| 1 | /** |
| 2 | * Licensed to the Apache Software Foundation (ASF) under one |
| 3 | * or more contributor license agreements. See the NOTICE file |
| 4 | * distributed with this work for additional information |
| 5 | * regarding copyright ownership. The ASF licenses this file |
| 6 | * to you under the Apache License, Version 2.0 (the |
| 7 | * "License"); you may not use this file except in compliance |
| 8 | * with the License. You may obtain a copy of the License at |
| 9 | * |
| 10 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 11 | * |
| 12 | * Unless required by applicable law or agreed to in writing, software |
| 13 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 14 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 15 | * See the License for the specific language governing permissions and |
| 16 | * limitations under the License. |
| 17 | */ |
| 18 | |
| 19 | #include "orc/Int128.hh" |
| 20 | #include "Adaptor.hh" |
| 21 | |
| 22 | #include <algorithm> |
| 23 | #include <iomanip> |
| 24 | #include <iostream> |
| 25 | #include <sstream> |
| 26 | |
| 27 | namespace orc { |
| 28 | |
| 29 | Int128 Int128::maximumValue() { |
| 30 | return Int128(0x7fffffffffffffff, 0xfffffffffffffff); |
| 31 | } |
| 32 | |
| 33 | Int128 Int128::minimumValue() { |
| 34 | return Int128(static_cast<int64_t>(0x8000000000000000), 0x0); |
| 35 | } |
| 36 | |
| 37 | Int128::Int128(const std::string& str) { |
| 38 | lowbits = 0; |
| 39 | highbits = 0; |
| 40 | size_t length = str.length(); |
| 41 | if (length > 0) { |
| 42 | bool isNegative = str[0] == '-'; |
| 43 | size_t posn = isNegative ? 1 : 0; |
| 44 | while (posn < length) { |
| 45 | size_t group = std::min(static_cast<size_t>(18), length - posn); |
| 46 | int64_t chunk = std::stoll(str.substr(posn, group)); |
| 47 | int64_t multiple = 1; |
| 48 | for(size_t i=0; i < group; ++i) { |
| 49 | multiple *= 10; |
| 50 | } |
| 51 | *this *= multiple; |
| 52 | *this += chunk; |
| 53 | posn += group; |
| 54 | } |
| 55 | if (isNegative) { |
| 56 | negate(); |
| 57 | } |
| 58 | } |
| 59 | } |
| 60 | |
| 61 | Int128& Int128::operator*=(const Int128 &right) { |
| 62 | const uint64_t INT_MASK = 0xffffffff; |
| 63 | const uint64_t CARRY_BIT = INT_MASK + 1; |
| 64 | |
| 65 | // Break the left and right numbers into 32 bit chunks |
| 66 | // so that we can multiply them without overflow. |
| 67 | uint64_t L0 = static_cast<uint64_t>(highbits) >> 32; |
| 68 | uint64_t L1 = static_cast<uint64_t>(highbits) & INT_MASK; |
| 69 | uint64_t L2 = lowbits >> 32; |
| 70 | uint64_t L3 = lowbits & INT_MASK; |
| 71 | uint64_t R0 = static_cast<uint64_t>(right.highbits) >> 32; |
| 72 | uint64_t R1 = static_cast<uint64_t>(right.highbits) & INT_MASK; |
| 73 | uint64_t R2 = right.lowbits >> 32; |
| 74 | uint64_t R3 = right.lowbits & INT_MASK; |
| 75 | |
| 76 | uint64_t product = L3 * R3; |
| 77 | lowbits = product & INT_MASK; |
| 78 | uint64_t sum = product >> 32; |
| 79 | product = L2 * R3; |
| 80 | sum += product; |
| 81 | highbits = sum < product ? CARRY_BIT : 0; |
| 82 | product = L3 * R2; |
| 83 | sum += product; |
| 84 | if (sum < product) { |
| 85 | highbits += CARRY_BIT; |
| 86 | } |
| 87 | lowbits += sum << 32; |
| 88 | highbits += static_cast<int64_t>(sum >> 32); |
| 89 | highbits += L1 * R3 + L2 * R2 + L3 * R1; |
| 90 | highbits += (L0 * R3 + L1 * R2 + L2 * R1 + L3 * R0) << 32; |
| 91 | return *this; |
| 92 | } |
| 93 | |
| 94 | /** |
| 95 | * Expands the given value into an array of ints so that we can work on |
| 96 | * it. The array will be converted to an absolute value and the wasNegative |
