| 1 | #pragma once |
| 2 | |
| 3 | #include <string.h> |
| 4 | |
| 5 | #include <math.h> |
| 6 | |
| 7 | #include <utility> |
| 8 | |
| 9 | #include <boost/noncopyable.hpp> |
| 10 | |
| 11 | #include <common/likely.h> |
| 12 | |
| 13 | #include <Core/Defines.h> |
| 14 | #include <Core/Types.h> |
| 15 | #include <Common/Exception.h> |
| 16 | |
| 17 | #include <IO/WriteBuffer.h> |
| 18 | #include <IO/WriteHelpers.h> |
| 19 | #include <IO/ReadBuffer.h> |
| 20 | #include <IO/ReadHelpers.h> |
| 21 | #include <IO/VarInt.h> |
| 22 | |
| 23 | #include <Common/HashTable/HashTableAllocator.h> |
| 24 | #include <Common/HashTable/HashTableKeyHolder.h> |
| 25 | |
| 26 | #ifdef DBMS_HASH_MAP_DEBUG_RESIZES |
| 27 | #include <iostream> |
| 28 | #include <iomanip> |
| 29 | #include <Common/Stopwatch.h> |
| 30 | #endif |
| 31 | |
| 32 | /** NOTE HashTable could only be used for memmoveable (position independent) types. |
| 33 | * Example: std::string is not position independent in libstdc++ with C++11 ABI or in libc++. |
| 34 | * Also, key in hash table must be of type, that zero bytes is compared equals to zero key. |
| 35 | */ |
| 36 | |
| 37 | |
| 38 | namespace DB |
| 39 | { |
| 40 | namespace ErrorCodes |
| 41 | { |
| 42 | extern const int LOGICAL_ERROR; |
| 43 | extern const int NO_AVAILABLE_DATA; |
| 44 | } |
| 45 | } |
| 46 | |
| 47 | |
| 48 | /** The state of the hash table that affects the properties of its cells. |
| 49 | * Used as a template parameter. |
| 50 | * For example, there is an implementation of an instantly clearable hash table - ClearableHashMap. |
| 51 | * For it, each cell holds the version number, and in the hash table itself is the current version. |
| 52 | * When clearing, the current version simply increases; All cells with a mismatching version are considered empty. |
| 53 | * Another example: for an approximate calculation of the number of unique visitors, there is a hash table for UniquesHashSet. |
| 54 | * It has the concept of "degree". At each overflow, cells with keys that do not divide by the corresponding power of the two are deleted. |
| 55 | */ |
| 56 | struct HashTableNoState |
| 57 | { |
| 58 | /// Serialization, in binary and text form. |
| 59 | void write(DB::WriteBuffer &) const {} |
| 60 | void writeText(DB::WriteBuffer &) const {} |
| 61 | |
| 62 | /// Deserialization, in binary and text form. |
| 63 | void read(DB::ReadBuffer &) {} |
| 64 | void readText(DB::ReadBuffer &) {} |
| 65 | }; |
| 66 | |
| 67 | |
| 68 | /// These functions can be overloaded for custom types. |
| 69 | namespace ZeroTraits |
| 70 | { |
| 71 | |
| 72 | template <typename T> |
| 73 | bool check(const T x) { return x == 0; } |
| 74 | |
| 75 | template <typename T> |
| 76 | void set(T & x) { x = 0; } |
| 77 | |
| 78 | } |
| 79 | |
| 80 | /** |
| 81 | * getKey/Mapped -- methods to get key/"mapped" values from the LookupResult returned by find() and |
| 82 | * emplace() methods of HashTable. Must not be called for a null LookupResult. |
| 83 | * |
| 84 | * We don't use iterators for lookup result. Instead, LookupResult is a pointer of some kind. There |
| 85 | * are methods getKey/Mapped, that return references or values to key/"mapped" values. |
| 86 | * |
| 87 | * Different hash table implementations support this interface to a varying degree: |
| 88 | * |
| 89 | * 1) Hash tables that store neither the key in its original form, nor a "mapped" value: |
| 90 | * FixedHashTable or StringHashTable. Neither GetKey nor GetMapped are supported, the only valid |
| 91 | * operation is checking LookupResult for null. |
| 92 | * |
| 93 | * 2) Hash maps that do not store the key, e.g. FixedHashMap or StringHashMap. Only GetMapped is |
| 94 | * supported. |
| 95 | * |
| 96 | * 3) Hash tables that store the key and do not have a "mapped" value, e.g. the normal HashTable. |
| 97 | * GetKey returns the key, and GetMapped returns a zero void pointer. This simplifies generic |
| 98 | * code that works with mapped values: it can overload on the return type of GetMapped(), and |
| 99 | * doesn't need other parameters. One example is insertSetMapped() function. |
| 100 | * |
| 101 | * 4) Hash tables that store both the key and the "mapped" value, e.g. HashMap. Both GetKey and |
| 102 | * GetMapped are supported. |
| 103 | * |
| 104 | * The implementation side goes as follows: |
| 105 | * |
| 106 | * for (1), LookupResult->getKey = const VoidKey, LookupResult->getMapped = VoidMapped; |
| 107 | * |
| 108 | * for (2), LookupResult->getKey = const VoidKey, LookupResult->getMapped = Mapped &; |
| 109 | * |
| 110 | * for (3) and (4), LookupResult->getKey = const Key [&], LookupResult->getMapped = Mapped &; |
| 111 | * VoidKey and VoidMapped may have specialized function overloads for generic code. |
| 112 | */ |
| 113 | |
| 114 | struct VoidKey {}; |
