| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | //***************************************************************************** |
| 5 | // File: debugger.cpp |
| 6 | // |
| 7 | |
| 8 | // |
| 9 | // Debugger runtime controller routines. |
| 10 | // |
| 11 | //***************************************************************************** |
| 12 | |
| 13 | #include "stdafx.h" |
| 14 | #include "debugdebugger.h" |
| 15 | #include "../inc/common.h" |
| 16 | #include "perflog.h" |
| 17 | #include "eeconfig.h" // This is here even for retail & free builds... |
| 18 | #include "../../dlls/mscorrc/resource.h" |
| 19 | |
| 20 | #include "vars.hpp" |
| 21 | #include <limits.h> |
| 22 | #include "ilformatter.h" |
| 23 | #include "typeparse.h" |
| 24 | #include "debuginfostore.h" |
| 25 | #include "generics.h" |
| 26 | #include "../../vm/methoditer.h" |
| 27 | #include "../../vm/encee.h" |
| 28 | #include "../../vm/dwreport.h" |
| 29 | #include "../../vm/eepolicy.h" |
| 30 | #include "../../vm/excep.h" |
| 31 | #if defined(FEATURE_DBGIPC_TRANSPORT_VM) |
| 32 | #include "dbgtransportsession.h" |
| 33 | #endif // FEATURE_DBGIPC_TRANSPORT_VM |
| 34 | |
| 35 | #ifdef TEST_DATA_CONSISTENCY |
| 36 | #include "datatest.h" |
| 37 | #endif // TEST_DATA_CONSISTENCY |
| 38 | |
| 39 | #include "dbgenginemetrics.h" |
| 40 | |
| 41 | #include "../../vm/rejit.h" |
| 42 | |
| 43 | #include "threadsuspend.h" |
| 44 | |
| 45 | |
| 46 | #ifdef DEBUGGING_SUPPORTED |
| 47 | |
| 48 | #ifdef _DEBUG |
| 49 | // Reg key. We can set this and then any debugger-lazy-init code will assert. |
| 50 | // This helps track down places where we're caching in debugger stuff in a |
| 51 | // non-debugger scenario. |
| 52 | bool g_DbgShouldntUseDebugger = false; |
| 53 | #endif |
| 54 | |
| 55 | |
| 56 | /* ------------------------------------------------------------------------ * |
| 57 | * Global variables |
| 58 | * ------------------------------------------------------------------------ */ |
| 59 | |
| 60 | GPTR_IMPL(Debugger, g_pDebugger); |
| 61 | GPTR_IMPL(EEDebugInterface, g_pEEInterface); |
| 62 | SVAL_IMPL_INIT(BOOL, Debugger, s_fCanChangeNgenFlags, TRUE); |
| 63 | |
| 64 | // This is a public export so debuggers can read and determine if the coreclr |
| 65 | // process is waiting for JIT debugging attach. |
| 66 | GVAL_IMPL_INIT(ULONG, CLRJitAttachState, 0); |
| 67 | |
| 68 | bool g_EnableSIS = false; |
| 69 | |
| 70 | // The following instances are used for invoking overloaded new/delete |
| 71 | InteropSafe interopsafe; |
| 72 | InteropSafeExecutable interopsafeEXEC; |
| 73 | |
| 74 | #ifndef DACCESS_COMPILE |
| 75 | |
| 76 | DebuggerRCThread *g_pRCThread = NULL; |
| 77 | |
| 78 | #ifndef _PREFAST_ |
| 79 | // Do some compile time checking on the events in DbgIpcEventTypes.h |
| 80 | // No one ever calls this. But the compiler should still compile it, |
| 81 | // and that should be sufficient. |
| 82 | void DoCompileTimeCheckOnDbgIpcEventTypes() |
| 83 | { |
| 84 | _ASSERTE(!"Don't call this function. It just does compile time checking\n" ); |
| 85 | |
| 86 | // We use the C_ASSERT macro here to get a compile-time assert. |
| 87 | |
| 88 | // Make sure we don't have any duplicate numbers. |
| 89 | // The switch statements in the main loops won't always catch this |
| 90 | // since we may not switch on all events. |
| 91 | |
| 92 | // store Type-0 in const local vars, so we can use them for bounds checking |
| 93 | // Create local vars with the val from Type1 & Type2. If there are any |
| 94 | // collisions, then the variables' names will collide at compile time. |
| 95 | #define IPC_EVENT_TYPE0(type, val) const int e_##type = val; |
| 96 | #define IPC_EVENT_TYPE1(type, val) int T_##val; T_##val = 0; |
| 97 | #define IPC_EVENT_TYPE2(type, val) int T_##val; T_##val = 0; |
| 98 | #include "dbgipceventtypes.h" |
| 99 | #undef IPC_EVENT_TYPE2 |
| 100 | #undef IPC_EVENT_TYPE1 |
| 101 | #undef IPC_EVENT_TYPE0 |
| 102 | |
| 103 | // Ensure that all identifiers are unique and are matched with |
| 104 | // integer values. |
| 105 | #define IPC_EVENT_TYPE0(type, val) int T2_##type; T2_##type = val; |
| 106 | #define IPC_EVENT_TYPE1(type, val) int T2_##type; T2_##type = val; |
| 107 | #define IPC_EVENT_TYPE2(type, val) int T2_##type; T2_##type = val; |
| 108 | #include "dbgipceventtypes.h" |
| 109 | #undef IPC_EVENT_TYPE2 |
| 110 | #undef IPC_EVENT_TYPE1 |
| 111 | #undef IPC_EVENT_TYPE0 |
| 112 | |
| 113 | // Make sure all values are subset of the bits specified by DB_IPCE_TYPE_MASK |
| 114 | #define IPC_EVENT_TYPE0(type, val) |
| 115 | #define IPC_EVENT_TYPE1(type, val) C_ASSERT((val & e_DB_IPCE_TYPE_MASK) == val); |
| 116 | #define IPC_EVENT_TYPE2(type, val) C_ASSERT((val & e_DB_IPCE_TYPE_MASK) == val); |
| 117 | #include "dbgipceventtypes.h" |
| 118 | #undef IPC_EVENT_TYPE2 |
| 119 | #undef IPC_EVENT_TYPE1 |
| 120 | #undef IPC_EVENT_TYPE0 |
| 121 | |
| 122 | // Make sure that no value is DB_IPCE_INVALID_EVENT |
| 123 | #define IPC_EVENT_TYPE0(type, val) |
| 124 | #define IPC_EVENT_TYPE1(type, val) C_ASSERT(val != e_DB_IPCE_INVALID_EVENT); |
| 125 | #define IPC_EVENT_TYPE2(type, val) C_ASSERT(val != e_DB_IPCE_INVALID_EVENT); |
| 126 | #include "dbgipceventtypes.h" |
| 127 | #undef IPC_EVENT_TYPE2 |
| 128 | #undef IPC_EVENT_TYPE1 |
| 129 | #undef IPC_EVENT_TYPE0 |
| 130 | |
| 131 | // Make sure first-last values are well structured. |
| 132 | static_assert_no_msg(e_DB_IPCE_RUNTIME_FIRST < e_DB_IPCE_RUNTIME_LAST); |
| 133 | static_assert_no_msg(e_DB_IPCE_DEBUGGER_FIRST < e_DB_IPCE_DEBUGGER_LAST); |
| 134 | |
| 135 | // Make sure that event ranges don't overlap. |
| 136 | // This check is simplified because L->R events come before R<-L |
| 137 | static_assert_no_msg(e_DB_IPCE_RUNTIME_LAST < e_DB_IPCE_DEBUGGER_FIRST); |
| 138 | |
| 139 | |
| 140 | // Make sure values are in the proper ranges |
| 141 | // Type1 should be in the Runtime range, Type2 in the Debugger range. |
| 142 | #define IPC_EVENT_TYPE0(type, val) |
| 143 | #define IPC_EVENT_TYPE1(type, val) C_ASSERT((e_DB_IPCE_RUNTIME_FIRST <= val) && (val < e_DB_IPCE_RUNTIME_LAST)); |
| 144 | #define IPC_EVENT_TYPE2(type, val) C_ASSERT((e_DB_IPCE_DEBUGGER_FIRST <= val) && (val < e_DB_IPCE_DEBUGGER_LAST)); |
| 145 | #include "dbgipceventtypes.h" |
| 146 | #undef IPC_EVENT_TYPE2 |
| 147 | #undef IPC_EVENT_TYPE1 |
| 148 | #undef IPC_EVENT_TYPE0 |
| 149 | |
| 150 | // Make sure that events are in increasing order |
| 151 | // It's ok if the events skip numbers. |
| 152 | // This is a more specific check than the range check above. |
| 153 | |
| 154 | /* Expands to look like this: |
| 155 | const bool f = ( |
| 156 | first <= |
| 157 | 10) && (10 < |
| 158 | 11) && (11 < |
| 159 | 12) && (12 < |
| 160 | last) |
| 161 | static_assert_no_msg(f); |
| 162 | */ |
| 163 | |
| 164 | const bool f1 = ( |
| 165 | (e_DB_IPCE_RUNTIME_FIRST <= |
| 166 | #define IPC_EVENT_TYPE0(type, val) |
| 167 | #define IPC_EVENT_TYPE1(type, val) val) && (val < |
| 168 | #define IPC_EVENT_TYPE2(type, val) |
| 169 | #include "dbgipceventtypes.h" |
| 170 | #undef IPC_EVENT_TYPE2 |
| 171 | #undef IPC_EVENT_TYPE1 |
| 172 | #undef IPC_EVENT_TYPE0 |
| 173 | e_DB_IPCE_RUNTIME_LAST) |
| 174 | ); |
| 175 | static_assert_no_msg(f1); |
| 176 | |
| 177 | const bool f2 = ( |
| 178 | (e_DB_IPCE_DEBUGGER_FIRST <= |
| 179 | #define IPC_EVENT_TYPE0(type, val) |
| 180 | #define IPC_EVENT_TYPE1(type, val) |
| 181 | #define IPC_EVENT_TYPE2(type, val) val) && (val < |
| 182 | #include "dbgipceventtypes.h" |
| 183 | #undef IPC_EVENT_TYPE2 |
| 184 | #undef IPC_EVENT_TYPE1 |
| 185 | #undef IPC_EVENT_TYPE0 |
| 186 | e_DB_IPCE_DEBUGGER_LAST) |
| 187 | ); |
| 188 | static_assert_no_msg(f2); |
| 189 | |
| 190 | } // end checks |
| 191 | #endif // _PREFAST_ |
| 192 | |
| 193 | //----------------------------------------------------------------------------- |
| 194 | // Ctor for AtSafePlaceHolder |
| 195 | AtSafePlaceHolder::AtSafePlaceHolder(Thread * pThread) |
| 196 | { |
| 197 | _ASSERTE(pThread != NULL); |
| 198 | if (!g_pDebugger->IsThreadAtSafePlace(pThread)) |
| 199 | { |
| 200 | m_pThreadAtUnsafePlace = pThread; |
| 201 | g_pDebugger->IncThreadsAtUnsafePlaces(); |
| 202 | } |
| 203 | else |
| 204 | { |
| 205 | m_pThreadAtUnsafePlace = NULL; |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | //----------------------------------------------------------------------------- |
| 210 | // Dtor for AtSafePlaceHolder |
| 211 | AtSafePlaceHolder::~AtSafePlaceHolder() |
| 212 | { |
| 213 | Clear(); |
| 214 | } |
| 215 | |
| 216 | //----------------------------------------------------------------------------- |
| 217 | // Returns true if this adjusted the unsafe counter |
| 218 | bool AtSafePlaceHolder::IsAtUnsafePlace() |
| 219 | { |
| 220 | return m_pThreadAtUnsafePlace != NULL; |
| 221 | } |
| 222 | |
| 223 | //----------------------------------------------------------------------------- |
| 224 | // Clear the holder. |
| 225 | // Notes: |
| 226 | // This can be called multiple times. |
| 227 | // Calling this makes the dtor a nop. |
| 228 | void AtSafePlaceHolder::Clear() |
| 229 | { |
| 230 | if (m_pThreadAtUnsafePlace != NULL) |
| 231 | { |
| 232 | // The thread is still at an unsafe place. |
| 233 | // We're clearing the flag to avoid the Dtor() calling DecThreads again. |
| 234 | m_pThreadAtUnsafePlace = NULL; |
| 235 | g_pDebugger->DecThreadsAtUnsafePlaces(); |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | //----------------------------------------------------------------------------- |
| 240 | // Is the guard page missing on this thread? |
| 241 | // Should only be called for managed threads handling a managed exception. |
| 242 | // If we're handling a stack overflow (ie, missing guard page), then another |
| 243 | // stack overflow will instantly terminate the process. In that case, do stack |
| 244 | // intensive stuff on the helper thread (which has lots of stack space). Only |
| 245 | // problem is that if the faulting thread has a lock, the helper thread may |
| 246 | // get stuck. |
| 247 | // Serves as a hint whether we want to do a favor on the |
| 248 | // faulting thread (preferred) or the helper thread (if low stack). |
| 249 | // See whidbey issue 127436. |
| 250 | //----------------------------------------------------------------------------- |
| 251 | bool IsGuardPageGone() |
| 252 | { |
| 253 | CONTRACTL |
| 254 | { |
| 255 | NOTHROW; |
| 256 | GC_NOTRIGGER; |
| 257 | } |
| 258 | CONTRACTL_END; |
| 259 | |
| 260 | Thread * pThread = g_pEEInterface->GetThread(); |
| 261 | |
| 262 | // We're not going to be called for a unmanaged exception. |
| 263 | // Should always have a managed thread, but just in case something really |
| 264 | // crazy happens, it's not worth an AV. (since this is just being used as a hint) |
| 265 | if (pThread == NULL) |
| 266 | { |
| 267 | return false; |
| 268 | } |
| 269 | |
| 270 | // Don't use pThread->IsGuardPageGone(), it's not accurate here. |
| 271 | bool fGuardPageGone = (pThread->DetermineIfGuardPagePresent() == FALSE); |
| 272 | LOG((LF_CORDB, LL_INFO1000000, "D::IsGuardPageGone=%d\n" , fGuardPageGone)); |
| 273 | return fGuardPageGone; |
| 274 | } |
| 275 | |
| 276 | //----------------------------------------------------------------------------- |
| 277 | // LSPTR_XYZ is a type-safe wrapper around an opaque reference type XYZ in the left-side. |
| 278 | // But TypeHandles are value-types that can't be directly converted into a pointer. |
| 279 | // Thus converting between LSPTR_XYZ and TypeHandles requires some extra glue. |
| 280 | // The following conversions are valid: |
| 281 | // LSPTR_XYZ <--> XYZ* (via Set/UnWrap methods) |
| 282 | // TypeHandle <--> void* (via AsPtr() and FromPtr()). |
| 283 | // so we can't directly convert between LSPTR_TYPEHANDLE and TypeHandle. |
| 284 | // We must do: TypeHandle <--> void* <--> XYZ <--> LSPTR_XYZ |
| 285 | // So LSPTR_TYPEHANDLE is actually for TypeHandleDummyPtr, and then we unsafe cast |
| 286 | // that to a void* to use w/ AsPtr() and FromPtr() to convert to TypeHandles. |
| 287 | // @todo- it would be nice to have these happen automatically w/ Set & UnWrap. |
| 288 | //----------------------------------------------------------------------------- |
| 289 | |
| 290 | // helper class to do conversion above. |
| 291 | class TypeHandleDummyPtr |
| 292 | { |
| 293 | private: |
| 294 | TypeHandleDummyPtr() { }; // should never actually create this. |
| 295 | void * data; |
| 296 | }; |
| 297 | |
| 298 | // Convert: VMPTR_TYPEHANDLE --> TypeHandle |
| 299 | TypeHandle GetTypeHandle(VMPTR_TypeHandle ptr) |
| 300 | { |
| 301 | return TypeHandle::FromPtr(ptr.GetRawPtr()); |
| 302 | } |
| 303 | |
| 304 | // Convert: TypeHandle --> LSPTR_TYPEHANDLE |
| 305 | VMPTR_TypeHandle WrapTypeHandle(TypeHandle th) |
| 306 | { |
| 307 | return VMPTR_TypeHandle::MakePtr(reinterpret_cast<TypeHandle *> (th.AsPtr())); |
| 308 | } |
| 309 | |
| 310 | extern void WaitForEndOfShutdown(); |
| 311 | |
| 312 | |
| 313 | // Get the Canary structure which can sniff if the helper thread is safe to run. |
| 314 | HelperCanary * Debugger::GetCanary() |
| 315 | { |
| 316 | return g_pRCThread->GetCanary(); |
| 317 | } |
| 318 | |
| 319 | // IMPORTANT!!!!! |
| 320 | // Do not call Lock and Unlock directly. Because you might not unlock |
| 321 | // if exception takes place. Use DebuggerLockHolder instead!!! |
| 322 | // Only AcquireDebuggerLock can call directly. |
| 323 | // |
| 324 | void Debugger::DoNotCallDirectlyPrivateLock(void) |
| 325 | { |
| 326 | WRAPPER_NO_CONTRACT; |
| 327 | |
| 328 | LOG((LF_CORDB,LL_INFO10000, "D::Lock acquire attempt by 0x%x\n" , |
| 329 | GetCurrentThreadId())); |
| 330 | |
| 331 | // Debugger lock is larger than both Controller & debugger-data locks. |
| 332 | // So we should never try to take the D lock if we hold either of the others. |
| 333 | |
| 334 | |
| 335 | // Lock becomes no-op in late shutdown. |
| 336 | if (g_fProcessDetach) |
| 337 | { |
| 338 | return; |
| 339 | } |
| 340 | |
| 341 | |
| 342 | // |
| 343 | // If the debugger has been disabled by the runtime, this means that it should block |
| 344 | // all threads that are trying to travel thru the debugger. We do this by blocking |
| 345 | // threads as they try and take the debugger lock. |
| 346 | // |
| 347 | if (m_fDisabled) |
| 348 | { |
| 349 | __SwitchToThread(INFINITE, CALLER_LIMITS_SPINNING); |
| 350 | _ASSERTE (!"Can not reach here" ); |
| 351 | } |
| 352 | |
| 353 | m_mutex.Enter(); |
| 354 | |
| 355 | // |
| 356 | // If we were blocked on the lock and the debugging facilities got disabled |
| 357 | // while we were waiting, release the lock and park this thread. |
| 358 | // |
| 359 | if (m_fDisabled) |
| 360 | { |
| 361 | m_mutex.Leave(); |
| 362 | __SwitchToThread(INFINITE, CALLER_LIMITS_SPINNING); |
| 363 | _ASSERTE (!"Can not reach here" ); |
| 364 | } |
| 365 | |
| 366 | // |
| 367 | // Now check if we are in a shutdown case... |
| 368 | // |
| 369 | Thread * pThread; |
| 370 | bool fIsCooperative; |
| 371 | BEGIN_GETTHREAD_ALLOWED; |
| 372 | pThread = g_pEEInterface->GetThread(); |
| 373 | fIsCooperative = (pThread != NULL) && (pThread->PreemptiveGCDisabled()); |
| 374 | END_GETTHREAD_ALLOWED; |
| 375 | if (m_fShutdownMode && !fIsCooperative) |
| 376 | { |
| 377 | // The big fear is that some other random thread will take the debugger-lock and then block on something else, |
| 378 | // and thus prevent the helper/finalizer threads from taking the debugger-lock in shutdown scenarios. |
| 379 | // |
| 380 | // If we're in shutdown mode, then some locks (like the Thread-Store-Lock) get special semantics. |
| 381 | // Only helper / finalizer / shutdown threads can actually take these locks. |
| 382 | // Other threads that try to take them will just get parked and block forever. |
| 383 | // This is ok b/c the only threads that need to run at this point are the Finalizer and Helper threads. |
| 384 | // |
| 385 | // We need to be in preemptive to block for shutdown, so we don't do this block in Coop mode. |
| 386 | // Fortunately, it's safe to take this lock in coop mode because we know the thread can't block |
| 387 | // on anything interesting because we're in a GC-forbid region (see crst flags). |
| 388 | m_mutex.ReleaseAndBlockForShutdownIfNotSpecialThread(); |
| 389 | } |
| 390 | |
| 391 | |
| 392 | |
| 393 | #ifdef _DEBUG |
| 394 | _ASSERTE(m_mutexCount >= 0); |
| 395 | |
| 396 | if (m_mutexCount>0) |
| 397 | { |
| 398 | if (pThread) |
| 399 | { |
| 400 | // mamaged thread |
| 401 | _ASSERTE(m_mutexOwner == GetThreadIdHelper(pThread)); |
| 402 | } |
| 403 | else |
| 404 | { |
| 405 | // unmanaged thread |
| 406 | _ASSERTE(m_mutexOwner == GetCurrentThreadId()); |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | m_mutexCount++; |
| 411 | if (pThread) |
| 412 | { |
| 413 | m_mutexOwner = GetThreadIdHelper(pThread); |
| 414 | } |
| 415 | else |
| 416 | { |
| 417 | // unmanaged thread |
| 418 | m_mutexOwner = GetCurrentThreadId(); |
| 419 | } |
| 420 | |
| 421 | if (m_mutexCount == 1) |
| 422 | { |
| 423 | LOG((LF_CORDB,LL_INFO10000, "D::Lock acquired by 0x%x\n" , m_mutexOwner)); |
| 424 | } |
| 425 | #endif |
| 426 | |
| 427 | } |
| 428 | |
| 429 | // See comment above. |
| 430 | // Only ReleaseDebuggerLock can call directly. |
| 431 | void Debugger::DoNotCallDirectlyPrivateUnlock(void) |
| 432 | { |
| 433 | WRAPPER_NO_CONTRACT; |
| 434 | |
| 435 | // Controller lock is "smaller" than debugger lock. |
| 436 | |
| 437 | |
| 438 | if (!g_fProcessDetach) |
| 439 | { |
| 440 | #ifdef _DEBUG |
| 441 | if (m_mutexCount == 1) |
| 442 | LOG((LF_CORDB,LL_INFO10000, "D::Unlock released by 0x%x\n" , |
| 443 | m_mutexOwner)); |
| 444 | |
| 445 | if(0 == --m_mutexCount) |
| 446 | m_mutexOwner = 0; |
| 447 | |
| 448 | _ASSERTE( m_mutexCount >= 0); |
| 449 | #endif |
| 450 | m_mutex.Leave(); |
| 451 | |
| 452 | // |
| 453 | // If the debugger has been disabled by the runtime, this means that it should block |
| 454 | // all threads that are trying to travel thru the debugger. We do this by blocking |
| 455 | // threads also as they leave the debugger lock. |
| 456 | // |
| 457 | if (m_fDisabled) |
| 458 | { |
| 459 | __SwitchToThread(INFINITE, CALLER_LIMITS_SPINNING); |
| 460 | _ASSERTE (!"Can not reach here" ); |
| 461 | } |
| 462 | |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | #ifdef TEST_DATA_CONSISTENCY |
| 467 | |
| 468 | // --------------------------------------------------------------------------------- |
| 469 | // Implementations for DataTest member functions |
| 470 | // --------------------------------------------------------------------------------- |
| 471 | |
| 472 | // Send an event to the RS to signal that it should test to determine if a crst is held. |
| 473 | // This is for testing purposes only. |
| 474 | // Arguments: |
| 475 | // input: pCrst - the lock to test |
| 476 | // fOkToTake - true iff the LS does NOT currently hold the lock |
| 477 | // output: none |
| 478 | // Notes: The RS will throw if the lock is held. The code that tests the lock will catch the |
| 479 | // exception and assert if throwing was not the correct thing to do (determined via the |
| 480 | // boolean). See the case for DB_IPCE_TEST_CRST in code:CordbProcess::RawDispatchEvent. |
| 481 | // |
| 482 | void DataTest::SendDbgCrstEvent(Crst * pCrst, bool fOkToTake) |
| 483 | { |
| 484 | DebuggerIPCEvent * pLockEvent = g_pDebugger->m_pRCThread->GetIPCEventSendBuffer(); |
| 485 | |
| 486 | g_pDebugger->InitIPCEvent(pLockEvent, DB_IPCE_TEST_CRST); |
| 487 | |
| 488 | pLockEvent->TestCrstData.vmCrst.SetRawPtr(pCrst); |
| 489 | pLockEvent->TestCrstData.fOkToTake = fOkToTake; |
| 490 | |
| 491 | g_pDebugger->SendRawEvent(pLockEvent); |
| 492 | |
| 493 | } // DataTest::SendDbgCrstEvent |
| 494 | |
| 495 | // Send an event to the RS to signal that it should test to determine if a SimpleRWLock is held. |
| 496 | // This is for testing purposes only. |
| 497 | // Arguments: |
| 498 | // input: pRWLock - the lock to test |
| 499 | // fOkToTake - true iff the LS does NOT currently hold the lock |
| 500 | // output: none |
| 501 | // Note: The RS will throw if the lock is held. The code that tests the lock will catch the |
| 502 | // exception and assert if throwing was not the correct thing to do (determined via the |
| 503 | // boolean). See the case for DB_IPCE_TEST_RWLOCK in code:CordbProcess::RawDispatchEvent. |
| 504 | // |
| 505 | void DataTest::SendDbgRWLockEvent(SimpleRWLock * pRWLock, bool okToTake) |
| 506 | { |
| 507 | DebuggerIPCEvent * pLockEvent = g_pDebugger->m_pRCThread->GetIPCEventSendBuffer(); |
| 508 | |
| 509 | g_pDebugger->InitIPCEvent(pLockEvent, DB_IPCE_TEST_RWLOCK); |
| 510 | |
| 511 | pLockEvent->TestRWLockData.vmRWLock.SetRawPtr(pRWLock); |
| 512 | pLockEvent->TestRWLockData.fOkToTake = okToTake; |
| 513 | |
| 514 | g_pDebugger->SendRawEvent(pLockEvent); |
| 515 | } // DataTest::SendDbgRWLockEvent |
| 516 | |
| 517 | // Takes a series of locks in various ways and signals the RS to test the locks at interesting |
| 518 | // points to ensure we reliably detect when the LS holds a lock. If in the course of inspection, the |
| 519 | // DAC needs to execute a code path where the LS holds a lock, we assume that the locked data is in |
| 520 | // an inconsistent state. In this situation, we don't want to report information about this data, so |
| 521 | // we throw an exception. |
| 522 | // This is for testing purposes only. |
| 523 | // |
| 524 | // Arguments: none |
| 525 | // Return Value: none |
| 526 | // Notes: See code:CordbProcess::RawDispatchEvent for the RS part of this test and code:Debugger::Startup |
| 527 | // for the LS invocation of the test. |
| 528 | // The environment variable TestDataConsistency must be set to 1 to make this test run. |
| 529 | void DataTest::TestDataSafety() |
| 530 | { |
| 531 | const bool okToTake = true; |
| 532 | |
| 533 | SendDbgCrstEvent(&m_crst1, okToTake); |
| 534 | { |
| 535 | CrstHolder ch1(&m_crst1); |
| 536 | SendDbgCrstEvent(&m_crst1, !okToTake); |
| 537 | { |
| 538 | CrstHolder ch2(&m_crst2); |
| 539 | SendDbgCrstEvent(&m_crst2, !okToTake); |
| 540 | SendDbgCrstEvent(&m_crst1, !okToTake); |
| 541 | } |
| 542 | SendDbgCrstEvent(&m_crst2, okToTake); |
| 543 | SendDbgCrstEvent(&m_crst1, !okToTake); |
| 544 | } |
| 545 | SendDbgCrstEvent(&m_crst1, okToTake); |
| 546 | |
| 547 | { |
| 548 | SendDbgRWLockEvent(&m_rwLock, okToTake); |
| 549 | SimpleReadLockHolder readLock(&m_rwLock); |
| 550 | SendDbgRWLockEvent(&m_rwLock, okToTake); |
| 551 | } |
| 552 | SendDbgRWLockEvent(&m_rwLock, okToTake); |
| 553 | { |
| 554 | SimpleWriteLockHolder readLock(&m_rwLock); |
| 555 | SendDbgRWLockEvent(&m_rwLock, !okToTake); |
| 556 | } |
| 557 | |
| 558 | } // DataTest::TestDataSafety |
| 559 | |
| 560 | #endif // TEST_DATA_CONSISTENCY |
| 561 | |
| 562 | #if _DEBUG |
| 563 | static DebugEventCounter g_debugEventCounter; |
| 564 | static int g_iDbgRuntimeCounter[DBG_RUNTIME_MAX]; |
| 565 | static int g_iDbgDebuggerCounter[DBG_DEBUGGER_MAX]; |
| 566 | |
| 567 | void DoAssertOnType(DebuggerIPCEventType event, int count) |
| 568 | { |
| 569 | WRAPPER_NO_CONTRACT; |
| 570 | |
| 571 | // check to see if we need fire the assertion or not. |
| 572 | if ((event & 0x0300) == 0x0100) |
| 573 | { |
| 574 | // use the Runtime array |
| 575 | if (g_iDbgRuntimeCounter[event & 0x00ff] == count) |
| 576 | { |
| 577 | char tmpStr[256]; |
| 578 | _snprintf_s(tmpStr, _countof(tmpStr), _TRUNCATE, "%s == %d, break now!" , |
| 579 | IPCENames::GetName(event), count); |
| 580 | |
| 581 | // fire the assertion |
| 582 | DbgAssertDialog(__FILE__, __LINE__, tmpStr); |
| 583 | } |
| 584 | } |
| 585 | // check to see if we need fire the assertion or not. |
| 586 | else if ((event & 0x0300) == 0x0200) |
| 587 | { |
| 588 | // use the Runtime array |
| 589 | if (g_iDbgDebuggerCounter[event & 0x00ff] == count) |
| 590 | { |
| 591 | char tmpStr[256]; |
| 592 | _snprintf_s(tmpStr, _countof(tmpStr), _TRUNCATE, "%s == %d, break now!" , |
| 593 | IPCENames::GetName(event), count); |
| 594 | |
| 595 | // fire the assertion |
| 596 | DbgAssertDialog(__FILE__, __LINE__, tmpStr); |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | } |
| 601 | void DbgLogHelper(DebuggerIPCEventType event) |
| 602 | { |
| 603 | WRAPPER_NO_CONTRACT; |
| 604 | |
| 605 | switch (event) |
| 606 | { |
| 607 | // we don't need to handle event type 0 |
| 608 | #define IPC_EVENT_TYPE0(type, val) |
| 609 | #define IPC_EVENT_TYPE1(type, val) case type: {\ |
| 610 | g_debugEventCounter.m_iDebugCount_##type++; \ |
| 611 | DoAssertOnType(type, g_debugEventCounter.m_iDebugCount_##type); \ |
| 612 | break; \ |
| 613 | } |
| 614 | #define IPC_EVENT_TYPE2(type, val) case type: { \ |
| 615 | g_debugEventCounter.m_iDebugCount_##type++; \ |
| 616 | DoAssertOnType(type, g_debugEventCounter.m_iDebugCount_##type); \ |
| 617 | break; \ |
| 618 | } |
| 619 | #include "dbgipceventtypes.h" |
| 620 | #undef IPC_EVENT_TYPE2 |
| 621 | #undef IPC_EVENT_TYPE1 |
| 622 | #undef IPC_EVENT_TYPE0 |
| 623 | default: |
| 624 | break; |
| 625 | } |
| 626 | } |
| 627 | #endif // _DEBUG |
| 628 | |
| 629 | |
| 630 | |
| 631 | |
| 632 | |
| 633 | |
| 634 | |
| 635 | |
| 636 | |
| 637 | /* ------------------------------------------------------------------------ * |
| 638 | * DLL export routine |
| 639 | * ------------------------------------------------------------------------ */ |
| 640 | |
| 641 | Debugger *CreateDebugger(void) |
| 642 | { |
| 643 | Debugger *pDebugger = NULL; |
| 644 | |
| 645 | EX_TRY |
| 646 | { |
| 647 | pDebugger = new (nothrow) Debugger(); |
| 648 | } |
| 649 | EX_CATCH |
| 650 | { |
| 651 | if (pDebugger != NULL) |
| 652 | { |
| 653 | delete pDebugger; |
| 654 | pDebugger = NULL; |
| 655 | } |
| 656 | } |
| 657 | EX_END_CATCH(RethrowTerminalExceptions); |
| 658 | |
| 659 | return pDebugger; |
| 660 | } |
| 661 | |
| 662 | // |
| 663 | // CorDBGetInterface is exported to the Runtime so that it can call |
| 664 | // the Runtime Controller. |
| 665 | // |
| 666 | extern "C" { |
| 667 | HRESULT __cdecl CorDBGetInterface(DebugInterface** rcInterface) |
| 668 | { |
| 669 | CONTRACT(HRESULT) |
| 670 | { |
| 671 | NOTHROW; // use HRESULTS instead |
| 672 | GC_NOTRIGGER; |
| 673 | POSTCONDITION(FAILED(RETVAL) || (rcInterface == NULL) || (*rcInterface != NULL)); |
| 674 | } |
| 675 | CONTRACT_END; |
| 676 | |
| 677 | HRESULT hr = S_OK; |
| 678 | |
| 679 | if (rcInterface != NULL) |
| 680 | { |
| 681 | if (g_pDebugger == NULL) |
| 682 | { |
| 683 | LOG((LF_CORDB, LL_INFO10, |
| 684 | "CorDBGetInterface: initializing debugger.\n" )); |
| 685 | |
| 686 | g_pDebugger = CreateDebugger(); |
| 687 | TRACE_ALLOC(g_pDebugger); |
| 688 | |
| 689 | if (g_pDebugger == NULL) |
| 690 | hr = E_OUTOFMEMORY; |
| 691 | } |
| 692 | |
| 693 | *rcInterface = g_pDebugger; |
| 694 | } |
| 695 | |
| 696 | RETURN hr; |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | //----------------------------------------------------------------------------- |
| 701 | // Send a pre-init IPC event and block. |
| 702 | // We assume the IPC event has already been initialized. There's nothing special |
| 703 | // here; it just used the standard formula for sending an IPC event to the RS. |
| 704 | // This should match up w/ the description in SENDIPCEVENT_BEGIN. |
| 705 | //----------------------------------------------------------------------------- |
| 706 | void Debugger::SendSimpleIPCEventAndBlock() |
| 707 | { |
| 708 | CONTRACTL |
| 709 | { |
| 710 | SO_NOT_MAINLINE; |
| 711 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 712 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 713 | } |
| 714 | CONTRACTL_END; |
| 715 | |
| 716 | // BEGIN will acquire the lock (END will release it). While blocking, the |
| 717 | // debugger may have detached though, so we need to check for that. |
| 718 | _ASSERTE(ThreadHoldsLock()); |
| 719 | |
| 720 | if (CORDebuggerAttached()) |
| 721 | { |
| 722 | m_pRCThread->SendIPCEvent(); |
| 723 | |
| 724 | // Stop all Runtime threads |
| 725 | this->TrapAllRuntimeThreads(); |
| 726 | } |
| 727 | } |
| 728 | |
| 729 | //----------------------------------------------------------------------------- |
| 730 | // Get context from a thread in managed code. |
| 731 | // See header for exact semantics. |
| 732 | //----------------------------------------------------------------------------- |
| 733 | CONTEXT * GetManagedStoppedCtx(Thread * pThread) |
| 734 | { |
| 735 | WRAPPER_NO_CONTRACT; |
| 736 | |
| 737 | _ASSERTE(pThread != NULL); |
| 738 | |
| 739 | // We may be stopped or live. |
| 740 | |
| 741 | // If we're stopped at an interop-hijack, we'll have a filter context, |
| 742 | // but we'd better not be redirected for a managed-suspension hijack. |
| 743 | if (pThread->GetInteropDebuggingHijacked()) |
| 744 | { |
| 745 | _ASSERTE(!ISREDIRECTEDTHREAD(pThread)); |
| 746 | return NULL; |
| 747 | } |
| 748 | |
| 749 | // Check if we have a filter ctx. This should only be for managed-code. |
| 750 | // We're stopped at some exception (likely an int3 or single-step). |
| 751 | // Can't have both filter ctx + redirected ctx. |
| 752 | CONTEXT *pCtx = g_pEEInterface->GetThreadFilterContext(pThread); |
| 753 | if (pCtx != NULL) |
| 754 | { |
| 755 | _ASSERTE(!ISREDIRECTEDTHREAD(pThread)); |
| 756 | return pCtx; |
| 757 | } |
| 758 | |
| 759 | if (ISREDIRECTEDTHREAD(pThread)) |
| 760 | { |
| 761 | pCtx = GETREDIRECTEDCONTEXT(pThread); |
| 762 | _ASSERTE(pCtx != NULL); |
| 763 | return pCtx; |
| 764 | } |
| 765 | |
| 766 | // Not stopped somewhere in managed code. |
| 767 | return NULL; |
| 768 | } |
| 769 | |
| 770 | //----------------------------------------------------------------------------- |
| 771 | // See header for exact semantics. |
| 772 | // Never NULL. (Caller guarantees this is active.) |
| 773 | //----------------------------------------------------------------------------- |
| 774 | CONTEXT * GetManagedLiveCtx(Thread * pThread) |
| 775 | { |
| 776 | LIMITED_METHOD_CONTRACT; |
| 777 | |
| 778 | _ASSERTE(pThread != NULL); |
| 779 | |
| 780 | // We should never be on the helper thread, we should only be inspecting our own thread. |
| 781 | // We're in some Controller's Filter after hitting an exception. |
| 782 | // We're not stopped. |
| 783 | //_ASSERTE(!g_pDebugger->IsStopped()); <-- @todo - this fires, need to find out why. |
| 784 | _ASSERTE(GetThread() == pThread); |
| 785 | |
| 786 | CONTEXT *pCtx = g_pEEInterface->GetThreadFilterContext(pThread); |
| 787 | |
| 788 | // Note that we may be in a M2U hijack. So we can't assert !pThread->GetInteropDebuggingHijacked() |
| 789 | _ASSERTE(!ISREDIRECTEDTHREAD(pThread)); |
| 790 | _ASSERTE(pCtx); |
| 791 | |
| 792 | return pCtx; |
| 793 | } |
| 794 | |
| 795 | // Attempt to validate a GC handle. |
| 796 | HRESULT ValidateGCHandle(OBJECTHANDLE oh) |
