1 | /* deflate.c -- compress data using the deflation algorithm |
2 | * Copyright (C) 1995-2016 Jean-loup Gailly and Mark Adler |
3 | * For conditions of distribution and use, see copyright notice in zlib.h |
4 | */ |
5 | |
6 | /* |
7 | * ALGORITHM |
8 | * |
9 | * The "deflation" process depends on being able to identify portions |
10 | * of the input text which are identical to earlier input (within a |
11 | * sliding window trailing behind the input currently being processed). |
12 | * |
13 | * The most straightforward technique turns out to be the fastest for |
14 | * most input files: try all possible matches and select the longest. |
15 | * The key feature of this algorithm is that insertions into the string |
16 | * dictionary are very simple and thus fast, and deletions are avoided |
17 | * completely. Insertions are performed at each input character, whereas |
18 | * string matches are performed only when the previous match ends. So it |
19 | * is preferable to spend more time in matches to allow very fast string |
20 | * insertions and avoid deletions. The matching algorithm for small |
21 | * strings is inspired from that of Rabin & Karp. A brute force approach |
22 | * is used to find longer strings when a small match has been found. |
23 | * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze |
24 | * (by Leonid Broukhis). |
25 | * A previous version of this file used a more sophisticated algorithm |
26 | * (by Fiala and Greene) which is guaranteed to run in linear amortized |
27 | * time, but has a larger average cost, uses more memory and is patented. |
28 | * However the F&G algorithm may be faster for some highly redundant |
29 | * files if the parameter max_chain_length (described below) is too large. |
30 | * |
31 | * ACKNOWLEDGEMENTS |
32 | * |
33 | * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and |
34 | * I found it in 'freeze' written by Leonid Broukhis. |
35 | * Thanks to many people for bug reports and testing. |
36 | * |
37 | * REFERENCES |
38 | * |
39 | * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". |
40 | * Available in http://tools.ietf.org/html/rfc1951 |
41 | * |
42 | * A description of the Rabin and Karp algorithm is given in the book |
43 | * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. |
44 | * |
45 | * Fiala,E.R., and Greene,D.H. |
46 | * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 |
47 | * |
48 | */ |
49 | |
50 | /* @(#) $Id$ */ |
51 | |
52 | #include "zbuild.h" |
53 | #include "deflate.h" |
54 | #include "deflate_p.h" |
55 | #include "match_p.h" |
56 | #include "functable.h" |
57 | |
58 | const char zng_deflate_copyright[] = " deflate 1.2.11.f Copyright 1995-2016 Jean-loup Gailly and Mark Adler " ; |
59 | /* |
60 | If you use the zlib library in a product, an acknowledgment is welcome |
61 | in the documentation of your product. If for some reason you cannot |
62 | include such an acknowledgment, I would appreciate that you keep this |
63 | copyright string in the executable of your product. |
64 | */ |
65 | |
66 | /* =========================================================================== |
67 | * Architecture-specific hooks. |
68 | */ |
69 | #ifdef S390_DFLTCC_DEFLATE |
70 | # include "arch/s390/dfltcc_deflate.h" |
71 | #else |
72 | /* Memory management for the deflate state. Useful for allocating arch-specific extension blocks. */ |
73 | # define ZALLOC_STATE(strm, items, size) ZALLOC(strm, items, size) |
74 | # define ZFREE_STATE(strm, addr) ZFREE(strm, addr) |
75 | # define ZCOPY_STATE(dst, src, size) memcpy(dst, src, size) |
76 | /* Memory management for the window. Useful for allocation the aligned window. */ |
77 | # define ZALLOC_WINDOW(strm, items, size) ZALLOC(strm, items, size) |
78 | # define TRY_FREE_WINDOW(strm, addr) TRY_FREE(strm, addr) |
79 | /* Invoked at the beginning of deflateSetDictionary(). Useful for checking arch-specific window data. */ |
80 | # define DEFLATE_SET_DICTIONARY_HOOK(strm, dict, dict_len) do {} while (0) |
81 | /* Invoked at the beginning of deflateGetDictionary(). Useful for adjusting arch-specific window data. */ |
82 | # define DEFLATE_GET_DICTIONARY_HOOK(strm, dict, dict_len) do {} while (0) |
83 | /* Invoked at the end of deflateResetKeep(). Useful for initializing arch-specific extension blocks. */ |
84 | # define DEFLATE_RESET_KEEP_HOOK(strm) do {} while (0) |
85 | /* Invoked at the beginning of deflateParams(). Useful for updating arch-specific compression parameters. */ |
86 | # define DEFLATE_PARAMS_HOOK(strm, level, strategy) do {} while (0) |
87 | /* Adjusts the upper bound on compressed data length based on compression parameters and uncompressed data length. |
88 | * Useful when arch-specific deflation code behaves differently than regular zlib-ng algorithms. */ |
89 | # define DEFLATE_BOUND_ADJUST_COMPLEN(strm, complen, sourceLen) do {} while (0) |
90 | /* Returns whether an optimistic upper bound on compressed data length should *not* be used. |
91 | * Useful when arch-specific deflation code behaves differently than regular zlib-ng algorithms. */ |
92 | # define DEFLATE_NEED_CONSERVATIVE_BOUND(strm) 0 |
93 | /* Invoked for each deflate() call. Useful for plugging arch-specific deflation code. */ |
94 | # define DEFLATE_HOOK(strm, flush, bstate) 0 |
95 | /* Returns whether zlib-ng should compute a checksum. Set to 0 if arch-specific deflation code already does that. */ |
96 | # define DEFLATE_NEED_CHECKSUM(strm) 1 |
97 | /* Returns whether reproducibility parameter can be set to a given value. */ |
98 | # define DEFLATE_CAN_SET_REPRODUCIBLE(strm, reproducible) 1 |
99 | #endif |
100 | |
101 | /* =========================================================================== |
102 | * Function prototypes. |
103 | */ |
104 | typedef block_state (*compress_func) (deflate_state *s, int flush); |
105 | /* Compression function. Returns the block state after the call. */ |
106 | |
107 | static int deflateStateCheck (PREFIX3(stream) *strm); |
108 | static block_state deflate_stored (deflate_state *s, int flush); |
109 | ZLIB_INTERNAL block_state deflate_fast (deflate_state *s, int flush); |
110 | ZLIB_INTERNAL block_state deflate_quick (deflate_state *s, int flush); |
111 | #ifndef NO_MEDIUM_STRATEGY |
112 | ZLIB_INTERNAL block_state deflate_medium (deflate_state *s, int flush); |
113 | #endif |
114 | ZLIB_INTERNAL block_state deflate_slow (deflate_state *s, int flush); |
115 | static block_state deflate_rle (deflate_state *s, int flush); |
116 | static block_state deflate_huff (deflate_state *s, int flush); |
117 | static void lm_init (deflate_state *s); |
118 | static void putShortMSB (deflate_state *s, uint16_t b); |
119 | ZLIB_INTERNAL unsigned read_buf (PREFIX3(stream) *strm, unsigned char *buf, unsigned size); |
120 | |
121 | extern void crc_reset(deflate_state *const s); |
122 | #ifdef X86_PCLMULQDQ_CRC |
123 | extern void crc_finalize(deflate_state *const s); |
124 | #endif |
125 | extern void copy_with_crc(PREFIX3(stream) *strm, unsigned char *dst, unsigned long size); |
126 | |
127 | /* =========================================================================== |
128 | * Local data |
129 | */ |
130 | |
131 | #define NIL 0 |
132 | /* Tail of hash chains */ |
133 | |
134 | /* Values for max_lazy_match, good_match and max_chain_length, depending on |
135 | * the desired pack level (0..9). The values given below have been tuned to |
136 | * exclude worst case performance for pathological files. Better values may be |
137 | * found for specific files. |
138 | */ |
139 | typedef struct config_s { |
140 | uint16_t good_length; /* reduce lazy search above this match length */ |
141 | uint16_t max_lazy; /* do not perform lazy search above this match length */ |
142 | uint16_t nice_length; /* quit search above this match length */ |
143 | uint16_t max_chain; |
144 | compress_func func; |
145 | } config; |
146 | |
147 | static const config configuration_table[10] = { |
148 | /* good lazy nice chain */ |
149 | /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ |
150 | |
151 | #ifdef X86_QUICK_STRATEGY |
152 | /* 1 */ {4, 4, 8, 4, deflate_quick}, |
153 | /* 2 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ |
154 | #else |
155 | /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ |
156 | /* 2 */ {4, 5, 16, 8, deflate_fast}, |
157 | #endif |
158 | |
159 | /* 3 */ {4, 6, 32, 32, deflate_fast}, |
160 | |
161 | #ifdef NO_MEDIUM_STRATEGY |
162 | /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ |
163 | /* 5 */ {8, 16, 32, 32, deflate_slow}, |
164 | /* 6 */ {8, 16, 128, 128, deflate_slow}, |
165 | #else |
166 | /* 4 */ {4, 4, 16, 16, deflate_medium}, /* lazy matches */ |
167 | /* 5 */ {8, 16, 32, 32, deflate_medium}, |
168 | /* 6 */ {8, 16, 128, 128, deflate_medium}, |
169 | #endif |
170 | |
171 | /* 7 */ {8, 32, 128, 256, deflate_slow}, |
172 | /* 8 */ {32, 128, 258, 1024, deflate_slow}, |
173 | /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ |
174 | |
175 | /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 |