| 97 | * flag will be set appropriately. The array will remove leading zeros from |
| 98 | * the value. |
| 99 | * @param array an array of length 4 to set with the value |
| 100 | * @param wasNegative a flag for whether the value was original negative |
| 101 | * @result the output length of the array |
| 102 | */ |
| 103 | int64_t Int128::fillInArray(uint32_t* array, bool &wasNegative) const { |
| 104 | uint64_t high; |
| 105 | uint64_t low; |
| 106 | if (highbits < 0) { |
| 107 | low = ~lowbits + 1; |
| 108 | high = static_cast<uint64_t>(~highbits); |
| 109 | if (low == 0) { |
| 110 | high += 1; |
| 111 | } |
| 112 | wasNegative = true; |
| 113 | } else { |
| 114 | low = lowbits; |
| 115 | high = static_cast<uint64_t>(highbits); |
| 116 | wasNegative = false; |
| 117 | } |
| 118 | if (high != 0) { |
| 119 | if (high > UINT32_MAX) { |
| 120 | array[0] = static_cast<uint32_t>(high >> 32); |
| 121 | array[1] = static_cast<uint32_t>(high); |
| 122 | array[2] = static_cast<uint32_t>(low >> 32); |
| 123 | array[3] = static_cast<uint32_t>(low); |
| 124 | return 4; |
| 125 | } else { |
| 126 | array[0] = static_cast<uint32_t>(high); |
| 127 | array[1] = static_cast<uint32_t>(low >> 32); |
| 128 | array[2] = static_cast<uint32_t>(low); |
| 129 | return 3; |
| 130 | } |
| 131 | } else if (low >= UINT32_MAX) { |
| 132 | array[0] = static_cast<uint32_t>(low >> 32); |
| 133 | array[1] = static_cast<uint32_t>(low); |
| 134 | return 2; |
| 135 | } else if (low == 0) { |
| 136 | return 0; |
| 137 | } else { |
| 138 | array[0] = static_cast<uint32_t>(low); |
| 139 | return 1; |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | |
| 144 | /** |
| 145 | * Find last set bit in a 32 bit integer. Bit 1 is the LSB and bit 32 is |
| 146 | * the MSB. We can replace this with bsrq asm instruction on x64. |
| 147 | */ |
| 148 | int64_t fls(uint32_t x) { |
| 149 | int64_t bitpos = 0; |
| 150 | while (x) { |
| 151 | x >>= 1; |
| 152 | bitpos += 1; |
| 153 | } |
| 154 | return bitpos; |
| 155 | } |
| 156 | |
| 157 | /** |
| 158 | * Shift the number in the array left by bits positions. |
| 159 | * @param array the number to shift, must have length elements |
| 160 | * @param length the number of entries in the array |
| 161 | * @param bits the number of bits to shift (0 <= bits < 32) |
| 162 | */ |
| 163 | void shiftArrayLeft(uint32_t* array, int64_t length, int64_t bits) { |
| 164 | if (length > 0 && bits != 0) { |
| 165 | for(int64_t i=0; i < length-1; ++i) { |
| 166 | array[i] = (array[i] << bits) | (array[i+1] >> (32 - bits)); |
| 167 | } |
| 168 | array[length-1] <<= bits; |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | /** |
| 173 | * Shift the number in the array right by bits positions. |
| 174 | * @param array the number to shift, must have length elements |
| 175 | * @param length the number of entries in the array |
| 176 | * @param bits the number of bits to shift (0 <= bits < 32) |
| 177 | */ |
| 178 | void shiftArrayRight(uint32_t* array, int64_t length, int64_t bits) { |
| 179 | if (length > 0 && bits != 0) { |
| 180 | for(int64_t i=length-1; i > 0; --i) { |
| 181 | array[i] = (array[i] >> bits) | (array[i-1] << (32 - bits)); |
| 182 | } |
| 183 | array[0] >>= bits; |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | /** |
| 188 | * Fix the signs of the result and remainder at the end of the division |
| 189 | * based on the signs of the dividend and divisor. |
| 190 | */ |
| 191 | void fixDivisionSigns(Int128 &result, Int128 &remainder, |
| 192 | bool dividendWasNegative, bool divisorWasNegative) { |
| 193 | if (dividendWasNegative != divisorWasNegative) { |
