| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | // ==++== |
| 6 | // |
| 7 | |
| 8 | // |
| 9 | // ==--== |
| 10 | |
| 11 | /* |
| 12 | * This file defines the support classes that allow us to operate on the object graph of the process that SOS |
| 13 | * is analyzing. |
| 14 | * |
| 15 | * The GCRoot algorithm is based on three simple principles: |
| 16 | * 1. Only consider an object once. When we inspect an object, read its references and don't ever touch |
| 17 | * it again. This ensures that our upper bound on the amount of time we spend walking the object |
| 18 | * graph very quickly reaches resolution. The objects we've already inspected (and thus won't inspect |
| 19 | * again) is tracked by the mConsidered variable. |
| 20 | * 2. Be extremely careful about reads from the target process. We use a linear cache for reading from |
| 21 | * object data. We also cache everything about the method tables we read out of, as well as caching |
| 22 | * the GCDesc which is required to walk the object's references. |
| 23 | * 3. Use O(1) data structures for anything perf-critical. Almost all of the data structures we use to |
| 24 | * keep track of data have very fast lookups. For example, to keep track of the objects we've considered |
| 25 | * we use a unordered_set. Similarly to keep track of MethodTable data we use a unordered_map to track the |
| 26 | * mt -> mtinfo mapping. |
| 27 | */ |
| 28 | |
| 29 | #include "sos.h" |
| 30 | #include "disasm.h" |
| 31 | |
| 32 | #ifdef _ASSERTE |
| 33 | #undef _ASSERTE |
| 34 | #endif |
| 35 | |
| 36 | #define _ASSERTE(a) {;} |
| 37 | |
| 38 | #include "gcdesc.h" |
| 39 | |
| 40 | #include "safemath.h" |
| 41 | |
| 42 | |
| 43 | #undef _ASSERTE |
| 44 | |
| 45 | #ifdef _DEBUG |
| 46 | #define _ASSERTE(expr) \ |
| 47 | do { if (!(expr) ) { ExtErr("_ASSERTE fired:\n\t%s\n", #expr); if (IsDebuggerPresent()) DebugBreak(); } } while (0) |
| 48 | #else |
| 49 | #define _ASSERTE(x) |
| 50 | #endif |
| 51 | |
| 52 | inline size_t ALIGN_DOWN( size_t val, size_t alignment ) |
| 53 | { |
| 54 | // alignment must be a power of 2 for this implementation to work (need modulo otherwise) |
| 55 | _ASSERTE( 0 == (alignment & (alignment - 1)) ); |
| 56 | size_t result = val & ~(alignment - 1); |
| 57 | return result; |
| 58 | } |
| 59 | |
| 60 | inline void* ALIGN_DOWN( void* val, size_t alignment ) |
| 61 | { |
| 62 | return (void*) ALIGN_DOWN( (size_t)val, alignment ); |
| 63 | } |
| 64 | |
| 65 | LinearReadCache::LinearReadCache(ULONG pageSize) |
| 66 | : mCurrPageStart(0), mPageSize(pageSize), mCurrPageSize(0), mPage(0) |
| 67 | { |
| 68 | mPage = new BYTE[pageSize]; |
| 69 | ClearStats(); |
| 70 | } |
| 71 | |
| 72 | LinearReadCache::~LinearReadCache() |
| 73 | { |
| 74 | if (mPage) |
| 75 | delete [] mPage; |
| 76 | } |
| 77 | |
| 78 | bool LinearReadCache::MoveToPage(TADDR addr, unsigned int size) |
| 79 | { |
| 80 | if (size > mPageSize) |
| 81 | size = mPageSize; |
| 82 | |
| 83 | mCurrPageStart = addr; |
| 84 | HRESULT hr = g_ExtData->ReadVirtual(mCurrPageStart, mPage, size, &mCurrPageSize); |
| 85 | |
| 86 | if (hr != S_OK) |
| 87 | { |
| 88 | mCurrPageStart = 0; |
| 89 | mCurrPageSize = 0; |
| 90 | return false; |
| 91 | } |
| 92 | |
| 93 | #ifdef _DEBUG |
| 94 | mMisses++; |
| 95 | #endif |
| 96 | return true; |
| 97 | } |
| 98 | |
| 99 | |
| 100 | static const char *NameForHandle(unsigned int type) |
| 101 | { |
| 102 | switch (type) |
| 103 | { |
| 104 | case 0: |
| 105 | return "weak short" ; |
| 106 | case 1: |
| 107 | return "weak long" ; |
| 108 | case 2: |
| 109 | return "strong" ; |
| 110 | case 3: |
| 111 | return "pinned" ; |
| 112 | case 5: |
| 113 | return "ref counted" ; |
| 114 | case 6: |
| 115 | return "dependent" ; |
| 116 | case 7: |
| 117 | return "async pinned" ; |
| 118 | case 8: |
| 119 | return "sized ref" ; |
| 120 | } |
| 121 | |
| 122 | return "unknown" ; |
| 123 | } |
| 124 | |
| 125 | /////////////////////////////////////////////////////////////////////////////// |
| 126 | // GCRoot functions to cleanup data. |
| 127 | /////////////////////////////////////////////////////////////////////////////// |
| 128 | void GCRootImpl::ClearSizeData() |
| 129 | { |
| 130 | mConsidered.clear(); |
| 131 | mSizes.clear(); |
| 132 | } |
| 133 | |
| 134 | void GCRootImpl::ClearAll() |
| 135 | { |
| 136 | ClearNodes(); |
| 137 | |
| 138 | { |
| 139 | std::unordered_map<TADDR, MTInfo*>::iterator itr; |
| 140 | for (itr = mMTs.begin(); itr != mMTs.end(); ++itr) |
| 141 | delete itr->second; |
| 142 | } |
| 143 | |
| 144 | { |
| 145 | std::unordered_map<TADDR, RootNode*>::iterator itr; |
| 146 | for (itr = mTargets.begin(); itr != mTargets.end(); ++itr) |
| 147 | delete itr->second; |
| 148 | } |
| 149 | |
| 150 | mMTs.clear(); |
| 151 | mTargets.clear(); |
| 152 | mConsidered.clear(); |
| 153 | mSizes.clear(); |
| 154 | mDependentHandleMap.clear(); |
| 155 | mCache.ClearStats(); |
| 156 | |
| 157 | mAll = false; |
| 158 | mSize = false; |
| 159 | } |
| 160 | |
| 161 | void GCRootImpl::ClearNodes() |
| 162 | { |
| 163 | std::list<RootNode*>::iterator itr; |
| 164 | |
| 165 | for (itr = mCleanupList.begin(); itr != mCleanupList.end(); ++itr) |
| 166 | delete *itr; |
| 167 | |
| 168 | mCleanupList.clear(); |
| 169 | mRootNewList.clear(); |
| 170 | } |
| 171 | |
| 172 | GCRootImpl::RootNode *GCRootImpl::NewNode(TADDR obj, MTInfo *mtInfo, bool fromDependent) |
| 173 | { |
| 174 | // We need to create/destroy a TON of nodes during execution of GCRoot functions. |
| 175 | // To avoid heap fragmentation (and since it's faster), we don't actually new/delete |
| 176 | // nodes unless we have to. Instead we keep a stl list with free nodes to use. |
| 177 | RootNode *toReturn = NULL; |
| 178 | |
| 179 | if (mRootNewList.size()) |
| 180 | { |
| 181 | toReturn = mRootNewList.back(); |
| 182 | mRootNewList.pop_back(); |
| 183 | } |
| 184 | else |
| 185 | { |
| 186 | toReturn = new RootNode(); |
| 187 | mCleanupList.push_back(toReturn); |
| 188 | } |
| 189 | |
| 190 | toReturn->Object = obj; |
| 191 | toReturn->MTInfo = mtInfo; |
| 192 | toReturn->FromDependentHandle = fromDependent; |
| 193 | return toReturn; |
| 194 | } |
| 195 | |
| 196 | void GCRootImpl::DeleteNode(RootNode *node) |
| 197 | { |
| 198 | // Add node to the "new list". |
| 199 | node->Clear(); |
| 200 | mRootNewList.push_back(node); |
| 201 | } |
| 202 | |
| 203 | void GCRootImpl::GetDependentHandleMap(std::unordered_map<TADDR, std::list<TADDR>> &map) |
| 204 | { |
| 205 | unsigned int type = HNDTYPE_DEPENDENT; |
| 206 | ToRelease<ISOSHandleEnum> handles; |
| 207 | |
| 208 | HRESULT hr = g_sos->GetHandleEnumForTypes(&type, 1, &handles); |
| 209 | |
| 210 | if (FAILED(hr)) |
| 211 | { |
| 212 | ExtOut("Failed to walk dependent handles. GCRoot may miss paths.\n" ); |
| 213 | return; |
| 214 | } |
| 215 | |
| 216 | SOSHandleData data[4]; |
| 217 | unsigned int fetched = 0; |
| 218 | |
| 219 | do |
| 220 | { |
| 221 | hr = handles->Next(_countof(data), data, &fetched); |
| 222 | |
| 223 | if (FAILED(hr)) |
| 224 | { |
| 225 | ExtOut("Error walking dependent handles. GCRoot may miss paths.\n" ); |
| 226 | return; |
| 227 | } |
| 228 | |
| 229 | for (unsigned int i = 0; i < fetched; ++i) |
| 230 | { |
| 231 | if (data[i].Secondary != 0) |
| 232 | { |
| 233 | TADDR obj = 0; |
| 234 | TADDR target = TO_TADDR(data[i].Secondary); |
| 235 | |
| 236 | MOVE(obj, TO_TADDR(data[i].Handle)); |
| 237 | |
| 238 | map[obj].push_back(target); |
| 239 | } |
| 240 | } |
| 241 | } while (fetched == _countof(data)); |
| 242 | } |
| 243 | |
| 244 | /////////////////////////////////////////////////////////////////////////////// |
| 245 | // Public functions. |
| 246 | /////////////////////////////////////////////////////////////////////////////// |
| 247 | int GCRootImpl::PrintRootsForObject(TADDR target, bool all, bool noStacks) |
| 248 | { |
| 249 | ClearAll(); |
| 250 | GetDependentHandleMap(mDependentHandleMap); |
| 251 | |
| 252 | mAll = all; |
| 253 | |
| 254 | // Add "target" to the mTargets list. |
| 255 | TADDR mt = ReadPointerCached(target); |
| 256 | RootNode *node = NewNode(target, GetMTInfo(mt)); |
| 257 | mTargets[target] = node; |
| 258 | |
| 259 | // Look for roots on the HandleTable, FQ, and all threads. |
| 260 | int count = 0; |
| 261 | |
| 262 | if (!noStacks) |
| 263 | count += PrintRootsOnAllThreads(); |
| 264 | |
| 265 | count += PrintRootsOnHandleTable(); |
| 266 | count += PrintRootsOnFQ(); |
| 267 | |
| 268 | if(count == 0) |
| 269 | { |
| 270 | count += PrintRootsOnFQ(true); |
| 271 | if(count) |
| 272 | { |
| 273 | ExtOut("Warning: These roots are from finalizable objects that are not yet ready for finalization.\n" ); |
| 274 | ExtOut("This is to handle the case where objects re-register themselves for finalization.\n" ); |
| 275 | ExtOut("These roots may be false positives.\n" ); |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | mCache.PrintStats(__FUNCTION__); |
| 280 | return count; |
| 281 | } |
| 282 | |
| 283 | |
| 284 | bool GCRootImpl::PrintPathToObject(TADDR root, TADDR target) |
| 285 | { |
| 286 | ClearAll(); |
| 287 | GetDependentHandleMap(mDependentHandleMap); |
| 288 | |
| 289 | // Add "target" to the mTargets list. |
| 290 | TADDR mt = ReadPointerCached(target); |
| 291 | RootNode *node = NewNode(target, GetMTInfo(mt)); |
| 292 | mTargets[target] = node; |
| 293 | |
| 294 | // Check to see if the root reaches the target. |
| 295 | RootNode *path = FindPathToTarget(root); |
| 296 | if (path) |
| 297 | { |
| 298 | ExtOut("%p %S\n" , SOS_PTR(path->Object), path->GetTypeName()); |
| 299 | path = path->Next; |
| 300 | |
| 301 | while (path) |
| 302 | { |
| 303 | ExtOut(" -> %p %S%s\n" ,SOS_PTR(path->Object), path->GetTypeName(), path->FromDependentHandle ? " (dependent handle)" : "" ); |
| 304 | path = path->Next; |
| 305 | } |
| 306 | |
| 307 | mCache.PrintStats(__FUNCTION__); |
| 308 | return true; |
| 309 | } |
| 310 | |
| 311 | mCache.PrintStats(__FUNCTION__); |
| 312 | return false; |
| 313 | } |
| 314 | |
| 315 | size_t GCRootImpl::ObjSize(TADDR root) |
| 316 | { |
| 317 | // Calculates the size of the closure of objects kept alive by root. |
| 318 | ClearAll(); |
| 319 | GetDependentHandleMap(mDependentHandleMap); |
| 320 | |
| 321 | // mSize tells GCRootImpl to build the "mSizes" table with the total size |
| 322 | // each object roots. |
| 323 | mSize = true; |
| 324 | |
| 325 | // Note that we are calling the same method as we would to locate the rooting |
| 326 | // chain for an object, but we haven't added any items to mTargets. This means |
| 327 | // the algorithm will scan all objects and never terminate until it has walked |
| 328 | // all objects in the closure. |
