1 | /* |
2 | * xxHash - Fast Hash algorithm |
3 | * Copyright (C) 2012-2016, Yann Collet |
4 | * |
5 | * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
6 | * |
7 | * Redistribution and use in source and binary forms, with or without |
8 | * modification, are permitted provided that the following conditions are |
9 | * met: |
10 | * |
11 | * * Redistributions of source code must retain the above copyright |
12 | * notice, this list of conditions and the following disclaimer. |
13 | * * Redistributions in binary form must reproduce the above |
14 | * copyright notice, this list of conditions and the following disclaimer |
15 | * in the documentation and/or other materials provided with the |
16 | * distribution. |
17 | * |
18 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | * |
30 | * You can contact the author at : |
31 | * - xxHash homepage: http://www.xxhash.com |
32 | * - xxHash source repository : https://github.com/Cyan4973/xxHash |
33 | */ |
34 | |
35 | |
36 | /* ************************************* |
37 | * Tuning parameters |
38 | ***************************************/ |
39 | /*!XXH_FORCE_MEMORY_ACCESS : |
40 | * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. |
41 | * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. |
42 | * The below switch allow to select different access method for improved performance. |
43 | * Method 0 (default) : use `memcpy()`. Safe and portable. |
44 | * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable). |
45 | * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. |
46 | * Method 2 : direct access. This method doesn't depend on compiler but violate C standard. |
47 | * It can generate buggy code on targets which do not support unaligned memory accesses. |
48 | * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6) |
49 | * See http://stackoverflow.com/a/32095106/646947 for details. |
50 | * Prefer these methods in priority order (0 > 1 > 2) |
51 | */ |
52 | #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ |
53 | # if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) |
54 | # define XXH_FORCE_MEMORY_ACCESS 2 |
55 | # elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \ |
56 | (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) |
57 | # define XXH_FORCE_MEMORY_ACCESS 1 |
58 | # endif |
59 | #endif |
60 | |
61 | /*!XXH_ACCEPT_NULL_INPUT_POINTER : |
62 | * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer. |
63 | * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input. |
64 | * By default, this option is disabled. To enable it, uncomment below define : |
65 | */ |
66 | /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */ |
67 | |
68 | /*!XXH_FORCE_NATIVE_FORMAT : |
69 | * By default, xxHash library provides endian-independant Hash values, based on little-endian convention. |
70 | * Results are therefore identical for little-endian and big-endian CPU. |
71 | * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format. |
72 | * Should endian-independance be of no importance for your application, you may set the #define below to 1, |
73 | * to improve speed for Big-endian CPU. |
74 | * This option has no impact on Little_Endian CPU. |
75 | */ |
76 | #ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */ |
77 | # define XXH_FORCE_NATIVE_FORMAT 0 |
78 | #endif |
79 | |
80 | /*!XXH_FORCE_ALIGN_CHECK : |
81 | * This is a minor performance trick, only useful with lots of very small keys. |
82 | * It means : check for aligned/unaligned input. |
83 | * The check costs one initial branch per hash; set to 0 when the input data |
84 | * is guaranteed to be aligned. |
85 | */ |
86 | #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ |
87 | # if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) |
88 | # define XXH_FORCE_ALIGN_CHECK 0 |
89 | # else |
90 | # define XXH_FORCE_ALIGN_CHECK 1 |
91 | # endif |
92 | #endif |
93 | |
94 | |
95 | /* ************************************* |
96 | * Includes & Memory related functions |
97 | ***************************************/ |
98 | /* Modify the local functions below should you wish to use some other memory routines */ |
99 | /* for malloc(), free() */ |