| 115 | struct VoidMapped |
| 116 | { |
| 117 | template <typename T> |
| 118 | auto & operator=(const T &) |
| 119 | { |
| 120 | return *this; |
| 121 | } |
| 122 | }; |
| 123 | |
| 124 | /** Compile-time interface for cell of the hash table. |
| 125 | * Different cell types are used to implement different hash tables. |
| 126 | * The cell must contain a key. |
| 127 | * It can also contain a value and arbitrary additional data |
| 128 | * (example: the stored hash value; version number for ClearableHashMap). |
| 129 | */ |
| 130 | template <typename Key, typename Hash, typename TState = HashTableNoState> |
| 131 | struct HashTableCell |
| 132 | { |
| 133 | using State = TState; |
| 134 | |
| 135 | using key_type = Key; |
| 136 | using value_type = Key; |
| 137 | using mapped_type = VoidMapped; |
| 138 | |
| 139 | Key key; |
| 140 | |
| 141 | HashTableCell() {} |
| 142 | |
| 143 | /// Create a cell with the given key / key and value. |
| 144 | HashTableCell(const Key & key_, const State &) : key(key_) {} |
| 145 | |
| 146 | /// Get the key (externally). |
| 147 | const Key & getKey() const { return key; } |
| 148 | VoidMapped getMapped() const { return {}; } |
| 149 | const value_type & getValue() const { return key; } |
| 150 | |
| 151 | /// Get the key (internally). |
| 152 | static const Key & getKey(const value_type & value) { return value; } |
| 153 | |
| 154 | /// Are the keys at the cells equal? |
| 155 | bool keyEquals(const Key & key_) const { return key == key_; } |
| 156 | bool keyEquals(const Key & key_, size_t /*hash_*/) const { return key == key_; } |
| 157 | bool keyEquals(const Key & key_, size_t /*hash_*/, const State & /*state*/) const { return key == key_; } |
| 158 | |
| 159 | /// If the cell can remember the value of the hash function, then remember it. |
| 160 | void setHash(size_t /*hash_value*/) {} |
| 161 | |
| 162 | /// If the cell can store the hash value in itself, then return the stored value. |
| 163 | /// It must be at least once calculated before. |
| 164 | /// If storing the hash value is not provided, then just compute the hash. |
| 165 | size_t getHash(const Hash & hash) const { return hash(key); } |
| 166 | |
| 167 | /// Whether the key is zero. In the main buffer, cells with a zero key are considered empty. |
| 168 | /// If zero keys can be inserted into the table, then the cell for the zero key is stored separately, not in the main buffer. |
| 169 | /// Zero keys must be such that the zeroed-down piece of memory is a zero key. |
| 170 | bool isZero(const State & state) const { return isZero(key, state); } |
| 171 | static bool isZero(const Key & key, const State & /*state*/) { return ZeroTraits::check(key); } |
| 172 | |
| 173 | /// Set the key value to zero. |
| 174 | void setZero() { ZeroTraits::set(key); } |
| 175 | |
| 176 | /// Do the hash table need to store the zero key separately (that is, can a zero key be inserted into the hash table). |
| 177 | static constexpr bool need_zero_value_storage = true; |
| 178 | |
| 179 | /// Whether the cell is deleted. |
| 180 | bool isDeleted() const { return false; } |
| 181 | |
| 182 | /// Set the mapped value, if any (for HashMap), to the corresponding `value`. |
| 183 | void setMapped(const value_type & /*value*/) {} |
| 184 | |
| 185 | /// Serialization, in binary and text form. |
| 186 | void write(DB::WriteBuffer & wb) const { DB::writeBinary(key, wb); } |
| 187 | void writeText(DB::WriteBuffer & wb) const { DB::writeDoubleQuoted(key, wb); } |
| 188 | |
| 189 | /// Deserialization, in binary and text form. |
| 190 | void read(DB::ReadBuffer & rb) { DB::readBinary(key, rb); } |
| 191 | void readText(DB::ReadBuffer & rb) { DB::readDoubleQuoted(key, rb); } |
| 192 | }; |
| 193 | |
| 194 | /** |
| 195 | * A helper function for HashTable::insert() to set the "mapped" value. |
| 196 | * Overloaded on the mapped type, does nothing if it's VoidMapped. |
| 197 | */ |
| 198 | template <typename ValueType> |
| 199 | void insertSetMapped(VoidMapped /* dest */, const ValueType & /* src */) {} |
| 200 | |
| 201 | template <typename MappedType, typename ValueType> |
| 202 | void insertSetMapped(MappedType & dest, const ValueType & src) { dest = src.second; } |
| 203 | |
| 204 | |
| 205 | /** Determines the size of the hash table, and when and how much it should be resized. |
| 206 | */ |
| 207 | template <size_t initial_size_degree = 8> |
| 208 | struct HashTableGrower |
| 209 | { |
| 210 | /// The state of this structure is enough to get the buffer size of the hash table. |
| 211 | |
| 212 | UInt8 size_degree = initial_size_degree; |
| 213 | |
| 214 | /// The size of the hash table in the cells. |
| 215 | size_t bufSize() const { return 1ULL << size_degree; } |
| 216 | |
| 217 | size_t maxFill() const { return 1ULL << (size_degree - 1); } |