| 329 | FindPathToTarget(root); |
| 330 | |
| 331 | mCache.PrintStats(__FUNCTION__); |
| 332 | return mSizes[root]; |
| 333 | } |
| 334 | |
| 335 | void GCRootImpl::ObjSize() |
| 336 | { |
| 337 | ClearAll(); |
| 338 | GetDependentHandleMap(mDependentHandleMap); |
| 339 | mSize = true; |
| 340 | |
| 341 | // Walks all roots in the process, and prints out the object size for each one. |
| 342 | PrintRootsOnAllThreads(); |
| 343 | PrintRootsOnHandleTable(); |
| 344 | PrintRootsOnFQ(); |
| 345 | |
| 346 | mCache.PrintStats(__FUNCTION__); |
| 347 | } |
| 348 | |
| 349 | |
| 350 | const std::unordered_set<TADDR> &GCRootImpl::GetLiveObjects(bool excludeFQ) |
| 351 | { |
| 352 | ClearAll(); |
| 353 | GetDependentHandleMap(mDependentHandleMap); |
| 354 | |
| 355 | // Walk each root in the process without setting a target. This has the effect of |
| 356 | // causing us to walk every object in the process, adding them to mConsidered as we |
| 357 | // go. |
| 358 | PrintRootsOnAllThreads(); |
| 359 | PrintRootsOnHandleTable(); |
| 360 | |
| 361 | if (!excludeFQ) |
| 362 | PrintRootsOnFQ(); |
| 363 | |
| 364 | mCache.PrintStats(__FUNCTION__); |
| 365 | return mConsidered; |
| 366 | } |
| 367 | |
| 368 | int GCRootImpl::FindRoots(int gen, TADDR target) |
| 369 | { |
| 370 | ClearAll(); |
| 371 | GetDependentHandleMap(mDependentHandleMap); |
| 372 | |
| 373 | if (gen == -1 || ((UINT)gen) == GetMaxGeneration()) |
| 374 | { |
| 375 | // If this is a gen 2 !FindRoots, just do a regular !GCRoot |
| 376 | return PrintRootsForObject(target, false, false); |
| 377 | } |
| 378 | else |
| 379 | { |
| 380 | // Otherwise walk all roots for only the given generation. |
| 381 | int count = PrintRootsInOlderGen(); |
| 382 | count += PrintRootsOnHandleTable(gen); |
| 383 | count += PrintRootsOnFQ(); |
| 384 | return count; |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | |
| 389 | |
| 390 | /////////////////////////////////////////////////////////////////////////////// |
| 391 | // GCRoot Methods for printing out results. |
| 392 | /////////////////////////////////////////////////////////////////////////////// |
| 393 | void GCRootImpl::ReportSizeInfo(const SOSHandleData &handle, TADDR obj) |
| 394 | { |
| 395 | // Print size for a handle (!objsize) |
| 396 | TADDR mt = ReadPointer(obj); |
| 397 | MTInfo *mtInfo = GetMTInfo(mt); |
| 398 | |
| 399 | const WCHAR *type = mtInfo ? mtInfo->GetTypeName() : W("unknown type" ); |
| 400 | |
| 401 | size_t size = mSizes[obj]; |
| 402 | ExtOut("Handle (%s): %p -> %p: %d (0x%x) bytes (%S)\n" , NameForHandle(handle.Type), SOS_PTR(handle.Handle), |
| 403 | SOS_PTR(obj), size, size, type); |
| 404 | } |
| 405 | |
| 406 | |
| 407 | void GCRootImpl::ReportSizeInfo(DWORD thread, const SOSStackRefData &stackRef, TADDR obj) |
| 408 | { |
| 409 | // Print size for a stack root (!objsize) |
| 410 | WString frame; |
| 411 | if (stackRef.SourceType == SOS_StackSourceIP) |
| 412 | frame = MethodNameFromIP(stackRef.Source); |
| 413 | else |
| 414 | frame = GetFrameFromAddress(TO_TADDR(stackRef.Source)); |
| 415 | |
| 416 | WString regOutput = BuildRegisterOutput(stackRef); |
| 417 | |
| 418 | TADDR mt = ReadPointer(obj); |
| 419 | MTInfo *mtInfo = GetMTInfo(mt); |
| 420 | const WCHAR *type = mtInfo ? mtInfo->GetTypeName() : W("unknown type" ); |
| 421 | |
| 422 | size_t size = mSizes[obj]; |
| 423 | ExtOut("Thread %x (%S): %S: %d (0x%x) bytes (%S)\n" , thread, frame.c_str(), regOutput.c_str(), size, size, type); |
| 424 | } |
| 425 | |
| 426 | void GCRootImpl::ReportOneHandlePath(const SOSHandleData &handle, RootNode *path, bool ) |
| 427 | { |
| 428 | if (printHeader) |
| 429 | ExtOut("HandleTable:\n" ); |
| 430 | |
| 431 | ExtOut(" %p (%s handle)\n" , SOS_PTR(handle.Handle), NameForHandle(handle.Type)); |
| 432 | while (path) |
| 433 | { |
| 434 | ExtOut(" -> %p %S%s\n" , SOS_PTR(path->Object), path->GetTypeName(), path->FromDependentHandle ? " (dependent handle)" : "" ); |
| 435 | path = path->Next; |
| 436 | } |
| 437 | |
| 438 | ExtOut("\n" ); |
| 439 | } |
| 440 | |
| 441 | void GCRootImpl::ReportOnePath(DWORD thread, const SOSStackRefData &stackRef, RootNode *path, bool printThread, bool printFrame) |
| 442 | { |
| 443 | if (printThread) |
| 444 | ExtOut("Thread %x:\n" , thread); |
| 445 | |
| 446 | if (printFrame) |
| 447 | { |
| 448 | if (stackRef.SourceType == SOS_StackSourceIP) |
| 449 | { |
| 450 | WString methodName = MethodNameFromIP(stackRef.Source); |
| 451 | ExtOut(" %p %p %S\n" , SOS_PTR(stackRef.StackPointer), SOS_PTR(stackRef.Source), methodName.c_str()); |
| 452 | } |
| 453 | else |
| 454 | { |
| 455 | WString frameName = GetFrameFromAddress(TO_TADDR(stackRef.Source)); |
| 456 | ExtOut(" %p %S\n" , SOS_PTR(stackRef.Source), frameName.c_str()); |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | WString regOutput = BuildRegisterOutput(stackRef, false); |
| 461 | ExtOut(" %S\n" , regOutput.c_str()); |
| 462 | |
| 463 | while (path) |
| 464 | { |
| 465 | ExtOut(" -> %p %S%s\n" , SOS_PTR(path->Object), path->GetTypeName(), path->FromDependentHandle ? " (dependent handle)" : "" ); |
| 466 | path = path->Next; |
| 467 | } |
| 468 | |
| 469 | ExtOut("\n" ); |
| 470 | } |
| 471 | |
| 472 | void GCRootImpl::ReportOneFQEntry(TADDR root, RootNode *path, bool ) |
| 473 | { |
| 474 | if (printHeader) |
| 475 | ExtOut("Finalizer Queue:\n" ); |
| 476 | |
| 477 | ExtOut(" %p\n" , SOS_PTR(root)); |
| 478 | while (path) |
| 479 | { |
| 480 | ExtOut(" -> %p %S%s\n" , SOS_PTR(path->Object), path->GetTypeName(), path->FromDependentHandle ? " (dependent handle)" : "" ); |
| 481 | path = path->Next; |
| 482 | } |
| 483 | |
| 484 | ExtOut("\n" ); |
| 485 | } |
| 486 | |
| 487 | void GCRootImpl::ReportOlderGenEntry(TADDR root, RootNode *path, bool ) |
| 488 | { |
| 489 | if (printHeader) |
| 490 | ExtOut("Older Generation:\n" ); |
| 491 | |
| 492 | ExtOut(" %p\n" , SOS_PTR(root)); |
| 493 | while (path) |
| 494 | { |
| 495 | ExtOut(" -> %p %S%s\n" , SOS_PTR(path->Object), path->GetTypeName(), path->FromDependentHandle ? " (dependent handle)" : "" ); |
| 496 | path = path->Next; |
| 497 | } |
| 498 | |
| 499 | ExtOut("\n" ); |
| 500 | } |
| 501 | |
| 502 | ////////////////////////////////////////////////////// |
| 503 | int GCRootImpl::PrintRootsInOlderGen() |
| 504 | { |
| 505 | // Use a different linear read cache here instead of polluting the object read cache. |
| 506 | LinearReadCache cache(512); |
| 507 | |
| 508 | if (!IsServerBuild()) |
| 509 | { |
| 510 | DacpGcHeapAnalyzeData analyzeData; |
| 511 | if (analyzeData.Request(g_sos) != S_OK) |
| 512 | { |
| 513 | ExtErr("Error requesting gc heap analyze data\n" ); |
| 514 | return 0; |
| 515 | } |
| 516 | |
| 517 | if (!analyzeData.heap_analyze_success) |
| 518 | { |
| 519 | ExtOut("Failed to gather needed data, possibly due to memory constraints in the debuggee.\n" ); |
| 520 | ExtOut("To try again re-issue the !FindRoots -gen <N> command.\n" ); |
| 521 | return 0; |
| 522 | } |
| 523 | |
| 524 | ExtDbgOut("internal_root_array = %#p\n" , SOS_PTR(analyzeData.internal_root_array)); |
| 525 | ExtDbgOut("internal_root_array_index = %#p\n" , SOS_PTR(analyzeData.internal_root_array_index)); |
| 526 | |
| 527 | TADDR start = TO_TADDR(analyzeData.internal_root_array); |
| 528 | TADDR stop = TO_TADDR(analyzeData.internal_root_array + sizeof(TADDR) * (size_t)analyzeData.internal_root_array_index); |
| 529 | |
| 530 | return PrintRootsInRange(cache, start, stop, &GCRootImpl::ReportOlderGenEntry, true); |
| 531 | } |
| 532 | else |
| 533 | { |
| 534 | int total = 0; |
| 535 | DWORD dwAllocSize; |
| 536 | DWORD dwNHeaps = GetGcHeapCount(); |
| 537 | if (!ClrSafeInt<DWORD>::multiply(sizeof(CLRDATA_ADDRESS), dwNHeaps, dwAllocSize)) |
| 538 | { |
| 539 | ExtErr("Failed to get GCHeaps: integer overflow\n" ); |
| 540 | return 0; |
| 541 | } |
| 542 | |
| 543 | CLRDATA_ADDRESS *heapAddrs = (CLRDATA_ADDRESS*)alloca(dwAllocSize); |
| 544 | if (g_sos->GetGCHeapList(dwNHeaps, heapAddrs, NULL) != S_OK) |
| 545 | { |
| 546 | ExtErr("Failed to get GCHeaps\n" ); |
| 547 | return 0; |
| 548 | } |
| 549 | |
| 550 | for (UINT n = 0; n < dwNHeaps; n ++) |
| 551 | { |
| 552 | DacpGcHeapAnalyzeData analyzeData; |
| 553 | if (analyzeData.Request(g_sos, heapAddrs[n]) != S_OK) |
| 554 | { |
| 555 | ExtErr("Error requesting gc heap analyze data for heap %p\n" , SOS_PTR(heapAddrs[n])); |
| 556 | continue; |
| 557 | } |
| 558 | |
| 559 | if (!analyzeData.heap_analyze_success) |
| 560 | { |
| 561 | ExtOut("Failed to gather needed data, possibly due to memory constraints in the debuggee.\n" ); |
| 562 | ExtOut("To try again re-issue the !FindRoots -gen <N> command.\n" ); |
| 563 | continue; |
| 564 | } |
| 565 | |
| 566 | ExtDbgOut("internal_root_array = %#p\n" , SOS_PTR(analyzeData.internal_root_array)); |
| 567 | ExtDbgOut("internal_root_array_index = %#p\n" , SOS_PTR(analyzeData.internal_root_array_index)); |
| 568 | |
| 569 | TADDR start = TO_TADDR(analyzeData.internal_root_array); |
| 570 | TADDR stop = TO_TADDR(analyzeData.internal_root_array + sizeof(TADDR) * (size_t)analyzeData.internal_root_array_index); |
| 571 | |
| 572 | total += PrintRootsInRange(cache, start, stop, &GCRootImpl::ReportOlderGenEntry, total == 0); |
| 573 | } |
| 574 | |
| 575 | return total; |
| 576 | } |
| 577 | } |
| 578 | |
| 579 | |
| 580 | int GCRootImpl::PrintRootsOnFQ(bool notReadyForFinalization) |
| 581 | { |
| 582 | // Here are objects kept alive by objects in the finalizer queue. |
| 583 | DacpGcHeapDetails heapDetails; |
| 584 | |
| 585 | // Use a different linear read cache here instead of polluting the object read cache. |
| 586 | LinearReadCache cache(512); |
| 587 | |
| 588 | if (!IsServerBuild()) |
| 589 | { |
| 590 | if (heapDetails.Request(g_sos) != S_OK) |
| 591 | { |
| 592 | ExtErr("Error requesting heap data.\n" ); |
| 593 | return 0; |
| 594 | } |
| 595 | |
| 596 | // If we include objects that are not ready for finalization, we may report |
| 597 | // false positives. False positives occur if the object is not ready for finalization |
| 598 | // and does not re-register itself for finalization inside the finalizer. |
| 599 | TADDR start = 0; |
| 600 | TADDR stop = 0; |
| 601 | if(notReadyForFinalization) |
| 602 | { |
| 603 | start = TO_TADDR(SegQueue(heapDetails, gen_segment(GetMaxGeneration()))); |
| 604 | stop = TO_TADDR(SegQueueLimit(heapDetails, CriticalFinalizerListSeg)); |
| 605 | } |
| 606 | else |
| 607 | { |
| 608 | start = TO_TADDR(SegQueue(heapDetails, CriticalFinalizerListSeg)); |
| 609 | stop = TO_TADDR(SegQueue(heapDetails, FinalizerListSeg)); |
| 610 | } |
| 611 | |
| 612 | return PrintRootsInRange(cache, start, stop, &GCRootImpl::ReportOneFQEntry, true); |
