1 | // Copyright 2011 Google Inc. All Rights Reserved. |
2 | // |
3 | // Redistribution and use in source and binary forms, with or without |
4 | // modification, are permitted provided that the following conditions are |
5 | // met: |
6 | // |
7 | // * Redistributions of source code must retain the above copyright |
8 | // notice, this list of conditions and the following disclaimer. |
9 | // * Redistributions in binary form must reproduce the above |
10 | // copyright notice, this list of conditions and the following disclaimer |
11 | // in the documentation and/or other materials provided with the |
12 | // distribution. |
13 | // * Neither the name of Google Inc. nor the names of its |
14 | // contributors may be used to endorse or promote products derived from |
15 | // this software without specific prior written permission. |
16 | // |
17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
18 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
19 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
20 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
21 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
22 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
23 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
24 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
25 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
26 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | // |
29 | // Various stubs for the open-source version of Snappy. |
30 | |
31 | #ifndef THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_ |
32 | #define THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_ |
33 | |
34 | #ifdef HAVE_CONFIG_H |
35 | #include "config.h" |
36 | #endif |
37 | |
38 | #include <string> |
39 | |
40 | #include <assert.h> |
41 | #include <stdlib.h> |
42 | #include <string.h> |
43 | |
44 | #ifdef HAVE_SYS_MMAN_H |
45 | #include <sys/mman.h> |
46 | #endif |
47 | |
48 | #ifdef HAVE_UNISTD_H |
49 | #include <unistd.h> |
50 | #endif |
51 | |
52 | #if defined(_MSC_VER) |
53 | #include <intrin.h> |
54 | #endif // defined(_MSC_VER) |
55 | |
56 | #ifndef __has_feature |
57 | #define __has_feature(x) 0 |
58 | #endif |
59 | |
60 | #if __has_feature(memory_sanitizer) |
61 | #include <sanitizer/msan_interface.h> |
62 | #define SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(address, size) \ |
63 | __msan_unpoison((address), (size)) |
64 | #else |
65 | #define SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(address, size) /* empty */ |
66 | #endif // __has_feature(memory_sanitizer) |
67 | |
68 | #include "snappy-stubs-public.h" |
69 | |
70 | #if defined(__x86_64__) |
71 | |
72 | // Enable 64-bit optimized versions of some routines. |
73 | #define ARCH_K8 1 |
74 | |
75 | #elif defined(__ppc64__) |
76 | |
77 | #define ARCH_PPC 1 |
78 | |
79 | #elif defined(__aarch64__) |
80 | |
81 | #define ARCH_ARM 1 |
82 | |
83 | #endif |
84 | |
85 | // Needed by OS X, among others. |
86 | #ifndef MAP_ANONYMOUS |
87 | #define MAP_ANONYMOUS MAP_ANON |
88 | #endif |
89 | |
90 | // The size of an array, if known at compile-time. |
91 | // Will give unexpected results if used on a pointer. |
92 | // We undefine it first, since some compilers already have a definition. |
93 | #ifdef ARRAYSIZE |
94 | #undef ARRAYSIZE |
95 | #endif |
96 | #define ARRAYSIZE(a) (sizeof(a) / sizeof(*(a))) |
97 | |
98 | // Static prediction hints. |
99 | #ifdef HAVE_BUILTIN_EXPECT |
100 | #define SNAPPY_PREDICT_FALSE(x) (__builtin_expect(x, 0)) |
101 | #define SNAPPY_PREDICT_TRUE(x) (__builtin_expect(!!(x), 1)) |
102 | #else |
103 | #define SNAPPY_PREDICT_FALSE(x) x |
104 | #define SNAPPY_PREDICT_TRUE(x) x |
105 | #endif |
106 | |
