1 | // Copyright (c) 2005, Google Inc. |
2 | // All rights reserved. |
3 | // |
4 | // Redistribution and use in source and binary forms, with or without |
5 | // modification, are permitted provided that the following conditions are |
6 | // met: |
7 | // |
8 | // * Redistributions of source code must retain the above copyright |
9 | // notice, this list of conditions and the following disclaimer. |
10 | // * Redistributions in binary form must reproduce the above |
11 | // copyright notice, this list of conditions and the following disclaimer |
12 | // in the documentation and/or other materials provided with the |
13 | // distribution. |
14 | // * Neither the name of Google Inc. nor the names of its |
15 | // contributors may be used to endorse or promote products derived from |
16 | // this software without specific prior written permission. |
17 | // |
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | |
30 | // --- |
31 | // |
32 | // |
33 | // A sparsetable is a random container that implements a sparse array, |
34 | // that is, an array that uses very little memory to store unassigned |
35 | // indices (in this case, between 1-2 bits per unassigned index). For |
36 | // instance, if you allocate an array of size 5 and assign a[2] = <big |
37 | // struct>, then a[2] will take up a lot of memory but a[0], a[1], |
38 | // a[3], and a[4] will not. Array elements that have a value are |
39 | // called "assigned". Array elements that have no value yet, or have |
40 | // had their value cleared using erase() or clear(), are called |
41 | // "unassigned". |
42 | // |
43 | // Unassigned values seem to have the default value of T (see below). |
44 | // Nevertheless, there is a difference between an unassigned index and |
45 | // one explicitly assigned the value of T(). The latter is considered |
46 | // assigned. |
47 | // |
48 | // Access to an array element is constant time, as is insertion and |
49 | // deletion. Insertion and deletion may be fairly slow, however: |
50 | // because of this container's memory economy, each insert and delete |
51 | // causes a memory reallocation. |
52 | // |
53 | // NOTE: You should not test(), get(), or set() any index that is |
54 | // greater than sparsetable.size(). If you need to do that, call |
55 | // resize() first. |
56 | // |
57 | // --- Template parameters |
58 | // PARAMETER DESCRIPTION DEFAULT |
59 | // T The value of the array: the type of -- |
60 | // object that is stored in the array. |
61 | // |
62 | // GROUP_SIZE How large each "group" in the table 48 |
63 | // is (see below). Larger values use |
64 | // a little less memory but cause most |
65 | // operations to be a little slower |
66 | // |
67 | // Alloc: Allocator to use to allocate memory. libc_allocator_with_realloc |
68 | // |
69 | // --- Model of |
70 | // Random Access Container |
71 | // |
72 | // --- Type requirements |
73 | // T must be Copy Constructible. It need not be Assignable. |
74 | // |
75 | // --- Public base classes |
76 | // None. |
77 | // |
78 | // --- Members |
79 | // Type members |
80 | // |
81 | // MEMBER WHERE DEFINED DESCRIPTION |
82 | // value_type container The type of object, T, stored in the array |
83 | // allocator_type container Allocator to use |
84 | // pointer container Pointer to p |
85 | // const_pointer container Const pointer to p |
86 | // reference container Reference to t |
87 | // const_reference container Const reference to t |
88 | // size_type container An unsigned integral type |
89 | // difference_type container A signed integral type |
90 | // iterator [*] container Iterator used to iterate over a sparsetable |
91 | // const_iterator container Const iterator used to iterate over a table |
92 | // reverse_iterator reversible Iterator used to iterate backwards over |
93 | // container a sparsetable |
94 | // const_reverse_iterator reversible container Guess |
95 | // nonempty_iterator [+] sparsetable Iterates over assigned |
96 | // array elements only |
97 | // const_nonempty_iterator sparsetable Iterates over assigned |
98 | // array elements only |
99 | // reverse_nonempty_iterator sparsetable Iterates backwards over |
100 | // assigned array elements only |
101 | // const_reverse_nonempty_iterator sparsetable Iterates backwards over |
102 | // assigned array elements only |
103 | // |
104 | // [*] All iterators are const in a sparsetable (though nonempty_iterators |
105 | // may not be). Use get() and set() to assign values, not iterators. |
106 | // |
107 | // [+] iterators are random-access iterators. nonempty_iterators are |
108 | // bidirectional iterators. |
109 | |
110 | // Iterator members |
111 | // MEMBER WHERE DEFINED DESCRIPTION |
112 | // |
113 | // iterator begin() container An iterator to the beginning of the table |
114 | // iterator end() container An iterator to the end of the table |
115 | // const_iterator container A const_iterator pointing to the |
116 | // begin() const beginning of a sparsetable |
117 | // const_iterator container A const_iterator pointing to the |
118 | // end() const end of a sparsetable |
119 | // |
120 | // reverse_iterator reversable Points to beginning of a reversed |
121 | // rbegin() container sparsetable |
122 | // reverse_iterator reversable Points to end of a reversed table |
123 | // rend() container |
124 | // const_reverse_iterator reversable Points to beginning of a |
125 | // rbegin() const container reversed sparsetable |
126 | // const_reverse_iterator reversable Points to end of a reversed table |
127 | // rend() const container |
128 | // |
129 | // nonempty_iterator sparsetable Points to first assigned element |
130 | // begin() of a sparsetable |
131 | // nonempty_iterator sparsetable Points past last assigned element |
132 | // end() of a sparsetable |
133 | // const_nonempty_iterator sparsetable Points to first assigned element |
134 | // begin() const of a sparsetable |
135 | // const_nonempty_iterator sparsetable Points past last assigned element |
136 | // end() const of a sparsetable |
137 | // |
138 | // reverse_nonempty_iterator sparsetable Points to first assigned element |
139 | // begin() of a reversed sparsetable |
140 | // reverse_nonempty_iterator sparsetable Points past last assigned element |
141 | // end() of a reversed sparsetable |
142 | // const_reverse_nonempty_iterator sparsetable Points to first assigned |
143 | // begin() const elt of a reversed sparsetable |
144 | // const_reverse_nonempty_iterator sparsetable Points past last assigned |
145 | // end() const elt of a reversed sparsetable |
146 | // |
147 | // |
148 | // Other members |
149 | // MEMBER WHERE DEFINED DESCRIPTION |
150 | // sparsetable() sparsetable A table of size 0; must resize() |
151 | // before using. |
152 | // sparsetable(size_type size) sparsetable A table of size size. All |
153 | // indices are unassigned. |
154 | // sparsetable( |
155 | // const sparsetable &tbl) sparsetable Copy constructor |
156 | // ~sparsetable() sparsetable The destructor |
157 | // sparsetable &operator=( sparsetable The assignment operator |
158 | // const sparsetable &tbl) |
159 | // |
160 | // void resize(size_type size) sparsetable Grow or shrink a table to |
161 | // have size indices [*] |
162 | // |
163 | // void swap(sparsetable &x) sparsetable Swap two sparsetables |
164 | // void swap(sparsetable &x, sparsetable Swap two sparsetables |
165 | // sparsetable &y) (global, not member, function) |
166 | // |
167 | // size_type size() const sparsetable Number of "buckets" in the table |
168 | // size_type max_size() const sparsetable Max allowed size of a sparsetable |
169 | // bool empty() const sparsetable true if size() == 0 |
170 | // size_type num_nonempty() const sparsetable Number of assigned "buckets" |
171 | // |
172 | // const_reference get( sparsetable Value at index i, or default |
173 | // size_type i) const value if i is unassigned |
174 | // const_reference operator[]( sparsetable Identical to get(i) [+] |
175 | // difference_type i) const |
176 | // reference set(size_type i, sparsetable Set element at index i to |
177 | // const_reference val) be a copy of val |
178 | // bool test(size_type i) sparsetable True if element at index i |
179 | // const has been assigned to |
180 | // bool test(iterator pos) sparsetable True if element pointed to |
181 | // const by pos has been assigned to |
182 | // void erase(iterator pos) sparsetable Set element pointed to by |
183 | // pos to be unassigned [!] |
184 | // void erase(size_type i) sparsetable Set element i to be unassigned |
185 | // void erase(iterator start, sparsetable Erases all elements between |
186 | // iterator end) start and end |
187 | // void clear() sparsetable Erases all elements in the table |
188 | // |
189 | // I/O versions exist for both FILE* and for File* (Google2-style files): |
190 | // bool write_metadata(FILE *fp) sparsetable Writes a sparsetable to the |
191 | // bool write_metadata(File *fp) given file. true if write |
192 | // completes successfully |
193 | // bool read_metadata(FILE *fp) sparsetable Replaces sparsetable with |
194 | // bool read_metadata(File *fp) version read from fp. true |
195 | // if read completes sucessfully |
196 | // bool write_nopointer_data(FILE *fp) Read/write the data stored in |
197 | // bool read_nopointer_data(FILE*fp) the table, if it's simple |
198 | // |
199 | // bool operator==( forward Tests two tables for equality. |
200 | // const sparsetable &t1, container This is a global function, |
201 | // const sparsetable &t2) not a member function. |
202 | // bool operator<( forward Lexicographical comparison. |
203 | // const sparsetable &t1, container This is a global function, |
204 | // const sparsetable &t2) not a member function. |
205 | // |
206 | // [*] If you shrink a sparsetable using resize(), assigned elements |
207 | // past the end of the table are removed using erase(). If you grow |
208 | // a sparsetable, new unassigned indices are created. |
209 | // |
210 | // [+] Note that operator[] returns a const reference. You must use |
211 | // set() to change the value of a table element. |
212 | // |
213 | // [!] Unassignment also calls the destructor. |
214 | // |
215 | // Iterators are invalidated whenever an item is inserted or |
