| 1 | #ifndef _LIBM_H |
| 2 | #define _LIBM_H |
| 3 | |
| 4 | #include <stdint.h> |
| 5 | #include <float.h> |
| 6 | #include <math.h> |
| 7 | #include <endian.h> |
| 8 | #include "musl_features.h" |
| 9 | |
| 10 | #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
| 11 | #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __LITTLE_ENDIAN |
| 12 | union ldshape { |
| 13 | long double f; |
| 14 | struct { |
| 15 | uint64_t m; |
| 16 | uint16_t se; |
| 17 | } i; |
| 18 | }; |
| 19 | #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __BIG_ENDIAN |
| 20 | /* This is the m68k variant of 80-bit long double, and this definition only works |
| 21 | * on archs where the alignment requirement of uint64_t is <= 4. */ |
| 22 | union ldshape { |
| 23 | long double f; |
| 24 | struct { |
| 25 | uint16_t se; |
| 26 | uint16_t pad; |
| 27 | uint64_t m; |
| 28 | } i; |
| 29 | }; |
| 30 | #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __LITTLE_ENDIAN |
| 31 | union ldshape { |
| 32 | long double f; |
| 33 | struct { |
| 34 | uint64_t lo; |
| 35 | uint32_t mid; |
| 36 | uint16_t top; |
| 37 | uint16_t se; |
| 38 | } i; |
| 39 | struct { |
| 40 | uint64_t lo; |
| 41 | uint64_t hi; |
| 42 | } i2; |
| 43 | }; |
| 44 | #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __BIG_ENDIAN |
| 45 | union ldshape { |
| 46 | long double f; |
| 47 | struct { |
| 48 | uint16_t se; |
| 49 | uint16_t top; |
| 50 | uint32_t mid; |
| 51 | uint64_t lo; |
| 52 | } i; |
| 53 | struct { |
| 54 | uint64_t hi; |
| 55 | uint64_t lo; |
| 56 | } i2; |
| 57 | }; |
| 58 | #else |
| 59 | #error Unsupported long double representation |
| 60 | #endif |
| 61 | |
| 62 | /* Support non-nearest rounding mode. */ |
| 63 | #define WANT_ROUNDING 1 |
| 64 | /* Support signaling NaNs. */ |
| 65 | #define WANT_SNAN 0 |
| 66 | |
| 67 | #if WANT_SNAN |
| 68 | #error SNaN is unsupported |
| 69 | #else |
| 70 | #define issignalingf_inline(x) 0 |
| 71 | #define issignaling_inline(x) 0 |
| 72 | #endif |
| 73 | |
| 74 | #ifndef TOINT_INTRINSICS |
| 75 | #define TOINT_INTRINSICS 0 |
| 76 | #endif |
| 77 | |
| 78 | #if TOINT_INTRINSICS |
| 79 | /* Round x to nearest int in all rounding modes, ties have to be rounded |
| 80 | consistently with converttoint so the results match. If the result |
| 81 | would be outside of [-2^31, 2^31-1] then the semantics is unspecified. */ |
| 82 | static double_t roundtoint(double_t); |
| 83 | |
| 84 | /* Convert x to nearest int in all rounding modes, ties have to be rounded |
| 85 | consistently with roundtoint. If the result is not representible in an |
| 86 | int32_t then the semantics is unspecified. */ |
| 87 | static int32_t converttoint(double_t); |
| 88 | #endif |
| 89 | |
| 90 | /* Helps static branch prediction so hot path can be better optimized. */ |
| 91 | #ifdef __GNUC__ |
| 92 | #define predict_true(x) __builtin_expect(!!(x), 1) |
| 93 | #define predict_false(x) __builtin_expect(x, 0) |
| 94 | #else |
| 95 | #define predict_true(x) (x) |
| 96 | #define predict_false(x) (x) |
| 97 | #endif |
| 98 | |
| 99 | /* Evaluate an expression as the specified type. With standard excess |
| 100 | precision handling a type cast or assignment is enough (with |
| 101 | -ffloat-store an assignment is required, in old compilers argument |
| 102 | passing and return statement may not drop excess precision). */ |
| 103 | |
| 104 | static inline float eval_as_float(float x) |
| 105 | { |
| 106 | float y = x; |
| 107 | return y; |
| 108 | } |
| 109 | |
| 110 | static inline double eval_as_double(double x) |
| 111 | { |
| 112 | double y = x; |
| 113 | return y; |
| 114 | } |
| 115 | |
| 116 | /* fp_barrier returns its input, but limits code transformations |
| 117 | as if it had a side-effect (e.g. observable io) and returned |
| 118 | an arbitrary value. */ |
| 119 | |
| 120 | #ifndef fp_barrierf |
| 121 | #define fp_barrierf fp_barrierf |
| 122 | static inline float fp_barrierf(float x) |
| 123 | { |
| 124 | volatile float y = x; |