100 | #include <stdlib.h> |
101 | static void* XXH_malloc(size_t s) { return malloc(s); } |
102 | static void XXH_free (void* p) { free(p); } |
103 | /* for memcpy() */ |
104 | #include <string.h> |
105 | static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); } |
106 | |
107 | #ifndef XXH_STATIC_LINKING_ONLY |
108 | # define XXH_STATIC_LINKING_ONLY |
109 | #endif |
110 | #include "xxhash.h" |
111 | |
112 | |
113 | /* ************************************* |
114 | * Compiler Specific Options |
115 | ***************************************/ |
116 | #if defined (__GNUC__) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ |
117 | # define INLINE_KEYWORD inline |
118 | #else |
119 | # define INLINE_KEYWORD |
120 | #endif |
121 | |
122 | #if defined(__GNUC__) |
123 | # define FORCE_INLINE_ATTR __attribute__((always_inline)) |
124 | #elif defined(_MSC_VER) |
125 | # define FORCE_INLINE_ATTR __forceinline |
126 | #else |
127 | # define FORCE_INLINE_ATTR |
128 | #endif |
129 | |
130 | #define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR |
131 | |
132 | |
133 | #ifdef _MSC_VER |
134 | # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ |
135 | #endif |
136 | |
137 | |
138 | /* ************************************* |
139 | * Basic Types |
140 | ***************************************/ |
141 | #ifndef MEM_MODULE |
142 | # define MEM_MODULE |
143 | # if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
144 | # include <stdint.h> |
145 | typedef uint8_t BYTE; |
146 | typedef uint16_t U16; |
147 | typedef uint32_t U32; |
148 | typedef int32_t S32; |
149 | typedef uint64_t U64; |
150 | # else |
151 | typedef unsigned char BYTE; |
152 | typedef unsigned short U16; |
153 | typedef unsigned int U32; |
154 | typedef signed int S32; |
155 | typedef unsigned long long U64; /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */ |
156 | # endif |
157 | #endif |
158 | |
159 | |
160 | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
161 | |
162 | /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ |
163 | static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; } |
164 | static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; } |
165 | |
166 | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
167 | |
168 | /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ |
169 | /* currently only defined for gcc and icc */ |
170 | typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign; |
171 | |
172 | static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; } |
173 | static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; } |
174 | |
175 | #else |
176 | |
177 | /* portable and safe solution. Generally efficient. |
178 | * see : http://stackoverflow.com/a/32095106/646947 |
179 | */ |
180 | |
181 | static U32 XXH_read32(const void* memPtr) |
182 | { |
183 | U32 val; |
184 | memcpy(&val, memPtr, sizeof(val)); |
185 | return val; |
186 | } |
187 | |
188 | static U64 XXH_read64(const void* memPtr) |
189 | { |
190 | U64 val; |
191 | memcpy(&val, memPtr, sizeof(val)); |
192 | return val; |
193 | } |
194 | |
195 | #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
196 | |
197 | |
198 | /* **************************************** |
199 | * Compiler-specific Functions and Macros |
200 | ******************************************/ |
201 | #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) |
202 | |
203 | /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */ |
204 | #if defined(_MSC_VER) |
205 | # define XXH_rotl32(x,r) _rotl(x,r) |
206 | # define XXH_rotl64(x,r) _rotl64(x,r) |
207 | #else |
208 | # define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r))) |
209 | # define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r))) |
210 | #endif |
211 | |
212 | #if defined(_MSC_VER) /* Visual Studio */ |
213 | # define XXH_swap32 _byteswap_ulong |
214 | # define XXH_swap64 _byteswap_uint64 |
215 | #elif GCC_VERSION >= 403 |
216 | # define XXH_swap32 __builtin_bswap32 |
217 | # define XXH_swap64 __builtin_bswap64 |
218 | #else |
219 | static U32 XXH_swap32 (U32 x) |
220 | { |
221 | return ((x << 24) & 0xff000000 ) | |
222 | ((x << 8) & 0x00ff0000 ) | |
