| 1 | #pragma once |
| 2 | |
| 3 | #include <string.h> |
| 4 | #include <memory> |
| 5 | #include <vector> |
| 6 | #include <boost/noncopyable.hpp> |
| 7 | #include <common/likely.h> |
| 8 | #if __has_include(<sanitizer/asan_interface.h>) |
| 9 | # include <sanitizer/asan_interface.h> |
| 10 | #endif |
| 11 | #include <Core/Defines.h> |
| 12 | #include <Common/memcpySmall.h> |
| 13 | #include <Common/ProfileEvents.h> |
| 14 | #include <Common/Allocator.h> |
| 15 | |
| 16 | |
| 17 | namespace ProfileEvents |
| 18 | { |
| 19 | extern const Event ArenaAllocChunks; |
| 20 | extern const Event ArenaAllocBytes; |
| 21 | } |
| 22 | |
| 23 | namespace DB |
| 24 | { |
| 25 | |
| 26 | |
| 27 | /** Memory pool to append something. For example, short strings. |
| 28 | * Usage scenario: |
| 29 | * - put lot of strings inside pool, keep their addresses; |
| 30 | * - addresses remain valid during lifetime of pool; |
| 31 | * - at destruction of pool, all memory is freed; |
| 32 | * - memory is allocated and freed by large chunks; |
| 33 | * - freeing parts of data is not possible (but look at ArenaWithFreeLists if you need); |
| 34 | */ |
| 35 | class Arena : private boost::noncopyable |
| 36 | { |
| 37 | private: |
| 38 | /// Padding allows to use 'memcpySmallAllowReadWriteOverflow15' instead of 'memcpy'. |
| 39 | static constexpr size_t pad_right = 15; |
| 40 | |
| 41 | /// Contiguous chunk of memory and pointer to free space inside it. Member of single-linked list. |
| 42 | struct alignas(16) Chunk : private Allocator<false> /// empty base optimization |
| 43 | { |
| 44 | char * begin; |
| 45 | char * pos; |
| 46 | char * end; /// does not include padding. |
| 47 | |
| 48 | Chunk * prev; |
| 49 | |
| 50 | Chunk(size_t size_, Chunk * prev_) |
| 51 | { |
| 52 | ProfileEvents::increment(ProfileEvents::ArenaAllocChunks); |
| 53 | ProfileEvents::increment(ProfileEvents::ArenaAllocBytes, size_); |
| 54 | |
| 55 | begin = reinterpret_cast<char *>(Allocator<false>::alloc(size_)); |
| 56 | pos = begin; |
| 57 | end = begin + size_ - pad_right; |
| 58 | prev = prev_; |
| 59 | |
| 60 | ASAN_POISON_MEMORY_REGION(begin, size_); |
| 61 | } |
| 62 | |
| 63 | ~Chunk() |
| 64 | { |
| 65 | /// We must unpoison the memory before returning to the allocator, |
| 66 | /// because the allocator might not have asan integration, and the |
| 67 | /// memory would stay poisoned forever. If the allocator supports |
| 68 | /// asan, it will correctly poison the memory by itself. |
| 69 | ASAN_UNPOISON_MEMORY_REGION(begin, size()); |
| 70 | |
| 71 | Allocator<false>::free(begin, size()); |
| 72 | |
| 73 | if (prev) |
| 74 | delete prev; |
| 75 | } |
| 76 | |
| 77 | size_t size() const { return end + pad_right - begin; } |
| 78 | size_t remaining() const { return end - pos; } |
| 79 | }; |
| 80 | |
| 81 | size_t growth_factor; |
| 82 | size_t linear_growth_threshold; |
| 83 | |
| 84 | /// Last contiguous chunk of memory. |
| 85 | Chunk * head; |
| 86 | size_t size_in_bytes; |
| 87 | |
| 88 | static size_t roundUpToPageSize(size_t s) |
| 89 | { |
| 90 | return (s + 4096 - 1) / 4096 * 4096; |
| 91 | } |
| 92 | |
| 93 | /// If chunks size is less than 'linear_growth_threshold', then use exponential growth, otherwise - linear growth |
| 94 | /// (to not allocate too much excessive memory). |
| 95 | size_t nextSize(size_t min_next_size) const |
| 96 | { |
| 97 | size_t size_after_grow = 0; |
| 98 | |
| 99 | if (head->size() < linear_growth_threshold) |
| 100 | { |
| 101 | size_after_grow = std::max(min_next_size, head->size() * growth_factor); |
| 102 | } |
| 103 | else |
| 104 | { |
| 105 | // allocContinue() combined with linear growth results in quadratic |
| 106 | // behavior: we append the data by small amounts, and when it |
| 107 | // doesn't fit, we create a new chunk and copy all the previous data |
