1 | /* origin: FreeBSD /usr/src/lib/msun/src/e_lgamma_r.c */ |
2 | /* |
3 | * ==================================================== |
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
5 | * |
6 | * Developed at SunSoft, a Sun Microsystems, Inc. business. |
7 | * Permission to use, copy, modify, and distribute this |
8 | * software is freely granted, provided that this notice |
9 | * is preserved. |
10 | * ==================================================== |
11 | * |
12 | */ |
13 | /* lgamma_r(x, signgamp) |
14 | * Reentrant version of the logarithm of the Gamma function |
15 | * with user provide pointer for the sign of Gamma(x). |
16 | * |
17 | * Method: |
18 | * 1. Argument Reduction for 0 < x <= 8 |
19 | * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may |
20 | * reduce x to a number in [1.5,2.5] by |
21 | * lgamma(1+s) = log(s) + lgamma(s) |
22 | * for example, |
23 | * lgamma(7.3) = log(6.3) + lgamma(6.3) |
24 | * = log(6.3*5.3) + lgamma(5.3) |
25 | * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) |
26 | * 2. Polynomial approximation of lgamma around its |
27 | * minimun ymin=1.461632144968362245 to maintain monotonicity. |
28 | * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use |
29 | * Let z = x-ymin; |
30 | * lgamma(x) = -1.214862905358496078218 + z^2*poly(z) |
31 | * where |
32 | * poly(z) is a 14 degree polynomial. |
33 | * 2. Rational approximation in the primary interval [2,3] |
34 | * We use the following approximation: |
35 | * s = x-2.0; |
36 | * lgamma(x) = 0.5*s + s*P(s)/Q(s) |
37 | * with accuracy |
38 | * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71 |
39 | * Our algorithms are based on the following observation |
40 | * |
41 | * zeta(2)-1 2 zeta(3)-1 3 |
42 | * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ... |
43 | * 2 3 |
44 | * |
45 | * where Euler = 0.5771... is the Euler constant, which is very |
46 | * close to 0.5. |
47 | * |
48 | * 3. For x>=8, we have |
49 | * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... |
50 | * (better formula: |
51 | * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) |
52 | * Let z = 1/x, then we approximation |
53 | * f(z) = lgamma(x) - (x-0.5)(log(x)-1) |
54 | * by |
55 | * 3 5 11 |
56 | * w = w0 + w1*z + w2*z + w3*z + ... + w6*z |
57 | * where |
58 | * |w - f(z)| < 2**-58.74 |
59 | * |
60 | * 4. For negative x, since (G is gamma function) |
61 | * -x*G(-x)*G(x) = pi/sin(pi*x), |
62 | * we have |
63 | * G(x) = pi/(sin(pi*x)*(-x)*G(-x)) |
64 | * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 |
65 | * Hence, for x<0, signgam = sign(sin(pi*x)) and |
66 | * lgamma(x) = log(|Gamma(x)|) |
67 | * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); |
68 | * Note: one should avoid compute pi*(-x) directly in the |
69 | * computation of sin(pi*(-x)). |
70 | * |
71 | * 5. Special Cases |
72 | * lgamma(2+s) ~ s*(1-Euler) for tiny s |
73 | * lgamma(1) = lgamma(2) = 0 |
74 | * lgamma(x) ~ -log(|x|) for tiny x |
75 | * lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero |
76 | * lgamma(inf) = inf |
77 | * lgamma(-inf) = inf (bug for bug compatible with C99!?) |
78 | * |
79 | */ |
80 | |
81 | static const double |
82 | pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ |
83 | a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */ |
84 | a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */ |
85 | a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */ |
86 | a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */ |
87 | a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */ |
88 | a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */ |
89 | a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */ |
90 | a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */ |
91 | a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */ |
92 | a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */ |
93 | a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */ |
94 | a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */ |
95 | tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */ |
96 | tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */ |
97 | /* tt = -(tail of tf) */ |
98 | tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */ |
99 | t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */ |
100 | t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */ |
101 | t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */ |
102 | t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */ |
103 | t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */ |
104 | t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */ |
105 | t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */ |
106 | t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */ |
107 | t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */ |
108 | t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */ |
109 | t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */ |
110 | t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */ |
111 | t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */ |
112 | t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */ |
113 | t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */ |
114 | u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ |
115 | u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */ |
116 | u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */ |
117 | u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */ |
118 | u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */ |
119 | u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */ |
120 | v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */ |
121 | v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */ |
122 | v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */ |
123 | v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */ |
124 | v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */ |
125 | s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ |
126 | s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */ |
127 | s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */ |
128 | s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */ |
129 | s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */ |
130 | s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */ |
131 | s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */ |
132 | r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */ |
133 | r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */ |
134 | r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */ |
135 | r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */ |
136 | r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */ |
137 | r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */ |
138 | w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */ |
139 | w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */ |
140 | w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */ |
141 | w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */ |
142 | w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */ |
143 | w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */ |
144 | w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */ |
145 | |
146 | #include <stdint.h> |
147 | #include <math.h> |
148 | |
149 | double lgamma_r(double x, int *signgamp) |
150 | { |
151 | union {double f; uint64_t i;} u = {x}; |
152 | double_t t,y,z,nadj=0,p,p1,p2,p3,q,r,w; |
153 | uint32_t ix; |
154 | int sign,i; |
155 | |
156 | /* purge off +-inf, NaN, +-0, tiny and negative arguments */ |
157 | *signgamp = 1; |
158 | sign = u.i>>63; |
159 | ix = u.i>>32 & 0x7fffffff; |
160 | if (ix >= 0x7ff00000) |
161 | return x*x; |
162 | if (ix < (0x3ff-70)<<20) { /* |x|<2**-70, return -log(|x|) */ |
163 | if(sign) { |
164 | x = -x; |
165 | *signgamp = -1; |
166 | } |
167 | return -log(x); |
168 | } |
169 | if (sign) { |
170 | x = -x; |
171 | t = sin(pi * x); |
172 | if (t == 0.0) /* -integer */ |
173 | return 1.0/(x-x); |
174 | if (t > 0.0) |
175 | *signgamp = -1; |
176 | else |
177 | t = -t; |
178 | nadj = log(pi/(t*x)); |
179 | } |
180 | |
181 | /* purge off 1 and 2 */ |
182 | if ((ix == 0x3ff00000 || ix == 0x40000000) && (uint32_t)u.i == 0) |
183 | r = 0; |
184 | /* for x < 2.0 */ |
185 | else if (ix < 0x40000000) { |
186 | if (ix <= 0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */ |
187 | r = -log(x); |
188 | if (ix >= 0x3FE76944) { |
189 | y = 1.0 - x; |
190 | i = 0; |
191 | } else if (ix >= 0x3FCDA661) { |
192 | y = x - (tc-1.0); |
193 | i = 1; |
194 | } else { |
195 | y = x; |
196 | i = 2; |
197 | } |
198 | } else { |
199 | r = 0.0; |
200 | if (ix >= 0x3FFBB4C3) { /* [1.7316,2] */ |
201 | y = 2.0 - x; |
202 | i = 0; |
203 | } else if(ix >= 0x3FF3B4C4) { /* [1.23,1.73] */ |
204 | y = x - tc; |
205 | i = 1; |
206 | } else { |
207 | y = x - 1.0; |
208 | i = 2; |
209 | } |
210 | } |
211 | switch (i) { |
212 | case 0: |
213 | z = y*y; |
214 | p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); |
215 | p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); |
216 | p = y*p1+p2; |
217 | r += (p-0.5*y); |
218 | break; |
219 | case 1: |
220 | z = y*y; |
221 | w = z*y; |
222 | p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ |
223 | p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); |
224 | p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); |
225 | p = z*p1-(tt-w*(p2+y*p3)); |
226 | r += tf + p; |
227 | break; |
228 | case 2: |
229 | p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); |
230 | p2 = 1.0+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); |
231 | r += -0.5*y + p1/p2; |
232 | } |
233 | } else if (ix < 0x40200000) { /* x < 8.0 */ |
234 | i = (int)x; |
235 | y = x - (double)i; |
236 | p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); |
237 | q = 1.0+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); |
238 | r = 0.5*y+p/q; |
239 | z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */ |
240 | switch (i) { |
241 | case 7: z *= y + 6.0; /* FALLTHRU */ |
242 | case 6: z *= y + 5.0; /* FALLTHRU */ |
243 | case 5: z *= y + 4.0; /* FALLTHRU */ |
244 | case 4: z *= y + 3.0; /* FALLTHRU */ |
245 | case 3: z *= y + 2.0; /* FALLTHRU */ |
246 | r += log(z); |
247 | break; |
248 | } |
249 | } else if (ix < 0x43900000) { /* 8.0 <= x < 2**58 */ |
250 | t = log(x); |
251 | z = 1.0/x; |
252 | y = z*z; |
253 | w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); |
254 | r = (x-0.5)*(t-1.0)+w; |
255 | } else /* 2**58 <= x <= inf */ |
256 | r = x*(log(x)-1.0); |
257 | if (sign) |
258 | r = nadj - r; |
259 | return r; |
260 | } |
261 | |
262 | |
263 | int signgam; |
264 | |
265 | double lgamma(double x) |
266 | { |
267 | return lgamma_r(x, &signgam); |
268 | } |
269 | |