216 | // deleted (ie set() or erase() is used) or when the size of |
217 | // the table changes (ie resize() or clear() is used). |
218 | // |
219 | // See doc/sparsetable.html for more information about how to use this class. |
220 | |
221 | // Note: this uses STL style for naming, rather than Google naming. |
222 | // That's because this is an STL-y container |
223 | |
224 | #pragma once |
225 | |
226 | #include <cstdlib> // for malloc/free |
227 | #include <cstdio> // to read/write tables |
228 | #include <cstring> // for memcpy |
229 | #include <cstdint> // the normal place uint16_t is defined |
230 | #include <cassert> // for bounds checking |
231 | #include <iterator> // to define reverse_iterator for me |
232 | #include <algorithm> // equal, lexicographical_compare, swap,... |
233 | #include <memory> // uninitialized_copy, uninitialized_fill |
234 | #include <vector> // a sparsetable is a vector of groups |
235 | #include <type_traits> |
236 | #include <sparsehash/internal/hashtable-common.h> |
237 | #include <sparsehash/internal/libc_allocator_with_realloc.h> |
238 | #include <sparsehash/traits> |
239 | |
240 | namespace google { |
241 | // The smaller this is, the faster lookup is (because the group bitmap is |
242 | // smaller) and the faster insert is, because there's less to move. |
243 | // On the other hand, there are more groups. Since group::size_type is |
244 | // a short, this number should be of the form 32*x + 16 to avoid waste. |
245 | static const uint16_t DEFAULT_SPARSEGROUP_SIZE = 48; // fits in 1.5 words |
246 | |
247 | // Our iterator as simple as iterators can be: basically it's just |
248 | // the index into our table. Dereference, the only complicated |
249 | // thing, we punt to the table class. This just goes to show how |
250 | // much machinery STL requires to do even the most trivial tasks. |
251 | // |
252 | // A NOTE ON ASSIGNING: |
253 | // A sparse table does not actually allocate memory for entries |
254 | // that are not filled. Because of this, it becomes complicated |
255 | // to have a non-const iterator: we don't know, if the iterator points |
256 | // to a not-filled bucket, whether you plan to fill it with something |
257 | // or whether you plan to read its value (in which case you'll get |
258 | // the default bucket value). Therefore, while we can define const |
259 | // operations in a pretty 'normal' way, for non-const operations, we |
260 | // define something that returns a helper object with operator= and |
261 | // operator& that allocate a bucket lazily. We use this for table[] |
262 | // and also for regular table iterators. |
263 | |
264 | template <class tabletype> |
265 | class table_element_adaptor { |
266 | public: |
267 | typedef typename tabletype::value_type value_type; |
268 | typedef typename tabletype::size_type size_type; |
269 | typedef typename tabletype::reference reference; |
270 | typedef typename tabletype::pointer pointer; |
271 | |
272 | table_element_adaptor(tabletype* tbl, size_type p) : table(tbl), pos(p) {} |
273 | table_element_adaptor& operator=(const value_type& val) { |
274 | table->set(pos, val); |
275 | return *this; |
276 | } |
277 | operator value_type() { return table->get(pos); } // we look like a value |
278 | pointer operator&() { return &table->mutating_get(pos); } |
279 | |
280 | private: |
281 | tabletype* table; |
282 | size_type pos; |
283 | }; |
284 | |
285 | // Our iterator as simple as iterators can be: basically it's just |
286 | // the index into our table. Dereference, the only complicated |
287 | // thing, we punt to the table class. This just goes to show how |
288 | // much machinery STL requires to do even the most trivial tasks. |
289 | // |
290 | // By templatizing over tabletype, we have one iterator type which |
291 | // we can use for both sparsetables and sparsebins. In fact it |
292 | // works on any class that allows size() and operator[] (eg vector), |
293 | // as long as it does the standard STL typedefs too (eg value_type). |
294 | |
295 | template <class tabletype> |
296 | class table_iterator { |
297 | public: |
298 | typedef table_iterator iterator; |
299 | |
300 | typedef std::random_access_iterator_tag iterator_category; |
301 | typedef typename tabletype::value_type value_type; |
302 | typedef typename tabletype::difference_type difference_type; |
303 | typedef typename tabletype::size_type size_type; |
304 | typedef table_element_adaptor<tabletype> reference; |
305 | typedef table_element_adaptor<tabletype>* pointer; |
306 | typedef typename tabletype::const_reference const_reference; // we're const-only |
307 | |
308 | // The "real" constructor |
309 | table_iterator(tabletype* tbl, size_type p) : table(tbl), pos(p) {} |
310 | // The default constructor, used when I define vars of type table::iterator |
311 | table_iterator() : table(NULL), pos(0) {} |
312 | // The copy constructor, for when I say table::iterator foo = tbl.begin() |
313 | // The default destructor is fine; we don't define one |
314 | // The default operator= is fine; we don't define one |
315 | |
316 | // The main thing our iterator does is dereference. If the table entry |
317 | // we point to is empty, we return the default value type. |
318 | // This is the big different function from the const iterator. |
319 | reference operator*() { return table_element_adaptor<tabletype>(table, pos); } |
320 | const_reference operator*() const { return table_element_adaptor<tabletype>(table, pos); } |
321 | pointer operator->() { return &(operator*()); } |
322 | |
323 | // Helper function to assert things are ok; eg pos is still in range |
324 | void check() const { |
325 | assert(table); |
326 | assert(pos <= table->size()); |
327 | } |
328 | |
329 | // Arithmetic: we just do arithmetic on pos. We don't even need to |
330 | // do bounds checking, since STL doesn't consider that its job. :-) |
331 | iterator& operator+=(size_type t) { |
332 | pos += t; |
333 | check(); |
334 | return *this; |
335 | } |
336 | iterator& operator-=(size_type t) { |
337 | pos -= t; |
338 | check(); |
339 | return *this; |
340 | } |
341 | iterator& operator++() { |
342 | ++pos; |
343 | check(); |
344 | return *this; |
345 | } |
346 | iterator& operator--() { |
347 | --pos; |
348 | check(); |
349 | return *this; |
350 | } |
351 | iterator operator++(int) { |
352 | iterator tmp(*this); // for x++ |
353 | ++pos; |
354 | check(); |
355 | return tmp; |
356 | } |
357 | iterator operator--(int) { |
358 | iterator tmp(*this); // for x-- |
359 | --pos; |
360 | check(); |
361 | return tmp; |
362 | } |
363 | iterator operator+(difference_type i) const { |
364 | iterator tmp(*this); |
365 | tmp += i; |
366 | return tmp; |
367 | } |
368 | iterator operator-(difference_type i) const { |
369 | iterator tmp(*this); |
370 | tmp -= i; |
371 | return tmp; |
372 | } |
373 | difference_type operator-(iterator it) const { // for "x = it2 - it" |
374 | assert(table == it.table); |
375 | return pos - it.pos; |
376 | } |
377 | reference operator[](difference_type n) const { |
378 | return *(*this + n); // simple though not totally efficient |
379 | } |
380 | |
381 | // Comparisons. |
382 | bool operator==(const iterator& it) const { |
383 | return table == it.table && pos == it.pos; |
384 | } |
385 | bool operator<(const iterator& it) const { |
386 | assert(table == it.table); // life is bad bad bad otherwise |
387 | return pos < it.pos; |
388 | } |
389 | bool operator!=(const iterator& it) const { return !(*this == it); } |
390 | bool operator<=(const iterator& it) const { return !(it < *this); } |
391 | bool operator>(const iterator& it) const { return it < *this; } |
392 | bool operator>=(const iterator& it) const { return !(*this < it); } |
393 | |
394 | // Here's the info we actually need to be an iterator |
395 | tabletype* table; // so we can dereference and bounds-check |
396 | size_type pos; // index into the table |
397 | }; |
398 | |
399 | // support for "3 + iterator" has to be defined outside the class, alas |
400 | template <class T> |
401 | table_iterator<T> operator+(typename table_iterator<T>::difference_type i, |
402 | table_iterator<T> it) { |
403 | return it + i; // so people can say it2 = 3 + it |
404 | } |
405 | |
406 | template <class tabletype> |
407 | class const_table_iterator { |
408 | public: |
409 | typedef table_iterator<tabletype> iterator; |
410 | typedef const_table_iterator const_iterator; |
411 | |
412 | typedef std::random_access_iterator_tag iterator_category; |
413 | typedef typename tabletype::value_type value_type; |
414 | typedef typename tabletype::difference_type difference_type; |
415 | typedef typename tabletype::size_type size_type; |
416 | typedef typename tabletype::const_reference reference; // we're const-only |
417 | typedef typename tabletype::const_pointer pointer; |
418 | |
419 | // The "real" constructor |
420 | const_table_iterator(const tabletype* tbl, size_type p) |
421 | : table(tbl), pos(p) {} |
422 | // The default constructor, used when I define vars of type table::iterator |
423 | const_table_iterator() : table(NULL), pos(0) {} |
424 | // The copy constructor, for when I say table::iterator foo = tbl.begin() |
425 | // Also converts normal iterators to const iterators |
426 | const_table_iterator(const iterator& from) |
427 | : table(from.table), pos(from.pos) {} |
428 | // The default destructor is fine; we don't define one |
429 | // The default operator= is fine; we don't define one |
430 | |
431 | // The main thing our iterator does is dereference. If the table entry |
432 | // we point to is empty, we return the default value type. |
433 | reference operator*() const { return (*table)[pos]; } |
434 | pointer operator->() const { return &(operator*()); } |
435 | |
436 | // Helper function to assert things are ok; eg pos is still in range |
437 | void check() const { |
438 | assert(table); |
439 | assert(pos <= table->size()); |
440 | } |
441 | |
442 | // Arithmetic: we just do arithmetic on pos. We don't even need to |
443 | // do bounds checking, since STL doesn't consider that its job. :-) |
444 | const_iterator& operator+=(size_type t) { |
445 | pos += t; |
446 | check(); |
447 | return *this; |
448 | } |
449 | const_iterator& operator-=(size_type t) { |
450 | pos -= t; |