107 | // This is only used for recomputing the tag byte table used during |
108 | // decompression; for simplicity we just remove it from the open-source |
109 | // version (anyone who wants to regenerate it can just do the call |
110 | // themselves within main()). |
111 | #define DEFINE_bool(flag_name, default_value, description) \ |
112 | bool FLAGS_ ## flag_name = default_value |
113 | #define DECLARE_bool(flag_name) \ |
114 | extern bool FLAGS_ ## flag_name |
115 | |
116 | namespace snappy { |
117 | |
118 | static const uint32 kuint32max = static_cast<uint32>(0xFFFFFFFF); |
119 | static const int64 kint64max = static_cast<int64>(0x7FFFFFFFFFFFFFFFLL); |
120 | |
121 | // Potentially unaligned loads and stores. |
122 | |
123 | // x86, PowerPC, and ARM64 can simply do these loads and stores native. |
124 | |
125 | #if defined(__i386__) || defined(__x86_64__) || defined(__powerpc__) || \ |
126 | defined(__aarch64__) |
127 | |
128 | #define UNALIGNED_LOAD16(_p) (*reinterpret_cast<const uint16 *>(_p)) |
129 | #define UNALIGNED_LOAD32(_p) (*reinterpret_cast<const uint32 *>(_p)) |
130 | #define UNALIGNED_LOAD64(_p) (*reinterpret_cast<const uint64 *>(_p)) |
131 | |
132 | #define UNALIGNED_STORE16(_p, _val) (*reinterpret_cast<uint16 *>(_p) = (_val)) |
133 | #define UNALIGNED_STORE32(_p, _val) (*reinterpret_cast<uint32 *>(_p) = (_val)) |
134 | #define UNALIGNED_STORE64(_p, _val) (*reinterpret_cast<uint64 *>(_p) = (_val)) |
135 | |
136 | // ARMv7 and newer support native unaligned accesses, but only of 16-bit |
137 | // and 32-bit values (not 64-bit); older versions either raise a fatal signal, |
138 | // do an unaligned read and rotate the words around a bit, or do the reads very |
139 | // slowly (trip through kernel mode). There's no simple #define that says just |
140 | // “ARMv7 or higher”, so we have to filter away all ARMv5 and ARMv6 |
141 | // sub-architectures. |
142 | // |
143 | // This is a mess, but there's not much we can do about it. |
144 | // |
145 | // To further complicate matters, only LDR instructions (single reads) are |
146 | // allowed to be unaligned, not LDRD (two reads) or LDM (many reads). Unless we |
147 | // explicitly tell the compiler that these accesses can be unaligned, it can and |
148 | // will combine accesses. On armcc, the way to signal this is done by accessing |
149 | // through the type (uint32 __packed *), but GCC has no such attribute |
150 | // (it ignores __attribute__((packed)) on individual variables). However, |
151 | // we can tell it that a _struct_ is unaligned, which has the same effect, |
152 | // so we do that. |
153 | |
154 | #elif defined(__arm__) && \ |
155 | !defined(__ARM_ARCH_4__) && \ |
156 | !defined(__ARM_ARCH_4T__) && \ |
157 | !defined(__ARM_ARCH_5__) && \ |
158 | !defined(__ARM_ARCH_5T__) && \ |
159 | !defined(__ARM_ARCH_5TE__) && \ |
160 | !defined(__ARM_ARCH_5TEJ__) && \ |
161 | !defined(__ARM_ARCH_6__) && \ |
162 | !defined(__ARM_ARCH_6J__) && \ |
163 | !defined(__ARM_ARCH_6K__) && \ |
164 | !defined(__ARM_ARCH_6Z__) && \ |
165 | !defined(__ARM_ARCH_6ZK__) && \ |
166 | !defined(__ARM_ARCH_6T2__) |
167 | |
168 | #if __GNUC__ |
169 | #define ATTRIBUTE_PACKED __attribute__((__packed__)) |
170 | #else |
171 | #define ATTRIBUTE_PACKED |
172 | #endif |
173 | |
174 | namespace base { |
175 | namespace internal { |
176 | |
177 | struct Unaligned16Struct { |
178 | uint16 value; |
179 | uint8 dummy; // To make the size non-power-of-two. |
180 | } ATTRIBUTE_PACKED; |
181 | |
182 | struct Unaligned32Struct { |
183 | uint32 value; |
184 | uint8 dummy; // To make the size non-power-of-two. |
185 | } ATTRIBUTE_PACKED; |
186 | |
187 | } // namespace internal |
188 | } // namespace base |
