| 1 | #pragma once |
| 2 | |
| 3 | #include <string.h> |
| 4 | #include <cstddef> |
| 5 | #include <cassert> |
| 6 | #include <algorithm> |
| 7 | #include <memory> |
| 8 | |
| 9 | #include <boost/noncopyable.hpp> |
| 10 | #include <boost/iterator_adaptors.hpp> |
| 11 | |
| 12 | #include <common/likely.h> |
| 13 | #include <common/strong_typedef.h> |
| 14 | |
| 15 | #include <Common/Allocator.h> |
| 16 | #include <Common/Exception.h> |
| 17 | #include <Common/BitHelpers.h> |
| 18 | #include <Common/memcpySmall.h> |
| 19 | |
| 20 | #ifndef NDEBUG |
| 21 | #include <sys/mman.h> |
| 22 | #endif |
| 23 | |
| 24 | #include <Common/PODArray_fwd.h> |
| 25 | |
| 26 | |
| 27 | namespace DB |
| 28 | { |
| 29 | |
| 30 | namespace ErrorCodes |
| 31 | { |
| 32 | extern const int CANNOT_MPROTECT; |
| 33 | } |
| 34 | |
| 35 | /** A dynamic array for POD types. |
| 36 | * Designed for a small number of large arrays (rather than a lot of small ones). |
| 37 | * To be more precise - for use in ColumnVector. |
| 38 | * It differs from std::vector in that it does not initialize the elements. |
| 39 | * |
| 40 | * Made noncopyable so that there are no accidential copies. You can copy the data using `assign` method. |
| 41 | * |
| 42 | * Only part of the std::vector interface is supported. |
| 43 | * |
| 44 | * The default constructor creates an empty object that does not allocate memory. |
| 45 | * Then the memory is allocated at least initial_bytes bytes. |
| 46 | * |
| 47 | * If you insert elements with push_back, without making a `reserve`, then PODArray is about 2.5 times faster than std::vector. |
| 48 | * |
| 49 | * The template parameter `pad_right` - always allocate at the end of the array as many unused bytes. |
| 50 | * Can be used to make optimistic reading, writing, copying with unaligned SIMD instructions. |
| 51 | * |
| 52 | * The template parameter `pad_left` - always allocate memory before 0th element of the array (rounded up to the whole number of elements) |
| 53 | * and zero initialize -1th element. It allows to use -1th element that will have value 0. |
| 54 | * This gives performance benefits when converting an array of offsets to array of sizes. |
| 55 | * |
| 56 | * Some methods using allocator have TAllocatorParams variadic arguments. |
| 57 | * These arguments will be passed to corresponding methods of TAllocator. |
| 58 | * Example: pointer to Arena, that is used for allocations. |
| 59 | * |
| 60 | * Why Allocator is not passed through constructor, as it is done in C++ standard library? |
| 61 | * Because sometimes we have many small objects, that share same allocator with same parameters, |
| 62 | * and we must avoid larger object size due to storing the same parameters in each object. |
| 63 | * This is required for states of aggregate functions. |
| 64 | * |
| 65 | * TODO Pass alignment to Allocator. |
| 66 | * TODO Allow greater alignment than alignof(T). Example: array of char aligned to page size. |
| 67 | */ |
| 68 | static constexpr size_t EmptyPODArraySize = 1024; |
| 69 | extern const char EmptyPODArray[EmptyPODArraySize]; |
| 70 | |
