1 | // Copyright 2006 The RE2 Authors. All Rights Reserved. |
2 | // Use of this source code is governed by a BSD-style |
3 | // license that can be found in the LICENSE file. |
4 | |
5 | #ifndef UTIL_SPARSE_ARRAY_H_ |
6 | #define UTIL_SPARSE_ARRAY_H_ |
7 | |
8 | // DESCRIPTION |
9 | // |
10 | // SparseArray<T>(m) is a map from integers in [0, m) to T values. |
11 | // It requires (sizeof(T)+sizeof(int))*m memory, but it provides |
12 | // fast iteration through the elements in the array and fast clearing |
13 | // of the array. The array has a concept of certain elements being |
14 | // uninitialized (having no value). |
15 | // |
16 | // Insertion and deletion are constant time operations. |
17 | // |
18 | // Allocating the array is a constant time operation |
19 | // when memory allocation is a constant time operation. |
20 | // |
21 | // Clearing the array is a constant time operation (unusual!). |
22 | // |
23 | // Iterating through the array is an O(n) operation, where n |
24 | // is the number of items in the array (not O(m)). |
25 | // |
26 | // The array iterator visits entries in the order they were first |
27 | // inserted into the array. It is safe to add items to the array while |
28 | // using an iterator: the iterator will visit indices added to the array |
29 | // during the iteration, but will not re-visit indices whose values |
30 | // change after visiting. Thus SparseArray can be a convenient |
31 | // implementation of a work queue. |
32 | // |
33 | // The SparseArray implementation is NOT thread-safe. It is up to the |
34 | // caller to make sure only one thread is accessing the array. (Typically |
35 | // these arrays are temporary values and used in situations where speed is |
36 | // important.) |
37 | // |
38 | // The SparseArray interface does not present all the usual STL bells and |
39 | // whistles. |
40 | // |
41 | // Implemented with reference to Briggs & Torczon, An Efficient |
42 | // Representation for Sparse Sets, ACM Letters on Programming Languages |
43 | // and Systems, Volume 2, Issue 1-4 (March-Dec. 1993), pp. 59-69. |
44 | // |
45 | // Briggs & Torczon popularized this technique, but it had been known |
46 | // long before their paper. They point out that Aho, Hopcroft, and |
47 | // Ullman's 1974 Design and Analysis of Computer Algorithms and Bentley's |
48 | // 1986 Programming Pearls both hint at the technique in exercises to the |
49 | // reader (in Aho & Hopcroft, exercise 2.12; in Bentley, column 1 |
50 | // exercise 8). |
51 | // |
52 | // Briggs & Torczon describe a sparse set implementation. I have |
53 | // trivially generalized it to create a sparse array (actually the original |
54 | // target of the AHU and Bentley exercises). |
55 | |
56 | // IMPLEMENTATION |
57 | // |
58 | // SparseArray is an array dense_ and an array sparse_, both of size max_size_. |
59 | // At any point, the number of elements in the sparse array is size_. |
60 | // |
61 | // The array dense_ contains the size_ elements in the sparse array (with |
62 | // their indices), |
63 | // in the order that the elements were first inserted. This array is dense: |
64 | // the size_ pairs are dense_[0] through dense_[size_-1]. |
65 | // |
66 | // The array sparse_ maps from indices in [0,m) to indices in [0,size_). |
67 | // For indices present in the array, dense_[sparse_[i]].index_ == i. |
68 | // For indices not present in the array, sparse_ can contain any value at all, |
69 | // perhaps outside the range [0, size_) but perhaps not. |
70 | // |
71 | // The lax requirement on sparse_ values makes clearing the array very easy: |
72 | // set size_ to 0. Lookups are slightly more complicated. |
73 | // An index i has a value in the array if and only if: |
74 | // sparse_[i] is in [0, size_) AND |
75 | // dense_[sparse_[i]].index_ == i. |