| 218 | size_t mask() const { return bufSize() - 1; } |
| 219 | |
| 220 | /// From the hash value, get the cell number in the hash table. |
| 221 | size_t place(size_t x) const { return x & mask(); } |
| 222 | |
| 223 | /// The next cell in the collision resolution chain. |
| 224 | size_t next(size_t pos) const { ++pos; return pos & mask(); } |
| 225 | |
| 226 | /// Whether the hash table is sufficiently full. You need to increase the size of the hash table, or remove something unnecessary from it. |
| 227 | bool overflow(size_t elems) const { return elems > maxFill(); } |
| 228 | |
| 229 | /// Increase the size of the hash table. |
| 230 | void increaseSize() |
| 231 | { |
| 232 | size_degree += size_degree >= 23 ? 1 : 2; |
| 233 | } |
| 234 | |
| 235 | /// Set the buffer size by the number of elements in the hash table. Used when deserializing a hash table. |
| 236 | void set(size_t num_elems) |
| 237 | { |
| 238 | size_degree = num_elems <= 1 |
| 239 | ? initial_size_degree |
| 240 | : ((initial_size_degree > static_cast<size_t>(log2(num_elems - 1)) + 2) |
| 241 | ? initial_size_degree |
| 242 | : (static_cast<size_t>(log2(num_elems - 1)) + 2)); |
| 243 | } |
| 244 | |
| 245 | void setBufSize(size_t buf_size_) |
| 246 | { |
| 247 | size_degree = static_cast<size_t>(log2(buf_size_ - 1) + 1); |
| 248 | } |
| 249 | }; |
| 250 | |
| 251 | |
| 252 | /** When used as a Grower, it turns a hash table into something like a lookup table. |
| 253 | * It remains non-optimal - the cells store the keys. |
| 254 | * Also, the compiler can not completely remove the code of passing through the collision resolution chain, although it is not needed. |
| 255 | * NOTE: Better to use FixedHashTable instead. |
| 256 | */ |
| 257 | template <size_t key_bits> |
| 258 | struct HashTableFixedGrower |
| 259 | { |
| 260 | size_t bufSize() const { return 1ULL << key_bits; } |
| 261 | size_t place(size_t x) const { return x; } |
| 262 | /// You could write __builtin_unreachable(), but the compiler does not optimize everything, and it turns out less efficiently. |
| 263 | size_t next(size_t pos) const { return pos + 1; } |
| 264 | bool overflow(size_t /*elems*/) const { return false; } |
| 265 | |
| 266 | void increaseSize() { __builtin_unreachable(); } |
| 267 | void set(size_t /*num_elems*/) {} |
| 268 | void setBufSize(size_t /*buf_size_*/) {} |
| 269 | }; |
| 270 | |
| 271 | |
| 272 | /** If you want to store the zero key separately - a place to store it. */ |
| 273 | template <bool need_zero_value_storage, typename Cell> |
| 274 | struct ZeroValueStorage; |
| 275 | |
| 276 | template <typename Cell> |
| 277 | struct ZeroValueStorage<true, Cell> |
| 278 | { |
| 279 | private: |
| 280 | bool has_zero = false; |
| 281 | std::aligned_storage_t<sizeof(Cell), alignof(Cell)> zero_value_storage; /// Storage of element with zero key. |
| 282 | |
| 283 | public: |
| 284 | bool hasZero() const { return has_zero; } |
| 285 | |
| 286 | void setHasZero() |
| 287 | { |
| 288 | has_zero = true; |
| 289 | new (zeroValue()) Cell(); |
| 290 | } |
| 291 | |
| 292 | void clearHasZero() |
| 293 | { |
| 294 | has_zero = false; |
| 295 | zeroValue()->~Cell(); |
| 296 | } |
| 297 | |
| 298 | Cell * zeroValue() { return reinterpret_cast<Cell*>(&zero_value_storage); } |
| 299 | const Cell * zeroValue() const { return reinterpret_cast<const Cell*>(&zero_value_storage); } |
| 300 | }; |
| 301 | |
| 302 | template <typename Cell> |
| 303 | struct ZeroValueStorage<false, Cell> |
| 304 | { |
| 305 | bool hasZero() const { return false; } |
| 306 | void setHasZero() { throw DB::Exception("HashTable: logical error" , DB::ErrorCodes::LOGICAL_ERROR); } |
| 307 | void clearHasZero() {} |
| 308 | |
| 309 | Cell * zeroValue() { return nullptr; } |
| 310 | const Cell * zeroValue() const { return nullptr; } |
| 311 | }; |
| 312 | |
| 313 | |
| 314 | template |
| 315 | < |
| 316 | typename Key, |
| 317 | typename Cell, |
| 318 | typename Hash, |
| 319 | typename Grower, |
| 320 | typename Allocator |
| 321 | > |
| 322 | class HashTable : |
| 323 | private boost::noncopyable, |
| 324 | protected Hash, |
| 325 | protected Allocator, |
| 326 | protected Cell::State, |
| 327 | protected ZeroValueStorage<Cell::need_zero_value_storage, Cell> /// empty base optimization |
| 328 | { |
| 329 | protected: |
| 330 | friend class const_iterator; |
| 331 | friend class iterator; |
| 332 | friend class Reader; |
| 333 | |
| 334 | template <typename, typename, typename, typename, typename, typename, size_t> |
| 335 | friend class TwoLevelHashTable; |
| 336 | |
| 337 | template <typename, typename, size_t> |
| 338 | friend class TwoLevelStringHashTable; |
| 339 | |
| 340 | template <typename SubMaps> |
| 341 | friend class StringHashTable; |
| 342 | |
| 343 | using HashValue = size_t; |