| 71 | /** Base class that depend only on size of element, not on element itself. |
| 72 | * You can static_cast to this class if you want to insert some data regardless to the actual type T. |
| 73 | */ |
| 74 | #pragma GCC diagnostic push |
| 75 | #pragma GCC diagnostic ignored "-Wnull-dereference" |
| 76 | |
| 77 | template <size_t ELEMENT_SIZE, size_t initial_bytes, typename TAllocator, size_t pad_right_, size_t pad_left_> |
| 78 | class PODArrayBase : private boost::noncopyable, private TAllocator /// empty base optimization |
| 79 | { |
| 80 | protected: |
| 81 | /// Round padding up to an whole number of elements to simplify arithmetic. |
| 82 | static constexpr size_t pad_right = integerRoundUp(pad_right_, ELEMENT_SIZE); |
| 83 | /// pad_left is also rounded up to 16 bytes to maintain alignment of allocated memory. |
| 84 | static constexpr size_t pad_left = integerRoundUp(integerRoundUp(pad_left_, ELEMENT_SIZE), 16); |
| 85 | /// Empty array will point to this static memory as padding. |
| 86 | static constexpr char * null = pad_left ? const_cast<char *>(EmptyPODArray) + EmptyPODArraySize : nullptr; |
| 87 | |
| 88 | static_assert(pad_left <= EmptyPODArraySize && "Left Padding exceeds EmptyPODArraySize. Is the element size too large?" ); |
| 89 | |
| 90 | char * c_start = null; /// Does not include pad_left. |
| 91 | char * c_end = null; |
| 92 | char * c_end_of_storage = null; /// Does not include pad_right. |
| 93 | |
| 94 | /// The amount of memory occupied by the num_elements of the elements. |
| 95 | static size_t byte_size(size_t num_elements) { return num_elements * ELEMENT_SIZE; } |
| 96 | |
| 97 | /// Minimum amount of memory to allocate for num_elements, including padding. |
| 98 | static size_t minimum_memory_for_elements(size_t num_elements) { return byte_size(num_elements) + pad_right + pad_left; } |
| 99 | |
| 100 | void alloc_for_num_elements(size_t num_elements) |
| 101 | { |
| 102 | alloc(roundUpToPowerOfTwoOrZero(minimum_memory_for_elements(num_elements))); |
| 103 | } |
| 104 | |
| 105 | template <typename ... TAllocatorParams> |
| 106 | void alloc(size_t bytes, TAllocatorParams &&... allocator_params) |
| 107 | { |
| 108 | c_start = c_end = reinterpret_cast<char *>(TAllocator::alloc(bytes, std::forward<TAllocatorParams>(allocator_params)...)) + pad_left; |
| 109 | c_end_of_storage = c_start + bytes - pad_right - pad_left; |
| 110 | |
| 111 | if (pad_left) |
| 112 | memset(c_start - ELEMENT_SIZE, 0, ELEMENT_SIZE); |
| 113 | } |
| 114 | |
| 115 | void dealloc() |
| 116 | { |
| 117 | if (c_start == null) |
| 118 | return; |
| 119 | |
| 120 | unprotect(); |
| 121 | |
| 122 | TAllocator::free(c_start - pad_left, allocated_bytes()); |
| 123 | } |
| 124 | |
| 125 | template <typename ... TAllocatorParams> |
| 126 | void realloc(size_t bytes, TAllocatorParams &&... allocator_params) |
| 127 | { |
| 128 | if (c_start == null) |
| 129 | { |
| 130 | alloc(bytes, std::forward<TAllocatorParams>(allocator_params)...); |
| 131 | return; |
| 132 | } |
| 133 | |
| 134 | unprotect(); |
| 135 | |
| 136 | ptrdiff_t end_diff = c_end - c_start; |
| 137 | |
| 138 | c_start = reinterpret_cast<char *>( |