189 | |
190 | #define UNALIGNED_LOAD16(_p) \ |
191 | ((reinterpret_cast<const ::snappy::base::internal::Unaligned16Struct *>(_p))->value) |
192 | #define UNALIGNED_LOAD32(_p) \ |
193 | ((reinterpret_cast<const ::snappy::base::internal::Unaligned32Struct *>(_p))->value) |
194 | |
195 | #define UNALIGNED_STORE16(_p, _val) \ |
196 | ((reinterpret_cast< ::snappy::base::internal::Unaligned16Struct *>(_p))->value = \ |
197 | (_val)) |
198 | #define UNALIGNED_STORE32(_p, _val) \ |
199 | ((reinterpret_cast< ::snappy::base::internal::Unaligned32Struct *>(_p))->value = \ |
200 | (_val)) |
201 | |
202 | // TODO(user): NEON supports unaligned 64-bit loads and stores. |
203 | // See if that would be more efficient on platforms supporting it, |
204 | // at least for copies. |
205 | |
206 | inline uint64 UNALIGNED_LOAD64(const void *p) { |
207 | uint64 t; |
208 | memcpy(&t, p, sizeof t); |
209 | return t; |
210 | } |
211 | |
212 | inline void UNALIGNED_STORE64(void *p, uint64 v) { |
213 | memcpy(p, &v, sizeof v); |
214 | } |
215 | |
216 | #else |
217 | |
218 | // These functions are provided for architectures that don't support |
219 | // unaligned loads and stores. |
220 | |
221 | inline uint16 UNALIGNED_LOAD16(const void *p) { |
222 | uint16 t; |
223 | memcpy(&t, p, sizeof t); |
224 | return t; |
225 | } |
226 | |
227 | inline uint32 UNALIGNED_LOAD32(const void *p) { |
228 | uint32 t; |
229 | memcpy(&t, p, sizeof t); |
230 | return t; |
231 | } |
232 | |
233 | inline uint64 UNALIGNED_LOAD64(const void *p) { |
234 | uint64 t; |
235 | memcpy(&t, p, sizeof t); |
236 | return t; |
237 | } |
238 | |
239 | inline void UNALIGNED_STORE16(void *p, uint16 v) { |
240 | memcpy(p, &v, sizeof v); |
241 | } |
242 | |
243 | inline void UNALIGNED_STORE32(void *p, uint32 v) { |
244 | memcpy(p, &v, sizeof v); |
245 | } |
246 | |
247 | inline void UNALIGNED_STORE64(void *p, uint64 v) { |
248 | memcpy(p, &v, sizeof v); |
249 | } |
250 | |
251 | #endif |
252 | |
253 | // The following guarantees declaration of the byte swap functions. |
254 | #if defined(SNAPPY_IS_BIG_ENDIAN) |
255 | |
256 | #ifdef HAVE_SYS_BYTEORDER_H |
257 | #include <sys/byteorder.h> |
258 | #endif |
259 | |
260 | #ifdef HAVE_SYS_ENDIAN_H |
261 | #include <sys/endian.h> |
262 | #endif |
263 | |
264 | #ifdef _MSC_VER |
265 | #include <stdlib.h> |
266 | #define bswap_16(x) _byteswap_ushort(x) |
267 | #define bswap_32(x) _byteswap_ulong(x) |
268 | #define bswap_64(x) _byteswap_uint64(x) |
269 | |
270 | #elif defined(__APPLE__) |
271 | // Mac OS X / Darwin features |
272 | #include <libkern/OSByteOrder.h> |
273 | #define bswap_16(x) OSSwapInt16(x) |
274 | #define bswap_32(x) OSSwapInt32(x) |
275 | #define bswap_64(x) OSSwapInt64(x) |
276 | |
277 | #elif defined(HAVE_BYTESWAP_H) |
278 | #include <byteswap.h> |
279 | |
280 | #elif defined(bswap32) |
281 | // FreeBSD defines bswap{16,32,64} in <sys/endian.h> (already #included). |
282 | #define bswap_16(x) bswap16(x) |
283 | #define bswap_32(x) bswap32(x) |
284 | #define bswap_64(x) bswap64(x) |
285 | |
286 | #elif defined(BSWAP_64) |
287 | // Solaris 10 defines BSWAP_{16,32,64} in <sys/byteorder.h> (already #included). |
288 | #define bswap_16(x) BSWAP_16(x) |
289 | #define bswap_32(x) BSWAP_32(x) |
290 | #define bswap_64(x) BSWAP_64(x) |
291 | |
292 | #else |
293 | |
294 | inline uint16 bswap_16(uint16 x) { |
295 | return (x << 8) | (x >> 8); |
296 | } |
297 | |
298 | inline uint32 bswap_32(uint32 x) { |
299 | x = ((x & 0xff00ff00UL) >> 8) | ((x & 0x00ff00ffUL) << 8); |
300 | return (x >> 16) | (x << 16); |
301 | } |
302 | |
303 | inline uint64 bswap_64(uint64 x) { |
304 | x = ((x & 0xff00ff00ff00ff00ULL) >> 8) | ((x & 0x00ff00ff00ff00ffULL) << 8); |
