1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | //***************************************************************************** |
5 | // File: controller.h |
6 | // |
7 | |
8 | // |
9 | // Debugger control flow object |
10 | // |
11 | //***************************************************************************** |
12 | |
13 | #ifndef CONTROLLER_H_ |
14 | #define CONTROLLER_H_ |
15 | |
16 | /* ========================================================================= */ |
17 | |
18 | #if !defined(DACCESS_COMPILE) |
19 | |
20 | #include "frameinfo.h" |
21 | |
22 | /* ------------------------------------------------------------------------- * |
23 | * Forward declarations |
24 | * ------------------------------------------------------------------------- */ |
25 | |
26 | class DebuggerPatchSkip; |
27 | class DebuggerThreadStarter; |
28 | class DebuggerController; |
29 | class DebuggerControllerQueue; |
30 | struct DebuggerControllerPatch; |
31 | class DebuggerUserBreakpoint; |
32 | class ControllerStackInfo; |
33 | |
34 | typedef struct _DR6 *PDR6; |
35 | typedef struct _DR6 { |
36 | DWORD B0 : 1; |
37 | DWORD B1 : 1; |
38 | DWORD B2 : 1; |
39 | DWORD B3 : 1; |
40 | DWORD Pad1 : 9; |
41 | DWORD BD : 1; |
42 | DWORD BS : 1; |
43 | DWORD BT : 1; |
44 | } DR6; |
45 | |
46 | typedef struct _DR7 *PDR7; |
47 | typedef struct _DR7 { |
48 | DWORD L0 : 1; |
49 | DWORD G0 : 1; |
50 | DWORD L1 : 1; |
51 | DWORD G1 : 1; |
52 | DWORD L2 : 1; |
53 | DWORD G2 : 1; |
54 | DWORD L3 : 1; |
55 | DWORD G3 : 1; |
56 | DWORD LE : 1; |
57 | DWORD GE : 1; |
58 | DWORD Pad1 : 3; |
59 | DWORD GD : 1; |
60 | DWORD Pad2 : 1; |
61 | DWORD Pad3 : 1; |
62 | DWORD Rwe0 : 2; |
63 | DWORD Len0 : 2; |
64 | DWORD Rwe1 : 2; |
65 | DWORD Len1 : 2; |
66 | DWORD Rwe2 : 2; |
67 | DWORD Len2 : 2; |
68 | DWORD Rwe3 : 2; |
69 | DWORD Len3 : 2; |
70 | } DR7; |
71 | |
72 | |
73 | // Ticket for ensuring that it's safe to get a stack trace. |
74 | class StackTraceTicket |
75 | { |
76 | public: |
77 | // Each ctor is a rule for why it's safety to run a stacktrace. |
78 | |
79 | // Safe if we're at certain types of patches. |
80 | StackTraceTicket(DebuggerControllerPatch * patch); |
81 | |
82 | // Safe if there was already another stack trace at this spot. (Grandfather clause) |
83 | StackTraceTicket(ControllerStackInfo * info); |
84 | |
85 | // Safe it we're at a Synchronized point point. |
86 | StackTraceTicket(Thread * pThread); |
87 | |
88 | // Safe b/c the context shows we're in native managed code |
89 | StackTraceTicket(const BYTE * ip); |
90 | |
91 | // DebuggerUserBreakpoint has a special case of safety. |
92 | StackTraceTicket(DebuggerUserBreakpoint * p); |
93 | |
94 | // This is like a contract violation. |
95 | // Unsafe tickets. Use as: |
96 | // StackTraceTicket ticket(StackTraceTicket::UNSAFE_TICKET); |
97 | enum EUNSAFE { |
98 | // Ticket is unsafe. Potential issue. |
99 | UNSAFE_TICKET = 0, |
100 | |
101 | // For some wacky reason, it's safe to take a stacktrace here, but |
102 | // there's not an easily verifiable rule. Use this ticket very sparingly |
103 | // because it's much more difficult to verify. |
104 | SPECIAL_CASE_TICKET = 1 |
105 | }; |
106 | StackTraceTicket(EUNSAFE e) { }; |
107 | |
108 | private: |
109 | // Tickets can't be copied around. Hide these definitions so to enforce that. |
110 | // We still need the Copy ctor so that it can be passed in as a parameter. |
111 | void operator=(StackTraceTicket & other); |
112 | }; |
113 | |
114 | /* ------------------------------------------------------------------------- * |
115 | * ControllerStackInfo utility |
116 | * ------------------------------------------------------------------------- * |
117 | * class ControllerStackInfo is a class designed |
118 | * to simply obtain a two-frame stack trace: it will obtain the bottommost |
119 | * framepointer (m_bottomFP), a given target frame (m_activeFrame), and the |
120 | * frame above the target frame (m_returnFrame). Note that the target frame |
121 | * may be the bottommost, 'active' frame, or it may be a frame higher up in |
122 | * the stack. ControllerStackInfo accomplishes this by starting at the |
123 | * bottommost frame and walking upwards until it reaches the target frame, |
124 | * whereupon it records the m_activeFrame info, gets called once more to |
125 | * fill in the m_returnFrame info, and thereafter stops the stack walk. |
126 | * |
127 | * public: |
128 | * void * m_bottomFP: Frame pointer for the |
129 | * bottommost (most active) |
130 | * frame. We can add more later, if we need it. Currently just used in |
131 | * TrapStep. NULL indicates an uninitialized value. |
132 | * |
133 | * void * m_targetFP: The frame pointer to the frame |
134 | * that we actually want the info of. |
135 | * |
136 | * bool m_targetFrameFound: Set to true if |
137 | * WalkStack finds the frame indicated by targetFP handed to GetStackInfo |
138 | * false otherwise. |
139 | * |
140 | * FrameInfo m_activeFrame: A FrameInfo |
141 | * describing the target frame. This should always be valid after a |
142 | * call to GetStackInfo. |
143 | * |
144 | * FrameInfo m_returnFrame: A FrameInfo |
145 | * describing the frame above the target frame, if target's |
146 | * return frame were found (call HasReturnFrame() to see if this is |
147 | * valid). Otherwise, this will be the same as m_activeFrame, above |
148 | * |
149 | * private: |
150 | * bool m_activeFound: Set to true if we found the target frame. |
151 | * bool m_returnFound: Set to true if we found the target's return frame. |
152 | */ |
153 | class ControllerStackInfo |
154 | { |
155 | public: |
156 | friend class StackTraceTicket; |
157 | |
158 | ControllerStackInfo() |
159 | { |
160 | INDEBUG(m_dbgExecuted = false); |
161 | } |
162 | |
163 | FramePointer m_bottomFP; |
164 | FramePointer m_targetFP; |
165 | bool m_targetFrameFound; |
166 | |
167 | FrameInfo m_activeFrame; |
168 | FrameInfo m_returnFrame; |
169 | |
170 | CorDebugChainReason m_specialChainReason; |
171 | |
172 | // static StackWalkAction ControllerStackInfo::WalkStack() The |
173 | // callback that will be invoked by the DebuggerWalkStackProc. |
174 | // Note that the data argument is the "this" pointer to the |
175 | // ControllerStackInfo. |
176 | static StackWalkAction WalkStack(FrameInfo *pInfo, void *data); |
177 | |
178 | |
179 | //void ControllerStackInfo::GetStackInfo(): GetStackInfo |
180 | // is invoked by the user to trigger the stack walk. This will |
181 | // cause the stack walk detailed in the class description to happen. |
182 | // Thread* thread: The thread to do the stack walk on. |
183 | // void* targetFP: Can be either NULL (meaning that the bottommost |
184 | // frame is the target), or an frame pointer, meaning that the |
185 | // caller wants information about a specific frame. |
186 | // CONTEXT* pContext: A pointer to a CONTEXT structure. Can be null, |
187 | // we use our temp context. |
188 | // bool suppressUMChainFromComPlusMethodFrameGeneric - A ridiculous flag that is trying to narrowly |
189 | // target a fix for issue 650903. |
190 | // StackTraceTicket - ticket ensuring that we have permission to call this. |
191 | void GetStackInfo( |
192 | StackTraceTicket ticket, |
193 | Thread *thread, |
194 | FramePointer targetFP, |
195 | CONTEXT *pContext, |
196 | bool suppressUMChainFromComPlusMethodFrameGeneric = false |
197 | ); |
198 | |
199 | //bool ControllerStackInfo::HasReturnFrame() Returns |
200 | // true if m_returnFrame is valid. Returns false |
201 | // if m_returnFrame is set to m_activeFrame |
202 | bool HasReturnFrame() {LIMITED_METHOD_CONTRACT; return m_returnFound; } |
203 | |
204 | // This function "undoes" an unwind, i.e. it takes the active frame (the current frame) |
205 | // and sets it to be the return frame (the caller frame). Currently it is only used by |
206 | // the stepper to step out of an LCG method. See DebuggerStepper::DetectHandleLCGMethods() |
207 | // for more information. |
208 | void SetReturnFrameWithActiveFrame(); |
209 | |
210 | private: |
211 | // If we don't have a valid context, then use this temp cache. |
212 | CONTEXT m_tempContext; |
213 | |
214 | bool m_activeFound; |
215 | bool m_returnFound; |
216 | |
217 | // A ridiculous flag that is targetting a very narrow fix at issue 650903 |
218 | // (4.5.1/Blue). This is set for the duration of a stackwalk designed to |
219 | // help us "Step Out" to a managed frame (i.e., managed-only debugging). |
220 | bool m_suppressUMChainFromComPlusMethodFrameGeneric; |
221 | |
222 | // Track if this stackwalk actually happened. |
223 | // This is used by the StackTraceTicket(ControllerStackInfo * info) ticket. |
224 | INDEBUG(bool m_dbgExecuted); |
225 | }; |
226 | |
227 | #endif // !DACCESS_COMPILE |
228 | |
229 | |
230 | /* ------------------------------------------------------------------------- * |
231 | * DebuggerController routines |
232 | * ------------------------------------------------------------------------- */ |
233 | |
234 | // simple ref-counted buffer that's shared among DebuggerPatchSkippers for a |
235 | // given DebuggerControllerPatch. upon creation the refcount will be 1. when |
236 | // the last skipper and controller are cleaned up the buffer will be released. |
237 | // note that there isn't a clear owner of this buffer since a controller can be |
238 | // cleaned up while the final skipper is still in flight. |
239 | class SharedPatchBypassBuffer |
240 | { |
241 | public: |
242 | SharedPatchBypassBuffer() : m_refCount(1) |
243 | { |
244 | #ifdef _DEBUG |
245 | DWORD cbToProtect = MAX_INSTRUCTION_LENGTH; |
246 | _ASSERTE(DbgIsExecutable((BYTE*)PatchBypass, cbToProtect)); |
247 | #endif // _DEBUG |
248 | |
249 | // sentinel value indicating uninitialized data |
250 | *(reinterpret_cast<DWORD*>(PatchBypass)) = SentinelValue; |
251 | #ifdef _TARGET_AMD64_ |
252 | *(reinterpret_cast<DWORD*>(BypassBuffer)) = SentinelValue; |
253 | RipTargetFixup = 0; |
254 | RipTargetFixupSize = 0; |
255 | #elif _TARGET_ARM64_ |
256 | RipTargetFixup = 0; |
257 | |
258 | #endif |
259 | } |
260 | |
261 | ~SharedPatchBypassBuffer() |
262 | { |
263 | // trap deletes that don't go through Release() |
264 | _ASSERTE(m_refCount == 0); |
265 | } |
266 | |
267 | LONG AddRef() |
268 | { |
269 | LONG newRefCount = InterlockedIncrement(&m_refCount); |
270 | _ASSERTE(newRefCount > 0); |
271 | return newRefCount; |
272 | } |
273 | |
274 | LONG Release() |
275 | { |
276 | LONG newRefCount = InterlockedDecrement(&m_refCount); |
277 | _ASSERTE(newRefCount >= 0); |
278 | |
279 | if (newRefCount == 0) |
280 | { |
281 | TRACE_FREE(this); |
