| 1 | #if defined(__ELF__) && !defined(__FreeBSD__) |
| 2 | |
| 3 | #include <Common/SymbolIndex.h> |
| 4 | |
| 5 | #include <algorithm> |
| 6 | #include <optional> |
| 7 | |
| 8 | #include <link.h> |
| 9 | |
| 10 | //#include <iostream> |
| 11 | #include <filesystem> |
| 12 | |
| 13 | /** |
| 14 | |
| 15 | ELF object can contain three different places with symbol names and addresses: |
| 16 | |
| 17 | 1. Symbol table in section headers. It is used for static linking and usually left in executable. |
| 18 | It is not loaded in memory and they are not necessary for program to run. |
| 19 | It does not relate to debug info and present regardless to -g flag. |
| 20 | You can use strip to get rid of this symbol table. |
| 21 | If you have this symbol table in your binary, you can manually read it and get symbol names, even for symbols from anonymous namespaces. |
| 22 | |
| 23 | 2. Hashes in program headers such as DT_HASH and DT_GNU_HASH. |
| 24 | It is necessary for dynamic object (.so libraries and any dynamically linked executable that depend on .so libraries) |
| 25 | because it is used for dynamic linking that happens in runtime and performed by dynamic loader. |
| 26 | Only exported symbols will be presented in that hash tables. Symbols from anonymous namespaces are not. |
| 27 | This part of executable binary is loaded in memory and accessible via 'dl_iterate_phdr', 'dladdr' and 'backtrace_symbols' functions from libc. |
| 28 | ClickHouse versions prior to 19.13 has used just these symbol names to symbolize stack traces |
| 29 | and stack traces may be incomplete due to lack of symbols with internal linkage. |
| 30 | But because ClickHouse is linked with most of the symbols exported (-rdynamic flag) it can still provide good enough stack traces. |
| 31 | |
| 32 | 3. DWARF debug info. It contains the most detailed information about symbols and everything else. |
| 33 | It allows to get source file names and line numbers from addresses. Only available if you use -g option for compiler. |
| 34 | It is also used by default for ClickHouse builds, but because of its weight (about two gigabytes) |
| 35 | it is splitted to separate binary and provided in clickhouse-common-static-dbg package. |
| 36 | This separate binary is placed in /usr/lib/debug/usr/bin/clickhouse and is loaded automatically by tools like gdb, addr2line. |
| 37 | When you build ClickHouse by yourself, debug info is not splitted and present in a single huge binary. |
| 38 | |
| 39 | What ClickHouse is using to provide good stack traces? |
| 40 | |
| 41 | In versions prior to 19.13, only "program headers" (2) was used. |
| 42 | |
| 43 | In version 19.13, ClickHouse will read program headers (2) and cache them, |
| 44 | also it will read itself as ELF binary and extract symbol tables from section headers (1) |
| 45 | to also symbolize functions that are not exported for dynamic linking. |
| 46 | And finally, it will read DWARF info (3) if available to display file names and line numbers. |
| 47 | |
| 48 | What detail can you obtain depending on your binary? |
| 49 | |
| 50 | If you have debug info (you build ClickHouse by yourself or install clickhouse-common-static-dbg package), you will get source file names and line numbers. |
| 51 | Otherwise you will get only symbol names. If your binary contains symbol table in section headers (the default, unless stripped), you will get all symbol names. |
| 52 | Otherwise you will get only exported symbols from program headers. |
| 53 | |
| 54 | */ |
| 55 | |
| 56 | |
| 57 | namespace DB |
| 58 | { |
| 59 | |
| 60 | namespace |
| 61 | { |
| 62 | |
| 63 | /// Notes: "PHDR" is "Program Headers". |
| 64 | /// To look at program headers, run: |
| 65 | /// readelf -l ./clickhouse-server |
| 66 | /// To look at section headers, run: |
| 67 | /// readelf -S ./clickhouse-server |
| 68 | /// Also look at: https://wiki.osdev.org/ELF |
| 69 | /// Also look at: man elf |