76 | // If both these properties hold, only then it is safe to refer to |
77 | // dense_[sparse_[i]].value_ |
78 | // as the value associated with index i. |
79 | // |
80 | // To insert a new entry, set sparse_[i] to size_, |
81 | // initialize dense_[size_], and then increment size_. |
82 | // |
83 | // Deletion of specific values from the array is implemented by |
84 | // swapping dense_[size_-1] and the dense_ being deleted and then |
85 | // updating the appropriate sparse_ entries. |
86 | // |
87 | // To make the sparse array as efficient as possible for non-primitive types, |
88 | // elements may or may not be destroyed when they are deleted from the sparse |
89 | // array through a call to erase(), erase_existing() or resize(). They |
90 | // immediately become inaccessible, but they are only guaranteed to be |
91 | // destroyed when the SparseArray destructor is called. |
92 | // |
93 | // A moved-from SparseArray will be empty. |
94 | |
95 | // Doing this simplifies the logic below. |
96 | #ifndef __has_feature |
97 | #define __has_feature(x) 0 |
98 | #endif |
99 | |
100 | #include <assert.h> |
101 | #include <stdint.h> |
102 | #include <string.h> |
103 | #if __has_feature(memory_sanitizer) |
104 | #include <sanitizer/msan_interface.h> |
105 | #endif |
106 | #include <algorithm> |
107 | #include <memory> |
108 | #include <type_traits> |
109 | #include <utility> |
110 | |
111 | namespace re2 { |
112 | |
113 | template<typename Value> |
114 | class SparseArray { |
115 | public: |
116 | SparseArray(); |
117 | explicit SparseArray(int max_size); |
118 | ~SparseArray(); |
119 | |
120 | // IndexValue pairs: exposed in SparseArray::iterator. |
121 | class IndexValue; |
122 | static_assert(std::is_trivially_destructible<IndexValue>::value, |
123 | "IndexValue must be trivially destructible" ); |
124 | |
125 | typedef IndexValue value_type; |
126 | typedef IndexValue* iterator; |
127 | typedef const IndexValue* const_iterator; |
128 | |
129 | SparseArray(const SparseArray& src); |
130 | SparseArray(SparseArray&& src) /*noexcept*/; |
131 | |
132 | SparseArray& operator=(const SparseArray& src); |
133 | SparseArray& operator=(SparseArray&& src) /*noexcept*/; |
134 | |
135 | const IndexValue& iv(int i) const; |
136 | |
137 | // Return the number of entries in the array. |
138 | int size() const { |
139 | return size_; |
140 | } |
141 | |
142 | // Indicate whether the array is empty. |
143 | int empty() const { |
144 | return size_ == 0; |
145 | } |
146 | |
147 | // Iterate over the array. |
148 | iterator begin() { |
149 | return dense_.get(); |
150 | } |
151 | iterator end() { |
152 | return dense_.get() + size_; |
153 | } |
154 | |
155 | const_iterator begin() const { |
156 | return dense_.get(); |
157 | } |
158 | const_iterator end() const { |
159 | return dense_.get() + size_; |
160 | } |
161 | |
162 | // Change the maximum size of the array. |
163 | // Invalidates all iterators. |
164 | void resize(int max_size); |
165 | |
166 | // Return the maximum size of the array. |
167 | // Indices can be in the range [0, max_size). |
168 | int max_size() const { |
169 | return max_size_; |
170 | } |
171 | |
172 | // Clear the array. |
173 | void clear() { |
174 | size_ = 0; |
175 | } |
176 | |
177 | // Check whether index i is in the array. |
178 | bool has_index(int i) const; |
179 | |
180 | // Comparison function for sorting. |
181 | // Can sort the sparse array so that future iterations |
182 | // will visit indices in increasing order using |
183 | // std::sort(arr.begin(), arr.end(), arr.less); |
184 | static bool less(const IndexValue& a, const IndexValue& b); |
185 | |
186 | public: |
187 | // Set the value at index i to v. |
188 | iterator set(int i, const Value& v) { |
189 | return SetInternal(true, i, v); |
190 | } |
191 | iterator set(int i, Value&& v) { // NOLINT |
192 | return SetInternal(true, i, std::move(v)); |