223 | ((x >> 8) & 0x0000ff00 ) | |
224 | ((x >> 24) & 0x000000ff ); |
225 | } |
226 | static U64 XXH_swap64 (U64 x) |
227 | { |
228 | return ((x << 56) & 0xff00000000000000ULL) | |
229 | ((x << 40) & 0x00ff000000000000ULL) | |
230 | ((x << 24) & 0x0000ff0000000000ULL) | |
231 | ((x << 8) & 0x000000ff00000000ULL) | |
232 | ((x >> 8) & 0x00000000ff000000ULL) | |
233 | ((x >> 24) & 0x0000000000ff0000ULL) | |
234 | ((x >> 40) & 0x000000000000ff00ULL) | |
235 | ((x >> 56) & 0x00000000000000ffULL); |
236 | } |
237 | #endif |
238 | |
239 | |
240 | /* ************************************* |
241 | * Architecture Macros |
242 | ***************************************/ |
243 | typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess; |
244 | |
245 | /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */ |
246 | #ifndef XXH_CPU_LITTLE_ENDIAN |
247 | static const int g_one = 1; |
248 | # define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one)) |
249 | #endif |
250 | |
251 | |
252 | /* *************************** |
253 | * Memory reads |
254 | *****************************/ |
255 | typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; |
256 | |
257 | FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align) |
258 | { |
259 | if (align==XXH_unaligned) |
260 | return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); |
261 | else |
262 | return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr); |
263 | } |
264 | |
265 | FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian) |
266 | { |
267 | return XXH_readLE32_align(ptr, endian, XXH_unaligned); |
268 | } |
269 | |
270 | static U32 XXH_readBE32(const void* ptr) |
271 | { |
272 | return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); |
273 | } |
274 | |
275 | FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align) |
276 | { |
277 | if (align==XXH_unaligned) |
278 | return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); |
279 | else |
280 | return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr); |
281 | } |
282 | |
283 | FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian) |
284 | { |
285 | return XXH_readLE64_align(ptr, endian, XXH_unaligned); |
286 | } |
287 | |
288 | static U64 XXH_readBE64(const void* ptr) |
289 | { |
290 | return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); |
291 | } |
292 | |
293 | |
294 | /* ************************************* |
295 | * Macros |
296 | ***************************************/ |
297 | #define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ |
298 | |
299 | |
300 | /* ************************************* |
301 | * Constants |
302 | ***************************************/ |
303 | static const U32 PRIME32_1 = 2654435761U; |
304 | static const U32 PRIME32_2 = 2246822519U; |
305 | static const U32 PRIME32_3 = 3266489917U; |
306 | static const U32 PRIME32_4 = 668265263U; |
307 | static const U32 PRIME32_5 = 374761393U; |
308 | |
309 | static const U64 PRIME64_1 = 11400714785074694791ULL; |
310 | static const U64 PRIME64_2 = 14029467366897019727ULL; |
311 | static const U64 PRIME64_3 = 1609587929392839161ULL; |
312 | static const U64 PRIME64_4 = 9650029242287828579ULL; |
313 | static const U64 PRIME64_5 = 2870177450012600261ULL; |
314 | |
315 | XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } |
316 | |
317 | |
318 | /* ************************** |
319 | * Utils |
320 | ****************************/ |
321 | XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState) |
322 | { |
323 | memcpy(dstState, srcState, sizeof(*dstState)); |
324 | } |
325 | |
326 | XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState) |
327 | { |
328 | memcpy(dstState, srcState, sizeof(*dstState)); |
329 | } |
330 | |
331 | |
332 | /* *************************** |
333 | * Simple Hash Functions |
334 | *****************************/ |
335 | |
336 | static U32 XXH32_round(U32 seed, U32 input) |
337 | { |
338 | seed += input * PRIME32_2; |
339 | seed = XXH_rotl32(seed, 13); |
340 | seed *= PRIME32_1; |
341 | return seed; |
342 | } |
343 | |
344 | FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align) |
345 | { |
346 | const BYTE* p = (const BYTE*)input; |