| 194 | result.negate(); |
| 195 | } |
| 196 | if (dividendWasNegative) { |
| 197 | remainder.negate(); |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | /** |
| 202 | * Build a Int128 from a list of ints. |
| 203 | */ |
| 204 | void buildFromArray(Int128& value, uint32_t* array, int64_t length) { |
| 205 | switch (length) { |
| 206 | case 0: |
| 207 | value = 0; |
| 208 | break; |
| 209 | case 1: |
| 210 | value = array[0]; |
| 211 | break; |
| 212 | case 2: |
| 213 | value = Int128(0, (static_cast<uint64_t>(array[0]) << 32) + array[1]); |
| 214 | break; |
| 215 | case 3: |
| 216 | value = Int128(array[0], |
| 217 | (static_cast<uint64_t>(array[1]) << 32) + array[2]); |
| 218 | break; |
| 219 | case 4: |
| 220 | value = Int128((static_cast<int64_t>(array[0]) << 32) + array[1], |
| 221 | (static_cast<uint64_t>(array[2]) << 32) + array[3]); |
| 222 | break; |
| 223 | case 5: |
| 224 | if (array[0] != 0) { |
| 225 | throw std::logic_error("Can't build Int128 with 5 ints." ); |
| 226 | } |
| 227 | value = Int128((static_cast<int64_t>(array[1]) << 32) + array[2], |
| 228 | (static_cast<uint64_t>(array[3]) << 32) + array[4]); |
| 229 | break; |
| 230 | default: |
| 231 | throw std::logic_error("Unsupported length for building Int128" ); |
| 232 | } |
| 233 | } |
| 234 | |
| 235 | /** |
| 236 | * Do a division where the divisor fits into a single 32 bit value. |
| 237 | */ |
| 238 | Int128 singleDivide(uint32_t* dividend, int64_t dividendLength, |
| 239 | uint32_t divisor, Int128& remainder, |
| 240 | bool dividendWasNegative, bool divisorWasNegative) { |
| 241 | uint64_t r = 0; |
| 242 | uint32_t resultArray[5]; |
| 243 | for(int64_t j=0; j < dividendLength; j++) { |
| 244 | r <<= 32; |
| 245 | r += dividend[j]; |
| 246 | resultArray[j] = static_cast<uint32_t>(r / divisor); |
| 247 | r %= divisor; |
| 248 | } |
| 249 | Int128 result; |
| 250 | buildFromArray(result, resultArray, dividendLength); |
| 251 | remainder = static_cast<int64_t>(r); |
| 252 | fixDivisionSigns(result, remainder, dividendWasNegative, |
| 253 | divisorWasNegative); |
| 254 | return result; |
| 255 | } |
| 256 | |
| 257 | Int128 Int128::divide(const Int128 &divisor, Int128 &remainder) const { |
| 258 | // Split the dividend and divisor into integer pieces so that we can |
| 259 | // work on them. |
| 260 | uint32_t dividendArray[5]; |
| 261 | uint32_t divisorArray[4]; |
| 262 | bool dividendWasNegative; |
| 263 | bool divisorWasNegative; |
| 264 | // leave an extra zero before the dividend |
| 265 | dividendArray[0] = 0; |
| 266 | int64_t dividendLength = fillInArray(dividendArray + 1, dividendWasNegative)+1; |
| 267 | int64_t divisorLength = divisor.fillInArray(divisorArray, divisorWasNegative); |
| 268 | |
| 269 | // Handle some of the easy cases. |
| 270 | if (dividendLength <= divisorLength) { |
| 271 | remainder = *this; |
| 272 | return 0; |
| 273 | } else if (divisorLength == 0) { |
| 274 | throw std::range_error("Division by 0 in Int128" ); |
| 275 | } else if (divisorLength == 1) { |
| 276 | return singleDivide(dividendArray, dividendLength, divisorArray[0], |
| 277 | remainder, dividendWasNegative, divisorWasNegative); |
| 278 | } |
| 279 | |
| 280 | int64_t resultLength = dividendLength - divisorLength; |
| 281 | uint32_t resultArray[4]; |
| 282 | |
| 283 | // Normalize by shifting both by a multiple of 2 so that |
| 284 | // the digit guessing is better. The requirement is that |
| 285 | // divisorArray[0] is greater than 2**31. |
| 286 | int64_t normalizeBits = 32 - fls(divisorArray[0]); |
| 287 | shiftArrayLeft(divisorArray, divisorLength, normalizeBits); |