| 797 | { |
| 798 | // The only real way to do this is to Enumerate all GC handles in the handle table. |
| 799 | // That's too expensive. So we'll use a similar workaround that we use in ValidateObject. |
| 800 | // This will err on the side off returning True for invalid handles. |
| 801 | |
| 802 | CONTRACTL |
| 803 | { |
| 804 | SO_NOT_MAINLINE; |
| 805 | NOTHROW; |
| 806 | GC_NOTRIGGER; |
| 807 | } |
| 808 | CONTRACTL_END; |
| 809 | |
| 810 | HRESULT hr = S_OK; |
| 811 | |
| 812 | EX_TRY |
| 813 | { |
| 814 | // Use AVInRuntimeImplOkHolder. |
| 815 | AVInRuntimeImplOkayHolder AVOkay; |
| 816 | |
| 817 | // This may throw if the Object Handle is invalid. |
| 818 | Object * objPtr = *((Object**) oh); |
| 819 | |
| 820 | // NULL is certinally valid... |
| 821 | if (objPtr != NULL) |
| 822 | { |
| 823 | if (!objPtr->ValidateObjectWithPossibleAV()) |
| 824 | { |
| 825 | LOG((LF_CORDB, LL_INFO10000, "GAV: object methodtable-class invariant doesn't hold.\n" )); |
| 826 | hr = E_INVALIDARG; |
| 827 | goto LExit; |
| 828 | } |
| 829 | } |
| 830 | |
| 831 | LExit: ; |
| 832 | } |
| 833 | EX_CATCH |
| 834 | { |
| 835 | LOG((LF_CORDB, LL_INFO10000, "GAV: exception indicated ref is bad.\n" )); |
| 836 | hr = E_INVALIDARG; |
| 837 | } |
| 838 | EX_END_CATCH(SwallowAllExceptions); |
| 839 | |
| 840 | return hr; |
| 841 | } |
| 842 | |
| 843 | |
| 844 | // Validate an object. Returns E_INVALIDARG or S_OK. |
| 845 | HRESULT ValidateObject(Object *objPtr) |
| 846 | { |
| 847 | CONTRACTL |
| 848 | { |
| 849 | SO_NOT_MAINLINE; |
| 850 | NOTHROW; |
| 851 | GC_NOTRIGGER; |
| 852 | } |
| 853 | CONTRACTL_END; |
| 854 | |
| 855 | HRESULT hr = S_OK; |
| 856 | |
| 857 | EX_TRY |
| 858 | { |
| 859 | // Use AVInRuntimeImplOkHolder. |
| 860 | AVInRuntimeImplOkayHolder AVOkay; |
| 861 | |
| 862 | // NULL is certinally valid... |
| 863 | if (objPtr != NULL) |
| 864 | { |
| 865 | if (!objPtr->ValidateObjectWithPossibleAV()) |
| 866 | { |
| 867 | LOG((LF_CORDB, LL_INFO10000, "GAV: object methodtable-class invariant doesn't hold.\n" )); |
| 868 | hr = E_INVALIDARG; |
| 869 | goto LExit; |
| 870 | } |
| 871 | } |
| 872 | |
| 873 | LExit: ; |
| 874 | } |
| 875 | EX_CATCH |
| 876 | { |
| 877 | LOG((LF_CORDB, LL_INFO10000, "GAV: exception indicated ref is bad.\n" )); |
| 878 | hr = E_INVALIDARG; |
| 879 | } |
| 880 | EX_END_CATCH(SwallowAllExceptions); |
| 881 | |
| 882 | return hr; |
| 883 | } // ValidateObject |
| 884 | |
| 885 | |
| 886 | #ifdef FEATURE_DBGIPC_TRANSPORT_VM |
| 887 | void |
| 888 | ShutdownTransport() |
| 889 | { |
| 890 | if (g_pDbgTransport != NULL) |
| 891 | { |
| 892 | g_pDbgTransport->Shutdown(); |
| 893 | g_pDbgTransport = NULL; |
| 894 | } |
| 895 | } |
| 896 | |
| 897 | void |
| 898 | AbortTransport() |
| 899 | { |
| 900 | if (g_pDbgTransport != NULL) |
| 901 | { |
| 902 | g_pDbgTransport->AbortConnection(); |
| 903 | } |
| 904 | } |
| 905 | #endif // FEATURE_DBGIPC_TRANSPORT_VM |
| 906 | |
| 907 | |
| 908 | /* ------------------------------------------------------------------------ * |
| 909 | * Debugger routines |
| 910 | * ------------------------------------------------------------------------ */ |
| 911 | |
| 912 | // |
| 913 | // a Debugger object represents the global state of the debugger program. |
| 914 | // |
| 915 | |
| 916 | // |
| 917 | // Constructor & Destructor |
| 918 | // |
| 919 | |
| 920 | /****************************************************************************** |
| 921 | * |
| 922 | ******************************************************************************/ |
| 923 | Debugger::Debugger() |
| 924 | : |
| 925 | m_fLeftSideInitialized(FALSE), |
| 926 | #ifdef _DEBUG |
| 927 | m_mutexCount(0), |
| 928 | #endif //_DEBUG |
| 929 | m_pRCThread(NULL), |
| 930 | m_trappingRuntimeThreads(FALSE), |
| 931 | m_stopped(FALSE), |
| 932 | m_unrecoverableError(FALSE), |
| 933 | m_ignoreThreadDetach(FALSE), |
| 934 | m_pMethodInfos(NULL), |
| 935 | m_mutex(CrstDebuggerMutex, (CrstFlags)(CRST_UNSAFE_ANYMODE | CRST_REENTRANCY | CRST_DEBUGGER_THREAD)), |
| 936 | #ifdef _DEBUG |
| 937 | m_mutexOwner(0), |
| 938 | m_tidLockedForEventSending(0), |
| 939 | #endif //_DEBUG |
| 940 | m_threadsAtUnsafePlaces(0), |
| 941 | m_jitAttachInProgress(FALSE), |
| 942 | m_launchingDebugger(FALSE), |
| 943 | m_LoggingEnabled(TRUE), |
| 944 | m_pAppDomainCB(NULL), |
| 945 | m_dClassLoadCallbackCount(0), |
| 946 | m_pModules(NULL), |
| 947 | m_RSRequestedSync(FALSE), |
| 948 | m_sendExceptionsOutsideOfJMC(TRUE), |
| 949 | m_pIDbgThreadControl(NULL), |
| 950 | m_forceNonInterceptable(FALSE), |
| 951 | m_pLazyData(NULL), |
| 952 | m_defines(_defines), |
| 953 | m_isBlockedOnGarbageCollectionEvent(FALSE), |
| 954 | m_willBlockOnGarbageCollectionEvent(FALSE), |
| 955 | m_isGarbageCollectionEventsEnabled(FALSE), |
| 956 | m_isGarbageCollectionEventsEnabledLatch(FALSE) |
| 957 | { |
| 958 | CONTRACTL |
| 959 | { |
| 960 | SO_INTOLERANT; |
| 961 | WRAPPER(THROWS); |
| 962 | WRAPPER(GC_TRIGGERS); |
| 963 | CONSTRUCTOR_CHECK; |
| 964 | } |
| 965 | CONTRACTL_END; |
| 966 | |
| 967 | m_fShutdownMode = false; |
| 968 | m_fDisabled = false; |
| 969 | m_rgHijackFunction = NULL; |
| 970 | |
| 971 | #ifdef _DEBUG |
| 972 | InitDebugEventCounting(); |
| 973 | #endif |
| 974 | |
| 975 | m_processId = GetCurrentProcessId(); |
| 976 | |
| 977 | // Initialize these in ctor because we free them in dtor. |
| 978 | // And we can't set them to some safe uninited value (like NULL). |
| 979 | |
| 980 | |
| 981 | |
| 982 | //------------------------------------------------------------------------------ |
| 983 | // Metadata data structure version numbers |
| 984 | // |
| 985 | // 1 - initial state of the layouts ( .Net 4.5.2 ) |
| 986 | // |
| 987 | // as data structure layouts change, add a new version number |
| 988 | // and comment the changes |
| 989 | m_mdDataStructureVersion = 1; |
| 990 | |
| 991 | } |
| 992 | |
| 993 | /****************************************************************************** |
| 994 | * |
| 995 | ******************************************************************************/ |
| 996 | Debugger::~Debugger() |
| 997 | { |
| 998 | CONTRACTL |
| 999 | { |
| 1000 | NOTHROW; |
| 1001 | GC_NOTRIGGER; |
| 1002 | DESTRUCTOR_CHECK; |
| 1003 | SO_INTOLERANT; |
| 1004 | } |
| 1005 | CONTRACTL_END; |
| 1006 | |
| 1007 | // We explicitly leak the debugger object on shutdown. See Debugger::StopDebugger for details. |
| 1008 | _ASSERTE(!"Debugger dtor should not be called." ); |
| 1009 | } |
| 1010 | |
| 1011 | #if defined(FEATURE_HIJACK) && !defined(PLATFORM_UNIX) |
| 1012 | typedef void (*PFN_HIJACK_FUNCTION) (void); |
| 1013 | |
| 1014 | // Given the start address and the end address of a function, return a MemoryRange for the function. |
| 1015 | inline MemoryRange GetMemoryRangeForFunction(PFN_HIJACK_FUNCTION pfnStart, PFN_HIJACK_FUNCTION pfnEnd) |
| 1016 | { |
| 1017 | PCODE pfnStartAddress = (PCODE)GetEEFuncEntryPoint(pfnStart); |
| 1018 | PCODE pfnEndAddress = (PCODE)GetEEFuncEntryPoint(pfnEnd); |
| 1019 | return MemoryRange(dac_cast<PTR_VOID>(pfnStartAddress), (pfnEndAddress - pfnStartAddress)); |
| 1020 | } |
| 1021 | |
| 1022 | // static |
| 1023 | MemoryRange Debugger::s_hijackFunction[kMaxHijackFunctions] = |
| 1024 | {GetMemoryRangeForFunction(ExceptionHijack, ExceptionHijackEnd), |
| 1025 | GetMemoryRangeForFunction(RedirectedHandledJITCaseForGCThreadControl_Stub, |
| 1026 | RedirectedHandledJITCaseForGCThreadControl_StubEnd), |
| 1027 | GetMemoryRangeForFunction(RedirectedHandledJITCaseForDbgThreadControl_Stub, |
| 1028 | RedirectedHandledJITCaseForDbgThreadControl_StubEnd), |
| 1029 | GetMemoryRangeForFunction(RedirectedHandledJITCaseForUserSuspend_Stub, |
| 1030 | RedirectedHandledJITCaseForUserSuspend_StubEnd) |
| 1031 | #if defined(HAVE_GCCOVER) && defined(_TARGET_AMD64_) |
| 1032 | , |
| 1033 | GetMemoryRangeForFunction(RedirectedHandledJITCaseForGCStress_Stub, |
| 1034 | RedirectedHandledJITCaseForGCStress_StubEnd) |
| 1035 | #endif // HAVE_GCCOVER && _TARGET_AMD64_ |
| 1036 | }; |
| 1037 | #endif // FEATURE_HIJACK && !PLATFORM_UNIX |
| 1038 | |
| 1039 | // Save the necessary information for the debugger to recognize an IP in one of the thread redirection |
| 1040 | // functions. |
| 1041 | void Debugger::InitializeHijackFunctionAddress() |
| 1042 | { |
| 1043 | #if defined(FEATURE_HIJACK) && !defined(PLATFORM_UNIX) |
| 1044 | // Advertise hijack address for the DD Hijack primitive |
| 1045 | m_rgHijackFunction = Debugger::s_hijackFunction; |
| 1046 | #endif // FEATURE_HIJACK && !PLATFORM_UNIX |
| 1047 | } |
| 1048 | |
| 1049 | // For debug-only builds, we'll have a debugging feature to count |
| 1050 | // the number of ipc events and break on a specific number. |
| 1051 | // Initialize the stuff to do that. |
| 1052 | void Debugger::InitDebugEventCounting() |
| 1053 | { |
| 1054 | CONTRACTL |
| 1055 | { |
| 1056 | SO_INTOLERANT; |
| 1057 | NOTHROW; |
| 1058 | GC_NOTRIGGER; |
| 1059 | } |
| 1060 | CONTRACTL_END; |
| 1061 | #ifdef _DEBUG |
| 1062 | // initialize the debug event counter structure to zero |
| 1063 | memset(&g_debugEventCounter, 0, sizeof(DebugEventCounter)); |
| 1064 | memset(&g_iDbgRuntimeCounter, 0, DBG_RUNTIME_MAX*sizeof(int)); |
| 1065 | memset(&g_iDbgDebuggerCounter, 0, DBG_DEBUGGER_MAX*sizeof(int)); |
| 1066 | |
| 1067 | // retrieve the possible counter for break point |
| 1068 | LPWSTR wstrValue = NULL; |
| 1069 | // The string value is of the following format |
| 1070 | // <Event Name>=Count;<Event Name>=Count;....; |
| 1071 | // The string must end with ; |
| 1072 | if ((wstrValue = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_DebuggerBreakPoint)) != NULL) |
| 1073 | { |
| 1074 | LPSTR strValue; |
| 1075 | int cbReq; |
| 1076 | cbReq = WszWideCharToMultiByte(CP_UTF8, 0, wstrValue,-1, 0,0, 0,0); |
| 1077 | |
| 1078 | strValue = new (nothrow) char[cbReq+1]; |
| 1079 | // This is a debug only thingy, if it fails, not worth taking |
| 1080 | // down the process. |
| 1081 | if (strValue == NULL) |
| 1082 | return; |
| 1083 | |
| 1084 | |
| 1085 | // now translate the unicode to ansi string |
| 1086 | WszWideCharToMultiByte(CP_UTF8, 0, wstrValue, -1, strValue, cbReq+1, 0,0); |
| 1087 | char *szEnd = (char *)strchr(strValue, ';'); |
| 1088 | char *szStart = strValue; |
| 1089 | while (szEnd != NULL) |
| 1090 | { |
| 1091 | // Found a key value |
| 1092 | char *szNameEnd = strchr(szStart, '='); |
| 1093 | int iCount; |
| 1094 | DebuggerIPCEventType eventType; |
| 1095 | if (szNameEnd != NULL) |
| 1096 | { |
| 1097 | // This is a well form key |
| 1098 | *szNameEnd = '\0'; |
| 1099 | *szEnd = '\0'; |
| 1100 | |
| 1101 | // now szStart is the key name null terminated. Translate the counter into integer. |
| 1102 | iCount = atoi(szNameEnd+1); |
| 1103 | if (iCount != 0) |
| 1104 | { |
| 1105 | eventType = IPCENames::GetEventType(szStart); |
| 1106 | |
| 1107 | if (eventType < DB_IPCE_DEBUGGER_FIRST) |
| 1108 | { |
| 1109 | // use the runtime one |
| 1110 | g_iDbgRuntimeCounter[eventType & 0x00ff] = iCount; |
| 1111 | } |
| 1112 | else if (eventType < DB_IPCE_DEBUGGER_LAST) |
| 1113 | { |
| 1114 | // use the debugger one |
| 1115 | g_iDbgDebuggerCounter[eventType & 0x00ff] = iCount; |
| 1116 | } |
| 1117 | else |
| 1118 | _ASSERTE(!"Unknown Event Type" ); |
| 1119 | } |
| 1120 | } |
| 1121 | szStart = szEnd + 1; |
| 1122 | // try to find next key value |
| 1123 | szEnd = (char *)strchr(szStart, ';'); |
| 1124 | } |
| 1125 | |
| 1126 | // free the ansi buffer |
| 1127 | delete [] strValue; |
| 1128 | REGUTIL::FreeConfigString(wstrValue); |
| 1129 | } |
| 1130 | #endif // _DEBUG |
| 1131 | } |
| 1132 | |
| 1133 | |
| 1134 | // This is a notification from the EE it's about to go to fiber mode. |
| 1135 | // This is given *before* it actually goes to fiber mode. |
| 1136 | HRESULT Debugger::SetFiberMode(bool isFiberMode) |
| 1137 | { |
| 1138 | CONTRACTL |
| 1139 | { |
| 1140 | NOTHROW; |
| 1141 | GC_NOTRIGGER; |
| 1142 | |
| 1143 | // Notifications from EE never come on helper worker. |
| 1144 | PRECONDITION(!ThisIsHelperThreadWorker()); |
| 1145 | } |
| 1146 | CONTRACTL_END; |
| 1147 | |
| 1148 | |
| 1149 | Thread * pThread = ::GetThread(); |
| 1150 | |
| 1151 | m_pRCThread->m_pDCB->m_bHostingInFiber = isFiberMode; |
| 1152 | |
| 1153 | // If there is a debugger already attached, then we have a big problem. As of V2.0, the debugger |
| 1154 | // does not support debugging processes with fibers in them. We set the unrecoverable state to |
| 1155 | // indicate that we're in a bad state now. The debugger will notice this, and take appropiate action. |
| 1156 | if (isFiberMode && CORDebuggerAttached()) |
| 1157 | { |
| 1158 | LOG((LF_CORDB, LL_INFO10, "Thread has entered fiber mode while debugger attached.\n" )); |
| 1159 | |
| 1160 | EX_TRY |
| 1161 | { |
| 1162 | // We send up a MDA for two reasons: 1) we want to give the user some chance to see what went wrong, |
| 1163 | // and 2) we want to get the Right Side to notice that we're in an unrecoverable error state now. |
| 1164 | |
| 1165 | SString szName(W("DebuggerFiberModeNotSupported" )); |
| 1166 | SString szDescription; |
| 1167 | szDescription.LoadResource(CCompRC::Debugging, MDARC_DEBUGGER_FIBER_MODE_NOT_SUPPORTED); |
| 1168 | SString szXML(W("" )); |
| 1169 | |
| 1170 | // Sending any debug event will be a GC violation. |
| 1171 | // However, if we're enabling fiber-mode while a debugger is attached, we're already doomed. |
| 1172 | // Deadlocks and AVs are just around the corner. A Gc-violation is the least of our worries. |
| 1173 | // We want to at least notify the debugger at all costs. |
| 1174 | CONTRACT_VIOLATION(GCViolation); |
| 1175 | |
| 1176 | // As soon as we set unrecoverable error in the LS, the RS will pick it up and basically shut down. |
| 1177 | // It won't dispatch any events. So we fire the MDA first, and then set unrecoverable error. |
| 1178 | SendMDANotification(pThread, &szName, &szDescription, &szXML, (CorDebugMDAFlags) 0, FALSE); |
| 1179 | |
| 1180 | CORDBDebuggerSetUnrecoverableError(this, CORDBG_E_CANNOT_DEBUG_FIBER_PROCESS, false); |
| 1181 | |
| 1182 | // Fire the MDA again just to force the RS to sniff the LS and pick up that we're in an unrecoverable error. |
| 1183 | // No harm done from dispatching an MDA twice. And |
| 1184 | SendMDANotification(pThread, &szName, &szDescription, &szXML, (CorDebugMDAFlags) 0, FALSE); |
| 1185 | |
| 1186 | } |
| 1187 | EX_CATCH |
| 1188 | { |
| 1189 | LOG((LF_CORDB, LL_INFO10, "Error sending MDA regarding fiber mode.\n" )); |
| 1190 | } |
| 1191 | EX_END_CATCH(SwallowAllExceptions); |
| 1192 | } |
| 1193 | |
| 1194 | return S_OK; |
| 1195 | } |
| 1196 | |
| 1197 | // Checks if the MethodInfos table has been allocated, and if not does so. |
| 1198 | // Throw on failure, so we always return |
| 1199 | HRESULT Debugger::CheckInitMethodInfoTable() |
| 1200 | { |
| 1201 | CONTRACTL |
| 1202 | { |
| 1203 | SO_INTOLERANT; |
| 1204 | NOTHROW; |
| 1205 | GC_NOTRIGGER; |
| 1206 | } |
| 1207 | CONTRACTL_END; |
| 1208 | |
| 1209 | if (m_pMethodInfos == NULL) |
| 1210 | { |
| 1211 | DebuggerMethodInfoTable *pMethodInfos = NULL; |
| 1212 | |
| 1213 | EX_TRY |
| 1214 | { |
| 1215 | pMethodInfos = new (interopsafe) DebuggerMethodInfoTable(); |
| 1216 | } |
| 1217 | EX_CATCH |
| 1218 | { |
| 1219 | pMethodInfos = NULL; |
| 1220 | } |
| 1221 | EX_END_CATCH(RethrowTerminalExceptions); |
| 1222 | |
| 1223 | |
| 1224 | if (pMethodInfos == NULL) |
| 1225 | { |
| 1226 | return E_OUTOFMEMORY; |
| 1227 | } |
| 1228 | |
| 1229 | if (InterlockedCompareExchangeT(&m_pMethodInfos, pMethodInfos, NULL) != NULL) |
| 1230 | { |
| 1231 | DeleteInteropSafe(pMethodInfos); |
| 1232 | } |
| 1233 | } |
| 1234 | |
| 1235 | return S_OK; |
| 1236 | } |
| 1237 | |
| 1238 | // Checks if the m_pModules table has been allocated, and if not does so. |
| 1239 | HRESULT Debugger::CheckInitModuleTable() |
| 1240 | { |
| 1241 | CONTRACT(HRESULT) |
| 1242 | { |
| 1243 | NOTHROW; |
| 1244 | GC_NOTRIGGER; |
| 1245 | POSTCONDITION(m_pModules != NULL); |
| 1246 | } |
| 1247 | CONTRACT_END; |
| 1248 | |
| 1249 | if (m_pModules == NULL) |
| 1250 | { |
| 1251 | DebuggerModuleTable *pModules = new (interopsafe, nothrow) DebuggerModuleTable(); |
| 1252 | |
| 1253 | if (pModules == NULL) |
| 1254 | { |
| 1255 | RETURN (E_OUTOFMEMORY); |
| 1256 | } |
| 1257 | |
| 1258 | if (InterlockedCompareExchangeT(&m_pModules, pModules, NULL) != NULL) |
| 1259 | { |
| 1260 | DeleteInteropSafe(pModules); |
| 1261 | } |
| 1262 | } |
| 1263 | |
| 1264 | RETURN (S_OK); |
| 1265 | } |
| 1266 | |
| 1267 | // Checks if the m_pModules table has been allocated, and if not does so. |
| 1268 | HRESULT Debugger::CheckInitPendingFuncEvalTable() |
| 1269 | { |
| 1270 | CONTRACT(HRESULT) |
| 1271 | { |
| 1272 | NOTHROW; |
| 1273 | GC_NOTRIGGER; |
| 1274 | POSTCONDITION(GetPendingEvals() != NULL); |
| 1275 | } |
| 1276 | CONTRACT_END; |
| 1277 | |
| 1278 | #ifndef DACCESS_COMPILE |
| 1279 | |
| 1280 | if (GetPendingEvals() == NULL) |
| 1281 | { |
| 1282 | DebuggerPendingFuncEvalTable *pPendingEvals = new (interopsafe, nothrow) DebuggerPendingFuncEvalTable(); |
| 1283 | |
| 1284 | if (pPendingEvals == NULL) |
| 1285 | { |
| 1286 | RETURN(E_OUTOFMEMORY); |
| 1287 | } |
| 1288 | |
| 1289 | // Since we're setting, we need an LValue and not just an accessor. |
| 1290 | if (InterlockedCompareExchangeT(&(GetLazyData()->m_pPendingEvals), pPendingEvals, NULL) != NULL) |
| 1291 | { |
| 1292 | DeleteInteropSafe(pPendingEvals); |
| 1293 | } |
| 1294 | } |
| 1295 | #endif |
| 1296 | |
| 1297 | RETURN (S_OK); |
| 1298 | } |
| 1299 | |
| 1300 | |
| 1301 | #ifdef _DEBUG_DMI_TABLE |
| 1302 | // Returns the number of (official) entries in the table |
| 1303 | ULONG DebuggerMethodInfoTable::CheckDmiTable(void) |
| 1304 | { |
| 1305 | LIMITED_METHOD_CONTRACT; |
| 1306 | |
| 1307 | ULONG cApparent = 0; |
| 1308 | ULONG cOfficial = 0; |
| 1309 | |
| 1310 | if (NULL != m_pcEntries) |
| 1311 | { |
| 1312 | DebuggerMethodInfoEntry *dcp; |
| 1313 | int i = 0; |
| 1314 | while (i++ <m_iEntries) |
| 1315 | { |
| 1316 | dcp = (DebuggerMethodInfoEntry*)&(((DebuggerMethodInfoEntry *)m_pcEntries)[i]); |
| 1317 | if(dcp->pFD != 0 && |
| 1318 | dcp->pFD != (MethodDesc*)0xcdcdcdcd && |
| 1319 | dcp->mi != NULL) |
| 1320 | { |
| 1321 | cApparent++; |
| 1322 | |
| 1323 | _ASSERTE( dcp->pFD == dcp->mi->m_fd ); |
| 1324 | LOG((LF_CORDB, LL_INFO1000, "DMIT::CDT:Entry:0x%p mi:0x%p\nPrevs:\n" , |
| 1325 | dcp, dcp->mi)); |
| 1326 | DebuggerMethodInfo *dmi = dcp->mi->m_prevMethodInfo; |
| 1327 | |
| 1328 | while(dmi != NULL) |
| 1329 | { |
| 1330 | LOG((LF_CORDB, LL_INFO1000, "\t0x%p\n" , dmi)); |
| 1331 | dmi = dmi->m_prevMethodInfo; |
| 1332 | } |
| 1333 | dmi = dcp->mi->m_nextMethodInfo; |
| 1334 | |
| 1335 | LOG((LF_CORDB, LL_INFO1000, "Nexts:\n" , dmi)); |
| 1336 | while(dmi != NULL) |
| 1337 | { |
| 1338 | LOG((LF_CORDB, LL_INFO1000, "\t0x%p\n" , dmi)); |
| 1339 | dmi = dmi->m_nextMethodInfo; |
| 1340 | } |
| 1341 | |
| 1342 | LOG((LF_CORDB, LL_INFO1000, "DMIT::CDT:DONE\n" , |
| 1343 | dcp, dcp->mi)); |
| 1344 | } |
| 1345 | } |
| 1346 | |
| 1347 | if (m_piBuckets == 0) |
| 1348 | { |
| 1349 | LOG((LF_CORDB, LL_INFO1000, "DMIT::CDT: The table is officially empty!\n" )); |
| 1350 | return cOfficial; |
| 1351 | } |
| 1352 | |
| 1353 | LOG((LF_CORDB, LL_INFO1000, "DMIT::CDT:Looking for official entries:\n" )); |
| 1354 | |
| 1355 | ULONG iNext = m_piBuckets[0]; |
| 1356 | ULONG iBucket = 1; |
| 1357 | HASHENTRY *psEntry = NULL; |
| 1358 | while (TRUE) |
| 1359 | { |
| 1360 | while (iNext != UINT32_MAX) |
| 1361 | { |
| 1362 | cOfficial++; |
| 1363 | |
| 1364 | psEntry = EntryPtr(iNext); |
| 1365 | dcp = ((DebuggerMethodInfoEntry *)psEntry); |
| 1366 | |
| 1367 | LOG((LF_CORDB, LL_INFO1000, "\tEntry:0x%p mi:0x%p @idx:0x%x @bucket:0x%x\n" , |
| 1368 | dcp, dcp->mi, iNext, iBucket)); |
| 1369 | |
| 1370 | iNext = psEntry->iNext; |
| 1371 | } |
| 1372 | |
| 1373 | // Advance to the next bucket. |
| 1374 | if (iBucket < m_iBuckets) |
| 1375 | iNext = m_piBuckets[iBucket++]; |
| 1376 | else |
| 1377 | break; |
| 1378 | } |
| 1379 | |
| 1380 | LOG((LF_CORDB, LL_INFO1000, "DMIT::CDT:Finished official entries: ****************" )); |
| 1381 | } |
| 1382 | |
| 1383 | return cOfficial; |
| 1384 | } |
| 1385 | #endif // _DEBUG_DMI_TABLE |
| 1386 | |
| 1387 | |
| 1388 | //--------------------------------------------------------------------------------------- |
| 1389 | // |
| 1390 | // Class constructor for DebuggerEval. This is the supporting data structure for |
| 1391 | // func-eval tracking. |
| 1392 | // |
| 1393 | // Arguments: |
| 1394 | // pContext - The context to return to when done with this eval. |
| 1395 | // pEvalInfo - Contains all the important information, such as parameters, type args, method. |
| 1396 | // fInException - TRUE if the thread for the eval is currently in an exception notification. |
| 1397 | // |
| 1398 | DebuggerEval::DebuggerEval(CONTEXT * pContext, DebuggerIPCE_FuncEvalInfo * pEvalInfo, bool fInException) |
| 1399 | { |
| 1400 | WRAPPER_NO_CONTRACT; |
| 1401 | |
| 1402 | // Allocate the breakpoint instruction info in executable memory. |
| 1403 | m_bpInfoSegment = new (interopsafeEXEC, nothrow) DebuggerEvalBreakpointInfoSegment(this); |
| 1404 | |
| 1405 | // This must be non-zero so that the saved opcode is non-zero, and on IA64 we want it to be 0x16 |
| 1406 | // so that we can have a breakpoint instruction in any slot in the bundle. |
| 1407 | m_bpInfoSegment->m_breakpointInstruction[0] = 0x16; |
| 1408 | #if defined(_TARGET_ARM_) |
| 1409 | USHORT *bp = (USHORT*)&m_bpInfoSegment->m_breakpointInstruction; |
| 1410 | *bp = CORDbg_BREAK_INSTRUCTION; |
| 1411 | #endif // _TARGET_ARM_ |
| 1412 | m_thread = pEvalInfo->vmThreadToken.GetRawPtr(); |
| 1413 | m_evalType = pEvalInfo->funcEvalType; |
| 1414 | m_methodToken = pEvalInfo->funcMetadataToken; |
| 1415 | m_classToken = pEvalInfo->funcClassMetadataToken; |
| 1416 | |
| 1417 | // Note: we can't rely on just the DebuggerModule* or AppDomain* because the AppDomain |
| 1418 | // could get unloaded between now and when the funceval actually starts. So we stash an |
| 1419 | // AppDomain ID which is safe to use after the AD is unloaded. It's only safe to |
| 1420 | // use the DebuggerModule* after we've verified the ADID is still valid (i.e. by entering that domain). |
| 1421 | m_debuggerModule = g_pDebugger->LookupOrCreateModule(pEvalInfo->vmDomainFile); |
| 1422 | |
| 1423 | if (m_debuggerModule == NULL) |
| 1424 | { |
| 1425 | // We have no associated code. |
| 1426 | _ASSERTE((m_evalType == DB_IPCE_FET_NEW_STRING) || (m_evalType == DB_IPCE_FET_NEW_ARRAY)); |
| 1427 | |
| 1428 | // We'll just do the creation in whatever domain the thread is already in. |
| 1429 | // It's conceivable that we might want to allow the caller to specify a specific domain, but |
| 1430 | // ICorDebug provides the debugger with no was to specify the domain. |
| 1431 | m_appDomainId = m_thread->GetDomain()->GetId(); |
| 1432 | } |
| 1433 | else |
| 1434 | { |
| 1435 | m_appDomainId = m_debuggerModule->GetAppDomain()->GetId(); |
| 1436 | } |
| 1437 | |
| 1438 | m_funcEvalKey = pEvalInfo->funcEvalKey; |
| 1439 | m_argCount = pEvalInfo->argCount; |
| 1440 | m_targetCodeAddr = NULL; |
| 1441 | m_stringSize = pEvalInfo->stringSize; |
| 1442 | m_arrayRank = pEvalInfo->arrayRank; |
| 1443 | m_genericArgsCount = pEvalInfo->genericArgsCount; |
| 1444 | m_genericArgsNodeCount = pEvalInfo->genericArgsNodeCount; |
| 1445 | m_successful = false; |
| 1446 | m_argData = NULL; |
| 1447 | memset(m_result, 0, sizeof(m_result)); |
| 1448 | m_md = NULL; |
| 1449 | m_resultType = TypeHandle(); |
| 1450 | m_aborting = FE_ABORT_NONE; |
| 1451 | m_aborted = false; |
| 1452 | m_completed = false; |
| 1453 | m_evalDuringException = fInException; |
| 1454 | m_rethrowAbortException = false; |
| 1455 | m_retValueBoxing = Debugger::NoValueTypeBoxing; |
| 1456 | m_requester = (Thread::ThreadAbortRequester)0; |
| 1457 | m_vmObjectHandle = VMPTR_OBJECTHANDLE::NullPtr(); |
| 1458 | |
| 1459 | // Copy the thread's context. |
| 1460 | if (pContext == NULL) |
| 1461 | { |
| 1462 | memset(&m_context, 0, sizeof(m_context)); |
| 1463 | } |
| 1464 | else |
| 1465 | { |
| 1466 | memcpy(&m_context, pContext, sizeof(m_context)); |
| 1467 | } |
| 1468 | } |
| 1469 | |
| 1470 | //--------------------------------------------------------------------------------------- |
| 1471 | // |
| 1472 | // This constructor is only used when setting up an eval to re-abort a thread. |
| 1473 | // |
| 1474 | // Arguments: |
| 1475 | // pContext - The context to return to when done with this eval. |
| 1476 | // pThread - The thread to re-abort. |
| 1477 | // requester - The type of abort to throw. |
| 1478 | // |
| 1479 | DebuggerEval::DebuggerEval(CONTEXT * pContext, Thread * pThread, Thread::ThreadAbortRequester requester) |
| 1480 | { |
| 1481 | WRAPPER_NO_CONTRACT; |
| 1482 | |
| 1483 | // Allocate the breakpoint instruction info in executable memory. |
| 1484 | m_bpInfoSegment = new (interopsafeEXEC, nothrow) DebuggerEvalBreakpointInfoSegment(this); |
| 1485 | |
| 1486 | // This must be non-zero so that the saved opcode is non-zero, and on IA64 we want it to be 0x16 |
| 1487 | // so that we can have a breakpoint instruction in any slot in the bundle. |
| 1488 | m_bpInfoSegment->m_breakpointInstruction[0] = 0x16; |
| 1489 | m_thread = pThread; |
| 1490 | m_evalType = DB_IPCE_FET_RE_ABORT; |
| 1491 | m_methodToken = mdMethodDefNil; |
| 1492 | m_classToken = mdTypeDefNil; |
| 1493 | m_debuggerModule = NULL; |
| 1494 | m_funcEvalKey = RSPTR_CORDBEVAL::NullPtr(); |
| 1495 | m_argCount = 0; |
| 1496 | m_stringSize = 0; |
| 1497 | m_arrayRank = 0; |
| 1498 | m_genericArgsCount = 0; |
| 1499 | m_genericArgsNodeCount = 0; |
| 1500 | m_successful = false; |
| 1501 | m_argData = NULL; |
| 1502 | m_targetCodeAddr = NULL; |
| 1503 | memset(m_result, 0, sizeof(m_result)); |
| 1504 | m_md = NULL; |
| 1505 | m_resultType = TypeHandle(); |
| 1506 | m_aborting = FE_ABORT_NONE; |
| 1507 | m_aborted = false; |
| 1508 | m_completed = false; |
| 1509 | m_evalDuringException = false; |
| 1510 | m_rethrowAbortException = false; |
| 1511 | m_retValueBoxing = Debugger::NoValueTypeBoxing; |
| 1512 | m_requester = requester; |
| 1513 | |
| 1514 | if (pContext == NULL) |
| 1515 | { |
| 1516 | memset(&m_context, 0, sizeof(m_context)); |
| 1517 | } |
| 1518 | else |
| 1519 | { |
| 1520 | memcpy(&m_context, pContext, sizeof(m_context)); |
| 1521 | } |
| 1522 | } |
| 1523 | |
| 1524 | |
| 1525 | #ifdef _DEBUG |
| 1526 | // Thread proc for interop stress coverage. Have an unmanaged thread |
| 1527 | // that just loops throwing native exceptions. This can test corner cases |
| 1528 | // such as getting an native exception while the runtime is synced. |
| 1529 | DWORD WINAPI DbgInteropStressProc(void * lpParameter) |
| 1530 | { |
| 1531 | LIMITED_METHOD_CONTRACT; |
| 1532 | |
| 1533 | int i = 0; |
| 1534 | int zero = 0; |
| 1535 | |
| 1536 | |
| 1537 | // This will ensure that the compiler doesn't flag our 1/0 exception below at compile-time. |
| 1538 | if (lpParameter != NULL) |
| 1539 | { |
| 1540 | zero = 1; |
| 1541 | } |
| 1542 | |
| 1543 | // Note that this thread is a non-runtime thread. So it can't take any CLR locks |
| 1544 | // or do anything else that may block the helper thread. |
| 1545 | // (Log statements take CLR locks). |
| 1546 | while(true) |
| 1547 | { |
| 1548 | i++; |
| 1549 | |
| 1550 | if ((i % 10) != 0) |
| 1551 | { |
| 1552 | // Generate an in-band event. |
| 1553 | PAL_CPP_TRY |
| 1554 | { |
| 1555 | // Throw a handled exception. Don't use an AV since that's pretty special. |
| 1556 | *(int*)lpParameter = 1 / zero; |
| 1557 | } |
| 1558 | PAL_CPP_CATCH_ALL |
| 1559 | { |
| 1560 | } |
| 1561 | PAL_CPP_ENDTRY |
| 1562 | } |
| 1563 | else |
| 1564 | { |
| 1565 | // Generate the occasional oob-event. |
| 1566 | WszOutputDebugString(W("Ping from DbgInteropStressProc" )); |
| 1567 | } |
| 1568 | |
| 1569 | // This helps parallelize if we have a lot of threads, and keeps us from |
| 1570 | // chewing too much CPU time. |
| 1571 | ClrSleepEx(2000,FALSE); |
| 1572 | ClrSleepEx(GetRandomInt(1000), FALSE); |
| 1573 | } |
| 1574 | |
| 1575 | return 0; |
| 1576 | } |
| 1577 | |
| 1578 | // ThreadProc that does everything in a can't stop region. |
| 1579 | DWORD WINAPI DbgInteropCantStopStressProc(void * lpParameter) |
| 1580 | { |
| 1581 | WRAPPER_NO_CONTRACT; |
| 1582 | |
| 1583 | // This will mark us as a can't stop region. |
| 1584 | ClrFlsSetThreadType (ThreadType_DbgHelper); |
| 1585 | |
| 1586 | return DbgInteropStressProc(lpParameter); |
| 1587 | } |
| 1588 | |
| 1589 | // Generate lots of OOB events. |
| 1590 | DWORD WINAPI DbgInteropDummyStressProc(void * lpParameter) |
| 1591 | { |
| 1592 | LIMITED_METHOD_CONTRACT; |
| 1593 | |
| 1594 | ClrSleepEx(1,FALSE); |
| 1595 | return 0; |
| 1596 | } |
| 1597 | |
| 1598 | DWORD WINAPI DbgInteropOOBStressProc(void * lpParameter) |
| 1599 | { |
| 1600 | WRAPPER_NO_CONTRACT; |
| 1601 | |
| 1602 | int i = 0; |
| 1603 | while(true) |
| 1604 | { |
| 1605 | i++; |
| 1606 | if (i % 10 == 1) |
| 1607 | { |
| 1608 | // Create a dummy thread. That generates 2 oob events |
| 1609 | // (1 for create, 1 for destroy) |
| 1610 | DWORD id; |
| 1611 | ::CreateThread(NULL, 0, DbgInteropDummyStressProc, NULL, 0, &id); |
| 1612 | } |
| 1613 | else |
| 1614 | { |
| 1615 | // Generate the occasional oob-event. |
| 1616 | WszOutputDebugString(W("OOB ping from " )); |
| 1617 | } |
| 1618 | |
| 1619 | ClrSleepEx(3000, FALSE); |
| 1620 | } |
| 1621 | |
| 1622 | return 0; |
| 1623 | } |
| 1624 | |
| 1625 | // List of the different possible stress procs. |
| 1626 | LPTHREAD_START_ROUTINE g_pStressProcs[] = |
| 1627 | { |
| 1628 | DbgInteropOOBStressProc, |
| 1629 | DbgInteropCantStopStressProc, |
| 1630 | DbgInteropStressProc |
| 1631 | }; |
| 1632 | #endif |
| 1633 | |
| 1634 | |
| 1635 | DebuggerHeap * Debugger::GetInteropSafeHeap() |
| 1636 | { |
| 1637 | CONTRACTL |
| 1638 | { |
| 1639 | SO_INTOLERANT; |
| 1640 | THROWS; |
| 1641 | GC_NOTRIGGER; |
| 1642 | } |
| 1643 | CONTRACTL_END; |
| 1644 | |
| 1645 | // Lazily initialize our heap. |
| 1646 | if (!m_heap.IsInit()) |
| 1647 | { |
| 1648 | _ASSERTE(!"InteropSafe Heap should have already been initialized in LazyInit" ); |
| 1649 | |
| 1650 | // Just in case we miss it in retail, convert to OOM here: |
| 1651 | ThrowOutOfMemory(); |
| 1652 | } |
| 1653 | |
| 1654 | return &m_heap; |
| 1655 | } |
| 1656 | |
| 1657 | DebuggerHeap * Debugger::GetInteropSafeHeap_NoThrow() |
| 1658 | { |
| 1659 | CONTRACTL |
| 1660 | { |
| 1661 | SO_INTOLERANT; |
| 1662 | NOTHROW; |
| 1663 | GC_NOTRIGGER; |
| 1664 | } |
| 1665 | CONTRACTL_END; |
| 1666 | |
| 1667 | // Lazily initialize our heap. |
| 1668 | if (!m_heap.IsInit()) |
| 1669 | { |
