1 | // Protocol Buffers - Google's data interchange format |
2 | // Copyright 2008 Google Inc. All rights reserved. |
3 | // https://developers.google.com/protocol-buffers/ |
4 | // |
5 | // Redistribution and use in source and binary forms, with or without |
6 | // modification, are permitted provided that the following conditions are |
7 | // met: |
8 | // |
9 | // * Redistributions of source code must retain the above copyright |
10 | // notice, this list of conditions and the following disclaimer. |
11 | // * Redistributions in binary form must reproduce the above |
12 | // copyright notice, this list of conditions and the following disclaimer |
13 | // in the documentation and/or other materials provided with the |
14 | // distribution. |
15 | // * Neither the name of Google Inc. nor the names of its |
16 | // contributors may be used to endorse or promote products derived from |
17 | // this software without specific prior written permission. |
18 | // |
19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
30 | |
31 | // Author: kenton@google.com (Kenton Varda) |
32 | // Based on original Protocol Buffers design by |
33 | // Sanjay Ghemawat, Jeff Dean, and others. |
34 | // |
35 | // This header is logically internal, but is made public because it is used |
36 | // from protocol-compiler-generated code, which may reside in other components. |
37 | |
38 | #ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__ |
39 | #define GOOGLE_PROTOBUF_EXTENSION_SET_H__ |
40 | |
41 | #include <algorithm> |
42 | #include <cassert> |
43 | #include <map> |
44 | #include <string> |
45 | #include <utility> |
46 | #include <vector> |
47 | |
48 | #include <google/protobuf/stubs/common.h> |
49 | #include <google/protobuf/stubs/logging.h> |
50 | #include <google/protobuf/stubs/once.h> |
51 | #include <google/protobuf/repeated_field.h> |
52 | |
53 | namespace google { |
54 | |
55 | namespace protobuf { |
56 | class Arena; |
57 | class Descriptor; // descriptor.h |
58 | class FieldDescriptor; // descriptor.h |
59 | class DescriptorPool; // descriptor.h |
60 | class MessageLite; // message_lite.h |
61 | class Message; // message.h |
62 | class MessageFactory; // message.h |
63 | class UnknownFieldSet; // unknown_field_set.h |
64 | namespace io { |
65 | class CodedInputStream; // coded_stream.h |
66 | class CodedOutputStream; // coded_stream.h |
67 | } |
68 | namespace internal { |
69 | class FieldSkipper; // wire_format_lite.h |
70 | } |
71 | } |
72 | |
73 | namespace protobuf { |
74 | namespace internal { |
75 | |
76 | // Used to store values of type WireFormatLite::FieldType without having to |
77 | // #include wire_format_lite.h. Also, ensures that we use only one byte to |
78 | // store these values, which is important to keep the layout of |
79 | // ExtensionSet::Extension small. |
80 | typedef uint8 FieldType; |
81 | |
82 | // A function which, given an integer value, returns true if the number |
83 | // matches one of the defined values for the corresponding enum type. This |
84 | // is used with RegisterEnumExtension, below. |
85 | typedef bool EnumValidityFunc(int number); |
86 | |
87 | // Version of the above which takes an argument. This is needed to deal with |
88 | // extensions that are not compiled in. |
89 | typedef bool EnumValidityFuncWithArg(const void* arg, int number); |
90 | |
91 | // Information about a registered extension. |
92 | struct ExtensionInfo { |
93 | inline ExtensionInfo() {} |
94 | inline ExtensionInfo(FieldType type_param, bool isrepeated, bool ispacked) |
95 | : type(type_param), is_repeated(isrepeated), is_packed(ispacked), |
96 | descriptor(NULL) {} |
97 | |
98 | FieldType type; |
99 | bool is_repeated; |
100 | bool is_packed; |
101 | |
102 | struct EnumValidityCheck { |
103 | EnumValidityFuncWithArg* func; |
104 | const void* arg; |
105 | }; |
106 | |
107 | union { |
108 | EnumValidityCheck enum_validity_check; |
109 | const MessageLite* message_prototype; |
110 | }; |
111 | |
112 | // The descriptor for this extension, if one exists and is known. May be |
113 | // NULL. Must not be NULL if the descriptor for the extension does not |
114 | // live in the same pool as the descriptor for the containing type. |
115 | const FieldDescriptor* descriptor; |
116 | }; |
117 | |
118 | // Abstract interface for an object which looks up extension definitions. Used |
119 | // when parsing. |
120 | class LIBPROTOBUF_EXPORT ExtensionFinder { |
121 | public: |
122 | virtual ~ExtensionFinder(); |
123 | |
124 | // Find the extension with the given containing type and number. |
125 | virtual bool Find(int number, ExtensionInfo* output) = 0; |
126 | }; |
127 | |
128 | // Implementation of ExtensionFinder which finds extensions defined in .proto |
129 | // files which have been compiled into the binary. |
130 | class LIBPROTOBUF_EXPORT GeneratedExtensionFinder : public ExtensionFinder { |
131 | public: |
132 | GeneratedExtensionFinder(const MessageLite* containing_type) |
133 | : containing_type_(containing_type) {} |
134 | virtual ~GeneratedExtensionFinder() {} |
135 | |
136 | // Returns true and fills in *output if found, otherwise returns false. |
137 | virtual bool Find(int number, ExtensionInfo* output); |
138 | |
139 | private: |
140 | const MessageLite* containing_type_; |
141 | }; |
142 | |
143 | // A FieldSkipper used for parsing MessageSet. |
144 | class MessageSetFieldSkipper; |
145 | |
146 | // Note: extension_set_heavy.cc defines DescriptorPoolExtensionFinder for |
147 | // finding extensions from a DescriptorPool. |
148 | |
149 | // This is an internal helper class intended for use within the protocol buffer |
150 | // library and generated classes. Clients should not use it directly. Instead, |
151 | // use the generated accessors such as GetExtension() of the class being |
152 | // extended. |
153 | // |
154 | // This class manages extensions for a protocol message object. The |
155 | // message's HasExtension(), GetExtension(), MutableExtension(), and |
156 | // ClearExtension() methods are just thin wrappers around the embedded |
157 | // ExtensionSet. When parsing, if a tag number is encountered which is |
158 | // inside one of the message type's extension ranges, the tag is passed |
159 | // off to the ExtensionSet for parsing. Etc. |
160 | class LIBPROTOBUF_EXPORT ExtensionSet { |
161 | public: |
162 | ExtensionSet(); |
163 | explicit ExtensionSet(::google::protobuf::Arena* arena); |
164 | ~ExtensionSet(); |
165 | |
166 | // These are called at startup by protocol-compiler-generated code to |
167 | // register known extensions. The registrations are used by ParseField() |
168 | // to look up extensions for parsed field numbers. Note that dynamic parsing |
169 | // does not use ParseField(); only protocol-compiler-generated parsing |
170 | // methods do. |
171 | static void RegisterExtension(const MessageLite* containing_type, |
172 | int number, FieldType type, |
173 | bool is_repeated, bool is_packed); |
174 | static void RegisterEnumExtension(const MessageLite* containing_type, |
175 | int number, FieldType type, |
176 | bool is_repeated, bool is_packed, |
177 | EnumValidityFunc* is_valid); |
178 | static void RegisterMessageExtension(const MessageLite* containing_type, |
179 | int number, FieldType type, |
180 | bool is_repeated, bool is_packed, |
181 | const MessageLite* prototype); |
182 | |
183 | // ================================================================= |
184 | |
185 | // Add all fields which are currently present to the given vector. This |
186 | // is useful to implement Reflection::ListFields(). |
187 | void AppendToList(const Descriptor* containing_type, |
188 | const DescriptorPool* pool, |
189 | std::vector<const FieldDescriptor*>* output) const; |
190 | |
191 | // ================================================================= |
192 | // Accessors |
193 | // |
194 | // Generated message classes include type-safe templated wrappers around |
195 | // these methods. Generally you should use those rather than call these |
196 | // directly, unless you are doing low-level memory management. |
197 | // |
198 | // When calling any of these accessors, the extension number requested |
199 | // MUST exist in the DescriptorPool provided to the constructor. Otherwise, |
200 | // the method will fail an assert. Normally, though, you would not call |
201 | // these directly; you would either call the generated accessors of your |
202 | // message class (e.g. GetExtension()) or you would call the accessors |