282 | DeleteInteropSafeExecutable(this); |
283 | } |
284 | |
285 | return newRefCount; |
286 | } |
287 | |
288 | // "PatchBypass" must be the first field of this class for alignment to be correct. |
289 | BYTE PatchBypass[MAX_INSTRUCTION_LENGTH]; |
290 | #if defined(_TARGET_AMD64_) |
291 | const static int cbBufferBypass = 0x10; |
292 | BYTE BypassBuffer[cbBufferBypass]; |
293 | |
294 | UINT_PTR RipTargetFixup; |
295 | BYTE RipTargetFixupSize; |
296 | #elif defined(_TARGET_ARM64_) |
297 | UINT_PTR RipTargetFixup; |
298 | #endif |
299 | |
300 | private: |
301 | const static DWORD SentinelValue = 0xffffffff; |
302 | LONG m_refCount; |
303 | }; |
304 | |
305 | // struct DebuggerFunctionKey: Provides a means of hashing unactivated |
306 | // breakpoints, it's used mainly for the case where the function to put |
307 | // the breakpoint in hasn't been JITted yet. |
308 | // Module* module: Module that the method belongs to. |
309 | // mdMethodDef md: meta data token for the method. |
310 | struct DebuggerFunctionKey1 |
311 | { |
312 | PTR_Module module; |
313 | mdMethodDef md; |
314 | }; |
315 | |
316 | typedef DebuggerFunctionKey1 UNALIGNED DebuggerFunctionKey; |
317 | |
318 | // IL Master: Breakpoints on IL code may need to be applied to multiple |
319 | // copies of code. Historically generics was the only way IL code was JITTed |
320 | // multiple times but more recently the CodeVersionManager and tiered compilation |
321 | // provide more open-ended mechanisms to have multiple native code bodies derived |
322 | // from a single IL method body. |
323 | // The "master" is a patch we keep to record the IL offset or native offset, and |
324 | // is used to create new "slave"patches. For native offsets only offset 0 is allowed |
325 | // because that is the only one that we think would have a consistent semantic |
326 | // meaning across different code bodies. |
327 | // There can also be multiple IL bodies for the same method given EnC or ReJIT. |
328 | // A given master breakpoint is tightly bound to one particular IL body determined |
329 | // by encVersion. ReJIT + breakpoints isn't currently supported. |
330 | // |
331 | // |
332 | // IL Slave: The slaves created from Master patches. If the master used an IL offset |
333 | // then the slave also initially has an IL offset that will later become a native offset. |
334 | // If the master uses a native offset (0) then the slave will also have a native offset (0). |
335 | // These patches always resolve to addresses in jitted code. |
336 | // |
337 | // |
338 | // NativeManaged: A patch we apply to managed code, usually for walkers etc. If this code |
339 | // is jitted then these patches are always bound to one exact jitted code body. |
340 | // If you need to be 100% sure I suggest you do more code review but I believe we also |
341 | // use this for managed code from other code generators such as a stub or statically compiled |
342 | // code that executes in cooperative mode. |
343 | // |
344 | // |
345 | // NativeUnmanaged: A patch applied to any kind of native code. |
346 | |
347 | enum DebuggerPatchKind { PATCH_KIND_IL_MASTER, PATCH_KIND_IL_SLAVE, PATCH_KIND_NATIVE_MANAGED, PATCH_KIND_NATIVE_UNMANAGED }; |
348 | |
349 | // struct DebuggerControllerPatch: An entry in the patch (hash) table, |
350 | // this should contain all the info that's needed over the course of a |
351 | // patch's lifetime. |
352 | // |
353 | // FREEHASHENTRY entry: Three ULONGs, this is required |
354 | // by the underlying hashtable implementation |
355 | // DWORD opcode: A nonzero opcode && address field means that |
356 | // the patch has been applied to something. |
357 | // A patch with a zero'd opcode field means that the patch isn't |
358 | // actually tracking a valid break opcode. See DebuggerPatchTable |
359 | // for more details. |
360 | // DebuggerController *controller: The controller that put this |
361 | // patch here. |
362 | // BOOL fSaveOpcode: If true, then unapply patch will save |
363 | // a copy of the opcode in opcodeSaved, and apply patch will |
364 | // copy opcodeSaved to opcode rather than grabbing the opcode |
365 | // from the instruction. This is useful mainly when the JIT |
366 | // has moved code, and we don't want to erroneously pick up the |
367 | // user break instruction. |
368 | // Full story: |
369 | // FJIT moves the code. Once that's done, it calls Debugger->MoveCode(MethodDesc |
370 | // *) to let us know the code moved. At that point, unbind all the breakpoints |
371 | // in the method. Then we whip over all the patches, and re-bind all the |
372 | // patches in the method. However, we can't guarantee that the code will exist |
373 | // in both the old & new locations exclusively of each other (the method could |
374 | // be 0xFF bytes big, and get moved 0x10 bytes in one direction), so instead of |
375 | // simply re-using the unbind/rebind logic as it is, we need a special case |
376 | // wherein the old method isn't valid. Instead, we'll copy opcode into |
377 | // opcodeSaved, and then zero out opcode (we need to zero out opcode since that |
378 | // tells us that the patch is invalid, if the right side sees it). Thus the run- |
379 | // around. |
380 | // DebuggerPatchKind: see above |
381 | // DWORD opcodeSaved: Contains an opcode if fSaveOpcode == true |
382 | // SIZE_T nVersion: If the patch is stored by IL offset, then we |
383 | // must also store the version ID so that we know which version |
384 | // this is supposed to be applied to. Note that this will only |
385 | // be set for DebuggerBreakpoints & DebuggerEnCBreakpoints. For |
386 | // others, it should be set to DMI_VERSION_INVALID. For constants, |
387 | // see DebuggerJitInfo |
388 | // DebuggerJitInfo dji: A pointer to the debuggerJitInfo that describes |
389 | // the method (and version) that this patch is applied to. This field may |
390 | // also have the value DebuggerJitInfo::DMI_VERSION_INVALID |
391 | |
392 | // SIZE_T pid: Within a given patch table, all patches have a |
393 | // semi-unique ID. There should be one and only 1 patch for a given |
394 | // {pid,nVersion} tuple, thus ensuring that we don't duplicate |
395 | // patches from multiple, previous versions. |
396 | // AppDomain * pAppDomain: Either NULL (patch applies to all appdomains |
397 | // that the debugger is attached to) |
398 | // or contains a pointer to an AppDomain object (patch applies only to |
399 | // that A.D.) |
400 | |
401 | // NOTE: due to unkind abuse of type system you cannot add ctor/dtor to this |
402 | // type and expect them to be automatically invoked! |
403 | struct DebuggerControllerPatch |
404 | { |
405 | friend class DebuggerPatchTable; |
406 | friend class DebuggerController; |
407 | |
408 | FREEHASHENTRY entry; |
409 | DebuggerController *controller; |
410 | DebuggerFunctionKey key; |
411 | SIZE_T offset; |
412 | PTR_CORDB_ADDRESS_TYPE address; |
413 | FramePointer fp; |
414 | PRD_TYPE opcode; //this name will probably change because it is a misnomer |
415 | BOOL fSaveOpcode; |
416 | PRD_TYPE opcodeSaved;//also a misnomer |
417 | BOOL offsetIsIL; |
418 | TraceDestination trace; |
419 | MethodDesc* pMethodDescFilter; // used for IL Master patches that should only bind to jitted |
420 | // code versions for a single generic instantiation |
421 | private: |
422 | int refCount; |
423 | union |
424 | { |
425 | SIZE_T encVersion; // used for Master patches, to record which EnC version this Master applies to |
426 | DebuggerJitInfo *dji; // used for Slave and native patches, though only when tracking JIT Info |
427 | }; |
428 | |
429 | #ifndef _TARGET_ARM_ |
430 | // this is shared among all the skippers for this controller. see the comments |
431 | // right before the definition of SharedPatchBypassBuffer for lifetime info. |
432 | SharedPatchBypassBuffer* m_pSharedPatchBypassBuffer; |
433 | #endif // _TARGET_ARM_ |
434 | |
435 | public: |
436 | SIZE_T pid; |
437 | AppDomain *pAppDomain; |
438 | |
439 | BOOL IsNativePatch(); |
440 | BOOL IsManagedPatch(); |
441 | BOOL IsILMasterPatch(); |
442 | BOOL IsILSlavePatch(); |
443 | DebuggerPatchKind GetKind(); |
444 | |
445 | // A patch has DJI if it was created with it or if it has been mapped to a |
446 | // function that has been jitted while JIT tracking was on. It does not |
447 | // necessarily mean the patch is bound. ILMaster patches never have DJIs. |
448 | // Patches will never have DJIs if we are not tracking JIT information. |
449 | // |
450 | // Patches can also be unbound, e.g. in UnbindFunctionPatches. Any DJI gets cleared |
451 | // when the patch is unbound. This appears to be used as an indicator |
452 | // to Debugger::MapAndBindFunctionPatches to make sure that |
453 | // we don't skip the patch when we get new code. |
454 | BOOL HasDJI() |
455 | { |
456 | return (!IsILMasterPatch() && dji != NULL); |
457 | } |
458 | |
459 | DebuggerJitInfo *GetDJI() |
460 | { |
461 | _ASSERTE(!IsILMasterPatch()); |
462 | return dji; |
463 | } |
464 | |
465 | // These tell us which EnC version a patch relates to. They are used |
466 | // to determine if we are mapping a patch to a new version. |
467 | // |
468 | BOOL HasEnCVersion() |
469 | { |
470 | return (IsILMasterPatch() || HasDJI()); |
471 | } |
472 | |
473 | SIZE_T GetEnCVersion() |
474 | { |
475 | _ASSERTE(HasEnCVersion()); |
476 | return (IsILMasterPatch() ? encVersion : (HasDJI() ? GetDJI()->m_encVersion : CorDB_DEFAULT_ENC_FUNCTION_VERSION)); |
477 | } |
478 | |
479 | // We set the DJI explicitly after mapping a patch |
480 | // to freshly jitted code or to a new version. The Unbind/Bind/MovedCode mess |
481 | // for the FJIT will also set the DJI to NULL as an indicator that Debugger::MapAndBindFunctionPatches |
482 | // should not skip the patch. |
483 | void SetDJI(DebuggerJitInfo *newDJI) |
484 | { |
485 | _ASSERTE(!IsILMasterPatch()); |
486 | dji = newDJI; |
487 | } |
488 | |
489 | // A patch is bound if we've mapped it to a real honest-to-goodness |
490 | // native address. |
491 | // Note that we currently activate all patches immediately after binding them, and |
492 | // delete all patches after unactivating them. This means that the window where |
493 | // a patch is bound but not active is very small (and should always be protected by |
494 | // a lock). We rely on this correlation in a few places, and ASSERT it explicitly there. |
495 | BOOL IsBound() |
496 | { |
497 | if( address == NULL ) { |
498 | // patch is unbound, cannot be active |
499 | _ASSERTE( PRDIsEmpty(opcode) ); |
500 | return FALSE; |
501 | } |
502 | |
503 | // IL Master patches are never bound. |
504 | _ASSERTE( !IsILMasterPatch() ); |
505 | |