| 1670 | _ASSERTE(!"InteropSafe Heap should have already been initialized in LazyInit" ); |
| 1671 | |
| 1672 | // Just in case we miss it in retail, convert to OOM here: |
| 1673 | return NULL; |
| 1674 | } |
| 1675 | return &m_heap; |
| 1676 | } |
| 1677 | |
| 1678 | DebuggerHeap * Debugger::GetInteropSafeExecutableHeap() |
| 1679 | { |
| 1680 | CONTRACTL |
| 1681 | { |
| 1682 | SO_INTOLERANT; |
| 1683 | THROWS; |
| 1684 | GC_NOTRIGGER; |
| 1685 | } |
| 1686 | CONTRACTL_END; |
| 1687 | |
| 1688 | // Lazily initialize our heap. |
| 1689 | if (!m_executableHeap.IsInit()) |
| 1690 | { |
| 1691 | _ASSERTE(!"InteropSafe Executable Heap should have already been initialized in LazyInit" ); |
| 1692 | |
| 1693 | // Just in case we miss it in retail, convert to OOM here: |
| 1694 | ThrowOutOfMemory(); |
| 1695 | } |
| 1696 | |
| 1697 | return &m_executableHeap; |
| 1698 | } |
| 1699 | |
| 1700 | DebuggerHeap * Debugger::GetInteropSafeExecutableHeap_NoThrow() |
| 1701 | { |
| 1702 | CONTRACTL |
| 1703 | { |
| 1704 | SO_INTOLERANT; |
| 1705 | NOTHROW; |
| 1706 | GC_NOTRIGGER; |
| 1707 | } |
| 1708 | CONTRACTL_END; |
| 1709 | |
| 1710 | // Lazily initialize our heap. |
| 1711 | if (!m_executableHeap.IsInit()) |
| 1712 | { |
| 1713 | _ASSERTE(!"InteropSafe Executable Heap should have already been initialized in LazyInit" ); |
| 1714 | |
| 1715 | // Just in case we miss it in retail, convert to OOM here: |
| 1716 | return NULL; |
| 1717 | } |
| 1718 | return &m_executableHeap; |
| 1719 | } |
| 1720 | |
| 1721 | //--------------------------------------------------------------------------------------- |
| 1722 | // |
| 1723 | // Notify potential debugger that the runtime has started up |
| 1724 | // |
| 1725 | // |
| 1726 | // Assumptions: |
| 1727 | // Called during startup path |
| 1728 | // |
| 1729 | // Notes: |
| 1730 | // If no debugger is attached, this does nothing. |
| 1731 | // |
| 1732 | //--------------------------------------------------------------------------------------- |
| 1733 | void Debugger::RaiseStartupNotification() |
| 1734 | { |
| 1735 | // Right-side will read this field from OOP via DAC-primitive to determine attach or launch case. |
| 1736 | // We do an interlocked increment to gaurantee this is an atomic memory write, and to ensure |
| 1737 | // that it's flushed from any CPU cache into memory. |
| 1738 | InterlockedIncrement(&m_fLeftSideInitialized); |
| 1739 | |
| 1740 | #ifndef FEATURE_DBGIPC_TRANSPORT_VM |
| 1741 | // If we are remote debugging, don't send the event now if a debugger is not attached. No one will be |
| 1742 | // listening, and we will fail. However, we still want to initialize the variable above. |
| 1743 | DebuggerIPCEvent startupEvent; |
| 1744 | InitIPCEvent(&startupEvent, DB_IPCE_LEFTSIDE_STARTUP, NULL, VMPTR_AppDomain::NullPtr()); |
| 1745 | |
| 1746 | SendRawEvent(&startupEvent); |
| 1747 | |
| 1748 | // RS will set flags from OOP while we're stopped at the event if it wants to attach. |
| 1749 | #endif // FEATURE_DBGIPC_TRANSPORT_VM |
| 1750 | } |
| 1751 | |
| 1752 | |
| 1753 | //--------------------------------------------------------------------------------------- |
| 1754 | // |
| 1755 | // Sends a raw managed debug event to the debugger. |
| 1756 | // |
| 1757 | // Arguments: |
| 1758 | // pManagedEvent - managed debug event |
| 1759 | // |
| 1760 | // |
| 1761 | // Notes: |
| 1762 | // This can be called even if a debugger is not attached. |
| 1763 | // The entire process will get frozen by the debugger once we send. The debugger |
| 1764 | // needs to resume the process. It may detach as well. |
| 1765 | // See code:IsEventDebuggerNotification for decoding this event. These methods must stay in sync. |
| 1766 | // The debugger process reads the events via code:CordbProcess.CopyManagedEventFromTarget. |
| 1767 | // |
| 1768 | //--------------------------------------------------------------------------------------- |
| 1769 | void Debugger::SendRawEvent(const DebuggerIPCEvent * pManagedEvent) |
| 1770 | { |
| 1771 | #if defined(FEATURE_DBGIPC_TRANSPORT_VM) |
| 1772 | HRESULT hr = g_pDbgTransport->SendDebugEvent(const_cast<DebuggerIPCEvent *>(pManagedEvent)); |
| 1773 | |
| 1774 | if (FAILED(hr)) |
| 1775 | { |
| 1776 | _ASSERTE(!"Failed to send debugger event" ); |
| 1777 | |
| 1778 | STRESS_LOG1(LF_CORDB, LL_INFO1000, "D::SendIPCEvent Error on Send with 0x%x\n" , hr); |
| 1779 | UnrecoverableError(hr, |
| 1780 | 0, |
| 1781 | FILE_DEBUG, |
| 1782 | LINE_DEBUG, |
| 1783 | false); |
| 1784 | |
| 1785 | // @dbgtodo Mac - what can we do here? |
| 1786 | } |
| 1787 | #else |
| 1788 | // We get to send an array of ULONG_PTRs as data with the notification. |
| 1789 | // The debugger can then use ReadProcessMemory to read through this array. |
| 1790 | ULONG_PTR rgData [] = { |
| 1791 | CLRDBG_EXCEPTION_DATA_CHECKSUM, |
| 1792 | (ULONG_PTR) g_pMSCorEE, |
| 1793 | (ULONG_PTR) pManagedEvent |
| 1794 | }; |
| 1795 | |
| 1796 | // If no debugger attached, then don't bother raising a 1st-chance exception because nobody will sniff it. |
| 1797 | // @dbgtodo iDNA: in iDNA case, the recorder may sniff it. |
| 1798 | if (!IsDebuggerPresent()) |
| 1799 | { |
| 1800 | return; |
| 1801 | } |
| 1802 | |
| 1803 | // |
| 1804 | // Physically send the event via an OS Exception. We're using exceptions as a notification |
| 1805 | // mechanism on top of the OS native debugging pipeline. |
| 1806 | // @dbgtodo cross-plat - this needs to be cross-plat. |
| 1807 | // |
| 1808 | EX_TRY |
| 1809 | { |
| 1810 | const DWORD dwFlags = 0; // continuable (eg, Debugger can continue GH) |
| 1811 | RaiseException(CLRDBG_NOTIFICATION_EXCEPTION_CODE, dwFlags, NumItems(rgData), rgData); |
| 1812 | |
| 1813 | // If debugger continues "GH" (DBG_CONTINUE), then we land here. |
| 1814 | // This is the expected path for a well-behaved ICorDebug debugger. |
| 1815 | } |
| 1816 | EX_CATCH |
| 1817 | { |
| 1818 | // If no debugger is attached, or if the debugger continues "GN" (DBG_EXCEPTION_NOT_HANDLED), then we land here. |
| 1819 | // A naive (not-ICorDebug aware) native-debugger won't handle the exception and so land us here. |
| 1820 | // We may also get here if a debugger detaches at the Exception notification |
| 1821 | // (and thus implicitly continues GN). |
| 1822 | } |
| 1823 | EX_END_CATCH(SwallowAllExceptions); |
| 1824 | #endif // FEATURE_DBGIPC_TRANSPORT_VM |
| 1825 | } |
| 1826 | |
| 1827 | //--------------------------------------------------------------------------------------- |
| 1828 | // Send a createProcess event to give the RS a chance to do SetDesiredNGENFlags |
| 1829 | // |
| 1830 | // Arguments: |
| 1831 | // pDbgLockHolder - lock holder. |
| 1832 | // |
| 1833 | // Assumptions: |
| 1834 | // Lock is initially held. This will toggle the lock to send an IPC event. |
| 1835 | // This will start a synchronization. |
| 1836 | // |
| 1837 | // Notes: |
| 1838 | // In V2, this also gives the RS a chance to intialize the IPC protocol. |
| 1839 | // Spefically, this needs to be sent before the LS can send a sync-complete. |
| 1840 | //--------------------------------------------------------------------------------------- |
| 1841 | void Debugger::SendCreateProcess(DebuggerLockHolder * pDbgLockHolder) |
| 1842 | { |
| 1843 | pDbgLockHolder->Release(); |
| 1844 | |
| 1845 | // Encourage helper thread to spin up so that we're in a consistent state. |
| 1846 | PollWaitingForHelper(); |
| 1847 | |
| 1848 | // we don't need to use SENDIPCEVENT_BEGIN/END macros that perform the debug-suspend aware checks, |
| 1849 | // as this code executes on the startup path... |
| 1850 | SENDIPCEVENT_RAW_BEGIN(pDbgLockHolder); |
| 1851 | |
| 1852 | // Send a CreateProcess event. |
| 1853 | // @dbgtodo pipeline - eliminate these reasons for needing a CreateProcess event (part of pipeline feature crew) |
| 1854 | // This will let the RS know that the IPC block is up + ready, and then the RS can read it. |
| 1855 | // The RS will then update the DCB with enough information so that we can send the sync-complete. |
| 1856 | // (such as letting us know whether we're interop-debugging or not). |
| 1857 | DebuggerIPCEvent event; |
| 1858 | InitIPCEvent(&event, DB_IPCE_CREATE_PROCESS, NULL, VMPTR_AppDomain::NullPtr()); |
| 1859 | SendRawEvent(&event); |
| 1860 | |
| 1861 | // @dbgtodo inspection- it doesn't really make sense to sync on a CreateProcess. We only have 1 thread |
| 1862 | // in the CLR and we know exactly what state we're in and we can ensure that we're synchronized. |
| 1863 | // For V3,RS should be able to treat a CreateProcess like a synchronized. |
| 1864 | // Remove this in V3 as we make SetDesiredNgenFlags operate OOP. |
| 1865 | TrapAllRuntimeThreads(); |
| 1866 | |
| 1867 | // Must have a thread object so that we ensure that we will actually block here. |
| 1868 | // This ensures the debuggee is actually stopped at startup, and |
| 1869 | // this gives the debugger a chance to call SetDesiredNGENFlags before we |
| 1870 | // set s_fCanChangeNgenFlags to FALSE. |
| 1871 | _ASSERTE(GetThread() != NULL); |
| 1872 | SENDIPCEVENT_RAW_END; |
| 1873 | |
| 1874 | pDbgLockHolder->Acquire(); |
| 1875 | } |
| 1876 | |
| 1877 | #if !defined(FEATURE_PAL) |
| 1878 | |
| 1879 | HANDLE g_hContinueStartupEvent = INVALID_HANDLE_VALUE; |
| 1880 | |
| 1881 | CLR_ENGINE_METRICS g_CLREngineMetrics = { |
| 1882 | sizeof(CLR_ENGINE_METRICS), |
| 1883 | CorDebugVersion_4_0, |
| 1884 | &g_hContinueStartupEvent}; |
| 1885 | |
| 1886 | #define StartupNotifyEventNamePrefix W("TelestoStartupEvent_") |
| 1887 | const int cchEventNameBufferSize = sizeof(StartupNotifyEventNamePrefix)/sizeof(WCHAR) + 8; // + hex DWORD (8). NULL terminator is included in sizeof(StartupNotifyEventNamePrefix) |
| 1888 | HANDLE OpenStartupNotificationEvent() |
| 1889 | { |
| 1890 | DWORD debuggeePID = GetCurrentProcessId(); |
| 1891 | WCHAR szEventName[cchEventNameBufferSize]; |
| 1892 | swprintf_s(szEventName, cchEventNameBufferSize, StartupNotifyEventNamePrefix W("%08x" ), debuggeePID); |
| 1893 | |
| 1894 | return WszOpenEvent(MAXIMUM_ALLOWED | SYNCHRONIZE | EVENT_MODIFY_STATE, FALSE, szEventName); |
| 1895 | } |
| 1896 | |
| 1897 | void NotifyDebuggerOfStartup() |
| 1898 | { |
| 1899 | // Create the continue event first so that we guarantee that any |
| 1900 | // enumeration of this process will get back a valid continue event |
| 1901 | // the instant we signal the startup notification event. |
| 1902 | |
| 1903 | CONSISTENCY_CHECK(INVALID_HANDLE_VALUE == g_hContinueStartupEvent); |
| 1904 | g_hContinueStartupEvent = WszCreateEvent(NULL, TRUE, FALSE, NULL); |
| 1905 | CONSISTENCY_CHECK(INVALID_HANDLE_VALUE != g_hContinueStartupEvent); // we reserve this value for error conditions in EnumerateCLRs |
| 1906 | |
| 1907 | HANDLE startupEvent = OpenStartupNotificationEvent(); |
| 1908 | if (startupEvent != NULL) |
| 1909 | { |
| 1910 | // signal notification event |
| 1911 | SetEvent(startupEvent); |
| 1912 | CloseHandle(startupEvent); |
| 1913 | startupEvent = NULL; |
| 1914 | |
| 1915 | // wait on continue startup event |
| 1916 | // The debugger may attach to us while we're blocked here. |
| 1917 | WaitForSingleObject(g_hContinueStartupEvent, INFINITE); |
| 1918 | } |
| 1919 | |
| 1920 | CloseHandle(g_hContinueStartupEvent); |
| 1921 | g_hContinueStartupEvent = NULL; |
| 1922 | } |
| 1923 | |
| 1924 | #endif // !FEATURE_PAL |
| 1925 | |
| 1926 | //--------------------------------------------------------------------------------------- |
| 1927 | // |
| 1928 | // Initialize Left-Side debugger object |
| 1929 | // |
| 1930 | // Return Value: |
| 1931 | // S_OK on successs. May also throw. |
| 1932 | // |
| 1933 | // Assumptions: |
| 1934 | // This is called in the startup path. |
| 1935 | // |
| 1936 | // Notes: |
| 1937 | // Startup initializes any necessary debugger objects, including creating |
| 1938 | // and starting the Runtime Controller thread. Once the RC thread is started |
| 1939 | // and we return successfully, the Debugger object can expect to have its |
| 1940 | // event handlers called. |
| 1941 | // |
| 1942 | //--------------------------------------------------------------------------------------- |
| 1943 | HRESULT Debugger::Startup(void) |
| 1944 | { |
| 1945 | CONTRACTL |
| 1946 | { |
| 1947 | SO_INTOLERANT; |
| 1948 | THROWS; |
| 1949 | GC_TRIGGERS; |
| 1950 | } |
| 1951 | CONTRACTL_END; |
| 1952 | |
| 1953 | HRESULT hr = S_OK; |
| 1954 | |
| 1955 | _ASSERTE(g_pEEInterface != NULL); |
| 1956 | |
| 1957 | #if !defined(FEATURE_PAL) |
| 1958 | // This may block while an attach occurs. |
| 1959 | NotifyDebuggerOfStartup(); |
| 1960 | #endif // !FEATURE_PAL |
| 1961 | { |
| 1962 | DebuggerLockHolder dbgLockHolder(this); |
| 1963 | |
| 1964 | // Stubs in Stacktraces are always enabled. |
| 1965 | g_EnableSIS = true; |
| 1966 | |
| 1967 | // We can get extra Interop-debugging test coverage by having some auxillary unmanaged |
| 1968 | // threads running and throwing debug events. Keep these stress procs separate so that |
| 1969 | // we can focus on certain problem areas. |
| 1970 | #ifdef _DEBUG |
| 1971 | g_DbgShouldntUseDebugger = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_DbgNoDebugger) != 0; |
| 1972 | |
| 1973 | |
| 1974 | // Creates random thread procs. |
| 1975 | DWORD dwRegVal = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_DbgExtraThreads); |
| 1976 | DWORD dwId; |
| 1977 | DWORD i; |
| 1978 | |
| 1979 | if (dwRegVal > 0) |
| 1980 | { |
| 1981 | for (i = 0; i < dwRegVal; i++) |
| 1982 | { |
| 1983 | int iProc = GetRandomInt(NumItems(g_pStressProcs)); |
| 1984 | LPTHREAD_START_ROUTINE pStartRoutine = g_pStressProcs[iProc]; |
| 1985 | ::CreateThread(NULL, 0, pStartRoutine, NULL, 0, &dwId); |
| 1986 | LOG((LF_CORDB, LL_INFO1000, "Created random thread (%d) with tid=0x%x\n" , i, dwId)); |
| 1987 | } |
| 1988 | } |
| 1989 | |
| 1990 | dwRegVal = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_DbgExtraThreadsIB); |
| 1991 | if (dwRegVal > 0) |
| 1992 | { |
| 1993 | for (i = 0; i < dwRegVal; i++) |
| 1994 | { |
| 1995 | ::CreateThread(NULL, 0, DbgInteropStressProc, NULL, 0, &dwId); |
| 1996 | LOG((LF_CORDB, LL_INFO1000, "Created extra thread (%d) with tid=0x%x\n" , i, dwId)); |
| 1997 | } |
| 1998 | } |
| 1999 | |
| 2000 | dwRegVal = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_DbgExtraThreadsCantStop); |
| 2001 | if (dwRegVal > 0) |
| 2002 | { |
| 2003 | for (i = 0; i < dwRegVal; i++) |
| 2004 | { |
| 2005 | ::CreateThread(NULL, 0, DbgInteropCantStopStressProc, NULL, 0, &dwId); |
| 2006 | LOG((LF_CORDB, LL_INFO1000, "Created extra thread 'can't-stop' (%d) with tid=0x%x\n" , i, dwId)); |
| 2007 | } |
| 2008 | } |
| 2009 | |
| 2010 | dwRegVal = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_DbgExtraThreadsOOB); |
| 2011 | if (dwRegVal > 0) |
| 2012 | { |
| 2013 | for (i = 0; i < dwRegVal; i++) |
| 2014 | { |
| 2015 | ::CreateThread(NULL, 0, DbgInteropOOBStressProc, NULL, 0, &dwId); |
| 2016 | LOG((LF_CORDB, LL_INFO1000, "Created extra thread OOB (%d) with tid=0x%x\n" , i, dwId)); |
| 2017 | } |
| 2018 | } |
| 2019 | #endif |
| 2020 | |
| 2021 | #ifdef FEATURE_PAL |
| 2022 | PAL_InitializeDebug(); |
| 2023 | #endif // FEATURE_PAL |
| 2024 | |
| 2025 | // Lazily initialize the interop-safe heap |
| 2026 | |
| 2027 | // Must be done before the RC thread is initialized. |
| 2028 | // @dbgtodo - In V2, LS was lazily initialized; but was eagerly pre-initialized if launched by debugger. |
| 2029 | // (This was for perf reasons). But we don't want Launch vs. Attach checks in the LS, so we now always |
| 2030 | // init. As we move more to OOP, this init will become cheaper. |
| 2031 | { |
| 2032 | LazyInit(); |
| 2033 | DebuggerController::Initialize(); |
| 2034 | } |
| 2035 | |
| 2036 | InitializeHijackFunctionAddress(); |
| 2037 | |
| 2038 | // Also initialize the AppDomainEnumerationIPCBlock |
| 2039 | #if !defined(FEATURE_IPCMAN) || defined(FEATURE_DBGIPC_TRANSPORT_VM) |
| 2040 | m_pAppDomainCB = new (nothrow) AppDomainEnumerationIPCBlock(); |
| 2041 | #else |
| 2042 | m_pAppDomainCB = g_pIPCManagerInterface->GetAppDomainBlock(); |
| 2043 | #endif |
| 2044 | |
| 2045 | if (m_pAppDomainCB == NULL) |
| 2046 | { |
| 2047 | LOG((LF_CORDB, LL_INFO100, "D::S: Failed to get AppDomain IPC block from IPCManager.\n" )); |
| 2048 | ThrowHR(E_FAIL); |
| 2049 | } |
| 2050 | |
| 2051 | hr = InitAppDomainIPC(); |
| 2052 | _ASSERTE(SUCCEEDED(hr)); // throws on error. |
| 2053 | |
| 2054 | // Allows the debugger (and profiler) diagnostics to be disabled so resources like |
| 2055 | // the named pipes and semaphores are not created. |
| 2056 | if (CLRConfig::GetConfigValue(CLRConfig::EXTERNAL_EnableDiagnostics) == 0) |
| 2057 | { |
| 2058 | return S_OK; |
| 2059 | } |
| 2060 | |
| 2061 | // Create the runtime controller thread, a.k.a, the debug helper thread. |
| 2062 | // Don't use the interop-safe heap b/c we don't want to lazily create it. |
| 2063 | m_pRCThread = new DebuggerRCThread(this); |
| 2064 | _ASSERTE(m_pRCThread != NULL); // throws on oom |
| 2065 | TRACE_ALLOC(m_pRCThread); |
| 2066 | |
| 2067 | hr = m_pRCThread->Init(); |
| 2068 | _ASSERTE(SUCCEEDED(hr)); // throws on error |
| 2069 | |
| 2070 | #if defined(FEATURE_DBGIPC_TRANSPORT_VM) |
| 2071 | // Create transport session and initialize it. |
| 2072 | g_pDbgTransport = new DbgTransportSession(); |
| 2073 | hr = g_pDbgTransport->Init(m_pRCThread->GetDCB(), m_pAppDomainCB); |
| 2074 | if (FAILED(hr)) |
| 2075 | { |
| 2076 | ShutdownTransport(); |
| 2077 | ThrowHR(hr); |
| 2078 | } |
| 2079 | #ifdef FEATURE_PAL |
| 2080 | PAL_SetShutdownCallback(AbortTransport); |
| 2081 | #endif // FEATURE_PAL |
| 2082 | #endif // FEATURE_DBGIPC_TRANSPORT_VM |
| 2083 | |
| 2084 | RaiseStartupNotification(); |
| 2085 | |
| 2086 | // See if we need to spin up the helper thread now, rather than later. |
| 2087 | DebuggerIPCControlBlock* pIPCControlBlock = m_pRCThread->GetDCB(); |
| 2088 | (void)pIPCControlBlock; //prevent "unused variable" error from GCC |
| 2089 | |
| 2090 | _ASSERTE(pIPCControlBlock != NULL); |
| 2091 | _ASSERTE(!pIPCControlBlock->m_rightSideShouldCreateHelperThread); |
| 2092 | { |
| 2093 | // Create the win32 thread for the helper and let it run free. |
| 2094 | hr = m_pRCThread->Start(); |
| 2095 | |
| 2096 | // convert failure to exception as with old contract |
| 2097 | if (FAILED(hr)) |
| 2098 | { |
| 2099 | ThrowHR(hr); |
| 2100 | } |
| 2101 | |
| 2102 | LOG((LF_CORDB, LL_EVERYTHING, "Start was successful\n" )); |
| 2103 | } |
| 2104 | |
| 2105 | #ifdef TEST_DATA_CONSISTENCY |
| 2106 | // if we have set the environment variable TestDataConsistency, run the data consistency test. |
| 2107 | // See code:DataTest::TestDataSafety for more information |
| 2108 | if ((g_pConfig != NULL) && (g_pConfig->TestDataConsistency() == true)) |
| 2109 | { |
| 2110 | DataTest dt; |
| 2111 | dt.TestDataSafety(); |
| 2112 | } |
| 2113 | #endif |
| 2114 | } |
| 2115 | |
| 2116 | #ifdef FEATURE_PAL |
| 2117 | // Signal the debugger (via dbgshim) and wait until it is ready for us to |
| 2118 | // continue. This needs to be outside the lock and after the transport is |
| 2119 | // initialized. |
| 2120 | if (PAL_NotifyRuntimeStarted()) |
| 2121 | { |
| 2122 | // The runtime was successfully launched and attached so mark it now |
| 2123 | // so no notifications are missed especially the initial module load |
| 2124 | // which would cause debuggers problems with reliable setting breakpoints |
| 2125 | // in startup code or Main. |
| 2126 | MarkDebuggerAttachedInternal(); |
| 2127 | } |
| 2128 | #endif // FEATURE_PAL |
| 2129 | |
| 2130 | // We don't bother changing this process's permission. |
| 2131 | // A managed debugger will have the SE_DEBUG permission which will allow it to open our process handle, |
| 2132 | // even if we're a guest account. |
| 2133 | |
| 2134 | return hr; |
| 2135 | } |
| 2136 | |
| 2137 | //--------------------------------------------------------------------------------------- |
| 2138 | // Finishes startup once we have a Thread object. |
| 2139 | // |
| 2140 | // Arguments: |
| 2141 | // pThread - the current thread. Must be non-null |
| 2142 | // |
| 2143 | // Notes: |
| 2144 | // Most debugger initialization is done in code:Debugger.Startup, |
| 2145 | // However, debugger can't block on synchronization without a Thread object, |
| 2146 | // so sending IPC events must wait until after we have a thread object. |
| 2147 | //--------------------------------------------------------------------------------------- |
| 2148 | HRESULT Debugger::StartupPhase2(Thread * pThread) |
| 2149 | { |
| 2150 | CONTRACTL |
| 2151 | { |
| 2152 | SO_INTOLERANT; |
| 2153 | THROWS; |
| 2154 | GC_TRIGGERS; |
| 2155 | } |
| 2156 | CONTRACTL_END; |
| 2157 | |
| 2158 | HRESULT hr = S_OK; |
| 2159 | |
| 2160 | // Must have a thread so that we can block |
| 2161 | _ASSERTE(pThread != NULL); |
| 2162 | |
| 2163 | DebuggerLockHolder dbgLockHolder(this); |
| 2164 | |
| 2165 | // @dbgtodo - This may need to change when we remove SetupSyncEvent... |
| 2166 | // If we're launching, then sync now so that the RS gets an early chance to dispatch the CreateProcess event. |
| 2167 | // This is especially important b/c certain portions of the ICorDebugAPI (like setting ngen flags) are only |
| 2168 | // valid during the CreateProcess callback in the launch case. |
| 2169 | // We need to send the callback early enough so those APIs can set the flags before they're actually used. |
| 2170 | // We also ensure the debugger is actually attached. |
| 2171 | if (SUCCEEDED(hr) && CORDebuggerAttached()) |
| 2172 | { |
| 2173 | StartCanaryThread(); |
| 2174 | SendCreateProcess(&dbgLockHolder); // toggles lock |
| 2175 | } |
| 2176 | |
| 2177 | // After returning from debugger startup we assume that the runtime might start using the NGEN flags to make |
| 2178 | // binding decisions. From now on the debugger can not influence NGEN binding policy |
| 2179 | // Use volatile store to guarantee make the value visible to the DAC (the store can be optimized out otherwise) |
| 2180 | VolatileStoreWithoutBarrier(&s_fCanChangeNgenFlags, FALSE); |
| 2181 | |
| 2182 | // Must release the lock (which would be done at the end of this method anyways) so that |
| 2183 | // the helper thread can do the jit-attach. |
| 2184 | dbgLockHolder.Release(); |
| 2185 | |
| 2186 | |
| 2187 | #ifdef _DEBUG |
| 2188 | // Give chance for stress harnesses to launch a managed debugger when a managed app starts up. |
| 2189 | // This lets us run a set of managed apps under a debugger. |
| 2190 | if (!CORDebuggerAttached()) |
| 2191 | { |
| 2192 | #define DBG_ATTACH_ON_STARTUP_ENV_VAR W("COMPlus_DbgAttachOnStartup") |
| 2193 | PathString temp; |
| 2194 | // We explicitly just check the env because we don't want a switch this invasive to be global. |
| 2195 | DWORD fAttach = WszGetEnvironmentVariable(DBG_ATTACH_ON_STARTUP_ENV_VAR, temp) > 0; |
| 2196 | |
| 2197 | if (fAttach) |
| 2198 | { |
| 2199 | // Remove the env var from our process so that the debugger we spin up won't inherit it. |
| 2200 | // Else, if the debugger is managed, we'll have an infinite recursion. |
| 2201 | BOOL fOk = WszSetEnvironmentVariable(DBG_ATTACH_ON_STARTUP_ENV_VAR, NULL); |
| 2202 | |
| 2203 | if (fOk) |
| 2204 | { |
| 2205 | // We've already created the helper thread (which can service the attach request) |
| 2206 | // So just do a normal jit-attach now. |
| 2207 | |
| 2208 | SString szName(W("DebuggerStressStartup" )); |
| 2209 | SString szDescription(W("MDA used for debugger-stress scenario. This is fired to trigger a jit-attach" ) |
| 2210 | W("to allow us to attach a debugger to any managed app that starts up." ) |
| 2211 | W("This MDA is only fired when the 'DbgAttachOnStartup' COM+ knob/reg-key is set on checked builds." )); |
| 2212 | SString szXML(W("<xml>See the description</xml>" )); |
| 2213 | |
| 2214 | SendMDANotification( |
| 2215 | NULL, // NULL b/c we don't have a thread yet |
| 2216 | &szName, |
| 2217 | &szDescription, |
| 2218 | &szXML, |
| 2219 | ((CorDebugMDAFlags) 0 ), |
| 2220 | TRUE // this will force the jit-attach |
| 2221 | ); |
| 2222 | } |
| 2223 | } |
| 2224 | } |
| 2225 | #endif |
| 2226 | |
| 2227 | |
| 2228 | return hr; |
| 2229 | } |
| 2230 | |
| 2231 | |
| 2232 | //--------------------------------------------------------------------------------------- |
| 2233 | // |
| 2234 | // Public entrypoint into the debugger to force the lazy data to be initialized at a |
| 2235 | // controlled point in time. This is useful for those callers into the debugger (e.g., |
| 2236 | // ETW rundown) that know they will need the lazy data initialized but cannot afford to |
| 2237 | // have it initialized unpredictably or inside a lock. |
| 2238 | // |
| 2239 | // This may be called more than once, and will know to initialize the lazy data only |
| 2240 | // once. |
| 2241 | // |
| 2242 | |
| 2243 | void Debugger::InitializeLazyDataIfNecessary() |
| 2244 | { |
| 2245 | CONTRACTL |
| 2246 | { |
| 2247 | SO_NOT_MAINLINE; |
| 2248 | THROWS; |
| 2249 | GC_TRIGGERS; |
| 2250 | } |
| 2251 | CONTRACTL_END; |
| 2252 | |
| 2253 | if (!HasLazyData()) |
| 2254 | { |
| 2255 | DebuggerLockHolder lockHolder(this); |
| 2256 | LazyInit(); // throws |
| 2257 | } |
| 2258 | } |
| 2259 | |
| 2260 | |
| 2261 | /****************************************************************************** |
| 2262 | Lazy initialize stuff once we know we are debugging. |
| 2263 | This reduces the startup cost in the non-debugging case. |
| 2264 | |
| 2265 | We can do this at a bunch of random strategic places. |
| 2266 | ******************************************************************************/ |
| 2267 | |
| 2268 | HRESULT Debugger::LazyInitWrapper() |
| 2269 | { |
| 2270 | CONTRACTL |
| 2271 | { |
| 2272 | SO_INTOLERANT; |
| 2273 | NOTHROW; |
| 2274 | GC_NOTRIGGER; |
| 2275 | PRECONDITION(ThisMaybeHelperThread()); |
| 2276 | } |
| 2277 | CONTRACTL_END; |
| 2278 | |
| 2279 | HRESULT hr = S_OK; |
| 2280 | |
| 2281 | // Do lazy initialization now. |
| 2282 | EX_TRY |
| 2283 | { |
| 2284 | LazyInit(); // throws on errors. |
| 2285 | } |
| 2286 | EX_CATCH |
| 2287 | { |
| 2288 | Exception *_ex = GET_EXCEPTION(); |
| 2289 | hr = _ex->GetHR(); |
| 2290 | STRESS_LOG1(LF_CORDB, LL_ALWAYS, "LazyInit failed w/ hr:0x%08x\n" , hr); |
| 2291 | } |
| 2292 | EX_END_CATCH(SwallowAllExceptions); |
| 2293 | |
| 2294 | return hr; |
| 2295 | } |
| 2296 | |
| 2297 | void Debugger::LazyInit() |
| 2298 | { |
| 2299 | CONTRACTL |
| 2300 | { |
| 2301 | SO_INTOLERANT; |
| 2302 | THROWS; |
| 2303 | GC_NOTRIGGER; |
| 2304 | PRECONDITION(ThreadHoldsLock()); // ensure we're serialized, requires GC_NOTRIGGER |
| 2305 | |
| 2306 | PRECONDITION(ThisMaybeHelperThread()); |
| 2307 | } |
| 2308 | CONTRACTL_END; |
| 2309 | |
| 2310 | // Have knob that catches places where we lazy init. |
| 2311 | _ASSERTE(!g_DbgShouldntUseDebugger); |
| 2312 | |
| 2313 | // If we're already init, then bail. |
| 2314 | if (m_pLazyData != NULL) |
| 2315 | { |
| 2316 | return; |
| 2317 | } |
| 2318 | |
| 2319 | |
| 2320 | |
| 2321 | |
| 2322 | // Lazily create our heap. |
| 2323 | HRESULT hr = m_heap.Init(FALSE); |
| 2324 | IfFailThrow(hr); |
| 2325 | |
| 2326 | hr = m_executableHeap.Init(TRUE); |
| 2327 | IfFailThrow(hr); |
| 2328 | |
| 2329 | m_pLazyData = new (interopsafe) DebuggerLazyInit(); |
| 2330 | _ASSERTE(m_pLazyData != NULL); // throws on oom. |
| 2331 | |
| 2332 | m_pLazyData->Init(); |
| 2333 | |
| 2334 | } |
| 2335 | |
| 2336 | HelperThreadFavor::HelperThreadFavor() : |
| 2337 | m_fpFavor(NULL), |
| 2338 | m_pFavorData(NULL), |
| 2339 | m_FavorReadEvent(NULL), |
| 2340 | m_FavorLock(CrstDebuggerFavorLock, CRST_DEFAULT), |
| 2341 | m_FavorAvailableEvent(NULL) |
| 2342 | { |
| 2343 | } |
| 2344 | |
| 2345 | void HelperThreadFavor::Init() |
| 2346 | { |
| 2347 | CONTRACTL |
| 2348 | { |
| 2349 | SO_INTOLERANT; |
| 2350 | THROWS; |
| 2351 | GC_NOTRIGGER; |
| 2352 | PRECONDITION(ThisMaybeHelperThread()); |
| 2353 | } |
| 2354 | CONTRACTL_END; |
| 2355 | |
| 2356 | // Create events for managing favors. |
| 2357 | m_FavorReadEvent = CreateWin32EventOrThrow(NULL, kAutoResetEvent, FALSE); |
| 2358 | m_FavorAvailableEvent = CreateWin32EventOrThrow(NULL, kAutoResetEvent, FALSE); |
| 2359 | } |
| 2360 | |
| 2361 | |
| 2362 | |
| 2363 | DebuggerLazyInit::DebuggerLazyInit() : |
| 2364 | m_pPendingEvals(NULL), |
| 2365 | // @TODO: a-meicht |
| 2366 | // Major clean up needed for giving the right flag |
| 2367 | // There are cases where DebuggerDataLock is taken by managed thread and unmanaged trhead is also trying to take it. |
| 2368 | // It could cause deadlock if we toggle GC upon taking lock. |
| 2369 | // Unfortunately UNSAFE_COOPGC is not enough. There is a code path in Jit comipling that we are in GC Preemptive |
| 2370 | // enabled. workaround by orring the unsafe_anymode flag. But we really need to do proper clean up. |
| 2371 | // |
| 2372 | // NOTE: If this ever gets fixed, you should replace CALLED_IN_DEBUGGERDATALOCK_HOLDER_SCOPE_MAY_GC_TRIGGERS_CONTRACT |
| 2373 | // with appropriate contracts at each site. |
| 2374 | // |
| 2375 | m_DebuggerDataLock(CrstDebuggerJitInfo, (CrstFlags)(CRST_UNSAFE_ANYMODE | CRST_REENTRANCY | CRST_DEBUGGER_THREAD)), |
| 2376 | m_CtrlCMutex(NULL), |
| 2377 | m_exAttachEvent(NULL), |
| 2378 | m_exUnmanagedAttachEvent(NULL), |
| 2379 | m_garbageCollectionBlockerEvent(NULL), |
| 2380 | m_DebuggerHandlingCtrlC(NULL) |
| 2381 | { |
| 2382 | } |
| 2383 | |
| 2384 | void DebuggerLazyInit::Init() |
| 2385 | { |
| 2386 | CONTRACTL |
| 2387 | { |
| 2388 | SO_INTOLERANT; |
| 2389 | THROWS; |
| 2390 | GC_NOTRIGGER; |
| 2391 | PRECONDITION(ThisMaybeHelperThread()); |
| 2392 | } |
| 2393 | CONTRACTL_END; |
| 2394 | |
| 2395 | // Caller ensures this isn't double-called. |
| 2396 | |
| 2397 | // This event is only used in the unmanaged attach case. We must mark this event handle as inheritable. |
| 2398 | // Otherwise, the unmanaged debugger won't be able to notify us. |
| 2399 | // |
| 2400 | // Note that PAL currently doesn't support specifying the security attributes when creating an event, so |
| 2401 | // unmanaged attach for unhandled exceptions is broken on PAL. |
| 2402 | SECURITY_ATTRIBUTES* pSA = NULL; |
| 2403 | SECURITY_ATTRIBUTES secAttrib; |
| 2404 | secAttrib.nLength = sizeof(secAttrib); |
| 2405 | secAttrib.lpSecurityDescriptor = NULL; |
| 2406 | secAttrib.bInheritHandle = TRUE; |
| 2407 | |
| 2408 | pSA = &secAttrib; |
| 2409 | |
| 2410 | // Create some synchronization events... |
| 2411 | // these events stay signaled all the time except when an attach is in progress |
| 2412 | m_exAttachEvent = CreateWin32EventOrThrow(NULL, kManualResetEvent, TRUE); |
| 2413 | m_exUnmanagedAttachEvent = CreateWin32EventOrThrow(pSA, kManualResetEvent, TRUE); |
| 2414 | |