347 | const BYTE* bEnd = p + len; |
348 | U32 h32; |
349 | #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align) |
350 | |
351 | #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
352 | if (p==NULL) { |
353 | len=0; |
354 | bEnd=p=(const BYTE*)(size_t)16; |
355 | } |
356 | #endif |
357 | |
358 | if (len>=16) { |
359 | const BYTE* const limit = bEnd - 16; |
360 | U32 v1 = seed + PRIME32_1 + PRIME32_2; |
361 | U32 v2 = seed + PRIME32_2; |
362 | U32 v3 = seed + 0; |
363 | U32 v4 = seed - PRIME32_1; |
364 | |
365 | do { |
366 | v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4; |
367 | v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4; |
368 | v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4; |
369 | v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4; |
370 | } while (p<=limit); |
371 | |
372 | h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); |
373 | } else { |
374 | h32 = seed + PRIME32_5; |
375 | } |
376 | |
377 | h32 += (U32) len; |
378 | |
379 | while (p+4<=bEnd) { |
380 | h32 += XXH_get32bits(p) * PRIME32_3; |
381 | h32 = XXH_rotl32(h32, 17) * PRIME32_4 ; |
382 | p+=4; |
383 | } |
384 | |
385 | while (p<bEnd) { |
386 | h32 += (*p) * PRIME32_5; |
387 | h32 = XXH_rotl32(h32, 11) * PRIME32_1 ; |
388 | p++; |
389 | } |
390 | |
391 | h32 ^= h32 >> 15; |
392 | h32 *= PRIME32_2; |
393 | h32 ^= h32 >> 13; |
394 | h32 *= PRIME32_3; |
395 | h32 ^= h32 >> 16; |
396 | |
397 | return h32; |
398 | } |
399 | |
400 | |
401 | XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed) |
402 | { |
403 | #if 0 |
404 | /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
405 | XXH32_CREATESTATE_STATIC(state); |
406 | XXH32_reset(state, seed); |
407 | XXH32_update(state, input, len); |
408 | return XXH32_digest(state); |
409 | #else |
410 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
411 | |
412 | if (XXH_FORCE_ALIGN_CHECK) { |
413 | if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ |
414 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
415 | return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); |
416 | else |
417 | return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); |
418 | } } |
419 | |
420 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
421 | return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); |
422 | else |
423 | return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); |
424 | #endif |
425 | } |
426 | |
427 | |
428 | static U64 XXH64_round(U64 acc, U64 input) |
429 | { |
430 | acc += input * PRIME64_2; |
431 | acc = XXH_rotl64(acc, 31); |
432 | acc *= PRIME64_1; |
433 | return acc; |
434 | } |
435 | |
436 | static U64 XXH64_mergeRound(U64 acc, U64 val) |
437 | { |
438 | val = XXH64_round(0, val); |
439 | acc ^= val; |
440 | acc = acc * PRIME64_1 + PRIME64_4; |
441 | return acc; |
442 | } |
443 | |
444 | FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align) |
445 | { |
446 | const BYTE* p = (const BYTE*)input; |
447 | const BYTE* const bEnd = p + len; |
448 | U64 h64; |
449 | #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align) |
450 | |
451 | #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
452 | if (p==NULL) { |
453 | len=0; |
454 | bEnd=p=(const BYTE*)(size_t)32; |
455 | } |
456 | #endif |
457 | |
458 | if (len>=32) { |
459 | const BYTE* const limit = bEnd - 32; |
460 | U64 v1 = seed + PRIME64_1 + PRIME64_2; |
461 | U64 v2 = seed + PRIME64_2; |
462 | U64 v3 = seed + 0; |
463 | U64 v4 = seed - PRIME64_1; |
464 | |
465 | do { |
466 | v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8; |
467 | v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8; |
468 | v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8; |
469 | v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8; |
470 | } while (p<=limit); |
471 | |
472 | h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
473 | h64 = XXH64_mergeRound(h64, v1); |
474 | h64 = XXH64_mergeRound(h64, v2); |
475 | h64 = XXH64_mergeRound(h64, v3); |
476 | h64 = XXH64_mergeRound(h64, v4); |
477 | |
478 | } else { |
479 | h64 = seed + PRIME64_5; |
480 | } |
481 | |
482 | h64 += (U64) len; |
483 | |