| 139 | TAllocator::realloc(c_start - pad_left, allocated_bytes(), bytes, std::forward<TAllocatorParams>(allocator_params)...)) |
| 140 | + pad_left; |
| 141 | |
| 142 | c_end = c_start + end_diff; |
| 143 | c_end_of_storage = c_start + bytes - pad_right - pad_left; |
| 144 | } |
| 145 | |
| 146 | bool isInitialized() const |
| 147 | { |
| 148 | return (c_start != null) && (c_end != null) && (c_end_of_storage != null); |
| 149 | } |
| 150 | |
| 151 | bool isAllocatedFromStack() const |
| 152 | { |
| 153 | constexpr size_t stack_threshold = TAllocator::getStackThreshold(); |
| 154 | return (stack_threshold > 0) && (allocated_bytes() <= stack_threshold); |
| 155 | } |
| 156 | |
| 157 | template <typename ... TAllocatorParams> |
| 158 | void reserveForNextSize(TAllocatorParams &&... allocator_params) |
| 159 | { |
| 160 | if (size() == 0) |
| 161 | { |
| 162 | // The allocated memory should be multiplication of ELEMENT_SIZE to hold the element, otherwise, |
| 163 | // memory issue such as corruption could appear in edge case. |
| 164 | realloc(std::max(integerRoundUp(initial_bytes, ELEMENT_SIZE), |
| 165 | minimum_memory_for_elements(1)), |
| 166 | std::forward<TAllocatorParams>(allocator_params)...); |
| 167 | } |
| 168 | else |
| 169 | realloc(allocated_bytes() * 2, std::forward<TAllocatorParams>(allocator_params)...); |
| 170 | } |
| 171 | |
| 172 | #ifndef NDEBUG |
| 173 | /// Make memory region readonly with mprotect if it is large enough. |
| 174 | /// The operation is slow and performed only for debug builds. |
| 175 | void protectImpl(int prot) |
| 176 | { |
| 177 | static constexpr size_t PROTECT_PAGE_SIZE = 4096; |
| 178 | |
| 179 | char * left_rounded_up = reinterpret_cast<char *>((reinterpret_cast<intptr_t>(c_start) - pad_left + PROTECT_PAGE_SIZE - 1) / PROTECT_PAGE_SIZE * PROTECT_PAGE_SIZE); |
| 180 | char * right_rounded_down = reinterpret_cast<char *>((reinterpret_cast<intptr_t>(c_end_of_storage) + pad_right) / PROTECT_PAGE_SIZE * PROTECT_PAGE_SIZE); |
| 181 | |
| 182 | if (right_rounded_down > left_rounded_up) |
| 183 | { |
| 184 | size_t length = right_rounded_down - left_rounded_up; |
| 185 | if (0 != mprotect(left_rounded_up, length, prot)) |
| 186 | throwFromErrno("Cannot mprotect memory region" , ErrorCodes::CANNOT_MPROTECT); |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | /// Restore memory protection in destructor or realloc for further reuse by allocator. |
| 191 | bool mprotected = false; |
| 192 | #endif |
| 193 | |
| 194 | public: |
| 195 | bool empty() const { return c_end == c_start; } |
| 196 | size_t size() const { return (c_end - c_start) / ELEMENT_SIZE; } |
| 197 | size_t capacity() const { return (c_end_of_storage - c_start) / ELEMENT_SIZE; } |
| 198 | |
| 199 | /// This method is safe to use only for information about memory usage. |
| 200 | size_t allocated_bytes() const { return c_end_of_storage - c_start + pad_right + pad_left; } |
| 201 | |
| 202 | void clear() { c_end = c_start; } |
| 203 | |
| 204 | template <typename ... TAllocatorParams> |
| 205 | void reserve(size_t n, TAllocatorParams &&... allocator_params) |
| 206 | { |
| 207 | if (n > capacity()) |