| 2415 | m_CtrlCMutex = CreateWin32EventOrThrow(NULL, kAutoResetEvent, FALSE); |
| 2416 | m_DebuggerHandlingCtrlC = FALSE; |
| 2417 | |
| 2418 | m_garbageCollectionBlockerEvent = CreateEventW(NULL, TRUE, FALSE, NULL); |
| 2419 | |
| 2420 | // Let the helper thread lazy init stuff too. |
| 2421 | m_RCThread.Init(); |
| 2422 | } |
| 2423 | |
| 2424 | |
| 2425 | DebuggerLazyInit::~DebuggerLazyInit() |
| 2426 | { |
| 2427 | { |
| 2428 | USHORT cBlobs = m_pMemBlobs.Count(); |
| 2429 | void **rgpBlobs = m_pMemBlobs.Table(); |
| 2430 | |
| 2431 | for (int i = 0; i < cBlobs; i++) |
| 2432 | { |
| 2433 | g_pDebugger->ReleaseRemoteBuffer(rgpBlobs[i], false); |
| 2434 | } |
| 2435 | } |
| 2436 | |
| 2437 | if (m_pPendingEvals) |
| 2438 | { |
| 2439 | DeleteInteropSafe(m_pPendingEvals); |
| 2440 | m_pPendingEvals = NULL; |
| 2441 | } |
| 2442 | |
| 2443 | if (m_CtrlCMutex != NULL) |
| 2444 | { |
| 2445 | CloseHandle(m_CtrlCMutex); |
| 2446 | } |
| 2447 | |
| 2448 | if (m_exAttachEvent != NULL) |
| 2449 | { |
| 2450 | CloseHandle(m_exAttachEvent); |
| 2451 | } |
| 2452 | |
| 2453 | if (m_exUnmanagedAttachEvent != NULL) |
| 2454 | { |
| 2455 | CloseHandle(m_exUnmanagedAttachEvent); |
| 2456 | } |
| 2457 | |
| 2458 | if (m_garbageCollectionBlockerEvent != NULL) |
| 2459 | { |
| 2460 | CloseHandle(m_garbageCollectionBlockerEvent); |
| 2461 | } |
| 2462 | } |
| 2463 | |
| 2464 | |
| 2465 | // |
| 2466 | // RequestFavor gets the debugger helper thread to call a function. It's |
| 2467 | // typically called when the current thread can't call the function directly, |
| 2468 | // e.g, there isn't enough stack space. |
| 2469 | // |
| 2470 | // RequestFavor can be called in stack-overflow scenarios and thus explicitly |
| 2471 | // avoids any lazy initialization. |
| 2472 | // It blocks until the favor callback completes. |
| 2473 | // |
| 2474 | // Parameters: |
| 2475 | // fp - a non-null Favour callback function |
| 2476 | // pData - the parameter passed to the favor callback function. This can be any value. |
| 2477 | // |
| 2478 | // Return values: |
| 2479 | // S_OK if the function succeeds, else a failure HRESULT |
| 2480 | // |
| 2481 | |
| 2482 | HRESULT Debugger::RequestFavor(FAVORCALLBACK fp, void * pData) |
| 2483 | { |
| 2484 | CONTRACTL |
| 2485 | { |
| 2486 | SO_INTOLERANT; |
| 2487 | NOTHROW; |
| 2488 | GC_TRIGGERS; |
| 2489 | PRECONDITION(fp != NULL); |
| 2490 | } |
| 2491 | CONTRACTL_END; |
| 2492 | |
| 2493 | if (m_pRCThread == NULL || |
| 2494 | m_pRCThread->GetRCThreadId() == GetCurrentThreadId()) |
| 2495 | { |
| 2496 | // Since favors are only used internally, we know that the helper should alway be up and ready |
| 2497 | // to handle them. Also, since favors can be used in low-stack scenarios, there's not any |
| 2498 | // extra initialization needed for them. |
| 2499 | _ASSERTE(!"Helper not initialized for favors." ); |
| 2500 | return E_UNEXPECTED; |
| 2501 | } |
| 2502 | |
| 2503 | m_pRCThread->DoFavor(fp, pData); |
| 2504 | return S_OK; |
| 2505 | } |
| 2506 | |
| 2507 | /****************************************************************************** |
| 2508 | // Called to set the interface that the Runtime exposes to us. |
| 2509 | ******************************************************************************/ |
| 2510 | void Debugger::SetEEInterface(EEDebugInterface* i) |
| 2511 | { |
| 2512 | LIMITED_METHOD_CONTRACT; |
| 2513 | |
| 2514 | // @@@ |
| 2515 | |
| 2516 | // Implements DebugInterface API |
| 2517 | |
| 2518 | g_pEEInterface = i; |
| 2519 | |
| 2520 | } |
| 2521 | |
| 2522 | |
| 2523 | /****************************************************************************** |
| 2524 | // Called to shut down the debugger. This stops the RC thread and cleans |
| 2525 | // the object up. |
| 2526 | ******************************************************************************/ |
| 2527 | void Debugger::StopDebugger(void) |
| 2528 | { |
| 2529 | CONTRACTL |
| 2530 | { |
| 2531 | SO_INTOLERANT; |
| 2532 | NOTHROW; |
| 2533 | GC_NOTRIGGER; |
| 2534 | } |
| 2535 | CONTRACTL_END; |
| 2536 | |
| 2537 | // Leak almost everything on process exit. The OS will clean it up anyways and trying to |
| 2538 | // clean it up ourselves is just one more place we may AV / deadlock. |
| 2539 | |
| 2540 | #if defined(FEATURE_DBGIPC_TRANSPORT_VM) |
| 2541 | ShutdownTransport(); |
| 2542 | #endif // FEATURE_DBGIPC_TRANSPORT_VM |
| 2543 | |
| 2544 | // Ping the helper thread to exit. This will also prevent the helper from servicing new requests. |
| 2545 | if (m_pRCThread != NULL) |
| 2546 | { |
| 2547 | m_pRCThread->AsyncStop(); |
| 2548 | } |
| 2549 | |
| 2550 | // Also clean up the AppDomain stuff since this is cross-process. |
| 2551 | TerminateAppDomainIPC (); |
| 2552 | |
| 2553 | // |
| 2554 | // Tell the VM to clear out all references to the debugger before we start cleaning up, |
| 2555 | // so that nothing will reference (accidentally) through the partially cleaned up debugger. |
| 2556 | // |
| 2557 | // NOTE: we cannot clear out g_pDebugger before the delete call because the |
| 2558 | // stuff in delete (particularly deleteinteropsafe) needs to look at it. |
| 2559 | // |
| 2560 | g_pEEInterface->ClearAllDebugInterfaceReferences(); |
| 2561 | g_pDebugger = NULL; |
| 2562 | } |
| 2563 | |
| 2564 | |
| 2565 | /* ------------------------------------------------------------------------ * |
| 2566 | * JIT Interface routines |
| 2567 | * ------------------------------------------------------------------------ */ |
| 2568 | |
| 2569 | |
| 2570 | /****************************************************************************** |
| 2571 | * |
| 2572 | ******************************************************************************/ |
| 2573 | DebuggerMethodInfo *Debugger::CreateMethodInfo(Module *module, mdMethodDef md) |
| 2574 | { |
| 2575 | CONTRACTL |
| 2576 | { |
| 2577 | SO_INTOLERANT; |
| 2578 | THROWS; |
| 2579 | GC_NOTRIGGER; |
| 2580 | |
| 2581 | PRECONDITION(HasDebuggerDataLock()); |
| 2582 | } |
| 2583 | CONTRACTL_END; |
| 2584 | |
| 2585 | |
| 2586 | // <TODO>@todo perf: creating these on the heap is slow. We should use a |
| 2587 | // pool and create them out of there since we never free them |
| 2588 | // until the AD is unloaded.</TODO> |
| 2589 | // |
| 2590 | DebuggerMethodInfo *mi = new (interopsafe) DebuggerMethodInfo(module, md); |
| 2591 | _ASSERTE(mi != NULL); // throws on oom error |
| 2592 | |
| 2593 | TRACE_ALLOC(mi); |
| 2594 | |
| 2595 | LOG((LF_CORDB, LL_INFO100000, "D::CreateMethodInfo module=%p, token=0x%08x, info=%p\n" , |
| 2596 | module, md, mi)); |
| 2597 | |
| 2598 | // |
| 2599 | // Lock a mutex when changing the table. |
| 2600 | // |
| 2601 | //@TODO : _ASSERTE(EnC); |
| 2602 | HRESULT hr; |
| 2603 | hr =InsertToMethodInfoList(mi); |
| 2604 | |
| 2605 | if (FAILED(hr)) |
| 2606 | { |
| 2607 | LOG((LF_CORDB, LL_EVERYTHING, "IAHOL Failed!!\n" )); |
| 2608 | DeleteInteropSafe(mi); |
| 2609 | return NULL; |
| 2610 | } |
| 2611 | return mi; |
| 2612 | |
| 2613 | } |
| 2614 | |
| 2615 | |
| 2616 | |
| 2617 | |
| 2618 | |
| 2619 | /****************************************************************************** |
| 2620 | // void Debugger::JITComplete(): JITComplete is called by |
| 2621 | // the jit interface when the JIT completes, successfully or not. |
| 2622 | // |
| 2623 | // MethodDesc* fd: MethodDesc of the code that's been JITted |
| 2624 | // BYTE* newAddress: The address of that the method begins at. |
| 2625 | // If newAddress is NULL then the JIT failed. Remember that this |
| 2626 | // gets called before the start address of the MethodDesc gets set, |
| 2627 | // and so methods like GetFunctionAddress & GetFunctionSize won't work. |
| 2628 | // |
| 2629 | // <TODO>@Todo If we're passed 0 for the newAddress param, the jit has been |
| 2630 | // cancelled & should be undone.</TODO> |
| 2631 | ******************************************************************************/ |
| 2632 | void Debugger::JITComplete(MethodDesc* fd, TADDR newAddress) |
| 2633 | { |
| 2634 | |
| 2635 | CONTRACTL |
| 2636 | { |
| 2637 | SO_INTOLERANT; |
| 2638 | THROWS; |
| 2639 | PRECONDITION(!HasDebuggerDataLock()); |
| 2640 | PRECONDITION(newAddress != NULL); |
| 2641 | CALLED_IN_DEBUGGERDATALOCK_HOLDER_SCOPE_MAY_GC_TRIGGERS_CONTRACT; |
| 2642 | } |
| 2643 | CONTRACTL_END; |
| 2644 | |
| 2645 | LOG((LF_CORDB, LL_INFO100000, "D::JITComplete: md:0x%x (%s::%s), address:0x%x.\n" , |
| 2646 | fd, fd->m_pszDebugClassName, fd->m_pszDebugMethodName, |
| 2647 | newAddress)); |
| 2648 | |
| 2649 | #ifdef _TARGET_ARM_ |
| 2650 | newAddress = newAddress|THUMB_CODE; |
| 2651 | #endif |
| 2652 | |
| 2653 | // @@@ |
| 2654 | // Can be called on managed thread only |
| 2655 | // This API Implements DebugInterface |
| 2656 | |
| 2657 | if (CORDebuggerAttached()) |
| 2658 | { |
| 2659 | // Populate the debugger's cache of DJIs. Normally we can do this lazily, |
| 2660 | // the only reason we do it here is b/c the MethodDesc is not yet officially marked as "jitted", |
| 2661 | // and so we can't lazily create it yet. Furthermore, the binding operations may need the DJIs. |
| 2662 | // |
| 2663 | // This also gives the debugger a chance to know if new JMC methods are coming. |
| 2664 | DebuggerMethodInfo * dmi = GetOrCreateMethodInfo(fd->GetModule(), fd->GetMemberDef()); |
| 2665 | if (dmi == NULL) |
| 2666 | { |
| 2667 | goto Exit; |
| 2668 | } |
| 2669 | BOOL jiWasCreated = FALSE; |
| 2670 | DebuggerJitInfo * ji = dmi->CreateInitAndAddJitInfo(fd, newAddress, &jiWasCreated); |
| 2671 | if (!jiWasCreated) |
| 2672 | { |
| 2673 | // we've already been notified about this code, no work remains. |
| 2674 | // The JIT is occasionally asked to generate code for the same |
| 2675 | // method on two threads. When this occurs both threads will |
| 2676 | // return the same code pointer and this callback is invoked |
| 2677 | // multiple times. |
| 2678 | LOG((LF_CORDB, LL_INFO1000000, "D::JITComplete: md:0x%x (%s::%s), address:0x%x. Already created\n" , |
| 2679 | fd, fd->m_pszDebugClassName, fd->m_pszDebugMethodName, |
| 2680 | newAddress)); |
| 2681 | goto Exit; |
| 2682 | } |
| 2683 | |
| 2684 | LOG((LF_CORDB, LL_INFO1000000, "D::JITComplete: md:0x%x (%s::%s), address:0x%x. Created ji:0x%x\n" , |
| 2685 | fd, fd->m_pszDebugClassName, fd->m_pszDebugMethodName, |
| 2686 | newAddress, ji)); |
| 2687 | |
| 2688 | // Bind any IL patches to the newly jitted native code. |
| 2689 | HRESULT hr; |
| 2690 | hr = MapAndBindFunctionPatches(ji, fd, (CORDB_ADDRESS_TYPE *)newAddress); |
| 2691 | _ASSERTE(SUCCEEDED(hr)); |
| 2692 | } |
| 2693 | |
| 2694 | LOG((LF_CORDB, LL_EVERYTHING, "JitComplete completed successfully\n" )); |
| 2695 | |
| 2696 | Exit: |
| 2697 | ; |
| 2698 | } |
| 2699 | |
| 2700 | /****************************************************************************** |
| 2701 | // Get the number of fixed arguments to a function, i.e., the explicit args and the "this" pointer. |
| 2702 | // This does not include other implicit arguments or varargs. This is used to compute a variable ID |
| 2703 | // (see comment in CordbJITILFrame::ILVariableToNative for more detail) |
| 2704 | // fVarArg is not used when this is called by Debugger::GetAndSendJITInfo, thus it has a default value. |
| 2705 | // The return value is not used when this is called by Debugger::getVars. |
| 2706 | ******************************************************************************/ |
| 2707 | SIZE_T Debugger::GetArgCount(MethodDesc *fd,BOOL *fVarArg /* = NULL */) |
| 2708 | { |
| 2709 | CONTRACTL |
| 2710 | { |
| 2711 | SO_INTOLERANT; |
| 2712 | THROWS; |
| 2713 | GC_NOTRIGGER; |
| 2714 | } |
| 2715 | CONTRACTL_END; |
| 2716 | |
| 2717 | // Create a MetaSig for the given method's sig. (Easier than |
| 2718 | // picking the sig apart ourselves.) |
| 2719 | PCCOR_SIGNATURE pCallSig; |
| 2720 | DWORD cbCallSigSize; |
| 2721 | |
| 2722 | fd->GetSig(&pCallSig, &cbCallSigSize); |
| 2723 | |
| 2724 | if (pCallSig == NULL) |
| 2725 | { |
| 2726 | // Sig should only be null if the image is corrupted. (Even for lightweight-codegen) |
| 2727 | // We expect the jit+verifier to catch this, so that we never land here. |
| 2728 | // But just in case ... |
| 2729 | CONSISTENCY_CHECK_MSGF(false, ("Corrupted image, null sig.(%s::%s)" , fd->m_pszDebugClassName, fd->m_pszDebugMethodName)); |
| 2730 | return 0; |
| 2731 | } |
| 2732 | |
| 2733 | MetaSig msig(pCallSig, cbCallSigSize, g_pEEInterface->MethodDescGetModule(fd), NULL, MetaSig::sigMember); |
| 2734 | |
| 2735 | // Get the arg count. |
| 2736 | UINT32 NumArguments = msig.NumFixedArgs(); |
| 2737 | |
| 2738 | // Account for the 'this' argument. |
| 2739 | if (!(g_pEEInterface->MethodDescIsStatic(fd))) |
| 2740 | NumArguments++; |
| 2741 | |
| 2742 | // Is this a VarArg's function? |
| 2743 | if (msig.IsVarArg() && fVarArg != NULL) |
| 2744 | { |
| 2745 | *fVarArg = true; |
| 2746 | } |
| 2747 | |
| 2748 | return NumArguments; |
| 2749 | } |
| 2750 | |
| 2751 | #endif // #ifndef DACCESS_COMPILE |
| 2752 | |
| 2753 | |
| 2754 | |
| 2755 | |
| 2756 | |
| 2757 | /****************************************************************************** |
| 2758 | DebuggerJitInfo * Debugger::GetJitInfo(): GetJitInfo |
| 2759 | will return a pointer to a DebuggerJitInfo. If the DJI |
| 2760 | doesn't exist, or it does exist, but the method has actually |
| 2761 | been pitched (and the caller wants pitched methods filtered out), |
| 2762 | then we'll return NULL. |
| 2763 | |
| 2764 | Note: This will also create a DMI for if one does not exist for this DJI. |
| 2765 | |
| 2766 | MethodDesc* fd: MethodDesc for the method we're interested in. |
| 2767 | CORDB_ADDRESS_TYPE * pbAddr: Address within the code, to indicate which |
| 2768 | version we want. If this is NULL, then we want the |
| 2769 | head of the DebuggerJitInfo list, whether it's been |
| 2770 | JITted or not. |
| 2771 | ******************************************************************************/ |
| 2772 | |
| 2773 | |
| 2774 | // Get a DJI from an address. |
| 2775 | DebuggerJitInfo *Debugger::GetJitInfoFromAddr(TADDR addr) |
| 2776 | { |
| 2777 | WRAPPER_NO_CONTRACT; |
| 2778 | |
| 2779 | MethodDesc *fd; |
| 2780 | fd = g_pEEInterface->GetNativeCodeMethodDesc(addr); |
| 2781 | _ASSERTE(fd); |
| 2782 | |
| 2783 | return GetJitInfo(fd, (const BYTE*) addr, NULL); |
| 2784 | } |
| 2785 | |
| 2786 | // Get a DJI for a Native MD (MD for a native function). |
| 2787 | // In the EnC scenario, the MethodDesc refers to the most recent method. |
| 2788 | // This is very dangerous since there may be multiple versions alive at the same time. |
| 2789 | // This will give back the wrong DJI if we're lookikng for a stale method desc. |
| 2790 | // @todo - can a caller possibly use this correctly? |
| 2791 | DebuggerJitInfo *Debugger::GetLatestJitInfoFromMethodDesc(MethodDesc * pMethodDesc) |
| 2792 | { |
| 2793 | WRAPPER_NO_CONTRACT; |
| 2794 | |
| 2795 | _ASSERTE(pMethodDesc != NULL); |
| 2796 | // We'd love to assert that we're jitted; but since this may be in the JitComplete |
| 2797 | // callback path, we can't be sure. |
| 2798 | |
| 2799 | return GetJitInfoWorker(pMethodDesc, NULL, NULL); |
| 2800 | } |
| 2801 | |
| 2802 | |
| 2803 | DebuggerJitInfo *Debugger::GetJitInfo(MethodDesc *fd, const BYTE *pbAddr, DebuggerMethodInfo **pMethInfo ) |
| 2804 | { |
| 2805 | CONTRACTL |
| 2806 | { |
| 2807 | SO_INTOLERANT; |
| 2808 | THROWS; |
| 2809 | GC_NOTRIGGER; |
| 2810 | PRECONDITION(!g_pDebugger->HasDebuggerDataLock()); |
| 2811 | } |
| 2812 | CONTRACTL_END; |
| 2813 | |
| 2814 | // Address should be non-null and in range of MethodDesc. This lets us tell which EnC version. |
| 2815 | _ASSERTE(pbAddr != NULL); |
| 2816 | |
| 2817 | return GetJitInfoWorker(fd, pbAddr, pMethInfo); |
| 2818 | |
| 2819 | } |
| 2820 | |
| 2821 | // Internal worker to GetJitInfo. Doesn't validate parameters. |
| 2822 | DebuggerJitInfo *Debugger::GetJitInfoWorker(MethodDesc *fd, const BYTE *pbAddr, DebuggerMethodInfo **pMethInfo) |
| 2823 | { |
| 2824 | |
| 2825 | DebuggerMethodInfo *dmi = NULL; |
| 2826 | DebuggerJitInfo *dji = NULL; |
| 2827 | |
| 2828 | // If we have a null MethodDesc - we're not going to get a jit-info. Do this check once at the top |
| 2829 | // rather than littered throughout the rest of this function. |
| 2830 | if (fd == NULL) |
| 2831 | { |
| 2832 | LOG((LF_CORDB, LL_EVERYTHING, "Debugger::GetJitInfo, addr=0x%p - null fd - returning null\n" , pbAddr)); |
| 2833 | return NULL; |
| 2834 | } |
| 2835 | else |
| 2836 | { |
| 2837 | CONSISTENCY_CHECK_MSGF(!fd->IsWrapperStub(), ("Can't get Jit-info for wrapper MDesc,'%s'" , fd->m_pszDebugMethodName)); |
| 2838 | } |
| 2839 | |
| 2840 | // The debugger doesn't track Lightweight-codegen methods b/c they have no metadata. |
| 2841 | if (fd->IsDynamicMethod()) |
| 2842 | { |
| 2843 | return NULL; |
| 2844 | } |
| 2845 | |
| 2846 | |
| 2847 | // initialize our out param |
| 2848 | if (pMethInfo) |
| 2849 | { |
| 2850 | *pMethInfo = NULL; |
| 2851 | } |
| 2852 | |
| 2853 | LOG((LF_CORDB, LL_EVERYTHING, "Debugger::GetJitInfo called\n" )); |
| 2854 | // CHECK_DJI_TABLE_DEBUGGER; |
| 2855 | |
| 2856 | // Find the DJI via the DMI |
| 2857 | // |
| 2858 | // One way to improve the perf, both in terms of memory usage, number of allocations |
| 2859 | // and lookup speeds would be to have the first JitInfo inline in the MethodInfo |
| 2860 | // struct. After all, we never want to have a MethodInfo in the table without an |
| 2861 | // associated JitInfo, and this should bring us back very close to the old situation |
| 2862 | // in terms of perf. But correctness comes first, and perf later... |
| 2863 | // CHECK_DMI_TABLE; |
| 2864 | dmi = GetOrCreateMethodInfo(fd->GetModule(), fd->GetMemberDef()); |
| 2865 | |
| 2866 | if (dmi == NULL) |
| 2867 | { |
| 2868 | // If we can't create the DMI, we won't be able to create the DJI. |
| 2869 | return NULL; |
| 2870 | } |
| 2871 | |
| 2872 | // TODO: Currently, this method does not handle code versioning properly (at least in some profiler scenarios), it may need |
| 2873 | // to take pbAddr into account and lazily create a DJI for that particular version of the method. |
| 2874 | |
| 2875 | // This may take the lock and lazily create an entry, so we do it up front. |
| 2876 | dji = dmi->GetLatestJitInfo(fd); |
| 2877 | |
| 2878 | |
| 2879 | DebuggerDataLockHolder debuggerDataLockHolder(this); |
| 2880 | |
| 2881 | // Note the call to GetLatestJitInfo() will lazily create the first DJI if we don't already have one. |
| 2882 | for (; dji != NULL; dji = dji->m_prevJitInfo) |
| 2883 | { |
| 2884 | if (PTR_TO_TADDR(dji->m_fd) == PTR_HOST_TO_TADDR(fd)) |
| 2885 | { |
| 2886 | break; |
| 2887 | } |
| 2888 | } |
| 2889 | LOG((LF_CORDB, LL_INFO1000, "D::GJI: for md:0x%x (%s::%s), got dmi:0x%x.\n" , |
| 2890 | fd, fd->m_pszDebugClassName, fd->m_pszDebugMethodName, |
| 2891 | dmi)); |
| 2892 | |
| 2893 | |
| 2894 | |
| 2895 | |
| 2896 | // Log stuff - fd may be null; so we don't want to AV in the log. |
| 2897 | |
| 2898 | LOG((LF_CORDB, LL_INFO1000, "D::GJI: for md:0x%x (%s::%s), got dmi:0x%x, dji:0x%x, latest dji:0x%x, latest fd:0x%x, prev dji:0x%x\n" , |
| 2899 | fd, fd->m_pszDebugClassName, fd->m_pszDebugMethodName, |
| 2900 | dmi, dji, (dmi ? dmi->GetLatestJitInfo_NoCreate() : 0), |
| 2901 | ((dmi && dmi->GetLatestJitInfo_NoCreate()) ? dmi->GetLatestJitInfo_NoCreate()->m_fd:0), |
| 2902 | (dji?dji->m_prevJitInfo:0))); |
| 2903 | |
| 2904 | if ((dji != NULL) && (pbAddr != NULL)) |
| 2905 | { |
| 2906 | dji = dji->GetJitInfoByAddress(pbAddr); |
| 2907 | |
| 2908 | // XXX Microsoft - dac doesn't support stub tracing |
| 2909 | // so this just results in not-impl exceptions. |
| 2910 | #ifndef DACCESS_COMPILE |
| 2911 | if (dji == NULL) //may have been given address of a thunk |
| 2912 | { |
| 2913 | LOG((LF_CORDB,LL_INFO1000,"Couldn't find a DJI by address 0x%p, " |
| 2914 | "so it might be a stub or thunk\n" , pbAddr)); |
| 2915 | TraceDestination trace; |
| 2916 | |
| 2917 | g_pEEInterface->TraceStub((const BYTE *)pbAddr, &trace); |
| 2918 | |
| 2919 | if ((trace.GetTraceType() == TRACE_MANAGED) && (pbAddr != (const BYTE *)trace.GetAddress())) |
| 2920 | { |
| 2921 | LOG((LF_CORDB,LL_INFO1000,"Address thru thunk" |
| 2922 | ": 0x%p\n" , trace.GetAddress())); |
| 2923 | dji = GetJitInfo(fd, dac_cast<PTR_CBYTE>(trace.GetAddress())); |
| 2924 | } |
| 2925 | #ifdef LOGGING |
| 2926 | else |
| 2927 | { |
| 2928 | _ASSERTE(trace.GetTraceType() != TRACE_UNJITTED_METHOD || |
| 2929 | (fd == trace.GetMethodDesc())); |
| 2930 | LOG((LF_CORDB,LL_INFO1000,"Address not thunked - " |
| 2931 | "must be to unJITted method, or normal managed " |
| 2932 | "method lacking a DJI!\n" )); |
| 2933 | } |
| 2934 | #endif //LOGGING |
| 2935 | } |
| 2936 | #endif // #ifndef DACCESS_COMPILE |
| 2937 | } |
| 2938 | |
| 2939 | if (pMethInfo) |
| 2940 | { |
| 2941 | *pMethInfo = dmi; |
| 2942 | } |
| 2943 | |
| 2944 | // DebuggerDataLockHolder out of scope - release implied |
| 2945 | |
| 2946 | return dji; |
| 2947 | } |
| 2948 | |
| 2949 | DebuggerMethodInfo *Debugger::GetOrCreateMethodInfo(Module *pModule, mdMethodDef token) |
| 2950 | { |
| 2951 | CONTRACTL |
| 2952 | { |
| 2953 | SO_INTOLERANT; |
| 2954 | SUPPORTS_DAC; |
| 2955 | THROWS; |
| 2956 | GC_NOTRIGGER; |
| 2957 | } |
| 2958 | CONTRACTL_END; |
| 2959 | |
| 2960 | DebuggerMethodInfo *info = NULL; |
| 2961 | |
| 2962 | // When dump debugging, we don't expect to have a lock, |
| 2963 | // nor would it be useful for anything. |
| 2964 | ALLOW_DATATARGET_MISSING_MEMORY( |
| 2965 | // In case we don't have already, take it now. |
| 2966 | DebuggerDataLockHolder debuggerDataLockHolder(this); |
| 2967 | ); |
| 2968 | |
| 2969 | if (m_pMethodInfos != NULL) |
| 2970 | { |
| 2971 | info = m_pMethodInfos->GetMethodInfo(pModule, token); |
| 2972 | } |
| 2973 | |
| 2974 | // dac checks ngen'ed image content first, so |
| 2975 | // if we didn't find information it doesn't exist. |
| 2976 | #ifndef DACCESS_COMPILE |
| 2977 | if (info == NULL) |
| 2978 | { |
| 2979 | info = CreateMethodInfo(pModule, token); |
| 2980 | |
| 2981 | LOG((LF_CORDB, LL_INFO1000, "D::GOCMI: created DMI for mdToken:0x%x, dmi:0x%x\n" , |
| 2982 | token, info)); |
| 2983 | } |
| 2984 | #endif // #ifndef DACCESS_COMPILE |
| 2985 | |
| 2986 | |
| 2987 | if (info == NULL) |
| 2988 | { |
| 2989 | // This should only happen in an oom scenario. It would be nice to throw here. |
| 2990 | STRESS_LOG2(LF_CORDB, LL_EVERYTHING, "OOM - Failed to allocate DJI (0x%p, 0x%x)\n" , pModule, token); |
| 2991 | } |
| 2992 | |
| 2993 | // DebuggerDataLockHolder out of scope - release implied |
| 2994 | return info; |
| 2995 | } |
| 2996 | |
| 2997 | |
| 2998 | #ifndef DACCESS_COMPILE |
| 2999 | |
| 3000 | /****************************************************************************** |
| 3001 | * GetILToNativeMapping returns a map from IL offsets to native |
| 3002 | * offsets for this code. An array of COR_PROF_IL_TO_NATIVE_MAP |
| 3003 | * structs will be returned, and some of the ilOffsets in this array |
| 3004 | * may be the values specified in CorDebugIlToNativeMappingTypes. |
| 3005 | ******************************************************************************/ |
| 3006 | HRESULT Debugger::GetILToNativeMapping(PCODE pNativeCodeStartAddress, ULONG32 cMap, |
| 3007 | ULONG32 *pcMap, COR_DEBUG_IL_TO_NATIVE_MAP map[]) |
| 3008 | { |
| 3009 | CONTRACTL |
| 3010 | { |
| 3011 | SO_NOT_MAINLINE; |
| 3012 | THROWS; |
| 3013 | GC_TRIGGERS_FROM_GETJITINFO; |
| 3014 | } |
| 3015 | CONTRACTL_END; |
| 3016 | |
| 3017 | #ifdef PROFILING_SUPPORTED |
| 3018 | // At this point, we're pulling in the debugger. |
| 3019 | if (!HasLazyData()) |
| 3020 | { |
| 3021 | DebuggerLockHolder lockHolder(this); |
| 3022 | LazyInit(); // throws |
| 3023 | } |
| 3024 | |
| 3025 | // Get the JIT info by functionId. |
| 3026 | |
| 3027 | // This function is unsafe to use during EnC because the MethodDesc doesn't tell |
| 3028 | // us which version is being requested. |
| 3029 | // However, this function is only used by the profiler, and you can't profile with EnC, |
| 3030 | // which means that getting the latest jit-info is still correct. |
| 3031 | #if defined(PROFILING_SUPPORTED) |
| 3032 | _ASSERTE(CORProfilerPresent()); |
| 3033 | #endif // PROFILING_SUPPORTED |
| 3034 | |
| 3035 | MethodDesc *fd = g_pEEInterface->GetNativeCodeMethodDesc(pNativeCodeStartAddress); |
| 3036 | if (fd == NULL || fd->IsWrapperStub() || fd->IsDynamicMethod()) |
| 3037 | { |
| 3038 | return E_FAIL; |
| 3039 | } |
| 3040 | |
| 3041 | DebuggerMethodInfo *pDMI = GetOrCreateMethodInfo(fd->GetModule(), fd->GetMemberDef()); |
| 3042 | if (pDMI == NULL) |
| 3043 | { |
| 3044 | return E_FAIL; |
| 3045 | } |
| 3046 | |
| 3047 | DebuggerJitInfo *pDJI = pDMI->FindOrCreateInitAndAddJitInfo(fd, pNativeCodeStartAddress); |
| 3048 | |
| 3049 | // Dunno what went wrong |
| 3050 | if (pDJI == NULL) |
| 3051 | return (E_FAIL); |
| 3052 | |
| 3053 | // If they gave us space to copy into... |
| 3054 | if (map != NULL) |
| 3055 | { |
| 3056 | // Only copy as much as either they gave us or we have to copy. |
| 3057 | ULONG32 cpyCount = min(cMap, pDJI->GetSequenceMapCount()); |
| 3058 | |
| 3059 | // Read the map right out of the Left Side. |
| 3060 | if (cpyCount > 0) |
| 3061 | ExportILToNativeMap(cpyCount, |
| 3062 | map, |
| 3063 | pDJI->GetSequenceMap(), |
| 3064 | pDJI->m_sizeOfCode); |
| 3065 | } |
| 3066 | |
| 3067 | // Return the true count of entries |
| 3068 | if (pcMap) |
| 3069 | { |
| 3070 | *pcMap = pDJI->GetSequenceMapCount(); |
| 3071 | } |
| 3072 | |
| 3073 | return (S_OK); |
| 3074 | #else |
| 3075 | return E_NOTIMPL; |
| 3076 | #endif |
| 3077 | } |
| 3078 | |
| 3079 | |
| 3080 | //--------------------------------------------------------------------------------------- |
| 3081 | // |
| 3082 | // This is morally the same as GetILToNativeMapping, except the output is in a different |
| 3083 | // format, to better facilitate sending the ETW ILToNativeMap events. |
| 3084 | // |
| 3085 | // Arguments: |
| 3086 | // pMD - MethodDesc whose IL-to-native map will be returned |
| 3087 | // cMapMax - Max number of map entries to return. Although |
| 3088 | // this function handles the allocation of the returned |
| 3089 | // array, the caller still wants to limit how big this |
| 3090 | // can get, since ETW itself has limits on how big |
| 3091 | // events can get |
| 3092 | // pcMap - [out] Number of entries returned in each output parallel array (next |
| 3093 | // two parameters). |
| 3094 | // prguiILOffset - [out] Array of IL offsets. This function allocates, caller must free. |
| 3095 | // prguiNativeOffset - [out] Array of the starting native offsets that correspond |
| 3096 | // to each (*prguiILOffset)[i]. This function allocates, |
| 3097 | // caller must free. |
| 3098 | // |
| 3099 | // Return Value: |
| 3100 | // HRESULT indicating success or failure. |
| 3101 | // |
| 3102 | // Notes: |
| 3103 | // * This function assumes lazy data has already been initialized (in order to |
| 3104 | // ensure that this doesn't trigger or take the large debugger mutex). So |
| 3105 | // callers must guarantee they call InitializeLazyDataIfNecessary() first. |
| 3106 | // * Either this function fails, and (*prguiILOffset) & (*prguiNativeOffset) will be |
| 3107 | // untouched OR this function succeeds and (*prguiILOffset) & (*prguiNativeOffset) |
| 3108 | // will both be non-NULL, set to the parallel arrays this function allocated. |
| 3109 | // * If this function returns success, then the caller must free (*prguiILOffset) and |
| 3110 | // (*prguiNativeOffset) |
| 3111 | // * (*prguiILOffset) and (*prguiNativeOffset) are parallel arrays, such that |
| 3112 | // (*prguiILOffset)[i] corresponds to (*prguiNativeOffset)[i] for each 0 <= i < *pcMap |
| 3113 | // * If EnC is enabled, this function will return the IL-to-native mapping for the latest |
| 3114 | // EnC version of the function. This may not be what the profiler wants, but EnC |
| 3115 | // + ETW-map events is not a typical combination, and this is consistent with |
| 3116 | // other ETW events like JittingStarted or MethodLoad, which also fire multiple |
| 3117 | // events for the same MethodDesc (each time it's EnC'd), with each event |
| 3118 | // corresponding to the most recent EnC version at the time. |
| 3119 | // |
| 3120 | |
| 3121 | HRESULT Debugger::GetILToNativeMappingIntoArrays( |
| 3122 | MethodDesc * pMethodDesc, |
| 3123 | PCODE pCode, |
| 3124 | USHORT cMapMax, |
| 3125 | USHORT * pcMap, |
| 3126 | UINT ** prguiILOffset, |
| 3127 | UINT ** prguiNativeOffset) |
| 3128 | { |
| 3129 | CONTRACTL |
| 3130 | { |
| 3131 | SO_NOT_MAINLINE; |
| 3132 | THROWS; |
| 3133 | GC_NOTRIGGER; |
| 3134 | } |
| 3135 | CONTRACTL_END; |
| 3136 | |
| 3137 | _ASSERTE(pcMap != NULL); |
| 3138 | _ASSERTE(prguiILOffset != NULL); |
| 3139 | _ASSERTE(prguiNativeOffset != NULL); |
| 3140 | |
| 3141 | // Any caller of GetILToNativeMappingIntoArrays had better call |
| 3142 | // InitializeLazyDataIfNecessary first! |
| 3143 | _ASSERTE(HasLazyData()); |
| 3144 | |
| 3145 | // Get the JIT info by functionId. |
| 3146 | |
| 3147 | DebuggerJitInfo * pDJI = GetJitInfo(pMethodDesc, (const BYTE *)pCode); |
| 3148 | |
| 3149 | // Dunno what went wrong |
| 3150 | if (pDJI == NULL) |
| 3151 | return E_FAIL; |
| 3152 | |
| 3153 | ULONG32 cMap = min(cMapMax, pDJI->GetSequenceMapCount()); |
| 3154 | DebuggerILToNativeMap * rgMapInt = pDJI->GetSequenceMap(); |
| 3155 | |
| 3156 | NewArrayHolder<UINT> rguiILOffsetTemp = new (nothrow) UINT[cMap]; |
| 3157 | if (rguiILOffsetTemp == NULL) |
| 3158 | return E_OUTOFMEMORY; |
| 3159 | |
| 3160 | NewArrayHolder<UINT> rguiNativeOffsetTemp = new (nothrow) UINT[cMap]; |
| 3161 | if (rguiNativeOffsetTemp == NULL) |
| 3162 | return E_OUTOFMEMORY; |
| 3163 | |
| 3164 | for (ULONG32 iMap=0; iMap < cMap; iMap++) |
| 3165 | { |
| 3166 | rguiILOffsetTemp[iMap] = rgMapInt[iMap].ilOffset; |
| 3167 | rguiNativeOffsetTemp[iMap] = rgMapInt[iMap].nativeStartOffset; |
| 3168 | } |
| 3169 | |
| 3170 | // Since cMap is the min of cMapMax (and something else) and cMapMax is a USHORT, |
| 3171 | // then cMap must fit in a USHORT as well |
| 3172 | _ASSERTE(FitsIn<USHORT>(cMap)); |
| 3173 | *pcMap = (USHORT) cMap; |
| 3174 | *prguiILOffset = rguiILOffsetTemp.Extract(); |
| 3175 | *prguiNativeOffset = rguiNativeOffsetTemp.Extract(); |
| 3176 | |
| 3177 | return S_OK; |
| 3178 | } |
| 3179 | |
| 3180 | |
| 3181 | |
| 3182 | |
| 3183 | #endif // #ifndef DACCESS_COMPILE |
| 3184 | |
| 3185 | /****************************************************************************** |
| 3186 | * |
| 3187 | ******************************************************************************/ |
| 3188 | CodeRegionInfo CodeRegionInfo::GetCodeRegionInfo(DebuggerJitInfo *dji, MethodDesc *md, PTR_CORDB_ADDRESS_TYPE addr) |