| 288 | shiftArrayLeft(dividendArray, dividendLength, normalizeBits); |
| 289 | |
| 290 | // compute each digit in the result |
| 291 | for(int64_t j=0; j < resultLength; ++j) { |
| 292 | // Guess the next digit. At worst it is two too large |
| 293 | uint32_t guess = UINT32_MAX; |
| 294 | uint64_t highDividend = static_cast<uint64_t>(dividendArray[j]) << 32 | |
| 295 | dividendArray[j+1]; |
| 296 | if (dividendArray[j] != divisorArray[0]) { |
| 297 | guess = static_cast<uint32_t>(highDividend / divisorArray[0]); |
| 298 | } |
| 299 | |
| 300 | // catch all of the cases where guess is two too large and most of the |
| 301 | // cases where it is one too large |
| 302 | uint32_t rhat = |
| 303 | static_cast<uint32_t>(highDividend - guess * |
| 304 | static_cast<uint64_t>(divisorArray[0])); |
| 305 | while (static_cast<uint64_t>(divisorArray[1]) * guess > |
| 306 | (static_cast<uint64_t>(rhat) << 32) + dividendArray[j+2]) { |
| 307 | guess -= 1; |
| 308 | rhat += divisorArray[0]; |
| 309 | if (static_cast<uint64_t>(rhat) < divisorArray[0]) { |
| 310 | break; |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | // subtract off the guess * divisor from the dividend |
| 315 | uint64_t mult = 0; |
| 316 | for(int64_t i=divisorLength-1; i >= 0; --i) { |
| 317 | mult += static_cast<uint64_t>(guess) * divisorArray[i]; |
| 318 | uint32_t prev = dividendArray[j+i+1]; |
| 319 | dividendArray[j+i+1] -= static_cast<uint32_t>(mult); |
| 320 | mult >>= 32; |
| 321 | if (dividendArray[j+i+1] > prev) { |
| 322 | mult += 1; |
| 323 | } |
| 324 | } |
| 325 | uint32_t prev = dividendArray[j]; |
| 326 | dividendArray[j] -= static_cast<uint32_t>(mult); |
| 327 | |
| 328 | // if guess was too big, we add back divisor |
| 329 | if (dividendArray[j] > prev) { |
| 330 | guess -= 1; |
| 331 | uint32_t carry = 0; |
| 332 | for(int64_t i=divisorLength-1; i >= 0; --i) { |
| 333 | uint64_t sum = static_cast<uint64_t>(divisorArray[i]) + |
| 334 | dividendArray[j+i+1] + carry; |
| 335 | dividendArray[j+i+1] = static_cast<uint32_t>(sum); |
| 336 | carry = static_cast<uint32_t>(sum >> 32); |
| 337 | } |
| 338 | dividendArray[j] += carry; |
| 339 | } |
| 340 | |
| 341 | resultArray[j] = guess; |
| 342 | } |
| 343 | |
| 344 | // denormalize the remainder |
| 345 | shiftArrayRight(dividendArray, dividendLength, normalizeBits); |
| 346 | |
| 347 | // return result and remainder |
| 348 | Int128 result; |
| 349 | buildFromArray(result, resultArray, resultLength); |
| 350 | buildFromArray(remainder, dividendArray, dividendLength); |
| 351 | fixDivisionSigns(result, remainder, |
| 352 | dividendWasNegative, divisorWasNegative); |
| 353 | return result; |
| 354 | } |
| 355 | |
| 356 | std::string Int128::toString() const { |
| 357 | // 10**18 - the largest power of 10 less than 63 bits |
| 358 | const Int128 tenTo18(0xde0b6b3a7640000); |
| 359 | // 10**36 |
| 360 | const Int128 tenTo36(0xc097ce7bc90715, 0xb34b9f1000000000); |
| 361 | Int128 remainder; |
| 362 | std::stringstream buf; |
| 363 | bool needFill = false; |
| 364 | |
| 365 | // get anything above 10**36 and print it |
| 366 | Int128 top = divide(tenTo36, remainder); |
| 367 | if (top != 0) { |
| 368 | buf << top.toLong(); |
| 369 | remainder.abs(); |
| 370 | needFill = true; |
| 371 | } |
| 372 | |
| 373 | // now get anything above 10**18 and print it |
| 374 | Int128 tail; |
| 375 | top = remainder.divide(tenTo18, tail); |
| 376 | if (needFill || top != 0) { |
| 377 | if (needFill) { |
| 378 | buf << std::setw(18) << std::setfill('0'); |
| 379 | } else { |
| 380 | needFill = true; |
| 381 | tail.abs(); |
| 382 | } |
