| 1 | // Copyright 2010 the V8 project authors. All rights reserved. | 
|---|
| 2 | // Redistribution and use in source and binary forms, with or without | 
|---|
| 3 | // modification, are permitted provided that the following conditions are | 
|---|
| 4 | // met: | 
|---|
| 5 | // | 
|---|
| 6 | //     * Redistributions of source code must retain the above copyright | 
|---|
| 7 | //       notice, this list of conditions and the following disclaimer. | 
|---|
| 8 | //     * Redistributions in binary form must reproduce the above | 
|---|
| 9 | //       copyright notice, this list of conditions and the following | 
|---|
| 10 | //       disclaimer in the documentation and/or other materials provided | 
|---|
| 11 | //       with the distribution. | 
|---|
| 12 | //     * Neither the name of Google Inc. nor the names of its | 
|---|
| 13 | //       contributors may be used to endorse or promote products derived | 
|---|
| 14 | //       from this software without specific prior written permission. | 
|---|
| 15 | // | 
|---|
| 16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|---|
| 17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|---|
| 18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|---|
| 19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|---|
| 20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|---|
| 21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|---|
| 22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|---|
| 23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|---|
| 24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|---|
| 25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|---|
| 26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|---|
| 27 |  | 
|---|
| 28 | #include <math.h> | 
|---|
| 29 |  | 
|---|
| 30 | #include "fixed-dtoa.h" | 
|---|
| 31 | #include "ieee.h" | 
|---|
| 32 |  | 
|---|
| 33 | namespace double_conversion { | 
|---|
| 34 |  | 
|---|
| 35 | // Represents a 128bit type. This class should be replaced by a native type on | 
|---|
| 36 | // platforms that support 128bit integers. | 
|---|
| 37 | class UInt128 { | 
|---|
| 38 | public: | 
|---|
| 39 | UInt128() : high_bits_(0), low_bits_(0) { } | 
|---|
| 40 | UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { } | 
|---|
| 41 |  | 
|---|
| 42 | void Multiply(uint32_t multiplicand) { | 
|---|
| 43 | uint64_t accumulator; | 
|---|
| 44 |  | 
|---|
| 45 | accumulator = (low_bits_ & kMask32) * multiplicand; | 
|---|
| 46 | uint32_t part = static_cast<uint32_t>(accumulator & kMask32); | 
|---|
| 47 | accumulator >>= 32; | 
|---|
| 48 | accumulator = accumulator + (low_bits_ >> 32) * multiplicand; | 
|---|
| 49 | low_bits_ = (accumulator << 32) + part; | 
|---|
| 50 | accumulator >>= 32; | 
|---|
| 51 | accumulator = accumulator + (high_bits_ & kMask32) * multiplicand; | 
|---|
| 52 | part = static_cast<uint32_t>(accumulator & kMask32); | 
|---|
| 53 | accumulator >>= 32; | 
|---|
| 54 | accumulator = accumulator + (high_bits_ >> 32) * multiplicand; | 
|---|
| 55 | high_bits_ = (accumulator << 32) + part; | 
|---|
| 56 | ASSERT((accumulator >> 32) == 0); | 
|---|
| 57 | } | 
|---|
| 58 |  | 
|---|
| 59 | void Shift(int shift_amount) { | 
|---|
| 60 | ASSERT(-64 <= shift_amount && shift_amount <= 64); | 
|---|
| 61 | if (shift_amount == 0) { | 
|---|
| 62 | return; | 