| 208 | realloc(roundUpToPowerOfTwoOrZero(minimum_memory_for_elements(n)), std::forward<TAllocatorParams>(allocator_params)...); |
| 209 | } |
| 210 | |
| 211 | template <typename ... TAllocatorParams> |
| 212 | void resize(size_t n, TAllocatorParams &&... allocator_params) |
| 213 | { |
| 214 | reserve(n, std::forward<TAllocatorParams>(allocator_params)...); |
| 215 | resize_assume_reserved(n); |
| 216 | } |
| 217 | |
| 218 | void resize_assume_reserved(const size_t n) |
| 219 | { |
| 220 | c_end = c_start + byte_size(n); |
| 221 | } |
| 222 | |
| 223 | const char * raw_data() const |
| 224 | { |
| 225 | return c_start; |
| 226 | } |
| 227 | |
| 228 | template <typename ... TAllocatorParams> |
| 229 | void push_back_raw(const char * ptr, TAllocatorParams &&... allocator_params) |
| 230 | { |
| 231 | if (unlikely(c_end == c_end_of_storage)) |
| 232 | reserveForNextSize(std::forward<TAllocatorParams>(allocator_params)...); |
| 233 | |
| 234 | memcpy(c_end, ptr, ELEMENT_SIZE); |
| 235 | c_end += byte_size(1); |
| 236 | } |
| 237 | |
| 238 | void protect() |
| 239 | { |
| 240 | #ifndef NDEBUG |
| 241 | protectImpl(PROT_READ); |
| 242 | mprotected = true; |
| 243 | #endif |
| 244 | } |
| 245 | |
| 246 | void unprotect() |
| 247 | { |
| 248 | #ifndef NDEBUG |
| 249 | if (mprotected) |
| 250 | protectImpl(PROT_WRITE); |
| 251 | mprotected = false; |
| 252 | #endif |
| 253 | } |
| 254 | |
| 255 | ~PODArrayBase() |
| 256 | { |
| 257 | dealloc(); |
| 258 | } |
| 259 | }; |
| 260 | |
| 261 | template <typename T, size_t initial_bytes, typename TAllocator, size_t pad_right_, size_t pad_left_> |
| 262 | class PODArray : public PODArrayBase<sizeof(T), initial_bytes, TAllocator, pad_right_, pad_left_> |
| 263 | { |
| 264 | protected: |
| 265 | using Base = PODArrayBase<sizeof(T), initial_bytes, TAllocator, pad_right_, pad_left_>; |
| 266 | |
| 267 | T * t_start() { return reinterpret_cast<T *>(this->c_start); } |
| 268 | T * t_end() { return reinterpret_cast<T *>(this->c_end); } |
| 269 | T * t_end_of_storage() { return reinterpret_cast<T *>(this->c_end_of_storage); } |
| 270 | |
| 271 | const T * t_start() const { return reinterpret_cast<const T *>(this->c_start); } |
| 272 | const T * t_end() const { return reinterpret_cast<const T *>(this->c_end); } |
| 273 | const T * t_end_of_storage() const { return reinterpret_cast<const T *>(this->c_end_of_storage); } |
| 274 | |
| 275 | public: |
| 276 | using value_type = T; |
| 277 | |
| 278 | /// You can not just use `typedef`, because there is ambiguity for the constructors and `assign` functions. |
| 279 | struct iterator : public boost::iterator_adaptor<iterator, T*> |
| 280 | { |
| 281 | iterator() {} |
| 282 | iterator(T * ptr_) : iterator::iterator_adaptor_(ptr_) {} |
| 283 | }; |
| 284 | |
| 285 | struct const_iterator : public boost::iterator_adaptor<const_iterator, const T*> |
| 286 | { |
| 287 | const_iterator() {} |
| 288 | const_iterator(const T * ptr_) : const_iterator::iterator_adaptor_(ptr_) {} |
| 289 | }; |
| 290 | |
| 291 | |
| 292 | PODArray() {} |
| 293 | |
| 294 | PODArray(size_t n) |
| 295 | { |
| 296 | this->alloc_for_num_elements(n); |