451 | check(); |
452 | return *this; |
453 | } |
454 | const_iterator& operator++() { |
455 | ++pos; |
456 | check(); |
457 | return *this; |
458 | } |
459 | const_iterator& operator--() { |
460 | --pos; |
461 | check(); |
462 | return *this; |
463 | } |
464 | const_iterator operator++(int) { |
465 | const_iterator tmp(*this); // for x++ |
466 | ++pos; |
467 | check(); |
468 | return tmp; |
469 | } |
470 | const_iterator operator--(int) { |
471 | const_iterator tmp(*this); // for x-- |
472 | --pos; |
473 | check(); |
474 | return tmp; |
475 | } |
476 | const_iterator operator+(difference_type i) const { |
477 | const_iterator tmp(*this); |
478 | tmp += i; |
479 | return tmp; |
480 | } |
481 | const_iterator operator-(difference_type i) const { |
482 | const_iterator tmp(*this); |
483 | tmp -= i; |
484 | return tmp; |
485 | } |
486 | difference_type operator-(const_iterator it) const { // for "x = it2 - it" |
487 | assert(table == it.table); |
488 | return pos - it.pos; |
489 | } |
490 | reference operator[](difference_type n) const { |
491 | return *(*this + n); // simple though not totally efficient |
492 | } |
493 | |
494 | // Comparisons. |
495 | bool operator==(const const_iterator& it) const { |
496 | return table == it.table && pos == it.pos; |
497 | } |
498 | bool operator<(const const_iterator& it) const { |
499 | assert(table == it.table); // life is bad bad bad otherwise |
500 | return pos < it.pos; |
501 | } |
502 | bool operator!=(const const_iterator& it) const { return !(*this == it); } |
503 | bool operator<=(const const_iterator& it) const { return !(it < *this); } |
504 | bool operator>(const const_iterator& it) const { return it < *this; } |
505 | bool operator>=(const const_iterator& it) const { return !(*this < it); } |
506 | |
507 | // Here's the info we actually need to be an iterator |
508 | const tabletype* table; // so we can dereference and bounds-check |
509 | size_type pos; // index into the table |
510 | }; |
511 | |
512 | // support for "3 + iterator" has to be defined outside the class, alas |
513 | template <class T> |
514 | const_table_iterator<T> operator+( |
515 | typename const_table_iterator<T>::difference_type i, |
516 | const_table_iterator<T> it) { |
517 | return it + i; // so people can say it2 = 3 + it |
518 | } |
519 | |
520 | // --------------------------------------------------------------------------- |
521 | |
522 | /* |
523 | // This is a 2-D iterator. You specify a begin and end over a list |
524 | // of *containers*. We iterate over each container by iterating over |
525 | // it. It's actually simple: |
526 | // VECTOR.begin() VECTOR[0].begin() --------> VECTOR[0].end() ---, |
527 | // | ________________________________________________/ |
528 | // | \_> VECTOR[1].begin() --------> VECTOR[1].end() -, |
529 | // | ___________________________________________________/ |
530 | // v \_> ...... |
531 | // VECTOR.end() |
532 | // |
533 | // It's impossible to do random access on one of these things in constant |
534 | // time, so it's just a bidirectional iterator. |
535 | // |
536 | // Unfortunately, because we need to use this for a non-empty iterator, |
537 | // we use nonempty_begin() and nonempty_end() instead of begin() and end() |
538 | // (though only going across, not down). |
539 | */ |
540 | |
541 | #define TWOD_BEGIN_ nonempty_begin |
542 | #define TWOD_END_ nonempty_end |
543 | #define TWOD_ITER_ nonempty_iterator |
544 | #define TWOD_CONST_ITER_ const_nonempty_iterator |
545 | |
546 | template <class containertype> |
547 | class two_d_iterator { |
548 | public: |
549 | typedef two_d_iterator iterator; |
550 | |
551 | typedef std::bidirectional_iterator_tag iterator_category; |
552 | // apparently some versions of VC++ have trouble with two ::'s in a typename |
553 | typedef typename containertype::value_type _tmp_vt; |
554 | typedef typename _tmp_vt::value_type value_type; |
555 | typedef typename _tmp_vt::difference_type difference_type; |
556 | typedef typename _tmp_vt::reference reference; |
557 | typedef typename _tmp_vt::pointer pointer; |
558 | |
559 | // The "real" constructor. begin and end specify how many rows we have |
560 | // (in the diagram above); we always iterate over each row completely. |
561 | two_d_iterator(typename containertype::iterator begin, |
562 | typename containertype::iterator end, |
563 | typename containertype::iterator curr) |
564 | : row_begin(begin), row_end(end), row_current(curr), col_current() { |
565 | if (row_current != row_end) { |
566 | col_current = row_current->TWOD_BEGIN_(); |
567 | advance_past_end(); // in case cur->begin() == cur->end() |
568 | } |
569 | } |
570 | // If you want to start at an arbitrary place, you can, I guess |
571 | two_d_iterator(typename containertype::iterator begin, |
572 | typename containertype::iterator end, |
573 | typename containertype::iterator curr, |
574 | typename containertype::value_type::TWOD_ITER_ col) |
575 | : row_begin(begin), row_end(end), row_current(curr), col_current(col) { |
576 | advance_past_end(); // in case cur->begin() == cur->end() |
577 | } |
578 | // The default constructor, used when I define vars of type table::iterator |
579 | two_d_iterator() : row_begin(), row_end(), row_current(), col_current() {} |
580 | // The default destructor is fine; we don't define one |
581 | // The default operator= is fine; we don't define one |
582 | |
583 | // Happy dereferencer |
584 | reference operator*() const { return *col_current; } |
585 | pointer operator->() const { return &(operator*()); } |
586 | |
587 | // Arithmetic: we just do arithmetic on pos. We don't even need to |
588 | // do bounds checking, since STL doesn't consider that its job. :-) |
589 | // NOTE: this is not amortized constant time! What do we do about it? |
590 | void advance_past_end() { // used when col_current points to end() |
591 | while (col_current == row_current->TWOD_END_()) { // end of current row |
592 | ++row_current; // go to beginning of next |
593 | if (row_current != row_end) // col is irrelevant at end |
594 | col_current = row_current->TWOD_BEGIN_(); |
595 | else |
596 | break; // don't go past row_end |
597 | } |
598 | } |
599 | |
600 | iterator& operator++() { |
601 | assert(row_current != row_end); // how to ++ from there? |
602 | ++col_current; |
603 | advance_past_end(); // in case col_current is at end() |
604 | return *this; |
605 | } |
606 | iterator& operator--() { |
607 | while (row_current == row_end || |
608 | col_current == row_current->TWOD_BEGIN_()) { |
609 | assert(row_current != row_begin); |
610 | --row_current; |
611 | col_current = row_current->TWOD_END_(); // this is 1 too far |
612 | } |
613 | --col_current; |
614 | return *this; |
615 | } |
616 | iterator operator++(int) { |
617 | iterator tmp(*this); |
618 | ++*this; |
619 | return tmp; |
620 | } |
621 | iterator operator--(int) { |
622 | iterator tmp(*this); |
623 | --*this; |
624 | return tmp; |
625 | } |
626 | |
627 | // Comparisons. |
628 | bool operator==(const iterator& it) const { |
629 | return (row_begin == it.row_begin && row_end == it.row_end && |
630 | row_current == it.row_current && |
631 | (row_current == row_end || col_current == it.col_current)); |
632 | } |
633 | bool operator!=(const iterator& it) const { return !(*this == it); } |
634 | |
635 | // Here's the info we actually need to be an iterator |
636 | // These need to be public so we convert from iterator to const_iterator |
637 | typename containertype::iterator row_begin, row_end, row_current; |
638 | typename containertype::value_type::TWOD_ITER_ col_current; |
639 | }; |
640 | |
641 | // The same thing again, but this time const. :-( |
642 | template <class containertype> |
643 | class const_two_d_iterator { |
644 | public: |
645 | typedef const_two_d_iterator iterator; |
646 | |
647 | typedef std::bidirectional_iterator_tag iterator_category; |
648 | // apparently some versions of VC++ have trouble with two ::'s in a typename |
649 | typedef typename containertype::value_type _tmp_vt; |
650 | typedef typename _tmp_vt::value_type value_type; |
651 | typedef typename _tmp_vt::difference_type difference_type; |
652 | typedef typename _tmp_vt::const_reference reference; |
653 | typedef typename _tmp_vt::const_pointer pointer; |
654 | |
655 | const_two_d_iterator(typename containertype::const_iterator begin, |
656 | typename containertype::const_iterator end, |
657 | typename containertype::const_iterator curr) |
658 | : row_begin(begin), row_end(end), row_current(curr), col_current() { |
659 | if (curr != end) { |
660 | col_current = curr->TWOD_BEGIN_(); |
661 | advance_past_end(); // in case cur->begin() == cur->end() |
662 | } |
663 | } |
664 | const_two_d_iterator(typename containertype::const_iterator begin, |
665 | typename containertype::const_iterator end, |
666 | typename containertype::const_iterator curr, |
667 | typename containertype::value_type::TWOD_CONST_ITER_ col) |
668 | : row_begin(begin), row_end(end), row_current(curr), col_current(col) { |
669 | advance_past_end(); // in case cur->begin() == cur->end() |
670 | } |
671 | const_two_d_iterator() |
672 | : row_begin(), row_end(), row_current(), col_current() {} |
673 | // Need this explicitly so we can convert normal iterators to const |
674 | // iterators |
675 | const_two_d_iterator(const two_d_iterator<containertype>& it) |
676 | : row_begin(it.row_begin), |
677 | row_end(it.row_end), |
678 | row_current(it.row_current), |
679 | col_current(it.col_current) {} |
680 | |
681 | typename containertype::const_iterator row_begin, row_end, row_current; |
682 | typename containertype::value_type::TWOD_CONST_ITER_ col_current; |
683 | |
684 | // EVERYTHING FROM HERE DOWN IS THE SAME AS THE NON-CONST ITERATOR |
685 | reference operator*() const { return *col_current; } |
686 | pointer operator->() const { return &(operator*()); } |
687 | |
688 | void advance_past_end() { // used when col_current points to end() |
689 | while (col_current == row_current->TWOD_END_()) { // end of current row |
690 | ++row_current; // go to beginning of next |
691 | if (row_current != row_end) // col is irrelevant at end |
692 | col_current = row_current->TWOD_BEGIN_(); |
693 | else |
694 | break; // don't go past row_end |
695 | } |