|---|
| 63 | } else if (shift_amount == -64) { | 
|---|
| 64 | high_bits_ = low_bits_; | 
|---|
| 65 | low_bits_ = 0; | 
|---|
| 66 | } else if (shift_amount == 64) { | 
|---|
| 67 | low_bits_ = high_bits_; | 
|---|
| 68 | high_bits_ = 0; | 
|---|
| 69 | } else if (shift_amount <= 0) { | 
|---|
| 70 | high_bits_ <<= -shift_amount; | 
|---|
| 71 | high_bits_ += low_bits_ >> (64 + shift_amount); | 
|---|
| 72 | low_bits_ <<= -shift_amount; | 
|---|
| 73 | } else { | 
|---|
| 74 | low_bits_ >>= shift_amount; | 
|---|
| 75 | low_bits_ += high_bits_ << (64 - shift_amount); | 
|---|
| 76 | high_bits_ >>= shift_amount; | 
|---|
| 77 | } | 
|---|
| 78 | } | 
|---|
| 79 |  | 
|---|
| 80 | // Modifies *this to *this MOD (2^power). | 
|---|
| 81 | // Returns *this DIV (2^power). | 
|---|
| 82 | int DivModPowerOf2(int power) { | 
|---|
| 83 | if (power >= 64) { | 
|---|
| 84 | int result = static_cast<int>(high_bits_ >> (power - 64)); | 
|---|
| 85 | high_bits_ -= static_cast<uint64_t>(result) << (power - 64); | 
|---|
| 86 | return result; | 
|---|
| 87 | } else { | 
|---|
| 88 | uint64_t part_low = low_bits_ >> power; | 
|---|
| 89 | uint64_t part_high = high_bits_ << (64 - power); | 
|---|
| 90 | int result = static_cast<int>(part_low + part_high); | 
|---|
| 91 | high_bits_ = 0; | 
|---|
| 92 | low_bits_ -= part_low << power; | 
|---|
| 93 | return result; | 
|---|
| 94 | } | 
|---|
| 95 | } | 
|---|
| 96 |  | 
|---|
| 97 | bool IsZero() const { | 
|---|
| 98 | return high_bits_ == 0 && low_bits_ == 0; | 
|---|
| 99 | } | 
|---|
| 100 |  | 
|---|
| 101 | int BitAt(int position) { | 
|---|
| 102 | if (position >= 64) { | 
|---|
| 103 | return static_cast<int>(high_bits_ >> (position - 64)) & 1; | 
|---|
| 104 | } else { | 
|---|
| 105 | return static_cast<int>(low_bits_ >> position) & 1; | 
|---|
| 106 | } | 
|---|
| 107 | } | 
|---|
| 108 |  | 
|---|
| 109 | private: | 
|---|
| 110 | static const uint64_t kMask32 = 0xFFFFFFFF; | 
|---|
| 111 | // Value == (high_bits_ << 64) + low_bits_ | 
|---|
| 112 | uint64_t high_bits_; | 
|---|
| 113 | uint64_t low_bits_; | 
|---|
| 114 | }; | 
|---|
| 115 |  | 
|---|
| 116 |  | 
|---|
| 117 | static const int kDoubleSignificandSize = 53;  // Includes the hidden bit. | 
|---|
| 118 |  | 
|---|
| 119 |  | 
|---|
| 120 | static void FillDigits32FixedLength(uint32_t number, int requested_length, | 
|---|
| 121 | Vector<char> buffer, int* length) { | 
|---|
| 122 | for (int i = requested_length - 1; i >= 0; --i) { | 
|---|
| 123 | buffer[(*length) + i] = '0' + number % 10; | 
|---|
| 124 | number /= 10; | 
|---|
| 125 | } | 
|---|
| 126 | *length += requested_length; | 
|---|
| 127 | } | 
|---|
| 128 |  | 
|---|
| 129 |  | 
|---|
| 130 | static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) { | 
|---|
| 131 | int number_length = 0; | 
|---|
| 132 | // We fill the digits in reverse order and exchange them afterwards. | 
|---|
| 133 | while (number != 0) { | 
|---|
| 134 | int digit = number % 10; | 
|---|
| 135 | number /= 10; | 
|---|
| 136 | buffer[(*length) + number_length] = static_cast<char>('0' + digit); | 
|---|
| 137 | number_length++; | 
|---|
| 138 | } | 
|---|
| 139 | // Exchange the digits. | 
|---|
| 140 | int i = *length; | 
|---|
| 141 | int j = *length + number_length - 1; | 
|---|
| 142 | while (i < j) { | 
|---|
| 143 | char tmp = buffer[i]; | 
|---|