176 | * For deflate_fast() (levels <= 3) good is ignored and lazy has a different |
177 | * meaning. |
178 | */ |
179 | |
180 | /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ |
181 | #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0)) |
182 | |
183 | |
184 | /* =========================================================================== |
185 | * Initialize the hash table (avoiding 64K overflow for 16 bit systems). |
186 | * prev[] will be initialized on the fly. |
187 | */ |
188 | #define CLEAR_HASH(s) do { \ |
189 | s->head[s->hash_size - 1] = NIL; \ |
190 | memset((unsigned char *)s->head, 0, (unsigned)(s->hash_size - 1) * sizeof(*s->head)); \ |
191 | } while (0) |
192 | |
193 | /* =========================================================================== |
194 | * Slide the hash table when sliding the window down (could be avoided with 32 |
195 | * bit values at the expense of memory usage). We slide even when level == 0 to |
196 | * keep the hash table consistent if we switch back to level > 0 later. |
197 | */ |
198 | ZLIB_INTERNAL void slide_hash_c(deflate_state *s) { |
199 | unsigned n; |
200 | Pos *p; |
201 | unsigned int wsize = s->w_size; |
202 | |
203 | n = s->hash_size; |
204 | p = &s->head[n]; |
205 | #ifdef NOT_TWEAK_COMPILER |
206 | do { |
207 | unsigned m; |
208 | m = *--p; |
209 | *p = (Pos)(m >= wsize ? m-wsize : NIL); |
210 | } while (--n); |
211 | #else |
212 | /* As of I make this change, gcc (4.8.*) isn't able to vectorize |
213 | * this hot loop using saturated-subtraction on x86-64 architecture. |
214 | * To avoid this defect, we can change the loop such that |
215 | * o. the pointer advance forward, and |
216 | * o. demote the variable 'm' to be local to the loop, and |
217 | * choose type "Pos" (instead of 'unsigned int') for the |
218 | * variable to avoid unncessary zero-extension. |
219 | */ |
220 | { |
221 | unsigned int i; |
222 | Pos *q = p - n; |
223 | for (i = 0; i < n; i++) { |
224 | Pos m = *q; |
225 | Pos t = wsize; |
226 | *q++ = (Pos)(m >= t ? m-t: NIL); |
227 | } |
228 | } |
229 | |
230 | #endif /* NOT_TWEAK_COMPILER */ |
231 | n = wsize; |
232 | p = &s->prev[n]; |
233 | #ifdef NOT_TWEAK_COMPILER |
234 | do { |
235 | unsigned m; |
236 | m = *--p; |
237 | *p = (Pos)(m >= wsize ? m-wsize : NIL); |
238 | /* If n is not on any hash chain, prev[n] is garbage but |
239 | * its value will never be used. |
240 | */ |
241 | } while (--n); |
242 | #else |
243 | { |
244 | unsigned int i; |
245 | Pos *q = p - n; |
246 | for (i = 0; i < n; i++) { |
247 | Pos m = *q; |
248 | Pos t = wsize; |
249 | *q++ = (Pos)(m >= t ? m-t: NIL); |
250 | } |
251 | } |
252 | #endif /* NOT_TWEAK_COMPILER */ |
253 | } |
254 | |
255 | /* ========================================================================= */ |
256 | int ZEXPORT PREFIX(deflateInit_)(PREFIX3(stream) *strm, int level, const char *version, int stream_size) { |
257 | return PREFIX(deflateInit2_)(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY, version, stream_size); |
258 | /* Todo: ignore strm->next_in if we use it as window */ |
259 | } |
260 | |
261 | /* ========================================================================= */ |
262 | int ZEXPORT PREFIX(deflateInit2_)(PREFIX3(stream) *strm, int level, int method, int windowBits, |
263 | int memLevel, int strategy, const char *version, int stream_size) { |
264 | unsigned window_padding = 0; |
265 | deflate_state *s; |
266 | int wrap = 1; |
267 | static const char my_version[] = PREFIX2(VERSION); |
268 | |
269 | if (version == NULL || version[0] != my_version[0] || stream_size != sizeof(PREFIX3(stream))) { |
270 | return Z_VERSION_ERROR; |
271 | } |
272 | if (strm == NULL) |
273 | return Z_STREAM_ERROR; |
274 | |
275 | strm->msg = NULL; |
276 | if (strm->zalloc == NULL) { |
277 | strm->zalloc = zng_calloc; |
278 | strm->opaque = NULL; |
279 | } |
280 | if (strm->zfree == NULL) |
281 | strm->zfree = zng_cfree; |
282 | |
283 | if (level == Z_DEFAULT_COMPRESSION) |
284 | level = 6; |
285 | |
286 | if (windowBits < 0) { /* suppress zlib wrapper */ |
287 | wrap = 0; |
288 | windowBits = -windowBits; |
289 | #ifdef GZIP |
290 | } else if (windowBits > 15) { |
291 | wrap = 2; /* write gzip wrapper instead */ |
292 | windowBits -= 16; |
293 | #endif |
294 | } |
295 | if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || windowBits < 8 || |
296 | windowBits > 15 || level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED || |
297 | (windowBits == 8 && wrap != 1)) { |
298 | return Z_STREAM_ERROR; |
299 | } |
300 | if (windowBits == 8) |
301 | windowBits = 9; /* until 256-byte window bug fixed */ |
302 | |
303 | #ifdef X86_QUICK_STRATEGY |
304 | if (level == 1) |
305 | windowBits = 13; |
306 | #endif |
307 | |
308 | s = (deflate_state *) ZALLOC_STATE(strm, 1, sizeof(deflate_state)); |
309 | if (s == NULL) |
310 | return Z_MEM_ERROR; |
311 | strm->state = (struct internal_state *)s; |
312 | s->strm = strm; |
313 | s->status = INIT_STATE; /* to pass state test in deflateReset() */ |
314 | |
315 | s->wrap = wrap; |
316 | s->gzhead = NULL; |
317 | s->w_bits = (unsigned int)windowBits; |
318 | s->w_size = 1 << s->w_bits; |
319 | s->w_mask = s->w_size - 1; |
320 | |
321 | #ifdef X86_SSE42_CRC_HASH |
322 | if (x86_cpu_has_sse42) |
323 | s->hash_bits = (unsigned int)15; |
324 | else |
325 | #endif |
326 | s->hash_bits = (unsigned int)memLevel + 7; |
327 | |
328 | s->hash_size = 1 << s->hash_bits; |
329 | s->hash_mask = s->hash_size - 1; |
330 | #if !defined(__x86_64__) && !defined(_M_X64) && !defined(__i386) && !defined(_M_IX86) |
331 | s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); |
332 | #endif |
333 | |
334 | #ifdef X86_PCLMULQDQ_CRC |
335 | window_padding = 8; |
336 | #endif |
337 | |
338 | s->window = (unsigned char *) ZALLOC_WINDOW(strm, s->w_size + window_padding, 2*sizeof(unsigned char)); |
339 | s->prev = (Pos *) ZALLOC(strm, s->w_size, sizeof(Pos)); |
340 | memset(s->prev, 0, s->w_size * sizeof(Pos)); |
341 | s->head = (Pos *) ZALLOC(strm, s->hash_size, sizeof(Pos)); |
342 | |
343 | s->high_water = 0; /* nothing written to s->window yet */ |
344 | |
345 | s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ |
346 | |
347 | /* We overlay pending_buf and sym_buf. This works since the average size |
348 | * for length/distance pairs over any compressed block is assured to be 31 |
349 | * bits or less. |
350 | * |
351 | * Analysis: The longest fixed codes are a length code of 8 bits plus 5 |
352 | * extra bits, for lengths 131 to 257. The longest fixed distance codes are |
353 | * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest |
354 | * possible fixed-codes length/distance pair is then 31 bits total. |
355 | * |
356 | * sym_buf starts one-fourth of the way into pending_buf. So there are |
357 | * three bytes in sym_buf for every four bytes in pending_buf. Each symbol |
358 | * in sym_buf is three bytes -- two for the distance and one for the |
359 | * literal/length. As each symbol is consumed, the pointer to the next |
360 | * sym_buf value to read moves forward three bytes. From that symbol, up to |
361 | * 31 bits are written to pending_buf. The closest the written pending_buf |
362 | * bits gets to the next sym_buf symbol to read is just before the last |
363 | * code is written. At that time, 31*(n-2) bits have been written, just |
364 | * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at |
365 | * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1 |
366 | * symbols are written.) The closest the writing gets to what is unread is |
367 | * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and |
368 | * can range from 128 to 32768. |
369 | * |
370 | * Therefore, at a minimum, there are 142 bits of space between what is |
371 | * written and what is read in the overlain buffers, so the symbols cannot |
372 | * be overwritten by the compressed data. That space is actually 139 bits, |
373 | * due to the three-bit fixed-code block header. |
374 | * |
375 | * That covers the case where either Z_FIXED is specified, forcing fixed |
376 | * codes, or when the use of fixed codes is chosen, because that choice |
377 | * results in a smaller compressed block than dynamic codes. That latter |
378 | * condition then assures that the above analysis also covers all dynamic |
379 | * blocks. A dynamic-code block will only be chosen to be emitted if it has |
380 | * fewer bits than a fixed-code block would for the same set of symbols. |
381 | * Therefore its average symbol length is assured to be less than 31. So |
382 | * the compressed data for a dynamic block also cannot overwrite the |
383 | * symbols from which it is being constructed. |
384 | */ |
385 | |
386 | s->pending_buf = (unsigned char *) ZALLOC(strm, s->lit_bufsize, 4); |
387 | s->pending_buf_size = (unsigned long)s->lit_bufsize * 4; |
388 | |
389 | if (s->window == NULL || s->prev == NULL || s->head == NULL || |
390 | s->pending_buf == NULL) { |
391 | s->status = FINISH_STATE; |
392 | strm->msg = ERR_MSG(Z_MEM_ERROR); |
393 | PREFIX(deflateEnd)(strm); |
394 | return Z_MEM_ERROR; |
395 | } |