696 | } |
697 | iterator& operator++() { |
698 | assert(row_current != row_end); // how to ++ from there? |
699 | ++col_current; |
700 | advance_past_end(); // in case col_current is at end() |
701 | return *this; |
702 | } |
703 | iterator& operator--() { |
704 | while (row_current == row_end || |
705 | col_current == row_current->TWOD_BEGIN_()) { |
706 | assert(row_current != row_begin); |
707 | --row_current; |
708 | col_current = row_current->TWOD_END_(); // this is 1 too far |
709 | } |
710 | --col_current; |
711 | return *this; |
712 | } |
713 | iterator operator++(int) { |
714 | iterator tmp(*this); |
715 | ++*this; |
716 | return tmp; |
717 | } |
718 | iterator operator--(int) { |
719 | iterator tmp(*this); |
720 | --*this; |
721 | return tmp; |
722 | } |
723 | |
724 | bool operator==(const iterator& it) const { |
725 | return (row_begin == it.row_begin && row_end == it.row_end && |
726 | row_current == it.row_current && |
727 | (row_current == row_end || col_current == it.col_current)); |
728 | } |
729 | bool operator!=(const iterator& it) const { return !(*this == it); } |
730 | }; |
731 | |
732 | // We provide yet another version, to be as frugal with memory as |
733 | // possible. This one frees each block of memory as it finishes |
734 | // iterating over it. By the end, the entire table is freed. |
735 | // For understandable reasons, you can only iterate over it once, |
736 | // which is why it's an input iterator |
737 | template <class containertype> |
738 | class destructive_two_d_iterator { |
739 | public: |
740 | typedef destructive_two_d_iterator iterator; |
741 | |
742 | typedef std::input_iterator_tag iterator_category; |
743 | // apparently some versions of VC++ have trouble with two ::'s in a typename |
744 | typedef typename containertype::value_type _tmp_vt; |
745 | typedef typename _tmp_vt::value_type value_type; |
746 | typedef typename _tmp_vt::difference_type difference_type; |
747 | typedef typename _tmp_vt::reference reference; |
748 | typedef typename _tmp_vt::pointer pointer; |
749 | |
750 | destructive_two_d_iterator(typename containertype::iterator begin, |
751 | typename containertype::iterator end, |
752 | typename containertype::iterator curr) |
753 | : row_begin(begin), row_end(end), row_current(curr), col_current() { |
754 | if (curr != end) { |
755 | col_current = curr->TWOD_BEGIN_(); |
756 | advance_past_end(); // in case cur->begin() == cur->end() |
757 | } |
758 | } |
759 | destructive_two_d_iterator(typename containertype::iterator begin, |
760 | typename containertype::iterator end, |
761 | typename containertype::iterator curr, |
762 | typename containertype::value_type::TWOD_ITER_ col) |
763 | : row_begin(begin), row_end(end), row_current(curr), col_current(col) { |
764 | advance_past_end(); // in case cur->begin() == cur->end() |
765 | } |
766 | destructive_two_d_iterator() |
767 | : row_begin(), row_end(), row_current(), col_current() {} |
768 | |
769 | typename containertype::iterator row_begin, row_end, row_current; |
770 | typename containertype::value_type::TWOD_ITER_ col_current; |
771 | |
772 | // This is the part that destroys |
773 | void advance_past_end() { // used when col_current points to end() |
774 | while (col_current == row_current->TWOD_END_()) { // end of current row |
775 | row_current->clear(); // the destructive part |
776 | // It would be nice if we could decrement sparsetable->num_buckets |
777 | // here |
778 | ++row_current; // go to beginning of next |
779 | if (row_current != row_end) // col is irrelevant at end |
780 | col_current = row_current->TWOD_BEGIN_(); |
781 | else |
782 | break; // don't go past row_end |
783 | } |
784 | } |
785 | |
786 | // EVERYTHING FROM HERE DOWN IS THE SAME AS THE REGULAR ITERATOR |
787 | reference operator*() const { return *col_current; } |
788 | pointer operator->() const { return &(operator*()); } |
789 | |
790 | iterator& operator++() { |
791 | assert(row_current != row_end); // how to ++ from there? |
792 | ++col_current; |
793 | advance_past_end(); // in case col_current is at end() |
794 | return *this; |
795 | } |
796 | iterator operator++(int) { |
797 | iterator tmp(*this); |
798 | ++*this; |
799 | return tmp; |
800 | } |
801 | |
802 | bool operator==(const iterator& it) const { |
803 | return (row_begin == it.row_begin && row_end == it.row_end && |
804 | row_current == it.row_current && |
805 | (row_current == row_end || col_current == it.col_current)); |
806 | } |
807 | bool operator!=(const iterator& it) const { return !(*this == it); } |
808 | }; |
809 | |
810 | #undef TWOD_BEGIN_ |
811 | #undef TWOD_END_ |
812 | #undef TWOD_ITER_ |
813 | #undef TWOD_CONST_ITER_ |
814 | |
815 | // SPARSE-TABLE |
816 | // ------------ |
817 | // The idea is that a table with (logically) t buckets is divided |
818 | // into t/M *groups* of M buckets each. (M is a constant set in |
819 | // GROUP_SIZE for efficiency.) Each group is stored sparsely. |
820 | // Thus, inserting into the table causes some array to grow, which is |
821 | // slow but still constant time. Lookup involves doing a |
822 | // logical-position-to-sparse-position lookup, which is also slow but |
823 | // constant time. The larger M is, the slower these operations are |
824 | // but the less overhead (slightly). |
825 | // |
826 | // To store the sparse array, we store a bitmap B, where B[i] = 1 iff |
827 | // bucket i is non-empty. Then to look up bucket i we really look up |
828 | // array[# of 1s before i in B]. This is constant time for fixed M. |
829 | // |
830 | // Terminology: the position of an item in the overall table (from |
831 | // 1 .. t) is called its "location." The logical position in a group |
832 | // (from 1 .. M ) is called its "position." The actual location in |
833 | // the array (from 1 .. # of non-empty buckets in the group) is |
834 | // called its "offset." |
835 | |
836 | template <class T, uint16_t GROUP_SIZE, class Alloc> |
837 | class sparsegroup { |
838 | public: |
839 | typedef T value_type; |
840 | typedef Alloc allocator_type; |
841 | |
842 | private: |
843 | using value_alloc_type = |
844 | typename std::allocator_traits<Alloc>::template rebind_alloc<T>; |
845 | typedef std::integral_constant< |
846 | bool, (is_relocatable<value_type>::value && |
847 | std::is_same<allocator_type, |
848 | libc_allocator_with_realloc<value_type>>::value)> |
849 | realloc_and_memmove_ok; // we pretend mv(x,y) == "x.~T(); |
850 | // new(x) T(y)" |
851 | public: |
852 | // Basic types |
853 | typedef typename value_alloc_type::reference reference; |
854 | typedef typename value_alloc_type::const_reference const_reference; |
855 | typedef typename value_alloc_type::pointer pointer; |
856 | typedef typename value_alloc_type::const_pointer const_pointer; |
857 | |
858 | typedef table_iterator<sparsegroup<T, GROUP_SIZE, Alloc>> iterator; |
859 | typedef const_table_iterator<sparsegroup<T, GROUP_SIZE, Alloc>> |
860 | const_iterator; |
861 | typedef table_element_adaptor<sparsegroup<T, GROUP_SIZE, Alloc>> |
862 | element_adaptor; |
863 | typedef uint16_t size_type; // max # of buckets |
864 | typedef int16_t difference_type; |
865 | typedef std::reverse_iterator<const_iterator> const_reverse_iterator; |
866 | typedef std::reverse_iterator<iterator> reverse_iterator; // from iterator.h |
867 | |
868 | // These are our special iterators, that go over non-empty buckets in a |
869 | // group. These aren't const-only because you can change non-empty bcks. |
870 | typedef pointer nonempty_iterator; |
871 | typedef const_pointer const_nonempty_iterator; |
872 | typedef std::reverse_iterator<nonempty_iterator> reverse_nonempty_iterator; |
873 | typedef std::reverse_iterator<const_nonempty_iterator> |
874 | const_reverse_nonempty_iterator; |
875 | |
876 | // Iterator functions |
877 | iterator begin() { return iterator(this, 0); } |
878 | const_iterator begin() const { return const_iterator(this, 0); } |
879 | iterator end() { return iterator(this, size()); } |
880 | const_iterator end() const { return const_iterator(this, size()); } |
881 | reverse_iterator rbegin() { return reverse_iterator(end()); } |
882 | const_reverse_iterator rbegin() const { |
883 | return const_reverse_iterator(end()); |
884 | } |
885 | reverse_iterator rend() { return reverse_iterator(begin()); } |
886 | const_reverse_iterator rend() const { |
887 | return const_reverse_iterator(begin()); |
888 | } |
889 | |
890 | // We'll have versions for our special non-empty iterator too |
891 | nonempty_iterator nonempty_begin() { return group; } |
892 | const_nonempty_iterator nonempty_begin() const { return group; } |
893 | nonempty_iterator nonempty_end() { return group + settings.num_buckets; } |
894 | const_nonempty_iterator nonempty_end() const { |
895 | return group + settings.num_buckets; |
896 | } |
897 | reverse_nonempty_iterator nonempty_rbegin() { |
898 | return reverse_nonempty_iterator(nonempty_end()); |
899 | } |
900 | const_reverse_nonempty_iterator nonempty_rbegin() const { |
901 | return const_reverse_nonempty_iterator(nonempty_end()); |
902 | } |
903 | reverse_nonempty_iterator nonempty_rend() { |
904 | return reverse_nonempty_iterator(nonempty_begin()); |
905 | } |
906 | const_reverse_nonempty_iterator nonempty_rend() const { |
907 | return const_reverse_nonempty_iterator(nonempty_begin()); |
908 | } |
909 | |
910 | // This gives us the "default" value to return for an empty bucket. |
911 | // We just use the default constructor on T, the template type |
912 | const_reference default_value() const { |
913 | static value_type defaultval = value_type(); |
914 | return defaultval; |
915 | } |
916 | |
917 | private: |
918 | // We need to do all this bit manipulation, of course. ick |
919 | static size_type charbit(size_type i) { return i >> 3; } |
920 | static size_type modbit(size_type i) { return 1 << (i & 7); } |
921 | int bmtest(size_type i) const { return bitmap[charbit(i)] & modbit(i); } |
922 | void bmset(size_type i) { bitmap[charbit(i)] |= modbit(i); } |
923 | void bmclear(size_type i) { bitmap[charbit(i)] &= ~modbit(i); } |
924 | |
925 | pointer allocate_group(size_type n) { |
926 | pointer retval = settings.allocate(n); |
927 | if (retval == NULL) { |
928 | // We really should use PRIuS here, but I don't want to have to add |