| 144 | buffer[i] = buffer[j]; | 
|---|
| 145 | buffer[j] = tmp; | 
|---|
| 146 | i++; | 
|---|
| 147 | j--; | 
|---|
| 148 | } | 
|---|
| 149 | *length += number_length; | 
|---|
| 150 | } | 
|---|
| 151 |  | 
|---|
| 152 |  | 
|---|
| 153 | static void FillDigits64FixedLength(uint64_t number, | 
|---|
| 154 | Vector<char> buffer, int* length) { | 
|---|
| 155 | const uint32_t kTen7 = 10000000; | 
|---|
| 156 | // For efficiency cut the number into 3 uint32_t parts, and print those. | 
|---|
| 157 | uint32_t part2 = static_cast<uint32_t>(number % kTen7); | 
|---|
| 158 | number /= kTen7; | 
|---|
| 159 | uint32_t part1 = static_cast<uint32_t>(number % kTen7); | 
|---|
| 160 | uint32_t part0 = static_cast<uint32_t>(number / kTen7); | 
|---|
| 161 |  | 
|---|
| 162 | FillDigits32FixedLength(part0, 3, buffer, length); | 
|---|
| 163 | FillDigits32FixedLength(part1, 7, buffer, length); | 
|---|
| 164 | FillDigits32FixedLength(part2, 7, buffer, length); | 
|---|
| 165 | } | 
|---|
| 166 |  | 
|---|
| 167 |  | 
|---|
| 168 | static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) { | 
|---|
| 169 | const uint32_t kTen7 = 10000000; | 
|---|
| 170 | // For efficiency cut the number into 3 uint32_t parts, and print those. | 
|---|
| 171 | uint32_t part2 = static_cast<uint32_t>(number % kTen7); | 
|---|
| 172 | number /= kTen7; | 
|---|
| 173 | uint32_t part1 = static_cast<uint32_t>(number % kTen7); | 
|---|
| 174 | uint32_t part0 = static_cast<uint32_t>(number / kTen7); | 
|---|
| 175 |  | 
|---|
| 176 | if (part0 != 0) { | 
|---|
| 177 | FillDigits32(part0, buffer, length); | 
|---|
| 178 | FillDigits32FixedLength(part1, 7, buffer, length); | 
|---|
| 179 | FillDigits32FixedLength(part2, 7, buffer, length); | 
|---|
| 180 | } else if (part1 != 0) { | 
|---|
| 181 | FillDigits32(part1, buffer, length); | 
|---|
| 182 | FillDigits32FixedLength(part2, 7, buffer, length); | 
|---|
| 183 | } else { | 
|---|
| 184 | FillDigits32(part2, buffer, length); | 
|---|
| 185 | } | 
|---|
| 186 | } | 
|---|
| 187 |  | 
|---|
| 188 |  | 
|---|
| 189 | static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) { | 
|---|
| 190 | // An empty buffer represents 0. | 
|---|
| 191 | if (*length == 0) { | 
|---|
| 192 | buffer[0] = '1'; | 
|---|
| 193 | *decimal_point = 1; | 
|---|
| 194 | *length = 1; | 
|---|
| 195 | return; | 
|---|
| 196 | } | 
|---|
| 197 | // Round the last digit until we either have a digit that was not '9' or until | 
|---|
| 198 | // we reached the first digit. | 
|---|
| 199 | buffer[(*length) - 1]++; | 
|---|
| 200 | for (int i = (*length) - 1; i > 0; --i) { | 
|---|
| 201 | if (buffer[i] != '0' + 10) { | 
|---|
| 202 | return; | 
|---|
| 203 | } | 
|---|
| 204 | buffer[i] = '0'; | 
|---|
| 205 | buffer[i - 1]++; | 
|---|
| 206 | } | 
|---|
| 207 | // If the first digit is now '0' + 10, we would need to set it to '0' and add | 
|---|
| 208 | // a '1' in front. However we reach the first digit only if all following | 
|---|
| 209 | // digits had been '9' before rounding up. Now all trailing digits are '0' and | 
|---|
| 210 | // we simply switch the first digit to '1' and update the decimal-point | 
|---|
| 211 | // (indicating that the point is now one digit to the right). | 
|---|
| 212 | if (buffer[0] == '0' + 10) { | 
|---|
| 213 | buffer[0] = '1'; | 
|---|
| 214 | (*decimal_point)++; | 