396 | s->sym_buf = s->pending_buf + s->lit_bufsize; |
397 | s->sym_end = (s->lit_bufsize - 1) * 3; |
398 | /* We avoid equality with lit_bufsize*3 because of wraparound at 64K |
399 | * on 16 bit machines and because stored blocks are restricted to |
400 | * 64K-1 bytes. |
401 | */ |
402 | |
403 | s->level = level; |
404 | s->strategy = strategy; |
405 | s->method = (unsigned char)method; |
406 | s->block_open = 0; |
407 | s->reproducible = 0; |
408 | |
409 | return PREFIX(deflateReset)(strm); |
410 | } |
411 | |
412 | /* ========================================================================= |
413 | * Check for a valid deflate stream state. Return 0 if ok, 1 if not. |
414 | */ |
415 | static int deflateStateCheck (PREFIX3(stream) *strm) { |
416 | deflate_state *s; |
417 | if (strm == NULL || |
418 | strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) |
419 | return 1; |
420 | s = strm->state; |
421 | if (s == NULL || s->strm != strm || (s->status != INIT_STATE && |
422 | #ifdef GZIP |
423 | s->status != GZIP_STATE && |
424 | #endif |
425 | s->status != EXTRA_STATE && |
426 | s->status != NAME_STATE && |
427 | s->status != COMMENT_STATE && |
428 | s->status != HCRC_STATE && |
429 | s->status != BUSY_STATE && |
430 | s->status != FINISH_STATE)) |
431 | return 1; |
432 | return 0; |
433 | } |
434 | |
435 | /* ========================================================================= */ |
436 | int ZEXPORT PREFIX(deflateSetDictionary)(PREFIX3(stream) *strm, const unsigned char *dictionary, unsigned int dictLength) { |
437 | deflate_state *s; |
438 | unsigned int str, n; |
439 | int wrap; |
440 | uint32_t avail; |
441 | const unsigned char *next; |
442 | |
443 | if (deflateStateCheck(strm) || dictionary == NULL) |
444 | return Z_STREAM_ERROR; |
445 | s = strm->state; |
446 | wrap = s->wrap; |
447 | if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) |
448 | return Z_STREAM_ERROR; |
449 | |
450 | /* when using zlib wrappers, compute Adler-32 for provided dictionary */ |
451 | if (wrap == 1) |
452 | strm->adler = functable.adler32(strm->adler, dictionary, dictLength); |
453 | DEFLATE_SET_DICTIONARY_HOOK(strm, dictionary, dictLength); /* hook for IBM Z DFLTCC */ |
454 | s->wrap = 0; /* avoid computing Adler-32 in read_buf */ |
455 | |
456 | /* if dictionary would fill window, just replace the history */ |
457 | if (dictLength >= s->w_size) { |
458 | if (wrap == 0) { /* already empty otherwise */ |
459 | CLEAR_HASH(s); |
460 | s->strstart = 0; |
461 | s->block_start = 0L; |
462 | s->insert = 0; |
463 | } |
464 | dictionary += dictLength - s->w_size; /* use the tail */ |
465 | dictLength = s->w_size; |
466 | } |
467 | |
468 | /* insert dictionary into window and hash */ |
469 | avail = strm->avail_in; |
470 | next = strm->next_in; |
471 | strm->avail_in = dictLength; |
472 | strm->next_in = (const unsigned char *)dictionary; |
473 | functable.fill_window(s); |
474 | while (s->lookahead >= MIN_MATCH) { |
475 | str = s->strstart; |
476 | n = s->lookahead - (MIN_MATCH-1); |
477 | functable.insert_string(s, str, n); |
478 | s->strstart = str + n; |
479 | s->lookahead = MIN_MATCH-1; |
480 | functable.fill_window(s); |
481 | } |
482 | s->strstart += s->lookahead; |
483 | s->block_start = (long)s->strstart; |
484 | s->insert = s->lookahead; |
485 | s->lookahead = 0; |
486 | s->match_length = s->prev_length = MIN_MATCH-1; |
487 | s->match_available = 0; |
488 | strm->next_in = next; |
489 | strm->avail_in = avail; |
490 | s->wrap = wrap; |
491 | return Z_OK; |
492 | } |
493 | |
494 | /* ========================================================================= */ |
495 | int ZEXPORT PREFIX(deflateGetDictionary)(PREFIX3(stream) *strm, unsigned char *dictionary, unsigned int *dictLength) { |
496 | deflate_state *s; |
497 | unsigned int len; |
498 | |
499 | if (deflateStateCheck(strm)) |
500 | return Z_STREAM_ERROR; |
501 | DEFLATE_GET_DICTIONARY_HOOK(strm, dictionary, dictLength); /* hook for IBM Z DFLTCC */ |
502 | s = strm->state; |
503 | len = s->strstart + s->lookahead; |
504 | if (len > s->w_size) |
505 | len = s->w_size; |
506 | if (dictionary != NULL && len) |
507 | memcpy(dictionary, s->window + s->strstart + s->lookahead - len, len); |
508 | if (dictLength != NULL) |
509 | *dictLength = len; |
510 | return Z_OK; |
511 | } |
512 | |
513 | /* ========================================================================= */ |
514 | int ZEXPORT PREFIX(deflateResetKeep)(PREFIX3(stream) *strm) { |
515 | deflate_state *s; |
516 | |
517 | if (deflateStateCheck(strm)) { |
518 | return Z_STREAM_ERROR; |
519 | } |
520 | |
521 | strm->total_in = strm->total_out = 0; |
522 | strm->msg = NULL; /* use zfree if we ever allocate msg dynamically */ |
523 | strm->data_type = Z_UNKNOWN; |
524 | |
525 | s = (deflate_state *)strm->state; |
526 | s->pending = 0; |
527 | s->pending_out = s->pending_buf; |
528 | |
529 | if (s->wrap < 0) { |
530 | s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ |
531 | } |
532 | s->status = |
533 | #ifdef GZIP |
534 | s->wrap == 2 ? GZIP_STATE : |
535 | #endif |
536 | INIT_STATE; |
537 | |
538 | #ifdef GZIP |
539 | if (s->wrap == 2) |
540 | crc_reset(s); |
541 | else |
542 | #endif |
543 | strm->adler = functable.adler32(0L, NULL, 0); |
544 | s->last_flush = -2; |
545 | |
546 | zng_tr_init(s); |
547 | |
548 | DEFLATE_RESET_KEEP_HOOK(strm); /* hook for IBM Z DFLTCC */ |
549 | |
550 | return Z_OK; |
551 | } |
552 | |
553 | /* ========================================================================= */ |
554 | int ZEXPORT PREFIX(deflateReset)(PREFIX3(stream) *strm) { |
555 | int ret; |
556 | |
557 | ret = PREFIX(deflateResetKeep)(strm); |
558 | if (ret == Z_OK) |
559 | lm_init(strm->state); |
560 | return ret; |
561 | } |
562 | |
563 | /* ========================================================================= */ |
564 | int ZEXPORT PREFIX()(PREFIX3(stream) *strm, PREFIX(gz_headerp) head) { |
565 | if (deflateStateCheck(strm) || strm->state->wrap != 2) |
566 | return Z_STREAM_ERROR; |
567 | strm->state->gzhead = head; |
568 | return Z_OK; |
569 | } |
570 | |
571 | /* ========================================================================= */ |
572 | int ZEXPORT PREFIX(deflatePending)(PREFIX3(stream) *strm, uint32_t *pending, int *bits) { |
573 | if (deflateStateCheck(strm)) |
574 | return Z_STREAM_ERROR; |
575 | if (pending != NULL) |
576 | *pending = strm->state->pending; |
577 | if (bits != NULL) |
578 | *bits = strm->state->bi_valid; |
579 | return Z_OK; |
580 | } |
581 | |
582 | /* ========================================================================= */ |
583 | int ZEXPORT PREFIX(deflatePrime)(PREFIX3(stream) *strm, int bits, int value) { |
584 | deflate_state *s; |
585 | int put; |
586 | |
587 | if (deflateStateCheck(strm)) |
588 | return Z_STREAM_ERROR; |
589 | s = strm->state; |
590 | if (bits < 0 || bits > 16 || |
591 | s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3)) |
592 | return Z_BUF_ERROR; |
593 | do { |
594 | put = Buf_size - s->bi_valid; |
595 | if (put > bits) |
596 | put = bits; |
597 | s->bi_buf |= (uint16_t)((value & ((1 << put) - 1)) << s->bi_valid); |
598 | s->bi_valid += put; |
599 | zng_tr_flush_bits(s); |
600 | value >>= put; |
601 | bits -= put; |
602 | } while (bits); |
603 | return Z_OK; |
604 | } |
605 | |
606 | /* ========================================================================= */ |
607 | int ZEXPORT PREFIX(deflateParams)(PREFIX3(stream) *strm, int level, int strategy) { |
608 | deflate_state *s; |
609 | compress_func func; |
610 | |
611 | if (deflateStateCheck(strm)) |
612 | return Z_STREAM_ERROR; |
613 | s = strm->state; |
614 | |
615 | if (level == Z_DEFAULT_COMPRESSION) |
616 | level = 6; |
617 | if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { |
618 | return Z_STREAM_ERROR; |
619 | } |
620 | DEFLATE_PARAMS_HOOK(strm, level, strategy); /* hook for IBM Z DFLTCC */ |
621 | func = configuration_table[s->level].func; |
622 | |
623 | if ((strategy != s->strategy || func != configuration_table[level].func) && |
624 | s->last_flush != -2) { |
625 | /* Flush the last buffer: */ |
626 | int err = PREFIX(deflate)(strm, Z_BLOCK); |
627 | if (err == Z_STREAM_ERROR) |
628 | return err; |
629 | if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead) |
630 | return Z_BUF_ERROR; |
631 | } |
632 | if (s->level != level) { |
633 | if (s->level == 0 && s->matches != 0) { |
634 | if (s->matches == 1) { |
635 | functable.slide_hash(s); |
636 | } else { |
637 | CLEAR_HASH(s); |
638 | } |
639 | s->matches = 0; |
640 | } |
641 | s->level = level; |
642 | s->max_lazy_match = configuration_table[level].max_lazy; |
643 | s->good_match = configuration_table[level].good_length; |
644 | s->nice_match = configuration_table[level].nice_length; |
645 | s->max_chain_length = configuration_table[level].max_chain; |
646 | } |
647 | s->strategy = strategy; |
648 | return Z_OK; |
649 | } |
650 | |
651 | /* ========================================================================= */ |
652 | int ZEXPORT PREFIX(deflateTune)(PREFIX3(stream) *strm, int good_length, int max_lazy, int nice_length, int max_chain) { |