506 | return TRUE; |
507 | } |
508 | |
509 | // It would be nice if we never needed IsBreakpointPatch or IsStepperPatch, |
510 | // but a few bits of the existing code look at which controller type is involved. |
511 | BOOL IsBreakpointPatch(); |
512 | BOOL IsStepperPatch(); |
513 | |
514 | bool IsActivated() |
515 | { |
516 | // Patch is activate if we've stored a non-zero opcode |
517 | // Note: this might be a problem as opcode 0 may be a valid opcode (see issue 366221). |
518 | if( PRDIsEmpty(opcode) ) { |
519 | return FALSE; |
520 | } |
521 | |
522 | // Patch is active, so it must also be bound |
523 | _ASSERTE( address != NULL ); |
524 | return TRUE; |
525 | } |
526 | |
527 | bool IsFree() {return (refCount == 0);} |
528 | bool IsTriggering() {return (refCount > 1);} |
529 | |
530 | // Is this patch at a position at which it's safe to take a stack? |
531 | bool IsSafeForStackTrace(); |
532 | |
533 | #ifndef _TARGET_ARM_ |
534 | // gets a pointer to the shared buffer |
535 | SharedPatchBypassBuffer* GetOrCreateSharedPatchBypassBuffer(); |
536 | |
537 | // entry point for general initialization when the controller is being created |
538 | void Initialize() |
539 | { |
540 | m_pSharedPatchBypassBuffer = NULL; |
541 | } |
542 | |
543 | // entry point for general cleanup when the controller is being removed from the patch table |
544 | void DoCleanup() |
545 | { |
546 | if (m_pSharedPatchBypassBuffer != NULL) |
547 | m_pSharedPatchBypassBuffer->Release(); |
548 | } |
549 | #endif // _TARGET_ARM_ |
550 | |
551 | private: |
552 | DebuggerPatchKind kind; |
553 | }; |
554 | |
555 | typedef DPTR(DebuggerControllerPatch) PTR_DebuggerControllerPatch; |
556 | |
557 | /* class DebuggerPatchTable: This is the table that contains |
558 | * information about the patches (breakpoints) maintained by the |
559 | * debugger for a variety of purposes. |
560 | * The only tricky part is that |
561 | * patches can be hashed either by the address that they're applied to, |
562 | * or by DebuggerFunctionKey. If address is equal to zero, then the |
563 | * patch is hashed by DebuggerFunctionKey. |
564 | * |
565 | * Patch table inspection scheme: |
566 | * |
567 | * We have to be able to inspect memory (read/write) from the right |
568 | * side w/o the help of the left side. When we do unmanaged debugging, |
569 | * we need to be able to R/W memory out of a debuggee s.t. the debugger |
570 | * won't see our patches. So we have to be able to read our patch table |
571 | * from the left side, which is problematic since we know that the left |
572 | * side will be arbitrarily frozen, but we don't know where. |
573 | * |
574 | * So our scheme is this: |
575 | * we'll send a pointer to the g_patches table over in startup, |
576 | * and when we want to inspect it at runtime, we'll freeze the left side, |
577 | * then read-memory the "data" (m_pcEntries) array over to the right. We'll |
578 | * iterate through the array & assume that anything with a non-zero opcode |
579 | * and address field is valid. To ensure that the assumption is ok, we |
580 | * use the zeroing allocator which zeros out newly created space, and |
581 | * we'll be very careful about zeroing out the opcode field during the |
582 | * Unapply operation |
583 | * |
584 | * NOTE: Don't mess with the memory protections on this while the |
585 | * left side is frozen (ie, no threads are executing). |
586 | * WriteMemory depends on being able to write the patchtable back |
587 | * if it was read successfully. |
588 | */ |
589 | #define DPT_INVALID_SLOT (UINT32_MAX) |
590 | #define DPT_DEFAULT_TRACE_TYPE TRACE_OTHER |
591 | |
592 | /* Although CHashTableAndData can grow, we always use a fixed number of buckets. |
593 | * This is problematic for tables like the patch table which are usually small, but |
594 | * can become huge. When the number of entries far exceeds the number of buckets, |
595 | * lookup and addition basically degrade into linear searches. There is a trade-off |
596 | * here between wasting memory for unused buckets, and performance of large tables. |
597 | * Also note that the number of buckets should be a prime number. |
598 | */ |
599 | #define DPT_HASH_BUCKETS 1103 |
600 | |
601 | class DebuggerPatchTable : private CHashTableAndData<CNewZeroData> |
602 | { |
603 | VPTR_BASE_CONCRETE_VTABLE_CLASS(DebuggerPatchTable); |
604 | |
605 | public: |
606 | virtual ~DebuggerPatchTable() = default; |
607 | |
608 | friend class DebuggerRCThread; |
609 | private: |
610 | //incremented so that we can get DPT-wide unique PIDs. |
611 | // pid = Patch ID. |
612 | SIZE_T m_pid; |
613 | // Given a patch, retrieves the correct key. The return value of this function is passed to Cmp(), Find(), etc. |
614 | SIZE_T Key(DebuggerControllerPatch *patch) |
615 | { |
616 | LIMITED_METHOD_DAC_CONTRACT; |
617 | |
618 | // Most clients of CHashTable pass a host pointer as the key. However, the key really could be |
619 | // anything. In our case, the key can either be a host pointer of type DebuggerFunctionKey or |
620 | // the address of the patch. |
621 | if (patch->address == NULL) |
622 | { |
623 | return (SIZE_T)(&patch->key); |
624 | } |
625 | else |
626 | { |
627 | return (SIZE_T)(dac_cast<TADDR>(patch->address)); |
628 | } |
629 | } |
630 | |
631 | // Given two DebuggerControllerPatches, tells |
632 | // whether they are equal or not. Does this by comparing the correct |
633 | // key. |
634 | // BYTE* pc1: If pc2 is hashed by address, |
635 | // pc1 is an address. If |
636 | // pc2 is hashed by DebuggerFunctionKey, |
637 | // pc1 is a DebuggerFunctionKey |
638 | //Returns true if the two patches are equal, false otherwise |
639 | BOOL Cmp(SIZE_T k1, const HASHENTRY * pc2) |
640 | { |
641 | LIMITED_METHOD_DAC_CONTRACT; |
642 | |
643 | DebuggerControllerPatch * pPatch2 = dac_cast<PTR_DebuggerControllerPatch>(const_cast<HASHENTRY *>(pc2)); |
644 | |
645 | if (pPatch2->address == NULL) |
646 | { |
647 | // k1 is a host pointer of type DebuggerFunctionKey. |
648 | DebuggerFunctionKey * pKey1 = reinterpret_cast<DebuggerFunctionKey *>(k1); |
649 | |
650 | return ((pKey1->module != pPatch2->key.module) || (pKey1->md != pPatch2->key.md)); |
651 | } |
652 | else |
653 | { |
654 | return ((SIZE_T)(dac_cast<TADDR>(pPatch2->address)) != k1); |
655 | } |
656 | } |
657 | |
658 | //Computes a hash value based on an address |
659 | ULONG HashAddress(PTR_CORDB_ADDRESS_TYPE address) |
660 | { |
661 | LIMITED_METHOD_DAC_CONTRACT; |
662 | return (ULONG)(SIZE_T)(dac_cast<TADDR>(address)); |
663 | } |
664 | |
665 | //Computes a hash value based on a DebuggerFunctionKey |
666 | ULONG HashKey(DebuggerFunctionKey * pKey) |
667 | { |
668 | SUPPORTS_DAC; |
669 | return HashPtr(pKey->md, pKey->module); |
670 | } |
671 | |
672 | //Computes a hash value from a patch, using the address field |
673 | // if the patch is hashed by address, using the DebuggerFunctionKey |
674 | // otherwise |
675 | ULONG Hash(DebuggerControllerPatch * pPatch) |
676 | { |
677 | SUPPORTS_DAC; |
678 | |
679 | if (pPatch->address == NULL) |
680 | return HashKey(&(pPatch->key)); |
681 | else |
682 | return HashAddress(pPatch->address); |
683 | } |
684 | //Public Members |
685 | public: |
686 | enum { |
687 | DCP_PID_INVALID, |
688 | DCP_PID_FIRST_VALID, |
689 | }; |
690 | |
691 | #ifndef DACCESS_COMPILE |
692 | |
693 | DebuggerPatchTable() : CHashTableAndData<CNewZeroData>(DPT_HASH_BUCKETS) { } |
694 | |
695 | HRESULT Init() |
696 | { |
697 | WRAPPER_NO_CONTRACT; |
698 | |
699 | m_pid = DCP_PID_FIRST_VALID; |
700 | |
701 | SUPPRESS_ALLOCATION_ASSERTS_IN_THIS_SCOPE; |
702 | return NewInit(17, sizeof(DebuggerControllerPatch), 101); |
703 | } |
704 | |
705 | // Assuming that the chain of patches (as defined by all the |
706 | // GetNextPatch from this patch) are either sorted or NULL, take the given |
707 | // patch (which should be the first patch in the chain). This |
708 | // is called by AddPatch to make sure that the order of the |
709 | // patches is what we want for things like E&C, DePatchSkips,etc. |
710 | void SortPatchIntoPatchList(DebuggerControllerPatch **ppPatch); |
711 | |
712 | void SpliceOutOfList(DebuggerControllerPatch *patch); |
713 | |
714 | void SpliceInBackOf(DebuggerControllerPatch *patchAppend, |
715 | DebuggerControllerPatch *patchEnd); |
716 | |
717 | // |
718 | // Note that patches may be reallocated - do not keep a pointer to a patch. |
719 | // |
720 | DebuggerControllerPatch *AddPatchForMethodDef(DebuggerController *controller, |
721 | Module *module, |
722 | mdMethodDef md, |
723 | MethodDesc *pMethodDescFilter, |
724 | size_t offset, |
725 | BOOL offsetIsIL, |
726 | DebuggerPatchKind kind, |
727 | FramePointer fp, |
728 | AppDomain *pAppDomain, |
729 | SIZE_T masterEnCVersion, |
730 | DebuggerJitInfo *dji); |
731 | |
732 | DebuggerControllerPatch *AddPatchForAddress(DebuggerController *controller, |
733 | MethodDesc *fd, |
734 | size_t offset, |
735 | DebuggerPatchKind kind, |
736 | CORDB_ADDRESS_TYPE *address, |
737 | FramePointer fp, |
738 | AppDomain *pAppDomain, |
739 | DebuggerJitInfo *dji = NULL, |
740 | SIZE_T pid = DCP_PID_INVALID, |
741 | TraceType traceType = DPT_DEFAULT_TRACE_TYPE); |
742 | |
743 | // Set the native address for this patch. |
744 | void BindPatch(DebuggerControllerPatch *patch, CORDB_ADDRESS_TYPE *address); |
745 | void UnbindPatch(DebuggerControllerPatch *patch); |
746 | void RemovePatch(DebuggerControllerPatch *patch); |
747 | |
748 | // This is a sad legacy workaround. The patch table (implemented as this |
749 | // class) is shared across process. We publish the runtime offsets of |
750 | // some key fields. Since those fields are private, we have to provide |
751 | // accessors here. So if you're not using these functions, don't start. |
752 | // We can hopefully remove them. |
753 | static SIZE_T GetOffsetOfEntries() |
754 | { |
755 | // assert that we the offsets of these fields in the base class is |
756 | // the same as the offset of this field in this class. |
757 | _ASSERTE((void*)(DebuggerPatchTable*)NULL == (void*)(CHashTableAndData<CNewZeroData>*)NULL); |
758 | return helper_GetOffsetOfEntries(); |
759 | } |
760 | |
761 | static SIZE_T GetOffsetOfCount() |
762 | { |
763 | _ASSERTE((void*)(DebuggerPatchTable*)NULL == (void*)(CHashTableAndData<CNewZeroData>*)NULL); |
764 | return helper_GetOffsetOfCount(); |
765 | } |
766 | |
767 | // GetPatch find the first patch in the hash table |
768 | // that is hashed by matching the {Module,mdMethodDef} to the |
769 | // patch's DebuggerFunctionKey. This will NOT find anything |
770 | // hashed by address, even if that address is within the |