| 70 | /// http://www.linker-aliens.org/blogs/ali/entry/inside_elf_symbol_tables/ |
| 71 | /// https://stackoverflow.com/questions/32088140/multiple-string-tables-in-elf-object |
| 72 | |
| 73 | |
| 74 | /// Based on the code of musl-libc and the answer of Kanalpiroge on |
| 75 | /// https://stackoverflow.com/questions/15779185/list-all-the-functions-symbols-on-the-fly-in-c-code-on-a-linux-architecture |
| 76 | /// It does not extract all the symbols (but only public - exported and used for dynamic linking), |
| 77 | /// but will work if we cannot find or parse ELF files. |
| 78 | void (dl_phdr_info * info, |
| 79 | std::vector<SymbolIndex::Symbol> & symbols) |
| 80 | { |
| 81 | /* Iterate over all headers of the current shared lib |
| 82 | * (first call is for the executable itself) |
| 83 | */ |
| 84 | for (size_t = 0; header_index < info->dlpi_phnum; ++header_index) |
| 85 | { |
| 86 | /* Further processing is only needed if the dynamic section is reached |
| 87 | */ |
| 88 | if (info->dlpi_phdr[header_index].p_type != PT_DYNAMIC) |
| 89 | continue; |
| 90 | |
| 91 | /* Get a pointer to the first entry of the dynamic section. |
| 92 | * It's address is the shared lib's address + the virtual address |
| 93 | */ |
| 94 | const ElfW(Dyn) * dyn_begin = reinterpret_cast<const ElfW(Dyn) *>(info->dlpi_addr + info->dlpi_phdr[header_index].p_vaddr); |
| 95 | |
| 96 | /// For unknown reason, addresses are sometimes relative sometimes absolute. |
| 97 | auto correct_address = [](ElfW(Addr) base, ElfW(Addr) ptr) |
| 98 | { |
| 99 | return ptr > base ? ptr : base + ptr; |
| 100 | }; |
| 101 | |
| 102 | /* Iterate over all entries of the dynamic section until the |
| 103 | * end of the symbol table is reached. This is indicated by |
| 104 | * an entry with d_tag == DT_NULL. |
| 105 | */ |
| 106 | |
| 107 | size_t sym_cnt = 0; |
| 108 | for (auto it = dyn_begin; it->d_tag != DT_NULL; ++it) |
| 109 | { |
| 110 | // TODO: this branch leads to invalid address of the hash table. Need further investigation. |
| 111 | // if (it->d_tag == DT_HASH) |
| 112 | // { |
| 113 | // const ElfW(Word) * hash = reinterpret_cast<const ElfW(Word) *>(correct_address(info->dlpi_addr, it->d_un.d_ptr)); |
| 114 | // sym_cnt = hash[1]; |
| 115 | // break; |
| 116 | // } |
| 117 | if (it->d_tag == DT_GNU_HASH) |
| 118 | { |
| 119 | /// This code based on Musl-libc. |
| 120 | |
| 121 | const uint32_t * buckets = nullptr; |
| 122 | const uint32_t * hashval = nullptr; |
| 123 | |
| 124 | const ElfW(Word) * hash = reinterpret_cast<const ElfW(Word) *>(correct_address(info->dlpi_addr, it->d_un.d_ptr)); |
| 125 | |
| 126 | buckets = hash + 4 + (hash[2] * sizeof(size_t) / 4); |
| 127 | |
| 128 | for (ElfW(Word) i = 0; i < hash[0]; ++i) |
| 129 | if (buckets[i] > sym_cnt) |
| 130 | sym_cnt = buckets[i]; |
| 131 | |
| 132 | if (sym_cnt) |
| 133 | { |
| 134 | sym_cnt -= hash[1]; |
| 135 | hashval = buckets + hash[0] + sym_cnt; |
| 136 | do |
| 137 | { |
| 138 | ++sym_cnt; |
| 139 | } |
| 140 | while (!(*hashval++ & 1)); |
| 141 | } |
| 142 | |
| 143 | break; |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | if (!sym_cnt) |
| 148 | continue; |
| 149 | |
| 150 | const char * strtab = nullptr; |
| 151 | for (auto it = dyn_begin; it->d_tag != DT_NULL; ++it) |
| 152 | { |
| 153 | if (it->d_tag == DT_STRTAB) |
| 154 | { |
| 155 | strtab = reinterpret_cast<const char *>(correct_address(info->dlpi_addr, it->d_un.d_ptr)); |
| 156 | break; |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | if (!strtab) |
| 161 | continue; |
| 162 | |
| 163 | for (auto it = dyn_begin; it->d_tag != DT_NULL; ++it) |
| 164 | { |
| 165 | if (it->d_tag == DT_SYMTAB) |
| 166 | { |
| 167 | /* Get the pointer to the first entry of the symbol table */ |
| 168 | const ElfW(Sym) * elf_sym = reinterpret_cast<const ElfW(Sym) *>(correct_address(info->dlpi_addr, it->d_un.d_ptr)); |
| 169 | |
| 170 | /* Iterate over the symbol table */ |
