1 | #ifndef _LIBM_H |
2 | #define _LIBM_H |
3 | |
4 | #include <stdint.h> |
5 | #include <float.h> |
6 | #include <math.h> |
7 | #include <endian.h> |
8 | #include "musl_features.h" |
9 | |
10 | #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
11 | #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __LITTLE_ENDIAN |
12 | union ldshape { |
13 | long double f; |
14 | struct { |
15 | uint64_t m; |
16 | uint16_t se; |
17 | } i; |
18 | }; |
19 | #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __BIG_ENDIAN |
20 | /* This is the m68k variant of 80-bit long double, and this definition only works |
21 | * on archs where the alignment requirement of uint64_t is <= 4. */ |
22 | union ldshape { |
23 | long double f; |
24 | struct { |
25 | uint16_t se; |
26 | uint16_t pad; |
27 | uint64_t m; |
28 | } i; |
29 | }; |
30 | #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __LITTLE_ENDIAN |
31 | union ldshape { |
32 | long double f; |
33 | struct { |
34 | uint64_t lo; |
35 | uint32_t mid; |
36 | uint16_t top; |
37 | uint16_t se; |
38 | } i; |
39 | struct { |
40 | uint64_t lo; |
41 | uint64_t hi; |
42 | } i2; |
43 | }; |
44 | #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __BIG_ENDIAN |
45 | union ldshape { |
46 | long double f; |
47 | struct { |
48 | uint16_t se; |
49 | uint16_t top; |
50 | uint32_t mid; |
51 | uint64_t lo; |
52 | } i; |
53 | struct { |
54 | uint64_t hi; |
55 | uint64_t lo; |
56 | } i2; |
57 | }; |
58 | #else |
59 | #error Unsupported long double representation |
60 | #endif |
61 | |
62 | /* Support non-nearest rounding mode. */ |
63 | #define WANT_ROUNDING 1 |
64 | /* Support signaling NaNs. */ |
65 | #define WANT_SNAN 0 |
66 | |
67 | #if WANT_SNAN |
68 | #error SNaN is unsupported |
69 | #else |
70 | #define issignalingf_inline(x) 0 |
71 | #define issignaling_inline(x) 0 |
72 | #endif |
73 | |
74 | #ifndef TOINT_INTRINSICS |
75 | #define TOINT_INTRINSICS 0 |
76 | #endif |
77 | |
78 | #if TOINT_INTRINSICS |
79 | /* Round x to nearest int in all rounding modes, ties have to be rounded |
80 | consistently with converttoint so the results match. If the result |
81 | would be outside of [-2^31, 2^31-1] then the semantics is unspecified. */ |
82 | static double_t roundtoint(double_t); |
83 | |
84 | /* Convert x to nearest int in all rounding modes, ties have to be rounded |
85 | consistently with roundtoint. If the result is not representible in an |
86 | int32_t then the semantics is unspecified. */ |
87 | static int32_t converttoint(double_t); |
88 | #endif |
89 | |
90 | /* Helps static branch prediction so hot path can be better optimized. */ |
91 | #ifdef __GNUC__ |
92 | #define predict_true(x) __builtin_expect(!!(x), 1) |
93 | #define predict_false(x) __builtin_expect(x, 0) |
94 | #else |
95 | #define predict_true(x) (x) |
96 | #define predict_false(x) (x) |
97 | #endif |
98 | |
99 | /* Evaluate an expression as the specified type. With standard excess |
100 | precision handling a type cast or assignment is enough (with |
101 | -ffloat-store an assignment is required, in old compilers argument |
102 | passing and return statement may not drop excess precision). */ |
103 | |
104 | static inline float eval_as_float(float x) |
105 | { |
106 | float y = x; |
107 | return y; |
108 | } |
109 | |
110 | static inline double eval_as_double(double x) |
111 | { |
112 | double y = x; |
113 | return y; |
114 | } |
115 | |
116 | /* fp_barrier returns its input, but limits code transformations |
117 | as if it had a side-effect (e.g. observable io) and returned |
118 | an arbitrary value. */ |
119 | |
120 | #ifndef fp_barrierf |
121 | #define fp_barrierf fp_barrierf |
122 | static inline float fp_barrierf(float x) |
123 | { |