771 | // method specified. |
772 | // You can use GetNextPatch to iterate through all the patches keyed by |
773 | // this Module,mdMethodDef pair |
774 | DebuggerControllerPatch *GetPatch(Module *module, mdToken md) |
775 | { |
776 | DebuggerFunctionKey key; |
777 | |
778 | key.module = module; |
779 | key.md = md; |
780 | |
781 | return reinterpret_cast<DebuggerControllerPatch *>(Find(HashKey(&key), (SIZE_T)&key)); |
782 | } |
783 | #endif // #ifndef DACCESS_COMPILE |
784 | |
785 | // GetPatch will translate find the first patch in the hash |
786 | // table that is hashed by address. It will NOT find anything hashed |
787 | // by {Module,mdMethodDef}, or by MethodDesc. |
788 | DebuggerControllerPatch * GetPatch(PTR_CORDB_ADDRESS_TYPE address) |
789 | { |
790 | SUPPORTS_DAC; |
791 | ARM_ONLY(_ASSERTE(dac_cast<DWORD>(address) & THUMB_CODE)); |
792 | |
793 | DebuggerControllerPatch * pPatch = |
794 | dac_cast<PTR_DebuggerControllerPatch>(Find(HashAddress(address), (SIZE_T)(dac_cast<TADDR>(address)))); |
795 | |
796 | return pPatch; |
797 | } |
798 | |
799 | DebuggerControllerPatch *GetNextPatch(DebuggerControllerPatch *prev); |
800 | |
801 | // Find the first patch in the patch table, and store |
802 | // index info in info. Along with GetNextPatch, this can |
803 | // iterate through the whole patch table. Note that since the |
804 | // hashtable operates via iterating through all the contents |
805 | // of all the buckets, if you add an entry while iterating |
806 | // through the table, you may or may not iterate across |
807 | // the new entries. You will iterate through all the entries |
808 | // that were present at the beginning of the run. You |
809 | // safely delete anything you've already iterated by, anything |
810 | // else is kinda risky. |
811 | DebuggerControllerPatch * GetFirstPatch(HASHFIND * pInfo) |
812 | { |
813 | SUPPORTS_DAC; |
814 | |
815 | return dac_cast<PTR_DebuggerControllerPatch>(FindFirstEntry(pInfo)); |
816 | } |
817 | |
818 | // Along with GetFirstPatch, this can iterate through |
819 | // the whole patch table. See GetFirstPatch for more info |
820 | // on the rules of iterating through the table. |
821 | DebuggerControllerPatch * GetNextPatch(HASHFIND * pInfo) |
822 | { |
823 | SUPPORTS_DAC; |
824 | |
825 | return dac_cast<PTR_DebuggerControllerPatch>(FindNextEntry(pInfo)); |
826 | } |
827 | |
828 | // Used by DebuggerController to translate an index |
829 | // of a patch into a direct pointer. |
830 | inline HASHENTRY * GetEntryPtr(ULONG iEntry) |
831 | { |
832 | SUPPORTS_DAC; |
833 | |
834 | return EntryPtr(iEntry); |
835 | } |
836 | |
837 | // Used by DebuggerController to grab indeces of patches |
838 | // rather than holding direct pointers to them. |
839 | inline ULONG GetItemIndex(HASHENTRY * p) |
840 | { |
841 | SUPPORTS_DAC; |
842 | |
843 | return ItemIndex(p); |
844 | } |
845 | |
846 | #ifdef _DEBUG_PATCH_TABLE |
847 | public: |
848 | // DEBUG An internal debugging routine, it iterates |
849 | // through the hashtable, stopping at every |
850 | // single entry, no matter what it's state. For this to |
851 | // compile, you're going to have to add friend status |
852 | // of this class to CHashTableAndData in |
853 | // to $\Com99\Src\inc\UtilCode.h |
854 | void CheckPatchTable(); |
855 | #endif // _DEBUG_PATCH_TABLE |
856 | |
857 | // Count how many patches are in the table. |
858 | // Use for asserts |
859 | int GetNumberOfPatches(); |
860 | |
861 | }; |
862 | |
863 | typedef VPTR(class DebuggerPatchTable) PTR_DebuggerPatchTable; |
864 | |
865 | |
866 | #if !defined(DACCESS_COMPILE) |
867 | |
868 | // DebuggerControllerPage|Will eventually be used for |
869 | // 'break when modified' behaviour' |
870 | typedef struct DebuggerControllerPage |
871 | { |
872 | DebuggerControllerPage *next; |
873 | const BYTE *start, *end; |
874 | DebuggerController *controller; |
875 | bool readable; |
876 | } DebuggerControllerPage; |
877 | |
878 | // DEBUGGER_CONTROLLER_TYPE: Identifies the type of the controller. |
879 | // It exists b/c we have RTTI turned off. |
880 | // Note that the order of these is important - SortPatchIntoPatchList |
881 | // relies on this ordering. |
882 | // |
883 | // DEBUGGER_CONTROLLER_STATIC|Base class response. Should never be |
884 | // seen, since we shouldn't be asking the base class about this. |
885 | // DEBUGGER_CONTROLLER_BREAKPOINT|DebuggerBreakpoint |
886 | // DEBUGGER_CONTROLLER_STEPPER|DebuggerStepper |
887 | // DEBUGGER_CONTROLLER_THREAD_STARTER|DebuggerThreadStarter |
888 | // DEBUGGER_CONTROLLER_ENC|DebuggerEnCBreakpoint |
889 | // DEBUGGER_CONTROLLER_PATCH_SKIP|DebuggerPatchSkip |
890 | // DEBUGGER_CONTROLLER_JMC_STEPPER|DebuggerJMCStepper - steps through Just-My-Code |
891 | // DEBUGGER_CONTROLLER_CONTINUABLE_EXCEPTION|DebuggerContinuableExceptionBreakpoint |
892 | enum DEBUGGER_CONTROLLER_TYPE |
893 | { |
894 | DEBUGGER_CONTROLLER_THREAD_STARTER, |
895 | DEBUGGER_CONTROLLER_ENC, |
896 | DEBUGGER_CONTROLLER_ENC_PATCH_TO_SKIP, // At any one address, |
897 | // There can be only one! |
898 | DEBUGGER_CONTROLLER_PATCH_SKIP, |
899 | DEBUGGER_CONTROLLER_BREAKPOINT, |
900 | DEBUGGER_CONTROLLER_STEPPER, |
901 | DEBUGGER_CONTROLLER_FUNC_EVAL_COMPLETE, |
902 | DEBUGGER_CONTROLLER_USER_BREAKPOINT, // UserBreakpoints are used by Runtime threads to |
903 | // send that they've hit a user breakpoint to the Right Side. |
904 | DEBUGGER_CONTROLLER_JMC_STEPPER, // Stepper that only stops in JMC-functions. |
905 | DEBUGGER_CONTROLLER_CONTINUABLE_EXCEPTION, |
906 | DEBUGGER_CONTROLLER_DATA_BREAKPOINT, |
907 | DEBUGGER_CONTROLLER_STATIC, |
908 | }; |
909 | |
910 | enum TP_RESULT |
911 | { |
912 | TPR_TRIGGER, // This controller wants to SendEvent |
913 | TPR_IGNORE, // This controller doesn't want to SendEvent |
914 | TPR_TRIGGER_ONLY_THIS, // This, and only this controller, should be triggered. |
915 | // Right now, only the DebuggerEnCRemap controller |
916 | // returns this, the remap patch should be the first |
917 | // patch in the list. |
918 | TPR_TRIGGER_ONLY_THIS_AND_LOOP, |
919 | // This, and only this controller, should be triggered. |
920 | // Right now, only the DebuggerEnCRemap controller |
921 | // returns this, the remap patch should be the first |
922 | // patch in the list. |
923 | // After triggering this, DPOSS should skip the |
924 | // ActivatePatchSkip call, so we hit the other |
925 | // breakpoints at this location. |
926 | TPR_IGNORE_AND_STOP, // Don't SendEvent, and stop asking other |
927 | // controllers if they want to. |
928 | // Service any previous triggered controllers. |
929 | }; |
930 | |
931 | enum SCAN_TRIGGER |
932 | { |
933 | ST_PATCH = 0x1, // Only look for patches |
934 | ST_SINGLE_STEP = 0x2, // Look for patches, and single-steps. |
935 | } ; |
936 | |
937 | enum TRIGGER_WHY |
938 | { |
939 | TY_NORMAL = 0x0, |
940 | TY_SHORT_CIRCUIT= 0x1, // EnC short circuit - see DispatchPatchOrSingleStep |
941 | } ; |
942 | |
943 | // the return value for DebuggerController::DispatchPatchOrSingleStep |
944 | enum DPOSS_ACTION |
945 | { |
946 | // the following enum has been carefully ordered to optimize the helper |
947 | // functions below. Do not re-order them w/o changing the helper funcs. |
948 | DPOSS_INVALID = 0x0, // invalid action value |
949 | DPOSS_DONT_CARE = 0x1, // don't care about this exception |
950 | DPOSS_USED_WITH_NO_EVENT = 0x2, // Care about this exception but won't send event to RS |
951 | DPOSS_USED_WITH_EVENT = 0x3, // Care about this exception and will send event to RS |
952 | }; |
953 | |
954 | // helper function |
955 | inline bool IsInUsedAction(DPOSS_ACTION action) |
956 | { |
957 | _ASSERTE(action != DPOSS_INVALID); |
958 | return (action >= DPOSS_USED_WITH_NO_EVENT); |
959 | } |
960 | |
961 | inline void VerifyExecutableAddress(const BYTE* address) |
962 | { |
963 | // TODO: : when can we apply this to x86? |
964 | #if defined(_WIN64) |
965 | #if defined(_DEBUG) |
966 | #ifndef FEATURE_PAL |
967 | MEMORY_BASIC_INFORMATION mbi; |
968 | |
969 | if (sizeof(mbi) == ClrVirtualQuery(address, &mbi, sizeof(mbi))) |
970 | { |
971 | if (!(mbi.State & MEM_COMMIT)) |
972 | { |
973 | STRESS_LOG1(LF_GCROOTS, LL_ERROR, "VerifyExecutableAddress: address is uncommited memory, address=0x%p" , address); |
974 | CONSISTENCY_CHECK_MSGF((mbi.State & MEM_COMMIT), ("VEA: address (0x%p) is uncommited memory." , address)); |
975 | } |
976 | |
977 | if (!(mbi.Protect & (PAGE_EXECUTE | PAGE_EXECUTE_READ | PAGE_EXECUTE_READWRITE | PAGE_EXECUTE_WRITECOPY))) |
978 | { |
979 | STRESS_LOG1(LF_GCROOTS, LL_ERROR, "VerifyExecutableAddress: address is not executable, address=0x%p" , address); |
980 | CONSISTENCY_CHECK_MSGF((mbi.Protect & (PAGE_EXECUTE | PAGE_EXECUTE_READ | PAGE_EXECUTE_READWRITE | PAGE_EXECUTE_WRITECOPY)), |
981 | ("VEA: address (0x%p) is not on an executable page." , address)); |
982 | } |
983 | } |
984 | #endif // !FEATURE_PAL |
985 | #endif // _DEBUG |
986 | #endif // _WIN64 |
987 | } |
988 | |
989 | #endif // !DACCESS_COMPILE |
990 | |
991 | |
992 | // DebuggerController: DebuggerController serves |
993 | // both as a static class that dispatches exceptions coming from the |
994 | // EE, and as an abstract base class for the five classes that derrive |
995 | // from it. |
996 | class DebuggerController |
997 | { |
998 | VPTR_BASE_CONCRETE_VTABLE_CLASS(DebuggerController); |
999 | |
1000 | #if !defined(DACCESS_COMPILE) |
1001 | |
1002 | // Needs friendship for lock because of EnC locking workarounds. |
1003 | friend class DebuggerEnCBreakpoint; |
1004 | |
1005 | friend class DebuggerPatchSkip; |
1006 | friend class DebuggerRCThread; //so we can get offsets of fields the |
1007 | //right side needs to read |
1008 | friend class Debugger; // So Debugger can lock, use, unlock the patch |
1009 | // table in MapAndBindFunctionBreakpoints |
1010 | friend void Debugger::UnloadModule(Module* pRuntimeModule, AppDomain *pAppDomain); |
1011 | |
1012 | // |
1013 | // Static functionality |
1014 | // |
1015 | |
1016 | public: |
1017 | class ControllerLockHolder : public CrstHolder |
1018 | { |
1019 | public: |
1020 | ControllerLockHolder() : CrstHolder(&g_criticalSection) { WRAPPER_NO_CONTRACT; } |
1021 | }; |
1022 | |
1023 | static HRESULT Initialize(); |
1024 | |
1025 | // Remove and cleanup all DebuggerControllers for detach |
1026 | static void DeleteAllControllers(); |
1027 | |
1028 | // |
1029 | // global event dispatching functionality |
1030 | // |
1031 | |
1032 | |
1033 | // Controllers are notified when they enter/exit func-evals (on their same thread, |
1034 | // on any any thread if the controller doesn't have a thread). |