| 297 | this->c_end += this->byte_size(n); |
| 298 | } |
| 299 | |
| 300 | PODArray(size_t n, const T & x) |
| 301 | { |
| 302 | this->alloc_for_num_elements(n); |
| 303 | assign(n, x); |
| 304 | } |
| 305 | |
| 306 | PODArray(const_iterator from_begin, const_iterator from_end) |
| 307 | { |
| 308 | this->alloc_for_num_elements(from_end - from_begin); |
| 309 | insert(from_begin, from_end); |
| 310 | } |
| 311 | |
| 312 | PODArray(std::initializer_list<T> il) : PODArray(std::begin(il), std::end(il)) {} |
| 313 | |
| 314 | PODArray(PODArray && other) |
| 315 | { |
| 316 | this->swap(other); |
| 317 | } |
| 318 | |
| 319 | PODArray & operator=(PODArray && other) |
| 320 | { |
| 321 | this->swap(other); |
| 322 | return *this; |
| 323 | } |
| 324 | |
| 325 | T * data() { return t_start(); } |
| 326 | const T * data() const { return t_start(); } |
| 327 | |
| 328 | /// The index is signed to access -1th element without pointer overflow. |
| 329 | T & operator[] (ssize_t n) |
| 330 | { |
| 331 | /// <= size, because taking address of one element past memory range is Ok in C++ (expression like &arr[arr.size()] is perfectly valid). |
| 332 | assert((n >= (static_cast<ssize_t>(pad_left_) ? -1 : 0)) && (n <= static_cast<ssize_t>(this->size()))); |
| 333 | return t_start()[n]; |
| 334 | } |
| 335 | |
| 336 | const T & operator[] (ssize_t n) const |
| 337 | { |
| 338 | assert((n >= (static_cast<ssize_t>(pad_left_) ? -1 : 0)) && (n <= static_cast<ssize_t>(this->size()))); |
| 339 | return t_start()[n]; |
| 340 | } |
| 341 | |
| 342 | T & front() { return t_start()[0]; } |
| 343 | T & back() { return t_end()[-1]; } |
| 344 | const T & front() const { return t_start()[0]; } |
| 345 | const T & back() const { return t_end()[-1]; } |
| 346 | |
| 347 | iterator begin() { return t_start(); } |
| 348 | iterator end() { return t_end(); } |
| 349 | const_iterator begin() const { return t_start(); } |
| 350 | const_iterator end() const { return t_end(); } |
| 351 | const_iterator cbegin() const { return t_start(); } |
| 352 | const_iterator cend() const { return t_end(); } |
| 353 | |
| 354 | /// Same as resize, but zeroes new elements. |
| 355 | void resize_fill(size_t n) |
| 356 | { |
| 357 | size_t old_size = this->size(); |
| 358 | if (n > old_size) |
| 359 | { |
| 360 | this->reserve(n); |
| 361 | memset(this->c_end, 0, this->byte_size(n - old_size)); |
| 362 | } |
| 363 | this->c_end = this->c_start + this->byte_size(n); |
| 364 | } |
| 365 | |
| 366 | void resize_fill(size_t n, const T & value) |
| 367 | { |
| 368 | size_t old_size = this->size(); |
| 369 | if (n > old_size) |
| 370 | { |
| 371 | this->reserve(n); |
| 372 | std::fill(t_end(), t_end() + n - old_size, value); |
| 373 | } |
| 374 | this->c_end = this->c_start + this->byte_size(n); |
| 375 | } |
| 376 | |
| 377 | template <typename U, typename ... TAllocatorParams> |
| 378 | void push_back(U && x, TAllocatorParams &&... allocator_params) |
| 379 | { |
| 380 | if (unlikely(this->c_end == this->c_end_of_storage)) |
| 381 | this->reserveForNextSize(std::forward<TAllocatorParams>(allocator_params)...); |
| 382 | |
| 383 | new (t_end()) T(std::forward<U>(x)); |