305 | x = ((x & 0xffff0000ffff0000ULL) >> 16) | ((x & 0x0000ffff0000ffffULL) << 16); |
306 | return (x >> 32) | (x << 32); |
307 | } |
308 | |
309 | #endif |
310 | |
311 | #endif // defined(SNAPPY_IS_BIG_ENDIAN) |
312 | |
313 | // Convert to little-endian storage, opposite of network format. |
314 | // Convert x from host to little endian: x = LittleEndian.FromHost(x); |
315 | // convert x from little endian to host: x = LittleEndian.ToHost(x); |
316 | // |
317 | // Store values into unaligned memory converting to little endian order: |
318 | // LittleEndian.Store16(p, x); |
319 | // |
320 | // Load unaligned values stored in little endian converting to host order: |
321 | // x = LittleEndian.Load16(p); |
322 | class LittleEndian { |
323 | public: |
324 | // Conversion functions. |
325 | #if defined(SNAPPY_IS_BIG_ENDIAN) |
326 | |
327 | static uint16 FromHost16(uint16 x) { return bswap_16(x); } |
328 | static uint16 ToHost16(uint16 x) { return bswap_16(x); } |
329 | |
330 | static uint32 FromHost32(uint32 x) { return bswap_32(x); } |
331 | static uint32 ToHost32(uint32 x) { return bswap_32(x); } |
332 | |
333 | static bool IsLittleEndian() { return false; } |
334 | |
335 | #else // !defined(SNAPPY_IS_BIG_ENDIAN) |
336 | |
337 | static uint16 FromHost16(uint16 x) { return x; } |
338 | static uint16 ToHost16(uint16 x) { return x; } |
339 | |
340 | static uint32 FromHost32(uint32 x) { return x; } |
341 | static uint32 ToHost32(uint32 x) { return x; } |
342 | |
343 | static bool IsLittleEndian() { return true; } |
344 | |
345 | #endif // !defined(SNAPPY_IS_BIG_ENDIAN) |
346 | |
347 | // Functions to do unaligned loads and stores in little-endian order. |
348 | static uint16 Load16(const void *p) { |
349 | return ToHost16(UNALIGNED_LOAD16(p)); |
350 | } |
351 | |
352 | static void Store16(void *p, uint16 v) { |
353 | UNALIGNED_STORE16(p, FromHost16(v)); |
354 | } |
355 | |
356 | static uint32 Load32(const void *p) { |
357 | return ToHost32(UNALIGNED_LOAD32(p)); |
358 | } |
359 | |
360 | static void Store32(void *p, uint32 v) { |
361 | UNALIGNED_STORE32(p, FromHost32(v)); |
362 | } |
363 | }; |
364 | |
365 | // Some bit-manipulation functions. |
366 | class Bits { |
367 | public: |
368 | // Return floor(log2(n)) for positive integer n. |
369 | static int Log2FloorNonZero(uint32 n); |
370 | |
371 | // Return floor(log2(n)) for positive integer n. Returns -1 iff n == 0. |
372 | static int Log2Floor(uint32 n); |
373 | |
374 | // Return the first set least / most significant bit, 0-indexed. Returns an |
375 | // undefined value if n == 0. FindLSBSetNonZero() is similar to ffs() except |
376 | // that it's 0-indexed. |
377 | static int FindLSBSetNonZero(uint32 n); |
378 | |
379 | #if defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM) |
380 | static int FindLSBSetNonZero64(uint64 n); |
381 | #endif // defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM) |
382 | |
383 | private: |
384 | // No copying |
385 | Bits(const Bits&); |
386 | void operator=(const Bits&); |
387 | }; |
388 | |
389 | #ifdef HAVE_BUILTIN_CTZ |
390 | |
391 | inline int Bits::Log2FloorNonZero(uint32 n) { |
392 | assert(n != 0); |
393 | // (31 ^ x) is equivalent to (31 - x) for x in [0, 31]. An easy proof |
394 | // represents subtraction in base 2 and observes that there's no carry. |
395 | // |
396 | // GCC and Clang represent __builtin_clz on x86 as 31 ^ _bit_scan_reverse(x). |
397 | // Using "31 ^" here instead of "31 -" allows the optimizer to strip the |
398 | // function body down to _bit_scan_reverse(x). |
399 | return 31 ^ __builtin_clz(n); |
400 | } |
401 | |
402 | inline int Bits::Log2Floor(uint32 n) { |