653 | deflate_state *s; |
654 | |
655 | if (deflateStateCheck(strm)) |
656 | return Z_STREAM_ERROR; |
657 | s = strm->state; |
658 | s->good_match = (unsigned int)good_length; |
659 | s->max_lazy_match = (unsigned int)max_lazy; |
660 | s->nice_match = nice_length; |
661 | s->max_chain_length = (unsigned int)max_chain; |
662 | return Z_OK; |
663 | } |
664 | |
665 | /* ========================================================================= |
666 | * For the default windowBits of 15 and memLevel of 8, this function returns |
667 | * a close to exact, as well as small, upper bound on the compressed size. |
668 | * They are coded as constants here for a reason--if the #define's are |
669 | * changed, then this function needs to be changed as well. The return |
670 | * value for 15 and 8 only works for those exact settings. |
671 | * |
672 | * For any setting other than those defaults for windowBits and memLevel, |
673 | * the value returned is a conservative worst case for the maximum expansion |
674 | * resulting from using fixed blocks instead of stored blocks, which deflate |
675 | * can emit on compressed data for some combinations of the parameters. |
676 | * |
677 | * This function could be more sophisticated to provide closer upper bounds for |
678 | * every combination of windowBits and memLevel. But even the conservative |
679 | * upper bound of about 14% expansion does not seem onerous for output buffer |
680 | * allocation. |
681 | */ |
682 | unsigned long ZEXPORT PREFIX(deflateBound)(PREFIX3(stream) *strm, unsigned long sourceLen) { |
683 | deflate_state *s; |
684 | unsigned long complen, wraplen; |
685 | |
686 | /* conservative upper bound for compressed data */ |
687 | complen = sourceLen + ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; |
688 | DEFLATE_BOUND_ADJUST_COMPLEN(strm, complen, sourceLen); /* hook for IBM Z DFLTCC */ |
689 | |
690 | /* if can't get parameters, return conservative bound plus zlib wrapper */ |
691 | if (deflateStateCheck(strm)) |
692 | return complen + 6; |
693 | |
694 | /* compute wrapper length */ |
695 | s = strm->state; |
696 | switch (s->wrap) { |
697 | case 0: /* raw deflate */ |
698 | wraplen = 0; |
699 | break; |
700 | case 1: /* zlib wrapper */ |
701 | wraplen = 6 + (s->strstart ? 4 : 0); |
702 | break; |
703 | #ifdef GZIP |
704 | case 2: /* gzip wrapper */ |
705 | wraplen = 18; |
706 | if (s->gzhead != NULL) { /* user-supplied gzip header */ |
707 | unsigned char *str; |
708 | if (s->gzhead->extra != NULL) { |
709 | wraplen += 2 + s->gzhead->extra_len; |
710 | } |
711 | str = s->gzhead->name; |
712 | if (str != NULL) { |
713 | do { |
714 | wraplen++; |
715 | } while (*str++); |
716 | } |
717 | str = s->gzhead->comment; |
718 | if (str != NULL) { |
719 | do { |
720 | wraplen++; |
721 | } while (*str++); |
722 | } |
723 | if (s->gzhead->hcrc) |
724 | wraplen += 2; |
725 | } |
726 | break; |
727 | #endif |
728 | default: /* for compiler happiness */ |
729 | wraplen = 6; |
730 | } |
731 | |
732 | /* if not default parameters, return conservative bound */ |
733 | if (DEFLATE_NEED_CONSERVATIVE_BOUND(strm) || /* hook for IBM Z DFLTCC */ |
734 | s->w_bits != 15 || s->hash_bits != 8 + 7) |
735 | return complen + wraplen; |
736 | |
737 | /* default settings: return tight bound for that case */ |
738 | return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + (sourceLen >> 25) + 13 - 6 + wraplen; |
739 | } |
740 | |
741 | /* ========================================================================= |
742 | * Put a short in the pending buffer. The 16-bit value is put in MSB order. |
743 | * IN assertion: the stream state is correct and there is enough room in |
744 | * pending_buf. |
745 | */ |
746 | static void putShortMSB(deflate_state *s, uint16_t b) { |
747 | put_byte(s, (unsigned char)(b >> 8)); |
748 | put_byte(s, (unsigned char)(b & 0xff)); |
749 | } |
750 | |
751 | /* ========================================================================= |
752 | * Flush as much pending output as possible. All deflate() output, except for |
753 | * some deflate_stored() output, goes through this function so some |
754 | * applications may wish to modify it to avoid allocating a large |
755 | * strm->next_out buffer and copying into it. (See also read_buf()). |
756 | */ |
757 | ZLIB_INTERNAL void flush_pending(PREFIX3(stream) *strm) { |
758 | uint32_t len; |
759 | deflate_state *s = strm->state; |
760 | |
761 | zng_tr_flush_bits(s); |
762 | len = s->pending; |
763 | if (len > strm->avail_out) |
764 | len = strm->avail_out; |
765 | if (len == 0) |
766 | return; |
767 | |
768 | memcpy(strm->next_out, s->pending_out, len); |
769 | strm->next_out += len; |
770 | s->pending_out += len; |
771 | strm->total_out += len; |
772 | strm->avail_out -= len; |
773 | s->pending -= len; |
774 | if (s->pending == 0) { |
775 | s->pending_out = s->pending_buf; |
776 | } |
777 | } |
778 | |
779 | /* =========================================================================== |
780 | * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1]. |
781 | */ |
782 | #define HCRC_UPDATE(beg) \ |
783 | do { \ |
784 | if (s->gzhead->hcrc && s->pending > (beg)) \ |
785 | strm->adler = PREFIX(crc32)(strm->adler, s->pending_buf + (beg), s->pending - (beg)); \ |
786 | } while (0) |
787 | |
788 | /* ========================================================================= */ |
789 | int ZEXPORT PREFIX(deflate)(PREFIX3(stream) *strm, int flush) { |
790 | int old_flush; /* value of flush param for previous deflate call */ |
791 | deflate_state *s; |
792 | |
793 | if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) { |
794 | return Z_STREAM_ERROR; |
795 | } |
796 | s = strm->state; |
797 | |
798 | if (strm->next_out == NULL || (strm->avail_in != 0 && strm->next_in == NULL) || |
799 | (s->status == FINISH_STATE && flush != Z_FINISH)) { |
800 | ERR_RETURN(strm, Z_STREAM_ERROR); |
801 | } |
802 | if (strm->avail_out == 0) |
803 | ERR_RETURN(strm, Z_BUF_ERROR); |
804 | |
805 | old_flush = s->last_flush; |
806 | s->last_flush = flush; |
807 | |
808 | /* Flush as much pending output as possible */ |
809 | if (s->pending != 0) { |
810 | flush_pending(strm); |
811 | if (strm->avail_out == 0) { |
812 | /* Since avail_out is 0, deflate will be called again with |
813 | * more output space, but possibly with both pending and |
814 | * avail_in equal to zero. There won't be anything to do, |
815 | * but this is not an error situation so make sure we |
816 | * return OK instead of BUF_ERROR at next call of deflate: |
817 | */ |
818 | s->last_flush = -1; |
819 | return Z_OK; |
820 | } |
821 | |
822 | /* Make sure there is something to do and avoid duplicate consecutive |
823 | * flushes. For repeated and useless calls with Z_FINISH, we keep |
824 | * returning Z_STREAM_END instead of Z_BUF_ERROR. |
825 | */ |
826 | } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && |
827 | flush != Z_FINISH) { |
828 | ERR_RETURN(strm, Z_BUF_ERROR); |
829 | } |
830 | |
831 | /* User must not provide more input after the first FINISH: */ |
832 | if (s->status == FINISH_STATE && strm->avail_in != 0) { |
833 | ERR_RETURN(strm, Z_BUF_ERROR); |
834 | } |
835 | |
836 | /* Write the header */ |
837 | if (s->status == INIT_STATE && s->wrap == 0) |
838 | s->status = BUSY_STATE; |
839 | if (s->status == INIT_STATE) { |
840 | /* zlib header */ |
841 | unsigned int = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; |
842 | unsigned int level_flags; |
843 | |
844 | if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) |
845 | level_flags = 0; |
846 | else if (s->level < 6) |
847 | level_flags = 1; |
848 | else if (s->level == 6) |
849 | level_flags = 2; |
850 | else |
851 | level_flags = 3; |
852 | header |= (level_flags << 6); |
853 | if (s->strstart != 0) header |= PRESET_DICT; |
854 | header += 31 - (header % 31); |
855 | |
856 | putShortMSB(s, header); |
857 | |
858 | /* Save the adler32 of the preset dictionary: */ |
859 | if (s->strstart != 0) { |
860 | putShortMSB(s, (uint16_t)(strm->adler >> 16)); |
861 | putShortMSB(s, (uint16_t)(strm->adler)); |
862 | } |
863 | strm->adler = functable.adler32(0L, NULL, 0); |
864 | s->status = BUSY_STATE; |
865 | |
866 | /* Compression must start with an empty pending buffer */ |
867 | flush_pending(strm); |
868 | if (s->pending != 0) { |
869 | s->last_flush = -1; |
870 | return Z_OK; |
871 | } |
872 | } |
873 | #ifdef GZIP |
874 | if (s->status == GZIP_STATE) { |
875 | /* gzip header */ |
876 | crc_reset(s); |
877 | put_byte(s, 31); |
878 | put_byte(s, 139); |
879 | put_byte(s, 8); |
880 | if (s->gzhead == NULL) { |
881 | put_byte(s, 0); |
882 | put_byte(s, 0); |
883 | put_byte(s, 0); |
884 | put_byte(s, 0); |
885 | put_byte(s, 0); |
886 | put_byte(s, s->level == 9 ? 2 : |
887 | (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); |
888 | put_byte(s, OS_CODE); |
889 | s->status = BUSY_STATE; |
890 | |
891 | /* Compression must start with an empty pending buffer */ |
892 | flush_pending(strm); |
893 | if (s->pending != 0) { |