| 171 | for (ElfW(Word) sym_index = 0; sym_index < sym_cnt; ++sym_index) |
| 172 | { |
| 173 | /// We are not interested in empty symbols. |
| 174 | if (!elf_sym[sym_index].st_size) |
| 175 | continue; |
| 176 | |
| 177 | /* Get the name of the sym_index-th symbol. |
| 178 | * This is located at the address of st_name relative to the beginning of the string table. |
| 179 | */ |
| 180 | const char * sym_name = &strtab[elf_sym[sym_index].st_name]; |
| 181 | |
| 182 | if (!sym_name) |
| 183 | continue; |
| 184 | |
| 185 | SymbolIndex::Symbol symbol; |
| 186 | symbol.address_begin = reinterpret_cast<const void *>(info->dlpi_addr + elf_sym[sym_index].st_value); |
| 187 | symbol.address_end = reinterpret_cast<const void *>(info->dlpi_addr + elf_sym[sym_index].st_value + elf_sym[sym_index].st_size); |
| 188 | symbol.name = sym_name; |
| 189 | symbols.push_back(std::move(symbol)); |
| 190 | } |
| 191 | |
| 192 | break; |
| 193 | } |
| 194 | } |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | |
| 199 | void collectSymbolsFromELFSymbolTable( |
| 200 | dl_phdr_info * info, |
| 201 | const Elf & elf, |
| 202 | const Elf::Section & symbol_table, |
| 203 | const Elf::Section & string_table, |
| 204 | std::vector<SymbolIndex::Symbol> & symbols) |
| 205 | { |
| 206 | /// Iterate symbol table. |
| 207 | const ElfSym * symbol_table_entry = reinterpret_cast<const ElfSym *>(symbol_table.begin()); |
| 208 | const ElfSym * symbol_table_end = reinterpret_cast<const ElfSym *>(symbol_table.end()); |
| 209 | |
| 210 | const char * strings = string_table.begin(); |
| 211 | |
| 212 | for (; symbol_table_entry < symbol_table_end; ++symbol_table_entry) |
| 213 | { |
| 214 | if (!symbol_table_entry->st_name |
| 215 | || !symbol_table_entry->st_value |
| 216 | || !symbol_table_entry->st_size |
| 217 | || strings + symbol_table_entry->st_name >= elf.end()) |
| 218 | continue; |
| 219 | |
| 220 | /// Find the name in strings table. |
| 221 | const char * symbol_name = strings + symbol_table_entry->st_name; |
| 222 | |
| 223 | if (!symbol_name) |
| 224 | continue; |
| 225 | |
| 226 | SymbolIndex::Symbol symbol; |
| 227 | symbol.address_begin = reinterpret_cast<const void *>(info->dlpi_addr + symbol_table_entry->st_value); |
| 228 | symbol.address_end = reinterpret_cast<const void *>(info->dlpi_addr + symbol_table_entry->st_value + symbol_table_entry->st_size); |
| 229 | symbol.name = symbol_name; |
| 230 | symbols.push_back(std::move(symbol)); |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | |
| 235 | bool searchAndCollectSymbolsFromELFSymbolTable( |
| 236 | dl_phdr_info * info, |
| 237 | const Elf & elf, |
| 238 | unsigned , |
| 239 | const char * string_table_name, |
| 240 | std::vector<SymbolIndex::Symbol> & symbols) |
| 241 | { |
| 242 | std::optional<Elf::Section> symbol_table; |
| 243 | std::optional<Elf::Section> string_table; |
| 244 | |
| 245 | if (!elf.iterateSections([&](const Elf::Section & section, size_t) |
| 246 | { |
| 247 | if (section.header.sh_type == section_header_type) |
| 248 | symbol_table.emplace(section); |
| 249 | else if (section.header.sh_type == SHT_STRTAB && 0 == strcmp(section.name(), string_table_name)) |
| 250 | string_table.emplace(section); |
| 251 | |
| 252 | if (symbol_table && string_table) |
| 253 | return true; |
| 254 | return false; |
| 255 | })) |
| 256 | { |
| 257 | return false; |
| 258 | } |
| 259 | |
| 260 | collectSymbolsFromELFSymbolTable(info, elf, *symbol_table, *string_table, symbols); |
| 261 | return true; |
| 262 | } |
| 263 | |
| 264 | |
| 265 | void collectSymbolsFromELF(dl_phdr_info * info, |
| 266 | std::vector<SymbolIndex::Symbol> & symbols, |
| 267 | std::vector<SymbolIndex::Object> & objects) |
| 268 | { |
| 269 | std::string object_name = info->dlpi_name; |
| 270 | |
| 271 | /// If the name is empty - it's main executable. |
| 272 | /// Find a elf file for the main executable. |
| 273 | |
| 274 | if (object_name.empty()) |
| 275 | object_name = "/proc/self/exe" ; |