929 | // a whole new configure option, with concomitant macro namespace |
930 | // pollution, just to print this (unlikely) error message. So I |
931 | // cast. |
932 | fprintf(stderr, "sparsehash FATAL ERROR: failed to allocate %lu groups\n" , |
933 | static_cast<unsigned long>(n)); |
934 | exit(1); |
935 | } |
936 | return retval; |
937 | } |
938 | |
939 | void free_group() { |
940 | if (!group) return; |
941 | pointer end_it = group + settings.num_buckets; |
942 | for (pointer p = group; p != end_it; ++p) p->~value_type(); |
943 | settings.deallocate(group, settings.num_buckets); |
944 | group = NULL; |
945 | } |
946 | |
947 | static size_type bits_in_char(unsigned char c) { |
948 | // We could make these ints. The tradeoff is size (eg does it overwhelm |
949 | // the cache?) vs efficiency in referencing sub-word-sized array |
950 | // elements. |
951 | static const char bits_in[256] = { |
952 | 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, |
953 | 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, |
954 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, |
955 | 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
956 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, |
957 | 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, |
958 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, |
959 | 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
960 | 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, |
961 | 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
962 | 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, |
963 | }; |
964 | return bits_in[c]; |
965 | } |
966 | |
967 | public: // get_iter() in sparsetable needs it |
968 | // We need a small function that tells us how many set bits there are |
969 | // in positions 0..i-1 of the bitmap. It uses a big table. |
970 | // We make it static so templates don't allocate lots of these tables. |
971 | // There are lots of ways to do this calculation (called 'popcount'). |
972 | // The 8-bit table lookup is one of the fastest, though this |
973 | // implementation suffers from not doing any loop unrolling. See, eg, |
974 | // http://www.dalkescientific.com/writings/diary/archive/2008/07/03/hakmem_and_other_popcounts.html |
975 | // http://gurmeetsingh.wordpress.com/2008/08/05/fast-bit-counting-routines/ |
976 | static size_type pos_to_offset(const unsigned char* bm, size_type pos) { |
977 | size_type retval = 0; |
978 | |
979 | // [Note: condition pos > 8 is an optimization; convince yourself we |
980 | // give exactly the same result as if we had pos >= 8 here instead.] |
981 | for (; pos > 8; pos -= 8) // bm[0..pos/8-1] |
982 | retval += bits_in_char(*bm++); // chars we want *all* bits in |
983 | return retval + bits_in_char(*bm & ((1 << pos) - 1)); // char including pos |
984 | } |
985 | |
986 | size_type pos_to_offset(size_type pos) const { // not static but still const |
987 | return pos_to_offset(bitmap, pos); |
988 | } |
989 | |
990 | // Returns the (logical) position in the bm[] array, i, such that |
991 | // bm[i] is the offset-th set bit in the array. It is the inverse |
992 | // of pos_to_offset. get_pos() uses this function to find the index |
993 | // of an nonempty_iterator in the table. Bit-twiddling from |
994 | // http://hackersdelight.org/basics.pdf |
995 | static size_type offset_to_pos(const unsigned char* bm, size_type offset) { |
996 | size_type retval = 0; |
997 | // This is sizeof(this->bitmap). |
998 | const size_type group_size = (GROUP_SIZE - 1) / 8 + 1; |
999 | for (size_type i = 0; i < group_size; i++) { // forward scan |
1000 | const size_type pop_count = bits_in_char(*bm); |
1001 | if (pop_count > offset) { |
1002 | unsigned char last_bm = *bm; |
1003 | for (; offset > 0; offset--) { |
1004 | last_bm &= (last_bm - 1); // remove right-most set bit |
1005 | } |
1006 | // Clear all bits to the left of the rightmost bit (the &), |
1007 | // and then clear the rightmost bit but set all bits to the |
1008 | // right of it (the -1). |
1009 | last_bm = (last_bm & -last_bm) - 1; |
1010 | retval += bits_in_char(last_bm); |
1011 | return retval; |
1012 | } |
1013 | offset -= pop_count; |
1014 | retval += 8; |
1015 | bm++; |
1016 | } |
1017 | return retval; |
1018 | } |
1019 | |
1020 | size_type offset_to_pos(size_type offset) const { |
1021 | return offset_to_pos(bitmap, offset); |
1022 | } |
1023 | |
1024 | public: |
1025 | // Constructors -- default and copy -- and destructor |
1026 | explicit sparsegroup(allocator_type& a) |
1027 | : group(0), settings(alloc_impl<value_alloc_type>(a)) { |
1028 | memset(bitmap, 0, sizeof(bitmap)); |
1029 | } |
1030 | sparsegroup(const sparsegroup& x) : group(0), settings(x.settings) { |
1031 | if (settings.num_buckets) { |
1032 | group = allocate_group(x.settings.num_buckets); |
1033 | std::uninitialized_copy(x.group, x.group + x.settings.num_buckets, group); |
1034 | } |
1035 | memcpy(bitmap, x.bitmap, sizeof(bitmap)); |
1036 | } |
1037 | ~sparsegroup() { free_group(); } |
1038 | |
1039 | // Operator= is just like the copy constructor, I guess |
1040 | // TODO(austern): Make this exception safe. Handle exceptions in |
1041 | // value_type's |
1042 | // copy constructor. |
1043 | sparsegroup& operator=(const sparsegroup& x) { |
1044 | if (&x == this) return *this; // x = x |
1045 | if (x.settings.num_buckets == 0) { |
1046 | free_group(); |
1047 | } else { |
1048 | pointer p = allocate_group(x.settings.num_buckets); |
1049 | std::uninitialized_copy(x.group, x.group + x.settings.num_buckets, p); |
1050 | free_group(); |
1051 | group = p; |
1052 | } |
1053 | memcpy(bitmap, x.bitmap, sizeof(bitmap)); |
1054 | settings.num_buckets = x.settings.num_buckets; |
1055 | return *this; |
1056 | } |
1057 | |
1058 | // Many STL algorithms use swap instead of copy constructors |
1059 | void swap(sparsegroup& x) { |
1060 | std::swap(group, x.group); // defined in <algorithm> |
1061 | for (int i = 0; i < sizeof(bitmap) / sizeof(*bitmap); ++i) |
1062 | std::swap(bitmap[i], x.bitmap[i]); // swap not defined on arrays |
1063 | std::swap(settings.num_buckets, x.settings.num_buckets); |
1064 | // we purposefully don't swap the allocator, which may not be swap-able |
1065 | } |
1066 | |
1067 | // It's always nice to be able to clear a table without deallocating it |
1068 | void clear() { |
1069 | free_group(); |
1070 | memset(bitmap, 0, sizeof(bitmap)); |
1071 | settings.num_buckets = 0; |
1072 | } |
1073 | |
1074 | // Functions that tell you about size. Alas, these aren't so useful |
1075 | // because our table is always fixed size. |
1076 | size_type size() const { return GROUP_SIZE; } |
1077 | size_type max_size() const { return GROUP_SIZE; } |
1078 | bool empty() const { return false; } |
1079 | // We also may want to know how many *used* buckets there are |
1080 | size_type num_nonempty() const { return settings.num_buckets; } |
1081 | |
1082 | // get()/set() are explicitly const/non-const. You can use [] if |
1083 | // you want something that can be either (potentially more expensive). |
1084 | const_reference get(size_type i) const { |
1085 | if (bmtest(i)) // bucket i is occupied |
1086 | return group[pos_to_offset(bitmap, i)]; |
1087 | else |
1088 | return default_value(); // return the default reference |
1089 | } |
1090 | |
1091 | // TODO(csilvers): make protected + friend |
1092 | // This is used by sparse_hashtable to get an element from the table |
1093 | // when we know it exists. |
1094 | const_reference unsafe_get(size_type i) const { |
1095 | assert(bmtest(i)); |
1096 | return group[pos_to_offset(bitmap, i)]; |
1097 | } |
1098 | |
1099 | // TODO(csilvers): make protected + friend |
1100 | reference mutating_get(size_type i) { // fills bucket i before getting |
1101 | if (!bmtest(i)) set(i, default_value()); |
1102 | return group[pos_to_offset(bitmap, i)]; |
1103 | } |
1104 | |
1105 | // Syntactic sugar. It's easy to return a const reference. To |
1106 | // return a non-const reference, we need to use the assigner adaptor. |
1107 | const_reference operator[](size_type i) const { return get(i); } |
1108 | |
1109 | element_adaptor operator[](size_type i) { return element_adaptor(this, i); } |
1110 | |
1111 | private: |
1112 | // Create space at group[offset], assuming value_type has trivial |
1113 | // copy constructor and destructor, and the allocator_type is |
1114 | // the default libc_allocator_with_alloc. (Really, we want it to have |
1115 | // "trivial move", because that's what realloc and memmove both do. |
1116 | // But there's no way to capture that using type_traits, so we |
1117 | // pretend that move(x, y) is equivalent to "x.~T(); new(x) T(y);" |
1118 | // which is pretty much correct, if a bit conservative.) |
1119 | void set_aux(size_type offset, std::true_type) { |
1120 | group = settings.realloc_or_die(group, settings.num_buckets + 1); |
1121 | // This is equivalent to memmove(), but faster on my Intel P4, |
1122 | // at least with gcc4.1 -O2 / glibc 2.3.6. |
1123 | for (size_type i = settings.num_buckets; i > offset; --i) |
1124 | // cast to void* to prevent compiler warnings about writing to an object |
1125 | // with no trivial copy-assignment |
1126 | memcpy(static_cast<void*>(group + i), group + i - 1, sizeof(*group)); |
1127 | } |
1128 | |
1129 | // Create space at group[offset], without special assumptions about |
1130 | // value_type |
1131 | // and allocator_type. |
1132 | void set_aux(size_type offset, std::false_type) { |
1133 | // This is valid because 0 <= offset <= num_buckets |
1134 | pointer p = allocate_group(settings.num_buckets + 1); |
1135 | std::uninitialized_copy(group, group + offset, p); |
1136 | std::uninitialized_copy(group + offset, group + settings.num_buckets, |
1137 | p + offset + 1); |
1138 | free_group(); |
1139 | group = p; |
1140 | } |
1141 | |
1142 | public: |
1143 | // This returns a reference to the inserted item (which is a copy of val). |
1144 | // TODO(austern): Make this exception safe: handle exceptions from |
1145 | // value_type's copy constructor. |
1146 | reference set(size_type i, const_reference val) { |
1147 | size_type offset = |
1148 | pos_to_offset(bitmap, i); // where we'll find (or insert) |
1149 | if (bmtest(i)) { |