| 613 | } |
| 614 | else |
| 615 | { |
| 616 | DWORD dwAllocSize; |
| 617 | DWORD dwNHeaps = GetGcHeapCount(); |
| 618 | if (!ClrSafeInt<DWORD>::multiply(sizeof(CLRDATA_ADDRESS), dwNHeaps, dwAllocSize)) |
| 619 | { |
| 620 | ExtErr("Failed to get GCHeaps: integer overflow\n" ); |
| 621 | return 0; |
| 622 | } |
| 623 | |
| 624 | CLRDATA_ADDRESS *heapAddrs = (CLRDATA_ADDRESS*)alloca(dwAllocSize); |
| 625 | if (g_sos->GetGCHeapList(dwNHeaps, heapAddrs, NULL) != S_OK) |
| 626 | { |
| 627 | ExtErr("Error requesting heap data.\n" ); |
| 628 | return 0; |
| 629 | } |
| 630 | |
| 631 | int total = 0; |
| 632 | for (UINT n = 0; n < dwNHeaps; n ++) |
| 633 | { |
| 634 | if (heapDetails.Request(g_sos, heapAddrs[n]) != S_OK) |
| 635 | { |
| 636 | ExtErr("Error requesting heap data for heap %d.\n" , n); |
| 637 | continue; |
| 638 | } |
| 639 | |
| 640 | // If we include objects that are not ready for finalization, we may report |
| 641 | // false positives. False positives occur if the object is not ready for finalization |
| 642 | // and does not re-register itself for finalization inside the finalizer. |
| 643 | TADDR start = 0; |
| 644 | TADDR stop = 0; |
| 645 | if(notReadyForFinalization) |
| 646 | { |
| 647 | start = TO_TADDR(SegQueue(heapDetails, gen_segment(GetMaxGeneration()))); |
| 648 | stop = TO_TADDR(SegQueueLimit(heapDetails, CriticalFinalizerListSeg)); |
| 649 | } |
| 650 | else |
| 651 | { |
| 652 | start = TO_TADDR(SegQueue(heapDetails, CriticalFinalizerListSeg)); |
| 653 | stop = TO_TADDR(SegQueueLimit(heapDetails, FinalizerListSeg)); |
| 654 | } |
| 655 | |
| 656 | total += PrintRootsInRange(cache, start, stop, &GCRootImpl::ReportOneFQEntry, total == 0); |
| 657 | } |
| 658 | |
| 659 | return total; |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | int GCRootImpl::PrintRootsInRange(LinearReadCache &cache, TADDR start, TADDR stop, ReportCallback func, bool ) |
| 664 | { |
| 665 | int total = 0; |
| 666 | |
| 667 | // Walk the range [start, stop) and consider each pointer in the range as a root. |
| 668 | while (start < stop) |
| 669 | { |
| 670 | if (IsInterrupt()) |
| 671 | return total; |
| 672 | |
| 673 | // Use the cache parameter here instead of mCache. If you use mCache it will be reset |
| 674 | // when calling into FindPathToTarget. |
| 675 | TADDR root = 0; |
| 676 | bool res = cache.Read(start, &root, true); |
| 677 | |
| 678 | if (res && root) |
| 679 | { |
| 680 | RootNode *path = FindPathToTarget(root); |
| 681 | if (path) |
| 682 | { |
| 683 | func(root, path, printHeader); |
| 684 | total++; |
| 685 | printHeader = false; |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | start += sizeof(TADDR); |
| 690 | } |
| 691 | |
| 692 | return total; |
| 693 | } |
| 694 | |
| 695 | int GCRootImpl::PrintRootsOnAllThreads() |
| 696 | { |
| 697 | ArrayHolder<DWORD_PTR> threadList = NULL; |
| 698 | int numThreads = 0; |
| 699 | |
| 700 | // GetThreadList calls ReportOOM so we don't need to do that here. |
| 701 | HRESULT hr = GetThreadList(&threadList, &numThreads); |
| 702 | if (FAILED(hr) || !threadList) |
| 703 | return 0; |
| 704 | |
| 705 | // Walk each thread and process the roots on it. |
| 706 | int total = 0; |
| 707 | DacpThreadData vThread; |
| 708 | for (int i = 0; i < numThreads; i++) |
| 709 | { |
| 710 | if (IsInterrupt()) |
| 711 | return total; |
| 712 | |
| 713 | if (FAILED(vThread.Request(g_sos, threadList[i]))) |
| 714 | continue; |
| 715 | |
| 716 | if (vThread.osThreadId) |
| 717 | total += PrintRootsOnThread(vThread.osThreadId); |
| 718 | } |
| 719 | |
| 720 | return total; |
| 721 | } |
| 722 | |
| 723 | int GCRootImpl::PrintRootsOnThread(DWORD osThreadId) |
| 724 | { |
| 725 | // Grab all object rootson the thread. |
| 726 | unsigned int refCount = 0; |
| 727 | ArrayHolder<SOSStackRefData> refs = NULL; |
| 728 | |
| 729 | int total = 0; |
| 730 | bool first = true; |
| 731 | if (FAILED(::GetGCRefs(osThreadId, &refs, &refCount, NULL, NULL))) |
| 732 | { |
| 733 | ExtOut("Failed to walk thread %x\n" , osThreadId); |
| 734 | return total; |
| 735 | } |
| 736 | |
| 737 | // Walk each non-null root, find if it contains a path to the target, |
| 738 | // and if so print it out. |
| 739 | CLRDATA_ADDRESS prevSource = 0, prevSP = 0; |
| 740 | for (unsigned int i = 0; i < refCount; ++i) |
| 741 | { |
| 742 | if (IsInterrupt()) |
| 743 | return total; |
| 744 | |
| 745 | if (refs[i].Object) |
| 746 | { |
| 747 | if (mSize) |
| 748 | ClearSizeData(); |
| 749 | |
| 750 | RootNode *path = FindPathToTarget(TO_TADDR(refs[i].Object)); |
| 751 | if (path) |
| 752 | { |
| 753 | bool reportFrame = refs[i].Source != prevSource || refs[i].StackPointer != prevSP; |
| 754 | ReportOnePath(osThreadId, refs[i], path, first, reportFrame); |
| 755 | first = false; |
| 756 | total++; |
| 757 | } |
| 758 | |
| 759 | if (mSize) |
| 760 | ReportSizeInfo(osThreadId, refs[i], TO_TADDR(refs[i].Object)); |
| 761 | } |
| 762 | } |
| 763 | |
| 764 | return total; |
| 765 | } |
| 766 | |
| 767 | int GCRootImpl::PrintRootsOnHandleTable(int gen) |
| 768 | { |
| 769 | // Get handle data. |
| 770 | ToRelease<ISOSHandleEnum> pEnum = NULL; |
| 771 | HRESULT hr = S_OK; |
| 772 | |
| 773 | if (gen == -1 || (ULONG)gen == GetMaxGeneration()) |
| 774 | hr = g_sos->GetHandleEnum(&pEnum); |
| 775 | else |
| 776 | hr = g_sos->GetHandleEnumForGC(gen, &pEnum); |
| 777 | |
| 778 | if (FAILED(hr)) |
| 779 | { |
| 780 | ExtOut("Failed to walk the HandleTable!\n" ); |
| 781 | return 0; |
| 782 | } |
| 783 | |
| 784 | int total = 0; |
| 785 | unsigned int fetched = 0; |
| 786 | SOSHandleData handles[8]; |
| 787 | |
| 788 | bool = true; |
| 789 | do |
| 790 | { |
| 791 | // Fetch more handles |
| 792 | hr = pEnum->Next(_countof(handles), handles, &fetched); |
| 793 | if (FAILED(hr)) |
| 794 | { |
| 795 | ExtOut("Failed to request more handles." ); |
| 796 | return total; |
| 797 | } |
| 798 | |
| 799 | // Find rooting info for each handle. |
| 800 | for (unsigned int i = 0; i < fetched; ++i) |
| 801 | { |
| 802 | if (IsInterrupt()) |
| 803 | return total; |
| 804 | |
| 805 | // Ignore handles which aren't actually roots. |
| 806 | if (!handles[i].StrongReference) |
| 807 | continue; |
| 808 | |
| 809 | // clear the size table |
| 810 | if (mAll) |
| 811 | ClearSizeData(); |
| 812 | |
| 813 | // Get the object the handle points to. |
| 814 | TADDR root = ReadPointer(TO_TADDR(handles[i].Handle)); |
| 815 | |
| 816 | // Only inspect handle if the object is non-null, and not one we've already walked. |
| 817 | if (root) |
| 818 | { |
| 819 | // Find all paths to the object and don't clean up the return value. |
| 820 | // It's tracked by mCleanupList. |
| 821 | RootNode *path = FindPathToTarget(root); |
| 822 | if (path) |
| 823 | { |
| 824 | ReportOneHandlePath(handles[i], path, printHeader); |
| 825 | printHeader = false; |
| 826 | total++; |
| 827 | } |
| 828 | |
| 829 | if (mSize) |
| 830 | ReportSizeInfo(handles[i], root); |
| 831 | } |
| 832 | } |
| 833 | } |
| 834 | while (_countof(handles) == fetched); |
| 835 | |
| 836 | return total; |
| 837 | } |
| 838 | |
| 839 | GCRootImpl::RootNode *GCRootImpl::FilterRoots(RootNode *&list) |
| 840 | { |
| 841 | // Filter the list of GC refs: |
| 842 | // - Remove objects that we have already considered |
| 843 | // - Check to see if we've located the target object (or an object which points to the target). |
| 844 | RootNode *curr = list; |
| 845 | RootNode *keep = NULL; |
| 846 | |
| 847 | while (curr) |
| 848 | { |
| 849 | // We don't check for Control-C in this loop to avoid inconsistent data. |
| 850 | RootNode *curr_next = curr->Next; |
| 851 | |
| 852 | std::unordered_map<TADDR, RootNode *>::iterator targetItr = mTargets.find(curr->Object); |
| 853 | if (targetItr != mTargets.end()) |
| 854 | { |
| 855 | // We found the object we are looking for (or an object which points to it)! |
| 856 | // Return the target, propogate whether we got the target from a dependent handle. |
| 857 | targetItr->second->FromDependentHandle = curr->FromDependentHandle; |
| 858 | return targetItr->second; |
| 859 | } |
| 860 | else if (mConsidered.find(curr->Object) != mConsidered.end()) |
| 861 | { |
| 862 | curr->Remove(list); |
| 863 | |
| 864 | DeleteNode(curr); |
| 865 | } |
| 866 | |
| 867 | curr = curr_next; |
| 868 | } |
| 869 | |
| 870 | return NULL; |
| 871 | } |
| 872 | |
| 873 | /* This is the core of the GCRoot algorithm. It is: |
| 874 | * 1. Start with a list of "targets" (objects we are trying to find the roots for) and a root |
| 875 | * in the process. |
| 876 | * 2. Let the root be "curr". |
| 877 | * 3. Find all objects curr points to and place them in curr->GCRefs (a linked list). |
| 878 | * 4. Walk curr->GCRefs. If we find any of the "targets", return the current path. If not, |
| 879 | * filter out any objects we've already considered (the mConsidered set). |
| 880 | * 5. Look at curr->GCRefs: |
| 881 | * 5a. If curr->GCRefs is NULL then we have walked all references of this object. Pop "curr" |
| 882 | * from the current path (curr = curr->Prev). If curr is NULL, we walked all objects and |
| 883 | * didn't find a target, return NULL. If curr is non-null, goto 5. |
| 884 | * 5b. If curr->GCRefs is non-NULL, pop one entry and push it onto the path (that is: |
| 885 | * curr->Next = curr->GCRefs; curr = curr->Next; curr->GCRefs = curr->GCRefs->Next) |
| 886 | * 6. Goto 3. |
| 887 | */ |
| 888 | GCRootImpl::RootNode *GCRootImpl::FindPathToTarget(TADDR root) |
| 889 | { |
| 890 | // Early out. We may have already looked at this object. |
| 891 | std::unordered_map<TADDR, RootNode *>::iterator targetItr = mTargets.find(root); |
| 892 | if (targetItr != mTargets.end()) |
| 893 | return targetItr->second; |
| 894 | else if (mConsidered.find(root) != mConsidered.end()) |
| 895 | return NULL; |
| 896 | |
| 897 | // Add obj as a considered node (since we are considering it now). |
| 898 | mConsidered.insert(root); |
| 899 | |
| 900 | // Create path. |
| 901 | RootNode *path = NewNode(root); |
| 902 | |
| 903 | RootNode *curr = path; |
| 904 | while (curr) |
| 905 | { |
| 906 | if (IsInterrupt()) |
| 907 | return NULL; |
| 908 | |
| 909 | // If this is a new reference we are walking, we haven't filled the list of objects |
| 910 | // this one points to. Update that first. |
| 911 | if (!curr->FilledRefs) |
| 912 | { |
| 913 | // Get the list of GC refs. |
| 914 | curr->GCRefs = GetGCRefs(path, curr); |
| 915 | |
| 916 | // Filter the refs to remove objects we've already inspected. |
| 917 | RootNode *foundTarget = FilterRoots(curr->GCRefs); |
| 918 | |
| 919 | // If we've found the target, great! Return the path to the target. |
| 920 | if (foundTarget) |
| 921 | { |