|---|
| 215 | } | 
|---|
| 216 | } | 
|---|
| 217 |  | 
|---|
| 218 |  | 
|---|
| 219 | // The given fractionals number represents a fixed-point number with binary | 
|---|
| 220 | // point at bit (-exponent). | 
|---|
| 221 | // Preconditions: | 
|---|
| 222 | //   -128 <= exponent <= 0. | 
|---|
| 223 | //   0 <= fractionals * 2^exponent < 1 | 
|---|
| 224 | //   The buffer holds the result. | 
|---|
| 225 | // The function will round its result. During the rounding-process digits not | 
|---|
| 226 | // generated by this function might be updated, and the decimal-point variable | 
|---|
| 227 | // might be updated. If this function generates the digits 99 and the buffer | 
|---|
| 228 | // already contained "199" (thus yielding a buffer of "19999") then a | 
|---|
| 229 | // rounding-up will change the contents of the buffer to "20000". | 
|---|
| 230 | static void FillFractionals(uint64_t fractionals, int exponent, | 
|---|
| 231 | int fractional_count, Vector<char> buffer, | 
|---|
| 232 | int* length, int* decimal_point) { | 
|---|
| 233 | ASSERT(-128 <= exponent && exponent <= 0); | 
|---|
| 234 | // 'fractionals' is a fixed-point number, with binary point at bit | 
|---|
| 235 | // (-exponent). Inside the function the non-converted remainder of fractionals | 
|---|
| 236 | // is a fixed-point number, with binary point at bit 'point'. | 
|---|
| 237 | if (-exponent <= 64) { | 
|---|
| 238 | // One 64 bit number is sufficient. | 
|---|
| 239 | ASSERT(fractionals >> 56 == 0); | 
|---|
| 240 | int point = -exponent; | 
|---|
| 241 | for (int i = 0; i < fractional_count; ++i) { | 
|---|
| 242 | if (fractionals == 0) break; | 
|---|
| 243 | // Instead of multiplying by 10 we multiply by 5 and adjust the point | 
|---|
| 244 | // location. This way the fractionals variable will not overflow. | 
|---|
| 245 | // Invariant at the beginning of the loop: fractionals < 2^point. | 
|---|
| 246 | // Initially we have: point <= 64 and fractionals < 2^56 | 
|---|
| 247 | // After each iteration the point is decremented by one. | 
|---|
| 248 | // Note that 5^3 = 125 < 128 = 2^7. | 
|---|
| 249 | // Therefore three iterations of this loop will not overflow fractionals | 
|---|
| 250 | // (even without the subtraction at the end of the loop body). At this | 
|---|
| 251 | // time point will satisfy point <= 61 and therefore fractionals < 2^point | 
|---|
| 252 | // and any further multiplication of fractionals by 5 will not overflow. | 
|---|
| 253 | fractionals *= 5; | 
|---|
| 254 | point--; | 
|---|
| 255 | int digit = static_cast<int>(fractionals >> point); | 
|---|
| 256 | ASSERT(digit <= 9); | 
|---|
| 257 | buffer[*length] = static_cast<char>('0' + digit); | 
|---|
| 258 | (*length)++; | 
|---|
| 259 | fractionals -= static_cast<uint64_t>(digit) << point; | 
|---|
| 260 | } | 
|---|
| 261 | // If the first bit after the point is set we have to round up. | 
|---|
| 262 | if (((fractionals >> (point - 1)) & 1) == 1) { | 
|---|
| 263 | RoundUp(buffer, length, decimal_point); | 
|---|
| 264 | } | 
|---|
| 265 | } else {  // We need 128 bits. | 
|---|
| 266 | ASSERT(64 < -exponent && -exponent <= 128); | 
|---|
| 267 | UInt128 fractionals128 = UInt128(fractionals, 0); | 
|---|
| 268 | fractionals128.Shift(-exponent - 64); | 
|---|
| 269 | int point = 128; | 
|---|
| 270 | for (int i = 0; i < fractional_count; ++i) { | 