| 125 | return y; |
| 126 | } |
| 127 | #endif |
| 128 | |
| 129 | #ifndef fp_barrier |
| 130 | #define fp_barrier fp_barrier |
| 131 | static inline double fp_barrier(double x) |
| 132 | { |
| 133 | volatile double y = x; |
| 134 | return y; |
| 135 | } |
| 136 | #endif |
| 137 | |
| 138 | #ifndef fp_barrierl |
| 139 | #define fp_barrierl fp_barrierl |
| 140 | static inline long double fp_barrierl(long double x) |
| 141 | { |
| 142 | volatile long double y = x; |
| 143 | return y; |
| 144 | } |
| 145 | #endif |
| 146 | |
| 147 | /* fp_force_eval ensures that the input value is computed when that's |
| 148 | otherwise unused. To prevent the constant folding of the input |
| 149 | expression, an additional fp_barrier may be needed or a compilation |
| 150 | mode that does so (e.g. -frounding-math in gcc). Then it can be |
| 151 | used to evaluate an expression for its fenv side-effects only. */ |
| 152 | |
| 153 | #ifndef fp_force_evalf |
| 154 | #define fp_force_evalf fp_force_evalf |
| 155 | static inline void fp_force_evalf(float x) |
| 156 | { |
| 157 | volatile float y; |
| 158 | y = x; |
| 159 | } |
| 160 | #endif |
| 161 | |
| 162 | #ifndef fp_force_eval |
| 163 | #define fp_force_eval fp_force_eval |
| 164 | static inline void fp_force_eval(double x) |
| 165 | { |
| 166 | volatile double y; |
| 167 | y = x; |
| 168 | } |
| 169 | #endif |
| 170 | |
| 171 | #ifndef fp_force_evall |
| 172 | #define fp_force_evall fp_force_evall |
| 173 | static inline void fp_force_evall(long double x) |
| 174 | { |
| 175 | volatile long double y; |
| 176 | y = x; |
| 177 | } |
| 178 | #endif |
| 179 | |
| 180 | #define FORCE_EVAL(x) do { \ |
| 181 | if (sizeof(x) == sizeof(float)) { \ |
| 182 | fp_force_evalf(x); \ |
| 183 | } else if (sizeof(x) == sizeof(double)) { \ |
| 184 | fp_force_eval(x); \ |
| 185 | } else { \ |
| 186 | fp_force_evall(x); \ |
| 187 | } \ |
| 188 | } while(0) |
| 189 | |
| 190 | #define asuint(f) ((union{float _f; uint32_t _i;}){f})._i |
| 191 | #define asfloat(i) ((union{uint32_t _i; float _f;}){i})._f |
| 192 | #define asuint64(f) ((union{double _f; uint64_t _i;}){f})._i |
| 193 | #define asdouble(i) ((union{uint64_t _i; double _f;}){i})._f |
| 194 | |
| 195 | #define (hi,lo,d) \ |
| 196 | do { \ |
| 197 | uint64_t __u = asuint64(d); \ |
| 198 | (hi) = __u >> 32; \ |
| 199 | (lo) = (uint32_t)__u; \ |
| 200 | } while (0) |
| 201 | |
| 202 | #define GET_HIGH_WORD(hi,d) \ |
| 203 | do { \ |
| 204 | (hi) = asuint64(d) >> 32; \ |
| 205 | } while (0) |
| 206 | |
| 207 | #define GET_LOW_WORD(lo,d) \ |
| 208 | do { \ |
| 209 | (lo) = (uint32_t)asuint64(d); \ |
| 210 | } while (0) |
| 211 | |
| 212 | #define INSERT_WORDS(d,hi,lo) \ |
| 213 | do { \ |
| 214 | (d) = asdouble(((uint64_t)(hi)<<32) | (uint32_t)(lo)); \ |
| 215 | } while (0) |
| 216 | |
| 217 | #define SET_HIGH_WORD(d,hi) \ |
| 218 | INSERT_WORDS(d, hi, (uint32_t)asuint64(d)) |
| 219 | |
| 220 | #define SET_LOW_WORD(d,lo) \ |
| 221 | INSERT_WORDS(d, asuint64(d)>>32, lo) |
| 222 | |
| 223 | #define GET_FLOAT_WORD(w,d) \ |
| 224 | do { \ |
| 225 | (w) = asuint(d); \ |
| 226 | } while (0) |
| 227 | |
| 228 | #define SET_FLOAT_WORD(d,w) \ |
| 229 | do { \ |
| 230 | (d) = asfloat(w); \ |
| 231 | } while (0) |
| 232 | |
| 233 | extern int __signgam; |
| 234 | hidden double __lgamma_r(double, int *); |
| 235 | hidden float __lgammaf_r(float, int *); |
| 236 | |
| 237 | /* error handling functions */ |
| 238 | hidden float __math_xflowf(uint32_t, float); |
| 239 | hidden float __math_uflowf(uint32_t); |
| 240 | hidden float __math_oflowf(uint32_t); |
| 241 | hidden float __math_divzerof(uint32_t); |
| 242 | hidden float __math_invalidf(float); |
| 243 | hidden double __math_xflow(uint32_t, double); |
| 244 | hidden double __math_uflow(uint32_t); |
| 245 | hidden double __math_oflow(uint32_t); |
| 246 | hidden double __math_divzero(uint32_t); |
| 247 | hidden double __math_invalid(double); |
| 248 | |
| 249 | #endif |
| 250 | |