| 922 | // Link the current to the target. |
| 923 | curr->Next = foundTarget; |
| 924 | foundTarget->Prev = curr; |
| 925 | |
| 926 | // If the user requested all paths, set each node in the path to be a target. |
| 927 | // Normally, we don't consider a node we've already seen, which means if we don't |
| 928 | // get a *completely* unique path, it's not printed out. By adding each of the |
| 929 | // nodes in the paths we find as potential targets, it prints out *every* path |
| 930 | // to the target, including ones with duplicate nodes. This is much slower. |
| 931 | if (mAll) |
| 932 | { |
| 933 | RootNode *tmp = path; |
| 934 | |
| 935 | while (tmp) |
| 936 | { |
| 937 | if (mTargets.find(tmp->Object) != mTargets.end()) |
| 938 | break; |
| 939 | |
| 940 | mTargets[tmp->Object] = tmp; |
| 941 | tmp = tmp->Next; |
| 942 | } |
| 943 | } |
| 944 | |
| 945 | return path; |
| 946 | } |
| 947 | } |
| 948 | |
| 949 | // We have filled the references, now walk them depth-first. |
| 950 | if (curr->GCRefs) |
| 951 | { |
| 952 | RootNode *next = curr->GCRefs; |
| 953 | curr->GCRefs = next->Next; |
| 954 | |
| 955 | if (mConsidered.find(next->Object) != mConsidered.end()) |
| 956 | { |
| 957 | // Whoops. This object was considered deeper down the tree, so we |
| 958 | // don't need to do it again. Delete this node and continue looping. |
| 959 | DeleteNode(next); |
| 960 | } |
| 961 | else |
| 962 | { |
| 963 | // Clear associations. |
| 964 | if (curr->GCRefs) |
| 965 | curr->GCRefs->Prev = NULL; |
| 966 | |
| 967 | next->Next = NULL; |
| 968 | |
| 969 | // Link curr and next, make next the current node. |
| 970 | curr->Next = next; |
| 971 | next->Prev = curr; |
| 972 | curr = next; |
| 973 | |
| 974 | // Finally, insert the current object into the considered set. |
| 975 | mConsidered.insert(curr->Object); |
| 976 | // Now the next iteration will operate on "next". |
| 977 | } |
| 978 | } |
| 979 | else |
| 980 | { |
| 981 | // This object has no more GCRefs. We now need to "pop" it from the current path. |
| 982 | RootNode *tmp = curr; |
| 983 | curr = curr->Prev; |
| 984 | DeleteNode(tmp); |
| 985 | } |
| 986 | } |
| 987 | |
| 988 | return NULL; |
| 989 | } |
| 990 | |
| 991 | |
| 992 | GCRootImpl::RootNode *GCRootImpl::GetGCRefs(RootNode *path, RootNode *node) |
| 993 | { |
| 994 | // If this node doesn't have the method table ready, fill it out |
| 995 | TADDR obj = node->Object; |
| 996 | if (!node->MTInfo) |
| 997 | { |
| 998 | TADDR mt = ReadPointerCached(obj); |
| 999 | MTInfo *mtInfo = GetMTInfo(mt); |
| 1000 | node->MTInfo = mtInfo; |
| 1001 | } |
| 1002 | |
| 1003 | node->FilledRefs = true; |
| 1004 | |
| 1005 | // MTInfo can be null if we encountered an error reading out of the target |
| 1006 | // process, just early out here as if it has no references. |
| 1007 | if (!node->MTInfo) |
| 1008 | return NULL; |
| 1009 | |
| 1010 | // Only calculate the size if we need it. |
| 1011 | size_t objSize = 0; |
| 1012 | if (mSize || node->MTInfo->ContainsPointers || node->MTInfo->Collectible) |
| 1013 | { |
| 1014 | objSize = GetSizeOfObject(obj, node->MTInfo); |
| 1015 | |
| 1016 | // Update object size list, if requested. |
| 1017 | if (mSize) |
| 1018 | { |
| 1019 | mSizes[obj] = 0; |
| 1020 | |
| 1021 | while (path) |
| 1022 | { |
| 1023 | mSizes[path->Object] += objSize; |
| 1024 | path = path->Next; |
| 1025 | } |
| 1026 | } |
| 1027 | } |
| 1028 | |
| 1029 | // Early out: If the object doesn't contain any pointers, return. |
| 1030 | if (!node->MTInfo->ContainsPointers && !node->MTInfo->Collectible) |
| 1031 | return NULL; |
| 1032 | |
| 1033 | // Make sure we have the object's data in the cache. |
| 1034 | mCache.EnsureRangeInCache(obj, (unsigned int)objSize); |
| 1035 | |
| 1036 | // Storage for the gc refs. |
| 1037 | RootNode *refs = NewNode(); |
| 1038 | RootNode *curr = refs; |
| 1039 | |
| 1040 | // Walk the GCDesc, fill "refs" with non-null references. |
| 1041 | CGCDesc *gcdesc = node->MTInfo->GCDesc; |
| 1042 | bool aovc = node->MTInfo->ArrayOfVC; |
| 1043 | for (sos::RefIterator itr(obj, gcdesc, aovc, &mCache); itr; ++itr) |
| 1044 | { |
| 1045 | if (*itr) |
| 1046 | { |
| 1047 | curr->Next = NewNode(*itr); |
| 1048 | curr->Next->Prev = curr; |
| 1049 | curr = curr->Next; |
| 1050 | } |
| 1051 | } |
| 1052 | |
| 1053 | // Add edges from dependent handles. |
| 1054 | std::unordered_map<TADDR, std::list<TADDR>>::iterator itr = mDependentHandleMap.find(obj); |
| 1055 | if (itr != mDependentHandleMap.end()) |
| 1056 | { |
| 1057 | for (std::list<TADDR>::iterator litr = itr->second.begin(); litr != itr->second.end(); ++litr) |
| 1058 | { |
| 1059 | curr->Next = NewNode(*litr, NULL, true); |
| 1060 | curr->Next->Prev = curr; |
| 1061 | curr = curr->Next; |
| 1062 | } |
| 1063 | } |
| 1064 | |
| 1065 | // The gcrefs actually start on refs->Next. |
| 1066 | curr = refs; |
| 1067 | refs = refs->Next; |
| 1068 | DeleteNode(curr); |
| 1069 | |
| 1070 | return refs; |
| 1071 | } |
| 1072 | |
| 1073 | DWORD GCRootImpl::GetComponents(TADDR obj, TADDR mt) |
| 1074 | { |
| 1075 | // Get the number of components in the object (for arrays and such). |
| 1076 | DWORD Value = 0; |
| 1077 | |
| 1078 | // If we fail to read out the number of components, let's assume 0 so we don't try to |
| 1079 | // read further data from the object. |
| 1080 | if (!mCache.Read(obj + sizeof(TADDR), &Value, false)) |
| 1081 | return 0; |
| 1082 | |
| 1083 | // The component size on a String does not contain the trailing NULL character, |
| 1084 | // so we must add that ourselves. |
| 1085 | if(TO_TADDR(g_special_usefulGlobals.StringMethodTable) == mt) |
| 1086 | return Value+1; |
| 1087 | |
| 1088 | return Value; |
| 1089 | } |
| 1090 | |
| 1091 | // Get the size of the object. |
| 1092 | size_t GCRootImpl::GetSizeOfObject(TADDR obj, MTInfo *info) |
| 1093 | { |
| 1094 | size_t res = info->BaseSize; |
| 1095 | |
| 1096 | if (info->ComponentSize) |
| 1097 | { |
| 1098 | // this is an array, so the size has to include the size of the components. We read the number |
| 1099 | // of components from the target and multiply by the component size to get the size. |
| 1100 | DWORD components = GetComponents(obj, info->MethodTable); |
| 1101 | res += info->ComponentSize * components; |
| 1102 | } |
| 1103 | |
| 1104 | #ifdef _TARGET_WIN64_ |
| 1105 | // On x64 we do an optimization to save 4 bytes in almost every string we create, so |
| 1106 | // pad to min object size if necessary. |
| 1107 | if (res < min_obj_size) |
| 1108 | res = min_obj_size; |
| 1109 | #endif // _TARGET_WIN64_ |
| 1110 | |
| 1111 | return (res > 0x10000) ? AlignLarge(res) : Align(res); |
| 1112 | } |
| 1113 | |
| 1114 | GCRootImpl::MTInfo *GCRootImpl::GetMTInfo(TADDR mt) |
| 1115 | { |
| 1116 | // Remove lower bits in case we are in mark phase |
| 1117 | mt &= ~3; |
| 1118 | |
| 1119 | // Do we already have this MethodTable? |
| 1120 | std::unordered_map<TADDR, MTInfo *>::iterator itr = mMTs.find(mt); |
| 1121 | |
| 1122 | if (itr != mMTs.end()) |
| 1123 | return itr->second; |
| 1124 | |
| 1125 | MTInfo *curr = new MTInfo; |
| 1126 | curr->MethodTable = mt; |
| 1127 | |
| 1128 | // Get Base/Component size. |
| 1129 | DacpMethodTableData dmtd; |
| 1130 | |
| 1131 | if (dmtd.Request(g_sos, mt) != S_OK) |
| 1132 | { |
| 1133 | delete curr; |
| 1134 | return NULL; |
| 1135 | } |
| 1136 | |
| 1137 | // Fill out size info. |
| 1138 | curr->BaseSize = (size_t)dmtd.BaseSize; |
| 1139 | curr->ComponentSize = (size_t)dmtd.ComponentSize; |
| 1140 | curr->ContainsPointers = dmtd.bContainsPointers ? true : false; |
| 1141 | |
| 1142 | // The following request doesn't work on older runtimes. For those, the |
| 1143 | // objects would just look like non-collectible, which is acceptable. |
| 1144 | DacpMethodTableCollectibleData dmtcd; |
| 1145 | if (SUCCEEDED(dmtcd.Request(g_sos, mt))) |
| 1146 | { |
| 1147 | curr->Collectible = dmtcd.bCollectible ? true : false; |
| 1148 | curr->LoaderAllocatorObjectHandle = TO_TADDR(dmtcd.LoaderAllocatorObjectHandle); |
| 1149 | } |
| 1150 | |
| 1151 | // If this method table contains pointers, fill out and cache the GCDesc. |
| 1152 | if (curr->ContainsPointers) |
| 1153 | { |
| 1154 | int nEntries; |
| 1155 | |
| 1156 | if (FAILED(MOVE(nEntries, mt-sizeof(TADDR)))) |
| 1157 | { |
| 1158 | ExtOut("Failed to request number of entries." ); |
| 1159 | delete curr; |
| 1160 | return NULL; |
| 1161 | } |
| 1162 | |
| 1163 | if (nEntries < 0) |
| 1164 | { |
| 1165 | curr->ArrayOfVC = true; |
| 1166 | nEntries = -nEntries; |
| 1167 | } |
| 1168 | else |
| 1169 | { |
| 1170 | curr->ArrayOfVC = false; |
| 1171 | } |
| 1172 | |
| 1173 | size_t nSlots = 1 + nEntries * sizeof(CGCDescSeries)/sizeof(TADDR); |
| 1174 | curr->Buffer = new TADDR[nSlots]; |
| 1175 | |
| 1176 | if (curr->Buffer == NULL) |
| 1177 | { |
| 1178 | ReportOOM(); |
| 1179 | delete curr; |
| 1180 | return NULL; |
| 1181 | } |
| 1182 | |
| 1183 | if (FAILED(g_ExtData->ReadVirtual(TO_CDADDR(mt - nSlots*sizeof(TADDR)), curr->Buffer, (ULONG)(nSlots*sizeof(TADDR)), NULL))) |
| 1184 | { |
| 1185 | ExtOut("Failed to read GCDesc for MethodTable %p.\n" , SOS_PTR(mt)); |
| 1186 | delete curr; |
| 1187 | return NULL; |
| 1188 | } |
| 1189 | |
| 1190 | // Construct the GCDesc map and series. |
| 1191 | curr->GCDesc = (CGCDesc *)(curr->Buffer+nSlots); |
| 1192 | } |
| 1193 | |
| 1194 | mMTs[mt] = curr; |
| 1195 | return curr; |
| 1196 | } |
| 1197 | |
| 1198 | |
| 1199 | TADDR GCRootImpl::ReadPointer(TADDR location) |
| 1200 | { |
| 1201 | // Reads a pointer from the cache, but doesn't update the cache if it wasn't in it. |
| 1202 | TADDR obj = NULL; |
| 1203 | bool res = mCache.Read(location, &obj, false); |
| 1204 | |
| 1205 | if (!res) |
| 1206 | return NULL; |
| 1207 | |
| 1208 | return obj; |
| 1209 | } |
| 1210 | |
| 1211 | TADDR GCRootImpl::ReadPointerCached(TADDR location) |
| 1212 | { |
| 1213 | // Reads a pointer from the cache, but updates the cache if it wasn't in it. |
| 1214 | TADDR obj = NULL; |
| 1215 | bool res = mCache.Read(location, &obj, true); |
| 1216 | |
| 1217 | if (!res) |
| 1218 | return NULL; |
| 1219 | |
| 1220 | return obj; |
| 1221 | } |
| 1222 | |
| 1223 | /////////////////////////////////////////////////////////////////////////////// |
| 1224 | |
| 1225 | UINT FindAllPinnedAndStrong(DWORD_PTR handlearray[], UINT arraySize) |
| 1226 | { |
| 1227 | unsigned int fetched = 0; |
| 1228 | SOSHandleData data[64]; |
| 1229 | UINT pos = 0; |
| 1230 | |
| 1231 | // We do not call GetHandleEnumByType here with a list of strong handles since we would be |
| 1232 | // statically setting the list of strong handles, which could change in a future release. |