1035 | // The original use for this was to allow steppers to skip through func-evals. |
1036 | // thread - the thread doing the funceval. |
1037 | static void DispatchFuncEvalEnter(Thread * thread); |
1038 | static void DispatchFuncEvalExit(Thread * thread); |
1039 | |
1040 | static bool DispatchNativeException(EXCEPTION_RECORD *exception, |
1041 | CONTEXT *context, |
1042 | DWORD code, |
1043 | Thread *thread); |
1044 | |
1045 | static bool DispatchUnwind(Thread *thread, |
1046 | MethodDesc *fd, DebuggerJitInfo * pDJI, SIZE_T offset, |
1047 | FramePointer handlerFP, |
1048 | CorDebugStepReason unwindReason); |
1049 | |
1050 | static bool DispatchTraceCall(Thread *thread, |
1051 | const BYTE *address); |
1052 | |
1053 | static PRD_TYPE GetPatchedOpcode(CORDB_ADDRESS_TYPE *address); |
1054 | |
1055 | static BOOL CheckGetPatchedOpcode(CORDB_ADDRESS_TYPE *address, /*OUT*/ PRD_TYPE *pOpcode); |
1056 | |
1057 | // pIP is the ip right after the prolog of the method we've entered. |
1058 | // fp is the frame pointer for that method. |
1059 | static void DispatchMethodEnter(void * pIP, FramePointer fp); |
1060 | |
1061 | |
1062 | // Delete any patches that exist for a specific module and optionally a specific AppDomain. |
1063 | // If pAppDomain is specified, then only patches tied to the specified AppDomain are |
1064 | // removed. If pAppDomain is null, then all patches for the module are removed. |
1065 | static void RemovePatchesFromModule( Module* pModule, AppDomain* pAppdomain ); |
1066 | |
1067 | // Check whether there are any pathces in the patch table for the specified module. |
1068 | static bool ModuleHasPatches( Module* pModule ); |
1069 | |
1070 | #if EnC_SUPPORTED |
1071 | static DebuggerControllerPatch *IsXXXPatched(const BYTE *eip, |
1072 | DEBUGGER_CONTROLLER_TYPE dct); |
1073 | |
1074 | static DebuggerControllerPatch *GetEnCPatch(const BYTE *address); |
1075 | #endif //EnC_SUPPORTED |
1076 | |
1077 | static DPOSS_ACTION ScanForTriggers(CORDB_ADDRESS_TYPE *address, |
1078 | Thread *thread, |
1079 | CONTEXT *context, |
1080 | DebuggerControllerQueue *pDcq, |
1081 | SCAN_TRIGGER stWhat, |
1082 | TP_RESULT *pTpr); |
1083 | |
1084 | |
1085 | static DebuggerPatchSkip *ActivatePatchSkip(Thread *thread, |
1086 | const BYTE *eip, |
1087 | BOOL fForEnC); |
1088 | |
1089 | |
1090 | static DPOSS_ACTION DispatchPatchOrSingleStep(Thread *thread, |
1091 | CONTEXT *context, |
1092 | CORDB_ADDRESS_TYPE *ip, |
1093 | SCAN_TRIGGER which); |
1094 | |
1095 | |
1096 | static int GetNumberOfPatches() |
1097 | { |
1098 | if (g_patches == NULL) |
1099 | return 0; |
1100 | |
1101 | return g_patches->GetNumberOfPatches(); |
1102 | } |
1103 | |
1104 | static int GetTotalMethodEnter() {LIMITED_METHOD_CONTRACT; return g_cTotalMethodEnter; } |
1105 | |
1106 | #if defined(_DEBUG) |
1107 | // Debug check that we only have 1 thread-starter per thread. |
1108 | // Check this new one against all existing ones. |
1109 | static void EnsureUniqueThreadStarter(DebuggerThreadStarter * pNew); |
1110 | #endif |
1111 | // If we have a thread-starter on the given EE thread, make sure it's cancel. |
1112 | // Thread-Starters normally delete themselves when they fire. But if the EE |
1113 | // destroys the thread before it fires, then we'd still have an active DTS. |
1114 | static void CancelOutstandingThreadStarter(Thread * pThread); |
1115 | |
1116 | static void AddRef(DebuggerControllerPatch *patch); |
1117 | static void Release(DebuggerControllerPatch *patch); |
1118 | |
1119 | private: |
1120 | |
1121 | static bool MatchPatch(Thread *thread, CONTEXT *context, |
1122 | DebuggerControllerPatch *patch); |
1123 | |
1124 | // Returns TRUE if we should continue to dispatch after this exception |
1125 | // hook. |
1126 | static BOOL DispatchExceptionHook(Thread *thread, CONTEXT *context, |
1127 | EXCEPTION_RECORD *exception); |
1128 | |
1129 | protected: |
1130 | #ifdef _DEBUG |
1131 | static bool HasLock() |
1132 | { |
1133 | return g_criticalSection.OwnedByCurrentThread() != 0; |
1134 | } |
1135 | #endif |
1136 | |
1137 | #endif // !DACCESS_COMPILE |
1138 | |
1139 | private: |
1140 | SPTR_DECL(DebuggerPatchTable, g_patches); |
1141 | SVAL_DECL(BOOL, g_patchTableValid); |
1142 | |
1143 | #if !defined(DACCESS_COMPILE) |
1144 | |
1145 | private: |
1146 | static DebuggerControllerPage *g_protections; |
1147 | static DebuggerController *g_controllers; |
1148 | |
1149 | // This is the "Controller" lock. It synchronizes the controller infrastructure. |
1150 | // It is smaller than the debugger lock, but larger than the debugger-data lock. |
1151 | // It needs to be taken in execution-control related callbacks; and will also call |
1152 | // back into the EE when held (most notably for the stub-managers; but also for various |
1153 | // query operations). |
1154 | static CrstStatic g_criticalSection; |
1155 | |
1156 | // Write is protected by both Debugger + Controller Lock |
1157 | static int g_cTotalMethodEnter; |
1158 | |
1159 | static bool BindPatch(DebuggerControllerPatch *patch, |
1160 | MethodDesc *fd, |
1161 | CORDB_ADDRESS_TYPE *startAddr); |
1162 | static bool ApplyPatch(DebuggerControllerPatch *patch); |
1163 | static bool UnapplyPatch(DebuggerControllerPatch *patch); |
1164 | static void UnapplyPatchAt(DebuggerControllerPatch *patch, CORDB_ADDRESS_TYPE *address); |
1165 | static bool IsPatched(CORDB_ADDRESS_TYPE *address, BOOL native); |
1166 | |
1167 | static void ActivatePatch(DebuggerControllerPatch *patch); |
1168 | static void DeactivatePatch(DebuggerControllerPatch *patch); |
1169 | |
1170 | static void ApplyTraceFlag(Thread *thread); |
1171 | static void UnapplyTraceFlag(Thread *thread); |
1172 | |
1173 | virtual void DebuggerDetachClean(); |
1174 | |
1175 | public: |
1176 | static const BYTE *g_pMSCorEEStart, *g_pMSCorEEEnd; |
1177 | |
1178 | static const BYTE *GetILPrestubDestination(const BYTE *prestub); |
1179 | static const BYTE *GetILFunctionCode(MethodDesc *fd); |
1180 | |
1181 | // |
1182 | // Non-static functionality |
1183 | // |
1184 | |
1185 | public: |
1186 | |
1187 | DebuggerController(Thread * pThread, AppDomain * pAppDomain); |
1188 | virtual ~DebuggerController(); |
1189 | void Delete(); |
1190 | bool IsDeleted() { return m_deleted; } |
1191 | |
1192 | #endif // !DACCESS_COMPILE |
1193 | |
1194 | |
1195 | // Return the pointer g_patches. |
1196 | // Access to patch table for the RC threads (EE,DI) |
1197 | // Why: The right side needs to know the address of the patch |
1198 | // table (which never changes after it gets created) so that ReadMemory, |
1199 | // WriteMemory can work from out-of-process. This should only be used in |
1200 | // when the Runtime Controller is starting up, and not thereafter. |
1201 | // How:return g_patches; |
1202 | public: |
1203 | static DebuggerPatchTable * GetPatchTable() {LIMITED_METHOD_DAC_CONTRACT; return g_patches; } |
1204 | static BOOL GetPatchTableValid() {LIMITED_METHOD_DAC_CONTRACT; return g_patchTableValid; } |
1205 | |
1206 | #if !defined(DACCESS_COMPILE) |
1207 | static BOOL *GetPatchTableValidAddr() {LIMITED_METHOD_CONTRACT; return &g_patchTableValid; } |
1208 | |
1209 | // Is there a patch at addr? |
1210 | // We sometimes want to use this version of the method |
1211 | // (as opposed to IsPatched) because there is |
1212 | // a race condition wherein a patch can be added to the table, we can |
1213 | // ask about it, and then we can actually apply the patch. |
1214 | // How: If the patch table contains a patch at that address, there |
1215 | // is. |
1216 | static bool IsAddressPatched(CORDB_ADDRESS_TYPE *address) |
1217 | { |
1218 | return (g_patches->GetPatch(address) != NULL); |
1219 | } |
1220 | |
1221 | // |
1222 | // Event setup |
1223 | // |
1224 | |
1225 | Thread *GetThread() { return m_thread; } |
1226 | |
1227 | // This one should be made private |
1228 | BOOL AddBindAndActivateILSlavePatch(DebuggerControllerPatch *master, |
1229 | DebuggerJitInfo *dji); |
1230 | |
1231 | BOOL AddILPatch(AppDomain * pAppDomain, Module *module, |
1232 | mdMethodDef md, |
1233 | MethodDesc* pMethodFilter, |
1234 | SIZE_T encVersion, // what encVersion does this apply to? |
1235 | SIZE_T offset, |
1236 | BOOL offsetIsIL); |
1237 | |
1238 | // The next two are very similar. Both work on offsets, |
1239 | // but one takes a "patch id". I don't think these are really needed: the |
1240 | // controller itself can act as the id of the patch. |
1241 | BOOL AddBindAndActivateNativeManagedPatch( |
1242 | MethodDesc * fd, |
1243 | DebuggerJitInfo *dji, |
1244 | SIZE_T offset, |
1245 | FramePointer fp, |
1246 | AppDomain *pAppDomain); |
1247 | |
1248 | // Add a patch at the start of a not-yet-jitted method. |
1249 | void AddPatchToStartOfLatestMethod(MethodDesc * fd); |
1250 | |
1251 | |
1252 | // This version is particularly useful b/c it doesn't assume that the |
1253 | // patch is inside a managed method. |
1254 | DebuggerControllerPatch *AddAndActivateNativePatchForAddress(CORDB_ADDRESS_TYPE *address, |
1255 | FramePointer fp, |
1256 | bool managed, |
1257 | TraceType traceType); |
1258 | |
1259 | |
1260 | |
1261 | bool PatchTrace(TraceDestination *trace, FramePointer fp, bool fStopInUnmanaged); |
1262 | |
1263 | void AddProtection(const BYTE *start, const BYTE *end, bool readable); |
1264 | void RemoveProtection(const BYTE *start, const BYTE *end, bool readable); |
1265 | |
1266 | static BOOL IsSingleStepEnabled(Thread *pThread); |
1267 | bool IsSingleStepEnabled(); |
1268 | void EnableSingleStep(); |
1269 | static void EnableSingleStep(Thread *pThread); |
1270 | |
1271 | void DisableSingleStep(); |
1272 | |
1273 | void EnableExceptionHook(); |
1274 | void DisableExceptionHook(); |
1275 | |
1276 | void EnableUnwind(FramePointer frame); |
1277 | void DisableUnwind(); |
1278 | FramePointer GetUnwind(); |
1279 | |
1280 | void EnableTraceCall(FramePointer fp); |
1281 | void DisableTraceCall(); |
1282 | |
1283 | bool IsMethodEnterEnabled(); |
1284 | void EnableMethodEnter(); |
1285 | void DisableMethodEnter(); |
1286 | |
1287 | void DisableAll(); |
1288 | |
1289 | virtual DEBUGGER_CONTROLLER_TYPE GetDCType( void ) |
1290 | { return DEBUGGER_CONTROLLER_STATIC; } |
1291 | |
1292 | // Return true iff this is one of the stepper types. |
1293 | // if true, we can safely cast this controller to a DebuggerStepper*. |
1294 | inline bool IsStepperDCType() |
1295 | { |
1296 | DEBUGGER_CONTROLLER_TYPE e = this->GetDCType(); |
1297 | return (e == DEBUGGER_CONTROLLER_STEPPER) || (e == DEBUGGER_CONTROLLER_JMC_STEPPER); |
1298 | } |
1299 | |
1300 | void Enqueue(); |
1301 | void Dequeue(); |
1302 | |
1303 | private: |