203 | // of the reflection interface. In both cases, it is impossible to |
204 | // trigger this assert failure: the generated accessors only accept |
205 | // linked-in extension types as parameters, while the Reflection interface |
206 | // requires you to provide the FieldDescriptor describing the extension. |
207 | // |
208 | // When calling any of these accessors, a protocol-compiler-generated |
209 | // implementation of the extension corresponding to the number MUST |
210 | // be linked in, and the FieldDescriptor used to refer to it MUST be |
211 | // the one generated by that linked-in code. Otherwise, the method will |
212 | // die on an assert failure. The message objects returned by the message |
213 | // accessors are guaranteed to be of the correct linked-in type. |
214 | // |
215 | // These methods pretty much match Reflection except that: |
216 | // - They're not virtual. |
217 | // - They identify fields by number rather than FieldDescriptors. |
218 | // - They identify enum values using integers rather than descriptors. |
219 | // - Strings provide Mutable() in addition to Set() accessors. |
220 | |
221 | bool Has(int number) const; |
222 | int ExtensionSize(int number) const; // Size of a repeated extension. |
223 | int NumExtensions() const; // The number of extensions |
224 | FieldType ExtensionType(int number) const; |
225 | void ClearExtension(int number); |
226 | |
227 | // singular fields ------------------------------------------------- |
228 | |
229 | int32 GetInt32 (int number, int32 default_value) const; |
230 | int64 GetInt64 (int number, int64 default_value) const; |
231 | uint32 GetUInt32(int number, uint32 default_value) const; |
232 | uint64 GetUInt64(int number, uint64 default_value) const; |
233 | float GetFloat (int number, float default_value) const; |
234 | double GetDouble(int number, double default_value) const; |
235 | bool GetBool (int number, bool default_value) const; |
236 | int GetEnum (int number, int default_value) const; |
237 | const string & GetString (int number, const string& default_value) const; |
238 | const MessageLite& GetMessage(int number, |
239 | const MessageLite& default_value) const; |
240 | const MessageLite& GetMessage(int number, const Descriptor* message_type, |
241 | MessageFactory* factory) const; |
242 | |
243 | // |descriptor| may be NULL so long as it is known that the descriptor for |
244 | // the extension lives in the same pool as the descriptor for the containing |
245 | // type. |
246 | #define desc const FieldDescriptor* descriptor // avoid line wrapping |
247 | void SetInt32 (int number, FieldType type, int32 value, desc); |
248 | void SetInt64 (int number, FieldType type, int64 value, desc); |
249 | void SetUInt32(int number, FieldType type, uint32 value, desc); |
250 | void SetUInt64(int number, FieldType type, uint64 value, desc); |
251 | void SetFloat (int number, FieldType type, float value, desc); |
252 | void SetDouble(int number, FieldType type, double value, desc); |
253 | void SetBool (int number, FieldType type, bool value, desc); |
254 | void SetEnum (int number, FieldType type, int value, desc); |
255 | void SetString(int number, FieldType type, const string& value, desc); |
256 | string * MutableString (int number, FieldType type, desc); |
257 | MessageLite* MutableMessage(int number, FieldType type, |
258 | const MessageLite& prototype, desc); |
259 | MessageLite* MutableMessage(const FieldDescriptor* decsriptor, |
260 | MessageFactory* factory); |
261 | // Adds the given message to the ExtensionSet, taking ownership of the |
262 | // message object. Existing message with the same number will be deleted. |
263 | // If "message" is NULL, this is equivalent to "ClearExtension(number)". |
264 | void SetAllocatedMessage(int number, FieldType type, |
265 | const FieldDescriptor* descriptor, |
266 | MessageLite* message); |
267 | void UnsafeArenaSetAllocatedMessage(int number, FieldType type, |
268 | const FieldDescriptor* descriptor, |
269 | MessageLite* message); |
270 | MessageLite* ReleaseMessage(int number, const MessageLite& prototype); |
271 | MessageLite* UnsafeArenaReleaseMessage( |
272 | int number, const MessageLite& prototype); |
273 | |
274 | MessageLite* ReleaseMessage(const FieldDescriptor* descriptor, |
275 | MessageFactory* factory); |
276 | MessageLite* UnsafeArenaReleaseMessage(const FieldDescriptor* descriptor, |
277 | MessageFactory* factory); |
278 | #undef desc |
279 | ::google::protobuf::Arena* GetArenaNoVirtual() const { return arena_; } |
280 | |
281 | // repeated fields ------------------------------------------------- |
282 | |
283 | // Fetches a RepeatedField extension by number; returns |default_value| |
284 | // if no such extension exists. User should not touch this directly; it is |
285 | // used by the GetRepeatedExtension() method. |
286 | const void* GetRawRepeatedField(int number, const void* default_value) const; |
287 | // Fetches a mutable version of a RepeatedField extension by number, |
288 | // instantiating one if none exists. Similar to above, user should not use |
289 | // this directly; it underlies MutableRepeatedExtension(). |
290 | void* MutableRawRepeatedField(int number, FieldType field_type, |
291 | bool packed, const FieldDescriptor* desc); |
292 | |
293 | // This is an overload of MutableRawRepeatedField to maintain compatibility |
294 | // with old code using a previous API. This version of |
295 | // MutableRawRepeatedField() will GOOGLE_CHECK-fail on a missing extension. |
296 | // (E.g.: borg/clients/internal/proto1/proto2_reflection.cc.) |
297 | void* MutableRawRepeatedField(int number); |
298 | |
299 | int32 GetRepeatedInt32 (int number, int index) const; |
300 | int64 GetRepeatedInt64 (int number, int index) const; |
301 | uint32 GetRepeatedUInt32(int number, int index) const; |
302 | uint64 GetRepeatedUInt64(int number, int index) const; |
303 | float GetRepeatedFloat (int number, int index) const; |
304 | double GetRepeatedDouble(int number, int index) const; |
305 | bool GetRepeatedBool (int number, int index) const; |
306 | int GetRepeatedEnum (int number, int index) const; |
307 | const string & GetRepeatedString (int number, int index) const; |
308 | const MessageLite& GetRepeatedMessage(int number, int index) const; |
309 | |
310 | void SetRepeatedInt32 (int number, int index, int32 value); |
311 | void SetRepeatedInt64 (int number, int index, int64 value); |
312 | void SetRepeatedUInt32(int number, int index, uint32 value); |
313 | void SetRepeatedUInt64(int number, int index, uint64 value); |
314 | void SetRepeatedFloat (int number, int index, float value); |
315 | void SetRepeatedDouble(int number, int index, double value); |
316 | void SetRepeatedBool (int number, int index, bool value); |
317 | void SetRepeatedEnum (int number, int index, int value); |
318 | void SetRepeatedString(int number, int index, const string& value); |
319 | string * MutableRepeatedString (int number, int index); |
320 | MessageLite* MutableRepeatedMessage(int number, int index); |
321 | |
322 | #define desc const FieldDescriptor* descriptor // avoid line wrapping |
323 | void AddInt32 (int number, FieldType type, bool packed, int32 value, desc); |
324 | void AddInt64 (int number, FieldType type, bool packed, int64 value, desc); |
325 | void AddUInt32(int number, FieldType type, bool packed, uint32 value, desc); |
326 | void AddUInt64(int number, FieldType type, bool packed, uint64 value, desc); |
327 | void AddFloat (int number, FieldType type, bool packed, float value, desc); |
328 | void AddDouble(int number, FieldType type, bool packed, double value, desc); |
329 | void AddBool (int number, FieldType type, bool packed, bool value, desc); |
330 | void AddEnum (int number, FieldType type, bool packed, int value, desc); |
331 | void AddString(int number, FieldType type, const string& value, desc); |
332 | string * AddString (int number, FieldType type, desc); |
333 | MessageLite* AddMessage(int number, FieldType type, |
334 | const MessageLite& prototype, desc); |
335 | MessageLite* AddMessage(const FieldDescriptor* descriptor, |
336 | MessageFactory* factory); |
337 | void AddAllocatedMessage(const FieldDescriptor* descriptor, |
338 | MessageLite* new_entry); |
339 | #undef desc |
340 | |
341 | void RemoveLast(int number); |
342 | MessageLite* ReleaseLast(int number); |
343 | void SwapElements(int number, int index1, int index2); |
344 | |
345 | // ----------------------------------------------------------------- |
346 | // TODO(kenton): Hardcore memory management accessors |