| 383 | buf << top.toLong(); |
| 384 | } |
| 385 | |
| 386 | // finally print the tail, which is less than 10**18 |
| 387 | if (needFill) { |
| 388 | buf << std::setw(18) << std::setfill('0'); |
| 389 | } |
| 390 | buf << tail.toLong(); |
| 391 | return buf.str(); |
| 392 | } |
| 393 | |
| 394 | std::string Int128::toDecimalString(int32_t scale) const { |
| 395 | std::string str = toString(); |
| 396 | if (scale == 0) { |
| 397 | return str; |
| 398 | } else if (*this < 0) { |
| 399 | int32_t len = static_cast<int32_t>(str.length()); |
| 400 | if (len - 1 > scale) { |
| 401 | return str.substr(0, static_cast<size_t>(len - scale)) + "." + |
| 402 | str.substr(static_cast<size_t>(len - scale), |
| 403 | static_cast<size_t>(scale)); |
| 404 | } else if (len - 1 == scale) { |
| 405 | return "-0." + str.substr(1, std::string::npos); |
| 406 | } else { |
| 407 | std::string result = "-0." ; |
| 408 | for(int32_t i=0; i < scale - len + 1; ++i) { |
| 409 | result += "0" ; |
| 410 | } |
| 411 | return result + str.substr(1, std::string::npos); |
| 412 | } |
| 413 | } else { |
| 414 | int32_t len = static_cast<int32_t>(str.length()); |
| 415 | if (len > scale) { |
| 416 | return str.substr(0, static_cast<size_t>(len - scale)) + "." + |
| 417 | str.substr(static_cast<size_t>(len - scale), |
| 418 | static_cast<size_t>(scale)); |
| 419 | } else if (len == scale) { |
| 420 | return "0." + str; |
| 421 | } else { |
| 422 | std::string result = "0." ; |
| 423 | for(int32_t i=0; i < scale - len; ++i) { |
| 424 | result += "0" ; |
| 425 | } |
| 426 | return result + str; |
| 427 | } |
| 428 | } |
| 429 | } |
| 430 | |
| 431 | std::string Int128::toHexString() const { |
| 432 | std::stringstream buf; |
| 433 | buf << std::hex << "0x" |
| 434 | << std::setw(16) << std::setfill('0') << highbits |
| 435 | << std::setw(16) << std::setfill('0') << lowbits; |
| 436 | return buf.str(); |
| 437 | } |
| 438 | |
| 439 | const static int32_t MAX_PRECISION_64 = 18; |
| 440 | const static int64_t POWERS_OF_TEN[MAX_PRECISION_64 + 1] = |
| 441 | {1, |
| 442 | 10, |
| 443 | 100, |
| 444 | 1000, |
| 445 | 10000, |
| 446 | 100000, |
| 447 | 1000000, |
| 448 | 10000000, |
| 449 | 100000000, |
| 450 | 1000000000, |
| 451 | 10000000000, |
| 452 | 100000000000, |
| 453 | 1000000000000, |
| 454 | 10000000000000, |
| 455 | 100000000000000, |
| 456 | 1000000000000000, |
| 457 | 10000000000000000, |
| 458 | 100000000000000000, |
| 459 | 1000000000000000000}; |
| 460 | |
| 461 | Int128 scaleUpInt128ByPowerOfTen(Int128 value, |
| 462 | int32_t power, |
| 463 | bool &overflow) { |
| 464 | overflow = false; |
| 465 | Int128 remainder; |
| 466 | |
| 467 | while (power > 0) { |
| 468 | int32_t step = std::min(power, MAX_PRECISION_64); |
| 469 | if (value > 0 && Int128::maximumValue().divide(POWERS_OF_TEN[step], remainder) < value) { |
| 470 | overflow = true; |
| 471 | return Int128::maximumValue(); |
| 472 | } else if (value < 0 && Int128::minimumValue().divide(POWERS_OF_TEN[step], remainder) > value) { |
| 473 | overflow = true; |
| 474 | return Int128::minimumValue(); |
| 475 | } |
| 476 | |
| 477 | value *= POWERS_OF_TEN[step]; |
| 478 | power -= step; |
| 479 | } |
| 480 | |
| 481 | return value; |
| 482 | } |
| 483 | |
| 484 | Int128 scaleDownInt128ByPowerOfTen(Int128 value, int32_t power) { |
| 485 | Int128 remainder; |
| 486 | while (power > 0) { |
| 487 | int32_t step = std::min(std::abs(power), MAX_PRECISION_64); |
| 488 | value = value.divide(POWERS_OF_TEN[step], remainder); |
| 489 | power -= step; |
| 490 | } |
| 491 | return value; |
| 492 | } |
| 493 | |
| 494 | } |
| 495 | |