403 | return (n == 0) ? -1 : Bits::Log2FloorNonZero(n); |
404 | } |
405 | |
406 | inline int Bits::FindLSBSetNonZero(uint32 n) { |
407 | assert(n != 0); |
408 | return __builtin_ctz(n); |
409 | } |
410 | |
411 | #if defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM) |
412 | inline int Bits::FindLSBSetNonZero64(uint64 n) { |
413 | assert(n != 0); |
414 | return __builtin_ctzll(n); |
415 | } |
416 | #endif // defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM) |
417 | |
418 | #elif defined(_MSC_VER) |
419 | |
420 | inline int Bits::Log2FloorNonZero(uint32 n) { |
421 | assert(n != 0); |
422 | unsigned long where; |
423 | _BitScanReverse(&where, n); |
424 | return static_cast<int>(where); |
425 | } |
426 | |
427 | inline int Bits::Log2Floor(uint32 n) { |
428 | unsigned long where; |
429 | if (_BitScanReverse(&where, n)) |
430 | return static_cast<int>(where); |
431 | return -1; |
432 | } |
433 | |
434 | inline int Bits::FindLSBSetNonZero(uint32 n) { |
435 | assert(n != 0); |
436 | unsigned long where; |
437 | if (_BitScanForward(&where, n)) |
438 | return static_cast<int>(where); |
439 | return 32; |
440 | } |
441 | |
442 | #if defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM) |
443 | inline int Bits::FindLSBSetNonZero64(uint64 n) { |
444 | assert(n != 0); |
445 | unsigned long where; |
446 | if (_BitScanForward64(&where, n)) |
447 | return static_cast<int>(where); |
448 | return 64; |
449 | } |
450 | #endif // defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM) |
451 | |
452 | #else // Portable versions. |
453 | |
454 | inline int Bits::Log2FloorNonZero(uint32 n) { |
455 | assert(n != 0); |
456 | |
457 | int log = 0; |
458 | uint32 value = n; |
459 | for (int i = 4; i >= 0; --i) { |
460 | int shift = (1 << i); |
461 | uint32 x = value >> shift; |
462 | if (x != 0) { |
463 | value = x; |
464 | log += shift; |
465 | } |
466 | } |
467 | assert(value == 1); |
468 | return log; |
469 | } |
470 | |
471 | inline int Bits::Log2Floor(uint32 n) { |
472 | return (n == 0) ? -1 : Bits::Log2FloorNonZero(arg); |
473 | } |
474 | |
475 | inline int Bits::FindLSBSetNonZero(uint32 n) { |
476 | assert(n != 0); |
477 | |
478 | int rc = 31; |
479 | for (int i = 4, shift = 1 << 4; i >= 0; --i) { |
480 | const uint32 x = n << shift; |
481 | if (x != 0) { |
482 | n = x; |
483 | rc -= shift; |
484 | } |
485 | shift >>= 1; |
486 | } |
487 | return rc; |
488 | } |
489 | |
490 | #if defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM) |
491 | // FindLSBSetNonZero64() is defined in terms of FindLSBSetNonZero(). |
492 | inline int Bits::FindLSBSetNonZero64(uint64 n) { |
493 | assert(n != 0); |
494 | |
495 | const uint32 bottombits = static_cast<uint32>(n); |
496 | if (bottombits == 0) { |
497 | // Bottom bits are zero, so scan in top bits |
498 | return 32 + FindLSBSetNonZero(static_cast<uint32>(n >> 32)); |
499 | } else { |
500 | return FindLSBSetNonZero(bottombits); |
501 | } |
502 | } |
503 | #endif // defined(ARCH_K8) || defined(ARCH_PPC) || defined(ARCH_ARM) |
504 | |
505 | #endif // End portable versions. |
506 | |
507 | // Variable-length integer encoding. |
508 | class Varint { |
509 | public: |
510 | // Maximum lengths of varint encoding of uint32. |
511 | static const int kMax32 = 5; |
512 | |
513 | // Attempts to parse a varint32 from a prefix of the bytes in [ptr,limit-1]. |
514 | // Never reads a character at or beyond limit. If a valid/terminated varint32 |
515 | // was found in the range, stores it in *OUTPUT and returns a pointer just |
516 | // past the last byte of the varint32. Else returns NULL. On success, |
517 | // "result <= limit". |
518 | static const char* Parse32WithLimit(const char* ptr, const char* limit, |