193 | } |
194 | |
195 | std::pair<iterator, bool> insert(const value_type& v) { |
196 | return InsertInternal(v); |
197 | } |
198 | std::pair<iterator, bool> insert(value_type&& v) { // NOLINT |
199 | return InsertInternal(std::move(v)); |
200 | } |
201 | |
202 | template <typename... Args> |
203 | std::pair<iterator, bool> emplace(Args&&... args) { // NOLINT |
204 | return InsertInternal(value_type(std::forward<Args>(args)...)); |
205 | } |
206 | |
207 | iterator find(int i) { |
208 | if (has_index(i)) |
209 | return dense_.get() + sparse_[i]; |
210 | return end(); |
211 | } |
212 | |
213 | const_iterator find(int i) const { |
214 | if (has_index(i)) |
215 | return dense_.get() + sparse_[i]; |
216 | return end(); |
217 | } |
218 | |
219 | // Change the value at index i to v. |
220 | // Fast but unsafe: only use if has_index(i) is true. |
221 | iterator set_existing(int i, const Value& v) { |
222 | return SetExistingInternal(i, v); |
223 | } |
224 | iterator set_existing(int i, Value&& v) { // NOLINT |
225 | return SetExistingInternal(i, std::move(v)); |
226 | } |
227 | |
228 | // Set the value at the new index i to v. |
229 | // Fast but unsafe: only use if has_index(i) is false. |
230 | iterator set_new(int i, const Value& v) { |
231 | return SetInternal(false, i, v); |
232 | } |
233 | iterator set_new(int i, Value&& v) { // NOLINT |
234 | return SetInternal(false, i, std::move(v)); |
235 | } |
236 | |
237 | // Get the value at index i from the array.. |
238 | // Fast but unsafe: only use if has_index(i) is true. |
239 | const Value& get_existing(int i) const; |
240 | |
241 | // Erasing items from the array during iteration is in general |
242 | // NOT safe. There is one special case, which is that the current |
243 | // index-value pair can be erased as long as the iterator is then |
244 | // checked for being at the end before being incremented. |
245 | // For example: |
246 | // |
247 | // for (i = m.begin(); i != m.end(); ++i) { |
248 | // if (ShouldErase(i->index(), i->value())) { |
249 | // m.erase(i->index()); |
250 | // --i; |
251 | // } |
252 | // } |
253 | // |
254 | // Except in the specific case just described, elements must |
255 | // not be erased from the array (including clearing the array) |
256 | // while iterators are walking over the array. Otherwise, |
257 | // the iterators could walk past the end of the array. |
258 | |
259 | // Erases the element at index i from the array. |
260 | void erase(int i); |
261 | |
262 | // Erases the element at index i from the array. |
263 | // Fast but unsafe: only use if has_index(i) is true. |
264 | void erase_existing(int i); |
265 | |
266 | private: |
267 | template <typename U> |
268 | std::pair<iterator, bool> InsertInternal(U&& v) { |
269 | DebugCheckInvariants(); |
270 | std::pair<iterator, bool> p; |
271 | if (has_index(v.index_)) { |
272 | p = {dense_.get() + sparse_[v.index_], false}; |
273 | } else { |
274 | p = {set_new(std::forward<U>(v).index_, std::forward<U>(v).second), true}; |
275 | } |
276 | DebugCheckInvariants(); |
277 | return p; |
278 | } |
279 | |
280 | template <typename U> |
281 | iterator SetInternal(bool allow_overwrite, int i, U&& v) { // NOLINT |
282 | DebugCheckInvariants(); |
283 | if (static_cast<uint32_t>(i) >= static_cast<uint32_t>(max_size_)) { |
284 | assert(false && "illegal index" ); |
285 | // Semantically, end() would be better here, but we already know |
286 | // the user did something stupid, so begin() insulates them from |
287 | // dereferencing an invalid pointer. |
288 | return begin(); |
289 | } |
290 | if (!allow_overwrite) { |
291 | assert(!has_index(i)); |
292 | create_index(i); |
293 | } else { |
294 | if (!has_index(i)) |
295 | create_index(i); |
296 | } |
297 | return set_existing(i, std::forward<U>(v)); // NOLINT |
298 | } |
299 | |
300 | template <typename U> |