| 1233 | // Instead we rely on the dac to provide whether a handle is strong or not. |
| 1234 | ToRelease<ISOSHandleEnum> handles; |
| 1235 | HRESULT hr = g_sos->GetHandleEnum(&handles); |
| 1236 | if (FAILED(hr)) |
| 1237 | { |
| 1238 | // This should basically never happen unless there's an OOM. |
| 1239 | ExtOut("Failed to enumerate GC handles. HRESULT=%x.\n" , hr); |
| 1240 | return 0; |
| 1241 | } |
| 1242 | |
| 1243 | do |
| 1244 | { |
| 1245 | hr = handles->Next(_countof(data), data, &fetched); |
| 1246 | |
| 1247 | if (FAILED(hr)) |
| 1248 | { |
| 1249 | ExtOut("Failed to enumerate GC handles. HRESULT=%x.\n" , hr); |
| 1250 | break; |
| 1251 | } |
| 1252 | |
| 1253 | for (unsigned int i = 0; i < fetched; ++i) |
| 1254 | { |
| 1255 | if (pos >= arraySize) |
| 1256 | { |
| 1257 | ExtOut("Buffer overflow while enumerating handles.\n" ); |
| 1258 | return pos; |
| 1259 | } |
| 1260 | |
| 1261 | if (data[i].StrongReference) |
| 1262 | { |
| 1263 | handlearray[pos++] = (DWORD_PTR)data[i].Handle; |
| 1264 | } |
| 1265 | } |
| 1266 | } while (fetched == _countof(data)); |
| 1267 | |
| 1268 | return pos; |
| 1269 | } |
| 1270 | |
| 1271 | |
| 1272 | |
| 1273 | void PrintNotReachableInRange(TADDR rngStart, TADDR rngEnd, BOOL bExcludeReadyForFinalization, HeapStat* hpstat, BOOL bShort) |
| 1274 | { |
| 1275 | GCRootImpl gcroot; |
| 1276 | const std::unordered_set<TADDR> &liveObjs = gcroot.GetLiveObjects(bExcludeReadyForFinalization == TRUE); |
| 1277 | |
| 1278 | LinearReadCache cache(512); |
| 1279 | cache.EnsureRangeInCache(rngStart, (unsigned int)(rngEnd-rngStart)); |
| 1280 | |
| 1281 | for (TADDR p = rngStart; p < rngEnd; p += sizeof(TADDR)) |
| 1282 | { |
| 1283 | if (IsInterrupt()) |
| 1284 | break; |
| 1285 | |
| 1286 | TADDR = 0; |
| 1287 | TADDR obj = 0; |
| 1288 | TADDR taddrMT = 0; |
| 1289 | |
| 1290 | bool read = cache.Read(p-sizeof(SIZEOF_OBJHEADER), &header); |
| 1291 | read = read && cache.Read(p, &obj); |
| 1292 | if (read && ((header & BIT_SBLK_FINALIZER_RUN) == 0) && liveObjs.find(obj) == liveObjs.end()) |
| 1293 | { |
| 1294 | if (bShort) |
| 1295 | { |
| 1296 | DMLOut("%s\n" , DMLObject(obj)); |
| 1297 | } |
| 1298 | else |
| 1299 | { |
| 1300 | DMLOut("%s " , DMLObject(obj)); |
| 1301 | if (SUCCEEDED(GetMTOfObject(obj, &taddrMT)) && taddrMT) |
| 1302 | { |
| 1303 | size_t s = ObjectSize(obj); |
| 1304 | if (hpstat) |
| 1305 | { |
| 1306 | hpstat->Add(taddrMT, (DWORD)s); |
| 1307 | } |
| 1308 | } |
| 1309 | } |
| 1310 | } |
| 1311 | } |
| 1312 | |
| 1313 | if (!bShort) |
| 1314 | ExtOut("\n" ); |
| 1315 | } |
| 1316 | |
| 1317 | |
| 1318 | //////////////////////////////////////////////////////////////////////////////// |
| 1319 | // |
| 1320 | // Some defines for cards taken from gc code |
| 1321 | // |
| 1322 | #define card_word_width ((size_t)32) |
| 1323 | |
| 1324 | // |
| 1325 | // The value of card_size is determined empirically according to the average size of an object |
| 1326 | // In the code we also rely on the assumption that one card_table entry (DWORD) covers an entire os page |
| 1327 | // |
| 1328 | #if defined (_TARGET_WIN64_) |
| 1329 | #define card_size ((size_t)(2*DT_GC_PAGE_SIZE/card_word_width)) |
| 1330 | #else |
| 1331 | #define card_size ((size_t)(DT_GC_PAGE_SIZE/card_word_width)) |
| 1332 | #endif //_TARGET_WIN64_ |
| 1333 | |
| 1334 | // so card_size = 128 on x86, 256 on x64 |
| 1335 | |
| 1336 | inline |
| 1337 | size_t card_word (size_t card) |
| 1338 | { |
| 1339 | return card / card_word_width; |
| 1340 | } |
| 1341 | |
| 1342 | inline |
| 1343 | unsigned card_bit (size_t card) |
| 1344 | { |
| 1345 | return (unsigned)(card % card_word_width); |
| 1346 | } |
| 1347 | |
| 1348 | inline |
| 1349 | size_t card_of ( BYTE* object) |
| 1350 | { |
| 1351 | return (size_t)(object) / card_size; |
| 1352 | } |
| 1353 | |
| 1354 | BOOL CardIsSet(const DacpGcHeapDetails &heap, TADDR objAddr) |
| 1355 | { |
| 1356 | // The card table has to be translated to look at the refcount, etc. |
| 1357 | // g_card_table[card_word(card_of(g_lowest_address))]. |
| 1358 | |
| 1359 | TADDR card_table = TO_TADDR(heap.card_table); |
| 1360 | card_table = card_table + card_word(card_of((BYTE *)heap.lowest_address))*sizeof(DWORD); |
| 1361 | |
| 1362 | do |
| 1363 | { |
| 1364 | TADDR card_table_lowest_addr; |
| 1365 | TADDR card_table_next; |
| 1366 | |
| 1367 | if (MOVE(card_table_lowest_addr, ALIGN_DOWN(card_table, 0x1000) + sizeof(PVOID)) != S_OK) |
| 1368 | { |
| 1369 | ExtErr("Error getting card table lowest address\n" ); |
| 1370 | return FALSE; |
| 1371 | } |
| 1372 | |
| 1373 | if (MOVE(card_table_next, card_table - sizeof(PVOID)) != S_OK) |
| 1374 | { |
| 1375 | ExtErr("Error getting next card table\n" ); |
| 1376 | return FALSE; |
| 1377 | } |
| 1378 | |
| 1379 | size_t card = (objAddr - card_table_lowest_addr) / card_size; |
| 1380 | DWORD value; |
| 1381 | if (MOVE(value, card_table + card_word(card)*sizeof(DWORD)) != S_OK) |
| 1382 | { |
| 1383 | ExtErr("Error reading card bits\n" ); |
| 1384 | return FALSE; |
| 1385 | } |
| 1386 | |
| 1387 | if (value & 1<<card_bit(card)) |
| 1388 | return TRUE; |
| 1389 | |
| 1390 | card_table = card_table_next; |
| 1391 | } |
| 1392 | while(card_table); |
| 1393 | |
| 1394 | return FALSE; |
| 1395 | } |
| 1396 | |
| 1397 | BOOL NeedCard(TADDR parent, TADDR child) |
| 1398 | { |
| 1399 | int iChildGen = g_snapshot.GetGeneration(child); |
| 1400 | |
| 1401 | if (iChildGen == 2) |
| 1402 | return FALSE; |
| 1403 | |
| 1404 | int iParentGen = g_snapshot.GetGeneration(parent); |
| 1405 | |
| 1406 | return (iChildGen < iParentGen); |
| 1407 | } |
| 1408 | |
| 1409 | //////////////////////////////////////////////////////////////////////////////// |
| 1410 | // |
| 1411 | // Some defines for mark_array taken from gc code |
| 1412 | // |
| 1413 | |
| 1414 | #define mark_bit_pitch 8 |
| 1415 | #define mark_word_width 32 |
| 1416 | #define mark_word_size (mark_word_width * mark_bit_pitch) |
| 1417 | #define heap_segment_flags_swept 16 |
| 1418 | |
| 1419 | inline |
| 1420 | size_t mark_bit_bit_of(CLRDATA_ADDRESS add) |
| 1421 | { |
| 1422 | return (size_t)((add / mark_bit_pitch) % mark_word_width); |
| 1423 | } |
| 1424 | |
| 1425 | inline |
| 1426 | size_t mark_word_of(CLRDATA_ADDRESS add) |
| 1427 | { |
| 1428 | return (size_t)(add / mark_word_size); |
| 1429 | } |
| 1430 | |
| 1431 | inline BOOL mark_array_marked(const DacpGcHeapDetails &heap, CLRDATA_ADDRESS add) |
| 1432 | { |
| 1433 | |
| 1434 | DWORD entry = 0; |
| 1435 | HRESULT hr = MOVE(entry, heap.mark_array + sizeof(DWORD) * mark_word_of(add)); |
| 1436 | |
| 1437 | if (FAILED(hr)) |
| 1438 | ExtOut("Failed to read card table entry.\n" ); |
| 1439 | |
| 1440 | return entry & (1 << mark_bit_bit_of(add)); |
| 1441 | } |
| 1442 | |
| 1443 | BOOL background_object_marked(const DacpGcHeapDetails &heap, CLRDATA_ADDRESS o) |
| 1444 | { |
| 1445 | BOOL m = TRUE; |
| 1446 | |
| 1447 | if ((o >= heap.background_saved_lowest_address) && (o < heap.background_saved_highest_address)) |
| 1448 | m = mark_array_marked(heap, o); |
| 1449 | |
| 1450 | return m; |
| 1451 | } |
| 1452 | |
| 1453 | BOOL fgc_should_consider_object(const DacpGcHeapDetails &heap, |
| 1454 | CLRDATA_ADDRESS o, |
| 1455 | const DacpHeapSegmentData &seg, |
| 1456 | BOOL consider_bgc_mark_p, |
| 1457 | BOOL check_current_sweep_p, |
| 1458 | BOOL check_saved_sweep_p) |
| 1459 | { |
| 1460 | // the logic for this function must be kept in sync with the analogous function in gc.cpp |
| 1461 | BOOL no_bgc_mark_p = FALSE; |
| 1462 | |
| 1463 | if (consider_bgc_mark_p) |
| 1464 | { |
| 1465 | if (check_current_sweep_p && (o < heap.next_sweep_obj)) |
| 1466 | { |
| 1467 | no_bgc_mark_p = TRUE; |
| 1468 | } |
| 1469 | |
| 1470 | if (!no_bgc_mark_p) |
| 1471 | { |
| 1472 | if(check_saved_sweep_p && (o >= heap.saved_sweep_ephemeral_start)) |
| 1473 | { |
| 1474 | no_bgc_mark_p = TRUE; |
| 1475 | } |
| 1476 | |
| 1477 | if (!check_saved_sweep_p) |
| 1478 | { |
| 1479 | CLRDATA_ADDRESS background_allocated = seg.background_allocated; |
| 1480 | if (o >= background_allocated) |
| 1481 | { |
| 1482 | no_bgc_mark_p = TRUE; |
| 1483 | } |
| 1484 | } |
| 1485 | } |
| 1486 | } |
| 1487 | else |
| 1488 | { |
| 1489 | no_bgc_mark_p = TRUE; |
| 1490 | } |
| 1491 | |
| 1492 | return no_bgc_mark_p ? TRUE : background_object_marked(heap, o); |
| 1493 | } |
| 1494 | |
| 1495 | enum c_gc_state |
| 1496 | { |
| 1497 | c_gc_state_marking, |
| 1498 | c_gc_state_planning, |
| 1499 | c_gc_state_free |
| 1500 | }; |
| 1501 | |
| 1502 | inline BOOL in_range_for_segment(const DacpHeapSegmentData &seg, CLRDATA_ADDRESS addr) |
| 1503 | { |
| 1504 | return (addr >= seg.mem) && (addr < seg.reserved); |
| 1505 | } |
| 1506 | |
| 1507 | void should_check_bgc_mark(const DacpGcHeapDetails &heap, |
| 1508 | const DacpHeapSegmentData &seg, |
| 1509 | BOOL* consider_bgc_mark_p, |
| 1510 | BOOL* check_current_sweep_p, |
| 1511 | BOOL* check_saved_sweep_p) |
| 1512 | { |
| 1513 | // the logic for this function must be kept in sync with the analogous function in gc.cpp |
| 1514 | *consider_bgc_mark_p = FALSE; |
| 1515 | *check_current_sweep_p = FALSE; |
| 1516 | *check_saved_sweep_p = FALSE; |
| 1517 | |
| 1518 | if (heap.current_c_gc_state == c_gc_state_planning) |
| 1519 | { |
| 1520 | // We are doing the next_sweep_obj comparison here because we have yet to |
| 1521 | // turn on the swept flag for the segment but in_range_for_segment will return |
| 1522 | // FALSE if the address is the same as reserved. |
| 1523 | if ((seg.flags & heap_segment_flags_swept) || (heap.next_sweep_obj == seg.reserved)) |
| 1524 | { |
| 1525 | // this seg was already swept. |
| 1526 | } |
| 1527 | else |
| 1528 | { |
| 1529 | *consider_bgc_mark_p = TRUE; |
| 1530 | |
| 1531 | if (seg.segmentAddr == heap.saved_sweep_ephemeral_seg) |
| 1532 | { |
| 1533 | *check_saved_sweep_p = TRUE; |
| 1534 | } |
| 1535 | |
| 1536 | if (in_range_for_segment(seg, heap.next_sweep_obj)) |
| 1537 | { |
| 1538 | *check_current_sweep_p = TRUE; |
| 1539 | } |
| 1540 | } |
| 1541 | } |
| 1542 | } |
| 1543 | |
| 1544 | // TODO: FACTOR TOGETHER THE OBJECT MEMBER WALKING CODE FROM |
| 1545 | // TODO: VerifyObjectMember(), GetListOfRefs(), HeapTraverser::PrintRefs() |
| 1546 | BOOL VerifyObjectMember(const DacpGcHeapDetails &heap, DWORD_PTR objAddr) |
| 1547 | { |
| 1548 | BOOL ret = TRUE; |
| 1549 | BOOL bCheckCard = TRUE; |
| 1550 | size_t size = 0; |
| 1551 | { |
| 1552 | DWORD_PTR dwAddrCard = objAddr; |
| 1553 | while (dwAddrCard < objAddr + size) |
| 1554 | { |
| 1555 | if (CardIsSet(heap, dwAddrCard)) |
| 1556 | { |
| 1557 | bCheckCard = FALSE; |
| 1558 | break; |
| 1559 | } |
| 1560 | dwAddrCard += card_size; |