347 | |
348 | // ================================================================= |
349 | // convenience methods for implementing methods of Message |
350 | // |
351 | // These could all be implemented in terms of the other methods of this |
352 | // class, but providing them here helps keep the generated code size down. |
353 | |
354 | void Clear(); |
355 | void MergeFrom(const ExtensionSet& other); |
356 | void Swap(ExtensionSet* other); |
357 | void SwapExtension(ExtensionSet* other, int number); |
358 | bool IsInitialized() const; |
359 | |
360 | // Parses a single extension from the input. The input should start out |
361 | // positioned immediately after the tag. |
362 | bool ParseField(uint32 tag, io::CodedInputStream* input, |
363 | ExtensionFinder* extension_finder, |
364 | FieldSkipper* field_skipper); |
365 | |
366 | // Specific versions for lite or full messages (constructs the appropriate |
367 | // FieldSkipper automatically). |containing_type| is the default |
368 | // instance for the containing message; it is used only to look up the |
369 | // extension by number. See RegisterExtension(), above. Unlike the other |
370 | // methods of ExtensionSet, this only works for generated message types -- |
371 | // it looks up extensions registered using RegisterExtension(). |
372 | bool ParseField(uint32 tag, io::CodedInputStream* input, |
373 | const MessageLite* containing_type); |
374 | bool ParseField(uint32 tag, io::CodedInputStream* input, |
375 | const Message* containing_type, |
376 | UnknownFieldSet* unknown_fields); |
377 | bool ParseField(uint32 tag, io::CodedInputStream* input, |
378 | const MessageLite* containing_type, |
379 | io::CodedOutputStream* unknown_fields); |
380 | |
381 | // Parse an entire message in MessageSet format. Such messages have no |
382 | // fields, only extensions. |
383 | bool ParseMessageSet(io::CodedInputStream* input, |
384 | ExtensionFinder* extension_finder, |
385 | MessageSetFieldSkipper* field_skipper); |
386 | |
387 | // Specific versions for lite or full messages (constructs the appropriate |
388 | // FieldSkipper automatically). |
389 | bool ParseMessageSet(io::CodedInputStream* input, |
390 | const MessageLite* containing_type); |
391 | bool ParseMessageSet(io::CodedInputStream* input, |
392 | const Message* containing_type, |
393 | UnknownFieldSet* unknown_fields); |
394 | |
395 | // Write all extension fields with field numbers in the range |
396 | // [start_field_number, end_field_number) |
397 | // to the output stream, using the cached sizes computed when ByteSize() was |
398 | // last called. Note that the range bounds are inclusive-exclusive. |
399 | void SerializeWithCachedSizes(int start_field_number, |
400 | int end_field_number, |
401 | io::CodedOutputStream* output) const; |
402 | |
403 | // Same as SerializeWithCachedSizes, but without any bounds checking. |
404 | // The caller must ensure that target has sufficient capacity for the |
405 | // serialized extensions. |
406 | // |
407 | // Returns a pointer past the last written byte. |
408 | uint8* InternalSerializeWithCachedSizesToArray(int start_field_number, |
409 | int end_field_number, |
410 | bool deterministic, |
411 | uint8* target) const; |
412 | |
413 | // Like above but serializes in MessageSet format. |
414 | void SerializeMessageSetWithCachedSizes(io::CodedOutputStream* output) const; |
415 | uint8* InternalSerializeMessageSetWithCachedSizesToArray(bool deterministic, |
416 | uint8* target) const; |
417 | |
418 | // For backward-compatibility, versions of two of the above methods that |
419 | // serialize deterministically iff SetDefaultSerializationDeterministic() |
420 | // has been called. |
421 | uint8* SerializeWithCachedSizesToArray(int start_field_number, |
422 | int end_field_number, |
423 | uint8* target) const; |
424 | uint8* SerializeMessageSetWithCachedSizesToArray(uint8* target) const; |
425 | |
426 | // Returns the total serialized size of all the extensions. |
427 | size_t ByteSize() const; |
428 | |
429 | // Like ByteSize() but uses MessageSet format. |
430 | size_t MessageSetByteSize() const; |
431 | |
432 | // Returns (an estimate of) the total number of bytes used for storing the |
433 | // extensions in memory, excluding sizeof(*this). If the ExtensionSet is |
434 | // for a lite message (and thus possibly contains lite messages), the results |
435 | // are undefined (might work, might crash, might corrupt data, might not even |
436 | // be linked in). It's up to the protocol compiler to avoid calling this on |
437 | // such ExtensionSets (easy enough since lite messages don't implement |
438 | // SpaceUsed()). |
439 | size_t SpaceUsedExcludingSelfLong() const; |
440 | |
441 | // This method just calls SpaceUsedExcludingSelfLong() but it can not be |
442 | // inlined because the definition of SpaceUsedExcludingSelfLong() is not |
443 | // included in lite runtime and when an inline method refers to it MSVC |
444 | // will complain about unresolved symbols when building the lite runtime |
445 | // as .dll. |
446 | int SpaceUsedExcludingSelf() const; |
447 | |
448 | private: |
449 | |
450 | // Interface of a lazily parsed singular message extension. |
451 | class LIBPROTOBUF_EXPORT LazyMessageExtension { |
452 | public: |
453 | LazyMessageExtension() {} |
454 | virtual ~LazyMessageExtension() {} |
455 | |
456 | virtual LazyMessageExtension* New(::google::protobuf::Arena* arena) const = 0; |
457 | virtual const MessageLite& GetMessage( |
458 | const MessageLite& prototype) const = 0; |
459 | virtual MessageLite* MutableMessage(const MessageLite& prototype) = 0; |
460 | virtual void SetAllocatedMessage(MessageLite *message) = 0; |
461 | virtual void UnsafeArenaSetAllocatedMessage(MessageLite *message) = 0; |
462 | virtual MessageLite* ReleaseMessage(const MessageLite& prototype) = 0; |
463 | virtual MessageLite* UnsafeArenaReleaseMessage( |
464 | const MessageLite& prototype) = 0; |
465 | |
466 | virtual bool IsInitialized() const = 0; |
467 | |
468 | PROTOBUF_RUNTIME_DEPRECATED("Please use ByteSizeLong() instead" ) |
469 | virtual int ByteSize() const { |
470 | return internal::ToIntSize(ByteSizeLong()); |
471 | } |
472 | virtual size_t ByteSizeLong() const = 0; |
473 | virtual size_t SpaceUsedLong() const = 0; |
474 | |
475 | virtual void MergeFrom(const LazyMessageExtension& other) = 0; |
476 | virtual void Clear() = 0; |
477 | |
478 | virtual bool ReadMessage(const MessageLite& prototype, |
479 | io::CodedInputStream* input) = 0; |
480 | virtual void WriteMessage(int number, |
481 | io::CodedOutputStream* output) const = 0; |
482 | virtual uint8* WriteMessageToArray(int number, uint8* target) const = 0; |
483 | virtual uint8* InternalWriteMessageToArray(int number, bool, |
484 | uint8* target) const { |
485 | // TODO(gpike): make this pure virtual. This is a placeholder because we |
486 | // need to update third_party/upb, for example. |
487 | return WriteMessageToArray(number, target); |
488 | } |
489 | |
490 | private: |
491 | virtual void UnusedKeyMethod(); // Dummy key method to avoid weak vtable. |
492 | |
493 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(LazyMessageExtension); |
494 | }; |
495 | struct Extension { |
496 | // The order of these fields packs Extension into 24 bytes when using 8 |
497 | // byte alignment. Consider this when adding or removing fields here. |
498 | union { |
499 | int32 int32_value; |
500 | int64 int64_value; |
501 | uint32 uint32_value; |
502 | uint64 uint64_value; |
503 | float float_value; |
504 | double double_value; |
505 | bool bool_value; |
506 | int enum_value; |
507 | string* string_value; |
508 | MessageLite* message_value; |
509 | LazyMessageExtension* lazymessage_value; |
510 | |
511 | RepeatedField <int32 >* repeated_int32_value; |
512 | RepeatedField <int64 >* repeated_int64_value; |
513 | RepeatedField <uint32 >* repeated_uint32_value; |
514 | RepeatedField <uint64 >* repeated_uint64_value; |
515 | RepeatedField <float >* repeated_float_value; |
516 | RepeatedField <double >* repeated_double_value; |
517 | RepeatedField <bool >* repeated_bool_value; |
518 | RepeatedField <int >* repeated_enum_value; |
519 | RepeatedPtrField<string >* repeated_string_value; |
520 | RepeatedPtrField<MessageLite>* repeated_message_value; |
521 | }; |
522 | |
523 | FieldType type; |
524 | bool is_repeated; |
525 | |
526 | // For singular types, indicates if the extension is "cleared". This |
527 | // happens when an extension is set and then later cleared by the caller. |