| 108 | // into it. The number of times we do this is directly proportional |
| 109 | // to the total size of data that is going to be serialized. To make |
| 110 | // the copying happen less often, round the next size up to the |
| 111 | // linear_growth_threshold. |
| 112 | size_after_grow = ((min_next_size + linear_growth_threshold - 1) |
| 113 | / linear_growth_threshold) * linear_growth_threshold; |
| 114 | } |
| 115 | |
| 116 | assert(size_after_grow >= min_next_size); |
| 117 | return roundUpToPageSize(size_after_grow); |
| 118 | } |
| 119 | |
| 120 | /// Add next contiguous chunk of memory with size not less than specified. |
| 121 | void NO_INLINE addChunk(size_t min_size) |
| 122 | { |
| 123 | head = new Chunk(nextSize(min_size + pad_right), head); |
| 124 | size_in_bytes += head->size(); |
| 125 | } |
| 126 | |
| 127 | friend class ArenaAllocator; |
| 128 | template <size_t> friend class AlignedArenaAllocator; |
| 129 | |
| 130 | public: |
| 131 | Arena(size_t initial_size_ = 4096, size_t growth_factor_ = 2, size_t linear_growth_threshold_ = 128 * 1024 * 1024) |
| 132 | : growth_factor(growth_factor_), linear_growth_threshold(linear_growth_threshold_), |
| 133 | head(new Chunk(initial_size_, nullptr)), size_in_bytes(head->size()) |
| 134 | { |
| 135 | } |
| 136 | |
| 137 | ~Arena() |
| 138 | { |
| 139 | delete head; |
| 140 | } |
| 141 | |
| 142 | /// Get piece of memory, without alignment. |
| 143 | char * alloc(size_t size) |
| 144 | { |
| 145 | if (unlikely(head->pos + size > head->end)) |
| 146 | addChunk(size); |
| 147 | |
| 148 | char * res = head->pos; |
| 149 | head->pos += size; |
| 150 | ASAN_UNPOISON_MEMORY_REGION(res, size + pad_right); |
| 151 | return res; |
| 152 | } |
| 153 | |
| 154 | /// Get peice of memory with alignment |
| 155 | char * alignedAlloc(size_t size, size_t alignment) |
| 156 | { |
| 157 | do |
| 158 | { |
| 159 | void * head_pos = head->pos; |
| 160 | size_t space = head->end - head->pos; |
| 161 | |
| 162 | auto res = static_cast<char *>(std::align(alignment, size, head_pos, space)); |
| 163 | if (res) |
| 164 | { |
| 165 | head->pos = static_cast<char *>(head_pos); |
| 166 | head->pos += size; |
| 167 | ASAN_UNPOISON_MEMORY_REGION(res, size + pad_right); |
| 168 | return res; |
| 169 | } |
| 170 | |
| 171 | addChunk(size + alignment); |
| 172 | } while (true); |
| 173 | } |
| 174 | |
| 175 | template <typename T> |
| 176 | T * alloc() |
| 177 | { |
| 178 | return reinterpret_cast<T *>(alignedAlloc(sizeof(T), alignof(T))); |
| 179 | } |
| 180 | |
| 181 | /** Rollback just performed allocation. |
| 182 | * Must pass size not more that was just allocated. |
| 183 | * Return the resulting head pointer, so that the caller can assert that |
| 184 | * the allocation it intended to roll back was indeed the last one. |
| 185 | */ |
| 186 | void * rollback(size_t size) |
| 187 | { |
| 188 | head->pos -= size; |
| 189 | ASAN_POISON_MEMORY_REGION(head->pos, size + pad_right); |
| 190 | return head->pos; |
| 191 | } |
| 192 | |
| 193 | /** Begin or expand a contiguous range of memory. |
| 194 | * 'range_start' is the start of range. If nullptr, a new range is |
| 195 | * allocated. |
| 196 | * If there is no space in the current chunk to expand the range, |
| 197 | * the entire range is copied to a new, bigger memory chunk, and the value |
| 198 | * of 'range_start' is updated. |
| 199 | * If the optional 'start_alignment' is specified, the start of range is |
| 200 | * kept aligned to this value. |
| 201 | * |
| 202 | * NOTE This method is usable only for the last allocation made on this |
| 203 | * Arena. For earlier allocations, see 'realloc' method. |
| 204 | */ |
| 205 | char * allocContinue(size_t additional_bytes, char const *& range_start, |
| 206 | size_t start_alignment = 0) |