484 | while (p+8<=bEnd) { |
485 | U64 const k1 = XXH64_round(0, XXH_get64bits(p)); |
486 | h64 ^= k1; |
487 | h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; |
488 | p+=8; |
489 | } |
490 | |
491 | if (p+4<=bEnd) { |
492 | h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; |
493 | h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; |
494 | p+=4; |
495 | } |
496 | |
497 | while (p<bEnd) { |
498 | h64 ^= (*p) * PRIME64_5; |
499 | h64 = XXH_rotl64(h64, 11) * PRIME64_1; |
500 | p++; |
501 | } |
502 | |
503 | h64 ^= h64 >> 33; |
504 | h64 *= PRIME64_2; |
505 | h64 ^= h64 >> 29; |
506 | h64 *= PRIME64_3; |
507 | h64 ^= h64 >> 32; |
508 | |
509 | return h64; |
510 | } |
511 | |
512 | |
513 | XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed) |
514 | { |
515 | #if 0 |
516 | /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
517 | XXH64_CREATESTATE_STATIC(state); |
518 | XXH64_reset(state, seed); |
519 | XXH64_update(state, input, len); |
520 | return XXH64_digest(state); |
521 | #else |
522 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
523 | |
524 | if (XXH_FORCE_ALIGN_CHECK) { |
525 | if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ |
526 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
527 | return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); |
528 | else |
529 | return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); |
530 | } } |
531 | |
532 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
533 | return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); |
534 | else |
535 | return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); |
536 | #endif |
537 | } |
538 | |
539 | |
540 | /* ************************************************** |
541 | * Advanced Hash Functions |
542 | ****************************************************/ |
543 | |
544 | XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) |
545 | { |
546 | return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); |
547 | } |
548 | XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) |
549 | { |
550 | XXH_free(statePtr); |
551 | return XXH_OK; |
552 | } |
553 | |
554 | XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) |
555 | { |
556 | return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); |
557 | } |
558 | XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) |
559 | { |
560 | XXH_free(statePtr); |
561 | return XXH_OK; |
562 | } |
563 | |
564 | |
565 | /*** Hash feed ***/ |
566 | |
567 | XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed) |
568 | { |
569 | XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ |
570 | memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */ |
571 | state.v1 = seed + PRIME32_1 + PRIME32_2; |
572 | state.v2 = seed + PRIME32_2; |
573 | state.v3 = seed + 0; |
574 | state.v4 = seed - PRIME32_1; |
575 | memcpy(statePtr, &state, sizeof(state)); |
576 | return XXH_OK; |
577 | } |
578 | |
579 | |
580 | XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed) |
581 | { |
582 | XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ |
583 | memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */ |
584 | state.v1 = seed + PRIME64_1 + PRIME64_2; |
585 | state.v2 = seed + PRIME64_2; |
586 | state.v3 = seed + 0; |
587 | state.v4 = seed - PRIME64_1; |
588 | memcpy(statePtr, &state, sizeof(state)); |
589 | return XXH_OK; |
590 | } |
591 | |
592 | |
593 | FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian) |
594 | { |
595 | const BYTE* p = (const BYTE*)input; |
596 | const BYTE* const bEnd = p + len; |
597 | |
598 | #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
599 | if (input==NULL) return XXH_ERROR; |
600 | #endif |
601 | |
602 | state->total_len_32 += (unsigned)len; |
603 | state->large_len |= (len>=16) | (state->total_len_32>=16); |
604 | |
605 | if (state->memsize + len < 16) { /* fill in tmp buffer */ |
606 | XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len); |
607 | state->memsize += (unsigned)len; |
608 | return XXH_OK; |
609 | } |
610 | |
611 | if (state->memsize) { /* some data left from previous update */ |
612 | XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize); |