| 1561 | } |
| 1562 | |
| 1563 | if (bCheckCard) |
| 1564 | { |
| 1565 | dwAddrCard = objAddr + size - 2*sizeof(PVOID); |
| 1566 | if (CardIsSet(heap, dwAddrCard)) |
| 1567 | { |
| 1568 | bCheckCard = FALSE; |
| 1569 | } |
| 1570 | } |
| 1571 | } |
| 1572 | |
| 1573 | for (sos::RefIterator itr(TO_TADDR(objAddr)); itr; ++itr) |
| 1574 | { |
| 1575 | TADDR dwAddr1 = (DWORD_PTR)*itr; |
| 1576 | if (dwAddr1) |
| 1577 | { |
| 1578 | TADDR dwChild = dwAddr1; |
| 1579 | // Try something more efficient than IsObject here. Is the methodtable valid? |
| 1580 | size_t s; |
| 1581 | BOOL bPointers; |
| 1582 | TADDR dwAddrMethTable; |
| 1583 | if (FAILED(GetMTOfObject(dwAddr1, &dwAddrMethTable)) || |
| 1584 | (GetSizeEfficient(dwAddr1, dwAddrMethTable, FALSE, s, bPointers) == FALSE)) |
| 1585 | { |
| 1586 | DMLOut("object %s: bad member %p at %p\n" , DMLObject(objAddr), SOS_PTR(dwAddr1), SOS_PTR(itr.GetOffset())); |
| 1587 | ret = FALSE; |
| 1588 | } |
| 1589 | |
| 1590 | if (IsMTForFreeObj(dwAddrMethTable)) |
| 1591 | { |
| 1592 | DMLOut("object %s contains free object %p at %p\n" , DMLObject(objAddr), |
| 1593 | SOS_PTR(dwAddr1), SOS_PTR(objAddr+itr.GetOffset())); |
| 1594 | ret = FALSE; |
| 1595 | } |
| 1596 | |
| 1597 | // verify card table |
| 1598 | if (bCheckCard && NeedCard(objAddr+itr.GetOffset(), dwAddr1)) |
| 1599 | { |
| 1600 | DMLOut("object %s:%s missing card_table entry for %p\n" , |
| 1601 | DMLObject(objAddr), (dwChild == dwAddr1) ? "" : " maybe" , |
| 1602 | SOS_PTR(objAddr+itr.GetOffset())); |
| 1603 | ret = FALSE; |
| 1604 | } |
| 1605 | } |
| 1606 | } |
| 1607 | |
| 1608 | return ret; |
| 1609 | } |
| 1610 | |
| 1611 | // search for can_verify_deep in gc.cpp for examples of how these functions are used. |
| 1612 | BOOL VerifyObject(const DacpGcHeapDetails &heap, const DacpHeapSegmentData &seg, DWORD_PTR objAddr, DWORD_PTR MTAddr, size_t objSize, |
| 1613 | BOOL bVerifyMember) |
| 1614 | { |
| 1615 | if (IsMTForFreeObj(MTAddr)) |
| 1616 | { |
| 1617 | return TRUE; |
| 1618 | } |
| 1619 | |
| 1620 | if (objSize < min_obj_size) |
| 1621 | { |
| 1622 | DMLOut("object %s: size %d too small\n" , DMLObject(objAddr), objSize); |
| 1623 | return FALSE; |
| 1624 | } |
| 1625 | |
| 1626 | // If we requested to verify the object's members, the GC may be in a state where that's not possible. |
| 1627 | // Here we check to see if the object in question needs to have its members updated. If so, we turn off |
| 1628 | // verification for the object. |
| 1629 | if (bVerifyMember) |
| 1630 | { |
| 1631 | BOOL consider_bgc_mark = FALSE, check_current_sweep = FALSE, check_saved_sweep = FALSE; |
| 1632 | should_check_bgc_mark(heap, seg, &consider_bgc_mark, &check_current_sweep, &check_saved_sweep); |
| 1633 | bVerifyMember = fgc_should_consider_object(heap, objAddr, seg, consider_bgc_mark, check_current_sweep, check_saved_sweep); |
| 1634 | } |
| 1635 | |
| 1636 | return bVerifyMember ? VerifyObjectMember(heap, objAddr) : TRUE; |
| 1637 | } |
| 1638 | |
| 1639 | |
| 1640 | BOOL FindSegment(const DacpGcHeapDetails &heap, DacpHeapSegmentData &seg, CLRDATA_ADDRESS addr) |
| 1641 | { |
| 1642 | CLRDATA_ADDRESS dwAddrSeg = heap.generation_table[GetMaxGeneration()].start_segment; |
| 1643 | |
| 1644 | // Request the inital segment. |
| 1645 | if (seg.Request(g_sos, dwAddrSeg, heap) != S_OK) |
| 1646 | { |
| 1647 | ExtOut("Error requesting heap segment %p.\n" , SOS_PTR(dwAddrSeg)); |
| 1648 | return FALSE; |
| 1649 | } |
| 1650 | |
| 1651 | // Loop while the object is not in range of the segment. |
| 1652 | while (addr < TO_TADDR(seg.mem) || |
| 1653 | addr >= (dwAddrSeg == heap.ephemeral_heap_segment ? heap.alloc_allocated : TO_TADDR(seg.allocated))) |
| 1654 | { |
| 1655 | // get the next segment |
| 1656 | dwAddrSeg = seg.next; |
| 1657 | |
| 1658 | // We reached the last segment without finding the object. |
| 1659 | if (dwAddrSeg == NULL) |
| 1660 | return FALSE; |
| 1661 | |
| 1662 | if (seg.Request(g_sos, dwAddrSeg, heap) != S_OK) |
| 1663 | { |
| 1664 | ExtOut("Error requesting heap segment %p.\n" , SOS_PTR(dwAddrSeg)); |
| 1665 | return FALSE; |
| 1666 | } |
| 1667 | } |
| 1668 | |
| 1669 | return TRUE; |
| 1670 | } |
| 1671 | |
| 1672 | BOOL VerifyObject(const DacpGcHeapDetails &heap, DWORD_PTR objAddr, DWORD_PTR MTAddr, size_t objSize, BOOL bVerifyMember) |
| 1673 | { |
| 1674 | // This is only used by the other VerifyObject function if bVerifyMember is true, |
| 1675 | // so we only initialize it if we need it for verifying object members. |
| 1676 | DacpHeapSegmentData seg; |
| 1677 | |
| 1678 | if (bVerifyMember) |
| 1679 | { |
| 1680 | // if we fail to find the segment, we cannot verify the object's members |
| 1681 | bVerifyMember = FindSegment(heap, seg, objAddr); |
| 1682 | } |
| 1683 | |
| 1684 | return VerifyObject(heap, seg, objAddr, MTAddr, objSize, bVerifyMember); |
| 1685 | } |
| 1686 | |
| 1687 | //////////////////////////////////////////////////////////////////////////////// |
| 1688 | //////////////////////////////////////////////////////////////////////////////// |
| 1689 | typedef void (*TYPETREEVISIT)(size_t methodTable, size_t ID, LPVOID token); |
| 1690 | |
| 1691 | // TODO remove this. MethodTableCache already maps method tables to |
| 1692 | // various information. We don't need TypeTree to do this too. |
| 1693 | // Straightfoward to do, but low priority. |
| 1694 | class TypeTree |
| 1695 | { |
| 1696 | private: |
| 1697 | size_t methodTable; |
| 1698 | size_t ID; |
| 1699 | TypeTree *pLeft; |
| 1700 | TypeTree *pRight; |
| 1701 | |
| 1702 | public: |
| 1703 | TypeTree(size_t MT) : methodTable(MT),ID(0),pLeft(NULL),pRight(NULL) { } |
| 1704 | |
| 1705 | BOOL isIn(size_t MT, size_t *pID) |
| 1706 | { |
| 1707 | TypeTree *pCur = this; |
| 1708 | |
| 1709 | while (pCur) |
| 1710 | { |
| 1711 | if (MT == pCur->methodTable) |
| 1712 | { |
| 1713 | if (pID) |
| 1714 | *pID = pCur->ID; |
| 1715 | return TRUE; |
| 1716 | } |
| 1717 | else if (MT < pCur->methodTable) |
| 1718 | pCur = pCur->pLeft; |
| 1719 | else |
| 1720 | pCur = pCur->pRight; |
| 1721 | } |
| 1722 | |
| 1723 | return FALSE; |
| 1724 | } |
| 1725 | |
| 1726 | BOOL insert(size_t MT) |
| 1727 | { |
| 1728 | TypeTree *pCur = this; |
| 1729 | |
| 1730 | while (pCur) |
| 1731 | { |
| 1732 | if (MT == pCur->methodTable) |
| 1733 | return TRUE; |
| 1734 | else if ((MT < pCur->methodTable)) |
| 1735 | { |
| 1736 | if (pCur->pLeft) |
| 1737 | pCur = pCur->pLeft; |
| 1738 | else |
| 1739 | break; |
| 1740 | } |
| 1741 | else if (pCur->pRight) |
| 1742 | pCur = pCur->pRight; |
| 1743 | else |
| 1744 | break; |
| 1745 | } |
| 1746 | |
| 1747 | // If we got here, we need to append at the current node. |
| 1748 | TypeTree *pNewNode = new TypeTree(MT); |
| 1749 | if (pNewNode == NULL) |
| 1750 | return FALSE; |
| 1751 | |
| 1752 | if (MT < pCur->methodTable) |
| 1753 | pCur->pLeft = pNewNode; |
| 1754 | else |
| 1755 | pCur->pRight = pNewNode; |
| 1756 | |
| 1757 | return TRUE; |
| 1758 | } |
| 1759 | |
| 1760 | static void destroy(TypeTree *pStart) |
| 1761 | { |
| 1762 | TypeTree *pCur = pStart; |
| 1763 | |
| 1764 | if (pCur) |
| 1765 | { |
| 1766 | destroy(pCur->pLeft); |
| 1767 | destroy(pCur->pRight); |
| 1768 | delete [] pCur; |
| 1769 | } |
| 1770 | } |
| 1771 | |
| 1772 | static void visit_inorder(TypeTree *pStart, TYPETREEVISIT pFunc, LPVOID token) |
| 1773 | { |
| 1774 | TypeTree *pCur = pStart; |
| 1775 | |
| 1776 | if (pCur) |
| 1777 | { |
| 1778 | visit_inorder(pCur->pLeft, pFunc, token); |
| 1779 | pFunc (pCur->methodTable, pCur->ID, token); |
| 1780 | visit_inorder(pCur->pRight, pFunc, token); |
| 1781 | } |
| 1782 | } |
| 1783 | |
| 1784 | static void setTypeIDs(TypeTree *pStart, size_t *pCurID) |
| 1785 | { |
| 1786 | TypeTree *pCur = pStart; |
| 1787 | |
| 1788 | if (pCur) |
| 1789 | { |
| 1790 | setTypeIDs(pCur->pLeft, pCurID); |
| 1791 | pCur->ID = *pCurID; |
| 1792 | (*pCurID)++; |
| 1793 | setTypeIDs(pCur->pRight, pCurID); |
| 1794 | } |
| 1795 | } |
| 1796 | |
| 1797 | }; |
| 1798 | |
| 1799 | /////////////////////////////////////////////////////////////////////////////// |
| 1800 | // |
| 1801 | |
| 1802 | HeapTraverser::HeapTraverser(bool verify) |
| 1803 | { |
| 1804 | m_format = 0; |
| 1805 | m_file = NULL; |
| 1806 | m_objVisited = 0; |
| 1807 | m_pTypeTree = NULL; |
| 1808 | m_curNID = 1; |
| 1809 | m_verify = verify; |
| 1810 | } |
| 1811 | |
| 1812 | HeapTraverser::~HeapTraverser() |
| 1813 | { |
| 1814 | if (m_pTypeTree) { |
| 1815 | TypeTree::destroy(m_pTypeTree); |
| 1816 | m_pTypeTree = NULL; |
| 1817 | } |
| 1818 | } |
| 1819 | |
| 1820 | BOOL HeapTraverser::Initialize() |
| 1821 | { |
| 1822 | if (!GCHeapsTraverse (HeapTraverser::GatherTypes, this, m_verify)) |
| 1823 | { |
| 1824 | ExtOut("Error during heap traverse\n" ); |
| 1825 | return FALSE; |
| 1826 | } |
| 1827 | |
| 1828 | GCRootImpl::GetDependentHandleMap(mDependentHandleMap); |
| 1829 | |
| 1830 | size_t startID = 1; |
| 1831 | TypeTree::setTypeIDs(m_pTypeTree, &startID); |
| 1832 | |
| 1833 | return TRUE; |
| 1834 | } |
| 1835 | |
| 1836 | BOOL HeapTraverser::CreateReport (FILE *fp, int format) |
| 1837 | { |
| 1838 | if (fp == NULL || (format!=FORMAT_XML && format != FORMAT_CLRPROFILER)) |
| 1839 | { |
| 1840 | return FALSE; |
| 1841 | } |
| 1842 | |
| 1843 | m_file = fp; |
| 1844 | m_format = format; |
| 1845 | |
| 1846 | PrintSection(TYPE_START,TRUE); |
| 1847 | |
| 1848 | PrintSection(TYPE_TYPES,TRUE); |
| 1849 | TypeTree::visit_inorder(m_pTypeTree, HeapTraverser::PrintOutTree, this); |
| 1850 | PrintSection(TYPE_TYPES,FALSE); |
| 1851 | |
| 1852 | ExtOut("tracing roots...\n" ); |
| 1853 | PrintSection(TYPE_ROOTS,TRUE); |
| 1854 | PrintRootHead(); |
| 1855 | |
| 1856 | TraceHandles(); |
| 1857 | FindGCRootOnStacks(); |
| 1858 | |
| 1859 | PrintRootTail(); |
| 1860 | PrintSection(TYPE_ROOTS,FALSE); |
| 1861 | |
| 1862 | // now print type tree |
| 1863 | PrintSection(TYPE_OBJECTS,TRUE); |
| 1864 | ExtOut("\nWalking heap...\n" ); |
| 1865 | m_objVisited = 0; // for UI updates |
| 1866 | GCHeapsTraverse (HeapTraverser::PrintHeap, this, FALSE); // Never verify on the second pass |
| 1867 | PrintSection(TYPE_OBJECTS,FALSE); |
| 1868 | |
| 1869 | PrintSection(TYPE_START,FALSE); |
| 1870 | |
| 1871 | m_file = NULL; |
| 1872 | return TRUE; |
| 1873 | } |
| 1874 | |
| 1875 | void HeapTraverser::insert(size_t mTable) |
| 1876 | { |
| 1877 | if (m_pTypeTree == NULL) |
| 1878 | { |
| 1879 | m_pTypeTree = new TypeTree(mTable); |
| 1880 | if (m_pTypeTree == NULL) |
| 1881 | { |
| 1882 | ReportOOM(); |
| 1883 | return; |
| 1884 | } |
| 1885 | } |
| 1886 | else |
| 1887 | { |
| 1888 | m_pTypeTree->insert(mTable); |
| 1889 | } |
| 1890 | } |
| 1891 | |