| 207 | { |
| 208 | if (!range_start) |
| 209 | { |
| 210 | // Start a new memory range. |
| 211 | char * result = start_alignment |
| 212 | ? alignedAlloc(additional_bytes, start_alignment) |
| 213 | : alloc(additional_bytes); |
| 214 | |
| 215 | range_start = result; |
| 216 | return result; |
| 217 | } |
| 218 | |
| 219 | // Extend an existing memory range with 'additional_bytes'. |
| 220 | |
| 221 | // This method only works for extending the last allocation. For lack of |
| 222 | // original size, check a weaker condition: that 'begin' is at least in |
| 223 | // the current Chunk. |
| 224 | assert(range_start >= head->begin && range_start < head->end); |
| 225 | |
| 226 | if (head->pos + additional_bytes <= head->end) |
| 227 | { |
| 228 | // The new size fits into the last chunk, so just alloc the |
| 229 | // additional size. We can alloc without alignment here, because it |
| 230 | // only applies to the start of the range, and we don't change it. |
| 231 | return alloc(additional_bytes); |
| 232 | } |
| 233 | |
| 234 | // New range doesn't fit into this chunk, will copy to a new one. |
| 235 | // |
| 236 | // Note: among other things, this method is used to provide a hack-ish |
| 237 | // implementation of realloc over Arenas in ArenaAllocators. It wastes a |
| 238 | // lot of memory -- quadratically so when we reach the linear allocation |
| 239 | // threshold. This deficiency is intentionally left as is, and should be |
| 240 | // solved not by complicating this method, but by rethinking the |
| 241 | // approach to memory management for aggregate function states, so that |
| 242 | // we can provide a proper realloc(). |
| 243 | const size_t existing_bytes = head->pos - range_start; |
| 244 | const size_t new_bytes = existing_bytes + additional_bytes; |
| 245 | const char * old_range = range_start; |
| 246 | |
| 247 | char * new_range = start_alignment |
| 248 | ? alignedAlloc(new_bytes, start_alignment) |
| 249 | : alloc(new_bytes); |
| 250 | |
| 251 | memcpy(new_range, old_range, existing_bytes); |
| 252 | |
| 253 | range_start = new_range; |
| 254 | return new_range + existing_bytes; |
| 255 | } |
| 256 | |
| 257 | /// NOTE Old memory region is wasted. |
| 258 | char * realloc(const char * old_data, size_t old_size, size_t new_size) |
| 259 | { |
| 260 | char * res = alloc(new_size); |
| 261 | if (old_data) |
| 262 | { |
| 263 | memcpy(res, old_data, old_size); |
| 264 | ASAN_POISON_MEMORY_REGION(old_data, old_size); |
| 265 | } |
| 266 | return res; |
| 267 | } |
| 268 | |
| 269 | char * alignedRealloc(const char * old_data, size_t old_size, size_t new_size, size_t alignment) |
| 270 | { |
| 271 | char * res = alignedAlloc(new_size, alignment); |
| 272 | if (old_data) |
| 273 | { |
| 274 | memcpy(res, old_data, old_size); |
| 275 | ASAN_POISON_MEMORY_REGION(old_data, old_size); |
| 276 | } |
| 277 | return res; |
| 278 | } |
| 279 | |
| 280 | /// Insert string without alignment. |
| 281 | const char * insert(const char * data, size_t size) |
| 282 | { |
| 283 | char * res = alloc(size); |
| 284 | memcpy(res, data, size); |
| 285 | return res; |
| 286 | } |
| 287 | |
| 288 | const char * alignedInsert(const char * data, size_t size, size_t alignment) |
| 289 | { |
| 290 | char * res = alignedAlloc(size, alignment); |
| 291 | memcpy(res, data, size); |
| 292 | return res; |
| 293 | } |
| 294 | |
| 295 | /// Size of chunks in bytes. |
| 296 | size_t size() const |
| 297 | { |
| 298 | return size_in_bytes; |
| 299 | } |
| 300 | |
| 301 | size_t remainingSpaceInCurrentChunk() const |
| 302 | { |
| 303 | return head->remaining(); |
| 304 | } |
| 305 | }; |
| 306 | |
| 307 | using ArenaPtr = std::shared_ptr<Arena>; |
| 308 | using Arenas = std::vector<ArenaPtr>; |
| 309 | |
| 310 | |
| 311 | } |
| 312 | |