| 344 | using Self = HashTable; |
| 345 | |
| 346 | size_t m_size = 0; /// Amount of elements |
| 347 | Cell * buf; /// A piece of memory for all elements except the element with zero key. |
| 348 | Grower grower; |
| 349 | |
| 350 | #ifdef DBMS_HASH_MAP_COUNT_COLLISIONS |
| 351 | mutable size_t collisions = 0; |
| 352 | #endif |
| 353 | |
| 354 | /// Find a cell with the same key or an empty cell, starting from the specified position and further along the collision resolution chain. |
| 355 | size_t ALWAYS_INLINE findCell(const Key & x, size_t hash_value, size_t place_value) const |
| 356 | { |
| 357 | while (!buf[place_value].isZero(*this) && !buf[place_value].keyEquals(x, hash_value, *this)) |
| 358 | { |
| 359 | place_value = grower.next(place_value); |
| 360 | #ifdef DBMS_HASH_MAP_COUNT_COLLISIONS |
| 361 | ++collisions; |
| 362 | #endif |
| 363 | } |
| 364 | |
| 365 | return place_value; |
| 366 | } |
| 367 | |
| 368 | |
| 369 | /// Find an empty cell, starting with the specified position and further along the collision resolution chain. |
| 370 | size_t ALWAYS_INLINE findEmptyCell(size_t place_value) const |
| 371 | { |
| 372 | while (!buf[place_value].isZero(*this)) |
| 373 | { |
| 374 | place_value = grower.next(place_value); |
| 375 | #ifdef DBMS_HASH_MAP_COUNT_COLLISIONS |
| 376 | ++collisions; |
| 377 | #endif |
| 378 | } |
| 379 | |
| 380 | return place_value; |
| 381 | } |
| 382 | |
| 383 | void alloc(const Grower & new_grower) |
| 384 | { |
| 385 | buf = reinterpret_cast<Cell *>(Allocator::alloc(new_grower.bufSize() * sizeof(Cell))); |
| 386 | grower = new_grower; |
| 387 | } |
| 388 | |
| 389 | void free() |
| 390 | { |
| 391 | if (buf) |
| 392 | { |
| 393 | Allocator::free(buf, getBufferSizeInBytes()); |
| 394 | buf = nullptr; |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | |
| 399 | /// Increase the size of the buffer. |
| 400 | void resize(size_t for_num_elems = 0, size_t for_buf_size = 0) |
| 401 | { |
| 402 | #ifdef DBMS_HASH_MAP_DEBUG_RESIZES |
| 403 | Stopwatch watch; |
| 404 | #endif |
| 405 | |
| 406 | size_t old_size = grower.bufSize(); |
| 407 | |
| 408 | /** In case of exception for the object to remain in the correct state, |
| 409 | * changing the variable `grower` (which determines the buffer size of the hash table) |
| 410 | * is postponed for a moment after a real buffer change. |
| 411 | * The temporary variable `new_grower` is used to determine the new size. |
| 412 | */ |
| 413 | Grower new_grower = grower; |
| 414 | |
| 415 | if (for_num_elems) |
| 416 | { |
| 417 | new_grower.set(for_num_elems); |
| 418 | if (new_grower.bufSize() <= old_size) |
| 419 | return; |
| 420 | } |
| 421 | else if (for_buf_size) |
| 422 | { |
| 423 | new_grower.setBufSize(for_buf_size); |
| 424 | if (new_grower.bufSize() <= old_size) |
| 425 | return; |
| 426 | } |
| 427 | else |
| 428 | new_grower.increaseSize(); |
| 429 | |
| 430 | /// Expand the space. |
| 431 | buf = reinterpret_cast<Cell *>(Allocator::realloc(buf, getBufferSizeInBytes(), new_grower.bufSize() * sizeof(Cell))); |
| 432 | grower = new_grower; |
| 433 | |
| 434 | /** Now some items may need to be moved to a new location. |
| 435 | * The element can stay in place, or move to a new location "on the right", |
| 436 | * or move to the left of the collision resolution chain, because the elements to the left of it have been moved to the new "right" location. |
| 437 | */ |
| 438 | size_t i = 0; |
| 439 | for (; i < old_size; ++i) |
| 440 | if (!buf[i].isZero(*this) && !buf[i].isDeleted()) |
| 441 | reinsert(buf[i], buf[i].getHash(*this)); |
| 442 | |
| 443 | /** There is also a special case: |
| 444 | * if the element was to be at the end of the old buffer, [ x] |
| 445 | * but is at the beginning because of the collision resolution chain, [o x] |
| 446 | * then after resizing, it will first be out of place again, [ xo ] |
| 447 | * and in order to transfer it where necessary, |
| 448 | * after transferring all the elements from the old halves you need to [ o x ] |
| 449 | * process tail from the collision resolution chain immediately after it [ o x ] |
| 450 | */ |
| 451 | for (; !buf[i].isZero(*this) && !buf[i].isDeleted(); ++i) |
| 452 | reinsert(buf[i], buf[i].getHash(*this)); |
| 453 | |
| 454 | #ifdef DBMS_HASH_MAP_DEBUG_RESIZES |
| 455 | watch.stop(); |
| 456 | std::cerr << std::fixed << std::setprecision(3) |
| 457 | << "Resize from " << old_size << " to " << grower.bufSize() << " took " << watch.elapsedSeconds() << " sec." |
| 458 | << std::endl; |
| 459 | #endif |
| 460 | } |
| 461 | |
| 462 | |
| 463 | /** Paste into the new buffer the value that was in the old buffer. |
| 464 | * Used when increasing the buffer size. |
| 465 | */ |
| 466 | void reinsert(Cell & x, size_t hash_value) |
| 467 | { |