| 1892 | size_t HeapTraverser::getID(size_t mTable) |
| 1893 | { |
| 1894 | if (m_pTypeTree == NULL) |
| 1895 | { |
| 1896 | return 0; |
| 1897 | } |
| 1898 | // IDs start at 1, so we can return 0 if not found. |
| 1899 | size_t ret; |
| 1900 | if (m_pTypeTree->isIn(mTable,&ret)) |
| 1901 | { |
| 1902 | return ret; |
| 1903 | } |
| 1904 | |
| 1905 | return 0; |
| 1906 | } |
| 1907 | |
| 1908 | #ifndef FEATURE_PAL |
| 1909 | void replace(std::wstring &str, const WCHAR *toReplace, const WCHAR *replaceWith) |
| 1910 | { |
| 1911 | const size_t replaceLen = _wcslen(toReplace); |
| 1912 | const size_t replaceWithLen = _wcslen(replaceWith); |
| 1913 | |
| 1914 | size_t i = str.find(toReplace); |
| 1915 | while (i != std::wstring::npos) |
| 1916 | { |
| 1917 | str.replace(i, replaceLen, replaceWith); |
| 1918 | i = str.find(toReplace, i + replaceWithLen); |
| 1919 | } |
| 1920 | } |
| 1921 | #endif |
| 1922 | |
| 1923 | void HeapTraverser::PrintType(size_t ID,LPCWSTR name) |
| 1924 | { |
| 1925 | if (m_format==FORMAT_XML) |
| 1926 | { |
| 1927 | #ifndef FEATURE_PAL |
| 1928 | // Sanitize name based on XML spec. |
| 1929 | std::wstring wname = name; |
| 1930 | replace(wname, W("&" ), W("&" )); |
| 1931 | replace(wname, W("\"" ), W(""" )); |
| 1932 | replace(wname, W("'" ), W("'" )); |
| 1933 | replace(wname, W("<" ), W("<" )); |
| 1934 | replace(wname, W(">" ), W(">" )); |
| 1935 | name = wname.c_str(); |
| 1936 | #endif |
| 1937 | fprintf(m_file, |
| 1938 | "<type id=\"%d\" name=\"%S\"/>\n" , |
| 1939 | ID, name); |
| 1940 | } |
| 1941 | else if (m_format==FORMAT_CLRPROFILER) |
| 1942 | { |
| 1943 | fprintf(m_file, |
| 1944 | "t %d 0 %S\n" , |
| 1945 | ID,name); |
| 1946 | } |
| 1947 | } |
| 1948 | |
| 1949 | void HeapTraverser::PrintObjectHead(size_t objAddr,size_t typeID,size_t Size) |
| 1950 | { |
| 1951 | if (m_format==FORMAT_XML) |
| 1952 | { |
| 1953 | fprintf(m_file, |
| 1954 | "<object address=\"0x%p\" typeid=\"%d\" size=\"%d\">\n" , |
| 1955 | (PBYTE)objAddr,typeID, Size); |
| 1956 | } |
| 1957 | else if (m_format==FORMAT_CLRPROFILER) |
| 1958 | { |
| 1959 | fprintf(m_file, |
| 1960 | "n %d 1 %d %d\n" , |
| 1961 | m_curNID,typeID,Size); |
| 1962 | |
| 1963 | fprintf(m_file, |
| 1964 | "! 1 0x%p %d\n" , |
| 1965 | (PBYTE)objAddr,m_curNID); |
| 1966 | |
| 1967 | m_curNID++; |
| 1968 | |
| 1969 | fprintf(m_file, |
| 1970 | "o 0x%p %d %d " , |
| 1971 | (PBYTE)objAddr,typeID,Size); |
| 1972 | } |
| 1973 | } |
| 1974 | |
| 1975 | void HeapTraverser::PrintLoaderAllocator(size_t memberValue) |
| 1976 | { |
| 1977 | if (m_format == FORMAT_XML) |
| 1978 | { |
| 1979 | fprintf(m_file, |
| 1980 | " <loaderallocator address=\"0x%p\"/>\n" , |
| 1981 | (PBYTE)memberValue); |
| 1982 | } |
| 1983 | else if (m_format == FORMAT_CLRPROFILER) |
| 1984 | { |
| 1985 | fprintf(m_file, |
| 1986 | " 0x%p" , |
| 1987 | (PBYTE)memberValue); |
| 1988 | } |
| 1989 | } |
| 1990 | |
| 1991 | void HeapTraverser::PrintObjectMember(size_t memberValue, bool dependentHandle) |
| 1992 | { |
| 1993 | if (m_format==FORMAT_XML) |
| 1994 | { |
| 1995 | fprintf(m_file, |
| 1996 | " <member address=\"0x%p\"%s/>\n" , |
| 1997 | (PBYTE)memberValue, dependentHandle ? " dependentHandle=\"1\"" : "" ); |
| 1998 | } |
| 1999 | else if (m_format==FORMAT_CLRPROFILER) |
| 2000 | { |
| 2001 | fprintf(m_file, |
| 2002 | " 0x%p" , |
| 2003 | (PBYTE)memberValue); |
| 2004 | } |
| 2005 | } |
| 2006 | |
| 2007 | void HeapTraverser::PrintObjectTail() |
| 2008 | { |
| 2009 | if (m_format==FORMAT_XML) |
| 2010 | { |
| 2011 | fprintf(m_file, |
| 2012 | "</object>\n" ); |
| 2013 | } |
| 2014 | else if (m_format==FORMAT_CLRPROFILER) |
| 2015 | { |
| 2016 | fprintf(m_file, |
| 2017 | "\n" ); |
| 2018 | } |
| 2019 | } |
| 2020 | |
| 2021 | void HeapTraverser::PrintRootHead() |
| 2022 | { |
| 2023 | if (m_format==FORMAT_CLRPROFILER) |
| 2024 | { |
| 2025 | fprintf(m_file, |
| 2026 | "r " ); |
| 2027 | } |
| 2028 | } |
| 2029 | |
| 2030 | void HeapTraverser::PrintRoot(LPCWSTR kind,size_t Value) |
| 2031 | { |
| 2032 | if (m_format==FORMAT_XML) |
| 2033 | { |
| 2034 | fprintf(m_file, |
| 2035 | "<root kind=\"%S\" address=\"0x%p\"/>\n" , |
| 2036 | kind, |
| 2037 | (PBYTE)Value); |
| 2038 | } |
| 2039 | else if (m_format==FORMAT_CLRPROFILER) |
| 2040 | { |
| 2041 | fprintf(m_file, |
| 2042 | "0x%p " , |
| 2043 | (PBYTE)Value); |
| 2044 | } |
| 2045 | } |
| 2046 | |
| 2047 | void HeapTraverser::PrintRootTail() |
| 2048 | { |
| 2049 | if (m_format==FORMAT_CLRPROFILER) |
| 2050 | { |
| 2051 | fprintf(m_file, |
| 2052 | "\n" ); |
| 2053 | } |
| 2054 | } |
| 2055 | |
| 2056 | void HeapTraverser::PrintSection(int Type,BOOL bOpening) |
| 2057 | { |
| 2058 | const char *const pTypes[] = {"<gcheap>" ,"<types>" ,"<roots>" ,"<objects>" }; |
| 2059 | const char *const pTypeEnds[] = {"</gcheap>" ,"</types>" ,"</roots>" ,"</objects>" }; |
| 2060 | |
| 2061 | if (m_format==FORMAT_XML) |
| 2062 | { |
| 2063 | if ((Type >= 0) && (Type < TYPE_HIGHEST)) |
| 2064 | { |
| 2065 | fprintf(m_file,"%s\n" ,bOpening ? pTypes[Type] : pTypeEnds[Type]); |
| 2066 | } |
| 2067 | else |
| 2068 | { |
| 2069 | ExtOut ("INVALID TYPE %d\n" , Type); |
| 2070 | } |
| 2071 | } |
| 2072 | else if (m_format==FORMAT_CLRPROFILER) |
| 2073 | { |
| 2074 | if ((Type == TYPE_START) && !bOpening) // a final newline is needed |
| 2075 | { |
| 2076 | fprintf(m_file,"\n" ); |
| 2077 | } |
| 2078 | } |
| 2079 | } |
| 2080 | |
| 2081 | void HeapTraverser::FindGCRootOnStacks() |
| 2082 | { |
| 2083 | ArrayHolder<DWORD_PTR> threadList = NULL; |
| 2084 | int numThreads = 0; |
| 2085 | |
| 2086 | // GetThreadList calls ReportOOM so we don't need to do that here. |
| 2087 | HRESULT hr = GetThreadList(&threadList, &numThreads); |
| 2088 | if (FAILED(hr) || !threadList) |
| 2089 | { |
| 2090 | ExtOut("Failed to enumerate threads in the process.\n" ); |
| 2091 | return; |
| 2092 | } |
| 2093 | |
| 2094 | int total = 0; |
| 2095 | DacpThreadData vThread; |
| 2096 | for (int i = 0; i < numThreads; i++) |
| 2097 | { |
| 2098 | if (FAILED(vThread.Request(g_sos, threadList[i]))) |
| 2099 | continue; |
| 2100 | |
| 2101 | if (vThread.osThreadId) |
| 2102 | { |
| 2103 | unsigned int refCount = 0; |
| 2104 | ArrayHolder<SOSStackRefData> refs = NULL; |
| 2105 | |
| 2106 | if (FAILED(::GetGCRefs(vThread.osThreadId, &refs, &refCount, NULL, NULL))) |
| 2107 | { |
| 2108 | ExtOut("Failed to walk thread %x\n" , vThread.osThreadId); |
| 2109 | continue; |
| 2110 | } |
| 2111 | |
| 2112 | for (unsigned int i = 0; i < refCount; ++i) |
| 2113 | if (refs[i].Object) |
| 2114 | PrintRoot(W("stack" ), TO_TADDR(refs[i].Object)); |
| 2115 | } |
| 2116 | } |
| 2117 | |
| 2118 | } |
| 2119 | |
| 2120 | |
| 2121 | /* static */ void HeapTraverser::PrintOutTree(size_t methodTable, size_t ID, |
| 2122 | LPVOID token) |
| 2123 | { |
| 2124 | HeapTraverser *pHolder = (HeapTraverser *) token; |
| 2125 | NameForMT_s(methodTable, g_mdName, mdNameLen); |
| 2126 | pHolder->PrintType(ID,g_mdName); |
| 2127 | } |
| 2128 | |
| 2129 | |
| 2130 | /* static */ void HeapTraverser::PrintHeap(DWORD_PTR objAddr,size_t Size, |
| 2131 | DWORD_PTR methodTable, LPVOID token) |
| 2132 | { |
| 2133 | if (!IsMTForFreeObj (methodTable)) |
| 2134 | { |
| 2135 | HeapTraverser *pHolder = (HeapTraverser *) token; |
| 2136 | pHolder->m_objVisited++; |
| 2137 | size_t ID = pHolder->getID(methodTable); |
| 2138 | |
| 2139 | pHolder->PrintObjectHead(objAddr, ID, Size); |
| 2140 | pHolder->PrintRefs(objAddr, methodTable, Size); |
| 2141 | pHolder->PrintObjectTail(); |
| 2142 | |
| 2143 | if (pHolder->m_objVisited % 1024 == 0) { |
| 2144 | ExtOut("." ); |
| 2145 | if (pHolder->m_objVisited % (1024*64) == 0) |
| 2146 | ExtOut("\r\n" ); |
| 2147 | } |
| 2148 | } |
| 2149 | } |
| 2150 | |
| 2151 | void HeapTraverser::TraceHandles() |
| 2152 | { |
| 2153 | unsigned int fetched = 0; |
| 2154 | SOSHandleData data[64]; |
| 2155 | |
| 2156 | ToRelease<ISOSHandleEnum> handles; |
| 2157 | HRESULT hr = g_sos->GetHandleEnum(&handles); |
| 2158 | if (FAILED(hr)) |
| 2159 | return; |
| 2160 | |
| 2161 | do |
| 2162 | { |
| 2163 | hr = handles->Next(_countof(data), data, &fetched); |
| 2164 | |
| 2165 | if (FAILED(hr)) |
| 2166 | break; |
| 2167 | |
| 2168 | for (unsigned int i = 0; i < fetched; ++i) |
| 2169 | PrintRoot(W("handle" ), (size_t)data[i].Handle); |
| 2170 | } while (fetched == _countof(data)); |
| 2171 | } |
| 2172 | |
| 2173 | /* static */ void HeapTraverser::GatherTypes(DWORD_PTR objAddr,size_t Size, |
| 2174 | DWORD_PTR methodTable, LPVOID token) |
| 2175 | { |
| 2176 | if (!IsMTForFreeObj (methodTable)) |
| 2177 | { |
| 2178 | HeapTraverser *pHolder = (HeapTraverser *) token; |
| 2179 | pHolder->insert(methodTable); |
| 2180 | } |
| 2181 | } |
| 2182 | |
| 2183 | void HeapTraverser::PrintRefs(size_t obj, size_t methodTable, size_t size) |
| 2184 | { |
| 2185 | DWORD_PTR dwAddr = methodTable; |
| 2186 | |
| 2187 | // TODO: pass info to callback having to lookup the MethodTableInfo again |
| 2188 | MethodTableInfo* info = g_special_mtCache.Lookup((DWORD_PTR)methodTable); |
| 2189 | _ASSERTE(info->IsInitialized()); // This is the second pass, so we should be initialized |
| 2190 | |
| 2191 | if (!info->bContainsPointers && !info->bCollectible) |
| 2192 | return; |
| 2193 | |
| 2194 | if (info->bContainsPointers) |
| 2195 | { |
| 2196 | // Fetch the GCInfo from the other process |
| 2197 | CGCDesc *map = info->GCInfo; |
| 2198 | if (map == NULL) |
| 2199 | { |
| 2200 | INT_PTR nEntries; |
| 2201 | move_xp (nEntries, dwAddr-sizeof(PVOID)); |
| 2202 | bool arrayOfVC = false; |
| 2203 | if (nEntries<0) |
| 2204 | { |
| 2205 | arrayOfVC = true; |
| 2206 | nEntries = -nEntries; |
| 2207 | } |
| 2208 | |
| 2209 | size_t nSlots = 1+nEntries*sizeof(CGCDescSeries)/sizeof(DWORD_PTR); |
| 2210 | info->GCInfoBuffer = new DWORD_PTR[nSlots]; |
| 2211 | if (info->GCInfoBuffer == NULL) |
| 2212 | { |
| 2213 | ReportOOM(); |
| 2214 | return; |
| 2215 | } |
| 2216 | |
| 2217 | if (FAILED(rvCache->Read(TO_CDADDR(dwAddr - nSlots*sizeof(DWORD_PTR)), |
| 2218 | info->GCInfoBuffer, (ULONG) (nSlots*sizeof(DWORD_PTR)), NULL))) |
| 2219 | return; |
| 2220 | |
| 2221 | map = info->GCInfo = (CGCDesc*)(info->GCInfoBuffer+nSlots); |
| 2222 | info->ArrayOfVC = arrayOfVC; |
| 2223 | } |
| 2224 | } |
| 2225 | |
| 2226 | mCache.EnsureRangeInCache((TADDR)obj, (unsigned int)size); |
| 2227 | for (sos::RefIterator itr(obj, info->GCInfo, info->ArrayOfVC, &mCache); itr; ++itr) |
| 2228 | { |
| 2229 | if (*itr && (!m_verify || sos::IsObject(*itr))) |
| 2230 | { |
| 2231 | if (itr.IsLoaderAllocator()) |
| 2232 | { |
| 2233 | PrintLoaderAllocator(*itr); |
| 2234 | } |
| 2235 | else |
| 2236 | { |
| 2237 | PrintObjectMember(*itr, false); |