1150 | // Delete the old value, which we're replacing with the new one |
1151 | group[offset].~value_type(); |
1152 | } else { |
1153 | set_aux(offset, realloc_and_memmove_ok()); |
1154 | ++settings.num_buckets; |
1155 | bmset(i); |
1156 | } |
1157 | // This does the actual inserting. Since we made the array using |
1158 | // malloc, we use "placement new" to just call the constructor. |
1159 | new (&group[offset]) value_type(val); |
1160 | return group[offset]; |
1161 | } |
1162 | |
1163 | // We let you see if a bucket is non-empty without retrieving it |
1164 | bool test(size_type i) const { return bmtest(i) != 0; } |
1165 | bool test(iterator pos) const { return bmtest(pos.pos) != 0; } |
1166 | |
1167 | private: |
1168 | // Shrink the array, assuming value_type has trivial copy |
1169 | // constructor and destructor, and the allocator_type is the default |
1170 | // libc_allocator_with_alloc. (Really, we want it to have "trivial |
1171 | // move", because that's what realloc and memmove both do. But |
1172 | // there's no way to capture that using type_traits, so we pretend |
1173 | // that move(x, y) is equivalent to ""x.~T(); new(x) T(y);" |
1174 | // which is pretty much correct, if a bit conservative.) |
1175 | void erase_aux(size_type offset, std::true_type) { |
1176 | // This isn't technically necessary, since we know we have a |
1177 | // trivial destructor, but is a cheap way to get a bit more safety. |
1178 | group[offset].~value_type(); |
1179 | // This is equivalent to memmove(), but faster on my Intel P4, |
1180 | // at lesat with gcc4.1 -O2 / glibc 2.3.6. |
1181 | assert(settings.num_buckets > 0); |
1182 | for (size_type i = offset; i < settings.num_buckets - 1; ++i) |
1183 | // cast to void* to prevent compiler warnings about writing to an object |
1184 | // with no trivial copy-assignment |
1185 | // hopefully inlined! |
1186 | memcpy(static_cast<void*>(group + i), group + i + 1, sizeof(*group)); |
1187 | group = settings.realloc_or_die(group, settings.num_buckets - 1); |
1188 | } |
1189 | |
1190 | // Shrink the array, without any special assumptions about value_type and |
1191 | // allocator_type. |
1192 | void erase_aux(size_type offset, std::false_type) { |
1193 | // This is valid because 0 <= offset < num_buckets. Note the inequality. |
1194 | pointer p = allocate_group(settings.num_buckets - 1); |
1195 | std::uninitialized_copy(group, group + offset, p); |
1196 | std::uninitialized_copy(group + offset + 1, group + settings.num_buckets, |
1197 | p + offset); |
1198 | free_group(); |
1199 | group = p; |
1200 | } |
1201 | |
1202 | public: |
1203 | // This takes the specified elements out of the group. This is |
1204 | // "undefining", rather than "clearing". |
1205 | // TODO(austern): Make this exception safe: handle exceptions from |
1206 | // value_type's copy constructor. |
1207 | void erase(size_type i) { |
1208 | if (bmtest(i)) { // trivial to erase empty bucket |
1209 | size_type offset = |
1210 | pos_to_offset(bitmap, i); // where we'll find (or insert) |
1211 | if (settings.num_buckets == 1) { |
1212 | free_group(); |
1213 | group = NULL; |
1214 | } else { |
1215 | erase_aux(offset, realloc_and_memmove_ok()); |
1216 | } |
1217 | --settings.num_buckets; |
1218 | bmclear(i); |
1219 | } |
1220 | } |
1221 | |
1222 | void erase(iterator pos) { erase(pos.pos); } |
1223 | |
1224 | void erase(iterator start_it, iterator end_it) { |
1225 | // This could be more efficient, but to do so we'd need to make |
1226 | // bmclear() clear a range of indices. Doesn't seem worth it. |
1227 | for (; start_it != end_it; ++start_it) erase(start_it); |
1228 | } |
1229 | |
1230 | // I/O |
1231 | // We support reading and writing groups to disk. We don't store |
1232 | // the actual array contents (which we don't know how to store), |
1233 | // just the bitmap and size. Meant to be used with table I/O. |
1234 | |
1235 | template <typename OUTPUT> |
1236 | bool write_metadata(OUTPUT* fp) const { |
1237 | // we explicitly set to uint16_t |
1238 | assert(sizeof(settings.num_buckets) == 2); |
1239 | if (!sparsehash_internal::write_bigendian_number(fp, settings.num_buckets, |
1240 | 2)) |
1241 | return false; |
1242 | if (!sparsehash_internal::write_data(fp, bitmap, sizeof(bitmap))) |
1243 | return false; |
1244 | return true; |
1245 | } |
1246 | |
1247 | // Reading destroys the old group contents! Returns true if all was ok. |
1248 | template <typename INPUT> |
1249 | bool read_metadata(INPUT* fp) { |
1250 | clear(); |
1251 | if (!sparsehash_internal::read_bigendian_number(fp, &settings.num_buckets, |
1252 | 2)) |
1253 | return false; |
1254 | if (!sparsehash_internal::read_data(fp, bitmap, sizeof(bitmap))) |
1255 | return false; |
1256 | // We'll allocate the space, but we won't fill it: it will be |
1257 | // left as uninitialized raw memory. |
1258 | group = allocate_group(settings.num_buckets); |
1259 | return true; |
1260 | } |
1261 | |
1262 | // Again, only meaningful if value_type is a POD. |
1263 | template <typename INPUT> |
1264 | bool read_nopointer_data(INPUT* fp) { |
1265 | for (nonempty_iterator it = nonempty_begin(); it != nonempty_end(); ++it) { |
1266 | if (!sparsehash_internal::read_data(fp, &(*it), sizeof(*it))) |
1267 | return false; |
1268 | } |
1269 | return true; |
1270 | } |
1271 | |
1272 | // If your keys and values are simple enough, we can write them |
1273 | // to disk for you. "simple enough" means POD and no pointers. |
1274 | // However, we don't try to normalize endianness. |
1275 | template <typename OUTPUT> |
1276 | bool write_nopointer_data(OUTPUT* fp) const { |
1277 | for (const_nonempty_iterator it = nonempty_begin(); it != nonempty_end(); |
1278 | ++it) { |
1279 | if (!sparsehash_internal::write_data(fp, &(*it), sizeof(*it))) |
1280 | return false; |
1281 | } |
1282 | return true; |
1283 | } |
1284 | |
1285 | // Comparisons. We only need to define == and < -- we get |
1286 | // != > <= >= via relops.h (which we happily included above). |
1287 | // Note the comparisons are pretty arbitrary: we compare |
1288 | // values of the first index that isn't equal (using default |
1289 | // value for empty buckets). |
1290 | bool operator==(const sparsegroup& x) const { |
1291 | return (settings.num_buckets == x.settings.num_buckets && |
1292 | memcmp(bitmap, x.bitmap, sizeof(bitmap)) == 0 && |
1293 | std::equal(begin(), end(), x.begin())); // from <algorithm> |
1294 | } |
1295 | |
1296 | bool operator<(const sparsegroup& x) const { // also from <algorithm> |
1297 | return std::lexicographical_compare(begin(), end(), x.begin(), x.end()); |
1298 | } |
1299 | bool operator!=(const sparsegroup& x) const { return !(*this == x); } |
1300 | bool operator<=(const sparsegroup& x) const { return !(x < *this); } |
1301 | bool operator>(const sparsegroup& x) const { return x < *this; } |
1302 | bool operator>=(const sparsegroup& x) const { return !(*this < x); } |
1303 | |
1304 | private: |
1305 | template <class A> |
1306 | class alloc_impl : public A { |
1307 | public: |
1308 | typedef typename A::pointer pointer; |
1309 | typedef typename A::size_type size_type; |
1310 | |
1311 | // Convert a normal allocator to one that has realloc_or_die() |
1312 | alloc_impl(const A& a) : A(a) {} |
1313 | |
1314 | // realloc_or_die should only be used when using the default |
1315 | // allocator (libc_allocator_with_realloc). |
1316 | pointer realloc_or_die(pointer /*ptr*/, size_type /*n*/) { |
1317 | fprintf(stderr, |
1318 | "realloc_or_die is only supported for " |
1319 | "libc_allocator_with_realloc\n" ); |
1320 | exit(1); |
1321 | return NULL; |
1322 | } |
1323 | }; |
1324 | |
1325 | // A template specialization of alloc_impl for |
1326 | // libc_allocator_with_realloc that can handle realloc_or_die. |
1327 | template <class A> |
1328 | class alloc_impl<libc_allocator_with_realloc<A>> |
1329 | : public libc_allocator_with_realloc<A> { |
1330 | public: |
1331 | typedef typename libc_allocator_with_realloc<A>::pointer pointer; |
1332 | typedef typename libc_allocator_with_realloc<A>::size_type size_type; |
1333 | |
1334 | alloc_impl(const libc_allocator_with_realloc<A>& a) |
1335 | : libc_allocator_with_realloc<A>(a) {} |
1336 | |
1337 | pointer realloc_or_die(pointer ptr, size_type n) { |
1338 | pointer retval = this->reallocate(ptr, n); |
1339 | if (retval == NULL) { |
1340 | fprintf(stderr, |
1341 | "sparsehash: FATAL ERROR: failed to reallocate " |
1342 | "%lu elements for ptr %p" , |
1343 | static_cast<unsigned long>(n), static_cast<void*>(ptr)); |
1344 | exit(1); |
1345 | } |
1346 | return retval; |
1347 | } |
1348 | }; |
1349 | |
1350 | // Package allocator with num_buckets to eliminate memory needed for the |
1351 | // zero-size allocator. |
1352 | // If new fields are added to this class, we should add them to |
1353 | // operator= and swap. |
1354 | class Settings : public alloc_impl<value_alloc_type> { |
1355 | public: |
1356 | Settings(const alloc_impl<value_alloc_type>& a, uint16_t n = 0) |
1357 | : alloc_impl<value_alloc_type>(a), num_buckets(n) {} |
1358 | Settings(const Settings& s) |
1359 | : alloc_impl<value_alloc_type>(s), num_buckets(s.num_buckets) {} |
1360 | |
1361 | uint16_t num_buckets; // limits GROUP_SIZE to 64K |
1362 | }; |
1363 | |
1364 | // The actual data |
1365 | pointer group; // (small) array of T's |
1366 | Settings settings; // allocator and num_buckets |
1367 | unsigned char |
1368 | bitmap[(GROUP_SIZE - 1) / 8 + 1]; // fancy math is so we round up |
1369 | }; |
1370 | |
1371 | // We need a global swap as well |
1372 | template <class T, uint16_t GROUP_SIZE, class Alloc> |
1373 | inline void swap(sparsegroup<T, GROUP_SIZE, Alloc>& x, |
1374 | sparsegroup<T, GROUP_SIZE, Alloc>& y) { |
1375 | x.swap(y); |
1376 | } |
1377 | |
1378 | // --------------------------------------------------------------------------- |
1379 | |
1380 | template <class T, uint16_t GROUP_SIZE = DEFAULT_SPARSEGROUP_SIZE, |
1381 | class Alloc = libc_allocator_with_realloc<T>> |
1382 | class sparsetable { |
1383 | private: |
1384 | using value_alloc_type = |
1385 | typename std::allocator_traits<Alloc>::template rebind_alloc<T>; |
1386 | using vector_alloc = |
1387 | typename std::allocator_traits<Alloc>::template rebind_alloc< |
1388 | sparsegroup<T, GROUP_SIZE, value_alloc_type>>; |