1304 | // Helper function that is called on each virtual trace call target to set a trace patch |
1305 | static void PatchTargetVisitor(TADDR pVirtualTraceCallTarget, VOID* pUserData); |
1306 | |
1307 | DebuggerControllerPatch *AddILMasterPatch(Module *module, |
1308 | mdMethodDef md, |
1309 | MethodDesc *pMethodDescFilter, |
1310 | SIZE_T offset, |
1311 | BOOL offsetIsIL, |
1312 | SIZE_T encVersion); |
1313 | |
1314 | BOOL AddBindAndActivatePatchForMethodDesc(MethodDesc *fd, |
1315 | DebuggerJitInfo *dji, |
1316 | SIZE_T nativeOffset, |
1317 | DebuggerPatchKind kind, |
1318 | FramePointer fp, |
1319 | AppDomain *pAppDomain); |
1320 | |
1321 | |
1322 | protected: |
1323 | |
1324 | // |
1325 | // Target event handlers |
1326 | // |
1327 | |
1328 | |
1329 | // Notify a controller that a func-eval is starting/ending on the given thread. |
1330 | // If a controller's m_thread!=NULL, then it is only notified of func-evals on |
1331 | // its thread. |
1332 | // Controllers don't need to Enable anything to get this, and most controllers |
1333 | // can ignore it. |
1334 | virtual void TriggerFuncEvalEnter(Thread * thread); |
1335 | virtual void TriggerFuncEvalExit(Thread * thread); |
1336 | |
1337 | virtual TP_RESULT TriggerPatch(DebuggerControllerPatch *patch, |
1338 | Thread *thread, |
1339 | TRIGGER_WHY tyWhy); |
1340 | |
1341 | // Dispatched when we get a SingleStep exception on this thread. |
1342 | // Return true if we want SendEvent to get called. |
1343 | |
1344 | virtual bool TriggerSingleStep(Thread *thread, const BYTE *ip); |
1345 | |
1346 | |
1347 | // Dispatched to notify the controller when we are going to a filter/handler |
1348 | // that's in the stepper's current frame or above (a caller frame). |
1349 | // 'desc' & 'offset' are the location of the filter/handler (ie, this is where |
1350 | // execution will continue) |
1351 | // 'frame' points into the stack at the return address for the function w/ the handler. |
1352 | // If (frame > m_unwindFP) then the filter/handler is in a caller, else |
1353 | // it's in the same function as the current stepper (It's not in a child because |
1354 | // we don't dispatch in that case). |
1355 | virtual void TriggerUnwind(Thread *thread, MethodDesc *fd, DebuggerJitInfo * pDJI, |
1356 | SIZE_T offset, FramePointer fp, |
1357 | CorDebugStepReason unwindReason); |
1358 | |
1359 | virtual void TriggerTraceCall(Thread *thread, const BYTE *ip); |
1360 | virtual TP_RESULT TriggerExceptionHook(Thread *thread, CONTEXT * pContext, |
1361 | EXCEPTION_RECORD *exception); |
1362 | |
1363 | // Trigger when we've entered a method |
1364 | // thread - current thread |
1365 | // desc - the method that we've entered |
1366 | // ip - the address after the prolog. A controller can patch this address. |
1367 | // To stop in this method. |
1368 | // Returns true if the trigger will disable itself from further method entry |
1369 | // triggers else returns false (passing through a cctor can cause this). |
1370 | // A controller can't block in this trigger! It can only update state / set patches |
1371 | // and then return. |
1372 | virtual void TriggerMethodEnter(Thread * thread, |
1373 | DebuggerJitInfo *dji, |
1374 | const BYTE * ip, |
1375 | FramePointer fp); |
1376 | |
1377 | |
1378 | // Send the managed debug event. |
1379 | // This is called after TriggerPatch/TriggerSingleStep actually trigger. |
1380 | // Note this can have a strange interaction with SetIp. Specifically this thread: |
1381 | // 1) may call TriggerXYZ which queues the controller for send event. |
1382 | // 2) blocks on a the debugger lock (in which case SetIp may get invoked on it) |
1383 | // 3) then sends the event |
1384 | // If SetIp gets invoked at step 2, the thread's IP may have changed such that it should no |
1385 | // longer trigger. Eg, perhaps we were about to send a breakpoint, and then SetIp moved us off |
1386 | // the bp. So we pass in an extra flag, fInteruptedBySetIp, to let the controller decide how to handle this. |
1387 | // Since SetIP only works within a single function, this can only be an issue if a thread's current stopping |
1388 | // location and the patch it set are in the same function. (So this could happen for step-over, but never |
1389 | // step-out). |
1390 | // This flag will almost always be false. |
1391 | // |
1392 | // Once we actually send the event, we're under the debugger lock, and so the world is stable underneath us. |
1393 | // But the world may change underneath a thread between when SendEvent gets queued and by the time it's actually called. |
1394 | // So SendIPCEvent may need to do some last-minute sanity checking (like the SetIP case) to ensure it should |
1395 | // still send. |
1396 | // |
1397 | // Returns true if send an event, false elsewise. |
1398 | virtual bool SendEvent(Thread *thread, bool fInteruptedBySetIp); |
1399 | |
1400 | AppDomain *m_pAppDomain; |
1401 | |
1402 | private: |
1403 | |
1404 | Thread *m_thread; |
1405 | DebuggerController *m_next; |
1406 | bool m_singleStep; |
1407 | bool m_exceptionHook; |
1408 | bool m_traceCall; |
1409 | protected: |
1410 | FramePointer m_traceCallFP; |
1411 | private: |
1412 | FramePointer m_unwindFP; |
1413 | int m_eventQueuedCount; |
1414 | bool m_deleted; |
1415 | bool m_fEnableMethodEnter; |
1416 | |
1417 | #endif // !DACCESS_COMPILE |
1418 | }; |
1419 | |
1420 | |
1421 | #if !defined(DACCESS_COMPILE) |
1422 | |
1423 | /* ------------------------------------------------------------------------- * |
1424 | * DebuggerPatchSkip routines |
1425 | * ------------------------------------------------------------------------- */ |
1426 | |
1427 | class DebuggerPatchSkip : public DebuggerController |
1428 | { |
1429 | friend class DebuggerController; |
1430 | |
1431 | DebuggerPatchSkip(Thread *thread, |
1432 | DebuggerControllerPatch *patch, |
1433 | AppDomain *pAppDomain); |
1434 | |
1435 | ~DebuggerPatchSkip(); |
1436 | |
1437 | bool TriggerSingleStep(Thread *thread, |
1438 | const BYTE *ip); |
1439 | |
1440 | TP_RESULT TriggerExceptionHook(Thread *thread, CONTEXT * pContext, |
1441 | EXCEPTION_RECORD *exception); |
1442 | |
1443 | TP_RESULT TriggerPatch(DebuggerControllerPatch *patch, |
1444 | Thread *thread, |
1445 | TRIGGER_WHY tyWhy); |
1446 | |
1447 | virtual DEBUGGER_CONTROLLER_TYPE GetDCType(void) |
1448 | { return DEBUGGER_CONTROLLER_PATCH_SKIP; } |
1449 | |
1450 | void CopyInstructionBlock(BYTE *to, const BYTE* from); |
1451 | |
1452 | void DecodeInstruction(CORDB_ADDRESS_TYPE *code); |
1453 | |
1454 | void DebuggerDetachClean(); |
1455 | |
1456 | CORDB_ADDRESS_TYPE *m_address; |
1457 | int m_iOrigDisp; // the original displacement of a relative call or jump |
1458 | InstructionAttribute m_instrAttrib; // info about the instruction being skipped over |
1459 | #ifndef _TARGET_ARM_ |
1460 | // this is shared among all the skippers and the controller. see the comments |
1461 | // right before the definition of SharedPatchBypassBuffer for lifetime info. |
1462 | SharedPatchBypassBuffer *m_pSharedPatchBypassBuffer; |
1463 | |
1464 | public: |
1465 | CORDB_ADDRESS_TYPE *GetBypassAddress() |
1466 | { |
1467 | _ASSERTE(m_pSharedPatchBypassBuffer); |
1468 | BYTE* patchBypass = m_pSharedPatchBypassBuffer->PatchBypass; |
1469 | return (CORDB_ADDRESS_TYPE *)patchBypass; |
1470 | } |
1471 | #endif // _TARGET_ARM_ |
1472 | }; |
1473 | |
1474 | /* ------------------------------------------------------------------------- * |
1475 | * DebuggerBreakpoint routines |
1476 | * ------------------------------------------------------------------------- */ |
1477 | |
1478 | // DebuggerBreakpoint: |
1479 | // DBp represents a user-placed breakpoint, and when Triggered, will |
1480 | // always want to be activated, whereupon it will inform the right side of |
1481 | // being hit. |
1482 | class DebuggerBreakpoint : public DebuggerController |
1483 | { |
1484 | public: |
1485 | DebuggerBreakpoint(Module *module, |
1486 | mdMethodDef md, |
1487 | AppDomain *pAppDomain, |
1488 | SIZE_T m_offset, |
1489 | bool m_native, |
1490 | SIZE_T ilEnCVersion, // must give the EnC version for non-native bps |
1491 | MethodDesc *nativeMethodDesc, // must be non-null when m_native, null otherwise |
1492 | DebuggerJitInfo *nativeJITInfo, // optional when m_native, null otherwise |
1493 | bool nativeCodeBindAllVersions, |
1494 | BOOL *pSucceed |
1495 | ); |
1496 | |
1497 | virtual DEBUGGER_CONTROLLER_TYPE GetDCType( void ) |
1498 | { return DEBUGGER_CONTROLLER_BREAKPOINT; } |
1499 | |
1500 | private: |
1501 | |
1502 | TP_RESULT TriggerPatch(DebuggerControllerPatch *patch, |
1503 | Thread *thread, |
1504 | TRIGGER_WHY tyWhy); |
1505 | bool SendEvent(Thread *thread, bool fInteruptedBySetIp); |
1506 | }; |
1507 | |
1508 | // * ------------------------------------------------------------------------ * |
1509 | // * DebuggerStepper routines |
1510 | // * ------------------------------------------------------------------------ * |
1511 | // |
1512 | |
1513 | // DebuggerStepper: This subclass of DebuggerController will |
1514 | // be instantiated to create a "Step" operation, meaning that execution |
1515 | // should continue until a range of IL code is exited. |
1516 | class DebuggerStepper : public DebuggerController |
1517 | { |
1518 | public: |
1519 | DebuggerStepper(Thread *thread, |
1520 | CorDebugUnmappedStop rgfMappingStop, |
1521 | CorDebugIntercept interceptStop, |
1522 | AppDomain *appDomain); |
1523 | ~DebuggerStepper(); |
1524 | |
1525 | bool Step(FramePointer fp, bool in, |
1526 | COR_DEBUG_STEP_RANGE *range, SIZE_T cRange, bool rangeIL); |
1527 | void StepOut(FramePointer fp, StackTraceTicket ticket); |
1528 | |
1529 | virtual DEBUGGER_CONTROLLER_TYPE GetDCType( void ) |
1530 | { return DEBUGGER_CONTROLLER_STEPPER; } |
1531 | |
1532 | //MoveToCurrentVersion makes sure that the stepper is prepared to |
1533 | // operate within the version of the code specified by djiNew. |
1534 | // Currently, this means to map the ranges into the ranges of the djiNew. |
1535 | // Idempotent. |
1536 | void MoveToCurrentVersion( DebuggerJitInfo *djiNew); |
1537 | |
1538 | // Public & Polymorphic on flavor (traditional vs. JMC). |
1539 | |
1540 | // Regular steppers want to EnableTraceCall; and JMC-steppers want to EnableMethodEnter. |
1541 | // (They're very related - they both stop at the next "interesting" managed code run). |
1542 | // So we just gloss over the difference w/ some polymorphism. |
1543 | virtual void EnablePolyTraceCall(); |
1544 | |
1545 | protected: |
1546 | // Steppers override these so that they can skip func-evals. |
1547 | void TriggerFuncEvalEnter(Thread * thread); |
1548 | void TriggerFuncEvalExit(Thread * thread); |