528 | // We want to keep the Extension object around for reuse, so instead of |
529 | // removing it from the map, we just set is_cleared = true. This has no |
530 | // meaning for repeated types; for those, the size of the RepeatedField |
531 | // simply becomes zero when cleared. |
532 | bool is_cleared : 4; |
533 | |
534 | // For singular message types, indicates whether lazy parsing is enabled |
535 | // for this extension. This field is only valid when type == TYPE_MESSAGE |
536 | // and !is_repeated because we only support lazy parsing for singular |
537 | // message types currently. If is_lazy = true, the extension is stored in |
538 | // lazymessage_value. Otherwise, the extension will be message_value. |
539 | bool is_lazy : 4; |
540 | |
541 | // For repeated types, this indicates if the [packed=true] option is set. |
542 | bool is_packed; |
543 | |
544 | // For packed fields, the size of the packed data is recorded here when |
545 | // ByteSize() is called then used during serialization. |
546 | // TODO(kenton): Use atomic<int> when C++ supports it. |
547 | mutable int cached_size; |
548 | |
549 | // The descriptor for this extension, if one exists and is known. May be |
550 | // NULL. Must not be NULL if the descriptor for the extension does not |
551 | // live in the same pool as the descriptor for the containing type. |
552 | const FieldDescriptor* descriptor; |
553 | |
554 | // Some helper methods for operations on a single Extension. |
555 | void SerializeFieldWithCachedSizes( |
556 | int number, |
557 | io::CodedOutputStream* output) const; |
558 | uint8* InternalSerializeFieldWithCachedSizesToArray( |
559 | int number, |
560 | bool deterministic, |
561 | uint8* target) const; |
562 | void SerializeMessageSetItemWithCachedSizes( |
563 | int number, |
564 | io::CodedOutputStream* output) const; |
565 | uint8* InternalSerializeMessageSetItemWithCachedSizesToArray( |
566 | int number, |
567 | bool deterministic, |
568 | uint8* target) const; |
569 | size_t ByteSize(int number) const; |
570 | size_t MessageSetItemByteSize(int number) const; |
571 | void Clear(); |
572 | int GetSize() const; |
573 | void Free(); |
574 | size_t SpaceUsedExcludingSelfLong() const; |
575 | bool IsInitialized() const; |
576 | }; |
577 | |
578 | // The Extension struct is small enough to be passed by value, so we use it |
579 | // directly as the value type in mappings rather than use pointers. We use |
580 | // sorted maps rather than hash-maps because we expect most ExtensionSets will |
581 | // only contain a small number of extension. Also, we want AppendToList and |
582 | // deterministic serialization to order fields by field number. |
583 | |
584 | struct KeyValue { |
585 | int first; |
586 | Extension second; |
587 | |
588 | struct FirstComparator { |
589 | bool operator()(const KeyValue& lhs, const KeyValue& rhs) const { |
590 | return lhs.first < rhs.first; |
591 | } |
592 | bool operator()(const KeyValue& lhs, int key) const { |
593 | return lhs.first < key; |
594 | } |
595 | bool operator()(int key, const KeyValue& rhs) const { |
596 | return key < rhs.first; |
597 | } |
598 | }; |
599 | }; |
600 | |
601 | typedef std::map<int, Extension> LargeMap; |
602 | |
603 | // Wrapper API that switches between flat-map and LargeMap. |
604 | |
605 | // Finds a key (if present) in the ExtensionSet. |
606 | const Extension* FindOrNull(int key) const; |
607 | Extension* FindOrNull(int key); |
608 | |
609 | // Helper-functions that only inspect the LargeMap. |
610 | const Extension* FindOrNullInLargeMap(int key) const; |
611 | Extension* FindOrNullInLargeMap(int key); |
612 | |
613 | // Inserts a new (key, Extension) into the ExtensionSet (and returns true), or |
614 | // finds the already-existing Extension for that key (returns false). |
615 | // The Extension* will point to the new-or-found Extension. |
616 | std::pair<Extension*, bool> Insert(int key); |
617 | |
618 | // Grows the flat_capacity_. |
619 | // If flat_capacity_ > kMaximumFlatCapacity, converts to LargeMap. |
620 | void GrowCapacity(size_t minimum_new_capacity); |
621 | static constexpr uint16 kMaximumFlatCapacity = 256; |
622 | bool is_large() const { return flat_capacity_ > kMaximumFlatCapacity; } |
623 | |
624 | // Removes a key from the ExtensionSet. |
625 | void Erase(int key); |
626 | |
627 | size_t Size() const { |
628 | return GOOGLE_PREDICT_FALSE(is_large()) ? map_.large->size() : flat_size_; |
629 | } |
630 | |
631 | // Similar to std::for_each. |
632 | // Each Iterator is decomposed into ->first and ->second fields, so |
633 | // that the KeyValueFunctor can be agnostic vis-a-vis KeyValue-vs-std::pair. |
634 | template <typename Iterator, typename KeyValueFunctor> |
635 | static KeyValueFunctor ForEach(Iterator begin, Iterator end, |
636 | KeyValueFunctor func) { |
637 | for (Iterator it = begin; it != end; ++it) func(it->first, it->second); |
638 | return std::move(func); |
639 | } |
640 | |
641 | // Applies a functor to the <int, Extension&> pairs in sorted order. |
642 | template <typename KeyValueFunctor> |
643 | KeyValueFunctor ForEach(KeyValueFunctor func) { |
644 | if (GOOGLE_PREDICT_FALSE(is_large())) { |
645 | return ForEach(map_.large->begin(), map_.large->end(), std::move(func)); |
646 | } |
647 | return ForEach(flat_begin(), flat_end(), std::move(func)); |
648 | } |
649 | |
650 | // Applies a functor to the <int, const Extension&> pairs in sorted order. |
651 | template <typename KeyValueFunctor> |
652 | KeyValueFunctor ForEach(KeyValueFunctor func) const { |
653 | if (GOOGLE_PREDICT_FALSE(is_large())) { |
654 | return ForEach(map_.large->begin(), map_.large->end(), std::move(func)); |
655 | } |
656 | return ForEach(flat_begin(), flat_end(), std::move(func)); |
657 | } |
658 | |
659 | // Merges existing Extension from other_extension |
660 | void InternalExtensionMergeFrom(int number, const Extension& other_extension); |
661 | |
662 | // Returns true and fills field_number and extension if extension is found. |
663 | // Note to support packed repeated field compatibility, it also fills whether |
664 | // the tag on wire is packed, which can be different from |
665 | // extension->is_packed (whether packed=true is specified). |
666 | bool FindExtensionInfoFromTag(uint32 tag, ExtensionFinder* extension_finder, |
667 | int* field_number, ExtensionInfo* extension, |
668 | bool* was_packed_on_wire); |
669 | |
670 | // Returns true and fills extension if extension is found. |
671 | // Note to support packed repeated field compatibility, it also fills whether |
672 | // the tag on wire is packed, which can be different from |
673 | // extension->is_packed (whether packed=true is specified). |
674 | bool FindExtensionInfoFromFieldNumber(int wire_type, int field_number, |
675 | ExtensionFinder* extension_finder, |
676 | ExtensionInfo* extension, |
677 | bool* was_packed_on_wire); |
678 | |
679 | // Parses a single extension from the input. The input should start out |
680 | // positioned immediately after the wire tag. This method is called in |
681 | // ParseField() after field number and was_packed_on_wire is extracted from |
682 | // the wire tag and ExtensionInfo is found by the field number. |
683 | bool ParseFieldWithExtensionInfo(int field_number, |
684 | bool was_packed_on_wire, |
685 | const ExtensionInfo& extension, |
686 | io::CodedInputStream* input, |
687 | FieldSkipper* field_skipper); |
688 | |
689 | // Like ParseField(), but this method may parse singular message extensions |
690 | // lazily depending on the value of FLAGS_eagerly_parse_message_sets. |
691 | bool ParseFieldMaybeLazily(int wire_type, int field_number, |
692 | io::CodedInputStream* input, |
693 | ExtensionFinder* extension_finder, |
694 | MessageSetFieldSkipper* field_skipper); |
695 | |
696 | // Gets the extension with the given number, creating it if it does not |
697 | // already exist. Returns true if the extension did not already exist. |
698 | bool MaybeNewExtension(int number, const FieldDescriptor* descriptor, |
699 | Extension** result); |
700 | |
701 | // Gets the repeated extension for the given descriptor, creating it if |
702 | // it does not exist. |
703 | Extension* MaybeNewRepeatedExtension(const FieldDescriptor* descriptor); |
704 | |
705 | // Parse a single MessageSet item -- called just after the item group start |
706 | // tag has been read. |
707 | bool ParseMessageSetItem(io::CodedInputStream* input, |
708 | ExtensionFinder* extension_finder, |
709 | MessageSetFieldSkipper* field_skipper); |
710 | |