1389 | |
1390 | public: |
1391 | // Basic types |
1392 | typedef T value_type; // stolen from stl_vector.h |
1393 | typedef Alloc allocator_type; |
1394 | typedef typename value_alloc_type::size_type size_type; |
1395 | typedef typename value_alloc_type::difference_type difference_type; |
1396 | typedef typename value_alloc_type::reference reference; |
1397 | typedef typename value_alloc_type::const_reference const_reference; |
1398 | typedef typename value_alloc_type::pointer pointer; |
1399 | typedef typename value_alloc_type::const_pointer const_pointer; |
1400 | typedef table_iterator<sparsetable<T, GROUP_SIZE, Alloc>> iterator; |
1401 | typedef const_table_iterator<sparsetable<T, GROUP_SIZE, Alloc>> |
1402 | const_iterator; |
1403 | typedef table_element_adaptor<sparsetable<T, GROUP_SIZE, Alloc>> |
1404 | element_adaptor; |
1405 | typedef std::reverse_iterator<const_iterator> const_reverse_iterator; |
1406 | typedef std::reverse_iterator<iterator> reverse_iterator; // from iterator.h |
1407 | |
1408 | // These are our special iterators, that go over non-empty buckets in a |
1409 | // table. These aren't const only because you can change non-empty bcks. |
1410 | typedef two_d_iterator<std::vector< |
1411 | sparsegroup<value_type, GROUP_SIZE, value_alloc_type>, vector_alloc>> |
1412 | nonempty_iterator; |
1413 | typedef const_two_d_iterator<std::vector< |
1414 | sparsegroup<value_type, GROUP_SIZE, value_alloc_type>, vector_alloc>> |
1415 | const_nonempty_iterator; |
1416 | typedef std::reverse_iterator<nonempty_iterator> reverse_nonempty_iterator; |
1417 | typedef std::reverse_iterator<const_nonempty_iterator> |
1418 | const_reverse_nonempty_iterator; |
1419 | // Another special iterator: it frees memory as it iterates (used to resize) |
1420 | typedef destructive_two_d_iterator<std::vector< |
1421 | sparsegroup<value_type, GROUP_SIZE, value_alloc_type>, vector_alloc>> |
1422 | destructive_iterator; |
1423 | |
1424 | // Iterator functions |
1425 | iterator begin() { return iterator(this, 0); } |
1426 | const_iterator begin() const { return const_iterator(this, 0); } |
1427 | iterator end() { return iterator(this, size()); } |
1428 | const_iterator end() const { return const_iterator(this, size()); } |
1429 | reverse_iterator rbegin() { return reverse_iterator(end()); } |
1430 | const_reverse_iterator rbegin() const { |
1431 | return const_reverse_iterator(end()); |
1432 | } |
1433 | reverse_iterator rend() { return reverse_iterator(begin()); } |
1434 | const_reverse_iterator rend() const { |
1435 | return const_reverse_iterator(begin()); |
1436 | } |
1437 | |
1438 | // Versions for our special non-empty iterator |
1439 | nonempty_iterator nonempty_begin() { |
1440 | return nonempty_iterator(groups.begin(), groups.end(), groups.begin()); |
1441 | } |
1442 | const_nonempty_iterator nonempty_begin() const { |
1443 | return const_nonempty_iterator(groups.begin(), groups.end(), |
1444 | groups.begin()); |
1445 | } |
1446 | nonempty_iterator nonempty_end() { |
1447 | return nonempty_iterator(groups.begin(), groups.end(), groups.end()); |
1448 | } |
1449 | const_nonempty_iterator nonempty_end() const { |
1450 | return const_nonempty_iterator(groups.begin(), groups.end(), groups.end()); |
1451 | } |
1452 | reverse_nonempty_iterator nonempty_rbegin() { |
1453 | return reverse_nonempty_iterator(nonempty_end()); |
1454 | } |
1455 | const_reverse_nonempty_iterator nonempty_rbegin() const { |
1456 | return const_reverse_nonempty_iterator(nonempty_end()); |
1457 | } |
1458 | reverse_nonempty_iterator nonempty_rend() { |
1459 | return reverse_nonempty_iterator(nonempty_begin()); |
1460 | } |
1461 | const_reverse_nonempty_iterator nonempty_rend() const { |
1462 | return const_reverse_nonempty_iterator(nonempty_begin()); |
1463 | } |
1464 | destructive_iterator destructive_begin() { |
1465 | return destructive_iterator(groups.begin(), groups.end(), groups.begin()); |
1466 | } |
1467 | destructive_iterator destructive_end() { |
1468 | return destructive_iterator(groups.begin(), groups.end(), groups.end()); |
1469 | } |
1470 | |
1471 | typedef sparsegroup<value_type, GROUP_SIZE, allocator_type> group_type; |
1472 | using group_vector_type_allocator_type = |
1473 | typename std::allocator_traits<Alloc>::template rebind_alloc<group_type>; |
1474 | typedef std::vector<group_type, group_vector_type_allocator_type> |
1475 | group_vector_type; |
1476 | |
1477 | typedef typename group_vector_type::reference GroupsReference; |
1478 | typedef typename group_vector_type::const_reference GroupsConstReference; |
1479 | typedef typename group_vector_type::iterator GroupsIterator; |
1480 | typedef typename group_vector_type::const_iterator GroupsConstIterator; |
1481 | |
1482 | // How to deal with the proper group |
1483 | static size_type num_groups(size_type num) { // how many to hold num buckets |
1484 | return num == 0 ? 0 : ((num - 1) / GROUP_SIZE) + 1; |
1485 | } |
1486 | |
1487 | uint16_t pos_in_group(size_type i) const { |
1488 | return static_cast<uint16_t>(i % GROUP_SIZE); |
1489 | } |
1490 | size_type group_num(size_type i) const { return i / GROUP_SIZE; } |
1491 | GroupsReference which_group(size_type i) { return groups[group_num(i)]; } |
1492 | GroupsConstReference which_group(size_type i) const { |
1493 | return groups[group_num(i)]; |
1494 | } |
1495 | |
1496 | public: |
1497 | // Constructors -- default, normal (when you specify size), and copy |
1498 | explicit sparsetable(size_type sz = 0, Alloc alloc = Alloc()) |
1499 | : groups(vector_alloc(alloc)), settings(alloc, sz) { |
1500 | groups.resize(num_groups(sz), group_type(settings)); |
1501 | } |
1502 | // We can get away with using the default copy constructor, |
1503 | // and default destructor, and hence the default operator=. Huzzah! |
1504 | |
1505 | // Many STL algorithms use swap instead of copy constructors |
1506 | void swap(sparsetable& x) { |
1507 | std::swap(groups, x.groups); // defined in stl_algobase.h |
1508 | std::swap(settings.table_size, x.settings.table_size); |
1509 | std::swap(settings.num_buckets, x.settings.num_buckets); |
1510 | } |
1511 | |
1512 | // It's always nice to be able to clear a table without deallocating it |
1513 | void clear() { |
1514 | GroupsIterator group; |
1515 | for (group = groups.begin(); group != groups.end(); ++group) { |
1516 | group->clear(); |
1517 | } |
1518 | settings.num_buckets = 0; |
1519 | } |
1520 | |
1521 | // ACCESSOR FUNCTIONS for the things we templatize on, basically |
1522 | allocator_type get_allocator() const { return allocator_type(settings); } |
1523 | |
1524 | // Functions that tell you about size. |
1525 | // NOTE: empty() is non-intuitive! It does not tell you the number |
1526 | // of not-empty buckets (use num_nonempty() for that). Instead |
1527 | // it says whether you've allocated any buckets or not. |
1528 | size_type size() const { return settings.table_size; } |
1529 | size_type max_size() const { return settings.max_size(); } |
1530 | bool empty() const { return settings.table_size == 0; } |
1531 | // We also may want to know how many *used* buckets there are |
1532 | size_type num_nonempty() const { return settings.num_buckets; } |
1533 | |
1534 | // OK, we'll let you resize one of these puppies |
1535 | void resize(size_type new_size) { |
1536 | groups.resize(num_groups(new_size), group_type(settings)); |
1537 | if (new_size < settings.table_size) { |
1538 | // lower num_buckets, clear last group |
1539 | if (pos_in_group(new_size) > 0) // need to clear inside last group |
1540 | groups.back().erase(groups.back().begin() + pos_in_group(new_size), |
1541 | groups.back().end()); |
1542 | settings.num_buckets = 0; // refigure # of used buckets |
1543 | GroupsConstIterator group; |
1544 | for (group = groups.begin(); group != groups.end(); ++group) |
1545 | settings.num_buckets += group->num_nonempty(); |
1546 | } |
1547 | settings.table_size = new_size; |
1548 | } |
1549 | |
1550 | // We let you see if a bucket is non-empty without retrieving it |
1551 | bool test(size_type i) const { |
1552 | assert(i < settings.table_size); |
1553 | return which_group(i).test(pos_in_group(i)); |
1554 | } |
1555 | bool test(iterator pos) const { |
1556 | return which_group(pos.pos).test(pos_in_group(pos.pos)); |
1557 | } |
1558 | bool test(const_iterator pos) const { |
1559 | return which_group(pos.pos).test(pos_in_group(pos.pos)); |
1560 | } |
1561 | |
1562 | // We only return const_references because it's really hard to |
1563 | // return something settable for empty buckets. Use set() instead. |
1564 | const_reference get(size_type i) const { |
1565 | assert(i < settings.table_size); |
1566 | return which_group(i).get(pos_in_group(i)); |
1567 | } |
1568 | |
1569 | // TODO(csilvers): make protected + friend |
1570 | // This is used by sparse_hashtable to get an element from the table |
1571 | // when we know it exists (because the caller has called test(i)). |
1572 | const_reference unsafe_get(size_type i) const { |
1573 | assert(i < settings.table_size); |
1574 | assert(test(i)); |
1575 | return which_group(i).unsafe_get(pos_in_group(i)); |
1576 | } |
1577 | |
1578 | // TODO(csilvers): make protected + friend element_adaptor |
1579 | reference mutating_get(size_type i) { // fills bucket i before getting |
1580 | assert(i < settings.table_size); |
1581 | typename group_type::size_type old_numbuckets = |
1582 | which_group(i).num_nonempty(); |
1583 | reference retval = which_group(i).mutating_get(pos_in_group(i)); |
1584 | settings.num_buckets += which_group(i).num_nonempty() - old_numbuckets; |
1585 | return retval; |
1586 | } |
1587 | |
1588 | // Syntactic sugar. As in sparsegroup, the non-const version is harder |
1589 | const_reference operator[](size_type i) const { return get(i); } |
1590 | |
1591 | element_adaptor operator[](size_type i) { return element_adaptor(this, i); } |
1592 | |
1593 | // Needed for hashtables, gets as a nonempty_iterator. Crashes for empty |
1594 | // bcks |
1595 | const_nonempty_iterator get_iter(size_type i) const { |
1596 | assert(test(i)); // how can a nonempty_iterator point to an empty bucket? |
1597 | return const_nonempty_iterator( |
1598 | groups.begin(), groups.end(), groups.begin() + group_num(i), |