| 468 | size_t place_value = grower.place(hash_value); |
| 469 | |
| 470 | /// If the element is in its place. |
| 471 | if (&x == &buf[place_value]) |
| 472 | return; |
| 473 | |
| 474 | /// Compute a new location, taking into account the collision resolution chain. |
| 475 | place_value = findCell(Cell::getKey(x.getValue()), hash_value, place_value); |
| 476 | |
| 477 | /// If the item remains in its place in the old collision resolution chain. |
| 478 | if (!buf[place_value].isZero(*this)) |
| 479 | return; |
| 480 | |
| 481 | /// Copy to a new location and zero the old one. |
| 482 | x.setHash(hash_value); |
| 483 | memcpy(static_cast<void*>(&buf[place_value]), &x, sizeof(x)); |
| 484 | x.setZero(); |
| 485 | |
| 486 | /// Then the elements that previously were in collision with this can move to the old place. |
| 487 | } |
| 488 | |
| 489 | |
| 490 | void destroyElements() |
| 491 | { |
| 492 | if (!std::is_trivially_destructible_v<Cell>) |
| 493 | for (iterator it = begin(), it_end = end(); it != it_end; ++it) |
| 494 | it.ptr->~Cell(); |
| 495 | } |
| 496 | |
| 497 | |
| 498 | template <typename Derived, bool is_const> |
| 499 | class iterator_base |
| 500 | { |
| 501 | using Container = std::conditional_t<is_const, const Self, Self>; |
| 502 | using cell_type = std::conditional_t<is_const, const Cell, Cell>; |
| 503 | |
| 504 | Container * container; |
| 505 | cell_type * ptr; |
| 506 | |
| 507 | friend class HashTable; |
| 508 | |
| 509 | public: |
| 510 | iterator_base() {} |
| 511 | iterator_base(Container * container_, cell_type * ptr_) : container(container_), ptr(ptr_) {} |
| 512 | |
| 513 | bool operator== (const iterator_base & rhs) const { return ptr == rhs.ptr; } |
| 514 | bool operator!= (const iterator_base & rhs) const { return ptr != rhs.ptr; } |
| 515 | |
| 516 | Derived & operator++() |
| 517 | { |
| 518 | /// If iterator was pointed to ZeroValueStorage, move it to the beginning of the main buffer. |
| 519 | if (unlikely(ptr->isZero(*container))) |
| 520 | ptr = container->buf; |
| 521 | else |
| 522 | ++ptr; |
| 523 | |
| 524 | /// Skip empty cells in the main buffer. |
| 525 | auto buf_end = container->buf + container->grower.bufSize(); |
| 526 | while (ptr < buf_end && ptr->isZero(*container)) |
| 527 | ++ptr; |
| 528 | |
| 529 | return static_cast<Derived &>(*this); |
| 530 | } |
| 531 | |
| 532 | auto & operator* () const { return *ptr; } |
| 533 | auto * operator->() const { return ptr; } |
| 534 | |
| 535 | auto getPtr() const { return ptr; } |
| 536 | size_t getHash() const { return ptr->getHash(*container); } |
| 537 | |
| 538 | size_t getCollisionChainLength() const |
| 539 | { |
| 540 | return container->grower.place((ptr - container->buf) - container->grower.place(getHash())); |
| 541 | } |
| 542 | |
| 543 | /** |
| 544 | * A hack for HashedDictionary. |
| 545 | * |
| 546 | * The problem: std-like find() returns an iterator, which has to be |
| 547 | * compared to end(). On the other hand, HashMap::find() returns |
| 548 | * LookupResult, which is compared to nullptr. HashedDictionary has to |
| 549 | * support both hash maps with the same code, hence the need for this |
| 550 | * hack. |
| 551 | * |
| 552 | * The proper way would be to remove iterator interface from our |
| 553 | * HashMap completely, change all its users to the existing internal |
| 554 | * iteration interface, and redefine end() to return LookupResult for |
| 555 | * compatibility with std find(). Unfortunately, now is not the time to |
| 556 | * do this. |
| 557 | */ |
| 558 | operator Cell * () const { return nullptr; } |
| 559 | }; |
| 560 | |
| 561 | |
| 562 | public: |
| 563 | using key_type = Key; |
| 564 | using mapped_type = typename Cell::mapped_type; |
| 565 | using value_type = typename Cell::value_type; |
| 566 | using cell_type = Cell; |
| 567 | |
| 568 | using LookupResult = Cell *; |
| 569 | using ConstLookupResult = const Cell *; |
| 570 | |
| 571 | size_t hash(const Key & x) const { return Hash::operator()(x); } |
| 572 | |
| 573 | |
| 574 | HashTable() |
| 575 | { |
| 576 | if (Cell::need_zero_value_storage) |
| 577 | this->zeroValue()->setZero(); |
| 578 | alloc(grower); |
| 579 | } |
| 580 | |
| 581 | HashTable(size_t reserve_for_num_elements) |
| 582 | { |
| 583 | if (Cell::need_zero_value_storage) |
| 584 | this->zeroValue()->setZero(); |
| 585 | grower.set(reserve_for_num_elements); |
| 586 | alloc(grower); |
| 587 | } |
| 588 | |
| 589 | HashTable(HashTable && rhs) |
| 590 | : buf(nullptr) |
| 591 | { |
| 592 | *this = std::move(rhs); |
| 593 | } |
| 594 | |
| 595 | ~HashTable() |
| 596 | { |
| 597 | destroyElements(); |
| 598 | free(); |
| 599 | } |
| 600 | |
| 601 | HashTable & operator= (HashTable && rhs) |
| 602 | { |
| 603 | destroyElements(); |
| 604 | free(); |
| 605 | |
| 606 | std::swap(buf, rhs.buf); |