711 | // Hack: RepeatedPtrFieldBase declares ExtensionSet as a friend. This |
712 | // friendship should automatically extend to ExtensionSet::Extension, but |
713 | // unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this |
714 | // correctly. So, we must provide helpers for calling methods of that |
715 | // class. |
716 | |
717 | // Defined in extension_set_heavy.cc. |
718 | static inline size_t RepeatedMessage_SpaceUsedExcludingSelfLong( |
719 | RepeatedPtrFieldBase* field); |
720 | |
721 | KeyValue* flat_begin() { |
722 | assert(!is_large()); |
723 | return map_.flat; |
724 | } |
725 | const KeyValue* flat_begin() const { |
726 | assert(!is_large()); |
727 | return map_.flat; |
728 | } |
729 | KeyValue* flat_end() { |
730 | assert(!is_large()); |
731 | return map_.flat + flat_size_; |
732 | } |
733 | const KeyValue* flat_end() const { |
734 | assert(!is_large()); |
735 | return map_.flat + flat_size_; |
736 | } |
737 | |
738 | ::google::protobuf::Arena* arena_; |
739 | |
740 | // Manual memory-management: |
741 | // map_.flat is an allocated array of flat_capacity_ elements. |
742 | // [map_.flat, map_.flat + flat_size_) is the currently-in-use prefix. |
743 | uint16 flat_capacity_; |
744 | uint16 flat_size_; |
745 | union AllocatedData { |
746 | KeyValue* flat; |
747 | |
748 | // If flat_capacity_ > kMaximumFlatCapacity, switch to LargeMap, |
749 | // which guarantees O(n lg n) CPU but larger constant factors. |
750 | LargeMap* large; |
751 | } map_; |
752 | |
753 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet); |
754 | }; |
755 | |
756 | // These are just for convenience... |
757 | inline void ExtensionSet::SetString(int number, FieldType type, |
758 | const string& value, |
759 | const FieldDescriptor* descriptor) { |
760 | MutableString(number, type, descriptor)->assign(value); |
761 | } |
762 | inline void ExtensionSet::SetRepeatedString(int number, int index, |
763 | const string& value) { |
764 | MutableRepeatedString(number, index)->assign(value); |
765 | } |
766 | inline void ExtensionSet::AddString(int number, FieldType type, |
767 | const string& value, |
768 | const FieldDescriptor* descriptor) { |
769 | AddString(number, type, descriptor)->assign(value); |
770 | } |
771 | |
772 | // =================================================================== |
773 | // Glue for generated extension accessors |
774 | |
775 | // ------------------------------------------------------------------- |
776 | // Template magic |
777 | |
778 | // First we have a set of classes representing "type traits" for different |
779 | // field types. A type traits class knows how to implement basic accessors |
780 | // for extensions of a particular type given an ExtensionSet. The signature |
781 | // for a type traits class looks like this: |
782 | // |
783 | // class TypeTraits { |
784 | // public: |
785 | // typedef ? ConstType; |
786 | // typedef ? MutableType; |
787 | // // TypeTraits for singular fields and repeated fields will define the |
788 | // // symbol "Singular" or "Repeated" respectively. These two symbols will |
789 | // // be used in extension accessors to distinguish between singular |
790 | // // extensions and repeated extensions. If the TypeTraits for the passed |
791 | // // in extension doesn't have the expected symbol defined, it means the |
792 | // // user is passing a repeated extension to a singular accessor, or the |
793 | // // opposite. In that case the C++ compiler will generate an error |
794 | // // message "no matching member function" to inform the user. |
795 | // typedef ? Singular |
796 | // typedef ? Repeated |
797 | // |
798 | // static inline ConstType Get(int number, const ExtensionSet& set); |
799 | // static inline void Set(int number, ConstType value, ExtensionSet* set); |
800 | // static inline MutableType Mutable(int number, ExtensionSet* set); |
801 | // |
802 | // // Variants for repeated fields. |
803 | // static inline ConstType Get(int number, const ExtensionSet& set, |
804 | // int index); |
805 | // static inline void Set(int number, int index, |
806 | // ConstType value, ExtensionSet* set); |
807 | // static inline MutableType Mutable(int number, int index, |
808 | // ExtensionSet* set); |
809 | // static inline void Add(int number, ConstType value, ExtensionSet* set); |
810 | // static inline MutableType Add(int number, ExtensionSet* set); |
811 | // This is used by the ExtensionIdentifier constructor to register |
812 | // the extension at dynamic initialization. |
813 | // template <typename ExtendeeT> |
814 | // static void Register(int number, FieldType type, bool is_packed); |
815 | // }; |
816 | // |
817 | // Not all of these methods make sense for all field types. For example, the |
818 | // "Mutable" methods only make sense for strings and messages, and the |
819 | // repeated methods only make sense for repeated types. So, each type |
820 | // traits class implements only the set of methods from this signature that it |
821 | // actually supports. This will cause a compiler error if the user tries to |
822 | // access an extension using a method that doesn't make sense for its type. |
823 | // For example, if "foo" is an extension of type "optional int32", then if you |
824 | // try to write code like: |
825 | // my_message.MutableExtension(foo) |
826 | // you will get a compile error because PrimitiveTypeTraits<int32> does not |
827 | // have a "Mutable()" method. |
828 | |
829 | // ------------------------------------------------------------------- |
830 | // PrimitiveTypeTraits |
831 | |
832 | // Since the ExtensionSet has different methods for each primitive type, |
833 | // we must explicitly define the methods of the type traits class for each |
834 | // known type. |
835 | template <typename Type> |
836 | class PrimitiveTypeTraits { |
837 | public: |
838 | typedef Type ConstType; |
839 | typedef Type MutableType; |
840 | typedef PrimitiveTypeTraits<Type> Singular; |
841 | |
842 | static inline ConstType Get(int number, const ExtensionSet& set, |
843 | ConstType default_value); |
844 | static inline void Set(int number, FieldType field_type, |
845 | ConstType value, ExtensionSet* set); |
846 | template <typename ExtendeeT> |
847 | static void Register(int number, FieldType type, bool is_packed) { |
848 | ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number, |
849 | type, false, is_packed); |
850 | } |
851 | }; |
852 | |
853 | template <typename Type> |
854 | class RepeatedPrimitiveTypeTraits { |
855 | public: |
856 | typedef Type ConstType; |
857 | typedef Type MutableType; |
858 | typedef RepeatedPrimitiveTypeTraits<Type> Repeated; |
859 | |
860 | typedef RepeatedField<Type> RepeatedFieldType; |
861 | |
862 | static inline Type Get(int number, const ExtensionSet& set, int index); |
863 | static inline void Set(int number, int index, Type value, ExtensionSet* set); |
864 | static inline void Add(int number, FieldType field_type, |
865 | bool is_packed, Type value, ExtensionSet* set); |
866 | |
867 | static inline const RepeatedField<ConstType>& |
868 | GetRepeated(int number, const ExtensionSet& set); |
869 | static inline RepeatedField<Type>* |
870 | MutableRepeated(int number, FieldType field_type, |
871 | bool is_packed, ExtensionSet* set); |
872 | |
873 | static const RepeatedFieldType* GetDefaultRepeatedField(); |
874 | template <typename ExtendeeT> |
875 | static void Register(int number, FieldType type, bool is_packed) { |
876 | ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number, |
877 | type, true, is_packed); |
878 | } |
879 | }; |
880 | |
881 | LIBPROTOBUF_EXPORT extern ProtobufOnceType repeated_primitive_generic_type_traits_once_init_; |
882 | |
883 | class LIBPROTOBUF_EXPORT RepeatedPrimitiveDefaults { |
884 | private: |
885 | template<typename Type> friend class RepeatedPrimitiveTypeTraits; |
886 | static const RepeatedPrimitiveDefaults* default_instance(); |
887 | RepeatedField<int32> default_repeated_field_int32_; |
888 | RepeatedField<int64> default_repeated_field_int64_; |
889 | RepeatedField<uint32> default_repeated_field_uint32_; |
890 | RepeatedField<uint64> default_repeated_field_uint64_; |
891 | RepeatedField<double> default_repeated_field_double_; |
892 | RepeatedField<float> default_repeated_field_float_; |
893 | RepeatedField<bool> default_repeated_field_bool_; |
894 | }; |
895 | |
896 | #define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \ |
897 | template<> inline TYPE PrimitiveTypeTraits<TYPE>::Get( \ |
898 | int number, const ExtensionSet& set, TYPE default_value) { \ |
