
490 | } |
491 | return value; |
492 | } |
493 | |
494 | } |
495 | |