301 | iterator SetExistingInternal(int i, U&& v) { // NOLINT |
302 | DebugCheckInvariants(); |
303 | assert(has_index(i)); |
304 | dense_[sparse_[i]].value() = std::forward<U>(v); |
305 | DebugCheckInvariants(); |
306 | return dense_.get() + sparse_[i]; |
307 | } |
308 | |
309 | // Add the index i to the array. |
310 | // Only use if has_index(i) is known to be false. |
311 | // Since it doesn't set the value associated with i, |
312 | // this function is private, only intended as a helper |
313 | // for other methods. |
314 | void create_index(int i); |
315 | |
316 | // In debug mode, verify that some invariant properties of the class |
317 | // are being maintained. This is called at the end of the constructor |
318 | // and at the beginning and end of all public non-const member functions. |
319 | void DebugCheckInvariants() const; |
320 | |
321 | // Initializes memory for elements [min, max). |
322 | void MaybeInitializeMemory(int min, int max) { |
323 | #if __has_feature(memory_sanitizer) |
324 | __msan_unpoison(sparse_.get() + min, (max - min) * sizeof sparse_[0]); |
325 | #elif defined(RE2_ON_VALGRIND) |
326 | for (int i = min; i < max; i++) { |
327 | sparse_[i] = 0xababababU; |
328 | } |
329 | #endif |
330 | } |
331 | |
332 | int size_ = 0; |
333 | int max_size_ = 0; |
334 | std::unique_ptr<int[]> sparse_; |
335 | std::unique_ptr<IndexValue[]> dense_; |
336 | }; |
337 | |
338 | template<typename Value> |
339 | SparseArray<Value>::SparseArray() = default; |
340 | |
341 | template<typename Value> |
342 | SparseArray<Value>::SparseArray(const SparseArray& src) |
343 | : size_(src.size_), |
344 | max_size_(src.max_size_), |
345 | sparse_(new int[max_size_]), |
346 | dense_(new IndexValue[max_size_]) { |
347 | std::copy_n(src.sparse_.get(), max_size_, sparse_.get()); |
348 | std::copy_n(src.dense_.get(), max_size_, dense_.get()); |
349 | } |
350 | |
351 | template<typename Value> |
352 | SparseArray<Value>::SparseArray(SparseArray&& src) /*noexcept*/ // NOLINT |
353 | : size_(src.size_), |
354 | max_size_(src.max_size_), |
355 | sparse_(std::move(src.sparse_)), |
356 | dense_(std::move(src.dense_)) { |
357 | src.size_ = 0; |
358 | src.max_size_ = 0; |
359 | } |
360 | |
361 | template<typename Value> |
362 | SparseArray<Value>& SparseArray<Value>::operator=(const SparseArray& src) { |
363 | size_ = src.size_; |
364 | max_size_ = src.max_size_; |
365 | std::unique_ptr<int[]> a(new int[max_size_]); |
366 | std::copy_n(src.sparse_.get(), src.max_size_, a.get()); |
367 | sparse_ = std::move(a); |
368 | std::unique_ptr<IndexValue[]> b(new IndexValue[max_size_]); |
369 | std::copy_n(src.dense_.get(), src.max_size_, b.get()); |
370 | dense_ = std::move(b); |
371 | return *this; |
372 | } |
373 | |
374 | template<typename Value> |
375 | SparseArray<Value>& SparseArray<Value>::operator=( |
376 | SparseArray&& src) /*noexcept*/ { // NOLINT |
377 | size_ = src.size_; |
378 | max_size_ = src.max_size_; |
379 | sparse_ = std::move(src.sparse_); |
380 | dense_ = std::move(src.dense_); |
381 | // clear out the source |
382 | src.size_ = 0; |
383 | src.max_size_ = 0; |
384 | return *this; |
385 | } |
386 | |
387 | // IndexValue pairs: exposed in SparseArray::iterator. |
388 | template<typename Value> |
389 | class SparseArray<Value>::IndexValue { |
390 | friend class SparseArray; |
391 | public: |
392 | typedef int first_type; |
393 | typedef Value second_type; |
394 | |
395 | IndexValue() {} |
396 | IndexValue(int i, const Value& v) : index_(i), second(v) {} |
397 | IndexValue(int i, Value&& v) : index_(i), second(std::move(v)) {} |
398 | |
399 | int index() const { return index_; } |
400 | |
401 | Value& value() /*&*/ { return second; } |
402 | const Value& value() const /*&*/ { return second; } |
403 | //Value&& value() /*&&*/ { return std::move(second); } // NOLINT |
404 | |
405 | private: |