894 | s->last_flush = -1; |
895 | return Z_OK; |
896 | } |
897 | } |
898 | else { |
899 | put_byte(s, (s->gzhead->text ? 1 : 0) + |
900 | (s->gzhead->hcrc ? 2 : 0) + |
901 | (s->gzhead->extra == NULL ? 0 : 4) + |
902 | (s->gzhead->name == NULL ? 0 : 8) + |
903 | (s->gzhead->comment == NULL ? 0 : 16) |
904 | ); |
905 | put_byte(s, (unsigned char)(s->gzhead->time & 0xff)); |
906 | put_byte(s, (unsigned char)((s->gzhead->time >> 8) & 0xff)); |
907 | put_byte(s, (unsigned char)((s->gzhead->time >> 16) & 0xff)); |
908 | put_byte(s, (unsigned char)((s->gzhead->time >> 24) & 0xff)); |
909 | put_byte(s, s->level == 9 ? 2 : |
910 | (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); |
911 | put_byte(s, s->gzhead->os & 0xff); |
912 | if (s->gzhead->extra != NULL) { |
913 | put_byte(s, s->gzhead->extra_len & 0xff); |
914 | put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); |
915 | } |
916 | if (s->gzhead->hcrc) |
917 | strm->adler = PREFIX(crc32)(strm->adler, s->pending_buf, s->pending); |
918 | s->gzindex = 0; |
919 | s->status = EXTRA_STATE; |
920 | } |
921 | } |
922 | if (s->status == EXTRA_STATE) { |
923 | if (s->gzhead->extra != NULL) { |
924 | uint32_t beg = s->pending; /* start of bytes to update crc */ |
925 | uint32_t left = (s->gzhead->extra_len & 0xffff) - s->gzindex; |
926 | |
927 | while (s->pending + left > s->pending_buf_size) { |
928 | uint32_t copy = s->pending_buf_size - s->pending; |
929 | memcpy(s->pending_buf + s->pending, s->gzhead->extra + s->gzindex, copy); |
930 | s->pending = s->pending_buf_size; |
931 | HCRC_UPDATE(beg); |
932 | s->gzindex += copy; |
933 | flush_pending(strm); |
934 | if (s->pending != 0) { |
935 | s->last_flush = -1; |
936 | return Z_OK; |
937 | } |
938 | beg = 0; |
939 | left -= copy; |
940 | } |
941 | memcpy(s->pending_buf + s->pending, s->gzhead->extra + s->gzindex, left); |
942 | s->pending += left; |
943 | HCRC_UPDATE(beg); |
944 | s->gzindex = 0; |
945 | } |
946 | s->status = NAME_STATE; |
947 | } |
948 | if (s->status == NAME_STATE) { |
949 | if (s->gzhead->name != NULL) { |
950 | uint32_t beg = s->pending; /* start of bytes to update crc */ |
951 | int val; |
952 | |
953 | do { |
954 | if (s->pending == s->pending_buf_size) { |
955 | HCRC_UPDATE(beg); |
956 | flush_pending(strm); |
957 | if (s->pending != 0) { |
958 | s->last_flush = -1; |
959 | return Z_OK; |
960 | } |
961 | beg = 0; |
962 | } |
963 | val = s->gzhead->name[s->gzindex++]; |
964 | put_byte(s, val); |
965 | } while (val != 0); |
966 | HCRC_UPDATE(beg); |
967 | s->gzindex = 0; |
968 | } |
969 | s->status = COMMENT_STATE; |
970 | } |
971 | if (s->status == COMMENT_STATE) { |
972 | if (s->gzhead->comment != NULL) { |
973 | uint32_t beg = s->pending; /* start of bytes to update crc */ |
974 | int val; |
975 | |
976 | do { |
977 | if (s->pending == s->pending_buf_size) { |
978 | HCRC_UPDATE(beg); |
979 | flush_pending(strm); |
980 | if (s->pending != 0) { |
981 | s->last_flush = -1; |
982 | return Z_OK; |
983 | } |
984 | beg = 0; |
985 | } |
986 | val = s->gzhead->comment[s->gzindex++]; |
987 | put_byte(s, val); |
988 | } while (val != 0); |
989 | HCRC_UPDATE(beg); |
990 | } |
991 | s->status = HCRC_STATE; |
992 | } |
993 | if (s->status == HCRC_STATE) { |
994 | if (s->gzhead->hcrc) { |
995 | if (s->pending + 2 > s->pending_buf_size) { |
996 | flush_pending(strm); |
997 | if (s->pending != 0) { |
998 | s->last_flush = -1; |
999 | return Z_OK; |
1000 | } |
1001 | } |
1002 | put_byte(s, (unsigned char)(strm->adler & 0xff)); |
1003 | put_byte(s, (unsigned char)((strm->adler >> 8) & 0xff)); |
1004 | crc_reset(s); |
1005 | } |
1006 | s->status = BUSY_STATE; |
1007 | |
1008 | /* Compression must start with an empty pending buffer */ |
1009 | flush_pending(strm); |
1010 | if (s->pending != 0) { |
1011 | s->last_flush = -1; |
1012 | return Z_OK; |
1013 | } |
1014 | } |
1015 | #endif |
1016 | |
1017 | /* Start a new block or continue the current one. |
1018 | */ |
1019 | if (strm->avail_in != 0 || s->lookahead != 0 || (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { |
1020 | block_state bstate; |
1021 | |
1022 | bstate = DEFLATE_HOOK(strm, flush, &bstate) ? bstate : /* hook for IBM Z DFLTCC */ |
1023 | s->level == 0 ? deflate_stored(s, flush) : |
1024 | s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : |
1025 | s->strategy == Z_RLE ? deflate_rle(s, flush) : |
1026 | #ifdef X86_QUICK_STRATEGY |
1027 | (s->level == 1 && !x86_cpu_has_sse42) ? deflate_fast(s, flush) : |
1028 | #endif |
1029 | (*(configuration_table[s->level].func))(s, flush); |
1030 | |
1031 | if (bstate == finish_started || bstate == finish_done) { |
1032 | s->status = FINISH_STATE; |
1033 | } |
1034 | if (bstate == need_more || bstate == finish_started) { |
1035 | if (strm->avail_out == 0) { |
1036 | s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ |
1037 | } |
1038 | return Z_OK; |
1039 | /* If flush != Z_NO_FLUSH && avail_out == 0, the next call |
1040 | * of deflate should use the same flush parameter to make sure |
1041 | * that the flush is complete. So we don't have to output an |
1042 | * empty block here, this will be done at next call. This also |
1043 | * ensures that for a very small output buffer, we emit at most |
1044 | * one empty block. |
1045 | */ |
1046 | } |
1047 | if (bstate == block_done) { |
1048 | if (flush == Z_PARTIAL_FLUSH) { |
1049 | zng_tr_align(s); |
1050 | } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ |
1051 | zng_tr_stored_block(s, (char*)0, 0L, 0); |
1052 | /* For a full flush, this empty block will be recognized |
1053 | * as a special marker by inflate_sync(). |
1054 | */ |
1055 | if (flush == Z_FULL_FLUSH) { |
1056 | CLEAR_HASH(s); /* forget history */ |
1057 | if (s->lookahead == 0) { |
1058 | s->strstart = 0; |
1059 | s->block_start = 0L; |
1060 | s->insert = 0; |
1061 | } |
1062 | } |
1063 | } |
1064 | flush_pending(strm); |
1065 | if (strm->avail_out == 0) { |
1066 | s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ |
1067 | return Z_OK; |
1068 | } |
1069 | } |
1070 | } |
1071 | |
1072 | if (flush != Z_FINISH) |
1073 | return Z_OK; |
1074 | if (s->wrap <= 0) |
1075 | return Z_STREAM_END; |
1076 | |
1077 | /* Write the trailer */ |
1078 | #ifdef GZIP |
1079 | if (s->wrap == 2) { |
1080 | # ifdef X86_PCLMULQDQ_CRC |
1081 | crc_finalize(s); |
1082 | # endif |
1083 | put_byte(s, (unsigned char)(strm->adler & 0xff)); |
1084 | put_byte(s, (unsigned char)((strm->adler >> 8) & 0xff)); |
1085 | put_byte(s, (unsigned char)((strm->adler >> 16) & 0xff)); |
1086 | put_byte(s, (unsigned char)((strm->adler >> 24) & 0xff)); |
1087 | put_byte(s, (unsigned char)(strm->total_in & 0xff)); |
1088 | put_byte(s, (unsigned char)((strm->total_in >> 8) & 0xff)); |
1089 | put_byte(s, (unsigned char)((strm->total_in >> 16) & 0xff)); |
1090 | put_byte(s, (unsigned char)((strm->total_in >> 24) & 0xff)); |
1091 | } else |
1092 | #endif |
1093 | { |
1094 | putShortMSB(s, (uint16_t)(strm->adler >> 16)); |
1095 | putShortMSB(s, (uint16_t)strm->adler); |
1096 | } |
1097 | flush_pending(strm); |
1098 | /* If avail_out is zero, the application will call deflate again |
1099 | * to flush the rest. |
1100 | */ |
1101 | if (s->wrap > 0) |
1102 | s->wrap = -s->wrap; /* write the trailer only once! */ |
1103 | return s->pending != 0 ? Z_OK : Z_STREAM_END; |
1104 | } |
1105 | |
1106 | /* ========================================================================= */ |
1107 | int ZEXPORT PREFIX(deflateEnd)(PREFIX3(stream) *strm) { |
1108 | int status; |
1109 | |
1110 | if (deflateStateCheck(strm)) |
1111 | return Z_STREAM_ERROR; |
1112 | |
1113 | status = strm->state->status; |
1114 | |
1115 | /* Deallocate in reverse order of allocations: */ |
1116 | TRY_FREE(strm, strm->state->pending_buf); |
1117 | TRY_FREE(strm, strm->state->head); |
1118 | TRY_FREE(strm, strm->state->prev); |
1119 | TRY_FREE_WINDOW(strm, strm->state->window); |
1120 | |
1121 | ZFREE_STATE(strm, strm->state); |
1122 | strm->state = NULL; |
1123 | |
1124 | return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; |
1125 | } |
1126 | |
1127 | /* ========================================================================= |
1128 | * Copy the source state to the destination state. |
1129 | */ |
1130 | int ZEXPORT PREFIX(deflateCopy)(PREFIX3(stream) *dest, PREFIX3(stream) *source) { |
1131 | deflate_state *ds; |
1132 | deflate_state *ss; |
1133 | |
1134 | if (deflateStateCheck(source) || dest == NULL) { |
1135 | return Z_STREAM_ERROR; |
1136 | } |
1137 | |
1138 | ss = source->state; |
1139 | |
1140 | memcpy((void *)dest, (void *)source, sizeof(PREFIX3(stream))); |
1141 | |
1142 | ds = (deflate_state *) ZALLOC_STATE(dest, 1, sizeof(deflate_state)); |
1143 | if (ds == NULL) |
1144 | return Z_MEM_ERROR; |
1145 | dest->state = (struct internal_state *) ds; |
1146 | ZCOPY_STATE((void *)ds, (void *)ss, sizeof(deflate_state)); |
1147 | ds->strm = dest; |
1148 | |
1149 | ds->window = (unsigned char *) ZALLOC_WINDOW(dest, ds->w_size, 2*sizeof(unsigned char)); |
1150 | ds->prev = (Pos *) ZALLOC(dest, ds->w_size, sizeof(Pos)); |