| 607 | std::swap(m_size, rhs.m_size); |
| 608 | std::swap(grower, rhs.grower); |
| 609 | |
| 610 | Hash::operator=(std::move(rhs)); |
| 611 | Allocator::operator=(std::move(rhs)); |
| 612 | Cell::State::operator=(std::move(rhs)); |
| 613 | ZeroValueStorage<Cell::need_zero_value_storage, Cell>::operator=(std::move(rhs)); |
| 614 | |
| 615 | return *this; |
| 616 | } |
| 617 | |
| 618 | class Reader final : private Cell::State |
| 619 | { |
| 620 | public: |
| 621 | Reader(DB::ReadBuffer & in_) |
| 622 | : in(in_) |
| 623 | { |
| 624 | } |
| 625 | |
| 626 | Reader(const Reader &) = delete; |
| 627 | Reader & operator=(const Reader &) = delete; |
| 628 | |
| 629 | bool next() |
| 630 | { |
| 631 | if (!is_initialized) |
| 632 | { |
| 633 | Cell::State::read(in); |
| 634 | DB::readVarUInt(size, in); |
| 635 | is_initialized = true; |
| 636 | } |
| 637 | |
| 638 | if (read_count == size) |
| 639 | { |
| 640 | is_eof = true; |
| 641 | return false; |
| 642 | } |
| 643 | |
| 644 | cell.read(in); |
| 645 | ++read_count; |
| 646 | |
| 647 | return true; |
| 648 | } |
| 649 | |
| 650 | inline const value_type & get() const |
| 651 | { |
| 652 | if (!is_initialized || is_eof) |
| 653 | throw DB::Exception("No available data" , DB::ErrorCodes::NO_AVAILABLE_DATA); |
| 654 | |
| 655 | return cell.getValue(); |
| 656 | } |
| 657 | |
| 658 | private: |
| 659 | DB::ReadBuffer & in; |
| 660 | Cell cell; |
| 661 | size_t read_count = 0; |
| 662 | size_t size = 0; |
| 663 | bool is_eof = false; |
| 664 | bool is_initialized = false; |
| 665 | }; |
| 666 | |
| 667 | |
| 668 | class iterator : public iterator_base<iterator, false> |
| 669 | { |
| 670 | public: |
| 671 | using iterator_base<iterator, false>::iterator_base; |
| 672 | }; |
| 673 | |
| 674 | class const_iterator : public iterator_base<const_iterator, true> |
| 675 | { |
| 676 | public: |
| 677 | using iterator_base<const_iterator, true>::iterator_base; |
| 678 | }; |
| 679 | |
| 680 | |
| 681 | const_iterator begin() const |
| 682 | { |
| 683 | if (!buf) |
| 684 | return end(); |
| 685 | |
| 686 | if (this->hasZero()) |
| 687 | return iteratorToZero(); |
| 688 | |
| 689 | const Cell * ptr = buf; |
| 690 | auto buf_end = buf + grower.bufSize(); |
| 691 | while (ptr < buf_end && ptr->isZero(*this)) |
| 692 | ++ptr; |
| 693 | |
| 694 | return const_iterator(this, ptr); |
| 695 | } |
| 696 | |
| 697 | const_iterator cbegin() const { return begin(); } |
| 698 | |
| 699 | iterator begin() |
| 700 | { |
| 701 | if (!buf) |
| 702 | return end(); |
| 703 | |
| 704 | if (this->hasZero()) |
| 705 | return iteratorToZero(); |
| 706 | |
| 707 | Cell * ptr = buf; |
| 708 | auto buf_end = buf + grower.bufSize(); |
| 709 | while (ptr < buf_end && ptr->isZero(*this)) |
| 710 | ++ptr; |
| 711 | |
| 712 | return iterator(this, ptr); |
| 713 | } |
| 714 | |
| 715 | const_iterator end() const { return const_iterator(this, buf + grower.bufSize()); } |
| 716 | const_iterator cend() const { return end(); } |
| 717 | iterator end() { return iterator(this, buf + grower.bufSize()); } |
| 718 | |
| 719 | |
| 720 | protected: |
| 721 | const_iterator iteratorTo(const Cell * ptr) const { return const_iterator(this, ptr); } |
| 722 | iterator iteratorTo(Cell * ptr) { return iterator(this, ptr); } |
| 723 | const_iterator iteratorToZero() const { return iteratorTo(this->zeroValue()); } |
| 724 | iterator iteratorToZero() { return iteratorTo(this->zeroValue()); } |
| 725 | |
| 726 | |
| 727 | /// If the key is zero, insert it into a special place and return true. |
| 728 | /// We don't have to persist a zero key, because it's not actually inserted. |
| 729 | /// That's why we just take a Key by value, an not a key holder. |
| 730 | bool ALWAYS_INLINE emplaceIfZero(const Key & x, LookupResult & it, bool & inserted, size_t hash_value) |
| 731 | { |
| 732 | /// If it is claimed that the zero key can not be inserted into the table. |
| 733 | if (!Cell::need_zero_value_storage) |
| 734 | return false; |
| 735 | |
| 736 | if (Cell::isZero(x, *this)) |
| 737 | { |
| 738 | it = this->zeroValue(); |
| 739 | |
| 740 | if (!this->hasZero()) |
| 741 | { |
| 742 | ++m_size; |
| 743 | this->setHasZero(); |
| 744 | this->zeroValue()->setHash(hash_value); |
| 745 | inserted = true; |
| 746 | } |
| 747 | else |
| 748 | inserted = false; |
| 749 | |
| 750 | return true; |
| 751 | } |
| 752 | |
| 753 | return false; |
| 754 | } |
| 755 | |
| 756 | template <typename KeyHolder> |
| 757 | void ALWAYS_INLINE emplaceNonZeroImpl(size_t place_value, KeyHolder && key_holder, |
| 758 | LookupResult & it, bool & inserted, size_t hash_value) |
| 759 | { |
| 760 | it = &buf[place_value]; |
| 761 | |
| 762 | if (!buf[place_value].isZero(*this)) |
| 763 | { |
| 764 | keyHolderDiscardKey(key_holder); |
| 765 | inserted = false; |