|---|
| 271 | if (fractionals128.IsZero()) break; | 
|---|
| 272 | // As before: instead of multiplying by 10 we multiply by 5 and adjust the | 
|---|
| 273 | // point location. | 
|---|
| 274 | // This multiplication will not overflow for the same reasons as before. | 
|---|
| 275 | fractionals128.Multiply(5); | 
|---|
| 276 | point--; | 
|---|
| 277 | int digit = fractionals128.DivModPowerOf2(point); | 
|---|
| 278 | ASSERT(digit <= 9); | 
|---|
| 279 | buffer[*length] = static_cast<char>('0' + digit); | 
|---|
| 280 | (*length)++; | 
|---|
| 281 | } | 
|---|
| 282 | if (fractionals128.BitAt(point - 1) == 1) { | 
|---|
| 283 | RoundUp(buffer, length, decimal_point); | 
|---|
| 284 | } | 
|---|
| 285 | } | 
|---|
| 286 | } | 
|---|
| 287 |  | 
|---|
| 288 |  | 
|---|
| 289 | // Removes leading and trailing zeros. | 
|---|
| 290 | // If leading zeros are removed then the decimal point position is adjusted. | 
|---|
| 291 | static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) { | 
|---|
| 292 | while (*length > 0 && buffer[(*length) - 1] == '0') { | 
|---|
| 293 | (*length)--; | 
|---|
| 294 | } | 
|---|
| 295 | int first_non_zero = 0; | 
|---|
| 296 | while (first_non_zero < *length && buffer[first_non_zero] == '0') { | 
|---|
| 297 | first_non_zero++; | 
|---|
| 298 | } | 
|---|
| 299 | if (first_non_zero != 0) { | 
|---|
| 300 | for (int i = first_non_zero; i < *length; ++i) { | 
|---|
| 301 | buffer[i - first_non_zero] = buffer[i]; | 
|---|
| 302 | } | 
|---|
| 303 | *length -= first_non_zero; | 
|---|
| 304 | *decimal_point -= first_non_zero; | 
|---|
| 305 | } | 
|---|
| 306 | } | 
|---|
| 307 |  | 
|---|
| 308 |  | 
|---|
| 309 | bool FastFixedDtoa(double v, | 
|---|
| 310 | int fractional_count, | 
|---|
| 311 | Vector<char> buffer, | 
|---|
| 312 | int* length, | 
|---|
| 313 | int* decimal_point) { | 
|---|
| 314 | const uint32_t kMaxUInt32 = 0xFFFFFFFF; | 
|---|
| 315 | uint64_t significand = Double(v).Significand(); | 
|---|
| 316 | int exponent = Double(v).Exponent(); | 
|---|
| 317 | // v = significand * 2^exponent (with significand a 53bit integer). | 
|---|
| 318 | // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we | 
|---|
| 319 | // don't know how to compute the representation. 2^73 ~= 9.5*10^21. | 
|---|
| 320 | // If necessary this limit could probably be increased, but we don't need | 
|---|
| 321 | // more. | 
|---|
| 322 | if (exponent > 20) return false; | 
|---|
| 323 | if (fractional_count > 20) return false; | 
|---|
| 324 | *length = 0; | 
|---|
| 325 | // At most kDoubleSignificandSize bits of the significand are non-zero. | 
|---|
| 326 | // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero | 
|---|
| 327 | // bits:  0..11*..0xxx..53*..xx | 
|---|
| 328 | if (exponent + kDoubleSignificandSize > 64) { | 
|---|
| 329 | // The exponent must be > 11. | 
|---|
| 330 | // | 
|---|
| 331 | // We know that v = significand * 2^exponent. | 
|---|
| 332 | // And the exponent > 11. | 
|---|
| 333 | // We simplify the task by dividing v by 10^17. | 
|---|
| 334 | // The quotient delivers the first digits, and the remainder fits into a 64 | 
|---|
| 335 | // bit number. | 
|---|
| 336 | // Dividing by 10^17 is equivalent to dividing by 5^17*2^17. | 
|---|
| 337 | const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5);  // 5^17 | 
|---|