1151 | ds->head = (Pos *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); |
1152 | ds->pending_buf = (unsigned char *) ZALLOC(dest, ds->lit_bufsize, 4); |
1153 | |
1154 | if (ds->window == NULL || ds->prev == NULL || ds->head == NULL || ds->pending_buf == NULL) { |
1155 | PREFIX(deflateEnd)(dest); |
1156 | return Z_MEM_ERROR; |
1157 | } |
1158 | |
1159 | memcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(unsigned char)); |
1160 | memcpy((void *)ds->prev, (void *)ss->prev, ds->w_size * sizeof(Pos)); |
1161 | memcpy((void *)ds->head, (void *)ss->head, ds->hash_size * sizeof(Pos)); |
1162 | memcpy(ds->pending_buf, ss->pending_buf, (unsigned int)ds->pending_buf_size); |
1163 | |
1164 | ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); |
1165 | ds->sym_buf = ds->pending_buf + ds->lit_bufsize; |
1166 | |
1167 | ds->l_desc.dyn_tree = ds->dyn_ltree; |
1168 | ds->d_desc.dyn_tree = ds->dyn_dtree; |
1169 | ds->bl_desc.dyn_tree = ds->bl_tree; |
1170 | |
1171 | return Z_OK; |
1172 | } |
1173 | |
1174 | /* =========================================================================== |
1175 | * Read a new buffer from the current input stream, update the adler32 |
1176 | * and total number of bytes read. All deflate() input goes through |
1177 | * this function so some applications may wish to modify it to avoid |
1178 | * allocating a large strm->next_in buffer and copying from it. |
1179 | * (See also flush_pending()). |
1180 | */ |
1181 | ZLIB_INTERNAL unsigned read_buf(PREFIX3(stream) *strm, unsigned char *buf, unsigned size) { |
1182 | uint32_t len = strm->avail_in; |
1183 | |
1184 | if (len > size) |
1185 | len = size; |
1186 | if (len == 0) |
1187 | return 0; |
1188 | |
1189 | strm->avail_in -= len; |
1190 | |
1191 | if (!DEFLATE_NEED_CHECKSUM(strm)) { |
1192 | memcpy(buf, strm->next_in, len); |
1193 | } else |
1194 | #ifdef GZIP |
1195 | if (strm->state->wrap == 2) |
1196 | copy_with_crc(strm, buf, len); |
1197 | else |
1198 | #endif |
1199 | { |
1200 | memcpy(buf, strm->next_in, len); |
1201 | if (strm->state->wrap == 1) |
1202 | strm->adler = functable.adler32(strm->adler, buf, len); |
1203 | } |
1204 | strm->next_in += len; |
1205 | strm->total_in += len; |
1206 | |
1207 | return len; |
1208 | } |
1209 | |
1210 | /* =========================================================================== |
1211 | * Initialize the "longest match" routines for a new zlib stream |
1212 | */ |
1213 | static void lm_init(deflate_state *s) { |
1214 | s->window_size = (unsigned long)2L*s->w_size; |
1215 | |
1216 | CLEAR_HASH(s); |
1217 | |
1218 | /* Set the default configuration parameters: |
1219 | */ |
1220 | s->max_lazy_match = configuration_table[s->level].max_lazy; |
1221 | s->good_match = configuration_table[s->level].good_length; |
1222 | s->nice_match = configuration_table[s->level].nice_length; |
1223 | s->max_chain_length = configuration_table[s->level].max_chain; |
1224 | |
1225 | s->strstart = 0; |
1226 | s->block_start = 0L; |
1227 | s->lookahead = 0; |
1228 | s->insert = 0; |
1229 | s->match_length = s->prev_length = MIN_MATCH-1; |
1230 | s->match_available = 0; |
1231 | s->match_start = 0; |
1232 | s->ins_h = 0; |
1233 | } |
1234 | |
1235 | #ifdef ZLIB_DEBUG |
1236 | #define EQUAL 0 |
1237 | /* result of memcmp for equal strings */ |
1238 | |
1239 | /* =========================================================================== |
1240 | * Check that the match at match_start is indeed a match. |
1241 | */ |
1242 | void check_match(deflate_state *s, IPos start, IPos match, int length) { |
1243 | /* check that the match is indeed a match */ |
1244 | if (memcmp(s->window + match, s->window + start, length) != EQUAL) { |
1245 | fprintf(stderr, " start %u, match %u, length %d\n" , start, match, length); |
1246 | do { |
1247 | fprintf(stderr, "%c%c" , s->window[match++], s->window[start++]); |
1248 | } while (--length != 0); |
1249 | z_error("invalid match" ); |
1250 | } |
1251 | if (z_verbose > 1) { |
1252 | fprintf(stderr, "\\[%u,%d]" , start-match, length); |
1253 | do { |
1254 | putc(s->window[start++], stderr); |
1255 | } while (--length != 0); |
1256 | } |
1257 | } |
1258 | #else |
1259 | # define check_match(s, start, match, length) |
1260 | #endif /* ZLIB_DEBUG */ |
1261 | |
1262 | /* =========================================================================== |
1263 | * Fill the window when the lookahead becomes insufficient. |
1264 | * Updates strstart and lookahead. |
1265 | * |
1266 | * IN assertion: lookahead < MIN_LOOKAHEAD |
1267 | * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD |
1268 | * At least one byte has been read, or avail_in == 0; reads are |
1269 | * performed for at least two bytes (required for the zip translate_eol |
1270 | * option -- not supported here). |
1271 | */ |
1272 | |
1273 | void ZLIB_INTERNAL fill_window_c(deflate_state *s) { |
1274 | unsigned n; |
1275 | unsigned more; /* Amount of free space at the end of the window. */ |
1276 | unsigned int wsize = s->w_size; |
1277 | |
1278 | Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead" ); |
1279 | |
1280 | do { |
1281 | more = (unsigned)(s->window_size -(unsigned long)s->lookahead -(unsigned long)s->strstart); |
1282 | |
1283 | /* If the window is almost full and there is insufficient lookahead, |
1284 | * move the upper half to the lower one to make room in the upper half. |
1285 | */ |
1286 | if (s->strstart >= wsize+MAX_DIST(s)) { |
1287 | memcpy(s->window, s->window+wsize, (unsigned)wsize - more); |
1288 | s->match_start -= wsize; |
1289 | s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ |
1290 | s->block_start -= (long) wsize; |
1291 | if (s->insert > s->strstart) |
1292 | s->insert = s->strstart; |
1293 | functable.slide_hash(s); |
1294 | more += wsize; |
1295 | } |
1296 | if (s->strm->avail_in == 0) |
1297 | break; |
1298 | |
1299 | /* If there was no sliding: |
1300 | * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && |
1301 | * more == window_size - lookahead - strstart |
1302 | * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) |
1303 | * => more >= window_size - 2*WSIZE + 2 |
1304 | * In the BIG_MEM or MMAP case (not yet supported), |
1305 | * window_size == input_size + MIN_LOOKAHEAD && |
1306 | * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. |
1307 | * Otherwise, window_size == 2*WSIZE so more >= 2. |
1308 | * If there was sliding, more >= WSIZE. So in all cases, more >= 2. |
1309 | */ |
1310 | Assert(more >= 2, "more < 2" ); |
1311 | |
1312 | n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); |
1313 | s->lookahead += n; |
1314 | |
1315 | /* Initialize the hash value now that we have some input: */ |
1316 | if (s->lookahead + s->insert >= MIN_MATCH) { |
1317 | unsigned int str = s->strstart - s->insert; |
1318 | s->ins_h = s->window[str]; |
1319 | if (str >= 1) |
1320 | functable.insert_string(s, str + 2 - MIN_MATCH, 1); |
1321 | #if MIN_MATCH != 3 |
1322 | #error Call insert_string() MIN_MATCH-3 more times |
1323 | while (s->insert) { |
1324 | functable.insert_string(s, str, 1); |
1325 | str++; |
1326 | s->insert--; |
1327 | if (s->lookahead + s->insert < MIN_MATCH) |
1328 | break; |
1329 | } |
1330 | #else |
1331 | unsigned int count; |
1332 | if (UNLIKELY(s->lookahead == 1)){ |
1333 | count = s->insert - 1; |
1334 | }else{ |
1335 | count = s->insert; |
1336 | } |
1337 | functable.insert_string(s,str,count); |
1338 | s->insert -= count; |
1339 | #endif |
1340 | } |
1341 | /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, |
1342 | * but this is not important since only literal bytes will be emitted. |
1343 | */ |
1344 | } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); |
1345 | |
1346 | /* If the WIN_INIT bytes after the end of the current data have never been |
1347 | * written, then zero those bytes in order to avoid memory check reports of |
1348 | * the use of uninitialized (or uninitialised as Julian writes) bytes by |
1349 | * the longest match routines. Update the high water mark for the next |
1350 | * time through here. WIN_INIT is set to MAX_MATCH since the longest match |
1351 | * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. |
1352 | */ |
1353 | if (s->high_water < s->window_size) { |
1354 | unsigned long curr = s->strstart + (unsigned long)(s->lookahead); |
1355 | unsigned long init; |
1356 | |
1357 | if (s->high_water < curr) { |
1358 | /* Previous high water mark below current data -- zero WIN_INIT |
1359 | * bytes or up to end of window, whichever is less. |
1360 | */ |
1361 | init = s->window_size - curr; |
1362 | if (init > WIN_INIT) |
1363 | init = WIN_INIT; |
1364 | memset(s->window + curr, 0, (unsigned)init); |
1365 | s->high_water = curr + init; |
1366 | } else if (s->high_water < (unsigned long)curr + WIN_INIT) { |
1367 | /* High water mark at or above current data, but below current data |
1368 | * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up |
1369 | * to end of window, whichever is less. |
1370 | */ |
1371 | init = (unsigned long)curr + WIN_INIT - s->high_water; |
1372 | if (init > s->window_size - s->high_water) |