899 | return set.Get##METHOD(number, default_value); \ |
900 | } \ |
901 | template<> inline void PrimitiveTypeTraits<TYPE>::Set( \ |
902 | int number, FieldType field_type, TYPE value, ExtensionSet* set) { \ |
903 | set->Set##METHOD(number, field_type, value, NULL); \ |
904 | } \ |
905 | \ |
906 | template<> inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get( \ |
907 | int number, const ExtensionSet& set, int index) { \ |
908 | return set.GetRepeated##METHOD(number, index); \ |
909 | } \ |
910 | template<> inline void RepeatedPrimitiveTypeTraits<TYPE>::Set( \ |
911 | int number, int index, TYPE value, ExtensionSet* set) { \ |
912 | set->SetRepeated##METHOD(number, index, value); \ |
913 | } \ |
914 | template<> inline void RepeatedPrimitiveTypeTraits<TYPE>::Add( \ |
915 | int number, FieldType field_type, bool is_packed, \ |
916 | TYPE value, ExtensionSet* set) { \ |
917 | set->Add##METHOD(number, field_type, is_packed, value, NULL); \ |
918 | } \ |
919 | template<> inline const RepeatedField<TYPE>* \ |
920 | RepeatedPrimitiveTypeTraits<TYPE>::GetDefaultRepeatedField() { \ |
921 | return &RepeatedPrimitiveDefaults::default_instance() \ |
922 | ->default_repeated_field_##TYPE##_; \ |
923 | } \ |
924 | template<> inline const RepeatedField<TYPE>& \ |
925 | RepeatedPrimitiveTypeTraits<TYPE>::GetRepeated(int number, \ |
926 | const ExtensionSet& set) { \ |
927 | return *reinterpret_cast<const RepeatedField<TYPE>*>( \ |
928 | set.GetRawRepeatedField( \ |
929 | number, GetDefaultRepeatedField())); \ |
930 | } \ |
931 | template<> inline RepeatedField<TYPE>* \ |
932 | RepeatedPrimitiveTypeTraits<TYPE>::MutableRepeated(int number, \ |
933 | FieldType field_type, \ |
934 | bool is_packed, \ |
935 | ExtensionSet* set) { \ |
936 | return reinterpret_cast<RepeatedField<TYPE>*>( \ |
937 | set->MutableRawRepeatedField(number, field_type, is_packed, NULL)); \ |
938 | } |
939 | |
940 | PROTOBUF_DEFINE_PRIMITIVE_TYPE( int32, Int32) |
941 | PROTOBUF_DEFINE_PRIMITIVE_TYPE( int64, Int64) |
942 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32, UInt32) |
943 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64, UInt64) |
944 | PROTOBUF_DEFINE_PRIMITIVE_TYPE( float, Float) |
945 | PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double) |
946 | PROTOBUF_DEFINE_PRIMITIVE_TYPE( bool, Bool) |
947 | |
948 | #undef PROTOBUF_DEFINE_PRIMITIVE_TYPE |
949 | |
950 | // ------------------------------------------------------------------- |
951 | // StringTypeTraits |
952 | |
953 | // Strings support both Set() and Mutable(). |
954 | class LIBPROTOBUF_EXPORT StringTypeTraits { |
955 | public: |
956 | typedef const string& ConstType; |
957 | typedef string* MutableType; |
958 | typedef StringTypeTraits Singular; |
959 | |
960 | static inline const string& Get(int number, const ExtensionSet& set, |
961 | ConstType default_value) { |
962 | return set.GetString(number, default_value); |
963 | } |
964 | static inline void Set(int number, FieldType field_type, |
965 | const string& value, ExtensionSet* set) { |
966 | set->SetString(number, field_type, value, NULL); |
967 | } |
968 | static inline string* Mutable(int number, FieldType field_type, |
969 | ExtensionSet* set) { |
970 | return set->MutableString(number, field_type, NULL); |
971 | } |
972 | template <typename ExtendeeT> |
973 | static void Register(int number, FieldType type, bool is_packed) { |
974 | ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number, |
975 | type, false, is_packed); |
976 | } |
977 | }; |
978 | |
979 | class LIBPROTOBUF_EXPORT RepeatedStringTypeTraits { |
980 | public: |
981 | typedef const string& ConstType; |
982 | typedef string* MutableType; |
983 | typedef RepeatedStringTypeTraits Repeated; |
984 | |
985 | typedef RepeatedPtrField<string> RepeatedFieldType; |
986 | |
987 | static inline const string& Get(int number, const ExtensionSet& set, |
988 | int index) { |
989 | return set.GetRepeatedString(number, index); |
990 | } |
991 | static inline void Set(int number, int index, |
992 | const string& value, ExtensionSet* set) { |
993 | set->SetRepeatedString(number, index, value); |
994 | } |
995 | static inline string* Mutable(int number, int index, ExtensionSet* set) { |
996 | return set->MutableRepeatedString(number, index); |
997 | } |
998 | static inline void Add(int number, FieldType field_type, |
999 | bool /*is_packed*/, const string& value, |
1000 | ExtensionSet* set) { |
1001 | set->AddString(number, field_type, value, NULL); |
1002 | } |
1003 | static inline string* Add(int number, FieldType field_type, |
1004 | ExtensionSet* set) { |
1005 | return set->AddString(number, field_type, NULL); |
1006 | } |
1007 | static inline const RepeatedPtrField<string>& |
1008 | GetRepeated(int number, const ExtensionSet& set) { |
1009 | return *reinterpret_cast<const RepeatedPtrField<string>*>( |
1010 | set.GetRawRepeatedField(number, GetDefaultRepeatedField())); |
1011 | } |
1012 | |
1013 | static inline RepeatedPtrField<string>* |
1014 | MutableRepeated(int number, FieldType field_type, |
1015 | bool is_packed, ExtensionSet* set) { |
1016 | return reinterpret_cast<RepeatedPtrField<string>*>( |
1017 | set->MutableRawRepeatedField(number, field_type, |
1018 | is_packed, NULL)); |
1019 | } |
1020 | |
1021 | static const RepeatedFieldType* GetDefaultRepeatedField(); |
1022 | |
1023 | template <typename ExtendeeT> |
1024 | static void Register(int number, FieldType type, bool is_packed) { |
1025 | ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number, |
1026 | type, true, is_packed); |
1027 | } |
1028 | |
1029 | private: |
1030 | static void InitializeDefaultRepeatedFields(); |
1031 | static void DestroyDefaultRepeatedFields(); |
1032 | }; |
1033 | |
1034 | // ------------------------------------------------------------------- |
1035 | // EnumTypeTraits |
1036 | |
1037 | // ExtensionSet represents enums using integers internally, so we have to |
1038 | // static_cast around. |
1039 | template <typename Type, bool IsValid(int)> |
1040 | class EnumTypeTraits { |
1041 | public: |
1042 | typedef Type ConstType; |
1043 | typedef Type MutableType; |
1044 | typedef EnumTypeTraits<Type, IsValid> Singular; |
1045 | |
1046 | static inline ConstType Get(int number, const ExtensionSet& set, |
1047 | ConstType default_value) { |
1048 | return static_cast<Type>(set.GetEnum(number, default_value)); |
1049 | } |
1050 | static inline void Set(int number, FieldType field_type, |
1051 | ConstType value, ExtensionSet* set) { |
1052 | GOOGLE_DCHECK(IsValid(value)); |
1053 | set->SetEnum(number, field_type, value, NULL); |
1054 | } |
1055 | template <typename ExtendeeT> |
1056 | static void Register(int number, FieldType type, bool is_packed) { |
1057 | ExtensionSet::RegisterEnumExtension(&ExtendeeT::default_instance(), number, |
1058 | type, false, is_packed, IsValid); |
1059 | } |
1060 | }; |
1061 | |
1062 | template <typename Type, bool IsValid(int)> |
1063 | class RepeatedEnumTypeTraits { |
1064 | public: |
1065 | typedef Type ConstType; |
1066 | typedef Type MutableType; |
1067 | typedef RepeatedEnumTypeTraits<Type, IsValid> Repeated; |
1068 | |
1069 | typedef RepeatedField<Type> RepeatedFieldType; |
1070 | |
1071 | static inline ConstType Get(int number, const ExtensionSet& set, int index) { |
1072 | return static_cast<Type>(set.GetRepeatedEnum(number, index)); |
1073 | } |
1074 | static inline void Set(int number, int index, |
1075 | ConstType value, ExtensionSet* set) { |
1076 | GOOGLE_DCHECK(IsValid(value)); |
1077 | set->SetRepeatedEnum(number, index, value); |
1078 | } |
1079 | static inline void Add(int number, FieldType field_type, |
1080 | bool is_packed, ConstType value, ExtensionSet* set) { |
1081 | GOOGLE_DCHECK(IsValid(value)); |
1082 | set->AddEnum(number, field_type, is_packed, value, NULL); |
1083 | } |
1084 | static inline const RepeatedField<Type>& GetRepeated(int number, |
1085 | const ExtensionSet& |
1086 | set) { |
1087 | // Hack: the `Extension` struct stores a RepeatedField<int> for enums. |
1088 | // RepeatedField<int> cannot implicitly convert to RepeatedField<EnumType> |
1089 | // so we need to do some casting magic. See message.h for similar |
1090 | // contortions for non-extension fields. |
1091 | return *reinterpret_cast<const RepeatedField<Type>*>( |
1092 | set.GetRawRepeatedField(number, GetDefaultRepeatedField())); |
1093 | } |
1094 | |
1095 | static inline RepeatedField<Type>* MutableRepeated(int number, |
1096 | FieldType field_type, |
1097 | bool is_packed, |
1098 | ExtensionSet* set) { |