| 3189 | { |
| 3190 | CONTRACTL |
| 3191 | { |
| 3192 | SO_INTOLERANT; |
| 3193 | NOTHROW; |
| 3194 | GC_NOTRIGGER; |
| 3195 | SUPPORTS_DAC; |
| 3196 | MODE_ANY; |
| 3197 | } |
| 3198 | CONTRACTL_END; |
| 3199 | |
| 3200 | if (dji && dji->m_addrOfCode) |
| 3201 | { |
| 3202 | LOG((LF_CORDB, LL_EVERYTHING, "CRI::GCRI: simple case\n" )); |
| 3203 | return dji->m_codeRegionInfo; |
| 3204 | } |
| 3205 | else |
| 3206 | { |
| 3207 | LOG((LF_CORDB, LL_EVERYTHING, "CRI::GCRI: more complex case\n" )); |
| 3208 | CodeRegionInfo codeRegionInfo; |
| 3209 | |
| 3210 | // Use method desc from dji if present |
| 3211 | if (dji && dji->m_fd) |
| 3212 | { |
| 3213 | _ASSERTE(!md || md == dji->m_fd); |
| 3214 | md = dji->m_fd; |
| 3215 | } |
| 3216 | |
| 3217 | if (!addr) |
| 3218 | { |
| 3219 | _ASSERTE(md); |
| 3220 | addr = dac_cast<PTR_CORDB_ADDRESS_TYPE>(g_pEEInterface->GetFunctionAddress(md)); |
| 3221 | } |
| 3222 | else |
| 3223 | { |
| 3224 | _ASSERTE(!md || |
| 3225 | (addr == dac_cast<PTR_CORDB_ADDRESS_TYPE>(g_pEEInterface->GetFunctionAddress(md)))); |
| 3226 | } |
| 3227 | |
| 3228 | if (addr) |
| 3229 | { |
| 3230 | PCODE pCode = PINSTRToPCODE(dac_cast<TADDR>(addr)); |
| 3231 | codeRegionInfo.InitializeFromStartAddress(pCode); |
| 3232 | } |
| 3233 | |
| 3234 | return codeRegionInfo; |
| 3235 | } |
| 3236 | } |
| 3237 | |
| 3238 | |
| 3239 | #ifndef DACCESS_COMPILE |
| 3240 | /****************************************************************************** |
| 3241 | // Helper function for getBoundaries to get around AMD64 compiler and |
| 3242 | // contract holders with PAL_TRY in the same function. |
| 3243 | ******************************************************************************/ |
| 3244 | void Debugger::getBoundariesHelper(MethodDesc * md, |
| 3245 | unsigned int *cILOffsets, |
| 3246 | DWORD **pILOffsets) |
| 3247 | { |
| 3248 | // |
| 3249 | // CANNOT ADD A CONTRACT HERE. Contract is in getBoundaries |
| 3250 | // |
| 3251 | |
| 3252 | // |
| 3253 | // Grab the JIT info struct for this method. Create if needed, as this |
| 3254 | // may be called before JITComplete. |
| 3255 | // |
| 3256 | DebuggerMethodInfo *dmi = NULL; |
| 3257 | dmi = GetOrCreateMethodInfo(md->GetModule(), md->GetMemberDef()); |
| 3258 | |
| 3259 | if (dmi != NULL) |
| 3260 | { |
| 3261 | LOG((LF_CORDB,LL_INFO10000,"De::NGB: Got dmi 0x%x\n" ,dmi)); |
| 3262 | |
| 3263 | #if defined(FEATURE_ISYM_READER) |
| 3264 | // Note: we need to make sure to enable preemptive GC here just in case we block in the symbol reader. |
| 3265 | GCX_PREEMP_EEINTERFACE(); |
| 3266 | |
| 3267 | Module *pModule = md->GetModule(); |
| 3268 | (void)pModule; //prevent "unused variable" error from GCC |
| 3269 | _ASSERTE(pModule != NULL); |
| 3270 | |
| 3271 | SafeComHolder<ISymUnmanagedReader> pReader(pModule->GetISymUnmanagedReader()); |
| 3272 | |
| 3273 | // If we got a reader, use it. |
| 3274 | if (pReader != NULL) |
| 3275 | { |
| 3276 | // Grab the sym reader's method. |
| 3277 | ISymUnmanagedMethod *pISymMethod; |
| 3278 | |
| 3279 | HRESULT hr = pReader->GetMethod(md->GetMemberDef(), |
| 3280 | &pISymMethod); |
| 3281 | |
| 3282 | ULONG32 n = 0; |
| 3283 | |
| 3284 | if (SUCCEEDED(hr)) |
| 3285 | { |
| 3286 | // Get the count of sequence points. |
| 3287 | hr = pISymMethod->GetSequencePointCount(&n); |
| 3288 | _ASSERTE(SUCCEEDED(hr)); |
| 3289 | |
| 3290 | |
| 3291 | LOG((LF_CORDB, LL_INFO100000, |
| 3292 | "D::NGB: Reader seq pt count is %d\n" , n)); |
| 3293 | |
| 3294 | ULONG32 *p; |
| 3295 | |
| 3296 | if (n > 0) |
| 3297 | { |
| 3298 | ULONG32 dummy; |
| 3299 | |
| 3300 | p = new ULONG32[n]; |
| 3301 | _ASSERTE(p != NULL); // throws on oom errror |
| 3302 | |
| 3303 | hr = pISymMethod->GetSequencePoints(n, &dummy, |
| 3304 | p, NULL, NULL, NULL, |
| 3305 | NULL, NULL); |
| 3306 | _ASSERTE(SUCCEEDED(hr)); |
| 3307 | _ASSERTE(dummy == n); |
| 3308 | |
| 3309 | *pILOffsets = (DWORD*)p; |
| 3310 | |
| 3311 | // Translate the IL offets based on an |
| 3312 | // instrumented IL map if one exists. |
| 3313 | if (dmi->HasInstrumentedILMap()) |
| 3314 | { |
| 3315 | InstrumentedILOffsetMapping mapping = |
| 3316 | dmi->GetRuntimeModule()->GetInstrumentedILOffsetMapping(dmi->m_token); |
| 3317 | |
| 3318 | for (SIZE_T i = 0; i < n; i++) |
| 3319 | { |
| 3320 | int origOffset = *p; |
| 3321 | |
| 3322 | *p = dmi->TranslateToInstIL( |
| 3323 | &mapping, |
| 3324 | origOffset, |
| 3325 | bOriginalToInstrumented); |
| 3326 | |
| 3327 | LOG((LF_CORDB, LL_INFO100000, |
| 3328 | "D::NGB: 0x%04x (Real IL:0x%x)\n" , |
| 3329 | origOffset, *p)); |
| 3330 | |
| 3331 | p++; |
| 3332 | } |
| 3333 | } |
| 3334 | #ifdef LOGGING |
| 3335 | else |
| 3336 | { |
| 3337 | for (SIZE_T i = 0; i < n; i++) |
| 3338 | { |
| 3339 | LOG((LF_CORDB, LL_INFO100000, |
| 3340 | "D::NGB: 0x%04x \n" , *p)); |
| 3341 | p++; |
| 3342 | } |
| 3343 | } |
| 3344 | #endif |
| 3345 | } |
| 3346 | else |
| 3347 | *pILOffsets = NULL; |
| 3348 | |
| 3349 | pISymMethod->Release(); |
| 3350 | } |
| 3351 | else |
| 3352 | { |
| 3353 | |
| 3354 | *pILOffsets = NULL; |
| 3355 | |
| 3356 | LOG((LF_CORDB, LL_INFO10000, |
| 3357 | "De::NGB: failed to find method 0x%x in sym reader.\n" , |
| 3358 | md->GetMemberDef())); |
| 3359 | } |
| 3360 | |
| 3361 | *cILOffsets = n; |
| 3362 | } |
| 3363 | else |
| 3364 | { |
| 3365 | LOG((LF_CORDB, LL_INFO100000, "D::NGB: no reader.\n" )); |
| 3366 | } |
| 3367 | |
| 3368 | #else // FEATURE_ISYM_READER |
| 3369 | // We don't have ISymUnmanagedReader. Pretend there are no sequence points. |
| 3370 | *cILOffsets = 0; |
| 3371 | #endif // FEATURE_ISYM_READER |
| 3372 | } |
| 3373 | |
| 3374 | LOG((LF_CORDB, LL_INFO100000, "D::NGB: cILOffsets=%d\n" , *cILOffsets)); |
| 3375 | return; |
| 3376 | } |
| 3377 | #endif |
| 3378 | |
| 3379 | /****************************************************************************** |
| 3380 | // Use an ISymUnmanagedReader to get method sequence points. |
| 3381 | ******************************************************************************/ |
| 3382 | void Debugger::getBoundaries(MethodDesc * md, |
| 3383 | unsigned int *cILOffsets, |
| 3384 | DWORD **pILOffsets, |
| 3385 | ICorDebugInfo::BoundaryTypes *implicitBoundaries) |
| 3386 | { |
| 3387 | #ifndef DACCESS_COMPILE |
| 3388 | CONTRACTL |
| 3389 | { |
| 3390 | SO_INTOLERANT; |
| 3391 | THROWS; |
| 3392 | GC_TRIGGERS; |
| 3393 | } |
| 3394 | CONTRACTL_END; |
| 3395 | |
| 3396 | // May be here even when a debugger is not attached. |
| 3397 | |
| 3398 | // @@@ |
| 3399 | // Implements DebugInterface API |
| 3400 | |
| 3401 | *cILOffsets = 0; |
| 3402 | *pILOffsets = NULL; |
| 3403 | *implicitBoundaries = ICorDebugInfo::DEFAULT_BOUNDARIES; |
| 3404 | // If there has been an unrecoverable Left Side error, then we |
| 3405 | // just pretend that there are no boundaries. |
| 3406 | if (CORDBUnrecoverableError(this)) |
| 3407 | { |
| 3408 | return; |
| 3409 | } |
| 3410 | |
| 3411 | // LCG methods have their own resolution scope that is seperate from a module |
| 3412 | // so they shouldn't have their symbols looked up in the module PDB. Right now |
| 3413 | // LCG methods have no symbols so we can just early out, but if they ever |
| 3414 | // had some symbols attached we would need a different way of getting to them. |
| 3415 | // See Dev10 issue 728519 |
| 3416 | if(md->IsLCGMethod()) |
| 3417 | { |
| 3418 | return; |
| 3419 | } |
| 3420 | |
| 3421 | // If JIT optimizations are allowed for the module this function |
| 3422 | // lives in, then don't grab specific boundaries from the symbol |
| 3423 | // store since any boundaries we give the JIT will be pretty much |
| 3424 | // ignored anyway. |
| 3425 | if (!CORDisableJITOptimizations(md->GetModule()->GetDebuggerInfoBits())) |
| 3426 | { |
| 3427 | *implicitBoundaries = ICorDebugInfo::BoundaryTypes(ICorDebugInfo::STACK_EMPTY_BOUNDARIES | |
| 3428 | ICorDebugInfo::CALL_SITE_BOUNDARIES); |
| 3429 | |
| 3430 | return; |
| 3431 | } |
| 3432 | |
| 3433 | Module* pModule = md->GetModule(); |
| 3434 | DWORD dwBits = pModule->GetDebuggerInfoBits(); |
| 3435 | if ((dwBits & DACF_IGNORE_PDBS) != 0) |
| 3436 | { |
| 3437 | // |
| 3438 | // If told to explicitly ignore PDBs for this function, then bail now. |
| 3439 | // |
| 3440 | return; |
| 3441 | } |
| 3442 | |
| 3443 | if( !pModule->IsSymbolReadingEnabled() ) |
| 3444 | { |
| 3445 | // Symbol reading is disabled for this module, so bail out early (for efficiency only) |
| 3446 | return; |
| 3447 | } |
| 3448 | |
| 3449 | if (pModule == SystemDomain::SystemModule()) |
| 3450 | { |
| 3451 | // We don't look up PDBs for mscorlib. This is not quite right, but avoids |
| 3452 | // a bootstrapping problem. When an EXE loads, it has the option of setting |
| 3453 | // the COM apartment model to STA if we need to. It is important that no |
| 3454 | // other Coinitialize happens before this. Since loading the PDB reader uses |
| 3455 | // com we can not come first. However managed code IS run before the COM |
| 3456 | // apartment model is set, and thus we have a problem since this code is |
| 3457 | // called for when JITTing managed code. We avoid the problem by just |
| 3458 | // bailing for mscorlib. |
| 3459 | return; |
| 3460 | } |
| 3461 | |
| 3462 | // At this point, we're pulling in the debugger. |
| 3463 | if (!HasLazyData()) |
| 3464 | { |
| 3465 | DebuggerLockHolder lockHolder(this); |
| 3466 | LazyInit(); // throws |
| 3467 | } |
| 3468 | |
| 3469 | getBoundariesHelper(md, cILOffsets, pILOffsets); |
| 3470 | |
| 3471 | #else |
| 3472 | DacNotImpl(); |
| 3473 | #endif // #ifndef DACCESS_COMPILE |
| 3474 | } |
| 3475 | |
| 3476 | |
| 3477 | /****************************************************************************** |
| 3478 | * |
| 3479 | ******************************************************************************/ |
| 3480 | void Debugger::getVars(MethodDesc * md, ULONG32 *cVars, ICorDebugInfo::ILVarInfo **vars, |
| 3481 | bool *extendOthers) |
| 3482 | { |
| 3483 | #ifndef DACCESS_COMPILE |
| 3484 | CONTRACTL |
| 3485 | { |
| 3486 | SO_INTOLERANT; |
| 3487 | THROWS; |
| 3488 | GC_TRIGGERS_FROM_GETJITINFO; |
| 3489 | PRECONDITION(!ThisIsHelperThreadWorker()); |
| 3490 | } |
| 3491 | CONTRACTL_END; |
| 3492 | |
| 3493 | |
| 3494 | |
| 3495 | // At worst return no information |
| 3496 | *cVars = 0; |
| 3497 | *vars = NULL; |
| 3498 | |
| 3499 | // Just tell the JIT to extend everything. |
| 3500 | // Note that if optimizations are enabled, the native compilers are |
| 3501 | // free to ingore *extendOthers |
| 3502 | *extendOthers = true; |
| 3503 | |
| 3504 | DWORD bits = md->GetModule()->GetDebuggerInfoBits(); |
| 3505 | |
| 3506 | if (CORDBUnrecoverableError(this)) |
| 3507 | goto Exit; |
| 3508 | |
| 3509 | if (CORDisableJITOptimizations(bits)) |
| 3510 | // if (!CORDebuggerAllowJITOpts(bits)) |
| 3511 | { |
| 3512 | // |
| 3513 | // @TODO: Do we really need this code since *extendOthers==true? |
| 3514 | // |
| 3515 | |
| 3516 | // Is this a vararg function? |
| 3517 | BOOL fVarArg = false; |
| 3518 | GetArgCount(md, &fVarArg); |
| 3519 | |
| 3520 | if (fVarArg) |
| 3521 | { |
| 3522 | COR_ILMETHOD *ilMethod = g_pEEInterface->MethodDescGetILHeader(md); |
| 3523 | |
| 3524 | if (ilMethod) |
| 3525 | { |
| 3526 | // It is, so we need to tell the JIT to give us the |
| 3527 | // varags handle. |
| 3528 | ICorDebugInfo::ILVarInfo *p = new ICorDebugInfo::ILVarInfo[1]; |
| 3529 | _ASSERTE(p != NULL); // throws on oom error |
| 3530 | |
| 3531 | COR_ILMETHOD_DECODER header(ilMethod); |
| 3532 | unsigned int ilCodeSize = header.GetCodeSize(); |
| 3533 | |
| 3534 | p->startOffset = 0; |
| 3535 | p->endOffset = ilCodeSize; |
| 3536 | p->varNumber = (DWORD) ICorDebugInfo::VARARGS_HND_ILNUM; |
| 3537 | |
| 3538 | *cVars = 1; |
| 3539 | *vars = p; |
| 3540 | } |
| 3541 | } |
| 3542 | } |
| 3543 | |
| 3544 | LOG((LF_CORDB, LL_INFO100000, "D::gV: cVars=%d, extendOthers=%d\n" , |
| 3545 | *cVars, *extendOthers)); |
| 3546 | |
| 3547 | Exit: |
| 3548 | ; |
| 3549 | #else |
| 3550 | DacNotImpl(); |
| 3551 | #endif // #ifndef DACCESS_COMPILE |
| 3552 | } |
| 3553 | |
| 3554 | |
| 3555 | #ifndef DACCESS_COMPILE |
| 3556 | |
| 3557 | // If we have a varargs function, we can't set the IP (we don't know how to pack/unpack the arguments), so if we |
| 3558 | // call SetIP with fCanSetIPOnly = true, we need to check for that. |
| 3559 | // Arguments: |
| 3560 | // input: nEntries - number of entries in varNativeInfo |
| 3561 | // varNativeInfo - array of entries describing the args and locals for the function |
| 3562 | // output: true iff the function has varargs |
| 3563 | BOOL Debugger::IsVarArgsFunction(unsigned int nEntries, PTR_NativeVarInfo varNativeInfo) |
| 3564 | { |
| 3565 | for (unsigned int i = 0; i < nEntries; ++i) |
| 3566 | { |
| 3567 | if (varNativeInfo[i].loc.vlType == ICorDebugInfo::VLT_FIXED_VA) |
| 3568 | { |
| 3569 | return TRUE; |
| 3570 | } |
| 3571 | } |
| 3572 | return FALSE; |
| 3573 | } |
| 3574 | |
| 3575 | // We want to keep the 'worst' HRESULT - if one has failed (..._E_...) & the |
| 3576 | // other hasn't, take the failing one. If they've both/neither failed, then |
| 3577 | // it doesn't matter which we take. |
| 3578 | // Note that this macro favors retaining the first argument |
| 3579 | #define WORST_HR(hr1,hr2) (FAILED(hr1)?hr1:hr2) |
| 3580 | /****************************************************************************** |
| 3581 | * |
| 3582 | ******************************************************************************/ |
| 3583 | HRESULT Debugger::SetIP( bool fCanSetIPOnly, Thread *thread,Module *module, |
| 3584 | mdMethodDef mdMeth, DebuggerJitInfo* dji, |
| 3585 | SIZE_T offsetILTo, BOOL fIsIL) |
| 3586 | { |
| 3587 | CONTRACTL |
| 3588 | { |
| 3589 | SO_NOT_MAINLINE; |
| 3590 | NOTHROW; |
| 3591 | GC_NOTRIGGER; |
| 3592 | PRECONDITION(CheckPointer(thread)); |
| 3593 | PRECONDITION(CheckPointer(module)); |
| 3594 | PRECONDITION(mdMeth != mdMethodDefNil); |
| 3595 | } |
| 3596 | CONTRACTL_END; |
| 3597 | |
| 3598 | #ifdef _DEBUG |
| 3599 | static ConfigDWORD breakOnSetIP; |
| 3600 | if (breakOnSetIP.val(CLRConfig::INTERNAL_DbgBreakOnSetIP)) _ASSERTE(!"DbgBreakOnSetIP" ); |
| 3601 | #endif |
| 3602 | |
| 3603 | HRESULT hr = S_OK; |
| 3604 | HRESULT hrAdvise = S_OK; |
| 3605 | |
| 3606 | DWORD offsetILFrom; |
| 3607 | CorDebugMappingResult map; |
| 3608 | DWORD whichIgnore; |
| 3609 | |
| 3610 | ControllerStackInfo csi; |
| 3611 | |
| 3612 | BOOL exact; |
| 3613 | SIZE_T offsetNatTo; |
| 3614 | |
| 3615 | PCODE pbDest = NULL; |
| 3616 | BYTE *pbBase = NULL; |
| 3617 | CONTEXT *pCtx = NULL; |
| 3618 | DWORD dwSize = 0; |
| 3619 | SIZE_T *rgVal1 = NULL; |
| 3620 | SIZE_T *rgVal2 = NULL; |
| 3621 | BYTE **pVCs = NULL; |
| 3622 | |
| 3623 | LOG((LF_CORDB, LL_INFO1000, "D::SIP: In SetIP ==> fCanSetIPOnly:0x%x <==!\n" , fCanSetIPOnly)); |
| 3624 | |
| 3625 | CodeVersionManager *pCodeVersionManager = module->GetCodeVersionManager(); |
| 3626 | { |
| 3627 | CodeVersionManager::TableLockHolder lock(pCodeVersionManager); |
| 3628 | ILCodeVersion ilCodeVersion = pCodeVersionManager->GetActiveILCodeVersion(module, mdMeth); |
| 3629 | if (!ilCodeVersion.IsDefaultVersion()) |
| 3630 | { |
| 3631 | return CORDBG_E_SET_IP_IMPOSSIBLE; |
| 3632 | } |
| 3633 | } |
| 3634 | |
| 3635 | pCtx = GetManagedStoppedCtx(thread); |
| 3636 | |
| 3637 | // If we can't get a context, then we can't possibly be a in a good place |
| 3638 | // to do a setip. |
| 3639 | if (pCtx == NULL) |
| 3640 | { |
| 3641 | return CORDBG_S_BAD_START_SEQUENCE_POINT; |
| 3642 | } |
| 3643 | |
| 3644 | // Implicit Caveat: We need to be the active frame. |
| 3645 | // We can safely take a stack trace because the thread is synchronized. |
| 3646 | StackTraceTicket ticket(thread); |
| 3647 | csi.GetStackInfo(ticket, thread, LEAF_MOST_FRAME, NULL); |
| 3648 | |
| 3649 | ULONG offsetNatFrom = csi.m_activeFrame.relOffset; |
| 3650 | #if defined(WIN64EXCEPTIONS) |
| 3651 | if (csi.m_activeFrame.IsFuncletFrame()) |
| 3652 | { |
| 3653 | offsetNatFrom = (ULONG)((SIZE_T)GetControlPC(&(csi.m_activeFrame.registers)) - |
| 3654 | (SIZE_T)(dji->m_addrOfCode)); |
| 3655 | } |
| 3656 | #endif // WIN64EXCEPTIONS |
| 3657 | |
| 3658 | _ASSERTE(dji != NULL); |
| 3659 | |
| 3660 | // On WIN64 platforms, it's important to use the total size of the |
| 3661 | // parent method and the funclets below (i.e. m_sizeOfCode). Don't use |
| 3662 | // the size of the individual funclets or the parent method. |
| 3663 | pbBase = (BYTE*)CORDB_ADDRESS_TO_PTR(dji->m_addrOfCode); |
| 3664 | dwSize = (DWORD)dji->m_sizeOfCode; |
| 3665 | #if defined(WIN64EXCEPTIONS) |
| 3666 | // Currently, method offsets are not bigger than 4 bytes even on WIN64. |
| 3667 | // Assert that it is so here. |
| 3668 | _ASSERTE((SIZE_T)dwSize == dji->m_sizeOfCode); |
| 3669 | #endif // WIN64EXCEPTIONS |
| 3670 | |
| 3671 | |
| 3672 | // Create our structure for analyzing this. |
| 3673 | // <TODO>@PERF: optimize - hold on to this so we don't rebuild it for both |
| 3674 | // CanSetIP & SetIP.</TODO> |
| 3675 | int cFunclet = 0; |
| 3676 | const DWORD * rgFunclet = NULL; |
| 3677 | #if defined(WIN64EXCEPTIONS) |
| 3678 | cFunclet = dji->GetFuncletCount(); |
| 3679 | rgFunclet = dji->m_rgFunclet; |
| 3680 | #endif // WIN64EXCEPTIONS |
| 3681 | |
| 3682 | EHRangeTree* pEHRT = new (nothrow) EHRangeTree(csi.m_activeFrame.pIJM, |
| 3683 | csi.m_activeFrame.MethodToken, |
| 3684 | dwSize, |
| 3685 | cFunclet, |
| 3686 | rgFunclet); |
| 3687 | |
| 3688 | // To maintain the current semantics, we will check the following right before SetIPFromSrcToDst() is called |
| 3689 | // (instead of checking them now): |
| 3690 | // 1) pEHRT == NULL |
| 3691 | // 2) FAILED(pEHRT->m_hrInit) |
| 3692 | |
| 3693 | |
| 3694 | { |
| 3695 | LOG((LF_CORDB, LL_INFO1000, "D::SIP:Got version info fine\n" )); |
| 3696 | |
| 3697 | // Caveat: we need to start from a sequence point |
| 3698 | offsetILFrom = dji->MapNativeOffsetToIL(offsetNatFrom, |
| 3699 | &map, &whichIgnore); |
| 3700 | if ( !(map & MAPPING_EXACT) ) |
| 3701 | { |
| 3702 | LOG((LF_CORDB, LL_INFO1000, "D::SIP:Starting native offset is bad!\n" )); |
| 3703 | hrAdvise = WORST_HR(hrAdvise, CORDBG_S_BAD_START_SEQUENCE_POINT); |
| 3704 | } |
| 3705 | else |
| 3706 | { // exact IL mapping |
| 3707 | |
| 3708 | if (!(dji->GetSrcTypeFromILOffset(offsetILFrom) & ICorDebugInfo::STACK_EMPTY)) |
| 3709 | { |
| 3710 | LOG((LF_CORDB, LL_INFO1000, "D::SIP:Starting offset isn't stack empty!\n" )); |
| 3711 | hrAdvise = WORST_HR(hrAdvise, CORDBG_S_BAD_START_SEQUENCE_POINT); |
| 3712 | } |
| 3713 | } |
| 3714 | |
| 3715 | // Caveat: we need to go to a sequence point |
| 3716 | if (fIsIL ) |
| 3717 | { |
| 3718 | #if defined(WIN64EXCEPTIONS) |
| 3719 | int funcletIndexFrom = dji->GetFuncletIndex((CORDB_ADDRESS)offsetNatFrom, DebuggerJitInfo::GFIM_BYOFFSET); |
| 3720 | offsetNatTo = dji->MapILOffsetToNativeForSetIP(offsetILTo, funcletIndexFrom, pEHRT, &exact); |
| 3721 | #else // WIN64EXCEPTIONS |
| 3722 | DebuggerJitInfo::ILToNativeOffsetIterator it; |
| 3723 | dji->InitILToNativeOffsetIterator(it, offsetILTo); |
| 3724 | offsetNatTo = it.CurrentAssertOnlyOne(&exact); |
| 3725 | #endif // WIN64EXCEPTIONS |
| 3726 | |
| 3727 | if (!exact) |
| 3728 | { |
| 3729 | LOG((LF_CORDB, LL_INFO1000, "D::SIP:Dest (via IL offset) is bad!\n" )); |
| 3730 | hrAdvise = WORST_HR(hrAdvise, CORDBG_S_BAD_END_SEQUENCE_POINT); |
| 3731 | } |
| 3732 | } |
| 3733 | else |
| 3734 | { |
| 3735 | offsetNatTo = offsetILTo; |
| 3736 | LOG((LF_CORDB, LL_INFO1000, "D::SIP:Dest of 0x%p (via native " |
| 3737 | "offset) is fine!\n" , offsetNatTo)); |
| 3738 | } |
| 3739 | |
| 3740 | CorDebugMappingResult mapping; |
| 3741 | DWORD which; |
| 3742 | offsetILTo = dji->MapNativeOffsetToIL(offsetNatTo, &mapping, &which); |
| 3743 | |
| 3744 | // We only want to perhaps return CORDBG_S_BAD_END_SEQUENCE_POINT if |
| 3745 | // we're not already returning CORDBG_S_BAD_START_SEQUENCE_POINT. |
| 3746 | if (hr != CORDBG_S_BAD_START_SEQUENCE_POINT) |
| 3747 | { |
| 3748 | if ( !(mapping & MAPPING_EXACT) ) |
| 3749 | { |
| 3750 | LOG((LF_CORDB, LL_INFO1000, "D::SIP:Ending native offset is bad!\n" )); |
| 3751 | hrAdvise = WORST_HR(hrAdvise, CORDBG_S_BAD_END_SEQUENCE_POINT); |
| 3752 | } |
| 3753 | else |
| 3754 | { |
| 3755 | // <NOTE WIN64> |
| 3756 | // All duplicate sequence points (ones with the same IL offset) should have the same SourceTypes. |
| 3757 | // </NOTE WIN64> |
| 3758 | if (!(dji->GetSrcTypeFromILOffset(offsetILTo) & ICorDebugInfo::STACK_EMPTY)) |
| 3759 | { |
| 3760 | LOG((LF_CORDB, LL_INFO1000, "D::SIP:Ending offset isn't a sequence" |
| 3761 | " point, or not stack empty!\n" )); |
| 3762 | hrAdvise = WORST_HR(hrAdvise, CORDBG_S_BAD_END_SEQUENCE_POINT); |
| 3763 | } |
| 3764 | } |
| 3765 | } |
| 3766 | |
| 3767 | // Once we finally have a native offset, it had better be in range. |
| 3768 | if (offsetNatTo >= dwSize) |
| 3769 | { |
| 3770 | LOG((LF_CORDB, LL_INFO1000, "D::SIP:Code out of range! offsetNatTo = 0x%x, dwSize=0x%x\n" , offsetNatTo, dwSize)); |
| 3771 | hrAdvise = E_INVALIDARG; |
| 3772 | goto LExit; |
| 3773 | } |
| 3774 | |
| 3775 | pbDest = CodeRegionInfo::GetCodeRegionInfo(dji).OffsetToAddress(offsetNatTo); |
| 3776 | LOG((LF_CORDB, LL_INFO1000, "D::SIP:Dest is 0x%p\n" , pbDest)); |
| 3777 | |
| 3778 | // Don't allow SetIP if the source or target is cold (SetIPFromSrcToDst does not |
| 3779 | // correctly handle this case). |
| 3780 | if (!CodeRegionInfo::GetCodeRegionInfo(dji).IsOffsetHot(offsetNatTo) || |
| 3781 | !CodeRegionInfo::GetCodeRegionInfo(dji).IsOffsetHot(offsetNatFrom)) |
| 3782 | { |
| 3783 | hrAdvise = WORST_HR(hrAdvise, CORDBG_E_SET_IP_IMPOSSIBLE); |
| 3784 | goto LExit; |
| 3785 | } |
| 3786 | } |
| 3787 | |
| 3788 | if (!fCanSetIPOnly) |
| 3789 | { |
| 3790 | hr = ShuffleVariablesGet(dji, |
| 3791 | offsetNatFrom, |
| 3792 | pCtx, |
| 3793 | &rgVal1, |
| 3794 | &rgVal2, |
| 3795 | &pVCs); |
| 3796 | LOG((LF_CORDB|LF_ENC, |
| 3797 | LL_INFO10000, |
| 3798 | "D::SIP: rgVal1 0x%X, rgVal2 0x%X\n" , |
| 3799 | rgVal1, |
| 3800 | rgVal2)); |
| 3801 | |
| 3802 | if (FAILED(hr)) |
| 3803 | { |
| 3804 | // This will only fail fatally, so exit. |
| 3805 | hrAdvise = WORST_HR(hrAdvise, hr); |
| 3806 | goto LExit; |
| 3807 | } |
| 3808 | } |
| 3809 | else // fCanSetIPOnly |
| 3810 | { |
| 3811 | if (IsVarArgsFunction(dji->GetVarNativeInfoCount(), dji->GetVarNativeInfo())) |
| 3812 | { |
| 3813 | hrAdvise = E_INVALIDARG; |
| 3814 | goto LExit; |
| 3815 | } |
| 3816 | } |
| 3817 | |
| 3818 | |
| 3819 | if (pEHRT == NULL) |
| 3820 | { |
| 3821 | hr = E_OUTOFMEMORY; |
| 3822 | } |
| 3823 | else if (FAILED(pEHRT->m_hrInit)) |
| 3824 | { |
| 3825 | hr = pEHRT->m_hrInit; |
| 3826 | } |
| 3827 | else |
| 3828 | { |
| 3829 | // |
| 3830 | // This is a known, ok, violation. END_EXCEPTION_GLUE has a call to GetThrowable in it, but |
| 3831 | // we will never hit it because we are passing in NULL below. This is to satisfy the static |
| 3832 | // contract analyzer. |
| 3833 | // |
| 3834 | CONTRACT_VIOLATION(GCViolation); |
| 3835 | |
| 3836 | EX_TRY |
| 3837 | { |
| 3838 | hr =g_pEEInterface->SetIPFromSrcToDst(thread, |
| 3839 | pbBase, |
| 3840 | offsetNatFrom, |
| 3841 | (DWORD)offsetNatTo, |
| 3842 | fCanSetIPOnly, |
| 3843 | &(csi.m_activeFrame.registers), |
| 3844 | pCtx, |
| 3845 | (void *)dji, |
| 3846 | pEHRT); |
| 3847 | } |
| 3848 | EX_CATCH |
| 3849 | { |
| 3850 | } |
| 3851 | EX_END_CATCH(SwallowAllExceptions); |
| 3852 | |
| 3853 | } |
| 3854 | |
| 3855 | // Get the return code, if any |
| 3856 | if (hr != S_OK) |
| 3857 | { |
| 3858 | hrAdvise = WORST_HR(hrAdvise, hr); |
| 3859 | goto LExit; |
| 3860 | } |
| 3861 | |
| 3862 | // If we really want to do this, we'll have to put the |
| 3863 | // variables into their new locations. |
| 3864 | if (!fCanSetIPOnly && !FAILED(hrAdvise)) |
| 3865 | { |
| 3866 | // TODO: We should zero out any registers which have now become live GC roots, |
| 3867 | // but which aren't tracked variables (i.e. they are JIT temporaries). Such registers may |
| 3868 | // have garbage left over in them, and we don't want the GC to try and dereference them |
| 3869 | // as object references. However, we can't easily tell here which of the callee-saved regs |
| 3870 | // are used in this method and therefore safe to clear. |
| 3871 | // |
| 3872 | |
| 3873 | hr = ShuffleVariablesSet(dji, |
| 3874 | offsetNatTo, |
| 3875 | pCtx, |
| 3876 | &rgVal1, |
| 3877 | &rgVal2, |
| 3878 | pVCs); |
| 3879 | |
| 3880 | |
| 3881 | if (hr != S_OK) |
| 3882 | { |
| 3883 | hrAdvise = WORST_HR(hrAdvise, hr); |
| 3884 | goto LExit; |
| 3885 | } |
| 3886 | |
| 3887 | _ASSERTE(pbDest != NULL); |
| 3888 | |
| 3889 | ::SetIP(pCtx, pbDest); |
| 3890 | |
| 3891 | LOG((LF_CORDB, LL_INFO1000, "D::SIP:Set IP to be 0x%p\n" , GetIP(pCtx))); |
| 3892 | } |
| 3893 | |
| 3894 | |
| 3895 | LExit: |
| 3896 | if (rgVal1 != NULL) |
| 3897 | { |
| 3898 | DeleteInteropSafe(rgVal1); |
| 3899 | } |
| 3900 | |
| 3901 | if (rgVal2 != NULL) |
| 3902 | { |
| 3903 | DeleteInteropSafe(rgVal2); |
| 3904 | } |
| 3905 | |
| 3906 | if (pEHRT != NULL) |
| 3907 | { |
| 3908 | delete pEHRT; |
| 3909 | } |
| 3910 | |
| 3911 | LOG((LF_CORDB, LL_INFO1000, "D::SIP:Returning 0x%x\n" , hr)); |
| 3912 | return hrAdvise; |
| 3913 | } |
| 3914 | |
| 3915 | #include "nativevaraccessors.h" |
| 3916 | |
| 3917 | /****************************************************************************** |
| 3918 | * |
| 3919 | ******************************************************************************/ |
| 3920 | |
| 3921 | HRESULT Debugger::ShuffleVariablesGet(DebuggerJitInfo *dji, |
| 3922 | SIZE_T offsetFrom, |
| 3923 | CONTEXT *pCtx, |
| 3924 | SIZE_T **prgVal1, |
| 3925 | SIZE_T **prgVal2, |
| 3926 | BYTE ***prgpVCs) |
| 3927 | { |
| 3928 | CONTRACTL |
| 3929 | { |
| 3930 | SO_NOT_MAINLINE; |
| 3931 | NOTHROW; |
| 3932 | GC_NOTRIGGER; |
| 3933 | PRECONDITION(CheckPointer(dji)); |
| 3934 | PRECONDITION(CheckPointer(pCtx)); |
| 3935 | PRECONDITION(CheckPointer(prgVal1)); |
| 3936 | PRECONDITION(CheckPointer(prgVal2)); |
| 3937 | PRECONDITION(dji->m_sizeOfCode >= offsetFrom); |
| 3938 | } |
| 3939 | CONTRACTL_END; |
| 3940 | |
| 3941 | LONG cVariables = 0; |
| 3942 | DWORD i; |
| 3943 | |
| 3944 | // |
| 3945 | // Find the largest variable number |
| 3946 | // |
| 3947 | for (i = 0; i < dji->GetVarNativeInfoCount(); i++) |
| 3948 | { |
| 3949 | if ((LONG)(dji->GetVarNativeInfo()[i].varNumber) > cVariables) |
| 3950 | { |
| 3951 | cVariables = (LONG)(dji->GetVarNativeInfo()[i].varNumber); |
| 3952 | } |
| 3953 | } |
| 3954 | |
| 3955 | HRESULT hr = S_OK; |
| 3956 | |
| 3957 | // |
| 3958 | // cVariables is a zero-based count of the number of variables. Increment it. |
| 3959 | // |
| 3960 | cVariables++; |
| 3961 | |
| 3962 | SIZE_T *rgVal1 = new (interopsafe, nothrow) SIZE_T[cVariables + unsigned(-ICorDebugInfo::UNKNOWN_ILNUM)]; |
| 3963 | |
| 3964 | SIZE_T *rgVal2 = NULL; |
| 3965 | |
| 3966 | if (rgVal1 == NULL) |
| 3967 | { |
| 3968 | hr = E_OUTOFMEMORY; |
| 3969 | goto LExit; |
| 3970 | } |
| 3971 | |
| 3972 | rgVal2 = new (interopsafe, nothrow) SIZE_T[cVariables + unsigned(-ICorDebugInfo::UNKNOWN_ILNUM)]; |
| 3973 | |
| 3974 | if (rgVal2 == NULL) |
| 3975 | { |
| 3976 | hr = E_OUTOFMEMORY; |
| 3977 | goto LExit; |
| 3978 | } |
| 3979 | |
| 3980 | memset(rgVal1, 0, sizeof(SIZE_T) * (cVariables + unsigned(-ICorDebugInfo::UNKNOWN_ILNUM))); |
| 3981 | memset(rgVal2, 0, sizeof(SIZE_T) * (cVariables + unsigned(-ICorDebugInfo::UNKNOWN_ILNUM))); |
| 3982 | |
| 3983 | LOG((LF_CORDB|LF_ENC, |
| 3984 | LL_INFO10000, |
| 3985 | "D::SVG cVariables %d, hiddens %d, rgVal1 0x%X, rgVal2 0x%X\n" , |
| 3986 | cVariables, |
| 3987 | unsigned(-ICorDebugInfo::UNKNOWN_ILNUM), |
| 3988 | rgVal1, |
| 3989 | rgVal2)); |
| 3990 | |
| 3991 | GetVariablesFromOffset(dji->m_fd, |
| 3992 | dji->GetVarNativeInfoCount(), |
| 3993 | dji->GetVarNativeInfo(), |
| 3994 | offsetFrom, |
| 3995 | pCtx, |
| 3996 | rgVal1, |
| 3997 | rgVal2, |
| 3998 | cVariables + unsigned(-ICorDebugInfo::UNKNOWN_ILNUM), |
| 3999 | prgpVCs); |
| 4000 | |
| 4001 | |
| 4002 | LExit: |
| 4003 | if (!FAILED(hr)) |
| 4004 | { |
| 4005 | (*prgVal1) = rgVal1; |
| 4006 | (*prgVal2) = rgVal2; |
| 4007 | } |
| 4008 | else |
| 4009 | { |
| 4010 | LOG((LF_CORDB, LL_INFO100, "D::SVG: something went wrong hr=0x%x!" , hr)); |
| 4011 | |
| 4012 | (*prgVal1) = NULL; |
| 4013 | (*prgVal2) = NULL; |
| 4014 | |
| 4015 | if (rgVal1 != NULL) |
| 4016 | delete[] rgVal1; |
| 4017 | |
| 4018 | if (rgVal2 != NULL) |
| 4019 | delete[] rgVal2; |
| 4020 | } |
| 4021 | |
| 4022 | return hr; |
| 4023 | } |
| 4024 | |
| 4025 | /****************************************************************************** |
| 4026 | * |
| 4027 | ******************************************************************************/ |
| 4028 | HRESULT Debugger::ShuffleVariablesSet(DebuggerJitInfo *dji, |
| 4029 | SIZE_T offsetTo, |
| 4030 | CONTEXT *pCtx, |
| 4031 | SIZE_T **prgVal1, |
| 4032 | SIZE_T **prgVal2, |
| 4033 | BYTE **rgpVCs) |
| 4034 | { |
| 4035 | CONTRACTL |
| 4036 | { |
| 4037 | SO_NOT_MAINLINE; |
| 4038 | NOTHROW; |
| 4039 | GC_NOTRIGGER; |
| 4040 | PRECONDITION(CheckPointer(dji)); |
| 4041 | PRECONDITION(CheckPointer(pCtx)); |
| 4042 | PRECONDITION(CheckPointer(prgVal1)); |
| 4043 | PRECONDITION(CheckPointer(prgVal2)); |
| 4044 | PRECONDITION(dji->m_sizeOfCode >= offsetTo); |
| 4045 | } |
| 4046 | CONTRACTL_END; |
| 4047 | |
| 4048 | LOG((LF_CORDB|LF_ENC, |
| 4049 | LL_INFO10000, |
| 4050 | "D::SVS: rgVal1 0x%X, rgVal2 0x%X\n" , |
| 4051 | (*prgVal1), |
| 4052 | (*prgVal2))); |
| 4053 | |
| 4054 | HRESULT hr = SetVariablesAtOffset(dji->m_fd, |
| 4055 | dji->GetVarNativeInfoCount(), |
| 4056 | dji->GetVarNativeInfo(), |
| 4057 | offsetTo, |
| 4058 | pCtx, |
| 4059 | *prgVal1, |
| 4060 | *prgVal2, |
| 4061 | rgpVCs); |
| 4062 | |
| 4063 | LOG((LF_CORDB|LF_ENC, |
| 4064 | LL_INFO100000, |
| 4065 | "D::SVS deleting rgVal1 0x%X, rgVal2 0x%X\n" , |
| 4066 | (*prgVal1), |
| 4067 | (*prgVal2))); |
| 4068 | |
| 4069 | DeleteInteropSafe(*prgVal1); |
| 4070 | (*prgVal1) = NULL; |
| 4071 | DeleteInteropSafe(*prgVal2); |
| 4072 | (*prgVal2) = NULL; |
| 4073 | return hr; |
| 4074 | } |
| 4075 | |
| 4076 | // |
| 4077 | // This class is used by Get and SetVariablesFromOffsets to manage a frameHelper |
| 4078 | // list for the arguments and locals corresponding to each varNativeInfo. The first |
| 4079 | // four are hidden args, but the remainder will all have a corresponding entry |
| 4080 | // in the argument or local signature list. |
| 4081 | // |
| 4082 | // The structure of the array varNativeInfo contains home information for each variable |
| 4083 | // at various points in the function. Thus, you have to search for the proper native offset |