1373 | init = s->window_size - s->high_water; |
1374 | memset(s->window + s->high_water, 0, (unsigned)init); |
1375 | s->high_water += init; |
1376 | } |
1377 | } |
1378 | |
1379 | Assert((unsigned long)s->strstart <= s->window_size - MIN_LOOKAHEAD, |
1380 | "not enough room for search" ); |
1381 | } |
1382 | |
1383 | /* =========================================================================== |
1384 | * Copy without compression as much as possible from the input stream, return |
1385 | * the current block state. |
1386 | * |
1387 | * In case deflateParams() is used to later switch to a non-zero compression |
1388 | * level, s->matches (otherwise unused when storing) keeps track of the number |
1389 | * of hash table slides to perform. If s->matches is 1, then one hash table |
1390 | * slide will be done when switching. If s->matches is 2, the maximum value |
1391 | * allowed here, then the hash table will be cleared, since two or more slides |
1392 | * is the same as a clear. |
1393 | * |
1394 | * deflate_stored() is written to minimize the number of times an input byte is |
1395 | * copied. It is most efficient with large input and output buffers, which |
1396 | * maximizes the opportunites to have a single copy from next_in to next_out. |
1397 | */ |
1398 | static block_state deflate_stored(deflate_state *s, int flush) { |
1399 | /* Smallest worthy block size when not flushing or finishing. By default |
1400 | * this is 32K. This can be as small as 507 bytes for memLevel == 1. For |
1401 | * large input and output buffers, the stored block size will be larger. |
1402 | */ |
1403 | unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size); |
1404 | |
1405 | /* Copy as many min_block or larger stored blocks directly to next_out as |
1406 | * possible. If flushing, copy the remaining available input to next_out as |
1407 | * stored blocks, if there is enough space. |
1408 | */ |
1409 | unsigned len, left, have, last = 0; |
1410 | unsigned used = s->strm->avail_in; |
1411 | do { |
1412 | /* Set len to the maximum size block that we can copy directly with the |
1413 | * available input data and output space. Set left to how much of that |
1414 | * would be copied from what's left in the window. |
1415 | */ |
1416 | len = MAX_STORED; /* maximum deflate stored block length */ |
1417 | have = (s->bi_valid + 42) >> 3; /* number of header bytes */ |
1418 | if (s->strm->avail_out < have) /* need room for header */ |
1419 | break; |
1420 | /* maximum stored block length that will fit in avail_out: */ |
1421 | have = s->strm->avail_out - have; |
1422 | left = s->strstart - s->block_start; /* bytes left in window */ |
1423 | if (len > (unsigned long)left + s->strm->avail_in) |
1424 | len = left + s->strm->avail_in; /* limit len to the input */ |
1425 | if (len > have) |
1426 | len = have; /* limit len to the output */ |
1427 | |
1428 | /* If the stored block would be less than min_block in length, or if |
1429 | * unable to copy all of the available input when flushing, then try |
1430 | * copying to the window and the pending buffer instead. Also don't |
1431 | * write an empty block when flushing -- deflate() does that. |
1432 | */ |
1433 | if (len < min_block && ((len == 0 && flush != Z_FINISH) || flush == Z_NO_FLUSH || len != left + s->strm->avail_in)) |
1434 | break; |
1435 | |
1436 | /* Make a dummy stored block in pending to get the header bytes, |
1437 | * including any pending bits. This also updates the debugging counts. |
1438 | */ |
1439 | last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0; |
1440 | zng_tr_stored_block(s, (char *)0, 0L, last); |
1441 | |
1442 | /* Replace the lengths in the dummy stored block with len. */ |
1443 | s->pending_buf[s->pending - 4] = len; |
1444 | s->pending_buf[s->pending - 3] = len >> 8; |
1445 | s->pending_buf[s->pending - 2] = ~len; |
1446 | s->pending_buf[s->pending - 1] = ~len >> 8; |
1447 | |
1448 | /* Write the stored block header bytes. */ |
1449 | flush_pending(s->strm); |
1450 | |
1451 | #ifdef ZLIB_DEBUG |
1452 | /* Update debugging counts for the data about to be copied. */ |
1453 | s->compressed_len += len << 3; |
1454 | s->bits_sent += len << 3; |
1455 | #endif |
1456 | |
1457 | /* Copy uncompressed bytes from the window to next_out. */ |
1458 | if (left) { |
1459 | if (left > len) |
1460 | left = len; |
1461 | memcpy(s->strm->next_out, s->window + s->block_start, left); |
1462 | s->strm->next_out += left; |
1463 | s->strm->avail_out -= left; |
1464 | s->strm->total_out += left; |
1465 | s->block_start += left; |
1466 | len -= left; |
1467 | } |
1468 | |
1469 | /* Copy uncompressed bytes directly from next_in to next_out, updating |
1470 | * the check value. |
1471 | */ |
1472 | if (len) { |
1473 | read_buf(s->strm, s->strm->next_out, len); |
1474 | s->strm->next_out += len; |
1475 | s->strm->avail_out -= len; |
1476 | s->strm->total_out += len; |
1477 | } |
1478 | } while (last == 0); |
1479 | |
1480 | /* Update the sliding window with the last s->w_size bytes of the copied |
1481 | * data, or append all of the copied data to the existing window if less |
1482 | * than s->w_size bytes were copied. Also update the number of bytes to |
1483 | * insert in the hash tables, in the event that deflateParams() switches to |
1484 | * a non-zero compression level. |
1485 | */ |
1486 | used -= s->strm->avail_in; /* number of input bytes directly copied */ |
1487 | if (used) { |
1488 | /* If any input was used, then no unused input remains in the window, |
1489 | * therefore s->block_start == s->strstart. |
1490 | */ |
1491 | if (used >= s->w_size) { /* supplant the previous history */ |
1492 | s->matches = 2; /* clear hash */ |
1493 | memcpy(s->window, s->strm->next_in - s->w_size, s->w_size); |
1494 | s->strstart = s->w_size; |
1495 | s->insert = s->strstart; |
1496 | } |
1497 | else { |
1498 | if (s->window_size - s->strstart <= used) { |
1499 | /* Slide the window down. */ |
1500 | s->strstart -= s->w_size; |
1501 | memcpy(s->window, s->window + s->w_size, s->strstart); |
1502 | if (s->matches < 2) |
1503 | s->matches++; /* add a pending slide_hash() */ |
1504 | if (s->insert > s->strstart) |
1505 | s->insert = s->strstart; |
1506 | } |
1507 | memcpy(s->window + s->strstart, s->strm->next_in - used, used); |
1508 | s->strstart += used; |
1509 | s->insert += MIN(used, s->w_size - s->insert); |
1510 | } |
1511 | s->block_start = s->strstart; |
1512 | } |
1513 | if (s->high_water < s->strstart) |
1514 | s->high_water = s->strstart; |
1515 | |
1516 | /* If the last block was written to next_out, then done. */ |
1517 | if (last) |
1518 | return finish_done; |
1519 | |
1520 | /* If flushing and all input has been consumed, then done. */ |
1521 | if (flush != Z_NO_FLUSH && flush != Z_FINISH && |
1522 | s->strm->avail_in == 0 && (long)s->strstart == s->block_start) |
1523 | return block_done; |
1524 | |
1525 | /* Fill the window with any remaining input. */ |
1526 | have = s->window_size - s->strstart; |
1527 | if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) { |
1528 | /* Slide the window down. */ |
1529 | s->block_start -= s->w_size; |
1530 | s->strstart -= s->w_size; |
1531 | memcpy(s->window, s->window + s->w_size, s->strstart); |
1532 | if (s->matches < 2) |
1533 | s->matches++; /* add a pending slide_hash() */ |
1534 | have += s->w_size; /* more space now */ |
1535 | if (s->insert > s->strstart) |
1536 | s->insert = s->strstart; |
1537 | } |
1538 | if (have > s->strm->avail_in) |
1539 | have = s->strm->avail_in; |
1540 | if (have) { |
1541 | read_buf(s->strm, s->window + s->strstart, have); |
1542 | s->strstart += have; |
1543 | s->insert += MIN(have, s->w_size - s->insert); |
1544 | } |
1545 | if (s->high_water < s->strstart) |
1546 | s->high_water = s->strstart; |
1547 | |
1548 | /* There was not enough avail_out to write a complete worthy or flushed |
1549 | * stored block to next_out. Write a stored block to pending instead, if we |
1550 | * have enough input for a worthy block, or if flushing and there is enough |
1551 | * room for the remaining input as a stored block in the pending buffer. |
1552 | */ |
1553 | have = (s->bi_valid + 42) >> 3; /* number of header bytes */ |
1554 | /* maximum stored block length that will fit in pending: */ |
1555 | have = MIN(s->pending_buf_size - have, MAX_STORED); |
1556 | min_block = MIN(have, s->w_size); |
1557 | left = s->strstart - s->block_start; |
1558 | if (left >= min_block || |
1559 | ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH && |
1560 | s->strm->avail_in == 0 && left <= have)) { |
1561 | len = MIN(left, have); |
1562 | last = flush == Z_FINISH && s->strm->avail_in == 0 && |
1563 | len == left ? 1 : 0; |
1564 | zng_tr_stored_block(s, (char *)s->window + s->block_start, len, last); |
1565 | s->block_start += len; |
1566 | flush_pending(s->strm); |
1567 | } |
1568 | |
1569 | /* We've done all we can with the available input and output. */ |
1570 | return last ? finish_started : need_more; |
1571 | } |
1572 | |
1573 | |
