| 1 | #pragma once |
| 2 | |
| 3 | #include <cstddef> |
| 4 | #include <cstdlib> |
| 5 | |
| 6 | #include <Common/Exception.h> |
| 7 | #include <Common/formatReadable.h> |
| 8 | |
| 9 | |
| 10 | namespace DB |
| 11 | { |
| 12 | |
| 13 | namespace ErrorCodes |
| 14 | { |
| 15 | extern const int CANNOT_ALLOCATE_MEMORY; |
| 16 | } |
| 17 | |
| 18 | /** An array of (almost) unchangable size: |
| 19 | * the size is specified in the constructor; |
| 20 | * `resize` method removes old data, and necessary only for |
| 21 | * so that you can first create an empty object using the default constructor, |
| 22 | * and then decide on the size. |
| 23 | * |
| 24 | * There is a possibility to not initialize elements by default, but create them inplace. |
| 25 | * Member destructors are called automatically. |
| 26 | * |
| 27 | * `sizeof` is equal to the size of one pointer. |
| 28 | * |
| 29 | * Not exception-safe. |
| 30 | * |
| 31 | * Copying is supported via assign() method. Moving empties the original object. |
| 32 | * That is, it is inconvenient to use this array in many cases. |
| 33 | * |
| 34 | * Designed for situations in which many arrays of the same small size are created, |
| 35 | * but the size is not known at compile time. |
| 36 | * Also gives a significant advantage in cases where it is important that `sizeof` is minimal. |
| 37 | * For example, if arrays are put in an open-addressing hash table with inplace storage of values (like HashMap) |
| 38 | * |
| 39 | * In this case, compared to std::vector: |
| 40 | * - for arrays of 1 element size - an advantage of about 2 times; |
| 41 | * - for arrays of 5 elements - an advantage of about 1.5 times |
| 42 | * (DB::Field, containing UInt64 and String, used as T); |
| 43 | */ |
| 44 | |
| 45 | const size_t empty_auto_array_helper = 0; |
| 46 | |
| 47 | template <typename T> |
| 48 | class AutoArray |
| 49 | { |
| 50 | public: |
| 51 | /// For deferred creation. |
| 52 | AutoArray() |
| 53 | { |
| 54 | setEmpty(); |
| 55 | } |
| 56 | |
| 57 | explicit AutoArray(size_t size_) |
| 58 | { |
| 59 | init(size_, false); |
| 60 | } |
| 61 | |
| 62 | /** Initializes all elements with a copy constructor with the `value` parameter. |
| 63 | */ |
| 64 | AutoArray(size_t size_, const T & value) |
| 65 | { |
| 66 | init(size_, true); |
| 67 | |
| 68 | for (size_t i = 0; i < size_; ++i) |
| 69 | { |
| 70 | new (place(i)) T(value); |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | /** `resize` removes all existing items. |
| 75 | */ |
| 76 | void resize(size_t size_, bool dont_init_elems = false) |
| 77 | { |
| 78 | uninit(); |
| 79 | init(size_, dont_init_elems); |
| 80 | } |
| 81 | |
| 82 | /** Move operations. |
| 83 | */ |
| 84 | AutoArray(AutoArray && src) |
| 85 | { |
| 86 | if (this == &src) |
| 87 | return; |
| 88 | setEmpty(); |
| 89 | data_ptr = src.data_ptr; |
| 90 | src.setEmpty(); |
| 91 | } |
| 92 | |
| 93 | AutoArray & operator= (AutoArray && src) |
| 94 | { |
| 95 | if (this == &src) |
| 96 | return *this; |
| 97 | uninit(); |
| 98 | data_ptr = src.data_ptr; |
| 99 | src.setEmpty(); |
| 100 | |
| 101 | return *this; |
| 102 | } |
| 103 | |
| 104 | ~AutoArray() |
| 105 | { |
| 106 | uninit(); |
| 107 | } |
| 108 | |
| 109 | size_t size() const |
| 110 | { |
| 111 | return m_size(); |
| 112 | } |
| 113 | |
| 114 | bool empty() const |
| 115 | { |
| 116 | return size() == 0; |
| 117 | } |
| 118 | |
| 119 | void clear() |
| 120 | { |
| 121 | uninit(); |
| 122 | setEmpty(); |
| 123 | } |
| 124 | |
| 125 | template <typename It> |
| 126 | void assign(It from_begin, It from_end) |
| 127 | { |
| 128 | uninit(); |
| 129 | |
| 130 | size_t size = from_end - from_begin; |
| 131 | init(size, /* dont_init_elems = */ true); |
| 132 | |
| 133 | It it = from_begin; |
| 134 | for (size_t i = 0; i < size; ++i, ++it) |
| 135 | new (place(i)) T(*it); |
| 136 | } |
| 137 | |
| 138 | void assign(const AutoArray & from) |
| 139 | { |
| 140 | assign(from.begin(), from.end()); |
| 141 | } |
| 142 | |
| 143 | /** You can read and modify elements using the [] operator |
| 144 | * only if items were initialized |
| 145 | * (that is, into the constructor was not passed DontInitElemsTag, |
| 146 | * or you initialized them using `place` and `placement new`). |
| 147 | */ |
| 148 | T & operator[](size_t i) |
| 149 | { |
| 150 | return elem(i); |