1599 | (groups[group_num(i)].nonempty_begin() + |
1600 | groups[group_num(i)].pos_to_offset(pos_in_group(i)))); |
1601 | } |
1602 | // For nonempty we can return a non-const version |
1603 | nonempty_iterator get_iter(size_type i) { |
1604 | assert(test(i)); // how can a nonempty_iterator point to an empty bucket? |
1605 | return nonempty_iterator( |
1606 | groups.begin(), groups.end(), groups.begin() + group_num(i), |
1607 | (groups[group_num(i)].nonempty_begin() + |
1608 | groups[group_num(i)].pos_to_offset(pos_in_group(i)))); |
1609 | } |
1610 | |
1611 | // And the reverse transformation. |
1612 | size_type get_pos(const const_nonempty_iterator& it) const { |
1613 | difference_type current_row = it.row_current - it.row_begin; |
1614 | difference_type current_col = |
1615 | (it.col_current - groups[current_row].nonempty_begin()); |
1616 | return ((current_row * GROUP_SIZE) + |
1617 | groups[current_row].offset_to_pos(current_col)); |
1618 | } |
1619 | |
1620 | // This returns a reference to the inserted item (which is a copy of val) |
1621 | // The trick is to figure out whether we're replacing or inserting anew |
1622 | reference set(size_type i, const_reference val) { |
1623 | assert(i < settings.table_size); |
1624 | typename group_type::size_type old_numbuckets = |
1625 | which_group(i).num_nonempty(); |
1626 | reference retval = which_group(i).set(pos_in_group(i), val); |
1627 | settings.num_buckets += which_group(i).num_nonempty() - old_numbuckets; |
1628 | return retval; |
1629 | } |
1630 | |
1631 | // This takes the specified elements out of the table. This is |
1632 | // "undefining", rather than "clearing". |
1633 | void erase(size_type i) { |
1634 | assert(i < settings.table_size); |
1635 | typename group_type::size_type old_numbuckets = |
1636 | which_group(i).num_nonempty(); |
1637 | which_group(i).erase(pos_in_group(i)); |
1638 | settings.num_buckets += which_group(i).num_nonempty() - old_numbuckets; |
1639 | } |
1640 | |
1641 | void erase(iterator pos) { erase(pos.pos); } |
1642 | |
1643 | void erase(iterator start_it, iterator end_it) { |
1644 | // This could be more efficient, but then we'd need to figure |
1645 | // out if we spanned groups or not. Doesn't seem worth it. |
1646 | for (; start_it != end_it; ++start_it) erase(start_it); |
1647 | } |
1648 | |
1649 | // We support reading and writing tables to disk. We don't store |
1650 | // the actual array contents (which we don't know how to store), |
1651 | // just the groups and sizes. Returns true if all went ok. |
1652 | |
1653 | private: |
1654 | // Every time the disk format changes, this should probably change too |
1655 | typedef unsigned long MagicNumberType; |
1656 | static const MagicNumberType MAGIC_NUMBER = 0x24687531; |
1657 | |
1658 | // Old versions of this code write all data in 32 bits. We need to |
1659 | // support these files as well as having support for 64-bit systems. |
1660 | // So we use the following encoding scheme: for values < 2^32-1, we |
1661 | // store in 4 bytes in big-endian order. For values > 2^32, we |
1662 | // store 0xFFFFFFF followed by 8 bytes in big-endian order. This |
1663 | // causes us to mis-read old-version code that stores exactly |
1664 | // 0xFFFFFFF, but I don't think that is likely to have happened for |
1665 | // these particular values. |
1666 | template <typename OUTPUT, typename IntType> |
1667 | static bool write_32_or_64(OUTPUT* fp, IntType value) { |
1668 | if (value < 0xFFFFFFFFULL) { // fits in 4 bytes |
1669 | if (!sparsehash_internal::write_bigendian_number(fp, value, 4)) |
1670 | return false; |
1671 | } else { |
1672 | if (!sparsehash_internal::write_bigendian_number(fp, 0xFFFFFFFFUL, 4)) |
1673 | return false; |
1674 | if (!sparsehash_internal::write_bigendian_number(fp, value, 8)) |
1675 | return false; |
1676 | } |
1677 | return true; |
1678 | } |
1679 | |
1680 | template <typename INPUT, typename IntType> |
1681 | static bool read_32_or_64(INPUT* fp, IntType* value) { // reads into value |
1682 | MagicNumberType first4 = 0; // a convenient 32-bit unsigned type |
1683 | if (!sparsehash_internal::read_bigendian_number(fp, &first4, 4)) |
1684 | return false; |
1685 | if (first4 < 0xFFFFFFFFULL) { |
1686 | *value = first4; |
1687 | } else { |
1688 | if (!sparsehash_internal::read_bigendian_number(fp, value, 8)) |
1689 | return false; |
1690 | } |
1691 | return true; |
1692 | } |
1693 | |
1694 | public: |
1695 | // read/write_metadata() and read_write/nopointer_data() are DEPRECATED. |
1696 | // Use serialize() and unserialize(), below, for new code. |
1697 | |
1698 | template <typename OUTPUT> |
1699 | bool write_metadata(OUTPUT* fp) const { |
1700 | if (!write_32_or_64(fp, MAGIC_NUMBER)) return false; |
1701 | if (!write_32_or_64(fp, settings.table_size)) return false; |
1702 | if (!write_32_or_64(fp, settings.num_buckets)) return false; |
1703 | |
1704 | GroupsConstIterator group; |
1705 | for (group = groups.begin(); group != groups.end(); ++group) |
1706 | if (group->write_metadata(fp) == false) return false; |
1707 | return true; |
1708 | } |
1709 | |
1710 | // Reading destroys the old table contents! Returns true if read ok. |
1711 | template <typename INPUT> |
1712 | bool read_metadata(INPUT* fp) { |
1713 | size_type magic_read = 0; |
1714 | if (!read_32_or_64(fp, &magic_read)) return false; |
1715 | if (magic_read != MAGIC_NUMBER) { |
1716 | clear(); // just to be consistent |
1717 | return false; |
1718 | } |
1719 | |
1720 | if (!read_32_or_64(fp, &settings.table_size)) return false; |
1721 | if (!read_32_or_64(fp, &settings.num_buckets)) return false; |
1722 | |
1723 | resize(settings.table_size); // so the vector's sized ok |
1724 | GroupsIterator group; |
1725 | for (group = groups.begin(); group != groups.end(); ++group) |
1726 | if (group->read_metadata(fp) == false) return false; |
1727 | return true; |
1728 | } |
1729 | |
1730 | // This code is identical to that for SparseGroup |
1731 | // If your keys and values are simple enough, we can write them |
1732 | // to disk for you. "simple enough" means no pointers. |
1733 | // However, we don't try to normalize endianness |
1734 | bool write_nopointer_data(FILE* fp) const { |
1735 | for (const_nonempty_iterator it = nonempty_begin(); it != nonempty_end(); |
1736 | ++it) { |
1737 | if (!fwrite(&*it, sizeof(*it), 1, fp)) return false; |
1738 | } |
1739 | return true; |
1740 | } |
1741 | |
1742 | // When reading, we have to override the potential const-ness of *it |
1743 | bool read_nopointer_data(FILE* fp) { |
1744 | for (nonempty_iterator it = nonempty_begin(); it != nonempty_end(); ++it) { |
1745 | if (!fread(reinterpret_cast<void*>(&(*it)), sizeof(*it), 1, fp)) |
1746 | return false; |
1747 | } |
1748 | return true; |
1749 | } |
1750 | |
1751 | // INPUT and OUTPUT must be either a FILE, *or* a C++ stream |
1752 | // (istream, ostream, etc) *or* a class providing |
1753 | // Read(void*, size_t) and Write(const void*, size_t) |
1754 | // (respectively), which writes a buffer into a stream |
1755 | // (which the INPUT/OUTPUT instance presumably owns). |
1756 | |
1757 | typedef sparsehash_internal::pod_serializer<value_type> NopointerSerializer; |
1758 | |
1759 | // ValueSerializer: a functor. operator()(OUTPUT*, const value_type&) |
1760 | template <typename ValueSerializer, typename OUTPUT> |
1761 | bool serialize(ValueSerializer serializer, OUTPUT* fp) { |
1762 | if (!write_metadata(fp)) return false; |
1763 | for (const_nonempty_iterator it = nonempty_begin(); it != nonempty_end(); |
1764 | ++it) { |
1765 | if (!serializer(fp, *it)) return false; |
1766 | } |
1767 | return true; |
1768 | } |
1769 | |
1770 | // ValueSerializer: a functor. operator()(INPUT*, value_type*) |
1771 | template <typename ValueSerializer, typename INPUT> |
1772 | bool unserialize(ValueSerializer serializer, INPUT* fp) { |
1773 | clear(); |
1774 | if (!read_metadata(fp)) return false; |
1775 | for (nonempty_iterator it = nonempty_begin(); it != nonempty_end(); ++it) { |
1776 | if (!serializer(fp, &*it)) return false; |
1777 | } |
1778 | return true; |
1779 | } |
1780 | |
1781 | // Comparisons. Note the comparisons are pretty arbitrary: we |
1782 | // compare values of the first index that isn't equal (using default |
1783 | // value for empty buckets). |
1784 | bool operator==(const sparsetable& x) const { |
1785 | return (settings.table_size == x.settings.table_size && |
1786 | settings.num_buckets == x.settings.num_buckets && |
1787 | groups == x.groups); |
1788 | } |
1789 | |
1790 | bool operator<(const sparsetable& x) const { |
1791 | return std::lexicographical_compare(begin(), end(), x.begin(), x.end()); |
1792 | } |
1793 | bool operator!=(const sparsetable& x) const { return !(*this == x); } |
1794 | bool operator<=(const sparsetable& x) const { return !(x < *this); } |
1795 | bool operator>(const sparsetable& x) const { return x < *this; } |
1796 | bool operator>=(const sparsetable& x) const { return !(*this < x); } |
1797 | |
1798 | private: |
1799 | // Package allocator with table_size and num_buckets to eliminate memory |
1800 | // needed for the zero-size allocator. |
1801 | // If new fields are added to this class, we should add them to |
1802 | // operator= and swap. |
1803 | class Settings : public allocator_type { |
1804 | public: |
1805 | typedef typename allocator_type::size_type size_type; |
1806 | |
1807 | Settings(const allocator_type& a, size_type sz = 0, size_type n = 0) |
1808 | : allocator_type(a), table_size(sz), num_buckets(n) {} |
1809 | |
1810 | Settings(const Settings& s) |
1811 | : allocator_type(s), |
1812 | table_size(s.table_size), |
1813 | num_buckets(s.num_buckets) {} |
1814 | |
1815 | size_type table_size; // how many buckets they want |
1816 | size_type num_buckets; // number of non-empty buckets |
1817 | }; |
1818 | |
1819 | // The actual data |
1820 | group_vector_type groups; // our list of groups |
1821 | Settings settings; // allocator, table size, buckets |
1822 | }; |
1823 | |
1824 | // We need a global swap as well |
1825 | template <class T, uint16_t GROUP_SIZE, class Alloc> |
1826 | inline void swap(sparsetable<T, GROUP_SIZE, Alloc>& x, |
1827 | sparsetable<T, GROUP_SIZE, Alloc>& y) { |
1828 | x.swap(y); |
1829 | } |
1830 | } // namespace google |
1831 | |