406 | int index_; |
407 | |
408 | public: |
409 | // Provide the data in the 'second' member so that the utilities |
410 | // in map-util work. |
411 | // TODO(billydonahue): 'second' is public for short-term compatibility. |
412 | // Users will be transitioned to using value() accessor. |
413 | Value second; |
414 | }; |
415 | |
416 | template<typename Value> |
417 | const typename SparseArray<Value>::IndexValue& |
418 | SparseArray<Value>::iv(int i) const { |
419 | assert(i >= 0); |
420 | assert(i < size_); |
421 | return dense_[i]; |
422 | } |
423 | |
424 | // Change the maximum size of the array. |
425 | // Invalidates all iterators. |
426 | template<typename Value> |
427 | void SparseArray<Value>::resize(int max_size) { |
428 | DebugCheckInvariants(); |
429 | if (max_size > max_size_) { |
430 | std::unique_ptr<int[]> a(new int[max_size]); |
431 | if (sparse_) { |
432 | std::copy_n(sparse_.get(), max_size_, a.get()); |
433 | } |
434 | sparse_ = std::move(a); |
435 | |
436 | std::unique_ptr<IndexValue[]> b(new IndexValue[max_size]); |
437 | if (dense_) { |
438 | std::copy_n(dense_.get(), max_size_, b.get()); |
439 | } |
440 | dense_ = std::move(b); |
441 | |
442 | MaybeInitializeMemory(max_size_, max_size); |
443 | } |
444 | max_size_ = max_size; |
445 | if (size_ > max_size_) |
446 | size_ = max_size_; |
447 | DebugCheckInvariants(); |
448 | } |
449 | |
450 | // Check whether index i is in the array. |
451 | template<typename Value> |
452 | bool SparseArray<Value>::has_index(int i) const { |
453 | assert(i >= 0); |
454 | assert(i < max_size_); |
455 | if (static_cast<uint32_t>(i) >= static_cast<uint32_t>(max_size_)) { |
456 | return false; |
457 | } |
458 | // Unsigned comparison avoids checking sparse_[i] < 0. |
459 | return (uint32_t)sparse_[i] < (uint32_t)size_ && |
460 | dense_[sparse_[i]].index_ == i; |
461 | } |
462 | |
463 | template<typename Value> |
464 | const Value& SparseArray<Value>::get_existing(int i) const { |
465 | assert(has_index(i)); |
466 | return dense_[sparse_[i]].second; |
467 | } |
468 | |
469 | template<typename Value> |
470 | void SparseArray<Value>::erase(int i) { |
471 | DebugCheckInvariants(); |
472 | if (has_index(i)) |
473 | erase_existing(i); |
474 | DebugCheckInvariants(); |
475 | } |
476 | |
477 | template<typename Value> |
478 | void SparseArray<Value>::erase_existing(int i) { |
479 | DebugCheckInvariants(); |
480 | assert(has_index(i)); |
481 | int di = sparse_[i]; |
482 | if (di < size_ - 1) { |
483 | dense_[di] = std::move(dense_[size_ - 1]); |
484 | sparse_[dense_[di].index_] = di; |
485 | } |
486 | size_--; |
487 | DebugCheckInvariants(); |
488 | } |
489 | |
490 | template<typename Value> |
491 | void SparseArray<Value>::create_index(int i) { |
492 | assert(!has_index(i)); |
493 | assert(size_ < max_size_); |
494 | sparse_[i] = size_; |
495 | dense_[size_].index_ = i; |
496 | size_++; |
497 | } |
498 | |
499 | template<typename Value> SparseArray<Value>::SparseArray(int max_size) { |
500 | sparse_.reset(new int[max_size]); |
501 | dense_.reset(new IndexValue[max_size]); |
502 | size_ = 0; |
503 | MaybeInitializeMemory(size_, max_size); |
504 | max_size_ = max_size; |
505 | DebugCheckInvariants(); |
506 | } |
507 | |
508 | template<typename Value> SparseArray<Value>::~SparseArray() { |
509 | DebugCheckInvariants(); |
510 | } |
511 | |
512 | template<typename Value> void SparseArray<Value>::DebugCheckInvariants() const { |
513 | assert(0 <= size_); |
514 | assert(size_ <= max_size_); |
515 | assert(size_ == 0 || sparse_ != NULL); |
516 | } |
517 | |
518 | // Comparison function for sorting. |
519 | template<typename Value> bool SparseArray<Value>::less(const IndexValue& a, |
520 | const IndexValue& b) { |
521 | return a.index_ < b.index_; |
522 | } |
523 | |
524 | } // namespace re2 |
525 | |
526 | #endif // UTIL_SPARSE_ARRAY_H_ |
527 | |