| 151 | } |
| 152 | |
| 153 | const T & operator[](size_t i) const |
| 154 | { |
| 155 | return elem(i); |
| 156 | } |
| 157 | |
| 158 | T * data() |
| 159 | { |
| 160 | return elemPtr(0); |
| 161 | } |
| 162 | |
| 163 | const T * data() const |
| 164 | { |
| 165 | return elemPtr(0); |
| 166 | } |
| 167 | |
| 168 | /** Get the piece of memory in which the element should be located. |
| 169 | * The function is intended to initialize an element, |
| 170 | * which has not yet been initialized |
| 171 | * new (arr.place(i)) T(args); |
| 172 | */ |
| 173 | char * place(size_t i) |
| 174 | { |
| 175 | return data_ptr + sizeof(T) * i; |
| 176 | } |
| 177 | |
| 178 | using iterator = T *; |
| 179 | using const_iterator = const T *; |
| 180 | |
| 181 | iterator begin() { return elemPtr(0); } |
| 182 | iterator end() { return elemPtr(size()); } |
| 183 | |
| 184 | const_iterator begin() const { return elemPtr(0); } |
| 185 | const_iterator end() const { return elemPtr(size()); } |
| 186 | |
| 187 | bool operator== (const AutoArray<T> & rhs) const |
| 188 | { |
| 189 | size_t s = size(); |
| 190 | |
| 191 | if (s != rhs.size()) |
| 192 | return false; |
| 193 | |
| 194 | for (size_t i = 0; i < s; ++i) |
| 195 | if (elem(i) != rhs.elem(i)) |
| 196 | return false; |
| 197 | |
| 198 | return true; |
| 199 | } |
| 200 | |
| 201 | bool operator!= (const AutoArray<T> & rhs) const |
| 202 | { |
| 203 | return !(*this == rhs); |
| 204 | } |
| 205 | |
| 206 | bool operator< (const AutoArray<T> & rhs) const |
| 207 | { |
| 208 | size_t s = size(); |
| 209 | size_t rhs_s = rhs.size(); |
| 210 | |
| 211 | if (s < rhs_s) |
| 212 | return true; |
| 213 | if (s > rhs_s) |
| 214 | return false; |
| 215 | |
| 216 | for (size_t i = 0; i < s; ++i) |
| 217 | { |
| 218 | if (elem(i) < rhs.elem(i)) |
| 219 | return true; |
| 220 | if (elem(i) > rhs.elem(i)) |
| 221 | return false; |
| 222 | } |
| 223 | |
| 224 | return false; |
| 225 | } |
| 226 | |
| 227 | private: |
| 228 | static constexpr size_t alignment = alignof(T); |
| 229 | /// Bytes allocated to store size of array before data. It is padded to have minimum size as alignment. |
| 230 | /// Padding is at left and the size is stored at right (just before the first data element). |
| 231 | static constexpr size_t prefix_size = std::max(sizeof(size_t), alignment); |
| 232 | |
| 233 | char * data_ptr; |
| 234 | |
| 235 | size_t & m_size() |
| 236 | { |
| 237 | return reinterpret_cast<size_t *>(data_ptr)[-1]; |
| 238 | } |
| 239 | |
| 240 | size_t m_size() const |
| 241 | { |
| 242 | return reinterpret_cast<const size_t *>(data_ptr)[-1]; |
| 243 | } |
| 244 | |
| 245 | T * elemPtr(size_t i) |
| 246 | { |
| 247 | return reinterpret_cast<T *>(data_ptr) + i; |
| 248 | } |
| 249 | |
| 250 | const T * elemPtr(size_t i) const |
| 251 | { |
| 252 | return reinterpret_cast<const T *>(data_ptr) + i; |
| 253 | } |
| 254 | |
| 255 | T & elem(size_t i) |
| 256 | { |
| 257 | return *elemPtr(i); |
| 258 | } |
| 259 | |
| 260 | const T & elem(size_t i) const |
| 261 | { |
| 262 | return *elemPtr(i); |
| 263 | } |
| 264 | |
| 265 | void setEmpty() |
| 266 | { |
| 267 | data_ptr = const_cast<char *>(reinterpret_cast<const char *>(&empty_auto_array_helper)) + sizeof(size_t); |
| 268 | } |
| 269 | |
| 270 | void init(size_t new_size, bool dont_init_elems) |
| 271 | { |
| 272 | if (!new_size) |
| 273 | { |
| 274 | setEmpty(); |
| 275 | return; |
| 276 | } |
| 277 | |
| 278 | void * new_data = nullptr; |
| 279 | int res = posix_memalign(&new_data, alignment, prefix_size + new_size * sizeof(T)); |
| 280 | if (0 != res) |
| 281 | throwFromErrno("Cannot allocate memory (posix_memalign) " + formatReadableSizeWithBinarySuffix(new_size) + "." , |
| 282 | ErrorCodes::CANNOT_ALLOCATE_MEMORY, res); |
| 283 | |
| 284 | data_ptr = static_cast<char *>(new_data); |
| 285 | data_ptr += prefix_size; |
| 286 | |
| 287 | m_size() = new_size; |
| 288 | |
| 289 | if (!dont_init_elems) |
| 290 | for (size_t i = 0; i < new_size; ++i) |
| 291 | new (place(i)) T(); |
| 292 | } |
| 293 | |
| 294 | void uninit() |
| 295 | { |
| 296 | size_t s = size(); |
| 297 | |
| 298 | if (s) |
| 299 | { |
| 300 | for (size_t i = 0; i < s; ++i) |
| 301 | elem(i).~T(); |
| 302 | |
| 303 | data_ptr -= prefix_size; |
| 304 | free(data_ptr); |
| 305 | } |
| 306 | } |
| 307 | }; |
| 308 | |
| 309 | } |
| 310 | |