519 | uint32* OUTPUT); |
520 | |
521 | // REQUIRES "ptr" points to a buffer of length sufficient to hold "v". |
522 | // EFFECTS Encodes "v" into "ptr" and returns a pointer to the |
523 | // byte just past the last encoded byte. |
524 | static char* Encode32(char* ptr, uint32 v); |
525 | |
526 | // EFFECTS Appends the varint representation of "value" to "*s". |
527 | static void Append32(string* s, uint32 value); |
528 | }; |
529 | |
530 | inline const char* Varint::Parse32WithLimit(const char* p, |
531 | const char* l, |
532 | uint32* OUTPUT) { |
533 | const unsigned char* ptr = reinterpret_cast<const unsigned char*>(p); |
534 | const unsigned char* limit = reinterpret_cast<const unsigned char*>(l); |
535 | uint32 b, result; |
536 | if (ptr >= limit) return NULL; |
537 | b = *(ptr++); result = b & 127; if (b < 128) goto done; |
538 | if (ptr >= limit) return NULL; |
539 | b = *(ptr++); result |= (b & 127) << 7; if (b < 128) goto done; |
540 | if (ptr >= limit) return NULL; |
541 | b = *(ptr++); result |= (b & 127) << 14; if (b < 128) goto done; |
542 | if (ptr >= limit) return NULL; |
543 | b = *(ptr++); result |= (b & 127) << 21; if (b < 128) goto done; |
544 | if (ptr >= limit) return NULL; |
545 | b = *(ptr++); result |= (b & 127) << 28; if (b < 16) goto done; |
546 | return NULL; // Value is too long to be a varint32 |
547 | done: |
548 | *OUTPUT = result; |
549 | return reinterpret_cast<const char*>(ptr); |
550 | } |
551 | |
552 | inline char* Varint::Encode32(char* sptr, uint32 v) { |
553 | // Operate on characters as unsigneds |
554 | unsigned char* ptr = reinterpret_cast<unsigned char*>(sptr); |
555 | static const int B = 128; |
556 | if (v < (1<<7)) { |
557 | *(ptr++) = v; |
558 | } else if (v < (1<<14)) { |
559 | *(ptr++) = v | B; |
560 | *(ptr++) = v>>7; |
561 | } else if (v < (1<<21)) { |
562 | *(ptr++) = v | B; |
563 | *(ptr++) = (v>>7) | B; |
564 | *(ptr++) = v>>14; |
565 | } else if (v < (1<<28)) { |
566 | *(ptr++) = v | B; |
567 | *(ptr++) = (v>>7) | B; |
568 | *(ptr++) = (v>>14) | B; |
569 | *(ptr++) = v>>21; |
570 | } else { |
571 | *(ptr++) = v | B; |
572 | *(ptr++) = (v>>7) | B; |
573 | *(ptr++) = (v>>14) | B; |
574 | *(ptr++) = (v>>21) | B; |
575 | *(ptr++) = v>>28; |
576 | } |
577 | return reinterpret_cast<char*>(ptr); |
578 | } |
579 | |
580 | // If you know the internal layout of the std::string in use, you can |
581 | // replace this function with one that resizes the string without |
582 | // filling the new space with zeros (if applicable) -- |
583 | // it will be non-portable but faster. |
584 | inline void STLStringResizeUninitialized(string* s, size_t new_size) { |
585 | s->resize(new_size); |
586 | } |
587 | |
588 | // Return a mutable char* pointing to a string's internal buffer, |
589 | // which may not be null-terminated. Writing through this pointer will |
590 | // modify the string. |
591 | // |
592 | // string_as_array(&str)[i] is valid for 0 <= i < str.size() until the |
593 | // next call to a string method that invalidates iterators. |
594 | // |
595 | // As of 2006-04, there is no standard-blessed way of getting a |
596 | // mutable reference to a string's internal buffer. However, issue 530 |
597 | // (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-defects.html#530) |
598 | // proposes this as the method. It will officially be part of the standard |
599 | // for C++0x. This should already work on all current implementations. |
600 | inline char* string_as_array(string* str) { |
601 | return str->empty() ? NULL : &*str->begin(); |
602 | } |
603 | |
604 | } // namespace snappy |
605 | |
606 | #endif // THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_ |
607 | |