1099 | return reinterpret_cast<RepeatedField<Type>*>( |
1100 | set->MutableRawRepeatedField(number, field_type, is_packed, NULL)); |
1101 | } |
1102 | |
1103 | static const RepeatedFieldType* GetDefaultRepeatedField() { |
1104 | // Hack: as noted above, repeated enum fields are internally stored as a |
1105 | // RepeatedField<int>. We need to be able to instantiate global static |
1106 | // objects to return as default (empty) repeated fields on non-existent |
1107 | // extensions. We would not be able to know a-priori all of the enum types |
1108 | // (values of |Type|) to instantiate all of these, so we just re-use int32's |
1109 | // default repeated field object. |
1110 | return reinterpret_cast<const RepeatedField<Type>*>( |
1111 | RepeatedPrimitiveTypeTraits<int32>::GetDefaultRepeatedField()); |
1112 | } |
1113 | template <typename ExtendeeT> |
1114 | static void Register(int number, FieldType type, bool is_packed) { |
1115 | ExtensionSet::RegisterEnumExtension(&ExtendeeT::default_instance(), number, |
1116 | type, true, is_packed, IsValid); |
1117 | } |
1118 | }; |
1119 | |
1120 | // ------------------------------------------------------------------- |
1121 | // MessageTypeTraits |
1122 | |
1123 | // ExtensionSet guarantees that when manipulating extensions with message |
1124 | // types, the implementation used will be the compiled-in class representing |
1125 | // that type. So, we can static_cast down to the exact type we expect. |
1126 | template <typename Type> |
1127 | class MessageTypeTraits { |
1128 | public: |
1129 | typedef const Type& ConstType; |
1130 | typedef Type* MutableType; |
1131 | typedef MessageTypeTraits<Type> Singular; |
1132 | |
1133 | static inline ConstType Get(int number, const ExtensionSet& set, |
1134 | ConstType default_value) { |
1135 | return static_cast<const Type&>( |
1136 | set.GetMessage(number, default_value)); |
1137 | } |
1138 | static inline MutableType Mutable(int number, FieldType field_type, |
1139 | ExtensionSet* set) { |
1140 | return static_cast<Type*>( |
1141 | set->MutableMessage(number, field_type, Type::default_instance(), NULL)); |
1142 | } |
1143 | static inline void SetAllocated(int number, FieldType field_type, |
1144 | MutableType message, ExtensionSet* set) { |
1145 | set->SetAllocatedMessage(number, field_type, NULL, message); |
1146 | } |
1147 | static inline void UnsafeArenaSetAllocated(int number, FieldType field_type, |
1148 | MutableType message, |
1149 | ExtensionSet* set) { |
1150 | set->UnsafeArenaSetAllocatedMessage(number, field_type, NULL, message); |
1151 | } |
1152 | static inline MutableType Release(int number, FieldType /* field_type */, |
1153 | ExtensionSet* set) { |
1154 | return static_cast<Type*>(set->ReleaseMessage( |
1155 | number, Type::default_instance())); |
1156 | } |
1157 | static inline MutableType UnsafeArenaRelease(int number, |
1158 | FieldType /* field_type */, |
1159 | ExtensionSet* set) { |
1160 | return static_cast<Type*>(set->UnsafeArenaReleaseMessage( |
1161 | number, Type::default_instance())); |
1162 | } |
1163 | template <typename ExtendeeT> |
1164 | static void Register(int number, FieldType type, bool is_packed) { |
1165 | ExtensionSet::RegisterMessageExtension(&ExtendeeT::default_instance(), |
1166 | number, type, false, is_packed, |
1167 | &Type::default_instance()); |
1168 | } |
1169 | }; |
1170 | |
1171 | // forward declaration |
1172 | class RepeatedMessageGenericTypeTraits; |
1173 | |
1174 | template <typename Type> |
1175 | class RepeatedMessageTypeTraits { |
1176 | public: |
1177 | typedef const Type& ConstType; |
1178 | typedef Type* MutableType; |
1179 | typedef RepeatedMessageTypeTraits<Type> Repeated; |
1180 | |
1181 | typedef RepeatedPtrField<Type> RepeatedFieldType; |
1182 | |
1183 | static inline ConstType Get(int number, const ExtensionSet& set, int index) { |
1184 | return static_cast<const Type&>(set.GetRepeatedMessage(number, index)); |
1185 | } |
1186 | static inline MutableType Mutable(int number, int index, ExtensionSet* set) { |
1187 | return static_cast<Type*>(set->MutableRepeatedMessage(number, index)); |
1188 | } |
1189 | static inline MutableType Add(int number, FieldType field_type, |
1190 | ExtensionSet* set) { |
1191 | return static_cast<Type*>( |
1192 | set->AddMessage(number, field_type, Type::default_instance(), NULL)); |
1193 | } |
1194 | static inline const RepeatedPtrField<Type>& GetRepeated(int number, |
1195 | const ExtensionSet& |
1196 | set) { |
1197 | // See notes above in RepeatedEnumTypeTraits::GetRepeated(): same |
1198 | // casting hack applies here, because a RepeatedPtrField<MessageLite> |
1199 | // cannot naturally become a RepeatedPtrType<Type> even though Type is |
1200 | // presumably a message. google::protobuf::Message goes through similar contortions |
1201 | // with a reinterpret_cast<>. |
1202 | return *reinterpret_cast<const RepeatedPtrField<Type>*>( |
1203 | set.GetRawRepeatedField(number, GetDefaultRepeatedField())); |
1204 | } |
1205 | static inline RepeatedPtrField<Type>* MutableRepeated(int number, |
1206 | FieldType field_type, |
1207 | bool is_packed, |
1208 | ExtensionSet* set) { |
1209 | return reinterpret_cast<RepeatedPtrField<Type>*>( |
1210 | set->MutableRawRepeatedField(number, field_type, is_packed, NULL)); |
1211 | } |
1212 | |
1213 | static const RepeatedFieldType* GetDefaultRepeatedField(); |
1214 | template <typename ExtendeeT> |
1215 | static void Register(int number, FieldType type, bool is_packed) { |
1216 | ExtensionSet::RegisterMessageExtension(&ExtendeeT::default_instance(), |
1217 | number, type, true, is_packed, |
1218 | &Type::default_instance()); |
1219 | } |
1220 | }; |
1221 | |
1222 | template<typename Type> inline |
1223 | const typename RepeatedMessageTypeTraits<Type>::RepeatedFieldType* |
1224 | RepeatedMessageTypeTraits<Type>::GetDefaultRepeatedField() { |
1225 | static auto instance = OnShutdownDelete(new RepeatedFieldType); |
1226 | return instance; |
1227 | } |
1228 | |
1229 | // ------------------------------------------------------------------- |
1230 | // ExtensionIdentifier |
1231 | |
1232 | // This is the type of actual extension objects. E.g. if you have: |
1233 | // extends Foo with optional int32 bar = 1234; |
1234 | // then "bar" will be defined in C++ as: |
1235 | // ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32>, 1, false> bar(1234); |
1236 | // |
1237 | // Note that we could, in theory, supply the field number as a template |
1238 | // parameter, and thus make an instance of ExtensionIdentifier have no |
1239 | // actual contents. However, if we did that, then using at extension |
1240 | // identifier would not necessarily cause the compiler to output any sort |
1241 | // of reference to any symbol defined in the extension's .pb.o file. Some |
1242 | // linkers will actually drop object files that are not explicitly referenced, |
1243 | // but that would be bad because it would cause this extension to not be |
1244 | // registered at static initialization, and therefore using it would crash. |
1245 | |
1246 | template <typename ExtendeeType, typename TypeTraitsType, |
1247 | FieldType field_type, bool is_packed> |
1248 | class ExtensionIdentifier { |
1249 | public: |
1250 | typedef TypeTraitsType TypeTraits; |
1251 | typedef ExtendeeType Extendee; |
1252 | |
1253 | ExtensionIdentifier(int number, typename TypeTraits::ConstType default_value) |
1254 | : number_(number), default_value_(default_value) { |
1255 | Register(number); |
1256 | } |
1257 | inline int number() const { return number_; } |
1258 | typename TypeTraits::ConstType default_value() const { |
1259 | return default_value_; |
1260 | } |
1261 | |
1262 | static void Register(int number) { |
1263 | TypeTraits::template Register<ExtendeeType>(number, field_type, is_packed); |
1264 | } |
1265 | |
1266 | private: |
1267 | const int number_; |
1268 | typename TypeTraits::ConstType default_value_; |
1269 | }; |
1270 | |
1271 | // ------------------------------------------------------------------- |
1272 | // Generated accessors |
1273 | |
1274 | // This macro should be expanded in the context of a generated type which |
1275 | // has extensions. |
1276 | // |
1277 | // We use "_proto_TypeTraits" as a type name below because "TypeTraits" |
1278 | // causes problems if the class has a nested message or enum type with that |
1279 | // name and "_TypeTraits" is technically reserved for the C++ library since |
1280 | // it starts with an underscore followed by a capital letter. |
1281 | // |