| 4084 | // (IP) in the varNativeInfo, and then find the correct varNumber in that native offset to |
| 4085 | // find the correct home information. |
| 4086 | // |
| 4087 | // Important to note is that the JIT has hidden args that have varNumbers that are negative. |
| 4088 | // Thus we cannot use varNumber as a strict index into our holder arrays, and instead shift |
| 4089 | // indexes before indexing into our holder arrays. |
| 4090 | // |
| 4091 | // The hidden args are a fixed-sized array given by the value of 0-UNKNOWN_ILNUM. These are used |
| 4092 | // to pass cookies about the arguments (var args, generics, retarg buffer etc.) to the function. |
| 4093 | // The real arguments and locals are as one would expect. |
| 4094 | // |
| 4095 | |
| 4096 | class GetSetFrameHelper |
| 4097 | { |
| 4098 | public: |
| 4099 | GetSetFrameHelper(); |
| 4100 | ~GetSetFrameHelper(); |
| 4101 | |
| 4102 | HRESULT Init(MethodDesc* pMD); |
| 4103 | |
| 4104 | bool GetValueClassSizeOfVar(int varNum, ICorDebugInfo::VarLocType varType, SIZE_T* pSize); |
| 4105 | int ShiftIndexForHiddens(int varNum); |
| 4106 | |
| 4107 | private: |
| 4108 | MethodDesc* m_pMD; |
| 4109 | SIZE_T* m_rgSize; |
| 4110 | CorElementType* m_rgElemType; |
| 4111 | ULONG m_numArgs; |
| 4112 | ULONG m_numTotalVars; |
| 4113 | |
| 4114 | SIZE_T GetValueClassSize(MetaSig* pSig); |
| 4115 | |
| 4116 | static SIZE_T GetSizeOfElement(CorElementType cet); |
| 4117 | }; |
| 4118 | |
| 4119 | // |
| 4120 | // GetSetFrameHelper::GetSetFrameHelper() |
| 4121 | // |
| 4122 | // This is the constructor. It just initailizes all member variables. |
| 4123 | // |
| 4124 | // parameters: none |
| 4125 | // |
| 4126 | // return value: none |
| 4127 | // |
| 4128 | GetSetFrameHelper::GetSetFrameHelper() : m_pMD(NULL), m_rgSize(NULL), m_rgElemType(NULL), |
| 4129 | m_numArgs(0), m_numTotalVars(0) |
| 4130 | { |
| 4131 | LIMITED_METHOD_CONTRACT; |
| 4132 | } |
| 4133 | |
| 4134 | // |
| 4135 | // GetSetFrameHelper::Init() |
| 4136 | // |
| 4137 | // This method extracts the element type and the size of the arguments and locals of the method we are doing |
| 4138 | // the SetIP on and stores this information in instance variables. |
| 4139 | // |
| 4140 | // parameters: pMD - MethodDesc of the method we are doing the SetIP on |
| 4141 | // |
| 4142 | // return value: S_OK or E_OUTOFMEMORY |
| 4143 | // |
| 4144 | HRESULT |
| 4145 | GetSetFrameHelper::Init(MethodDesc *pMD) |
| 4146 | { |
| 4147 | CONTRACTL |
| 4148 | { |
| 4149 | SO_NOT_MAINLINE; |
| 4150 | NOTHROW; |
| 4151 | GC_NOTRIGGER; |
| 4152 | MODE_ANY; |
| 4153 | PRECONDITION(CheckPointer(pMD)); |
| 4154 | } |
| 4155 | CONTRACTL_END; |
| 4156 | |
| 4157 | HRESULT hr = S_OK; |
| 4158 | COR_ILMETHOD* pILHeader = NULL; |
| 4159 | m_pMD = pMD; |
| 4160 | MetaSig *pLocSig = NULL; |
| 4161 | MetaSig *pArgSig = NULL; |
| 4162 | |
| 4163 | m_rgSize = NULL; |
| 4164 | m_rgElemType = NULL; |
| 4165 | |
| 4166 | // Initialize decoderOldIL before checking the method argument signature. |
| 4167 | EX_TRY |
| 4168 | { |
| 4169 | pILHeader = pMD->GetILHeader(); |
| 4170 | } |
| 4171 | EX_CATCH_HRESULT(hr); |
| 4172 | if (FAILED(hr)) |
| 4173 | return hr; |
| 4174 | |
| 4175 | COR_ILMETHOD_DECODER decoderOldIL(pILHeader); |
| 4176 | mdSignature mdLocalSig = (decoderOldIL.GetLocalVarSigTok()) ? (decoderOldIL.GetLocalVarSigTok()): |
| 4177 | (mdSignatureNil); |
| 4178 | |
| 4179 | PCCOR_SIGNATURE pCallSig; |
| 4180 | DWORD cbCallSigSize; |
| 4181 | |
| 4182 | pMD->GetSig(&pCallSig, &cbCallSigSize); |
| 4183 | |
| 4184 | if (pCallSig != NULL) |
| 4185 | { |
| 4186 | // Yes, we do need to pass in the text because this might be generic function! |
| 4187 | SigTypeContext tmpContext(pMD); |
| 4188 | |
| 4189 | pArgSig = new (interopsafe, nothrow) MetaSig(pCallSig, |
| 4190 | cbCallSigSize, |
| 4191 | pMD->GetModule(), |
| 4192 | &tmpContext, |
| 4193 | MetaSig::sigMember); |
| 4194 | |
| 4195 | if (pArgSig == NULL) |
| 4196 | { |
| 4197 | IfFailGo(E_OUTOFMEMORY); |
| 4198 | } |
| 4199 | |
| 4200 | m_numArgs = pArgSig->NumFixedArgs(); |
| 4201 | |
| 4202 | if (pArgSig->HasThis()) |
| 4203 | { |
| 4204 | m_numArgs++; |
| 4205 | } |
| 4206 | |
| 4207 | // <TODO> |
| 4208 | // What should we do in this case? |
| 4209 | // </TODO> |
| 4210 | /* |
| 4211 | if (argSig.IsVarArg()) |
| 4212 | m_numArgs++; |
| 4213 | */ |
| 4214 | } |
| 4215 | |
| 4216 | // allocation of pArgSig succeeded |
| 4217 | ULONG cbSig; |
| 4218 | PCCOR_SIGNATURE pLocalSig; |
| 4219 | pLocalSig = NULL; |
| 4220 | if (mdLocalSig != mdSignatureNil) |
| 4221 | { |
| 4222 | IfFailGo(pMD->GetModule()->GetMDImport()->GetSigFromToken(mdLocalSig, &cbSig, &pLocalSig)); |
| 4223 | } |
| 4224 | if (pLocalSig != NULL) |
| 4225 | { |
| 4226 | SigTypeContext tmpContext(pMD); |
| 4227 | pLocSig = new (interopsafe, nothrow) MetaSig(pLocalSig, |
| 4228 | cbSig, |
| 4229 | pMD->GetModule(), |
| 4230 | &tmpContext, |
| 4231 | MetaSig::sigLocalVars); |
| 4232 | |
| 4233 | if (pLocSig == NULL) |
| 4234 | { |
| 4235 | IfFailGo(E_OUTOFMEMORY); |
| 4236 | } |
| 4237 | } |
| 4238 | |
| 4239 | // allocation of pLocalSig succeeded |
| 4240 | m_numTotalVars = m_numArgs + (pLocSig != NULL ? pLocSig->NumFixedArgs() : 0); |
| 4241 | |
| 4242 | if (m_numTotalVars > 0) |
| 4243 | { |
| 4244 | m_rgSize = new (interopsafe, nothrow) SIZE_T[m_numTotalVars]; |
| 4245 | m_rgElemType = new (interopsafe, nothrow) CorElementType[m_numTotalVars]; |
| 4246 | |
| 4247 | if ((m_rgSize == NULL) || (m_rgElemType == NULL)) |
| 4248 | { |
| 4249 | IfFailGo(E_OUTOFMEMORY); |
| 4250 | } |
| 4251 | else |
| 4252 | { |
| 4253 | // allocation of m_rgSize and m_rgElemType succeeded |
| 4254 | for (ULONG i = 0; i < m_numTotalVars; i++) |
| 4255 | { |
| 4256 | // Choose the correct signature to walk. |
| 4257 | MetaSig *pCur = NULL; |
| 4258 | if (i < m_numArgs) |
| 4259 | { |
| 4260 | pCur = pArgSig; |
| 4261 | } |
| 4262 | else |
| 4263 | { |
| 4264 | pCur = pLocSig; |
| 4265 | } |
| 4266 | |
| 4267 | // The "this" argument isn't stored in the signature, so we have to |
| 4268 | // check for it manually. |
| 4269 | if (i == 0 && pCur->HasThis()) |
| 4270 | { |
| 4271 | _ASSERTE(pCur == pArgSig); |
| 4272 | |
| 4273 | m_rgElemType[i] = ELEMENT_TYPE_CLASS; |
| 4274 | m_rgSize[i] = sizeof(SIZE_T); |
| 4275 | } |
| 4276 | else |
| 4277 | { |
| 4278 | m_rgElemType[i] = pCur->NextArg(); |
| 4279 | |
| 4280 | if (m_rgElemType[i] == ELEMENT_TYPE_VALUETYPE) |
| 4281 | { |
| 4282 | m_rgSize[i] = GetValueClassSize(pCur); |
| 4283 | } |
| 4284 | else |
| 4285 | { |
| 4286 | m_rgSize[i] = GetSetFrameHelper::GetSizeOfElement(m_rgElemType[i]); |
| 4287 | } |
| 4288 | |
| 4289 | LOG((LF_CORDB, LL_INFO10000, "GSFH::I: var 0x%x is of type %x, size:0x%x\n" , |
| 4290 | i, m_rgElemType[i], m_rgSize[i])); |
| 4291 | } |
| 4292 | } |
| 4293 | } // allocation of m_rgSize and m_rgElemType succeeded |
| 4294 | } // if there are variables to take care of |
| 4295 | |
| 4296 | ErrExit: |
| 4297 | // clean up |
| 4298 | if (pArgSig != NULL) |
| 4299 | { |
| 4300 | DeleteInteropSafe(pArgSig); |
| 4301 | } |
| 4302 | |
| 4303 | if (pLocSig != NULL) |
| 4304 | { |
| 4305 | DeleteInteropSafe(pLocSig); |
| 4306 | } |
| 4307 | |
| 4308 | if (FAILED(hr)) |
| 4309 | { |
| 4310 | if (m_rgSize != NULL) |
| 4311 | { |
| 4312 | DeleteInteropSafe(m_rgSize); |
| 4313 | } |
| 4314 | |
| 4315 | if (m_rgElemType != NULL) |
| 4316 | { |
| 4317 | DeleteInteropSafe((int*)m_rgElemType); |
| 4318 | } |
| 4319 | } |
| 4320 | |
| 4321 | return hr; |
| 4322 | } // GetSetFrameHelper::Init |
| 4323 | |
| 4324 | // |
| 4325 | // GetSetFrameHelper::~GetSetFrameHelper() |
| 4326 | // |
| 4327 | // This is the destructor. It checks the two arrays we have allocated and frees the memory accordingly. |
| 4328 | // |
| 4329 | // parameters: none |
| 4330 | // |
| 4331 | // return value: none |
| 4332 | // |
| 4333 | GetSetFrameHelper::~GetSetFrameHelper() |
| 4334 | { |
| 4335 | CONTRACTL |
| 4336 | { |
| 4337 | SO_NOT_MAINLINE; |
| 4338 | NOTHROW; |
| 4339 | GC_NOTRIGGER; |
| 4340 | MODE_ANY; |
| 4341 | } |
| 4342 | CONTRACTL_END; |
| 4343 | |
| 4344 | if (m_rgSize) |
| 4345 | { |
| 4346 | DeleteInteropSafe(m_rgSize); |
| 4347 | } |
| 4348 | |
| 4349 | if (m_rgElemType) |
| 4350 | { |
| 4351 | DeleteInteropSafe((int*)m_rgElemType); |
| 4352 | } |
| 4353 | } |
| 4354 | |
| 4355 | // |
| 4356 | // GetSetFrameHelper::GetSizeOfElement() |
| 4357 | // |
| 4358 | // Given a CorElementType, this function returns the size of this type. |
| 4359 | // Note that this function doesn't handle ELEMENT_TYPE_VALUETYPE. Use GetValueClassSize() instead. |
| 4360 | // |
| 4361 | // parameters: cet - the CorElementType of the argument/local we are dealing with |
| 4362 | // |
| 4363 | // return value: the size of the argument/local |
| 4364 | // |
| 4365 | // static |
| 4366 | SIZE_T GetSetFrameHelper::GetSizeOfElement(CorElementType cet) |
| 4367 | { |
| 4368 | CONTRACTL |
| 4369 | { |
| 4370 | SO_NOT_MAINLINE; |
| 4371 | NOTHROW; |
| 4372 | GC_NOTRIGGER; |
| 4373 | MODE_ANY; |
| 4374 | PRECONDITION(cet != ELEMENT_TYPE_VALUETYPE); |
| 4375 | } |
| 4376 | CONTRACTL_END; |
| 4377 | |
| 4378 | if (!CorIsPrimitiveType(cet)) |
| 4379 | { |
| 4380 | return sizeof(SIZE_T); |
| 4381 | } |
| 4382 | else |
| 4383 | { |
| 4384 | switch (cet) |
| 4385 | { |
| 4386 | case ELEMENT_TYPE_I8: |
| 4387 | case ELEMENT_TYPE_U8: |
| 4388 | #if defined(_WIN64) |
| 4389 | case ELEMENT_TYPE_I: |
| 4390 | case ELEMENT_TYPE_U: |
| 4391 | #endif // _WIN64 |
| 4392 | case ELEMENT_TYPE_R8: |
| 4393 | return 8; |
| 4394 | |
| 4395 | case ELEMENT_TYPE_I4: |
| 4396 | case ELEMENT_TYPE_U4: |
| 4397 | #if !defined(_WIN64) |
| 4398 | case ELEMENT_TYPE_I: |
| 4399 | case ELEMENT_TYPE_U: |
| 4400 | #endif // !_WIN64 |
| 4401 | case ELEMENT_TYPE_R4: |
| 4402 | return 4; |
| 4403 | |
| 4404 | case ELEMENT_TYPE_I2: |
| 4405 | case ELEMENT_TYPE_U2: |
| 4406 | case ELEMENT_TYPE_CHAR: |
| 4407 | return 2; |
| 4408 | |
| 4409 | case ELEMENT_TYPE_I1: |
| 4410 | case ELEMENT_TYPE_U1: |
| 4411 | case ELEMENT_TYPE_BOOLEAN: |
| 4412 | return 1; |
| 4413 | |
| 4414 | case ELEMENT_TYPE_VOID: |
| 4415 | case ELEMENT_TYPE_END: |
| 4416 | _ASSERTE(!"debugger.cpp - Check this code path\n" ); |
| 4417 | return 0; |
| 4418 | |
| 4419 | case ELEMENT_TYPE_STRING: |
| 4420 | return sizeof(SIZE_T); |
| 4421 | |
| 4422 | default: |
| 4423 | _ASSERTE(!"debugger.cpp - Check this code path\n" ); |
| 4424 | return sizeof(SIZE_T); |
| 4425 | } |
| 4426 | } |
| 4427 | } |
| 4428 | |
| 4429 | // |
| 4430 | // GetSetFrameHelper::GetValueClassSize() |
| 4431 | // |
| 4432 | // Given a MetaSig pointer to the signature of a value type, this function returns its size. |
| 4433 | // |
| 4434 | // parameters: pSig - MetaSig pointer to the signature of a value type |
| 4435 | // |
| 4436 | // return value: the size of this value type |
| 4437 | // |
| 4438 | SIZE_T GetSetFrameHelper::GetValueClassSize(MetaSig* pSig) |
| 4439 | { |
| 4440 | CONTRACTL |
| 4441 | { |
| 4442 | SO_NOT_MAINLINE; |
| 4443 | NOTHROW; |
| 4444 | GC_NOTRIGGER; |
| 4445 | PRECONDITION(CheckPointer(pSig)); |
| 4446 | } |
| 4447 | CONTRACTL_END; |
| 4448 | |
| 4449 | // We need to determine the number of bytes for this value-type. |
| 4450 | SigPointer sp = pSig->GetArgProps(); |
| 4451 | |
| 4452 | TypeHandle vcType = TypeHandle(); |
| 4453 | { |
| 4454 | // Lookup operations run the class loader in non-load mode. |
| 4455 | ENABLE_FORBID_GC_LOADER_USE_IN_THIS_SCOPE(); |
| 4456 | |
| 4457 | // This will return Null if type is not restored |
| 4458 | // @todo : is this what we want? |
| 4459 | SigTypeContext typeContext(m_pMD); |
| 4460 | vcType = sp.GetTypeHandleThrowing(m_pMD->GetModule(), |
| 4461 | &typeContext, |
| 4462 | // == FailIfNotLoaded |
| 4463 | ClassLoader::DontLoadTypes); |
| 4464 | } |
| 4465 | // We need to know the size of the class in bytes. This means: |
| 4466 | // - we need a specific instantiation (since that affects size) |
| 4467 | // - but we don't care if it's shared (since it will be the same size either way) |
| 4468 | _ASSERTE(!vcType.IsNull() && vcType.IsValueType()); |
| 4469 | |
| 4470 | return (vcType.GetMethodTable()->GetAlignedNumInstanceFieldBytes()); |
| 4471 | } |
| 4472 | |
| 4473 | // |
| 4474 | // GetSetFrameHelper::GetValueClassSizeOfVar() |
| 4475 | // |
| 4476 | // This method retrieves the size of the variable saved in the array m_rgSize. Also, it returns true |
| 4477 | // if the variable is a value type. |
| 4478 | // |
| 4479 | // parameters: varNum - the variable number (arguments come before locals) |
| 4480 | // varType - the type of variable home |
| 4481 | // pSize - [out] the size |
| 4482 | // |
| 4483 | // return value: whether this variable is a value type |
| 4484 | // |
| 4485 | bool GetSetFrameHelper::GetValueClassSizeOfVar(int varNum, ICorDebugInfo::VarLocType varType, SIZE_T* pSize) |
| 4486 | { |
| 4487 | CONTRACTL |
| 4488 | { |
| 4489 | SO_NOT_MAINLINE; |
| 4490 | NOTHROW; |
| 4491 | GC_NOTRIGGER; |
| 4492 | MODE_ANY; |
| 4493 | PRECONDITION(varType != ICorDebugInfo::VLT_FIXED_VA); |
| 4494 | PRECONDITION(pSize != NULL); |
| 4495 | } |
| 4496 | CONTRACTL_END; |
| 4497 | |
| 4498 | // preliminary checking |
| 4499 | if (varNum < 0) |
| 4500 | { |
| 4501 | // Make sure this is one of the secret parameters (e.g. VASigCookie, generics context, etc.). |
| 4502 | _ASSERTE(varNum > (int)ICorDebugInfo::MAX_ILNUM); |
| 4503 | |
| 4504 | *pSize = sizeof(LPVOID); |
| 4505 | return false; |
| 4506 | } |
| 4507 | |
| 4508 | // This check is only safe after we make sure that varNum is not negative. |
| 4509 | if ((UINT)varNum >= m_numTotalVars) |
| 4510 | { |
| 4511 | _ASSERTE(!"invalid variable index encountered during setip" ); |
| 4512 | *pSize = 0; |
| 4513 | return false; |
| 4514 | } |
| 4515 | |
| 4516 | CorElementType cet = m_rgElemType[varNum]; |
| 4517 | *pSize = m_rgSize[varNum]; |
| 4518 | |
| 4519 | if ((cet != ELEMENT_TYPE_VALUETYPE) || |
| 4520 | (varType == ICorDebugInfo::VLT_REG) || |
| 4521 | (varType == ICorDebugInfo::VLT_REG_REG) || |
| 4522 | (varType == ICorDebugInfo::VLT_REG_STK) || |
| 4523 | (varType == ICorDebugInfo::VLT_STK_REG)) |
| 4524 | { |
| 4525 | return false; |
| 4526 | } |
| 4527 | else |
| 4528 | { |
| 4529 | return true; |
| 4530 | } |
| 4531 | } |
| 4532 | |
| 4533 | int GetSetFrameHelper::ShiftIndexForHiddens(int varNum) |
| 4534 | { |
| 4535 | LIMITED_METHOD_CONTRACT; |
| 4536 | |
| 4537 | // |
| 4538 | // Need to shift them up so are appropriate index for rgVal arrays |
| 4539 | // |
| 4540 | return varNum - ICorDebugInfo::UNKNOWN_ILNUM; |
| 4541 | } |
| 4542 | |
| 4543 | // Helper method pair to grab all, then set all, variables at a given |
| 4544 | // point in a routine. |
| 4545 | // NOTE: GetVariablesFromOffset and SetVariablesAtOffset are |
| 4546 | // very similar - modifying one will probably need to be reflected in the other... |
| 4547 | // rgVal1 and rgVal2 are preallocated by callers with estimated size. |
| 4548 | // We pass in the size of the allocation in rRgValeSize. The safe index will be rgVal1[0..uRgValSize - 1] |
| 4549 | // |
| 4550 | HRESULT Debugger::GetVariablesFromOffset(MethodDesc *pMD, |
| 4551 | UINT varNativeInfoCount, |
| 4552 | ICorDebugInfo::NativeVarInfo *varNativeInfo, |
| 4553 | SIZE_T offsetFrom, |
| 4554 | CONTEXT *pCtx, |
| 4555 | SIZE_T *rgVal1, |
| 4556 | SIZE_T *rgVal2, |
| 4557 | UINT uRgValSize, // number of elements of the preallocated rgVal1 and rgVal2 |
| 4558 | BYTE ***rgpVCs) |
| 4559 | { |
| 4560 | // @todo - convert this to throwing w/ holders. It will be cleaner. |
| 4561 | CONTRACTL |
| 4562 | { |
| 4563 | SO_NOT_MAINLINE; |
| 4564 | NOTHROW; |
| 4565 | GC_NOTRIGGER; |
| 4566 | PRECONDITION(CheckPointer(rgpVCs)); |
| 4567 | PRECONDITION(CheckPointer(pCtx)); |
| 4568 | PRECONDITION(varNativeInfoCount == 0 || CheckPointer(varNativeInfo)); |
| 4569 | PRECONDITION(varNativeInfoCount == 0 || CheckPointer(rgVal1)); |
| 4570 | PRECONDITION(varNativeInfoCount == 0 || CheckPointer(rgVal2)); |
| 4571 | // This may or may not be called on the helper thread. |
| 4572 | } |
| 4573 | CONTRACTL_END; |
| 4574 | |
| 4575 | *rgpVCs = NULL; |
| 4576 | // if there are no locals, well, we are done! |
| 4577 | |
| 4578 | if (varNativeInfoCount == 0) |
| 4579 | { |
| 4580 | return S_OK; |
| 4581 | } |
| 4582 | |
| 4583 | memset( rgVal1, 0, sizeof(SIZE_T)*uRgValSize); |
| 4584 | memset( rgVal2, 0, sizeof(SIZE_T)*uRgValSize); |
| 4585 | |
| 4586 | LOG((LF_CORDB|LF_ENC, LL_INFO10000, "D::GVFO: %s::%s, infoCount:0x%x, from:0x%p\n" , |
| 4587 | pMD->m_pszDebugClassName, |
| 4588 | pMD->m_pszDebugMethodName, |
| 4589 | varNativeInfoCount, |
| 4590 | offsetFrom)); |
| 4591 | |
| 4592 | GetSetFrameHelper frameHelper; |
| 4593 | HRESULT hr = frameHelper.Init(pMD); |
| 4594 | if (FAILED(hr)) |
| 4595 | { |
| 4596 | return hr; |
| 4597 | } |
| 4598 | // preallocate enough to hold all possible valueclass args & locals |
| 4599 | // sure this is more than we need, but not a big deal and better |
| 4600 | // than having to crawl through the frameHelper and count |
| 4601 | ULONG cValueClasses = 0; |
| 4602 | BYTE **rgpValueClasses = new (interopsafe, nothrow) BYTE *[varNativeInfoCount]; |
| 4603 | if (rgpValueClasses == NULL) |
| 4604 | { |
| 4605 | return E_OUTOFMEMORY; |
| 4606 | } |
| 4607 | memset(rgpValueClasses, 0, sizeof(BYTE *)*varNativeInfoCount); |
| 4608 | |
| 4609 | hr = S_OK; |
| 4610 | |
| 4611 | LOG((LF_CORDB|LF_ENC, |
| 4612 | LL_INFO10000, |
| 4613 | "D::GVFO rgVal1 0x%X, rgVal2 0x%X\n" , |
| 4614 | rgVal1, |
| 4615 | rgVal2)); |
| 4616 | |
| 4617 | // Now go through the full array and save off each arg and local |
| 4618 | for (UINT i = 0; i< varNativeInfoCount;i++) |
| 4619 | { |
| 4620 | // Ignore variables not live at offsetFrom |
| 4621 | // |
| 4622 | // #VarLife |
| 4623 | // |
| 4624 | // The condition below is a little strange. If a var is alive when this is true: |
| 4625 | // |
| 4626 | // startOffset <= offsetFrom < endOffset |
| 4627 | // |
| 4628 | // Then you'd expect the negated expression below to be: |
| 4629 | // |
| 4630 | // startOffset > offsetFrom || endOffset <= offsetFrom |
| 4631 | // |
| 4632 | // instead of what we're doing ("<" instead of "<="): |
| 4633 | // |
| 4634 | // startOffset > offsetFrom || endOffset < offsetFrom |
| 4635 | // |
| 4636 | // I'm not sure if the condition below is a mistake, or if it's intentionally |
| 4637 | // mirroring a workaround from FindNativeInfoInILVariableArray() (Debug\DI\module.cpp) |
| 4638 | // to deal with optimized code. So I'm leaving it alone for now. See |
| 4639 | // code:FindNativeInfoInILVariableArray for more info on this workaround. |
| 4640 | if ((varNativeInfo[i].startOffset > offsetFrom) || |
| 4641 | (varNativeInfo[i].endOffset < offsetFrom) || |
| 4642 | (varNativeInfo[i].loc.vlType == ICorDebugInfo::VLT_INVALID)) |
| 4643 | { |
| 4644 | LOG((LF_CORDB|LF_ENC,LL_INFO10000, "D::GVFO [%2d] invalid\n" , i)); |
| 4645 | continue; |
| 4646 | } |
| 4647 | |
| 4648 | SIZE_T cbClass; |
| 4649 | bool isVC = frameHelper.GetValueClassSizeOfVar(varNativeInfo[i].varNumber, |
| 4650 | varNativeInfo[i].loc.vlType, |
| 4651 | &cbClass); |
| 4652 | |
| 4653 | if (!isVC) |
| 4654 | { |
| 4655 | int rgValIndex = frameHelper.ShiftIndexForHiddens(varNativeInfo[i].varNumber); |
| 4656 | |
| 4657 | _ASSERTE(rgValIndex >= 0 && rgValIndex < (int)uRgValSize); |
| 4658 | |
| 4659 | BOOL res = GetNativeVarVal(varNativeInfo[i].loc, |
| 4660 | pCtx, |
| 4661 | rgVal1 + rgValIndex, |
| 4662 | rgVal2 + rgValIndex |
| 4663 | WIN64_ARG(cbClass)); |
| 4664 | |
| 4665 | LOG((LF_CORDB|LF_ENC,LL_INFO10000, |
| 4666 | "D::GVFO [%2d] varnum %d, nonVC type %x, addr %8.8x: %8.8x;%8.8x\n" , |
| 4667 | i, |
| 4668 | varNativeInfo[i].varNumber, |
| 4669 | varNativeInfo[i].loc.vlType, |
| 4670 | NativeVarStackAddr(varNativeInfo[i].loc, pCtx), |
| 4671 | rgVal1[rgValIndex], |
| 4672 | rgVal2[rgValIndex])); |
| 4673 | |
| 4674 | if (res == TRUE) |
| 4675 | { |
| 4676 | continue; |
| 4677 | } |
| 4678 | |
| 4679 | _ASSERTE(res == TRUE); |
| 4680 | hr = E_FAIL; |
| 4681 | break; |
| 4682 | } |
| 4683 | |
| 4684 | // it's definately a value class |
| 4685 | // Make space for it - note that it uses the VC index, NOT the variable index |
| 4686 | _ASSERTE(cbClass != 0); |
| 4687 | rgpValueClasses[cValueClasses] = new (interopsafe, nothrow) BYTE[cbClass]; |
| 4688 | if (rgpValueClasses[cValueClasses] == NULL) |
| 4689 | { |
| 4690 | hr = E_OUTOFMEMORY; |
| 4691 | break; |
| 4692 | } |
| 4693 | memcpy(rgpValueClasses[cValueClasses], |
| 4694 | NativeVarStackAddr(varNativeInfo[i].loc, pCtx), |
| 4695 | cbClass); |
| 4696 | |
| 4697 | // Move index up. |
| 4698 | cValueClasses++; |
| 4699 | #ifdef _DEBUG |
| 4700 | LOG((LF_CORDB|LF_ENC,LL_INFO10000, |
| 4701 | "D::GVFO [%2d] varnum %d, VC len %d, addr %8.8x, sample: %8.8x%8.8x\n" , |
| 4702 | i, |
| 4703 | varNativeInfo[i].varNumber, |
| 4704 | cbClass, |
| 4705 | NativeVarStackAddr(varNativeInfo[i].loc, pCtx), |
| 4706 | (rgpValueClasses[cValueClasses-1])[0], (rgpValueClasses[cValueClasses-1])[1])); |
| 4707 | #endif |
| 4708 | } |
| 4709 | |
| 4710 | LOG((LF_CORDB|LF_ENC, LL_INFO10000, "D::GVFO: returning %8.8x\n" , hr)); |
| 4711 | if (SUCCEEDED(hr)) |
| 4712 | { |
| 4713 | (*rgpVCs) = rgpValueClasses; |
| 4714 | return hr; |
| 4715 | } |
| 4716 | |
| 4717 | // We failed for some reason |
| 4718 | if (rgpValueClasses != NULL) |
| 4719 | { // free any memory we allocated for VCs here |
| 4720 | while(cValueClasses > 0) |
| 4721 | { |
| 4722 | --cValueClasses; |
| 4723 | DeleteInteropSafe(rgpValueClasses[cValueClasses]); // OK to delete NULL |
| 4724 | } |
| 4725 | DeleteInteropSafe(rgpValueClasses); |
| 4726 | rgpValueClasses = NULL; |
| 4727 | } |
| 4728 | return hr; |
| 4729 | } |
| 4730 | |
| 4731 | // NOTE: GetVariablesFromOffset and SetVariablesAtOffset are |
| 4732 | // very similar - modifying one will probably need to be reflected in the other... |
| 4733 | HRESULT Debugger::SetVariablesAtOffset(MethodDesc *pMD, |
| 4734 | UINT varNativeInfoCount, |
| 4735 | ICorDebugInfo::NativeVarInfo *varNativeInfo, |
| 4736 | SIZE_T offsetTo, |
| 4737 | CONTEXT *pCtx, |
| 4738 | SIZE_T *rgVal1, |
| 4739 | SIZE_T *rgVal2, |
| 4740 | BYTE **rgpVCs) |
| 4741 | { |
| 4742 | CONTRACTL |
| 4743 | { |
| 4744 | SO_NOT_MAINLINE; |
| 4745 | NOTHROW; |
| 4746 | GC_NOTRIGGER; |
| 4747 | PRECONDITION(CheckPointer(pCtx)); |
| 4748 | PRECONDITION(varNativeInfoCount == 0 || CheckPointer(rgpVCs)); |
| 4749 | PRECONDITION(varNativeInfoCount == 0 || CheckPointer(varNativeInfo)); |
| 4750 | PRECONDITION(varNativeInfoCount == 0 || CheckPointer(rgVal1)); |
| 4751 | PRECONDITION(varNativeInfoCount == 0 || CheckPointer(rgVal2)); |
| 4752 | // This may or may not be called on the helper thread. |
| 4753 | } |
| 4754 | CONTRACTL_END; |
| 4755 | |
| 4756 | LOG((LF_CORDB|LF_ENC, LL_INFO10000, "D::SVAO: %s::%s, infoCount:0x%x, to:0x%p\n" , |
| 4757 | pMD->m_pszDebugClassName, |
| 4758 | pMD->m_pszDebugMethodName, |
| 4759 | varNativeInfoCount, |
| 4760 | offsetTo)); |
| 4761 | |
| 4762 | if (varNativeInfoCount == 0) |
| 4763 | { |
| 4764 | return S_OK; |
| 4765 | } |
| 4766 | |
| 4767 | GetSetFrameHelper frameHelper; |
| 4768 | HRESULT hr = frameHelper.Init(pMD); |
| 4769 | if (FAILED(hr)) |
| 4770 | { |
| 4771 | return hr; |
| 4772 | } |
| 4773 | |
| 4774 | ULONG iVC = 0; |
| 4775 | hr = S_OK; |
| 4776 | |
| 4777 | // Note that since we obtain all the variables in the first loop, we |
| 4778 | // can now splatter those variables into their new locations |
| 4779 | // willy-nilly, without the fear that variable locations that have |
| 4780 | // been swapped might accidentally overwrite a variable value. |
| 4781 | for (UINT i = 0;i< varNativeInfoCount;i++) |
| 4782 | { |
| 4783 | // Ignore variables not live at offsetTo |
| 4784 | // |
| 4785 | // If this IF condition looks wrong to you, see |
| 4786 | // code:Debugger::GetVariablesFromOffset#VarLife for more info |
| 4787 | if ((varNativeInfo[i].startOffset > offsetTo) || |
| 4788 | (varNativeInfo[i].endOffset < offsetTo) || |
| 4789 | (varNativeInfo[i].loc.vlType == ICorDebugInfo::VLT_INVALID)) |
| 4790 | { |
| 4791 | LOG((LF_CORDB|LF_ENC,LL_INFO10000, "D::SVAO [%2d] invalid\n" , i)); |
| 4792 | continue; |
| 4793 | } |
| 4794 | |
| 4795 | SIZE_T cbClass; |
| 4796 | bool isVC = frameHelper.GetValueClassSizeOfVar(varNativeInfo[i].varNumber, |
| 4797 | varNativeInfo[i].loc.vlType, |
| 4798 | &cbClass); |
| 4799 | |
| 4800 | if (!isVC) |
| 4801 | { |
| 4802 | int rgValIndex = frameHelper.ShiftIndexForHiddens(varNativeInfo[i].varNumber); |
| 4803 | |
| 4804 | _ASSERTE(rgValIndex >= 0); |
| 4805 | |
| 4806 | BOOL res = SetNativeVarVal(varNativeInfo[i].loc, |
| 4807 | pCtx, |
| 4808 | rgVal1[rgValIndex], |
| 4809 | rgVal2[rgValIndex] |
| 4810 | WIN64_ARG(cbClass)); |
| 4811 | |
| 4812 | LOG((LF_CORDB|LF_ENC,LL_INFO10000, |
| 4813 | "D::SVAO [%2d] varnum %d, nonVC type %x, addr %8.8x: %8.8x;%8.8x\n" , |
| 4814 | i, |
| 4815 | varNativeInfo[i].varNumber, |
| 4816 | varNativeInfo[i].loc.vlType, |
| 4817 | NativeVarStackAddr(varNativeInfo[i].loc, pCtx), |
| 4818 | rgVal1[rgValIndex], |
| 4819 | rgVal2[rgValIndex])); |
| 4820 | |
| 4821 | if (res == TRUE) |
| 4822 | { |
| 4823 | continue; |
| 4824 | } |
| 4825 | _ASSERTE(res == TRUE); |
| 4826 | hr = E_FAIL; |
| 4827 | break; |
| 4828 | } |
| 4829 | |
| 4830 | // It's definately a value class. |
| 4831 | _ASSERTE(cbClass != 0); |
| 4832 | if (rgpVCs[iVC] == NULL) |
| 4833 | { |
| 4834 | // it's new in scope, so just clear it |
| 4835 | memset(NativeVarStackAddr(varNativeInfo[i].loc, pCtx), 0, cbClass); |
| 4836 | LOG((LF_CORDB|LF_ENC,LL_INFO10000, "D::SVAO [%2d] varnum %d, new VC len %d, addr %8.8x\n" , |
| 4837 | i, |
| 4838 | varNativeInfo[i].varNumber, |
| 4839 | cbClass, |
| 4840 | NativeVarStackAddr(varNativeInfo[i].loc, pCtx))); |
| 4841 | continue; |
| 4842 | } |
| 4843 | // it's a pre-existing VC, so copy it |
| 4844 | memmove(NativeVarStackAddr(varNativeInfo[i].loc, pCtx), rgpVCs[iVC], cbClass); |
| 4845 | #ifdef _DEBUG |
| 4846 | LOG((LF_CORDB|LF_ENC,LL_INFO10000, |
| 4847 | "D::SVAO [%2d] varnum %d, VC len %d, addr: %8.8x sample: %8.8x%8.8x\n" , |
| 4848 | i, |
| 4849 | varNativeInfo[i].varNumber, |
| 4850 | cbClass, |
| 4851 | NativeVarStackAddr(varNativeInfo[i].loc, pCtx), |
| 4852 | rgpVCs[iVC][0], |
| 4853 | rgpVCs[iVC][1])); |
| 4854 | #endif |
| 4855 | // Now get rid of the memory |
| 4856 | DeleteInteropSafe(rgpVCs[iVC]); |
| 4857 | rgpVCs[iVC] = NULL; |
| 4858 | iVC++; |
| 4859 | } |
| 4860 | |
| 4861 | LOG((LF_CORDB|LF_ENC, LL_INFO10000, "D::SVAO: returning %8.8x\n" , hr)); |
| 4862 | |
| 4863 | if (rgpVCs != NULL) |
| 4864 | { |
| 4865 | DeleteInteropSafe(rgpVCs); |
| 4866 | } |
| 4867 | |
| 4868 | return hr; |
| 4869 | } |
| 4870 | |
| 4871 | BOOL IsDuplicatePatch(SIZE_T *rgEntries, |
| 4872 | ULONG cEntries, |
| 4873 | SIZE_T Entry ) |
| 4874 | { |
| 4875 | LIMITED_METHOD_CONTRACT; |
| 4876 | |
| 4877 | for( ULONG i = 0; i < cEntries;i++) |
| 4878 | { |
| 4879 | if (rgEntries[i] == Entry) |
| 4880 | return TRUE; |
| 4881 | } |
| 4882 | return FALSE; |
| 4883 | } |
| 4884 | |
| 4885 | |
| 4886 | /****************************************************************************** |
| 4887 | // HRESULT Debugger::MapAndBindFunctionBreakpoints(): For each breakpoint |
| 4888 | // that we've set in any version of the existing function, |
| 4889 | // set a correponding breakpoint in the new function if we haven't moved |
| 4890 | // the patch to the new version already. |
| 4891 | // |
| 4892 | // This must be done _AFTER_ the MethodDesc has been udpated |
| 4893 | // with the new address (ie, when GetFunctionAddress pFD returns |
| 4894 | // the address of the new EnC code) |
| 4895 | // |
| 4896 | // Parameters: |
| 4897 | // djiNew - this is the DJI created in D::JitComplete. |
| 4898 | // If djiNew == NULL iff we aren't tracking debug-info. |
| 4899 | // fd - the method desc that we're binding too. |
| 4900 | // addrOfCode - address of the native blob of code we just jitted |
| 4901 | // |
| 4902 | // <TODO>@todo Replace array with hashtable for improved efficiency</TODO> |
| 4903 | // <TODO>@todo Need to factor code,so that we can selectively map forward DFK(ilOFfset) BPs</TODO> |
| 4904 | ******************************************************************************/ |
| 4905 | HRESULT Debugger::MapAndBindFunctionPatches(DebuggerJitInfo *djiNew, |
| 4906 | MethodDesc * fd, |
| 4907 | CORDB_ADDRESS_TYPE *addrOfCode) |
| 4908 | { |
| 4909 | // @@@ |
| 4910 | // Internal helper API. Can be called from Debugger or Controller. |
| 4911 | // |
| 4912 | |
| 4913 | CONTRACTL |
| 4914 | { |
| 4915 | SO_NOT_MAINLINE; |
| 4916 | THROWS; |
| 4917 | CALLED_IN_DEBUGGERDATALOCK_HOLDER_SCOPE_MAY_GC_TRIGGERS_CONTRACT; |
| 4918 | PRECONDITION(!djiNew || djiNew->m_fd == fd); |
| 4919 | } |
| 4920 | CONTRACTL_END; |
| 4921 | |
| 4922 | HRESULT hr = S_OK; |
| 4923 | HASHFIND hf; |
| 4924 | SIZE_T *pidTableEntry = NULL; |
| 4925 | SIZE_T pidInCaseTableMoves; |
| 4926 | Module *pModule = g_pEEInterface->MethodDescGetModule(fd); |
| 4927 | mdMethodDef md = fd->GetMemberDef(); |
| 4928 | |
| 4929 | LOG((LF_CORDB,LL_INFO10000,"D::MABFP: All BPs will be mapped to " |
| 4930 | "Ver:0x%04x (DJI:0x%08x)\n" , djiNew?djiNew->m_methodInfo->GetCurrentEnCVersion():0, djiNew)); |
| 4931 | |
| 4932 | // We need to traverse the patch list while under the controller lock (small lock). |
| 4933 | // But we can only send BreakpointSetErros while under the debugger lock (big lock). |
| 4934 | // So to avoid a lock violation, we queue any errors we find under the small lock, |
| 4935 | // and then send the whole list when under the big lock. |
| 4936 | PATCH_UNORDERED_ARRAY listUnbindablePatches; |
| 4937 | |
| 4938 | |
| 4939 | // First lock the patch table so it doesn't move while we're |
| 4940 | // examining it. |
| 4941 | LOG((LF_CORDB,LL_INFO10000, "D::MABFP: About to lock patch table\n" )); |
| 4942 | { |
| 4943 | DebuggerController::ControllerLockHolder ch; |
| 4944 | |
| 4945 | // Manipulate tables AFTER lock's been acquired. |
| 4946 | DebuggerPatchTable *pPatchTable = DebuggerController::GetPatchTable(); |
| 4947 | GetBPMappingDuplicates()->Clear(); //dups are tracked per-version |
| 4948 | |
| 4949 | for (DebuggerControllerPatch *dcp = pPatchTable->GetFirstPatch(&hf); |
| 4950 | dcp != NULL; |
| 4951 | dcp = pPatchTable->GetNextPatch( &hf )) |
| 4952 | { |
| 4953 | |
| 4954 | LOG((LF_CORDB, LL_INFO10000, "D::MABFP: got patch 0x%p\n" , dcp)); |
| 4955 | |
| 4956 | // Only copy over breakpoints that are in this method |
| 4957 | // Ideally we'd have a per-method index since there can be a lot of patches |
| 4958 | // when the EnCBreakpoint patches are included. |
| 4959 | if (dcp->key.module != pModule || dcp->key.md != md) |
| 4960 | { |