| 384 | this->c_end += this->byte_size(1); |
| 385 | } |
| 386 | |
| 387 | /** This method doesn't allow to pass parameters for Allocator, |
| 388 | * and it couldn't be used if Allocator requires custom parameters. |
| 389 | */ |
| 390 | template <typename... Args> |
| 391 | void emplace_back(Args &&... args) |
| 392 | { |
| 393 | if (unlikely(this->c_end == this->c_end_of_storage)) |
| 394 | this->reserveForNextSize(); |
| 395 | |
| 396 | new (t_end()) T(std::forward<Args>(args)...); |
| 397 | this->c_end += this->byte_size(1); |
| 398 | } |
| 399 | |
| 400 | void pop_back() |
| 401 | { |
| 402 | this->c_end -= this->byte_size(1); |
| 403 | } |
| 404 | |
| 405 | /// Do not insert into the array a piece of itself. Because with the resize, the iterators on themselves can be invalidated. |
| 406 | template <typename It1, typename It2, typename ... TAllocatorParams> |
| 407 | void insertPrepare(It1 from_begin, It2 from_end, TAllocatorParams &&... allocator_params) |
| 408 | { |
| 409 | size_t required_capacity = this->size() + (from_end - from_begin); |
| 410 | if (required_capacity > this->capacity()) |
| 411 | this->reserve(roundUpToPowerOfTwoOrZero(required_capacity), std::forward<TAllocatorParams>(allocator_params)...); |
| 412 | } |
| 413 | |
| 414 | /// Do not insert into the array a piece of itself. Because with the resize, the iterators on themselves can be invalidated. |
| 415 | template <typename It1, typename It2, typename ... TAllocatorParams> |
| 416 | void insert(It1 from_begin, It2 from_end, TAllocatorParams &&... allocator_params) |
| 417 | { |
| 418 | insertPrepare(from_begin, from_end, std::forward<TAllocatorParams>(allocator_params)...); |
| 419 | insert_assume_reserved(from_begin, from_end); |
| 420 | } |
| 421 | |
| 422 | /// Works under assumption, that it's possible to read up to 15 excessive bytes after `from_end` and this PODArray is padded. |
| 423 | template <typename It1, typename It2, typename ... TAllocatorParams> |
| 424 | void insertSmallAllowReadWriteOverflow15(It1 from_begin, It2 from_end, TAllocatorParams &&... allocator_params) |
| 425 | { |
| 426 | static_assert(pad_right_ >= 15); |
| 427 | insertPrepare(from_begin, from_end, std::forward<TAllocatorParams>(allocator_params)...); |
| 428 | size_t bytes_to_copy = this->byte_size(from_end - from_begin); |
| 429 | memcpySmallAllowReadWriteOverflow15(this->c_end, reinterpret_cast<const void *>(&*from_begin), bytes_to_copy); |
| 430 | this->c_end += bytes_to_copy; |
| 431 | } |
| 432 | |
| 433 | template <typename It1, typename It2> |
| 434 | void insert(iterator it, It1 from_begin, It2 from_end) |
| 435 | { |
| 436 | size_t bytes_to_copy = this->byte_size(from_end - from_begin); |
| 437 | size_t bytes_to_move = (end() - it) * sizeof(T); |
| 438 | |
| 439 | insertPrepare(from_begin, from_end); |
| 440 | |
| 441 | if (unlikely(bytes_to_move)) |
| 442 | memcpy(this->c_end + bytes_to_copy - bytes_to_move, this->c_end - bytes_to_move, bytes_to_move); |
| 443 | |
| 444 | memcpy(this->c_end - bytes_to_move, reinterpret_cast<const void *>(&*from_begin), bytes_to_copy); |
| 445 | this->c_end += bytes_to_copy; |