124 | volatile float y = x; |
125 | return y; |
126 | } |
127 | #endif |
128 | |
129 | #ifndef fp_barrier |
130 | #define fp_barrier fp_barrier |
131 | static inline double fp_barrier(double x) |
132 | { |
133 | volatile double y = x; |
134 | return y; |
135 | } |
136 | #endif |
137 | |
138 | #ifndef fp_barrierl |
139 | #define fp_barrierl fp_barrierl |
140 | static inline long double fp_barrierl(long double x) |
141 | { |
142 | volatile long double y = x; |
143 | return y; |
144 | } |
145 | #endif |
146 | |
147 | /* fp_force_eval ensures that the input value is computed when that's |
148 | otherwise unused. To prevent the constant folding of the input |
149 | expression, an additional fp_barrier may be needed or a compilation |
150 | mode that does so (e.g. -frounding-math in gcc). Then it can be |
151 | used to evaluate an expression for its fenv side-effects only. */ |
152 | |
153 | #ifndef fp_force_evalf |
154 | #define fp_force_evalf fp_force_evalf |
155 | static inline void fp_force_evalf(float x) |
156 | { |
157 | volatile float y; |
158 | y = x; |
159 | } |
160 | #endif |
161 | |
162 | #ifndef fp_force_eval |
163 | #define fp_force_eval fp_force_eval |
164 | static inline void fp_force_eval(double x) |
165 | { |
166 | volatile double y; |
167 | y = x; |
168 | } |
169 | #endif |
170 | |
171 | #ifndef fp_force_evall |
172 | #define fp_force_evall fp_force_evall |
173 | static inline void fp_force_evall(long double x) |
174 | { |
175 | volatile long double y; |
176 | y = x; |
177 | } |
178 | #endif |
179 | |
180 | #define FORCE_EVAL(x) do { \ |
181 | if (sizeof(x) == sizeof(float)) { \ |
182 | fp_force_evalf(x); \ |
183 | } else if (sizeof(x) == sizeof(double)) { \ |
184 | fp_force_eval(x); \ |
185 | } else { \ |
186 | fp_force_evall(x); \ |
187 | } \ |
188 | } while(0) |
189 | |
190 | #define asuint(f) ((union{float _f; uint32_t _i;}){f})._i |
191 | #define asfloat(i) ((union{uint32_t _i; float _f;}){i})._f |
192 | #define asuint64(f) ((union{double _f; uint64_t _i;}){f})._i |
193 | #define asdouble(i) ((union{uint64_t _i; double _f;}){i})._f |
194 | |
195 | #define (hi,lo,d) \ |
196 | do { \ |
197 | uint64_t __u = asuint64(d); \ |
198 | (hi) = __u >> 32; \ |
199 | (lo) = (uint32_t)__u; \ |
200 | } while (0) |
201 | |
202 | #define GET_HIGH_WORD(hi,d) \ |
203 | do { \ |
204 | (hi) = asuint64(d) >> 32; \ |
205 | } while (0) |
206 | |
207 | #define GET_LOW_WORD(lo,d) \ |
208 | do { \ |
209 | (lo) = (uint32_t)asuint64(d); \ |
210 | } while (0) |
211 | |
212 | #define INSERT_WORDS(d,hi,lo) \ |
213 | do { \ |
214 | (d) = asdouble(((uint64_t)(hi)<<32) | (uint32_t)(lo)); \ |
215 | } while (0) |
216 | |
217 | #define SET_HIGH_WORD(d,hi) \ |
218 | INSERT_WORDS(d, hi, (uint32_t)asuint64(d)) |
219 | |
220 | #define SET_LOW_WORD(d,lo) \ |
221 | INSERT_WORDS(d, asuint64(d)>>32, lo) |
222 | |
223 | #define GET_FLOAT_WORD(w,d) \ |
224 | do { \ |
225 | (w) = asuint(d); \ |
226 | } while (0) |
227 | |
228 | #define SET_FLOAT_WORD(d,w) \ |
229 | do { \ |
230 | (d) = asfloat(w); \ |
231 | } while (0) |
232 | |
233 | extern int __signgam; |
234 | hidden double __lgamma_r(double, int *); |
235 | hidden float __lgammaf_r(float, int *); |
236 | |
237 | /* error handling functions */ |
238 | hidden float __math_xflowf(uint32_t, float); |
239 | hidden float __math_uflowf(uint32_t); |
240 | hidden float __math_oflowf(uint32_t); |
241 | hidden float __math_divzerof(uint32_t); |
242 | hidden float __math_invalidf(float); |
243 | hidden double __math_xflow(uint32_t, double); |
244 | hidden double __math_uflow(uint32_t); |
245 | hidden double __math_oflow(uint32_t); |
246 | hidden double __math_divzero(uint32_t); |
247 | hidden double __math_invalid(double); |
248 | |
249 | #endif |
250 | |