| 4961 | LOG((LF_CORDB, LL_INFO10000, "Patch not in this method\n" )); |
| 4962 | continue; |
| 4963 | } |
| 4964 | |
| 4965 | // If the patch only applies in certain generic instances, don't bind it |
| 4966 | // elsewhere. |
| 4967 | if(dcp->pMethodDescFilter != NULL && dcp->pMethodDescFilter != djiNew->m_fd) |
| 4968 | { |
| 4969 | LOG((LF_CORDB, LL_INFO10000, "Patch not in this generic instance\n" )); |
| 4970 | continue; |
| 4971 | } |
| 4972 | |
| 4973 | |
| 4974 | // Do not copy over slave breakpoint patches. Instead place a new slave |
| 4975 | // based off the master. |
| 4976 | if (dcp->IsILSlavePatch()) |
| 4977 | { |
| 4978 | LOG((LF_CORDB, LL_INFO10000, "Not copying over slave breakpoint patch\n" )); |
| 4979 | continue; |
| 4980 | } |
| 4981 | |
| 4982 | // If the patch is already bound, then we don't want to try to rebind it. |
| 4983 | // Eg. It may be bound to a different generic method instantiation. |
| 4984 | if (dcp->IsBound()) |
| 4985 | { |
| 4986 | LOG((LF_CORDB, LL_INFO10000, "Skipping already bound patch\n" )); |
| 4987 | continue; |
| 4988 | } |
| 4989 | |
| 4990 | // Only apply breakpoint patches that are for this version. |
| 4991 | // If the patch doesn't have a particular EnCVersion available from its data then |
| 4992 | // we're (probably) not tracking JIT info. |
| 4993 | if (dcp->IsBreakpointPatch() && dcp->HasEnCVersion() && djiNew && dcp->GetEnCVersion() != djiNew->m_encVersion) |
| 4994 | { |
| 4995 | LOG((LF_CORDB, LL_INFO10000, "Not applying breakpoint patch to new version\n" )); |
| 4996 | continue; |
| 4997 | } |
| 4998 | |
| 4999 | // Only apply breakpoint and stepper patches |
| 5000 | // |
| 5001 | // The DJI gets deleted as part of the Unbind/Rebind process in MovedCode. |
| 5002 | // This is to signal that we should not skip here. |
| 5003 | // <NICE> under exactly what scenarios (EnC, code pitching etc.) will this apply?... </NICE> |
| 5004 | // <NICE> can't we be a little clearer about why we don't want to bind the patch in this arcane situation?</NICE> |
| 5005 | if (dcp->HasDJI() && !dcp->IsBreakpointPatch() && !dcp->IsStepperPatch()) |
| 5006 | { |
| 5007 | LOG((LF_CORDB, LL_INFO10000, "Neither stepper nor BP but we have valid a DJI (i.e. the DJI hasn't been deleted as part of the Unbind/MovedCode/Rebind mess)! - getting next patch!\n" )); |
| 5008 | continue; |
| 5009 | } |
| 5010 | |
| 5011 | // Now check if we're tracking JIT info or not |
| 5012 | if (djiNew == NULL) |
| 5013 | { |
| 5014 | // This means we put a patch in a method w/ no debug info. |
| 5015 | _ASSERTE(dcp->IsBreakpointPatch() || |
| 5016 | dcp->IsStepperPatch() || |
| 5017 | dcp->controller->GetDCType() == DEBUGGER_CONTROLLER_THREAD_STARTER); |
| 5018 | |
| 5019 | // W/o Debug-info, We can only patch native offsets, and only at the start of the method (native offset 0). |
| 5020 | // <TODO> Why can't we patch other native offsets?? |
| 5021 | // Maybe b/c we don't know if we're patching |
| 5022 | // in the middle of an instruction. Though that's not a |
| 5023 | // strict requirement.</TODO> |
| 5024 | // We can't even do a IL-offset 0 because that's after the prolog and w/o the debug-info, |
| 5025 | // we don't know where the prolog ends. |
| 5026 | // Failing this assert is arguably an API misusage - the debugger should have enabled |
| 5027 | // jit-tracking if they wanted to put bps at offsets other than native:0. |
| 5028 | if (dcp->IsNativePatch() && (dcp->offset == 0)) |
| 5029 | { |
| 5030 | DebuggerController::g_patches->BindPatch(dcp, addrOfCode); |
| 5031 | DebuggerController::ActivatePatch(dcp); |
| 5032 | } |
| 5033 | else |
| 5034 | { |
| 5035 | // IF a debugger calls EnableJitDebugging(true, ...) in the module-load callback, |
| 5036 | // we should never get here. |
| 5037 | *(listUnbindablePatches.AppendThrowing()) = dcp; |
| 5038 | } |
| 5039 | |
| 5040 | } |
| 5041 | else |
| 5042 | { |
| 5043 | pidInCaseTableMoves = dcp->pid; |
| 5044 | |
| 5045 | // If we've already mapped this one to the current version, |
| 5046 | // don't map it again. |
| 5047 | LOG((LF_CORDB,LL_INFO10000,"D::MABFP: Checking if 0x%x is a dup..." , |
| 5048 | pidInCaseTableMoves)); |
| 5049 | |
| 5050 | if ( IsDuplicatePatch(GetBPMappingDuplicates()->Table(), |
| 5051 | GetBPMappingDuplicates()->Count(), |
| 5052 | pidInCaseTableMoves) ) |
| 5053 | { |
| 5054 | LOG((LF_CORDB,LL_INFO10000,"it is!\n" )); |
| 5055 | continue; |
| 5056 | } |
| 5057 | LOG((LF_CORDB,LL_INFO10000,"nope!\n" )); |
| 5058 | |
| 5059 | // Attempt mapping from patch to new version of code, and |
| 5060 | // we don't care if it turns out that there isn't a mapping. |
| 5061 | // <TODO>@todo-postponed: EnC: Make sure that this doesn't cause |
| 5062 | // the patch-table to shift.</TODO> |
| 5063 | hr = MapPatchToDJI( dcp, djiNew ); |
| 5064 | if (CORDBG_E_CODE_NOT_AVAILABLE == hr ) |
| 5065 | { |
| 5066 | *(listUnbindablePatches.AppendThrowing()) = dcp; |
| 5067 | hr = S_OK; |
| 5068 | } |
| 5069 | |
| 5070 | if (FAILED(hr)) |
| 5071 | break; |
| 5072 | |
| 5073 | //Remember the patch id to prevent duplication later |
| 5074 | pidTableEntry = GetBPMappingDuplicates()->Append(); |
| 5075 | if (NULL == pidTableEntry) |
| 5076 | { |
| 5077 | hr = E_OUTOFMEMORY; |
| 5078 | break; |
| 5079 | } |
| 5080 | |
| 5081 | *pidTableEntry = pidInCaseTableMoves; |
| 5082 | LOG((LF_CORDB,LL_INFO10000,"D::MABFP Adding 0x%x to list of " |
| 5083 | "already mapped patches\n" , pidInCaseTableMoves)); |
| 5084 | } |
| 5085 | } |
| 5086 | |
| 5087 | // unlock controller lock before sending events. |
| 5088 | } |
| 5089 | LOG((LF_CORDB,LL_INFO10000, "D::MABFP: Unlocked patch table\n" )); |
| 5090 | |
| 5091 | |
| 5092 | // Now send any Breakpoint bind error events. |
| 5093 | if (listUnbindablePatches.Count() > 0) |
| 5094 | { |
| 5095 | LockAndSendBreakpointSetError(&listUnbindablePatches); |
| 5096 | } |
| 5097 | |
| 5098 | return hr; |
| 5099 | } |
| 5100 | |
| 5101 | /****************************************************************************** |
| 5102 | // HRESULT Debugger::MapPatchToDJI(): Maps the given |
| 5103 | // patch to the corresponding location at the new address. |
| 5104 | // We assume that the new code has been JITTed. |
| 5105 | // Returns: CORDBG_E_CODE_NOT_AVAILABLE - Indicates that a mapping wasn't |
| 5106 | // available, and thus no patch was placed. The caller may or may |
| 5107 | // not care. |
| 5108 | ******************************************************************************/ |
| 5109 | HRESULT Debugger::MapPatchToDJI( DebuggerControllerPatch *dcp,DebuggerJitInfo *djiTo) |
| 5110 | { |
| 5111 | CONTRACTL |
| 5112 | { |
| 5113 | SO_NOT_MAINLINE; |
| 5114 | THROWS; |
| 5115 | CALLED_IN_DEBUGGERDATALOCK_HOLDER_SCOPE_MAY_GC_TRIGGERS_CONTRACT; |
| 5116 | PRECONDITION(djiTo != NULL); |
| 5117 | PRECONDITION(djiTo->m_jitComplete == true); |
| 5118 | } |
| 5119 | CONTRACTL_END; |
| 5120 | |
| 5121 | _ASSERTE(DebuggerController::HasLock()); |
| 5122 | #ifdef _DEBUG |
| 5123 | static BOOL shouldBreak = -1; |
| 5124 | if (shouldBreak == -1) |
| 5125 | shouldBreak = UnsafeGetConfigDWORD(CLRConfig::INTERNAL_DbgBreakOnMapPatchToDJI); |
| 5126 | |
| 5127 | if (shouldBreak > 0) { |
| 5128 | _ASSERTE(!"DbgBreakOnMatchPatchToDJI" ); |
| 5129 | } |
| 5130 | #endif |
| 5131 | |
| 5132 | LOG((LF_CORDB, LL_EVERYTHING, "Calling MapPatchToDJI\n" )); |
| 5133 | |
| 5134 | // We shouldn't have been asked to map an already bound patch |
| 5135 | _ASSERTE( !dcp->IsBound() ); |
| 5136 | if ( dcp->IsBound() ) |
| 5137 | { |
| 5138 | return S_OK; |
| 5139 | } |
| 5140 | |
| 5141 | // If the patch has no DJI then we're doing a UnbindFunctionPatches/RebindFunctionPatches. Either |
| 5142 | // way, we simply want the most recent version. In the absence of EnC we should have djiCur == djiTo. |
| 5143 | DebuggerJitInfo *djiCur = dcp->HasDJI() ? dcp->GetDJI() : djiTo; |
| 5144 | PREFIX_ASSUME(djiCur != NULL); |
| 5145 | |
| 5146 | // If the source and destination are the same version, then this method |
| 5147 | // decays into BindFunctionPatch's BindPatch function |
| 5148 | if (djiCur->m_encVersion == djiTo->m_encVersion) |
| 5149 | { |
| 5150 | // If the patch is a "master" then make a new "slave" patch instead of |
| 5151 | // binding the old one. This is to stop us mucking with the master breakpoint patch |
| 5152 | // which we may need to bind several times for generic code. |
| 5153 | if (dcp->IsILMasterPatch()) |
| 5154 | { |
| 5155 | LOG((LF_CORDB, LL_EVERYTHING, "Add, Bind, Activate new patch from master patch\n" )); |
| 5156 | if (dcp->controller->AddBindAndActivateILSlavePatch(dcp, djiTo)) |
| 5157 | { |
| 5158 | LOG((LF_CORDB, LL_INFO1000, "Add, Bind Activate went fine!\n" )); |
| 5159 | return S_OK; |
| 5160 | } |
| 5161 | else |
| 5162 | { |
| 5163 | LOG((LF_CORDB, LL_INFO1000, "Didn't work for some reason!\n" )); |
| 5164 | |
| 5165 | // Caller can track this HR and send error. |
| 5166 | return CORDBG_E_CODE_NOT_AVAILABLE; |
| 5167 | } |
| 5168 | } |
| 5169 | else |
| 5170 | { |
| 5171 | // <TODO> |
| 5172 | // We could actually have a native managed patch here. This patch is probably added |
| 5173 | // as a result of tracing a patch. See if we can eliminate the need for this code path |
| 5174 | // </TODO> |
| 5175 | _ASSERTE( dcp->GetKind() == PATCH_KIND_NATIVE_MANAGED ); |
| 5176 | |
| 5177 | // We have an unbound native patch (eg. for PatchTrace), lets try to bind and activate it |
| 5178 | dcp->SetDJI(djiTo); |
| 5179 | LOG((LF_CORDB, LL_EVERYTHING, "trying to bind patch... could be problem\n" )); |
| 5180 | if (DebuggerController::BindPatch(dcp, djiTo->m_fd, NULL)) |
| 5181 | { |
| 5182 | DebuggerController::ActivatePatch(dcp); |
| 5183 | LOG((LF_CORDB, LL_INFO1000, "Application went fine!\n" )); |
| 5184 | return S_OK; |
| 5185 | } |
| 5186 | else |
| 5187 | { |
| 5188 | LOG((LF_CORDB, LL_INFO1000, "Didn't apply for some reason!\n" )); |
| 5189 | |
| 5190 | // Caller can track this HR and send error. |
| 5191 | return CORDBG_E_CODE_NOT_AVAILABLE; |
| 5192 | } |
| 5193 | } |
| 5194 | } |
| 5195 | |
| 5196 | // Breakpoint patches never get mapped over |
| 5197 | _ASSERTE(!dcp->IsBreakpointPatch()); |
| 5198 | |
| 5199 | return S_OK; |
| 5200 | } |
| 5201 | |
| 5202 | |
| 5203 | /* ------------------------------------------------------------------------ * |
| 5204 | * EE Interface routines |
| 5205 | * ------------------------------------------------------------------------ */ |
| 5206 | |
| 5207 | // |
| 5208 | // SendSyncCompleteIPCEvent sends a Sync Complete event to the Right Side. |
| 5209 | // |
| 5210 | void Debugger::SendSyncCompleteIPCEvent(bool isEESuspendedForGC) |
| 5211 | { |
| 5212 | CONTRACTL |
| 5213 | { |
| 5214 | SO_NOT_MAINLINE; |
| 5215 | NOTHROW; |
| 5216 | GC_NOTRIGGER; |
| 5217 | PRECONDITION(ThreadHoldsLock()); |
| 5218 | |
| 5219 | // Anyone sending the synccomplete must hold the TSL. |
| 5220 | PRECONDITION(ThreadStore::HoldingThreadStore() || g_fProcessDetach); |
| 5221 | |
| 5222 | // The sync complete is now only sent on a helper thread. |
| 5223 | if (!isEESuspendedForGC) |
| 5224 | { |
| 5225 | PRECONDITION(ThisIsHelperThreadWorker()); |
| 5226 | } |
| 5227 | MODE_COOPERATIVE; |
| 5228 | |
| 5229 | // We had better be trapping Runtime threads and not stopped yet. |
| 5230 | if (isEESuspendedForGC) |
| 5231 | { |
| 5232 | PRECONDITION(m_stopped); |
| 5233 | } |
| 5234 | else |
| 5235 | { |
| 5236 | PRECONDITION(m_stopped && m_trappingRuntimeThreads); |
| 5237 | } |
| 5238 | } |
| 5239 | CONTRACTL_END; |
| 5240 | |
| 5241 | // @@@ |
| 5242 | // Internal helper API. |
| 5243 | // This is to send Sync Complete event to RightSide. |
| 5244 | // We should have hold the debugger lock |
| 5245 | // |
| 5246 | |
| 5247 | STRESS_LOG0(LF_CORDB, LL_INFO10000, "D::SSCIPCE: sync complete.\n" ); |
| 5248 | |
| 5249 | // Synchronizing while in in rude shutdown should be extremely rare b/c we don't |
| 5250 | // TART in rude shutdown. Shutdown must have started after we started to sync. |
| 5251 | // We know we're not on the shutdown thread here. |
| 5252 | // And we also know we can't block the shutdown thread (b/c it has the TSL and will |
| 5253 | // get a free pass through the GC toggles that normally block threads for debugging). |
| 5254 | if (g_fProcessDetach) |
| 5255 | { |
| 5256 | STRESS_LOG0(LF_CORDB, LL_INFO10000, "D::SSCIPCE: Skipping for shutdown.\n" ); |
| 5257 | return; |
| 5258 | } |
| 5259 | |
| 5260 | // If we're not marked as attached yet, then do that now. |
| 5261 | // This can be safely called multiple times. |
| 5262 | // This can happen in the normal attach case. The Right-side sends an async-break, |
| 5263 | // but we don't want to be considered attach until we've actually gotten our first synchronization. |
| 5264 | // Else threads may slip forward during attach and send debug events while we're tyring to attach. |
| 5265 | MarkDebuggerAttachedInternal(); |
| 5266 | |
| 5267 | DebuggerIPCControlBlock * pDCB; |
| 5268 | pDCB = m_pRCThread->GetDCB(); |
| 5269 | (void)pDCB; //prevent "unused variable" error from GCC |
| 5270 | |
| 5271 | PREFIX_ASSUME(pDCB != NULL); // must have DCB by the time we're sending IPC events. |
| 5272 | #ifdef FEATURE_INTEROP_DEBUGGING |
| 5273 | // The synccomplete can't be the first IPC event over. That's b/c the LS needs to know |
| 5274 | // if we're interop-debugging and the RS needs to know special addresses for interop-debugging |
| 5275 | // (like flares). All of this info is in the DCB. |
| 5276 | if (pDCB->m_rightSideIsWin32Debugger) |
| 5277 | { |
| 5278 | |
| 5279 | // If the Right Side is the win32 debugger of this process, then we need to throw a special breakpoint exception |
| 5280 | // here instead of sending the sync complete event. The Right Side treats this the same as a sync complete |
| 5281 | // event, but its also able to suspend unmanaged threads quickly. |
| 5282 | // This also prevents races between sending the sync-complete and getting a native debug event |
| 5283 | // (since the sync-complete becomes a native debug event, and all native debug events are serialized). |
| 5284 | // |
| 5285 | // Note: we reset the syncThreadIsLockFree event before sending the sync complete flare. This thread will set |
| 5286 | // this event once its released the debugger lock. This will prevent the Right Side from suspending this thread |
| 5287 | // until it has released the debugger lock. |
| 5288 | Debugger::NotifyRightSideOfSyncComplete(); |
| 5289 | } |
| 5290 | else |
| 5291 | #endif // FEATURE_INTEROP_DEBUGGING |
| 5292 | { |
| 5293 | STRESS_LOG0(LF_CORDB, LL_EVERYTHING, "GetIPCEventSendBuffer called in SendSyncCompleteIPCEvent\n" ); |
| 5294 | // Send the Sync Complete event to the Right Side |
| 5295 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 5296 | InitIPCEvent(ipce, DB_IPCE_SYNC_COMPLETE); |
| 5297 | |
| 5298 | m_pRCThread->SendIPCEvent(); |
| 5299 | } |
| 5300 | } |
| 5301 | |
| 5302 | // |
| 5303 | // Lookup or create a DebuggerModule for the given pDomainFile. |
| 5304 | // |
| 5305 | // Arguments: |
| 5306 | // pDomainFile - non-null domain file. |
| 5307 | // |
| 5308 | // Returns: |
| 5309 | // DebuggerModule instance for the given domain file. May be lazily created. |
| 5310 | // |
| 5311 | // Notes: |
| 5312 | // @dbgtodo JMC - this should go away when we get rid of DebuggerModule. |
| 5313 | // |
| 5314 | |
| 5315 | DebuggerModule * Debugger::LookupOrCreateModule(DomainFile * pDomainFile) |
| 5316 | { |
| 5317 | _ASSERTE(pDomainFile != NULL); |
| 5318 | LOG((LF_CORDB, LL_INFO1000, "D::LOCM df=0x%x\n" , pDomainFile)); |
| 5319 | DebuggerModule * pDModule = LookupOrCreateModule(pDomainFile->GetModule(), pDomainFile->GetAppDomain()); |
| 5320 | LOG((LF_CORDB, LL_INFO1000, "D::LOCM m=0x%x ad=0x%x -> dm=0x%x\n" , pDomainFile->GetModule(), pDomainFile->GetAppDomain(), pDModule)); |
| 5321 | _ASSERTE(pDModule != NULL); |
| 5322 | _ASSERTE(pDModule->GetDomainFile() == pDomainFile); |
| 5323 | |
| 5324 | return pDModule; |
| 5325 | } |
| 5326 | |
| 5327 | // Overloaded Wrapper around for VMPTR_DomainFile-->DomainFile* |
| 5328 | // |
| 5329 | // Arguments: |
| 5330 | // vmDomainFile - VMPTR cookie for a domain file. This can be NullPtr(). |
| 5331 | // |
| 5332 | // Returns: |
| 5333 | // Debugger Module instance for the given domain file. May be lazily created. |
| 5334 | // |
| 5335 | // Notes: |
| 5336 | // VMPTR comes from IPC events |
| 5337 | DebuggerModule * Debugger::LookupOrCreateModule(VMPTR_DomainFile vmDomainFile) |
| 5338 | { |
| 5339 | DomainFile * pDomainFile = vmDomainFile.GetRawPtr(); |
| 5340 | if (pDomainFile == NULL) |
| 5341 | { |
| 5342 | return NULL; |
| 5343 | } |
| 5344 | return LookupOrCreateModule(pDomainFile); |
| 5345 | } |
| 5346 | |
| 5347 | // Lookup or create a DebuggerModule for the given (Module, AppDomain) pair. |
| 5348 | // |
| 5349 | // Arguments: |
| 5350 | // pModule - required runtime module. May be domain netural. |
| 5351 | // pAppDomain - required appdomain that the module is in. |
| 5352 | // |
| 5353 | // Returns: |
| 5354 | // Debugger Module isntance for the given domain file. May be lazily created. |
| 5355 | // |
| 5356 | DebuggerModule* Debugger::LookupOrCreateModule(Module* pModule, AppDomain *pAppDomain) |
| 5357 | { |
| 5358 | CONTRACTL |
| 5359 | { |
| 5360 | SO_NOT_MAINLINE; |
| 5361 | NOTHROW; |
| 5362 | GC_NOTRIGGER; |
| 5363 | } |
| 5364 | CONTRACTL_END; |
| 5365 | |
| 5366 | LOG((LF_CORDB, LL_INFO1000, "D::LOCM m=0x%x ad=0x%x\n" , pModule, pAppDomain)); |
| 5367 | |
| 5368 | // DebuggerModules are relative to a specific AppDomain so we should always be looking up a module / |
| 5369 | // AppDomain pair. |
| 5370 | _ASSERTE( pModule != NULL ); |
| 5371 | _ASSERTE( pAppDomain != NULL ); |
| 5372 | |
| 5373 | // This is called from all over. We just need to lock in order to lookup. We don't need |
| 5374 | // the lock when actually using the DebuggerModule (since it won't be unloaded as long as there is a thread |
| 5375 | // in that appdomain). Many of our callers already have this lock, many don't. |
| 5376 | // We can take the lock anyways because it's reentrant. |
| 5377 | DebuggerDataLockHolder ch(g_pDebugger); // need to traverse module list |
| 5378 | |
| 5379 | // if this is a module belonging to the system assembly, then scan |
| 5380 | // the complete list of DebuggerModules looking for the one |
| 5381 | // with a matching appdomain id |
| 5382 | // it. |
| 5383 | |
| 5384 | DebuggerModule* dmod = NULL; |
| 5385 | |
| 5386 | if (m_pModules != NULL) |
| 5387 | { |
| 5388 | dmod = m_pModules->GetModule(pModule); |
| 5389 | } |
| 5390 | |
| 5391 | // If it doesn't exist, create it. |
| 5392 | if (dmod == NULL) |
| 5393 | { |
| 5394 | HRESULT hr = S_OK; |
| 5395 | EX_TRY |
| 5396 | { |
| 5397 | DomainFile * pDomainFile = pModule->FindDomainFile(pAppDomain); |
| 5398 | SIMPLIFYING_ASSUMPTION(pDomainFile != NULL); |
| 5399 | dmod = AddDebuggerModule(pDomainFile); // throws |
| 5400 | } |
| 5401 | EX_CATCH_HRESULT(hr); |
| 5402 | SIMPLIFYING_ASSUMPTION(dmod != NULL); // may not be true in OOM cases; but LS doesn't handle OOM. |
| 5403 | } |
| 5404 | |
| 5405 | // The module must be in the AppDomain that was requested |
| 5406 | _ASSERTE( (dmod == NULL) || (dmod->GetAppDomain() == pAppDomain) ); |
| 5407 | |
| 5408 | LOG((LF_CORDB, LL_INFO1000, "D::LOCM m=0x%x ad=0x%x -> dm=0x%x\n" , pModule, pAppDomain, dmod)); |
| 5409 | return dmod; |
| 5410 | } |
| 5411 | |
| 5412 | // Create a new DebuggerModule object |
| 5413 | // |
| 5414 | // Arguments: |
| 5415 | // pDomainFile- runtime domain file to create debugger module object around |
| 5416 | // |
| 5417 | // Returns: |
| 5418 | // New instnace of a DebuggerModule. Throws on failure. |
| 5419 | // |
| 5420 | DebuggerModule* Debugger::AddDebuggerModule(DomainFile * pDomainFile) |
| 5421 | { |
| 5422 | CONTRACTL |
| 5423 | { |
| 5424 | THROWS; |
| 5425 | GC_NOTRIGGER; |
| 5426 | } |
| 5427 | CONTRACTL_END; |
| 5428 | |
| 5429 | LOG((LF_CORDB, LL_INFO1000, "D::ADM df=0x%x\n" , pDomainFile)); |
| 5430 | DebuggerDataLockHolder chInfo(this); |
| 5431 | |
| 5432 | Module * pRuntimeModule = pDomainFile->GetCurrentModule(); |
| 5433 | AppDomain * pAppDomain = pDomainFile->GetAppDomain(); |
| 5434 | |
| 5435 | HRESULT hr = CheckInitModuleTable(); |
| 5436 | IfFailThrow(hr); |
| 5437 | |
| 5438 | DebuggerModule* pModule = new (interopsafe) DebuggerModule(pRuntimeModule, pDomainFile, pAppDomain); |
| 5439 | _ASSERTE(pModule != NULL); // throws on oom |
| 5440 | |
| 5441 | TRACE_ALLOC(pModule); |
| 5442 | |
| 5443 | m_pModules->AddModule(pModule); // throws |
| 5444 | // @dbgtodo inspection/exceptions - this may leak module in OOM case. LS is not OOM resilient; and we |
| 5445 | // expect to get rid of DebuggerModule anyways. |
| 5446 | |
| 5447 | LOG((LF_CORDB, LL_INFO1000, "D::ADM df=0x%x -> dm=0x%x\n" , pDomainFile, pModule)); |
| 5448 | return pModule; |
| 5449 | } |
| 5450 | |
| 5451 | // |
| 5452 | // TrapAllRuntimeThreads causes every Runtime thread that is executing |
| 5453 | // in the EE to trap and send the at safe point event to the RC thread as |
| 5454 | // soon as possible. It also sets the EE up so that Runtime threads that |
| 5455 | // are outside of the EE will trap when they try to re-enter. |
| 5456 | // |
| 5457 | // @TODO:: |
| 5458 | // Neither pDbgLockHolder nor pAppDomain are used. |
| 5459 | void Debugger::TrapAllRuntimeThreads() |
| 5460 | { |
| 5461 | CONTRACTL |
| 5462 | { |
| 5463 | SO_NOT_MAINLINE; |
| 5464 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 5465 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 5466 | |
| 5467 | // We acquired the lock b/c we're in a scope between LFES & UFES. |
| 5468 | PRECONDITION(ThreadHoldsLock()); |
| 5469 | |
| 5470 | // This should never be called on a Temporary Helper thread. |
| 5471 | PRECONDITION(IsDbgHelperSpecialThread() || |
| 5472 | (g_pEEInterface->GetThread() == NULL) || |
| 5473 | !g_pEEInterface->IsPreemptiveGCDisabled()); |
| 5474 | } |
| 5475 | CONTRACTL_END; |
| 5476 | |
| 5477 | #if !defined(FEATURE_DBGIPC_TRANSPORT_VM) |
| 5478 | // Only sync if RS requested it. |
| 5479 | if (!m_RSRequestedSync) |
| 5480 | { |
| 5481 | return; |
| 5482 | } |
| 5483 | m_RSRequestedSync = FALSE; |
| 5484 | #endif |
| 5485 | |
| 5486 | // If we're doing shutdown, then don't bother trying to communicate w/ the RS. |
| 5487 | // If we're not the thread doing shutdown, then we may be asynchronously killed by the OS. |
| 5488 | // If we are the thread in shutdown, don't TART b/c that may block and do complicated stuff. |
| 5489 | if (g_fProcessDetach) |
| 5490 | { |
| 5491 | STRESS_LOG0(LF_CORDB, LL_INFO10000, "D::TART: Skipping for shutdown.\n" ); |
| 5492 | return; |
| 5493 | } |
| 5494 | |
| 5495 | |
| 5496 | // Only try to start trapping if we're not already trapping. |
| 5497 | if (m_trappingRuntimeThreads == FALSE) |
| 5498 | { |
| 5499 | bool fSuspended; |
| 5500 | |
| 5501 | STRESS_LOG0(LF_CORDB, LL_INFO10000, "D::TART: Trapping all Runtime threads.\n" ); |
| 5502 | |
| 5503 | // There's no way that we should be stopped and still trying to call this function. |
| 5504 | _ASSERTE(!m_stopped); |
| 5505 | |
| 5506 | // Mark that we're trapping now. |
| 5507 | m_trappingRuntimeThreads = TRUE; |
| 5508 | |
| 5509 | // Take the thread store lock. |
| 5510 | assert(ThreadStore::HoldingThreadStore()); |
| 5511 | |
| 5512 | // We start the suspension here, and let the helper thread finish it. |
| 5513 | // If there's no helper thread, then we need to do helper duty. |
| 5514 | { |
| 5515 | SUPPRESS_ALLOCATION_ASSERTS_IN_THIS_SCOPE; |
| 5516 | fSuspended = g_pEEInterface->StartSuspendForDebug(NULL, TRUE); |
| 5517 | } |
| 5518 | |
| 5519 | // We tell the RC Thread to check for other threads now and then and help them get synchronized. (This |
| 5520 | // is similar to what is done when suspending threads for GC with the HandledJITCase() function.) |
| 5521 | |
| 5522 | // This does not block. |
| 5523 | // Pinging this will waken the helper thread (or temp H. thread) and tell it to sweep & send |
| 5524 | // the sync complete. |
| 5525 | m_pRCThread->WatchForStragglers(); |
| 5526 | |
| 5527 | // It's possible we may not have a real helper thread. |
| 5528 | // - on startup in dllmain, helper is blocked on DllMain loader lock. |
| 5529 | // - on shutdown, helper has been removed on us. |
| 5530 | // In those cases, we need somebody to send the sync-complete, and handle |
| 5531 | // managed events, and wait for the continue. So we pretend to be the helper thread. |
| 5532 | STRESS_LOG0(LF_CORDB, LL_EVERYTHING, "D::SSCIPCE: Calling IsRCThreadReady()\n" ); |
| 5533 | |
| 5534 | // We must check the helper thread status while under the lock. |
| 5535 | _ASSERTE(ThreadHoldsLock()); |
| 5536 | // If we failed to suspend, then that means we must have multiple managed threads. |
| 5537 | // That means that our helper is not blocked on starting up, thus we can wait infinite on it. |
| 5538 | // Thus we don't need to do helper duty if the suspend fails. |
| 5539 | bool fShouldDoHelperDuty = !m_pRCThread->IsRCThreadReady() && fSuspended; |
| 5540 | if (fShouldDoHelperDuty && !g_fProcessDetach) |
| 5541 | { |
| 5542 | // In V1.0, we had the assumption that if the helper thread isn't ready yet, then we're in |
| 5543 | // a state that SuspendForDebug will succeed on the first try, and thus we'll |
| 5544 | // never call Sweep when doing helper thread duty. |
| 5545 | _ASSERTE(fSuspended); |
| 5546 | |
| 5547 | // This call will do a ton of work, it will toggle the lock, |
| 5548 | // and it will block until we receive a continue! |
| 5549 | DoHelperThreadDuty(); |
| 5550 | |
| 5551 | // We will have released the TSL after the call to continue. |
| 5552 | } |
| 5553 | _ASSERTE(ThreadHoldsLock()); // still hold the lock. (though it may have been toggled) |
| 5554 | } |
| 5555 | } |
| 5556 | |
| 5557 | |
| 5558 | // |
| 5559 | // ReleaseAllRuntimeThreads releases all Runtime threads that may be |
| 5560 | // stopped after trapping and sending the at safe point event. |
| 5561 | // |
| 5562 | void Debugger::ReleaseAllRuntimeThreads(AppDomain *pAppDomain) |
| 5563 | { |
| 5564 | CONTRACTL |
| 5565 | { |
| 5566 | SO_NOT_MAINLINE; |
| 5567 | NOTHROW; |
| 5568 | GC_NOTRIGGER; |
| 5569 | |
| 5570 | // We acquired the lock b/c we're in a scope between LFES & UFES. |
| 5571 | PRECONDITION(ThreadHoldsLock()); |
| 5572 | |
| 5573 | // Currently, this is only done on a helper thread. |
| 5574 | PRECONDITION(ThisIsHelperThreadWorker()); |
| 5575 | |
| 5576 | // Make sure that we were stopped... |
| 5577 | PRECONDITION(m_trappingRuntimeThreads && m_stopped); |
| 5578 | } |
| 5579 | CONTRACTL_END; |
| 5580 | |
| 5581 | //<TODO>@todo APPD if we want true isolation, remove this & finish the work</TODO> |
| 5582 | pAppDomain = NULL; |
| 5583 | |
| 5584 | STRESS_LOG1(LF_CORDB, LL_INFO10000, "D::RART: Releasing all Runtime threads" |
| 5585 | "for AppD 0x%x.\n" , pAppDomain); |
| 5586 | |
| 5587 | // Mark that we're on our way now... |
| 5588 | m_trappingRuntimeThreads = FALSE; |
| 5589 | m_stopped = FALSE; |
| 5590 | |
| 5591 | // Go ahead and resume the Runtime threads. |
| 5592 | g_pEEInterface->ResumeFromDebug(pAppDomain); |
| 5593 | } |
| 5594 | |
| 5595 | // Given a method, get's its EnC version number. 1 if the method is not EnCed. |
| 5596 | // Note that MethodDescs are reused between versions so this will give us |
| 5597 | // the most recent EnC number. |
| 5598 | int Debugger::GetMethodEncNumber(MethodDesc * pMethod) |
| 5599 | { |
| 5600 | CONTRACTL |
| 5601 | { |
| 5602 | SO_NOT_MAINLINE; |
| 5603 | THROWS; |
| 5604 | GC_NOTRIGGER; |
| 5605 | } |
| 5606 | CONTRACTL_END; |
| 5607 | |
| 5608 | DebuggerJitInfo * dji = GetLatestJitInfoFromMethodDesc(pMethod); |
| 5609 | if (dji == NULL) |
| 5610 | { |
| 5611 | // If there's no DJI, couldn't have been EnCed. |
| 5612 | return 1; |
| 5613 | } |
| 5614 | return (int) dji->m_encVersion; |
| 5615 | } |
| 5616 | |
| 5617 | |
| 5618 | bool Debugger::IsJMCMethod(Module* pModule, mdMethodDef tkMethod) |
| 5619 | { |
| 5620 | CONTRACTL |
| 5621 | { |
| 5622 | SO_NOT_MAINLINE; |
| 5623 | THROWS; |
| 5624 | GC_NOTRIGGER; |
| 5625 | MODE_ANY; |
| 5626 | PRECONDITION(CORDebuggerAttached()); |
| 5627 | } |
| 5628 | CONTRACTL_END; |
| 5629 | |
| 5630 | #ifdef _DEBUG |
| 5631 | Crst crstDbg(CrstIsJMCMethod, CRST_UNSAFE_ANYMODE); |
| 5632 | PRECONDITION(crstDbg.IsSafeToTake()); |
| 5633 | #endif |
| 5634 | |
| 5635 | DebuggerMethodInfo *pInfo = GetOrCreateMethodInfo(pModule, tkMethod); |
| 5636 | |
| 5637 | if (pInfo == NULL) |
| 5638 | return false; |
| 5639 | |
| 5640 | return pInfo->IsJMCFunction(); |
| 5641 | } |
| 5642 | |
| 5643 | /****************************************************************************** |
| 5644 | * Called by Runtime when on a 1st chance Native Exception. |
| 5645 | * This is likely when we hit a breakpoint / single-step. |
| 5646 | * This is called for all native exceptions (except COM+) on managed threads, |
| 5647 | * regardless of whether the debugger is attached. |
| 5648 | ******************************************************************************/ |
| 5649 | bool Debugger::FirstChanceNativeException(EXCEPTION_RECORD *exception, |
| 5650 | CONTEXT *context, |
| 5651 | DWORD code, |
| 5652 | Thread *thread) |
| 5653 | { |
| 5654 | |
| 5655 | // @@@ |
| 5656 | // Implement DebugInterface |
| 5657 | // Can be called from EE exception code. Or from our M2UHandoffHijackFilter |
| 5658 | // must be on managed thread. |
| 5659 | |
| 5660 | CONTRACTL |
| 5661 | { |
| 5662 | SO_TOLERANT; |
| 5663 | NOTHROW; |
| 5664 | |
| 5665 | // No clear GC_triggers semantics here. See DispatchNativeException. |
| 5666 | WRAPPER(GC_TRIGGERS); |
| 5667 | MODE_ANY; |
| 5668 | |
| 5669 | PRECONDITION(CheckPointer(exception)); |
| 5670 | PRECONDITION(CheckPointer(context)); |
| 5671 | PRECONDITION(CheckPointer(thread)); |
| 5672 | } |
| 5673 | CONTRACTL_END; |
| 5674 | |
| 5675 | |
| 5676 | // Ignore any notification exceptions sent from code:Debugger.SendRawEvent. |
| 5677 | // This is not a common case, but could happen in some cases described |
| 5678 | // in SendRawEvent. Either way, Left-Side and VM should just ignore these. |
| 5679 | if (IsEventDebuggerNotification(exception, PTR_TO_CORDB_ADDRESS(g_pMSCorEE))) |
| 5680 | { |
| 5681 | return true; |
| 5682 | } |
| 5683 | |
| 5684 | bool retVal; |
| 5685 | |
| 5686 | // Don't stop for native debugging anywhere inside our inproc-Filters. |
| 5687 | CantStopHolder hHolder; |
| 5688 | |
| 5689 | if (!CORDBUnrecoverableError(this)) |
| 5690 | { |
| 5691 | retVal = DebuggerController::DispatchNativeException(exception, context, |
| 5692 | code, thread); |
| 5693 | } |
| 5694 | else |
| 5695 | { |
| 5696 | retVal = false; |
| 5697 | } |
| 5698 | |
| 5699 | return retVal; |
| 5700 | } |
| 5701 | |