| 446 | } |
| 447 | |
| 448 | template <typename It1, typename It2> |
| 449 | void insert_assume_reserved(It1 from_begin, It2 from_end) |
| 450 | { |
| 451 | size_t bytes_to_copy = this->byte_size(from_end - from_begin); |
| 452 | memcpy(this->c_end, reinterpret_cast<const void *>(&*from_begin), bytes_to_copy); |
| 453 | this->c_end += bytes_to_copy; |
| 454 | } |
| 455 | |
| 456 | void swap(PODArray & rhs) |
| 457 | { |
| 458 | #ifndef NDEBUG |
| 459 | this->unprotect(); |
| 460 | rhs.unprotect(); |
| 461 | #endif |
| 462 | |
| 463 | /// Swap two PODArray objects, arr1 and arr2, that satisfy the following conditions: |
| 464 | /// - The elements of arr1 are stored on stack. |
| 465 | /// - The elements of arr2 are stored on heap. |
| 466 | auto swap_stack_heap = [this](PODArray & arr1, PODArray & arr2) |
| 467 | { |
| 468 | size_t stack_size = arr1.size(); |
| 469 | size_t stack_allocated = arr1.allocated_bytes(); |
| 470 | |
| 471 | size_t heap_size = arr2.size(); |
| 472 | size_t heap_allocated = arr2.allocated_bytes(); |
| 473 | |
| 474 | /// Keep track of the stack content we have to copy. |
| 475 | char * stack_c_start = arr1.c_start; |
| 476 | |
| 477 | /// arr1 takes ownership of the heap memory of arr2. |
| 478 | arr1.c_start = arr2.c_start; |
| 479 | arr1.c_end_of_storage = arr1.c_start + heap_allocated - arr1.pad_right; |
| 480 | arr1.c_end = arr1.c_start + this->byte_size(heap_size); |
| 481 | |
| 482 | /// Allocate stack space for arr2. |
| 483 | arr2.alloc(stack_allocated); |
| 484 | /// Copy the stack content. |
| 485 | memcpy(arr2.c_start, stack_c_start, this->byte_size(stack_size)); |
| 486 | arr2.c_end = arr2.c_start + this->byte_size(stack_size); |
| 487 | }; |
| 488 | |
| 489 | auto do_move = [this](PODArray & src, PODArray & dest) |
| 490 | { |
| 491 | if (src.isAllocatedFromStack()) |
| 492 | { |
| 493 | dest.dealloc(); |
| 494 | dest.alloc(src.allocated_bytes()); |
| 495 | memcpy(dest.c_start, src.c_start, this->byte_size(src.size())); |
| 496 | dest.c_end = dest.c_start + (src.c_end - src.c_start); |
| 497 | |
| 498 | src.c_start = Base::null; |
| 499 | src.c_end = Base::null; |
| 500 | src.c_end_of_storage = Base::null; |
| 501 | } |
| 502 | else |
| 503 | { |
| 504 | std::swap(dest.c_start, src.c_start); |
| 505 | std::swap(dest.c_end, src.c_end); |
| 506 | std::swap(dest.c_end_of_storage, src.c_end_of_storage); |
| 507 | } |
| 508 | }; |
| 509 | |
| 510 | if (!this->isInitialized() && !rhs.isInitialized()) |
| 511 | { |
| 512 | return; |
| 513 | } |
| 514 | else if (!this->isInitialized() && rhs.isInitialized()) |
| 515 | { |
| 516 | do_move(rhs, *this); |
| 517 | return; |
| 518 | } |
| 519 | else if (this->isInitialized() && !rhs.isInitialized()) |
| 520 | { |
| 521 | do_move(*this, rhs); |
| 522 | return; |
| 523 | } |
| 524 | |
| 525 | if (this->isAllocatedFromStack() && rhs.isAllocatedFromStack()) |
| 526 | { |
| 527 | size_t min_size = std::min(this->size(), rhs.size()); |
| 528 | size_t max_size = std::max(this->size(), rhs.size()); |
| 529 | |
| 530 | for (size_t i = 0; i < min_size; ++i) |
| 531 | std::swap(this->operator[](i), rhs[i]); |
| 532 | |