1549 | |
1550 | bool TrapStepInto(ControllerStackInfo *info, |
1551 | const BYTE *ip, |
1552 | TraceDestination *pTD); |
1553 | |
1554 | bool TrapStep(ControllerStackInfo *info, bool in); |
1555 | |
1556 | // @todo - must remove that fForceTraditional flag. Need a way for a JMC stepper |
1557 | // to do a Trad step out. |
1558 | void TrapStepOut(ControllerStackInfo *info, bool fForceTraditional = false); |
1559 | |
1560 | // Polymorphic on flavor (Traditional vs. Just-My-Code) |
1561 | virtual void TrapStepNext(ControllerStackInfo *info); |
1562 | virtual bool TrapStepInHelper(ControllerStackInfo * pInfo, |
1563 | const BYTE * ipCallTarget, |
1564 | const BYTE * ipNext, |
1565 | bool fCallingIntoFunclet); |
1566 | virtual bool IsInterestingFrame(FrameInfo * pFrame); |
1567 | virtual bool DetectHandleNonUserCode(ControllerStackInfo *info, DebuggerMethodInfo * pInfo); |
1568 | |
1569 | |
1570 | //DetectHandleInterceptors will figure out if the current |
1571 | // frame is inside an interceptor, and if we're not interested in that |
1572 | // interceptor, it will set a breakpoint outside it so that we can |
1573 | // run to after the interceptor. |
1574 | virtual bool DetectHandleInterceptors(ControllerStackInfo *info); |
1575 | |
1576 | // This function checks whether the given IP is in an LCG method. If so, it enables |
1577 | // JMC and does a step out. This effectively makes sure that we never stop in an LCG method. |
1578 | BOOL DetectHandleLCGMethods(const PCODE ip, MethodDesc * pMD, ControllerStackInfo * pInfo); |
1579 | |
1580 | bool IsAddrWithinFrame(DebuggerJitInfo *dji, |
1581 | MethodDesc* pMD, |
1582 | const BYTE* currentAddr, |
1583 | const BYTE* targetAddr); |
1584 | |
1585 | // x86 shouldn't need to call this method directly. |
1586 | // We should call IsAddrWithinFrame() on x86 instead. |
1587 | // That's why I use a name with the word "funclet" in it to scare people off. |
1588 | bool IsAddrWithinMethodIncludingFunclet(DebuggerJitInfo *dji, |
1589 | MethodDesc* pMD, |
1590 | const BYTE* targetAddr); |
1591 | |
1592 | //ShouldContinue returns false if the DebuggerStepper should stop |
1593 | // execution and inform the right side. Returns true if the next |
1594 | // breakpointexecution should be set, and execution allowed to continue |
1595 | bool ShouldContinueStep( ControllerStackInfo *info, SIZE_T nativeOffset ); |
1596 | |
1597 | //IsInRange returns true if the given IL offset is inside of |
1598 | // any of the COR_DEBUG_STEP_RANGE structures given by range. |
1599 | bool IsInRange(SIZE_T offset, COR_DEBUG_STEP_RANGE *range, SIZE_T rangeCount, |
1600 | ControllerStackInfo *pInfo = NULL); |
1601 | bool IsRangeAppropriate(ControllerStackInfo *info); |
1602 | |
1603 | |
1604 | |
1605 | TP_RESULT TriggerPatch(DebuggerControllerPatch *patch, |
1606 | Thread *thread, |
1607 | TRIGGER_WHY tyWhy); |
1608 | bool TriggerSingleStep(Thread *thread, const BYTE *ip); |
1609 | void TriggerUnwind(Thread *thread, MethodDesc *fd, DebuggerJitInfo * pDJI, |
1610 | SIZE_T offset, FramePointer fp, |
1611 | CorDebugStepReason unwindReason); |
1612 | void TriggerTraceCall(Thread *thread, const BYTE *ip); |
1613 | bool SendEvent(Thread *thread, bool fInteruptedBySetIp); |
1614 | |
1615 | |
1616 | virtual void TriggerMethodEnter(Thread * thread, DebuggerJitInfo * dji, const BYTE * ip, FramePointer fp); |
1617 | |
1618 | |
1619 | void ResetRange(); |
1620 | |
1621 | // Given a set of IL ranges, convert them to native and cache them. |
1622 | bool SetRangesFromIL(DebuggerJitInfo * dji, COR_DEBUG_STEP_RANGE *ranges, SIZE_T rangeCount); |
1623 | |
1624 | // Return true if this stepper is alive, but frozen. (we freeze when the stepper |
1625 | // enters a nested func-eval). |
1626 | bool IsFrozen(); |
1627 | |
1628 | // Returns true if this stepper is 'dead' - which happens if a non-frozen stepper |
1629 | // gets a func-eval exit. |
1630 | bool IsDead(); |
1631 | |
1632 | // Prepare for sending an event. |
1633 | void PrepareForSendEvent(StackTraceTicket ticket); |
1634 | |
1635 | protected: |
1636 | bool m_stepIn; |
1637 | CorDebugStepReason m_reason; // Why did we stop? |
1638 | FramePointer m_fpStepInto; // if we get a trace call |
1639 | //callback, we may end up completing |
1640 | // a step into. If fp is less than th is |
1641 | // when we stop, |
1642 | // then we're actually in a STEP_CALL |
1643 | |
1644 | CorDebugIntercept m_rgfInterceptStop; // If we hit a |
1645 | // frame that's an interceptor (internal or otherwise), should we stop? |
1646 | |
1647 | CorDebugUnmappedStop m_rgfMappingStop; // If we hit a frame |
1648 | // that's at an interesting mapping point (prolog, epilog,etc), should |
1649 | // we stop? |
1650 | |
1651 | COR_DEBUG_STEP_RANGE * m_range; // Ranges for active steppers are always in native offsets. |
1652 | |
1653 | SIZE_T m_rangeCount; |
1654 | SIZE_T m_realRangeCount; // @todo - delete b/c only used for CodePitching & Old-Enc |
1655 | |
1656 | // The original step intention. |
1657 | // As the stepper moves through code, it may change its other members. |
1658 | // ranges may get deleted, m_stepIn may get toggled, etc. |
1659 | // So we can't recover the original step direction from our other fields. |
1660 | // We need to know the original direction (as well as m_fp) so we know |
1661 | // if the frame we want to stop in is valid. |
1662 | // |
1663 | // Note that we can't really tell this by looking at our other state variables. |
1664 | // For example, a single-instruction step looks like a step-over. |
1665 | enum EStepMode |
1666 | { |
1667 | cStepOver, // Stop in level above or at m_fp. |
1668 | cStepIn, // Stop in level above, below, or at m_fp. |
1669 | cStepOut // Only stop in level above m_fp |
1670 | } m_eMode; |
1671 | |
1672 | // The frame that the stepper was originally created in. |
1673 | // This is the only frame that the ranges are valid in. |
1674 | FramePointer m_fp; |
1675 | |
1676 | #if defined(WIN64EXCEPTIONS) |
1677 | // This frame pointer is used for funclet stepping. |
1678 | // See IsRangeAppropriate() for more information. |
1679 | FramePointer m_fpParentMethod; |
1680 | #endif // WIN64EXCEPTIONS |
1681 | |
1682 | //m_fpException is 0 if we haven't stepped into an exception, |
1683 | // and is ignored. If we get a TriggerUnwind while mid-step, we note |
1684 | // the value of frame here, and use that to figure out if we should stop. |
1685 | FramePointer m_fpException; |
1686 | MethodDesc * m_fdException; |
1687 | |
1688 | // Counter of FuncEvalEnter/Exits - used to determine if we're entering / exiting |
1689 | // a func-eval. |
1690 | int m_cFuncEvalNesting; |
1691 | |
1692 | // To freeze a stepper, we disable all triggers. We have to remember that so that |
1693 | // we can reenable them on Thaw. |
1694 | DWORD m_bvFrozenTriggers; |
1695 | |
1696 | // Values to use in m_bvFrozenTriggers. |
1697 | enum ETriggers |
1698 | { |
1699 | kSingleStep = 0x1, |
1700 | kMethodEnter = 0x2, |
1701 | }; |
1702 | |
1703 | |
1704 | void EnableJMCBackStop(MethodDesc * pStartMethod); |
1705 | |
1706 | #ifdef _DEBUG |
1707 | // MethodDesc that the Stepin started in. |
1708 | // This is used for the JMC-backstop. |
1709 | MethodDesc * m_StepInStartMethod; |
1710 | |
1711 | // This flag is to ensure that PrepareForSendEvent is called before SendEvent. |
1712 | bool m_fReadyToSend; |
1713 | #endif |
1714 | }; |
1715 | |
1716 | |
1717 | |
1718 | /* ------------------------------------------------------------------------- * |
1719 | * DebuggerJMCStepper routines |
1720 | * ------------------------------------------------------------------------- */ |
1721 | class DebuggerJMCStepper : public DebuggerStepper |
1722 | { |
1723 | public: |
1724 | DebuggerJMCStepper(Thread *thread, |
1725 | CorDebugUnmappedStop rgfMappingStop, |
1726 | CorDebugIntercept interceptStop, |
1727 | AppDomain *appDomain); |
1728 | ~DebuggerJMCStepper(); |
1729 | |
1730 | virtual DEBUGGER_CONTROLLER_TYPE GetDCType( void ) |
1731 | { return DEBUGGER_CONTROLLER_JMC_STEPPER; } |
1732 | |
1733 | virtual void EnablePolyTraceCall(); |
1734 | protected: |
1735 | virtual void TrapStepNext(ControllerStackInfo *info); |
1736 | virtual bool TrapStepInHelper(ControllerStackInfo * pInfo, |
1737 | const BYTE * ipCallTarget, |
1738 | const BYTE * ipNext, |
1739 | bool fCallingIntoFunclet); |
1740 | virtual bool IsInterestingFrame(FrameInfo * pFrame); |
1741 | virtual void TriggerMethodEnter(Thread * thread, DebuggerJitInfo * dji, const BYTE * ip, FramePointer fp); |
1742 | virtual bool DetectHandleNonUserCode(ControllerStackInfo *info, DebuggerMethodInfo * pInfo); |
1743 | virtual bool DetectHandleInterceptors(ControllerStackInfo *info); |
1744 | |
1745 | |
1746 | private: |
1747 | |
1748 | }; |
1749 | |
1750 | |
1751 | /* ------------------------------------------------------------------------- * |
1752 | * DebuggerThreadStarter routines |
1753 | * ------------------------------------------------------------------------- */ |
1754 | // DebuggerThreadStarter: Once triggered, it sends the thread attach |
1755 | // message to the right side (where the CreateThread managed callback |
1756 | // gets called). It then promptly disappears, as it's only purpose is to |
1757 | // alert the right side that a new thread has begun execution. |
1758 | class DebuggerThreadStarter : public DebuggerController |
1759 | { |
1760 | public: |
1761 | DebuggerThreadStarter(Thread *thread); |
1762 | |
1763 | virtual DEBUGGER_CONTROLLER_TYPE GetDCType( void ) |
1764 | { return DEBUGGER_CONTROLLER_THREAD_STARTER; } |
1765 | |
1766 | private: |
1767 | TP_RESULT TriggerPatch(DebuggerControllerPatch *patch, |
1768 | Thread *thread, |
1769 | TRIGGER_WHY tyWhy); |
1770 | void TriggerTraceCall(Thread *thread, const BYTE *ip); |
1771 | bool SendEvent(Thread *thread, bool fInteruptedBySetIp); |
1772 | }; |
1773 | |
1774 | #ifdef FEATURE_DATABREAKPOINT |
1775 | |
1776 | class DebuggerDataBreakpoint : public DebuggerController |
1777 | { |
1778 | private: |
1779 | CONTEXT m_context; |
1780 | public: |
1781 | DebuggerDataBreakpoint(Thread* pThread) : DebuggerController(pThread, NULL) |
1782 | { |
1783 | LOG((LF_CORDB, LL_INFO10000, "D:DDBP: Data Breakpoint event created\n" )); |
1784 | memcpy(&m_context, g_pEEInterface->GetThreadFilterContext(pThread), sizeof(CONTEXT)); |
1785 | } |
1786 | |
1787 | virtual DEBUGGER_CONTROLLER_TYPE GetDCType(void) |
1788 | { |
1789 | return DEBUGGER_CONTROLLER_DATA_BREAKPOINT; |
1790 | } |
1791 | |
1792 | virtual TP_RESULT TriggerPatch(DebuggerControllerPatch *patch, Thread *thread, TRIGGER_WHY tyWhy); |
1793 | |