1282 | // For similar reason, we use "_field_type" and "_is_packed" as parameter names |
1283 | // below, so that "field_type" and "is_packed" can be used as field names. |
1284 | #define GOOGLE_PROTOBUF_EXTENSION_ACCESSORS(CLASSNAME) \ |
1285 | /* Has, Size, Clear */ \ |
1286 | template <typename _proto_TypeTraits, \ |
1287 | ::google::protobuf::internal::FieldType _field_type, \ |
1288 | bool _is_packed> \ |
1289 | inline bool HasExtension( \ |
1290 | const ::google::protobuf::internal::ExtensionIdentifier< \ |
1291 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \ |
1292 | return _extensions_.Has(id.number()); \ |
1293 | } \ |
1294 | \ |
1295 | template <typename _proto_TypeTraits, \ |
1296 | ::google::protobuf::internal::FieldType _field_type, \ |
1297 | bool _is_packed> \ |
1298 | inline void ClearExtension( \ |
1299 | const ::google::protobuf::internal::ExtensionIdentifier< \ |
1300 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
1301 | _extensions_.ClearExtension(id.number()); \ |
1302 | } \ |
1303 | \ |
1304 | template <typename _proto_TypeTraits, \ |
1305 | ::google::protobuf::internal::FieldType _field_type, \ |
1306 | bool _is_packed> \ |
1307 | inline int ExtensionSize( \ |
1308 | const ::google::protobuf::internal::ExtensionIdentifier< \ |
1309 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \ |
1310 | return _extensions_.ExtensionSize(id.number()); \ |
1311 | } \ |
1312 | \ |
1313 | /* Singular accessors */ \ |
1314 | template <typename _proto_TypeTraits, \ |
1315 | ::google::protobuf::internal::FieldType _field_type, \ |
1316 | bool _is_packed> \ |
1317 | inline typename _proto_TypeTraits::Singular::ConstType GetExtension( \ |
1318 | const ::google::protobuf::internal::ExtensionIdentifier< \ |
1319 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \ |
1320 | return _proto_TypeTraits::Get(id.number(), _extensions_, \ |
1321 | id.default_value()); \ |
1322 | } \ |
1323 | \ |
1324 | template <typename _proto_TypeTraits, \ |
1325 | ::google::protobuf::internal::FieldType _field_type, \ |
1326 | bool _is_packed> \ |
1327 | inline typename _proto_TypeTraits::Singular::MutableType MutableExtension( \ |
1328 | const ::google::protobuf::internal::ExtensionIdentifier< \ |
1329 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
1330 | return _proto_TypeTraits::Mutable(id.number(), _field_type, \ |
1331 | &_extensions_); \ |
1332 | } \ |
1333 | \ |
1334 | template <typename _proto_TypeTraits, \ |
1335 | ::google::protobuf::internal::FieldType _field_type, \ |
1336 | bool _is_packed> \ |
1337 | inline void SetExtension( \ |
1338 | const ::google::protobuf::internal::ExtensionIdentifier< \ |
1339 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
1340 | typename _proto_TypeTraits::Singular::ConstType value) { \ |
1341 | _proto_TypeTraits::Set(id.number(), _field_type, value, &_extensions_); \ |
1342 | } \ |
1343 | \ |
1344 | template <typename _proto_TypeTraits, \ |
1345 | ::google::protobuf::internal::FieldType _field_type, \ |
1346 | bool _is_packed> \ |
1347 | inline void SetAllocatedExtension( \ |
1348 | const ::google::protobuf::internal::ExtensionIdentifier< \ |
1349 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
1350 | typename _proto_TypeTraits::Singular::MutableType value) { \ |
1351 | _proto_TypeTraits::SetAllocated(id.number(), _field_type, \ |
1352 | value, &_extensions_); \ |
1353 | } \ |
1354 | template <typename _proto_TypeTraits, \ |
1355 | ::google::protobuf::internal::FieldType _field_type, \ |
1356 | bool _is_packed> \ |
1357 | inline void UnsafeArenaSetAllocatedExtension( \ |
1358 | const ::google::protobuf::internal::ExtensionIdentifier< \ |
1359 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
1360 | typename _proto_TypeTraits::Singular::MutableType value) { \ |
1361 | _proto_TypeTraits::UnsafeArenaSetAllocated(id.number(), _field_type, \ |
1362 | value, &_extensions_); \ |
1363 | } \ |
1364 | template <typename _proto_TypeTraits, \ |
1365 | ::google::protobuf::internal::FieldType _field_type, \ |
1366 | bool _is_packed> \ |
1367 | inline typename _proto_TypeTraits::Singular::MutableType ReleaseExtension( \ |
1368 | const ::google::protobuf::internal::ExtensionIdentifier< \ |
1369 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
1370 | return _proto_TypeTraits::Release(id.number(), _field_type, \ |
1371 | &_extensions_); \ |
1372 | } \ |
1373 | template <typename _proto_TypeTraits, \ |
1374 | ::google::protobuf::internal::FieldType _field_type, \ |
1375 | bool _is_packed> \ |
1376 | inline typename _proto_TypeTraits::Singular::MutableType \ |
1377 | UnsafeArenaReleaseExtension( \ |
1378 | const ::google::protobuf::internal::ExtensionIdentifier< \ |
1379 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
1380 | return _proto_TypeTraits::UnsafeArenaRelease(id.number(), _field_type, \ |
1381 | &_extensions_); \ |
1382 | } \ |
1383 | \ |
1384 | /* Repeated accessors */ \ |
1385 | template <typename _proto_TypeTraits, \ |
1386 | ::google::protobuf::internal::FieldType _field_type, \ |
1387 | bool _is_packed> \ |
1388 | inline typename _proto_TypeTraits::Repeated::ConstType GetExtension( \ |
1389 | const ::google::protobuf::internal::ExtensionIdentifier< \ |
1390 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
1391 | int index) const { \ |
1392 | return _proto_TypeTraits::Get(id.number(), _extensions_, index); \ |
1393 | } \ |
1394 | \ |
1395 | template <typename _proto_TypeTraits, \ |
1396 | ::google::protobuf::internal::FieldType _field_type, \ |
1397 | bool _is_packed> \ |
1398 | inline typename _proto_TypeTraits::Repeated::MutableType MutableExtension( \ |
1399 | const ::google::protobuf::internal::ExtensionIdentifier< \ |
1400 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
1401 | int index) { \ |
1402 | return _proto_TypeTraits::Mutable(id.number(), index, &_extensions_); \ |
1403 | } \ |
1404 | \ |
1405 | template <typename _proto_TypeTraits, \ |
1406 | ::google::protobuf::internal::FieldType _field_type, \ |
1407 | bool _is_packed> \ |
1408 | inline void SetExtension( \ |
1409 | const ::google::protobuf::internal::ExtensionIdentifier< \ |
1410 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
1411 | int index, typename _proto_TypeTraits::Repeated::ConstType value) { \ |
1412 | _proto_TypeTraits::Set(id.number(), index, value, &_extensions_); \ |
1413 | } \ |
1414 | \ |
1415 | template <typename _proto_TypeTraits, \ |
1416 | ::google::protobuf::internal::FieldType _field_type, \ |
1417 | bool _is_packed> \ |
1418 | inline typename _proto_TypeTraits::Repeated::MutableType AddExtension( \ |
1419 | const ::google::protobuf::internal::ExtensionIdentifier< \ |
1420 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ |
1421 | return _proto_TypeTraits::Add(id.number(), _field_type, &_extensions_); \ |
1422 | } \ |
1423 | \ |
1424 | template <typename _proto_TypeTraits, \ |
1425 | ::google::protobuf::internal::FieldType _field_type, \ |
1426 | bool _is_packed> \ |
1427 | inline void AddExtension( \ |
1428 | const ::google::protobuf::internal::ExtensionIdentifier< \ |
1429 | CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ |
1430 | typename _proto_TypeTraits::Repeated::ConstType value) { \ |
1431 | _proto_TypeTraits::Add(id.number(), _field_type, _is_packed, \ |
1432 | value, &_extensions_); \ |
1433 | } \ |
1434 | \ |
1435 | template <typename _proto_TypeTraits, \ |
1436 | ::google::protobuf::internal::FieldType _field_type, \ |
1437 | bool _is_packed> \ |
1438 | inline const typename _proto_TypeTraits::Repeated::RepeatedFieldType& \ |
1439 | GetRepeatedExtension( \ |
1440 | const ::google::protobuf::internal::ExtensionIdentifier< \ |
1441 | CLASSNAME, _proto_TypeTraits, _field_type, \ |
1442 | _is_packed>& id) const { \ |
1443 | return _proto_TypeTraits::GetRepeated(id.number(), _extensions_); \ |
1444 | } \ |
1445 | \ |
1446 | template <typename _proto_TypeTraits, \ |
1447 | ::google::protobuf::internal::FieldType _field_type, \ |
1448 | bool _is_packed> \ |
1449 | inline typename _proto_TypeTraits::Repeated::RepeatedFieldType* \ |
1450 | MutableRepeatedExtension( \ |
1451 | const ::google::protobuf::internal::ExtensionIdentifier< \ |
1452 | CLASSNAME, _proto_TypeTraits, _field_type, \ |
1453 | _is_packed>& id) { \ |
1454 | return _proto_TypeTraits::MutableRepeated(id.number(), _field_type, \ |
1455 | _is_packed, &_extensions_); \ |
1456 | } |
1457 | |
1458 | } // namespace internal |
1459 | } // namespace protobuf |
1460 | |
1461 | } // namespace google |
1462 | #endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__ |
1463 | |