| 533 | if (this->size() == max_size) |
| 534 | { |
| 535 | for (size_t i = min_size; i < max_size; ++i) |
| 536 | rhs[i] = this->operator[](i); |
| 537 | } |
| 538 | else |
| 539 | { |
| 540 | for (size_t i = min_size; i < max_size; ++i) |
| 541 | this->operator[](i) = rhs[i]; |
| 542 | } |
| 543 | |
| 544 | size_t lhs_size = this->size(); |
| 545 | size_t lhs_allocated = this->allocated_bytes(); |
| 546 | |
| 547 | size_t rhs_size = rhs.size(); |
| 548 | size_t rhs_allocated = rhs.allocated_bytes(); |
| 549 | |
| 550 | this->c_end_of_storage = this->c_start + rhs_allocated - Base::pad_right; |
| 551 | rhs.c_end_of_storage = rhs.c_start + lhs_allocated - Base::pad_right; |
| 552 | |
| 553 | this->c_end = this->c_start + this->byte_size(rhs_size); |
| 554 | rhs.c_end = rhs.c_start + this->byte_size(lhs_size); |
| 555 | } |
| 556 | else if (this->isAllocatedFromStack() && !rhs.isAllocatedFromStack()) |
| 557 | { |
| 558 | swap_stack_heap(*this, rhs); |
| 559 | } |
| 560 | else if (!this->isAllocatedFromStack() && rhs.isAllocatedFromStack()) |
| 561 | { |
| 562 | swap_stack_heap(rhs, *this); |
| 563 | } |
| 564 | else |
| 565 | { |
| 566 | std::swap(this->c_start, rhs.c_start); |
| 567 | std::swap(this->c_end, rhs.c_end); |
| 568 | std::swap(this->c_end_of_storage, rhs.c_end_of_storage); |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | void assign(size_t n, const T & x) |
| 573 | { |
| 574 | this->resize(n); |
| 575 | std::fill(begin(), end(), x); |
| 576 | } |
| 577 | |
| 578 | template <typename It1, typename It2> |
| 579 | void assign(It1 from_begin, It2 from_end) |
| 580 | { |
| 581 | size_t required_capacity = from_end - from_begin; |
| 582 | if (required_capacity > this->capacity()) |
| 583 | this->reserve(roundUpToPowerOfTwoOrZero(required_capacity)); |
| 584 | |
| 585 | size_t bytes_to_copy = this->byte_size(required_capacity); |
| 586 | memcpy(this->c_start, reinterpret_cast<const void *>(&*from_begin), bytes_to_copy); |
| 587 | this->c_end = this->c_start + bytes_to_copy; |
| 588 | } |
| 589 | |
| 590 | void assign(const PODArray & from) |
| 591 | { |
| 592 | assign(from.begin(), from.end()); |
| 593 | } |
| 594 | |
| 595 | |
| 596 | bool operator== (const PODArray & other) const |
| 597 | { |
| 598 | if (this->size() != other.size()) |
| 599 | return false; |
| 600 | |
| 601 | const_iterator this_it = begin(); |
| 602 | const_iterator that_it = other.begin(); |
| 603 | |
| 604 | while (this_it != end()) |
| 605 | { |
| 606 | if (*this_it != *that_it) |
| 607 | return false; |
| 608 | |
| 609 | ++this_it; |
| 610 | ++that_it; |
| 611 | } |
| 612 | |
| 613 | return true; |
| 614 | } |
| 615 | |
| 616 | bool operator!= (const PODArray & other) const |
| 617 | { |
| 618 | return !operator==(other); |
| 619 | } |
| 620 | }; |
| 621 | |
| 622 | template <typename T, size_t initial_bytes, typename TAllocator, size_t pad_right_> |
| 623 | void swap(PODArray<T, initial_bytes, TAllocator, pad_right_> & lhs, PODArray<T, initial_bytes, TAllocator, pad_right_> & rhs) |
| 624 | { |
| 625 | lhs.swap(rhs); |
| 626 | } |
| 627 | #pragma GCC diagnostic pop |
| 628 | |
| 629 | } |
| 630 | |