| 276 | |
| 277 | std::error_code ec; |
| 278 | std::filesystem::path canonical_path = std::filesystem::canonical(object_name, ec); |
| 279 | |
| 280 | if (ec) |
| 281 | return; |
| 282 | |
| 283 | /// Debug info and symbol table sections may be splitted to separate binary. |
| 284 | std::filesystem::path debug_info_path = std::filesystem::path("/usr/lib/debug" ) / canonical_path.relative_path(); |
| 285 | |
| 286 | object_name = std::filesystem::exists(debug_info_path) ? debug_info_path : canonical_path; |
| 287 | |
| 288 | SymbolIndex::Object object; |
| 289 | object.elf = std::make_unique<Elf>(object_name); |
| 290 | object.address_begin = reinterpret_cast<const void *>(info->dlpi_addr); |
| 291 | object.address_end = reinterpret_cast<const void *>(info->dlpi_addr + object.elf->size()); |
| 292 | object.name = object_name; |
| 293 | objects.push_back(std::move(object)); |
| 294 | |
| 295 | searchAndCollectSymbolsFromELFSymbolTable(info, *objects.back().elf, SHT_SYMTAB, ".strtab" , symbols); |
| 296 | |
| 297 | /// Unneeded because they were parsed from "program headers" of loaded objects. |
| 298 | //searchAndCollectSymbolsFromELFSymbolTable(info, *objects.back().elf, SHT_DYNSYM, ".dynstr", symbols); |
| 299 | } |
| 300 | |
| 301 | |
| 302 | /* Callback for dl_iterate_phdr. |
| 303 | * Is called by dl_iterate_phdr for every loaded shared lib until something |
| 304 | * else than 0 is returned by one call of this function. |
| 305 | */ |
| 306 | int collectSymbols(dl_phdr_info * info, size_t, void * data_ptr) |
| 307 | { |
| 308 | SymbolIndex::Data & data = *reinterpret_cast<SymbolIndex::Data *>(data_ptr); |
| 309 | |
| 310 | collectSymbolsFromProgramHeaders(info, data.symbols); |
| 311 | collectSymbolsFromELF(info, data.symbols, data.objects); |
| 312 | |
| 313 | /* Continue iterations */ |
| 314 | return 0; |
| 315 | } |
| 316 | |
| 317 | |
| 318 | template <typename T> |
| 319 | const T * find(const void * address, const std::vector<T> & vec) |
| 320 | { |
| 321 | /// First range that has left boundary greater than address. |
| 322 | |
| 323 | auto it = std::lower_bound(vec.begin(), vec.end(), address, |
| 324 | [](const T & symbol, const void * addr) { return symbol.address_begin <= addr; }); |
| 325 | |
| 326 | if (it == vec.begin()) |
| 327 | return nullptr; |
| 328 | else |
| 329 | --it; /// Last range that has left boundary less or equals than address. |
| 330 | |
| 331 | if (address >= it->address_begin && address < it->address_end) |
| 332 | return &*it; |
| 333 | else |
| 334 | return nullptr; |
| 335 | } |
| 336 | |
| 337 | } |
| 338 | |
| 339 | |
| 340 | void SymbolIndex::update() |
| 341 | { |
| 342 | dl_iterate_phdr(collectSymbols, &data.symbols); |
| 343 | |
| 344 | std::sort(data.objects.begin(), data.objects.end(), [](const Object & a, const Object & b) { return a.address_begin < b.address_begin; }); |
| 345 | std::sort(data.symbols.begin(), data.symbols.end(), [](const Symbol & a, const Symbol & b) { return a.address_begin < b.address_begin; }); |
| 346 | |
| 347 | /// We found symbols both from loaded program headers and from ELF symbol tables. |
| 348 | data.symbols.erase(std::unique(data.symbols.begin(), data.symbols.end(), [](const Symbol & a, const Symbol & b) |
| 349 | { |
| 350 | return a.address_begin == b.address_begin && a.address_end == b.address_end; |
| 351 | }), data.symbols.end()); |
| 352 | } |
| 353 | |
| 354 | const SymbolIndex::Symbol * SymbolIndex::findSymbol(const void * address) const |
| 355 | { |
| 356 | return find(address, data.symbols); |
| 357 | } |
| 358 | |
| 359 | const SymbolIndex::Object * SymbolIndex::findObject(const void * address) const |
| 360 | { |
| 361 | return find(address, data.objects); |
| 362 | } |
| 363 | |
| 364 | SymbolIndex & SymbolIndex::instance() |
| 365 | { |
| 366 | static SymbolIndex instance; |
| 367 | return instance; |
| 368 | } |
| 369 | |
| 370 | } |
| 371 | |
| 372 | #endif |
| 373 | |