1574 | /* =========================================================================== |
1575 | * For Z_RLE, simply look for runs of bytes, generate matches only of distance |
1576 | * one. Do not maintain a hash table. (It will be regenerated if this run of |
1577 | * deflate switches away from Z_RLE.) |
1578 | */ |
1579 | static block_state deflate_rle(deflate_state *s, int flush) { |
1580 | int bflush; /* set if current block must be flushed */ |
1581 | unsigned int prev; /* byte at distance one to match */ |
1582 | unsigned char *scan, *strend; /* scan goes up to strend for length of run */ |
1583 | |
1584 | for (;;) { |
1585 | /* Make sure that we always have enough lookahead, except |
1586 | * at the end of the input file. We need MAX_MATCH bytes |
1587 | * for the longest run, plus one for the unrolled loop. |
1588 | */ |
1589 | if (s->lookahead <= MAX_MATCH) { |
1590 | functable.fill_window(s); |
1591 | if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { |
1592 | return need_more; |
1593 | } |
1594 | if (s->lookahead == 0) |
1595 | break; /* flush the current block */ |
1596 | } |
1597 | |
1598 | /* See how many times the previous byte repeats */ |
1599 | s->match_length = 0; |
1600 | if (s->lookahead >= MIN_MATCH && s->strstart > 0) { |
1601 | scan = s->window + s->strstart - 1; |
1602 | prev = *scan; |
1603 | if (prev == *++scan && prev == *++scan && prev == *++scan) { |
1604 | strend = s->window + s->strstart + MAX_MATCH; |
1605 | do { |
1606 | } while (prev == *++scan && prev == *++scan && |
1607 | prev == *++scan && prev == *++scan && |
1608 | prev == *++scan && prev == *++scan && |
1609 | prev == *++scan && prev == *++scan && |
1610 | scan < strend); |
1611 | s->match_length = MAX_MATCH - (unsigned int)(strend - scan); |
1612 | if (s->match_length > s->lookahead) |
1613 | s->match_length = s->lookahead; |
1614 | } |
1615 | Assert(scan <= s->window+(unsigned int)(s->window_size-1), "wild scan" ); |
1616 | } |
1617 | |
1618 | /* Emit match if have run of MIN_MATCH or longer, else emit literal */ |
1619 | if (s->match_length >= MIN_MATCH) { |
1620 | check_match(s, s->strstart, s->strstart - 1, s->match_length); |
1621 | |
1622 | zng_tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); |
1623 | |
1624 | s->lookahead -= s->match_length; |
1625 | s->strstart += s->match_length; |
1626 | s->match_length = 0; |
1627 | } else { |
1628 | /* No match, output a literal byte */ |
1629 | Tracevv((stderr, "%c" , s->window[s->strstart])); |
1630 | zng_tr_tally_lit(s, s->window[s->strstart], bflush); |
1631 | s->lookahead--; |
1632 | s->strstart++; |
1633 | } |
1634 | if (bflush) |
1635 | FLUSH_BLOCK(s, 0); |
1636 | } |
1637 | s->insert = 0; |
1638 | if (flush == Z_FINISH) { |
1639 | FLUSH_BLOCK(s, 1); |
1640 | return finish_done; |
1641 | } |
1642 | if (s->sym_next) |
1643 | FLUSH_BLOCK(s, 0); |
1644 | return block_done; |
1645 | } |
1646 | |
1647 | /* =========================================================================== |
1648 | * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. |
1649 | * (It will be regenerated if this run of deflate switches away from Huffman.) |
1650 | */ |
1651 | static block_state deflate_huff(deflate_state *s, int flush) { |
1652 | int bflush; /* set if current block must be flushed */ |
1653 | |
1654 | for (;;) { |
1655 | /* Make sure that we have a literal to write. */ |
1656 | if (s->lookahead == 0) { |
1657 | functable.fill_window(s); |
1658 | if (s->lookahead == 0) { |
1659 | if (flush == Z_NO_FLUSH) |
1660 | return need_more; |
1661 | break; /* flush the current block */ |
1662 | } |
1663 | } |
1664 | |
1665 | /* Output a literal byte */ |
1666 | s->match_length = 0; |
1667 | Tracevv((stderr, "%c" , s->window[s->strstart])); |
1668 | zng_tr_tally_lit(s, s->window[s->strstart], bflush); |
1669 | s->lookahead--; |
1670 | s->strstart++; |
1671 | if (bflush) |
1672 | FLUSH_BLOCK(s, 0); |
1673 | } |
1674 | s->insert = 0; |
1675 | if (flush == Z_FINISH) { |
1676 | FLUSH_BLOCK(s, 1); |
1677 | return finish_done; |
1678 | } |
1679 | if (s->sym_next) |
1680 | FLUSH_BLOCK(s, 0); |
1681 | return block_done; |
1682 | } |
1683 | |
1684 | #ifndef ZLIB_COMPAT |
1685 | /* ========================================================================= |
1686 | * Checks whether buffer size is sufficient and whether this parameter is a duplicate. |
1687 | */ |
1688 | static int deflateSetParamPre(zng_deflate_param_value **out, size_t min_size, zng_deflate_param_value *param) { |
1689 | int buf_error = param->size < min_size; |
1690 | |
1691 | if (*out != NULL) { |
1692 | (*out)->status = Z_BUF_ERROR; |
1693 | buf_error = 1; |
1694 | } |
1695 | *out = param; |
1696 | return buf_error; |
1697 | } |
1698 | |
1699 | /* ========================================================================= */ |
1700 | int ZEXPORT zng_deflateSetParams(zng_stream *strm, zng_deflate_param_value *params, size_t count) { |
1701 | size_t i; |
1702 | deflate_state *s; |
1703 | zng_deflate_param_value *new_level = NULL; |
1704 | zng_deflate_param_value *new_strategy = NULL; |
1705 | zng_deflate_param_value *new_reproducible = NULL; |
1706 | int param_buf_error; |
1707 | int version_error = 0; |
1708 | int buf_error = 0; |
1709 | int stream_error = 0; |
1710 | int ret; |
1711 | int val; |
1712 | |
1713 | /* Initialize the statuses. */ |
1714 | for (i = 0; i < count; i++) |
1715 | params[i].status = Z_OK; |
1716 | |
1717 | /* Check whether the stream state is consistent. */ |
1718 | if (deflateStateCheck(strm)) |
1719 | return Z_STREAM_ERROR; |
1720 | s = strm->state; |
1721 | |
1722 | /* Check buffer sizes and detect duplicates. */ |
1723 | for (i = 0; i < count; i++) { |
1724 | switch (params[i].param) { |
1725 | case Z_DEFLATE_LEVEL: |
1726 | param_buf_error = deflateSetParamPre(&new_level, sizeof(int), ¶ms[i]); |
1727 | break; |
1728 | case Z_DEFLATE_STRATEGY: |
1729 | param_buf_error = deflateSetParamPre(&new_strategy, sizeof(int), ¶ms[i]); |
1730 | break; |
1731 | case Z_DEFLATE_REPRODUCIBLE: |
1732 | param_buf_error = deflateSetParamPre(&new_reproducible, sizeof(int), ¶ms[i]); |
1733 | break; |
1734 | default: |
1735 | params[i].status = Z_VERSION_ERROR; |
1736 | version_error = 1; |
1737 | param_buf_error = 0; |
1738 | break; |
1739 | } |
1740 | if (param_buf_error) { |
1741 | params[i].status = Z_BUF_ERROR; |
1742 | buf_error = 1; |
1743 | } |
1744 | } |
1745 | /* Exit early if small buffers or duplicates are detected. */ |
1746 | if (buf_error) |
1747 | return Z_BUF_ERROR; |
1748 | |
1749 | /* Apply changes, remember if there were errors. */ |
1750 | if (new_level != NULL || new_strategy != NULL) { |
1751 | ret = PREFIX(deflateParams)(strm, new_level == NULL ? s->level : *(int *)new_level->buf, |
1752 | new_strategy == NULL ? s->strategy : *(int *)new_strategy->buf); |
1753 | if (ret != Z_OK) { |
1754 | if (new_level != NULL) |
1755 | new_level->status = Z_STREAM_ERROR; |
1756 | if (new_strategy != NULL) |
1757 | new_strategy->status = Z_STREAM_ERROR; |
1758 | stream_error = 1; |
1759 | } |
1760 | } |
1761 | if (new_reproducible != NULL) { |
1762 | val = *(int *)new_reproducible->buf; |
1763 | if (DEFLATE_CAN_SET_REPRODUCIBLE(strm, val)) |
1764 | s->reproducible = val; |
1765 | else { |
1766 | new_reproducible->status = Z_STREAM_ERROR; |
1767 | stream_error = 1; |
1768 | } |
1769 | } |
1770 | |
1771 | /* Report version errors only if there are no real errors. */ |
1772 | return stream_error ? Z_STREAM_ERROR : (version_error ? Z_VERSION_ERROR : Z_OK); |
1773 | } |
1774 | |
1775 | /* ========================================================================= */ |
1776 | int ZEXPORT zng_deflateGetParams(zng_stream *strm, zng_deflate_param_value *params, size_t count) { |
1777 | deflate_state *s; |
1778 | size_t i; |
1779 | int buf_error = 0; |
1780 | int version_error = 0; |
1781 | |
1782 | /* Initialize the statuses. */ |
1783 | for (i = 0; i < count; i++) |
1784 | params[i].status = Z_OK; |
1785 | |
1786 | /* Check whether the stream state is consistent. */ |
1787 | if (deflateStateCheck(strm)) |
1788 | return Z_STREAM_ERROR; |
1789 | s = strm->state; |
1790 | |
1791 | for (i = 0; i < count; i++) { |
1792 | switch (params[i].param) { |
1793 | case Z_DEFLATE_LEVEL: |
1794 | if (params[i].size < sizeof(int)) |
1795 | params[i].status = Z_BUF_ERROR; |
1796 | else |
1797 | *(int *)params[i].buf = s->level; |
1798 | break; |
1799 | case Z_DEFLATE_STRATEGY: |
1800 | if (params[i].size < sizeof(int)) |
1801 | params[i].status = Z_BUF_ERROR; |
1802 | else |
1803 | *(int *)params[i].buf = s->strategy; |
1804 | break; |
1805 | case Z_DEFLATE_REPRODUCIBLE: |
1806 | if (params[i].size < sizeof(int)) |
1807 | params[i].status = Z_BUF_ERROR; |
1808 | else |
1809 | *(int *)params[i].buf = s->reproducible; |
1810 | break; |
1811 | default: |
1812 | params[i].status = Z_VERSION_ERROR; |
1813 | version_error = 1; |
1814 | break; |
1815 | } |
1816 | if (params[i].status == Z_BUF_ERROR) |
1817 | buf_error = 1; |
1818 | } |
1819 | return buf_error ? Z_BUF_ERROR : (version_error ? Z_VERSION_ERROR : Z_OK); |
1820 | } |
1821 | #endif |
1822 | |