613 | { const U32* p32 = state->mem32; |
614 | state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++; |
615 | state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++; |
616 | state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++; |
617 | state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++; |
618 | } |
619 | p += 16-state->memsize; |
620 | state->memsize = 0; |
621 | } |
622 | |
623 | if (p <= bEnd-16) { |
624 | const BYTE* const limit = bEnd - 16; |
625 | U32 v1 = state->v1; |
626 | U32 v2 = state->v2; |
627 | U32 v3 = state->v3; |
628 | U32 v4 = state->v4; |
629 | |
630 | do { |
631 | v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4; |
632 | v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4; |
633 | v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4; |
634 | v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4; |
635 | } while (p<=limit); |
636 | |
637 | state->v1 = v1; |
638 | state->v2 = v2; |
639 | state->v3 = v3; |
640 | state->v4 = v4; |
641 | } |
642 | |
643 | if (p < bEnd) { |
644 | XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); |
645 | state->memsize = (unsigned)(bEnd-p); |
646 | } |
647 | |
648 | return XXH_OK; |
649 | } |
650 | |
651 | XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len) |
652 | { |
653 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
654 | |
655 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
656 | return XXH32_update_endian(state_in, input, len, XXH_littleEndian); |
657 | else |
658 | return XXH32_update_endian(state_in, input, len, XXH_bigEndian); |
659 | } |
660 | |
661 | |
662 | |
663 | FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian) |
664 | { |
665 | const BYTE * p = (const BYTE*)state->mem32; |
666 | const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize; |
667 | U32 h32; |
668 | |
669 | if (state->large_len) { |
670 | h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18); |
671 | } else { |
672 | h32 = state->v3 /* == seed */ + PRIME32_5; |
673 | } |
674 | |
675 | h32 += state->total_len_32; |
676 | |
677 | while (p+4<=bEnd) { |
678 | h32 += XXH_readLE32(p, endian) * PRIME32_3; |
679 | h32 = XXH_rotl32(h32, 17) * PRIME32_4; |
680 | p+=4; |
681 | } |
682 | |
683 | while (p<bEnd) { |
684 | h32 += (*p) * PRIME32_5; |
685 | h32 = XXH_rotl32(h32, 11) * PRIME32_1; |
686 | p++; |
687 | } |
688 | |
689 | h32 ^= h32 >> 15; |
690 | h32 *= PRIME32_2; |
691 | h32 ^= h32 >> 13; |
692 | h32 *= PRIME32_3; |
693 | h32 ^= h32 >> 16; |
694 | |
695 | return h32; |
696 | } |
697 | |
698 | |
699 | XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in) |
700 | { |
701 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
702 | |
703 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
704 | return XXH32_digest_endian(state_in, XXH_littleEndian); |
705 | else |
706 | return XXH32_digest_endian(state_in, XXH_bigEndian); |
707 | } |
708 | |
709 | |
710 | |
711 | /* **** XXH64 **** */ |
712 | |
713 | FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian) |
714 | { |
715 | const BYTE* p = (const BYTE*)input; |
716 | const BYTE* const bEnd = p + len; |
717 | |
718 | #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
719 | if (input==NULL) return XXH_ERROR; |
720 | #endif |
721 | |
722 | state->total_len += len; |
723 | |
724 | if (state->memsize + len < 32) { /* fill in tmp buffer */ |
725 | XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len); |
726 | state->memsize += (U32)len; |
727 | return XXH_OK; |
728 | } |
729 | |
730 | if (state->memsize) { /* tmp buffer is full */ |
731 | XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize); |
732 | state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian)); |
733 | state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian)); |
734 | state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian)); |
735 | state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian)); |
736 | p += 32-state->memsize; |
737 | state->memsize = 0; |
738 | } |
739 | |
740 | if (p+32 <= bEnd) { |
741 | const BYTE* const limit = bEnd - 32; |
742 | U64 v1 = state->v1; |
743 | U64 v2 = state->v2; |
744 | U64 v3 = state->v3; |