| 766 | return; |
| 767 | } |
| 768 | |
| 769 | keyHolderPersistKey(key_holder); |
| 770 | const auto & key = keyHolderGetKey(key_holder); |
| 771 | |
| 772 | new (&buf[place_value]) Cell(key, *this); |
| 773 | buf[place_value].setHash(hash_value); |
| 774 | inserted = true; |
| 775 | ++m_size; |
| 776 | |
| 777 | if (unlikely(grower.overflow(m_size))) |
| 778 | { |
| 779 | try |
| 780 | { |
| 781 | resize(); |
| 782 | } |
| 783 | catch (...) |
| 784 | { |
| 785 | /** If we have not resized successfully, then there will be problems. |
| 786 | * There remains a key, but uninitialized mapped-value, |
| 787 | * which, perhaps, can not even be called a destructor. |
| 788 | */ |
| 789 | --m_size; |
| 790 | buf[place_value].setZero(); |
| 791 | throw; |
| 792 | } |
| 793 | |
| 794 | // The hash table was rehashed, so we have to re-find the key. |
| 795 | size_t new_place = findCell(key, hash_value, grower.place(hash_value)); |
| 796 | assert(!buf[new_place].isZero(*this)); |
| 797 | it = &buf[new_place]; |
| 798 | } |
| 799 | } |
| 800 | |
| 801 | /// Only for non-zero keys. Find the right place, insert the key there, if it does not already exist. Set iterator to the cell in output parameter. |
| 802 | template <typename KeyHolder> |
| 803 | void ALWAYS_INLINE emplaceNonZero(KeyHolder && key_holder, LookupResult & it, |
| 804 | bool & inserted, size_t hash_value) |
| 805 | { |
| 806 | const auto & key = keyHolderGetKey(key_holder); |
| 807 | size_t place_value = findCell(key, hash_value, grower.place(hash_value)); |
| 808 | emplaceNonZeroImpl(place_value, key_holder, it, inserted, hash_value); |
| 809 | } |
| 810 | |
| 811 | |
| 812 | public: |
| 813 | /// Insert a value. In the case of any more complex values, it is better to use the `emplace` function. |
| 814 | std::pair<LookupResult, bool> ALWAYS_INLINE insert(const value_type & x) |
| 815 | { |
| 816 | std::pair<LookupResult, bool> res; |
| 817 | |
| 818 | size_t hash_value = hash(Cell::getKey(x)); |
| 819 | if (!emplaceIfZero(Cell::getKey(x), res.first, res.second, hash_value)) |
| 820 | { |
| 821 | emplaceNonZero(Cell::getKey(x), res.first, res.second, hash_value); |
| 822 | } |
| 823 | |
| 824 | if (res.second) |
| 825 | insertSetMapped(res.first->getMapped(), x); |
| 826 | |
| 827 | return res; |
| 828 | } |
| 829 | |
| 830 | |
| 831 | /// Reinsert node pointed to by iterator |
| 832 | void ALWAYS_INLINE reinsert(iterator & it, size_t hash_value) |
| 833 | { |
| 834 | reinsert(*it.getPtr(), hash_value); |
| 835 | } |
| 836 | |
| 837 | |
| 838 | /** Insert the key. |
| 839 | * Return values: |
| 840 | * 'it' -- a LookupResult pointing to the corresponding key/mapped pair. |
| 841 | * 'inserted' -- whether a new key was inserted. |
| 842 | * |
| 843 | * You have to make `placement new` of value if you inserted a new key, |
| 844 | * since when destroying a hash table, it will call the destructor! |
| 845 | * |
| 846 | * Example usage: |
| 847 | * |
| 848 | * Map::LookupResult it; |
| 849 | * bool inserted; |
| 850 | * map.emplace(key, it, inserted); |
| 851 | * if (inserted) |
| 852 | * new (&it->getMapped()) Mapped(value); |
| 853 | */ |
| 854 | template <typename KeyHolder> |
| 855 | void ALWAYS_INLINE emplace(KeyHolder && key_holder, LookupResult & it, bool & inserted) |
| 856 | { |
| 857 | const auto & key = keyHolderGetKey(key_holder); |
| 858 | emplace(key_holder, it, inserted, hash(key)); |
| 859 | } |
| 860 | |
| 861 | template <typename KeyHolder> |
| 862 | void ALWAYS_INLINE emplace(KeyHolder && key_holder, LookupResult & it, |
| 863 | bool & inserted, size_t hash_value) |
| 864 | { |
| 865 | const auto & key = keyHolderGetKey(key_holder); |
| 866 | if (!emplaceIfZero(key, it, inserted, hash_value)) |
| 867 | emplaceNonZero(key_holder, it, inserted, hash_value); |
| 868 | } |
| 869 | |
| 870 | /// Copy the cell from another hash table. It is assumed that the cell is not zero, and also that there was no such key in the table yet. |
| 871 | void ALWAYS_INLINE insertUniqueNonZero(const Cell * cell, size_t hash_value) |
| 872 | { |
| 873 | size_t place_value = findEmptyCell(grower.place(hash_value)); |
| 874 | |
| 875 | memcpy(static_cast<void*>(&buf[place_value]), cell, sizeof(*cell)); |
| 876 | ++m_size; |
| 877 | |
| 878 | if (unlikely(grower.overflow(m_size))) |
| 879 | resize(); |
| 880 | } |
| 881 | |
| 882 | LookupResult ALWAYS_INLINE find(const Key & x) |
| 883 | { |
| 884 | if (Cell::isZero(x, *this)) |
| 885 | return this->hasZero() ? this->zeroValue() : nullptr; |
| 886 | |
| 887 | size_t hash_value = hash(x); |
| 888 | size_t place_value = findCell(x, hash_value, grower.place(hash_value)); |
| 889 | return !buf[place_value].isZero(*this) ? &buf[place_value] : nullptr; |
| 890 | } |
| 891 | |
| 892 | ConstLookupResult ALWAYS_INLINE find(const Key & x) const |