1794 | virtual bool TriggerSingleStep(Thread *thread, const BYTE *ip); |
1795 | |
1796 | bool SendEvent(Thread *thread, bool fInteruptedBySetIp) |
1797 | { |
1798 | CONTRACTL |
1799 | { |
1800 | SO_NOT_MAINLINE; |
1801 | NOTHROW; |
1802 | SENDEVENT_CONTRACT_ITEMS; |
1803 | } |
1804 | CONTRACTL_END; |
1805 | |
1806 | LOG((LF_CORDB, LL_INFO10000, "DDBP::SE: in DebuggerDataBreakpoint's SendEvent\n" )); |
1807 | |
1808 | g_pDebugger->SendDataBreakpoint(thread, &m_context, this); |
1809 | |
1810 | Delete(); |
1811 | |
1812 | return true; |
1813 | } |
1814 | |
1815 | static bool TriggerDataBreakpoint(Thread *thread, CONTEXT * pContext); |
1816 | }; |
1817 | |
1818 | #endif // FEATURE_DATABREAKPOINT |
1819 | |
1820 | |
1821 | /* ------------------------------------------------------------------------- * |
1822 | * DebuggerUserBreakpoint routines. UserBreakpoints are used |
1823 | * by Runtime threads to send that they've hit a user breakpoint to the |
1824 | * Right Side. |
1825 | * ------------------------------------------------------------------------- */ |
1826 | class DebuggerUserBreakpoint : public DebuggerStepper |
1827 | { |
1828 | public: |
1829 | static void HandleDebugBreak(Thread * pThread); |
1830 | |
1831 | static bool IsFrameInDebuggerNamespace(FrameInfo * pFrame); |
1832 | |
1833 | virtual DEBUGGER_CONTROLLER_TYPE GetDCType( void ) |
1834 | { return DEBUGGER_CONTROLLER_USER_BREAKPOINT; } |
1835 | private: |
1836 | // Don't construct these directly. Use HandleDebugBreak(). |
1837 | DebuggerUserBreakpoint(Thread *thread); |
1838 | |
1839 | |
1840 | virtual bool IsInterestingFrame(FrameInfo * pFrame); |
1841 | |
1842 | bool SendEvent(Thread *thread, bool fInteruptedBySetIp); |
1843 | }; |
1844 | |
1845 | /* ------------------------------------------------------------------------- * |
1846 | * DebuggerFuncEvalComplete routines |
1847 | * ------------------------------------------------------------------------- */ |
1848 | class DebuggerFuncEvalComplete : public DebuggerController |
1849 | { |
1850 | public: |
1851 | DebuggerFuncEvalComplete(Thread *thread, |
1852 | void *dest); |
1853 | |
1854 | virtual DEBUGGER_CONTROLLER_TYPE GetDCType( void ) |
1855 | { return DEBUGGER_CONTROLLER_FUNC_EVAL_COMPLETE; } |
1856 | |
1857 | private: |
1858 | TP_RESULT TriggerPatch(DebuggerControllerPatch *patch, |
1859 | Thread *thread, |
1860 | TRIGGER_WHY tyWhy); |
1861 | bool SendEvent(Thread *thread, bool fInteruptedBySetIp); |
1862 | DebuggerEval* m_pDE; |
1863 | }; |
1864 | |
1865 | // continuable-exceptions |
1866 | /* ------------------------------------------------------------------------- * |
1867 | * DebuggerContinuableExceptionBreakpoint routines |
1868 | * ------------------------------------------------------------------------- * |
1869 | * |
1870 | * DebuggerContinuableExceptionBreakpoint: Implementation of Continuable Exception support uses this. |
1871 | */ |
1872 | class DebuggerContinuableExceptionBreakpoint : public DebuggerController |
1873 | { |
1874 | public: |
1875 | DebuggerContinuableExceptionBreakpoint(Thread *pThread, |
1876 | SIZE_T m_offset, |
1877 | DebuggerJitInfo *jitInfo, |
1878 | AppDomain *pAppDomain); |
1879 | |
1880 | virtual DEBUGGER_CONTROLLER_TYPE GetDCType( void ) |
1881 | { return DEBUGGER_CONTROLLER_CONTINUABLE_EXCEPTION; } |
1882 | |
1883 | private: |
1884 | TP_RESULT TriggerPatch(DebuggerControllerPatch *patch, |
1885 | Thread *thread, |
1886 | TRIGGER_WHY tyWhy); |
1887 | |
1888 | bool SendEvent(Thread *thread, bool fInteruptedBySetIp); |
1889 | }; |
1890 | |
1891 | |
1892 | #ifdef EnC_SUPPORTED |
1893 | //--------------------------------------------------------------------------------------- |
1894 | // |
1895 | // DebuggerEnCBreakpoint - used by edit and continue to support remapping |
1896 | // |
1897 | // When a method is updated, we make no immediate attempt to remap any existing execution |
1898 | // of the old method. Instead we mine the old method with EnC breakpoints, and prompt the |
1899 | // debugger whenever one is hit, giving it the opportunity to request a remap to the |
1900 | // latest version of the method. |
1901 | // |
1902 | // Over long debugging sessions which make many edits to large methods, we can create |
1903 | // a large number of these breakpoints. We currently make no attempt to reclaim the |
1904 | // code or patch overhead for old methods. Ideally we'd be able to detect when there are |
1905 | // no outstanding references to the old method version and clean up after it. At the |
1906 | // very least, we could remove all but the first patch when there are no outstanding |
1907 | // frames for a specific version of an edited method. |
1908 | // |
1909 | class DebuggerEnCBreakpoint : public DebuggerController |
1910 | { |
1911 | public: |
1912 | // We have two types of EnC breakpoints. The first is the one we |
1913 | // sprinkle through old code to let us know when execution is occuring |
1914 | // in a function that now has a new version. The second is when we've |
1915 | // actually resumed excecution into a remapped function and we need |
1916 | // to then notify the debugger. |
1917 | enum TriggerType {REMAP_PENDING, REMAP_COMPLETE}; |
1918 | |
1919 | // Create and activate an EnC breakpoint at the specified native offset |
1920 | DebuggerEnCBreakpoint(SIZE_T m_offset, |
1921 | DebuggerJitInfo *jitInfo, |
1922 | TriggerType fTriggerType, |
1923 | AppDomain *pAppDomain); |
1924 | |
1925 | virtual DEBUGGER_CONTROLLER_TYPE GetDCType( void ) |
1926 | { return DEBUGGER_CONTROLLER_ENC; } |
1927 | |
1928 | private: |
1929 | TP_RESULT TriggerPatch(DebuggerControllerPatch *patch, |
1930 | Thread *thread, |
1931 | TRIGGER_WHY tyWhy); |
1932 | |
1933 | TP_RESULT HandleRemapComplete(DebuggerControllerPatch *patch, |
1934 | Thread *thread, |
1935 | TRIGGER_WHY tyWhy); |
1936 | |
1937 | DebuggerJitInfo *m_jitInfo; |
1938 | TriggerType m_fTriggerType; |
1939 | }; |
1940 | #endif //EnC_SUPPORTED |
1941 | |
1942 | /* ========================================================================= */ |
1943 | |
1944 | enum |
1945 | { |
1946 | EVENTS_INIT_ALLOC = 5 |
1947 | }; |
1948 | |
1949 | class DebuggerControllerQueue |
1950 | { |
1951 | DebuggerController **m_events; |
1952 | DWORD m_dwEventsCount; |
1953 | DWORD m_dwEventsAlloc; |
1954 | DWORD m_dwNewEventsAlloc; |
1955 | |
1956 | public: |
1957 | DebuggerControllerQueue() |
1958 | : m_events(NULL), |
1959 | m_dwEventsCount(0), |
1960 | m_dwEventsAlloc(0), |
1961 | m_dwNewEventsAlloc(0) |
1962 | { |
1963 | } |
1964 | |
1965 | |
1966 | ~DebuggerControllerQueue() |
1967 | { |
1968 | if (m_events != NULL) |
1969 | delete [] m_events; |
1970 | } |
1971 | |
1972 | BOOL dcqEnqueue(DebuggerController *dc, BOOL fSort) |
1973 | { |
1974 | LOG((LF_CORDB, LL_INFO100000,"DCQ::dcqE\n" )); |
1975 | |
1976 | _ASSERTE( dc != NULL ); |
1977 | |
1978 | if (m_dwEventsCount == m_dwEventsAlloc) |
1979 | { |
1980 | if (m_events == NULL) |
1981 | m_dwNewEventsAlloc = EVENTS_INIT_ALLOC; |
1982 | else |
1983 | m_dwNewEventsAlloc = m_dwEventsAlloc<<1; |
1984 | |
1985 | DebuggerController **newEvents = new (nothrow) DebuggerController * [m_dwNewEventsAlloc]; |
1986 | |
1987 | if (newEvents == NULL) |
1988 | return FALSE; |
1989 | |
1990 | if (m_events != NULL) |
1991 | // The final argument to CopyMemory cannot over/underflow. |
1992 | // The amount of memory copied has a strict upper bound of the size of the array, |
1993 | // which cannot exceed the pointer size for the platform. |
1994 | CopyMemory(newEvents, m_events, (SIZE_T)sizeof(*m_events) * (SIZE_T)m_dwEventsAlloc); |
1995 | |
1996 | m_events = newEvents; |
1997 | m_dwEventsAlloc = m_dwNewEventsAlloc; |
1998 | } |
1999 | |
2000 | dc->Enqueue(); |
2001 | |
2002 | // Make sure to place high priority patches into |
2003 | // the event list first. This ensures, for |
2004 | // example, that thread starts fire before |
2005 | // breakpoints. |
2006 | if (fSort && (m_dwEventsCount > 0)) |
2007 | { |
2008 | DWORD i; |
2009 | for (i = 0; i < m_dwEventsCount; i++) |
2010 | { |
2011 | _ASSERTE(m_events[i] != NULL); |
2012 | |
2013 | if (m_events[i]->GetDCType() > dc->GetDCType()) |
2014 | { |
2015 | // The final argument to CopyMemory cannot over/underflow. |
2016 | // The amount of memory copied has a strict upper bound of the size of the array, |
2017 | // which cannot exceed the pointer size for the platform. |
2018 | MoveMemory(&m_events[i+1], &m_events[i], (SIZE_T)sizeof(DebuggerController*) * (SIZE_T)(m_dwEventsCount - i)); |
2019 | m_events[i] = dc; |
2020 | break; |
2021 | } |
2022 | } |
2023 | |
2024 | if (i == m_dwEventsCount) |
2025 | m_events[m_dwEventsCount] = dc; |
2026 | |
2027 | m_dwEventsCount++; |
2028 | } |
2029 | else |
2030 | m_events[m_dwEventsCount++] = dc; |
2031 | |
2032 | return TRUE; |
2033 | } |
2034 | |
2035 | DWORD dcqGetCount(void) |
2036 | { |
2037 | return m_dwEventsCount; |
2038 | } |
2039 | |
2040 | DebuggerController *dcqGetElement(DWORD dwElement) |
2041 | { |
2042 | LOG((LF_CORDB, LL_INFO100000,"DCQ::dcqGE\n" )); |
2043 | |
2044 | DebuggerController *dcp = NULL; |
2045 | |
2046 | _ASSERTE(dwElement < m_dwEventsCount); |
2047 | if (dwElement < m_dwEventsCount) |
2048 | { |
2049 | dcp = m_events[dwElement]; |
2050 | } |
2051 | |
2052 | _ASSERTE(dcp != NULL); |
2053 | return dcp; |
2054 | } |
2055 | |
2056 | // Kinda wacked, but this actually releases stuff in FILO order, not |
2057 | // FIFO order. If we do this in an extra loop, then the perf |
2058 | // is better than sliding everything down one each time. |
2059 | void dcqDequeue(DWORD dw = 0xFFffFFff) |
2060 | { |
2061 | if (dw == 0xFFffFFff) |
2062 | { |
2063 | dw = (m_dwEventsCount - 1); |
2064 | } |
2065 | |
2066 | LOG((LF_CORDB, LL_INFO100000,"DCQ::dcqD element index " |
2067 | "0x%x of 0x%x\n" , dw, m_dwEventsCount)); |
2068 | |
2069 | _ASSERTE(dw < m_dwEventsCount); |
2070 | |
2071 | m_events[dw]->Dequeue(); |
2072 | |
2073 | // Note that if we're taking the element off the end (m_dwEventsCount-1), |
2074 | // the following will no-op. |
2075 | // The final argument to MoveMemory cannot over/underflow. |
2076 | // The amount of memory copied has a strict upper bound of the size of the array, |
2077 | // which cannot exceed the pointer size for the platform. |
2078 | MoveMemory(&(m_events[dw]), |
2079 | &(m_events[dw + 1]), |
2080 | (SIZE_T)sizeof(DebuggerController *) * (SIZE_T)(m_dwEventsCount - dw - 1)); |
2081 | m_dwEventsCount--; |
2082 | } |
2083 | }; |
2084 | |
2085 | // Include all of the inline stuff now. |
2086 | #include "controller.inl" |
2087 | |
2088 | #endif // !DACCESS_COMPILE |
2089 | |
2090 | #endif /* CONTROLLER_H_ */ |
2091 | |