745 | U64 v4 = state->v4; |
746 | |
747 | do { |
748 | v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8; |
749 | v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8; |
750 | v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8; |
751 | v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8; |
752 | } while (p<=limit); |
753 | |
754 | state->v1 = v1; |
755 | state->v2 = v2; |
756 | state->v3 = v3; |
757 | state->v4 = v4; |
758 | } |
759 | |
760 | if (p < bEnd) { |
761 | XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); |
762 | state->memsize = (unsigned)(bEnd-p); |
763 | } |
764 | |
765 | return XXH_OK; |
766 | } |
767 | |
768 | XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len) |
769 | { |
770 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
771 | |
772 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
773 | return XXH64_update_endian(state_in, input, len, XXH_littleEndian); |
774 | else |
775 | return XXH64_update_endian(state_in, input, len, XXH_bigEndian); |
776 | } |
777 | |
778 | |
779 | |
780 | FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian) |
781 | { |
782 | const BYTE * p = (const BYTE*)state->mem64; |
783 | const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize; |
784 | U64 h64; |
785 | |
786 | if (state->total_len >= 32) { |
787 | U64 const v1 = state->v1; |
788 | U64 const v2 = state->v2; |
789 | U64 const v3 = state->v3; |
790 | U64 const v4 = state->v4; |
791 | |
792 | h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
793 | h64 = XXH64_mergeRound(h64, v1); |
794 | h64 = XXH64_mergeRound(h64, v2); |
795 | h64 = XXH64_mergeRound(h64, v3); |
796 | h64 = XXH64_mergeRound(h64, v4); |
797 | } else { |
798 | h64 = state->v3 + PRIME64_5; |
799 | } |
800 | |
801 | h64 += (U64) state->total_len; |
802 | |
803 | while (p+8<=bEnd) { |
804 | U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian)); |
805 | h64 ^= k1; |
806 | h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; |
807 | p+=8; |
808 | } |
809 | |
810 | if (p+4<=bEnd) { |
811 | h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1; |
812 | h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; |
813 | p+=4; |
814 | } |
815 | |
816 | while (p<bEnd) { |
817 | h64 ^= (*p) * PRIME64_5; |
818 | h64 = XXH_rotl64(h64, 11) * PRIME64_1; |
819 | p++; |
820 | } |
821 | |
822 | h64 ^= h64 >> 33; |
823 | h64 *= PRIME64_2; |
824 | h64 ^= h64 >> 29; |
825 | h64 *= PRIME64_3; |
826 | h64 ^= h64 >> 32; |
827 | |
828 | return h64; |
829 | } |
830 | |
831 | |
832 | XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in) |
833 | { |
834 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
835 | |
836 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
837 | return XXH64_digest_endian(state_in, XXH_littleEndian); |
838 | else |
839 | return XXH64_digest_endian(state_in, XXH_bigEndian); |
840 | } |
841 | |
842 | |
843 | /* ************************** |
844 | * Canonical representation |
845 | ****************************/ |
846 | |
847 | /*! Default XXH result types are basic unsigned 32 and 64 bits. |
848 | * The canonical representation follows human-readable write convention, aka big-endian (large digits first). |
849 | * These functions allow transformation of hash result into and from its canonical format. |
850 | * This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs. |
851 | */ |
852 | |
853 | XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) |
854 | { |
855 | XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); |
856 | if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); |
857 | memcpy(dst, &hash, sizeof(*dst)); |
858 | } |
859 | |
860 | XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) |
861 | { |
862 | XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); |
863 | if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); |
864 | memcpy(dst, &hash, sizeof(*dst)); |
865 | } |
866 | |
867 | XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) |
868 | { |
869 | return XXH_readBE32(src); |
870 | } |
871 | |
872 | XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) |
873 | { |
874 | return XXH_readBE64(src); |
875 | } |
876 | |