| 338 | uint64_t divisor = kFive17; | 
|---|
| 339 | int divisor_power = 17; | 
|---|
| 340 | uint64_t dividend = significand; | 
|---|
| 341 | uint32_t quotient; | 
|---|
| 342 | uint64_t remainder; | 
|---|
| 343 | // Let v = f * 2^e with f == significand and e == exponent. | 
|---|
| 344 | // Then need q (quotient) and r (remainder) as follows: | 
|---|
| 345 | //   v            = q * 10^17       + r | 
|---|
| 346 | //   f * 2^e      = q * 10^17       + r | 
|---|
| 347 | //   f * 2^e      = q * 5^17 * 2^17 + r | 
|---|
| 348 | // If e > 17 then | 
|---|
| 349 | //   f * 2^(e-17) = q * 5^17        + r/2^17 | 
|---|
| 350 | // else | 
|---|
| 351 | //   f  = q * 5^17 * 2^(17-e) + r/2^e | 
|---|
| 352 | if (exponent > divisor_power) { | 
|---|
| 353 | // We only allow exponents of up to 20 and therefore (17 - e) <= 3 | 
|---|
| 354 | dividend <<= exponent - divisor_power; | 
|---|
| 355 | quotient = static_cast<uint32_t>(dividend / divisor); | 
|---|
| 356 | remainder = (dividend % divisor) << divisor_power; | 
|---|
| 357 | } else { | 
|---|
| 358 | divisor <<= divisor_power - exponent; | 
|---|
| 359 | quotient = static_cast<uint32_t>(dividend / divisor); | 
|---|
| 360 | remainder = (dividend % divisor) << exponent; | 
|---|
| 361 | } | 
|---|
| 362 | FillDigits32(quotient, buffer, length); | 
|---|
| 363 | FillDigits64FixedLength(remainder, buffer, length); | 
|---|
| 364 | *decimal_point = *length; | 
|---|
| 365 | } else if (exponent >= 0) { | 
|---|
| 366 | // 0 <= exponent <= 11 | 
|---|
| 367 | significand <<= exponent; | 
|---|
| 368 | FillDigits64(significand, buffer, length); | 
|---|
| 369 | *decimal_point = *length; | 
|---|
| 370 | } else if (exponent > -kDoubleSignificandSize) { | 
|---|
| 371 | // We have to cut the number. | 
|---|
| 372 | uint64_t integrals = significand >> -exponent; | 
|---|
| 373 | uint64_t fractionals = significand - (integrals << -exponent); | 
|---|
| 374 | if (integrals > kMaxUInt32) { | 
|---|
| 375 | FillDigits64(integrals, buffer, length); | 
|---|
| 376 | } else { | 
|---|
| 377 | FillDigits32(static_cast<uint32_t>(integrals), buffer, length); | 
|---|
| 378 | } | 
|---|
| 379 | *decimal_point = *length; | 
|---|
| 380 | FillFractionals(fractionals, exponent, fractional_count, | 
|---|
| 381 | buffer, length, decimal_point); | 
|---|
| 382 | } else if (exponent < -128) { | 
|---|
| 383 | // This configuration (with at most 20 digits) means that all digits must be | 
|---|
| 384 | // 0. | 
|---|
| 385 | ASSERT(fractional_count <= 20); | 
|---|
| 386 | buffer[0] = '\0'; | 
|---|
| 387 | *length = 0; | 
|---|
| 388 | *decimal_point = -fractional_count; | 
|---|
| 389 | } else { | 
|---|
| 390 | *decimal_point = 0; | 
|---|
| 391 | FillFractionals(significand, exponent, fractional_count, | 
|---|
| 392 | buffer, length, decimal_point); | 
|---|
| 393 | } | 
|---|
| 394 | TrimZeros(buffer, length, decimal_point); | 
|---|
| 395 | buffer[*length] = '\0'; | 
|---|
| 396 | if ((*length) == 0) { | 
|---|
| 397 | // The string is empty and the decimal_point thus has no importance. Mimick | 
|---|
| 398 | // Gay's dtoa and and set it to -fractional_count. | 
|---|
| 399 | *decimal_point = -fractional_count; | 
|---|
| 400 | } | 
|---|
| 401 | return true; | 
|---|
| 402 | } | 
|---|
| 403 |  | 
|---|
| 404 | }  // namespace double_conversion | 
|---|
| 405 |  | 
|---|