| 893 | { |
| 894 | return const_cast<std::decay_t<decltype(*this)> *>(this)->find(x); |
| 895 | } |
| 896 | |
| 897 | LookupResult ALWAYS_INLINE find(const Key & x, size_t hash_value) |
| 898 | { |
| 899 | if (Cell::isZero(x, *this)) |
| 900 | return this->hasZero() ? this->zeroValue() : nullptr; |
| 901 | |
| 902 | size_t place_value = findCell(x, hash_value, grower.place(hash_value)); |
| 903 | return !buf[place_value].isZero(*this) ? &buf[place_value] : nullptr; |
| 904 | } |
| 905 | |
| 906 | ConstLookupResult ALWAYS_INLINE find(const Key & x, size_t hash_value) const |
| 907 | { |
| 908 | return const_cast<std::decay_t<decltype(*this)> *>(this)->find(x, hash_value); |
| 909 | } |
| 910 | |
| 911 | bool ALWAYS_INLINE has(const Key & x) const |
| 912 | { |
| 913 | if (Cell::isZero(x, *this)) |
| 914 | return this->hasZero(); |
| 915 | |
| 916 | size_t hash_value = hash(x); |
| 917 | size_t place_value = findCell(x, hash_value, grower.place(hash_value)); |
| 918 | return !buf[place_value].isZero(*this); |
| 919 | } |
| 920 | |
| 921 | |
| 922 | bool ALWAYS_INLINE has(const Key & x, size_t hash_value) const |
| 923 | { |
| 924 | if (Cell::isZero(x, *this)) |
| 925 | return this->hasZero(); |
| 926 | |
| 927 | size_t place_value = findCell(x, hash_value, grower.place(hash_value)); |
| 928 | return !buf[place_value].isZero(*this); |
| 929 | } |
| 930 | |
| 931 | |
| 932 | void write(DB::WriteBuffer & wb) const |
| 933 | { |
| 934 | Cell::State::write(wb); |
| 935 | DB::writeVarUInt(m_size, wb); |
| 936 | |
| 937 | if (this->hasZero()) |
| 938 | this->zeroValue()->write(wb); |
| 939 | |
| 940 | for (auto ptr = buf, buf_end = buf + grower.bufSize(); ptr < buf_end; ++ptr) |
| 941 | if (!ptr->isZero(*this)) |
| 942 | ptr->write(wb); |
| 943 | } |
| 944 | |
| 945 | void writeText(DB::WriteBuffer & wb) const |
| 946 | { |
| 947 | Cell::State::writeText(wb); |
| 948 | DB::writeText(m_size, wb); |
| 949 | |
| 950 | if (this->hasZero()) |
| 951 | { |
| 952 | DB::writeChar(',', wb); |
| 953 | this->zeroValue()->writeText(wb); |
| 954 | } |
| 955 | |
| 956 | for (auto ptr = buf, buf_end = buf + grower.bufSize(); ptr < buf_end; ++ptr) |
| 957 | { |
| 958 | if (!ptr->isZero(*this)) |
| 959 | { |
| 960 | DB::writeChar(',', wb); |
| 961 | ptr->writeText(wb); |
| 962 | } |
| 963 | } |
| 964 | } |
| 965 | |
| 966 | void read(DB::ReadBuffer & rb) |
| 967 | { |
| 968 | Cell::State::read(rb); |
| 969 | |
| 970 | destroyElements(); |
| 971 | this->clearHasZero(); |
| 972 | m_size = 0; |
| 973 | |
| 974 | size_t new_size = 0; |
| 975 | DB::readVarUInt(new_size, rb); |
| 976 | |
| 977 | free(); |
| 978 | Grower new_grower = grower; |
| 979 | new_grower.set(new_size); |
| 980 | alloc(new_grower); |
| 981 | |
| 982 | for (size_t i = 0; i < new_size; ++i) |
| 983 | { |
| 984 | Cell x; |
| 985 | x.read(rb); |
| 986 | insert(Cell::getKey(x.getValue())); |
| 987 | } |
| 988 | } |
| 989 | |
| 990 | void readText(DB::ReadBuffer & rb) |
| 991 | { |
| 992 | Cell::State::readText(rb); |
| 993 | |
| 994 | destroyElements(); |
| 995 | this->clearHasZero(); |
| 996 | m_size = 0; |
| 997 | |
| 998 | size_t new_size = 0; |
| 999 | DB::readText(new_size, rb); |
| 1000 | |
| 1001 | free(); |
| 1002 | Grower new_grower = grower; |
| 1003 | new_grower.set(new_size); |
| 1004 | alloc(new_grower); |
| 1005 | |
| 1006 | for (size_t i = 0; i < new_size; ++i) |
| 1007 | { |
| 1008 | Cell x; |
| 1009 | DB::assertChar(',', rb); |
| 1010 | x.readText(rb); |
| 1011 | insert(Cell::getKey(x.getValue())); |
| 1012 | } |
| 1013 | } |
| 1014 | |
| 1015 | |
| 1016 | size_t size() const |
| 1017 | { |
| 1018 | return m_size; |
| 1019 | } |
| 1020 | |
| 1021 | bool empty() const |
| 1022 | { |
| 1023 | return 0 == m_size; |
| 1024 | } |
| 1025 | |
| 1026 | void clear() |
| 1027 | { |
| 1028 | destroyElements(); |
| 1029 | this->clearHasZero(); |
| 1030 | m_size = 0; |
| 1031 | |
| 1032 | memset(static_cast<void*>(buf), 0, grower.bufSize() * sizeof(*buf)); |
| 1033 | } |
| 1034 | |
| 1035 | /// After executing this function, the table can only be destroyed, |
| 1036 | /// and also you can use the methods `size`, `empty`, `begin`, `end`. |
| 1037 | void clearAndShrink() |
| 1038 | { |
| 1039 | destroyElements(); |
| 1040 | this->clearHasZero(); |
| 1041 | m_size = 0; |
| 1042 | free(); |
| 1043 | } |
| 1044 | |
| 1045 | size_t getBufferSizeInBytes() const |
| 1046 | { |
| 1047 | return grower.bufSize() * sizeof(Cell); |
| 1048 | } |
| 1049 | |
| 1050 | size_t getBufferSizeInCells() const |
| 1051 | { |
| 1052 | return grower.bufSize(); |
| 1053 | } |
| 1054 | |
| 1055 | #ifdef DBMS_HASH_MAP_COUNT_COLLISIONS |
| 1056 | size_t getCollisions() const |
| 1057 | { |
| 1058 | return collisions; |
| 1059 | } |
| 1060 | #endif |
| 1061 | }; |
| 1062 | |