| 2238 | } |
| 2239 | } |
| 2240 | } |
| 2241 | |
| 2242 | std::unordered_map<TADDR, std::list<TADDR>>::iterator itr = mDependentHandleMap.find((TADDR)obj); |
| 2243 | if (itr != mDependentHandleMap.end()) |
| 2244 | { |
| 2245 | for (std::list<TADDR>::iterator litr = itr->second.begin(); litr != itr->second.end(); ++litr) |
| 2246 | { |
| 2247 | PrintObjectMember(*litr, true); |
| 2248 | } |
| 2249 | } |
| 2250 | } |
| 2251 | |
| 2252 | |
| 2253 | void sos::ObjectIterator::BuildError(char *out, size_t count, const char *format, ...) const |
| 2254 | { |
| 2255 | if (out == NULL || count == 0) |
| 2256 | return; |
| 2257 | |
| 2258 | va_list args; |
| 2259 | va_start(args, format); |
| 2260 | |
| 2261 | int written = vsprintf_s(out, count, format, args); |
| 2262 | if (written > 0 && mLastObj) |
| 2263 | sprintf_s(out+written, count-written, "\nLast good object: %p.\n" , (int*)mLastObj); |
| 2264 | |
| 2265 | va_end(args); |
| 2266 | } |
| 2267 | |
| 2268 | bool sos::ObjectIterator::VerifyObjectMembers(char *reason, size_t count) const |
| 2269 | { |
| 2270 | if (!mCurrObj.HasPointers()) |
| 2271 | return true; |
| 2272 | |
| 2273 | size_t size = mCurrObj.GetSize(); |
| 2274 | size_t objAddr = (size_t)mCurrObj.GetAddress(); |
| 2275 | TADDR mt = mCurrObj.GetMT(); |
| 2276 | |
| 2277 | INT_PTR nEntries; |
| 2278 | MOVE(nEntries, mt-sizeof(PVOID)); |
| 2279 | if (nEntries < 0) |
| 2280 | nEntries = -nEntries; |
| 2281 | |
| 2282 | size_t nSlots = 1 + nEntries * sizeof(CGCDescSeries)/sizeof(DWORD_PTR); |
| 2283 | ArrayHolder<DWORD_PTR> buffer = new DWORD_PTR[nSlots]; |
| 2284 | |
| 2285 | if (FAILED(g_ExtData->ReadVirtual(TO_CDADDR(mt - nSlots*sizeof(DWORD_PTR)), |
| 2286 | buffer, (ULONG) (nSlots*sizeof(DWORD_PTR)), NULL))) |
| 2287 | { |
| 2288 | BuildError(reason, count, "Object %s has a bad GCDesc." , DMLObject(objAddr)); |
| 2289 | return false; |
| 2290 | } |
| 2291 | |
| 2292 | CGCDesc *map = (CGCDesc *)(buffer+nSlots); |
| 2293 | CGCDescSeries* cur = map->GetHighestSeries(); |
| 2294 | CGCDescSeries* last = map->GetLowestSeries(); |
| 2295 | |
| 2296 | const size_t bufferSize = sizeof(size_t)*128; |
| 2297 | size_t objBuffer[bufferSize/sizeof(size_t)]; |
| 2298 | size_t dwBeginAddr = (size_t)objAddr; |
| 2299 | size_t bytesInBuffer = bufferSize; |
| 2300 | if (size < bytesInBuffer) |
| 2301 | bytesInBuffer = size; |
| 2302 | |
| 2303 | |
| 2304 | if (FAILED(g_ExtData->ReadVirtual(TO_CDADDR(dwBeginAddr), objBuffer, (ULONG) bytesInBuffer,NULL))) |
| 2305 | { |
| 2306 | BuildError(reason, count, "Object %s: Failed to read members." , DMLObject(objAddr)); |
| 2307 | return false; |
| 2308 | } |
| 2309 | |
| 2310 | BOOL bCheckCard = TRUE; |
| 2311 | { |
| 2312 | DWORD_PTR dwAddrCard = (DWORD_PTR)objAddr; |
| 2313 | while (dwAddrCard < objAddr + size) |
| 2314 | { |
| 2315 | if (CardIsSet (mHeaps[mCurrHeap], dwAddrCard)) |
| 2316 | { |
| 2317 | bCheckCard = FALSE; |
| 2318 | break; |
| 2319 | } |
| 2320 | dwAddrCard += card_size; |
| 2321 | } |
| 2322 | if (bCheckCard) |
| 2323 | { |
| 2324 | dwAddrCard = objAddr + size - 2*sizeof(PVOID); |
| 2325 | if (CardIsSet (mHeaps[mCurrHeap], dwAddrCard)) |
| 2326 | { |
| 2327 | bCheckCard = FALSE; |
| 2328 | } |
| 2329 | } |
| 2330 | } |
| 2331 | |
| 2332 | if (cur >= last) |
| 2333 | { |
| 2334 | do |
| 2335 | { |
| 2336 | BYTE** parm = (BYTE**)((objAddr) + cur->GetSeriesOffset()); |
| 2337 | BYTE** ppstop = |
| 2338 | (BYTE**)((BYTE*)parm + cur->GetSeriesSize() + (size)); |
| 2339 | while (parm < ppstop) |
| 2340 | { |
| 2341 | CheckInterrupt(); |
| 2342 | size_t dwAddr1; |
| 2343 | |
| 2344 | // Do we run out of cache? |
| 2345 | if ((size_t)parm >= dwBeginAddr+bytesInBuffer) |
| 2346 | { |
| 2347 | // dwBeginAddr += bytesInBuffer; |
| 2348 | dwBeginAddr = (size_t)parm; |
| 2349 | if (dwBeginAddr >= objAddr + size) |
| 2350 | { |
| 2351 | return true; |
| 2352 | } |
| 2353 | bytesInBuffer = bufferSize; |
| 2354 | if (objAddr+size-dwBeginAddr < bytesInBuffer) |
| 2355 | { |
| 2356 | bytesInBuffer = objAddr+size-dwBeginAddr; |
| 2357 | } |
| 2358 | if (FAILED(g_ExtData->ReadVirtual(TO_CDADDR(dwBeginAddr), objBuffer, (ULONG) bytesInBuffer, NULL))) |
| 2359 | { |
| 2360 | BuildError(reason, count, "Object %s: Failed to read members." , DMLObject(objAddr)); |
| 2361 | return false; |
| 2362 | } |
| 2363 | } |
| 2364 | dwAddr1 = objBuffer[((size_t)parm-dwBeginAddr)/sizeof(size_t)]; |
| 2365 | if (dwAddr1) { |
| 2366 | DWORD_PTR dwChild = dwAddr1; |
| 2367 | // Try something more efficient than IsObject here. Is the methodtable valid? |
| 2368 | size_t s; |
| 2369 | BOOL bPointers; |
| 2370 | DWORD_PTR dwAddrMethTable; |
| 2371 | if (FAILED(GetMTOfObject(dwAddr1, &dwAddrMethTable)) || |
| 2372 | (GetSizeEfficient(dwAddr1, dwAddrMethTable, FALSE, s, bPointers) == FALSE)) |
| 2373 | { |
| 2374 | BuildError(reason, count, "object %s: bad member %p at %p" , DMLObject(objAddr), |
| 2375 | SOS_PTR(dwAddr1), SOS_PTR(objAddr+(size_t)parm-objAddr)); |
| 2376 | |
| 2377 | return false; |
| 2378 | } |
| 2379 | |
| 2380 | if (IsMTForFreeObj(dwAddrMethTable)) |
| 2381 | { |
| 2382 | sos::Throw<HeapCorruption>("object %s contains free object %p at %p" , DMLObject(objAddr), |
| 2383 | SOS_PTR(dwAddr1), SOS_PTR(objAddr+(size_t)parm-objAddr)); |
| 2384 | } |
| 2385 | |
| 2386 | // verify card table |
| 2387 | if (bCheckCard && |
| 2388 | NeedCard(objAddr+(size_t)parm-objAddr,dwChild)) |
| 2389 | { |
| 2390 | BuildError(reason, count, "Object %s: %s missing card_table entry for %p" , |
| 2391 | DMLObject(objAddr), (dwChild == dwAddr1)? "" : " maybe" , |
| 2392 | SOS_PTR(objAddr+(size_t)parm-objAddr)); |
| 2393 | |
| 2394 | return false; |
| 2395 | } |
| 2396 | } |
| 2397 | parm++; |
| 2398 | } |
| 2399 | cur--; |
| 2400 | CheckInterrupt(); |
| 2401 | |
| 2402 | } while (cur >= last); |
| 2403 | } |
| 2404 | else |
| 2405 | { |
| 2406 | int cnt = (int) map->GetNumSeries(); |
| 2407 | BYTE** parm = (BYTE**)((objAddr) + cur->startoffset); |
| 2408 | while ((BYTE*)parm < (BYTE*)((objAddr)+(size)-plug_skew)) |
| 2409 | { |
| 2410 | for (int __i = 0; __i > cnt; __i--) |
| 2411 | { |
| 2412 | CheckInterrupt(); |
| 2413 | |
| 2414 | unsigned skip = cur->val_serie[__i].skip; |
| 2415 | unsigned nptrs = cur->val_serie[__i].nptrs; |
| 2416 | BYTE** ppstop = parm + nptrs; |
| 2417 | do |
| 2418 | { |
| 2419 | size_t dwAddr1; |
| 2420 | // Do we run out of cache? |
| 2421 | if ((size_t)parm >= dwBeginAddr+bytesInBuffer) |
| 2422 | { |
| 2423 | // dwBeginAddr += bytesInBuffer; |
| 2424 | dwBeginAddr = (size_t)parm; |
| 2425 | if (dwBeginAddr >= objAddr + size) |
| 2426 | return true; |
| 2427 | |
| 2428 | bytesInBuffer = bufferSize; |
| 2429 | if (objAddr+size-dwBeginAddr < bytesInBuffer) |
| 2430 | bytesInBuffer = objAddr+size-dwBeginAddr; |
| 2431 | |
| 2432 | if (FAILED(g_ExtData->ReadVirtual(TO_CDADDR(dwBeginAddr), objBuffer, (ULONG) bytesInBuffer, NULL))) |
| 2433 | { |
| 2434 | BuildError(reason, count, "Object %s: Failed to read members." , DMLObject(objAddr)); |
| 2435 | return false; |
| 2436 | } |
| 2437 | } |
| 2438 | dwAddr1 = objBuffer[((size_t)parm-dwBeginAddr)/sizeof(size_t)]; |
| 2439 | { |
| 2440 | if (dwAddr1) |
| 2441 | { |
| 2442 | DWORD_PTR dwChild = dwAddr1; |
| 2443 | // Try something more efficient than IsObject here. Is the methodtable valid? |
| 2444 | size_t s; |
| 2445 | BOOL bPointers; |
| 2446 | DWORD_PTR dwAddrMethTable; |
| 2447 | if (FAILED(GetMTOfObject(dwAddr1, &dwAddrMethTable)) || |
| 2448 | (GetSizeEfficient(dwAddr1, dwAddrMethTable, FALSE, s, bPointers) == FALSE)) |
| 2449 | { |
| 2450 | BuildError(reason, count, "Object %s: Bad member %p at %p.\n" , DMLObject(objAddr), |
| 2451 | SOS_PTR(dwAddr1), SOS_PTR(objAddr+(size_t)parm-objAddr)); |
| 2452 | |
| 2453 | return false; |
| 2454 | } |
| 2455 | |
| 2456 | if (IsMTForFreeObj(dwAddrMethTable)) |
| 2457 | { |
| 2458 | BuildError(reason, count, "Object %s contains free object %p at %p." , DMLObject(objAddr), |
| 2459 | SOS_PTR(dwAddr1), SOS_PTR(objAddr+(size_t)parm-objAddr)); |
| 2460 | return false; |
| 2461 | } |
| 2462 | |
| 2463 | // verify card table |
| 2464 | if (bCheckCard && |
| 2465 | NeedCard (objAddr+(size_t)parm-objAddr,dwAddr1)) |
| 2466 | { |
| 2467 | BuildError(reason, count, "Object %s:%s missing card_table entry for %p" , |
| 2468 | DMLObject(objAddr), (dwChild == dwAddr1) ? "" : " maybe" , |
| 2469 | SOS_PTR(objAddr+(size_t)parm-objAddr)); |
| 2470 | |
| 2471 | return false; |
| 2472 | } |
| 2473 | } |
| 2474 | } |
| 2475 | parm++; |
| 2476 | CheckInterrupt(); |
| 2477 | } while (parm < ppstop); |
| 2478 | parm = (BYTE**)((BYTE*)parm + skip); |
| 2479 | } |
| 2480 | } |
| 2481 | } |
| 2482 | |
| 2483 | return true; |
| 2484 | } |
| 2485 | |
| 2486 | bool sos::ObjectIterator::Verify(char *reason, size_t count) const |
| 2487 | { |
| 2488 | try |
| 2489 | { |
| 2490 | TADDR mt = mCurrObj.GetMT(); |
| 2491 | |
| 2492 | if (MethodTable::GetFreeMT() == mt) |
| 2493 | { |
| 2494 | return true; |
| 2495 | } |
| 2496 | |
| 2497 | size_t size = mCurrObj.GetSize(); |
| 2498 | if (size < min_obj_size) |
| 2499 | { |
| 2500 | BuildError(reason, count, "Object %s: Size %d is too small." , DMLObject(mCurrObj.GetAddress()), size); |
| 2501 | return false; |
| 2502 | } |
| 2503 | |
| 2504 | if (mCurrObj.GetAddress() + mCurrObj.GetSize() > mSegmentEnd) |
| 2505 | { |
| 2506 | BuildError(reason, count, "Object %s is too large. End of segment at %p." , DMLObject(mCurrObj), mSegmentEnd); |
| 2507 | return false; |
| 2508 | } |
| 2509 | |
| 2510 | BOOL bVerifyMember = TRUE; |
| 2511 | |
| 2512 | // If we requested to verify the object's members, the GC may be in a state where that's not possible. |
| 2513 | // Here we check to see if the object in question needs to have its members updated. If so, we turn off |
| 2514 | // verification for the object. |
| 2515 | BOOL consider_bgc_mark = FALSE, check_current_sweep = FALSE, check_saved_sweep = FALSE; |
| 2516 | should_check_bgc_mark(mHeaps[mCurrHeap], mSegment, &consider_bgc_mark, &check_current_sweep, &check_saved_sweep); |
| 2517 | bVerifyMember = fgc_should_consider_object(mHeaps[mCurrHeap], mCurrObj.GetAddress(), mSegment, |
| 2518 | consider_bgc_mark, check_current_sweep, check_saved_sweep); |
| 2519 | |
| 2520 | if (bVerifyMember) |
| 2521 | return VerifyObjectMembers(reason, count); |
| 2522 | } |
| 2523 | catch(const sos::Exception &e) |
| 2524 | { |
| 2525 | BuildError(reason, count, e.GetMesssage()); |
| 2526 | return false; |
| 2527 | } |
| 2528 | |
| 2529 | return true; |
| 2530 | } |
| 2531 | |
| 2532 | bool sos::ObjectIterator::Verify() const |
| 2533 | { |
| 2534 | char *c = NULL; |
| 2535 | return Verify(c, 0); |
| 2536 | } |
| 2537 | |