| 1 | /* adler32.c -- compute the Adler-32 checksum of a data stream | 
| 2 |  * Copyright (C) 1995-2011, 2016 Mark Adler | 
| 3 |  * For conditions of distribution and use, see copyright notice in zlib.h | 
| 4 |  */ | 
| 5 |  | 
| 6 | /* @(#) $Id$ */ | 
| 7 |  | 
| 8 | #include "zbuild.h" | 
| 9 | #include "zutil.h" | 
| 10 | #include "functable.h" | 
| 11 | #include "adler32_p.h" | 
| 12 |  | 
| 13 | uint32_t adler32_c(uint32_t adler, const unsigned char *buf, size_t len); | 
| 14 | static uint32_t adler32_combine_(uint32_t adler1, uint32_t adler2, z_off64_t len2); | 
| 15 |  | 
| 16 | #define DO1(buf, i)  {adler += (buf)[i]; sum2 += adler;} | 
| 17 | #define DO2(buf, i)  DO1(buf, i); DO1(buf, i+1); | 
| 18 | #define DO4(buf, i)  DO2(buf, i); DO2(buf, i+2); | 
| 19 | #define DO8(buf, i)  DO4(buf, i); DO4(buf, i+4); | 
| 20 | #define DO16(buf)    DO8(buf, 0); DO8(buf, 8); | 
| 21 |  | 
| 22 | /* ========================================================================= */ | 
| 23 | uint32_t adler32_c(uint32_t adler, const unsigned char *buf, size_t len) { | 
| 24 |     uint32_t sum2; | 
| 25 |     unsigned n; | 
| 26 |  | 
| 27 |     /* split Adler-32 into component sums */ | 
| 28 |     sum2 = (adler >> 16) & 0xffff; | 
| 29 |     adler &= 0xffff; | 
| 30 |  | 
| 31 |     /* in case user likes doing a byte at a time, keep it fast */ | 
| 32 |     if (len == 1) | 
| 33 |         return adler32_len_1(adler, buf, sum2); | 
| 34 |  | 
| 35 |     /* initial Adler-32 value (deferred check for len == 1 speed) */ | 
| 36 |     if (buf == NULL) | 
| 37 |         return 1L; | 
| 38 |  | 
| 39 |     /* in case short lengths are provided, keep it somewhat fast */ | 
| 40 |     if (len < 16) | 
| 41 |         return adler32_len_16(adler, buf, len, sum2); | 
| 42 |  | 
| 43 |     /* do length NMAX blocks -- requires just one modulo operation */ | 
| 44 |     while (len >= NMAX) { | 
| 45 |         len -= NMAX; | 
| 46 | #ifdef UNROLL_MORE | 
| 47 |         n = NMAX / 16;          /* NMAX is divisible by 16 */ | 
| 48 | #else | 
| 49 |         n = NMAX / 8;           /* NMAX is divisible by 8 */ | 
| 50 | #endif | 
| 51 |         do { | 
| 52 | #ifdef UNROLL_MORE | 
| 53 |             DO16(buf);          /* 16 sums unrolled */ | 
| 54 |             buf += 16; | 
| 55 | #else | 
| 56 |             DO8(buf, 0);         /* 8 sums unrolled */ | 
| 57 |             buf += 8; | 
| 58 | #endif | 
| 59 |         } while (--n); | 
| 60 |         MOD(adler); | 
| 61 |         MOD(sum2); | 
| 62 |     } | 
| 63 |  | 
| 64 |     /* do remaining bytes (less than NMAX, still just one modulo) */ | 
| 65 |     if (len) {                  /* avoid modulos if none remaining */ | 
| 66 | #ifdef UNROLL_MORE | 
| 67 |         while (len >= 16) { | 
| 68 |             len -= 16; | 
| 69 |             DO16(buf); | 
| 70 |             buf += 16; | 
| 71 | #else | 
| 72 |         while (len >= 8) { | 
| 73 |             len -= 8; | 
| 74 |             DO8(buf, 0); | 
| 75 |             buf += 8; | 
| 76 | #endif | 
| 77 |         } | 
| 78 |         while (len) { | 
| 79 |             --len; | 
| 80 |             adler += *buf++; | 
| 81 |             sum2 += adler; | 
| 82 |         } | 
| 83 |         MOD(adler); | 
| 84 |         MOD(sum2); | 
| 85 |     } | 
| 86 |  | 
| 87 |     /* return recombined sums */ | 
| 88 |     return adler | (sum2 << 16); | 
| 89 | } | 
| 90 |  | 
| 91 | uint32_t ZEXPORT PREFIX(adler32_z)(uint32_t adler, const unsigned char *buf, size_t len) { | 
| 92 |     return functable.adler32(adler, buf, len); | 
| 93 | } | 
| 94 |  | 
| 95 | /* ========================================================================= */ | 
| 96 | uint32_t ZEXPORT PREFIX(adler32)(uint32_t adler, const unsigned char *buf, uint32_t len) { | 
| 97 |     return functable.adler32(adler, buf, len); | 
| 98 | } | 
| 99 |  | 
| 100 | /* ========================================================================= */ | 
| 101 | static uint32_t adler32_combine_(uint32_t adler1, uint32_t adler2, z_off64_t len2) { | 
| 102 |     uint32_t sum1; | 
| 103 |     uint32_t sum2; | 
| 104 |     unsigned rem; | 
| 105 |  | 
| 106 |     /* for negative len, return invalid adler32 as a clue for debugging */ | 
| 107 |     if (len2 < 0) | 
| 108 |         return 0xffffffff; | 
| 109 |  | 
| 110 |     /* the derivation of this formula is left as an exercise for the reader */ | 
| 111 |     MOD63(len2);                /* assumes len2 >= 0 */ | 
| 112 |     rem = (unsigned)len2; | 
| 113 |     sum1 = adler1 & 0xffff; | 
| 114 |     sum2 = rem * sum1; | 
| 115 |     MOD(sum2); | 
| 116 |     sum1 += (adler2 & 0xffff) + BASE - 1; | 
| 117 |     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; | 
| 118 |     if (sum1 >= BASE) sum1 -= BASE; | 
| 119 |     if (sum1 >= BASE) sum1 -= BASE; | 
| 120 |     if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1); | 
| 121 |     if (sum2 >= BASE) sum2 -= BASE; | 
| 122 |     return sum1 | (sum2 << 16); | 
| 123 | } | 
| 124 |  | 
| 125 | /* ========================================================================= */ | 
| 126 | uint32_t ZEXPORT PREFIX(adler32_combine)(uint32_t adler1, uint32_t adler2, z_off_t len2) { | 
| 127 |     return adler32_combine_(adler1, adler2, len2); | 
| 128 | } | 
| 129 |  | 
| 130 | uint32_t ZEXPORT PREFIX(adler32_combine64)(uint32_t adler1, uint32_t adler2, z_off64_t len2) { | 
| 131 |     return adler32_combine_(adler1, adler2, len2); | 
| 132 | } | 
| 133 |  |