| 5702 | /****************************************************************************** |
| 5703 | * |
| 5704 | ******************************************************************************/ |
| 5705 | PRD_TYPE Debugger::GetPatchedOpcode(CORDB_ADDRESS_TYPE *ip) |
| 5706 | { |
| 5707 | WRAPPER_NO_CONTRACT; |
| 5708 | |
| 5709 | if (!CORDBUnrecoverableError(this)) |
| 5710 | { |
| 5711 | return DebuggerController::GetPatchedOpcode(ip); |
| 5712 | } |
| 5713 | else |
| 5714 | { |
| 5715 | PRD_TYPE mt; |
| 5716 | InitializePRD(&mt); |
| 5717 | return mt; |
| 5718 | } |
| 5719 | } |
| 5720 | |
| 5721 | /****************************************************************************** |
| 5722 | * |
| 5723 | ******************************************************************************/ |
| 5724 | BOOL Debugger::CheckGetPatchedOpcode(CORDB_ADDRESS_TYPE *address, /*OUT*/ PRD_TYPE *pOpcode) |
| 5725 | { |
| 5726 | WRAPPER_NO_CONTRACT; |
| 5727 | CONSISTENCY_CHECK(CheckPointer(address)); |
| 5728 | CONSISTENCY_CHECK(CheckPointer(pOpcode)); |
| 5729 | |
| 5730 | if (CORDebuggerAttached() && !CORDBUnrecoverableError(this)) |
| 5731 | { |
| 5732 | return DebuggerController::CheckGetPatchedOpcode(address, pOpcode); |
| 5733 | } |
| 5734 | else |
| 5735 | { |
| 5736 | InitializePRD(pOpcode); |
| 5737 | return FALSE; |
| 5738 | } |
| 5739 | } |
| 5740 | |
| 5741 | /****************************************************************************** |
| 5742 | * |
| 5743 | ******************************************************************************/ |
| 5744 | void Debugger::TraceCall(const BYTE *code) |
| 5745 | { |
| 5746 | CONTRACTL |
| 5747 | { |
| 5748 | // We're being called right before we call managed code. Can't trigger |
| 5749 | // because there may be unprotected args on the stack. |
| 5750 | MODE_COOPERATIVE; |
| 5751 | GC_NOTRIGGER; |
| 5752 | |
| 5753 | NOTHROW; |
| 5754 | } |
| 5755 | CONTRACTL_END; |
| 5756 | |
| 5757 | |
| 5758 | Thread * pCurThread = g_pEEInterface->GetThread(); |
| 5759 | // Ensure we never even think about running managed code on the helper thread. |
| 5760 | _ASSERTE(!ThisIsHelperThreadWorker() || !"You're running managed code on the helper thread" ); |
| 5761 | |
| 5762 | // One threat is that our helper thread may be forced to execute a managed DLL main. |
| 5763 | // In that case, it's before the helper thread proc is even executed, so our conventional |
| 5764 | // IsHelperThread() checks are inadequate. |
| 5765 | _ASSERTE((GetCurrentThreadId() != g_pRCThread->m_DbgHelperThreadOSTid) || !"You're running managed code on the helper thread" ); |
| 5766 | |
| 5767 | _ASSERTE((g_pEEInterface->GetThreadFilterContext(pCurThread) == NULL) || !"Shouldn't run managed code w/ Filter-Context set" ); |
| 5768 | |
| 5769 | if (!CORDBUnrecoverableError(this)) |
| 5770 | { |
| 5771 | // There are situations where our callers can't tolerate us throwing. |
| 5772 | EX_TRY |
| 5773 | { |
| 5774 | // Since we have a try catch and the debugger code can deal properly with |
| 5775 | // faults occuring inside DebuggerController::DispatchTraceCall, we can safely |
| 5776 | // establish a FAULT_NOT_FATAL region. This is required since some callers can't |
| 5777 | // tolerate faults. |
| 5778 | FAULT_NOT_FATAL(); |
| 5779 | |
| 5780 | DebuggerController::DispatchTraceCall(pCurThread, code); |
| 5781 | } |
| 5782 | EX_CATCH |
| 5783 | { |
| 5784 | // We're being called for our benefit, not our callers. So if we fail, |
| 5785 | // they don't care. |
| 5786 | // Failure for us means that some steppers may miss their notification |
| 5787 | // for entering managed code. |
| 5788 | LOG((LF_CORDB, LL_INFO10000, "Debugger::TraceCall - inside catch, %p\n" , code)); |
| 5789 | } |
| 5790 | EX_END_CATCH(SwallowAllExceptions); |
| 5791 | } |
| 5792 | } |
| 5793 | |
| 5794 | /****************************************************************************** |
| 5795 | * For Just-My-Code (aka Just-User-Code). |
| 5796 | * Invoked from a probe in managed code when we enter a user method and |
| 5797 | * the flag (set by GetJMCFlagAddr) for that method is != 0. |
| 5798 | * pIP - the ip within the method, right after the prolog. |
| 5799 | * sp - stack pointer (frame pointer on x86) for the managed method we're entering. |
| 5800 | * bsp - backing store pointer for the managed method we're entering |
| 5801 | ******************************************************************************/ |
| 5802 | void Debugger::OnMethodEnter(void * pIP) |
| 5803 | { |
| 5804 | CONTRACTL |
| 5805 | { |
| 5806 | THROWS; |
| 5807 | GC_NOTRIGGER; |
| 5808 | SO_NOT_MAINLINE; |
| 5809 | } |
| 5810 | CONTRACTL_END; |
| 5811 | |
| 5812 | LOG((LF_CORDB, LL_INFO1000000, "D::OnMethodEnter(ip=%p)\n" , pIP)); |
| 5813 | |
| 5814 | if (!CORDebuggerAttached()) |
| 5815 | { |
| 5816 | LOG((LF_CORDB, LL_INFO1000000, "D::OnMethodEnter returning since debugger attached.\n" )); |
| 5817 | return; |
| 5818 | } |
| 5819 | FramePointer fp = LEAF_MOST_FRAME; |
| 5820 | DebuggerController::DispatchMethodEnter(pIP, fp); |
| 5821 | } |
| 5822 | /****************************************************************************** |
| 5823 | * GetJMCFlagAddr |
| 5824 | * Provide an address of the flag that the JMC probes use to decide whether |
| 5825 | * or not to call TriggerMethodEnter. |
| 5826 | * Called for each method that we jit. |
| 5827 | * md - method desc for the JMC probe |
| 5828 | * returns an address of a flag that the probe can use. |
| 5829 | ******************************************************************************/ |
| 5830 | DWORD* Debugger::GetJMCFlagAddr(Module * pModule) |
| 5831 | { |
| 5832 | CONTRACTL |
| 5833 | { |
| 5834 | NOTHROW; |
| 5835 | GC_NOTRIGGER; |
| 5836 | SO_TOLERANT; |
| 5837 | PRECONDITION(CheckPointer(pModule)); |
| 5838 | } |
| 5839 | CONTRACTL_END; |
| 5840 | |
| 5841 | // This callback will be invoked whenever we jit debuggable code. |
| 5842 | // A debugger may not be attached yet, but we still need someplace |
| 5843 | // to store this dword. |
| 5844 | // Use the EE's module, because it's always around, even if a debugger |
| 5845 | // is attached or not. |
| 5846 | return &(pModule->m_dwDebuggerJMCProbeCount); |
| 5847 | } |
| 5848 | |
| 5849 | /****************************************************************************** |
| 5850 | * Updates the JMC flag on all the EE modules. |
| 5851 | * We can do this as often as we'd like - though it's a perf hit. |
| 5852 | ******************************************************************************/ |
| 5853 | void Debugger::UpdateAllModuleJMCFlag(bool fStatus) |
| 5854 | { |
| 5855 | CONTRACTL |
| 5856 | { |
| 5857 | NOTHROW; |
| 5858 | GC_NOTRIGGER; |
| 5859 | } |
| 5860 | CONTRACTL_END; |
| 5861 | |
| 5862 | LOG((LF_CORDB, LL_INFO1000000, "D::UpdateModuleJMCFlag to %d\n" , fStatus)); |
| 5863 | |
| 5864 | _ASSERTE(HasDebuggerDataLock()); |
| 5865 | |
| 5866 | // Loop through each module. |
| 5867 | // The module table is lazily allocated. As soon as we set JMC status on any module, that will cause an |
| 5868 | // allocation of the module table. So if the table isn't allocated no module has JMC set, |
| 5869 | // and so there is nothing to update. |
| 5870 | if (m_pModules != NULL) |
| 5871 | { |
| 5872 | HASHFIND f; |
| 5873 | for (DebuggerModule * m = m_pModules->GetFirstModule(&f); |
| 5874 | m != NULL; |
| 5875 | m = m_pModules->GetNextModule(&f)) |
| 5876 | { |
| 5877 | // the primary module may get called multiple times, but that's ok. |
| 5878 | UpdateModuleJMCFlag(m->GetRuntimeModule(), fStatus); |
| 5879 | } // end for all modules. |
| 5880 | } |
| 5881 | } |
| 5882 | |
| 5883 | /****************************************************************************** |
| 5884 | * Updates the JMC flag on the given Primary module |
| 5885 | * We can do this as often as we'd like - though it's a perf hit. |
| 5886 | * If we've only changed methods in a single module, then we can just call this. |
| 5887 | * If we do a more global thing (Such as enable MethodEnter), then that could |
| 5888 | * affect all modules, so we use the UpdateAllModuleJMCFlag helper. |
| 5889 | ******************************************************************************/ |
| 5890 | void Debugger::UpdateModuleJMCFlag(Module * pRuntimeModule, bool fStatus) |
| 5891 | { |
| 5892 | CONTRACTL |
| 5893 | { |
| 5894 | NOTHROW; |
| 5895 | GC_NOTRIGGER; |
| 5896 | } |
| 5897 | CONTRACTL_END; |
| 5898 | |
| 5899 | _ASSERTE(HasDebuggerDataLock()); |
| 5900 | |
| 5901 | |
| 5902 | DWORD * pFlag = &(pRuntimeModule->m_dwDebuggerJMCProbeCount); |
| 5903 | _ASSERTE(pFlag != NULL); |
| 5904 | |
| 5905 | if (pRuntimeModule->HasAnyJMCFunctions()) |
| 5906 | { |
| 5907 | // If this is a user-code module, then update the JMC flag |
| 5908 | // the probes look at so that we get MethodEnter callbacks. |
| 5909 | *pFlag = fStatus; |
| 5910 | |
| 5911 | LOG((LF_CORDB, LL_EVERYTHING, "D::UpdateModuleJMCFlag, module %p is user code\n" , pRuntimeModule)); |
| 5912 | } else { |
| 5913 | LOG((LF_CORDB, LL_EVERYTHING, "D::UpdateModuleJMCFlag, module %p is not-user code\n" , pRuntimeModule)); |
| 5914 | |
| 5915 | // if non-user code, flag should be 0 so that we don't waste |
| 5916 | // cycles in the callbacks. |
| 5917 | _ASSERTE(*pFlag == 0); |
| 5918 | } |
| 5919 | } |
| 5920 | |
| 5921 | // This sets the JMC status for the entire module. |
| 5922 | // fStatus - default status for whole module |
| 5923 | void Debugger::SetModuleDefaultJMCStatus(Module * pRuntimeModule, bool fStatus) |
| 5924 | { |
| 5925 | CONTRACTL |
| 5926 | { |
| 5927 | SO_NOT_MAINLINE; |
| 5928 | NOTHROW; |
| 5929 | GC_NOTRIGGER; |
| 5930 | PRECONDITION(ThisIsHelperThreadWorker()); |
| 5931 | } |
| 5932 | CONTRACTL_END; |
| 5933 | |
| 5934 | LOG((LF_CORDB, LL_INFO100000, "DM::SetJMCStatus, status=%d, this=%p\n" , fStatus, this)); |
| 5935 | |
| 5936 | // Ensure that all active DMIs have our status. |
| 5937 | // All new DMIs can lookup their status from us. |
| 5938 | // This should also update the module count of active JMC DMI's. |
| 5939 | DebuggerMethodInfoTable * pTable = g_pDebugger->GetMethodInfoTable(); |
| 5940 | |
| 5941 | if (pTable != NULL) |
| 5942 | { |
| 5943 | Debugger::DebuggerDataLockHolder debuggerDataLockHolder(g_pDebugger); |
| 5944 | HASHFIND info; |
| 5945 | |
| 5946 | for (DebuggerMethodInfo *dmi = pTable->GetFirstMethodInfo(&info); |
| 5947 | dmi != NULL; |
| 5948 | dmi = pTable->GetNextMethodInfo(&info)) |
| 5949 | { |
| 5950 | if (dmi->GetRuntimeModule() == pRuntimeModule) |
| 5951 | { |
| 5952 | // This DMI is in this module, so update its status |
| 5953 | dmi->SetJMCStatus(fStatus); |
| 5954 | } |
| 5955 | } |
| 5956 | } |
| 5957 | |
| 5958 | pRuntimeModule->SetJMCStatus(fStatus); |
| 5959 | |
| 5960 | #ifdef _DEBUG |
| 5961 | // If we're disabling JMC in this module, then we shouldn't |
| 5962 | // have any active JMC functions. |
| 5963 | if (!fStatus) |
| 5964 | { |
| 5965 | _ASSERTE(!pRuntimeModule->HasAnyJMCFunctions()); |
| 5966 | } |
| 5967 | #endif |
| 5968 | } |
| 5969 | |
| 5970 | /****************************************************************************** |
| 5971 | * Called by GC to determine if it's safe to do a GC. |
| 5972 | ******************************************************************************/ |
| 5973 | bool Debugger::ThreadsAtUnsafePlaces(void) |
| 5974 | { |
| 5975 | LIMITED_METHOD_CONTRACT; |
| 5976 | |
| 5977 | // If we're in shutdown mode, then all other threads are parked. |
| 5978 | // Even if they claim to be at unsafe regions, they're still safe to do a GC. They won't touch |
| 5979 | // their stacks. |
| 5980 | if (m_fShutdownMode) |
| 5981 | { |
| 5982 | if (m_threadsAtUnsafePlaces > 0) |
| 5983 | { |
| 5984 | STRESS_LOG1(LF_CORDB, LL_INFO10000, "D::TAUP: Claiming safety in shutdown mode.%d\n" , m_threadsAtUnsafePlaces); |
| 5985 | } |
| 5986 | return false; |
| 5987 | } |
| 5988 | |
| 5989 | |
| 5990 | return (m_threadsAtUnsafePlaces != 0); |
| 5991 | } |
| 5992 | |
| 5993 | void Debugger::SuspendForGarbageCollectionStarted() |
| 5994 | { |
| 5995 | CONTRACTL |
| 5996 | { |
| 5997 | NOTHROW; |
| 5998 | GC_NOTRIGGER; |
| 5999 | } |
| 6000 | CONTRACTL_END; |
| 6001 | |
| 6002 | this->m_isGarbageCollectionEventsEnabledLatch = this->m_isGarbageCollectionEventsEnabled; |
| 6003 | this->m_willBlockOnGarbageCollectionEvent = this->m_isGarbageCollectionEventsEnabledLatch; |
| 6004 | } |
| 6005 | |
| 6006 | void Debugger::SuspendForGarbageCollectionCompleted() |
| 6007 | { |
| 6008 | CONTRACTL |
| 6009 | { |
| 6010 | NOTHROW; |
| 6011 | GC_NOTRIGGER; |
| 6012 | } |
| 6013 | CONTRACTL_END; |
| 6014 | |
| 6015 | if (!CORDebuggerAttached() || !this->m_isGarbageCollectionEventsEnabledLatch) |
| 6016 | { |
| 6017 | return; |
| 6018 | } |
| 6019 | this->m_isBlockedOnGarbageCollectionEvent = TRUE; |
| 6020 | |
| 6021 | Thread* pThread = GetThread(); |
| 6022 | |
| 6023 | if (CORDBUnrecoverableError(this)) |
| 6024 | return; |
| 6025 | |
| 6026 | { |
| 6027 | Debugger::DebuggerLockHolder dbgLockHolder(this); |
| 6028 | |
| 6029 | DebuggerIPCEvent* ipce1 = m_pRCThread->GetIPCEventSendBuffer(); |
| 6030 | InitIPCEvent(ipce1, |
| 6031 | DB_IPCE_BEFORE_GARBAGE_COLLECTION, |
| 6032 | pThread, |
| 6033 | pThread->GetDomain()); |
| 6034 | |
| 6035 | m_pRCThread->SendIPCEvent(); |
| 6036 | this->SuspendComplete(true); |
| 6037 | } |
| 6038 | |
| 6039 | WaitForSingleObject(this->GetGarbageCollectionBlockerEvent(), INFINITE); |
| 6040 | ResetEvent(this->GetGarbageCollectionBlockerEvent()); |
| 6041 | } |
| 6042 | |
| 6043 | void Debugger::ResumeForGarbageCollectionStarted() |
| 6044 | { |
| 6045 | CONTRACTL |
| 6046 | { |
| 6047 | NOTHROW; |
| 6048 | GC_NOTRIGGER; |
| 6049 | } |
| 6050 | CONTRACTL_END; |
| 6051 | |
| 6052 | if (!CORDebuggerAttached() || !this->m_isGarbageCollectionEventsEnabledLatch) |
| 6053 | { |
| 6054 | return; |
| 6055 | } |
| 6056 | |
| 6057 | Thread* pThread = GetThread(); |
| 6058 | |
| 6059 | if (CORDBUnrecoverableError(this)) |
| 6060 | return; |
| 6061 | |
| 6062 | { |
| 6063 | Debugger::DebuggerLockHolder dbgLockHolder(this); |
| 6064 | |
| 6065 | DebuggerIPCEvent* ipce1 = m_pRCThread->GetIPCEventSendBuffer(); |
| 6066 | InitIPCEvent(ipce1, |
| 6067 | DB_IPCE_AFTER_GARBAGE_COLLECTION, |
| 6068 | pThread, |
| 6069 | pThread->GetDomain()); |
| 6070 | |
| 6071 | m_pRCThread->SendIPCEvent(); |
| 6072 | this->SuspendComplete(true); |
| 6073 | } |
| 6074 | |
| 6075 | WaitForSingleObject(this->GetGarbageCollectionBlockerEvent(), INFINITE); |
| 6076 | ResetEvent(this->GetGarbageCollectionBlockerEvent()); |
| 6077 | this->m_isBlockedOnGarbageCollectionEvent = FALSE; |
| 6078 | this->m_willBlockOnGarbageCollectionEvent = FALSE; |
| 6079 | } |
| 6080 | |
| 6081 | #ifdef FEATURE_DATABREAKPOINT |
| 6082 | void Debugger::SendDataBreakpoint(Thread *thread, CONTEXT *context, |
| 6083 | DebuggerDataBreakpoint *breakpoint) |
| 6084 | { |
| 6085 | CONTRACTL |
| 6086 | { |
| 6087 | NOTHROW; |
| 6088 | GC_NOTRIGGER; |
| 6089 | } |
| 6090 | CONTRACTL_END; |
| 6091 | |
| 6092 | if (CORDBUnrecoverableError(this)) |
| 6093 | return; |
| 6094 | |
| 6095 | #ifdef _DEBUG |
| 6096 | static BOOL shouldBreak = -1; |
| 6097 | if (shouldBreak == -1) |
| 6098 | shouldBreak = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_DbgBreakOnSendBreakpoint); |
| 6099 | |
| 6100 | if (shouldBreak > 0) { |
| 6101 | _ASSERTE(!"DbgBreakOnSendBreakpoint" ); |
| 6102 | } |
| 6103 | #endif |
| 6104 | |
| 6105 | LOG((LF_CORDB, LL_INFO10000, "D::SDB: breakpoint BP:0x%x\n" , breakpoint)); |
| 6106 | |
| 6107 | _ASSERTE((g_pEEInterface->GetThread() && |
| 6108 | !g_pEEInterface->GetThread()->m_fPreemptiveGCDisabled) || |
| 6109 | g_fInControlC); |
| 6110 | |
| 6111 | _ASSERTE(ThreadHoldsLock()); |
| 6112 | |
| 6113 | // Send a breakpoint event to the Right Side |
| 6114 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 6115 | memcpy(&(ipce->DataBreakpointData.context), context, sizeof(CONTEXT)); |
| 6116 | InitIPCEvent(ipce, |
| 6117 | DB_IPCE_DATA_BREAKPOINT, |
| 6118 | thread, |
| 6119 | thread->GetDomain()); |
| 6120 | //_ASSERTE(breakpoint->m_pAppDomain == ipce->vmAppDomain.GetRawPtr()); |
| 6121 | |
| 6122 | m_pRCThread->SendIPCEvent(); |
| 6123 | } |
| 6124 | #endif |
| 6125 | |
| 6126 | // |
| 6127 | // SendBreakpoint is called by Runtime threads to send that they've |
| 6128 | // hit a breakpoint to the Right Side. |
| 6129 | // |
| 6130 | void Debugger::SendBreakpoint(Thread *thread, CONTEXT *context, |
| 6131 | DebuggerBreakpoint *breakpoint) |
| 6132 | { |
| 6133 | CONTRACTL |
| 6134 | { |
| 6135 | NOTHROW; |
| 6136 | GC_NOTRIGGER; |
| 6137 | } |
| 6138 | CONTRACTL_END; |
| 6139 | |
| 6140 | if (CORDBUnrecoverableError(this)) |
| 6141 | return; |
| 6142 | |
| 6143 | #ifdef _DEBUG |
| 6144 | static BOOL shouldBreak = -1; |
| 6145 | if (shouldBreak == -1) |
| 6146 | shouldBreak = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_DbgBreakOnSendBreakpoint); |
| 6147 | |
| 6148 | if (shouldBreak > 0) { |
| 6149 | _ASSERTE(!"DbgBreakOnSendBreakpoint" ); |
| 6150 | } |
| 6151 | #endif |
| 6152 | |
| 6153 | LOG((LF_CORDB, LL_INFO10000, "D::SB: breakpoint BP:0x%x\n" , breakpoint)); |
| 6154 | |
| 6155 | _ASSERTE((g_pEEInterface->GetThread() && |
| 6156 | !g_pEEInterface->GetThread()->m_fPreemptiveGCDisabled) || |
| 6157 | g_fInControlC); |
| 6158 | |
| 6159 | _ASSERTE(ThreadHoldsLock()); |
| 6160 | |
| 6161 | // Send a breakpoint event to the Right Side |
| 6162 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 6163 | InitIPCEvent(ipce, |
| 6164 | DB_IPCE_BREAKPOINT, |
| 6165 | thread, |
| 6166 | thread->GetDomain()); |
| 6167 | ipce->BreakpointData.breakpointToken.Set(breakpoint); |
| 6168 | _ASSERTE( breakpoint->m_pAppDomain == ipce->vmAppDomain.GetRawPtr()); |
| 6169 | |
| 6170 | m_pRCThread->SendIPCEvent(); |
| 6171 | } |
| 6172 | |
| 6173 | |
| 6174 | //--------------------------------------------------------------------------------------- |
| 6175 | // Send a user breakpoint event for this thread and sycnhronize the process. |
| 6176 | // |
| 6177 | // Arguments: |
| 6178 | // pThread - non-null thread to send user breakpoint event for. |
| 6179 | // |
| 6180 | // Notes: |
| 6181 | // Can't assume that a debugger is attached (since it may detach before we get the lock). |
| 6182 | void Debugger::SendUserBreakpointAndSynchronize(Thread * pThread) |
| 6183 | { |
| 6184 | AtSafePlaceHolder unsafePlaceHolder(pThread); |
| 6185 | |
| 6186 | SENDIPCEVENT_BEGIN(this, pThread); |
| 6187 | |
| 6188 | // Actually send the event |
| 6189 | if (CORDebuggerAttached()) |
| 6190 | { |
| 6191 | SendRawUserBreakpoint(pThread); |
| 6192 | TrapAllRuntimeThreads(); |
| 6193 | } |
| 6194 | |
| 6195 | SENDIPCEVENT_END; |
| 6196 | } |
| 6197 | |
| 6198 | //--------------------------------------------------------------------------------------- |
| 6199 | // |
| 6200 | // SendRawUserBreakpoint is called by Runtime threads to send that |
| 6201 | // they've hit a user breakpoint to the Right Side. This is the event |
| 6202 | // send only part, since it can be called from a few different places. |
| 6203 | // |
| 6204 | // Arguments: |
| 6205 | // pThread - [in] managed thread where user break point takes place. |
| 6206 | // mus be curernt thread. |
| 6207 | // |
| 6208 | void Debugger::SendRawUserBreakpoint(Thread * pThread) |
| 6209 | { |
| 6210 | CONTRACTL |
| 6211 | { |
| 6212 | NOTHROW; |
| 6213 | GC_NOTRIGGER; |
| 6214 | MODE_PREEMPTIVE; |
| 6215 | |
| 6216 | PRECONDITION(pThread == GetThread()); |
| 6217 | |
| 6218 | PRECONDITION(ThreadHoldsLock()); |
| 6219 | |
| 6220 | // Debugger must have been attached to get us to this point. |
| 6221 | // We hold the Debugger-lock, so debugger could not have detached from |
| 6222 | // underneath us either. |
| 6223 | PRECONDITION(CORDebuggerAttached()); |
| 6224 | } |
| 6225 | CONTRACTL_END; |
| 6226 | |
| 6227 | if (CORDBUnrecoverableError(this)) |
| 6228 | return; |
| 6229 | |
| 6230 | LOG((LF_CORDB, LL_INFO10000, "D::SRUB: user breakpoint\n" )); |
| 6231 | |
| 6232 | |
| 6233 | |
| 6234 | // Send a breakpoint event to the Right Side |
| 6235 | DebuggerIPCEvent* pEvent = m_pRCThread->GetIPCEventSendBuffer(); |
| 6236 | InitIPCEvent(pEvent, |
| 6237 | DB_IPCE_USER_BREAKPOINT, |
| 6238 | pThread, |
| 6239 | pThread->GetDomain()); |
| 6240 | |
| 6241 | m_pRCThread->SendIPCEvent(); |
| 6242 | } |
| 6243 | |
| 6244 | // |
| 6245 | // SendInterceptExceptionComplete is called by Runtime threads to send that |
| 6246 | // they've completed intercepting an exception to the Right Side. This is the event |
| 6247 | // send only part, since it can be called from a few different places. |
| 6248 | // |
| 6249 | void Debugger::SendInterceptExceptionComplete(Thread *thread) |
| 6250 | { |
| 6251 | CONTRACTL |
| 6252 | { |
| 6253 | NOTHROW; |
| 6254 | GC_NOTRIGGER; |
| 6255 | } |
| 6256 | CONTRACTL_END; |
| 6257 | |
| 6258 | if (CORDBUnrecoverableError(this)) |
| 6259 | return; |
| 6260 | |
| 6261 | LOG((LF_CORDB, LL_INFO10000, "D::SIEC: breakpoint\n" )); |
| 6262 | |
| 6263 | _ASSERTE(!g_pEEInterface->IsPreemptiveGCDisabled()); |
| 6264 | _ASSERTE(ThreadHoldsLock()); |
| 6265 | |
| 6266 | // Send a breakpoint event to the Right Side |
| 6267 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 6268 | InitIPCEvent(ipce, |
| 6269 | DB_IPCE_INTERCEPT_EXCEPTION_COMPLETE, |
| 6270 | thread, |
| 6271 | thread->GetDomain()); |
| 6272 | |
| 6273 | m_pRCThread->SendIPCEvent(); |
| 6274 | } |
| 6275 | |
| 6276 | |
| 6277 | |
| 6278 | // |
| 6279 | // SendStep is called by Runtime threads to send that they've |
| 6280 | // completed a step to the Right Side. |
| 6281 | // |
| 6282 | void Debugger::SendStep(Thread *thread, CONTEXT *context, |
| 6283 | DebuggerStepper *stepper, |
| 6284 | CorDebugStepReason reason) |
| 6285 | { |
| 6286 | CONTRACTL |
| 6287 | { |
| 6288 | NOTHROW; |
| 6289 | GC_NOTRIGGER; |
| 6290 | } |
| 6291 | CONTRACTL_END; |
| 6292 | |
| 6293 | if (CORDBUnrecoverableError(this)) |
| 6294 | return; |
| 6295 | |
| 6296 | LOG((LF_CORDB, LL_INFO10000, "D::SS: step:token:0x%p reason:0x%x\n" , |
| 6297 | stepper, reason)); |
| 6298 | |
| 6299 | _ASSERTE((g_pEEInterface->GetThread() && |
| 6300 | !g_pEEInterface->GetThread()->m_fPreemptiveGCDisabled) || |
| 6301 | g_fInControlC); |
| 6302 | |
| 6303 | _ASSERTE(ThreadHoldsLock()); |
| 6304 | |
| 6305 | // Send a step event to the Right Side |
| 6306 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 6307 | InitIPCEvent(ipce, |
| 6308 | DB_IPCE_STEP_COMPLETE, |
| 6309 | thread, |
| 6310 | thread->GetDomain()); |
| 6311 | ipce->StepData.stepperToken.Set(stepper); |
| 6312 | ipce->StepData.reason = reason; |
| 6313 | m_pRCThread->SendIPCEvent(); |
| 6314 | } |
| 6315 | |
| 6316 | //------------------------------------------------------------------------------------------------- |
| 6317 | // Send an EnC remap opportunity and block until it is continued. |
| 6318 | // |
| 6319 | // dji - current method information |
| 6320 | // currentIP - IL offset within that method |
| 6321 | // resumeIP - address of a SIZE_T that the RS will write to cross-process if they take the |
| 6322 | // remap opportunity. *resumeIP is untouched if the RS does not remap. |
| 6323 | //------------------------------------------------------------------------------------------------- |
| 6324 | void Debugger::LockAndSendEnCRemapEvent(DebuggerJitInfo * dji, SIZE_T currentIP, SIZE_T *resumeIP) |
| 6325 | { |
| 6326 | CONTRACTL |
| 6327 | { |
| 6328 | NOTHROW; |
| 6329 | GC_TRIGGERS; // From SendIPCEvent |
| 6330 | PRECONDITION(dji != NULL); |
| 6331 | } |
| 6332 | CONTRACTL_END; |
| 6333 | |
| 6334 | |
| 6335 | LOG((LF_CORDB, LL_INFO10000, "D::LASEnCRE:\n" )); |
| 6336 | |
| 6337 | if (CORDBUnrecoverableError(this)) |
| 6338 | return; |
| 6339 | |
| 6340 | MethodDesc * pFD = dji->m_fd; |
| 6341 | |
| 6342 | // Note that the debugger lock is reentrant, so we may or may not hold it already. |
| 6343 | Thread *thread = g_pEEInterface->GetThread(); |
| 6344 | SENDIPCEVENT_BEGIN(this, thread); |
| 6345 | |
| 6346 | // Send an EnC remap event to the Right Side. |
| 6347 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 6348 | InitIPCEvent(ipce, |
| 6349 | DB_IPCE_ENC_REMAP, |
| 6350 | thread, |
| 6351 | thread->GetDomain()); |
| 6352 | |
| 6353 | ipce->EnCRemap.currentVersionNumber = dji->m_encVersion; |
| 6354 | ipce->EnCRemap.resumeVersionNumber = dji->m_methodInfo->GetCurrentEnCVersion();; |
| 6355 | ipce->EnCRemap.currentILOffset = currentIP; |
| 6356 | ipce->EnCRemap.resumeILOffset = resumeIP; |
| 6357 | ipce->EnCRemap.funcMetadataToken = pFD->GetMemberDef(); |
| 6358 | |
| 6359 | LOG((LF_CORDB, LL_INFO10000, "D::LASEnCRE: token 0x%x, from version %d to %d\n" , |
| 6360 | ipce->EnCRemap.funcMetadataToken, ipce->EnCRemap.currentVersionNumber, ipce->EnCRemap.resumeVersionNumber)); |
| 6361 | |
| 6362 | Module *pRuntimeModule = pFD->GetModule(); |
| 6363 | |
| 6364 | DebuggerModule * pDModule = LookupOrCreateModule(pRuntimeModule, thread->GetDomain()); |
| 6365 | ipce->EnCRemap.vmDomainFile.SetRawPtr((pDModule ? pDModule->GetDomainFile() : NULL)); |
| 6366 | |
| 6367 | LOG((LF_CORDB, LL_INFO10000, "D::LASEnCRE: %s::%s " |
| 6368 | "dmod:0x%x, methodDef:0x%x \n" , |
| 6369 | pFD->m_pszDebugClassName, pFD->m_pszDebugMethodName, |
| 6370 | pDModule, |
| 6371 | ipce->EnCRemap.funcMetadataToken)); |
| 6372 | |
| 6373 | // IPC event is now initialized, so we can send it over. |
| 6374 | SendSimpleIPCEventAndBlock(); |
| 6375 | |
| 6376 | // This will block on the continue |
| 6377 | SENDIPCEVENT_END; |
| 6378 | |
| 6379 | LOG((LF_CORDB, LL_INFO10000, "D::LASEnCRE: done\n" )); |
| 6380 | |
| 6381 | } |
| 6382 | |
| 6383 | // Send the RemapComplete event and block until the debugger Continues |
| 6384 | // pFD - specifies the method in which we've remapped into |
| 6385 | void Debugger::LockAndSendEnCRemapCompleteEvent(MethodDesc *pFD) |
| 6386 | { |
| 6387 | CONTRACTL |
| 6388 | { |
| 6389 | NOTHROW; |
| 6390 | GC_TRIGGERS; |
| 6391 | } |
| 6392 | CONTRACTL_END; |
| 6393 | |
| 6394 | LOG((LF_CORDB, LL_INFO10000, "D::LASEnCRE:\n" )); |
| 6395 | |
| 6396 | if (CORDBUnrecoverableError(this)) |
| 6397 | return; |
| 6398 | |
| 6399 | Thread *thread = g_pEEInterface->GetThread(); |
| 6400 | // Note that the debugger lock is reentrant, so we may or may not hold it already. |
| 6401 | SENDIPCEVENT_BEGIN(this, thread); |
| 6402 | |
| 6403 | EX_TRY |
| 6404 | { |
| 6405 | // Ensure the DJI for the latest version of this method has been pre-created. |
| 6406 | // It's not clear whether this is necessary or not, but it shouldn't hurt since |
| 6407 | // we're going to need to create it anyway since we'll be debugging inside it. |
| 6408 | DebuggerJitInfo *dji = g_pDebugger->GetLatestJitInfoFromMethodDesc(pFD); |
| 6409 | (void)dji; //prevent "unused variable" error from GCC |
| 6410 | _ASSERTE( dji != NULL ); |
| 6411 | } |
| 6412 | EX_CATCH |
| 6413 | { |
| 6414 | // GetLatestJitInfo could throw on OOM, but the debugger isn't resiliant to OOM. |
| 6415 | // I'm not aware of any other legitimate reason why it may throw, so we'll ASSERT |
| 6416 | // if it fails. |
| 6417 | _ASSERTE(!"Unexpected exception from Debugger::GetLatestJitInfoFromMethodDesc on EnC remap complete" ); |
| 6418 | } |
| 6419 | EX_END_CATCH(RethrowTerminalExceptions); |
| 6420 | |
| 6421 | // Send an EnC remap complete event to the Right Side. |
| 6422 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 6423 | InitIPCEvent(ipce, |
| 6424 | DB_IPCE_ENC_REMAP_COMPLETE, |
| 6425 | thread, |
| 6426 | thread->GetDomain()); |
| 6427 | |
| 6428 | |
| 6429 | ipce->EnCRemapComplete.funcMetadataToken = pFD->GetMemberDef(); |
| 6430 | |
| 6431 | Module *pRuntimeModule = pFD->GetModule(); |
| 6432 | |
| 6433 | DebuggerModule * pDModule = LookupOrCreateModule(pRuntimeModule, thread->GetDomain()); |
| 6434 | ipce->EnCRemapComplete.vmDomainFile.SetRawPtr((pDModule ? pDModule->GetDomainFile() : NULL)); |
| 6435 | |
| 6436 | |
| 6437 | LOG((LF_CORDB, LL_INFO10000, "D::LASEnCRC: %s::%s " |
| 6438 | "dmod:0x%x, methodDef:0x%x \n" , |
| 6439 | pFD->m_pszDebugClassName, pFD->m_pszDebugMethodName, |
| 6440 | pDModule, |
| 6441 | ipce->EnCRemap.funcMetadataToken)); |
| 6442 | |
| 6443 | // IPC event is now initialized, so we can send it over. |
| 6444 | SendSimpleIPCEventAndBlock(); |
| 6445 | |
| 6446 | // This will block on the continue |
| 6447 | SENDIPCEVENT_END; |
| 6448 | |
| 6449 | LOG((LF_CORDB, LL_INFO10000, "D::LASEnCRC: done\n" )); |
| 6450 | |
| 6451 | } |
| 6452 | // |
| 6453 | // This function sends a notification to the RS about a specific update that has occurred as part of |
| 6454 | // applying an Edit and Continue. We send notification only for function add/update and field add. |
| 6455 | // At this point, the EE is already stopped for handling an EnC ApplyChanges operation, so no need |
| 6456 | // to take locks etc. |
| 6457 | // |
| 6458 | void Debugger::SendEnCUpdateEvent(DebuggerIPCEventType eventType, |
| 6459 | Module * pModule, |
| 6460 | mdToken memberToken, |
| 6461 | mdTypeDef classToken, |
| 6462 | SIZE_T enCVersion) |
| 6463 | { |
| 6464 | CONTRACTL |
| 6465 | { |
| 6466 | NOTHROW; |
| 6467 | GC_NOTRIGGER; |
| 6468 | } |
| 6469 | CONTRACTL_END; |
| 6470 | |
| 6471 | LOG((LF_CORDB, LL_INFO10000, "D::LASEnCUFE:\n" )); |
| 6472 | |
| 6473 | _ASSERTE(eventType == DB_IPCE_ENC_UPDATE_FUNCTION || |
| 6474 | eventType == DB_IPCE_ENC_ADD_FUNCTION || |
| 6475 | eventType== DB_IPCE_ENC_ADD_FIELD); |
| 6476 | |
| 6477 | if (CORDBUnrecoverableError(this)) |
| 6478 | return; |
| 6479 | |
| 6480 | // Send an EnC UpdateFunction event to the Right Side. |
| 6481 | DebuggerIPCEvent* event = m_pRCThread->GetIPCEventSendBuffer(); |
| 6482 | InitIPCEvent(event, |
| 6483 | eventType, |
| 6484 | NULL, |
| 6485 | NULL); |
| 6486 | |
| 6487 | event->EnCUpdate.newVersionNumber = enCVersion; |
| 6488 | event->EnCUpdate.memberMetadataToken = memberToken; |
| 6489 | // we have to pass the class token across to the RS because we cannot look it up over |
| 6490 | // there based on the added field/method because the metadata on the RS will not yet |
| 6491 | // have the changes applied, so the token will not exist in its metadata and we have |
| 6492 | // no way to find it. |
| 6493 | event->EnCUpdate.classMetadataToken = classToken; |
| 6494 | |
| 6495 | _ASSERTE(pModule); |
| 6496 | // we don't support shared assemblies, so must have an appdomain |
| 6497 | _ASSERTE(pModule->GetDomain()->IsAppDomain()); |
| 6498 | |
| 6499 | DebuggerModule * pDModule = LookupOrCreateModule(pModule, pModule->GetDomain()->AsAppDomain()); |
| 6500 | event->EnCUpdate.vmDomainFile.SetRawPtr((pDModule ? pDModule->GetDomainFile() : NULL)); |
| 6501 | |
| 6502 | m_pRCThread->SendIPCEvent(); |
| 6503 | |
| 6504 | LOG((LF_CORDB, LL_INFO10000, "D::LASEnCUE: done\n" )); |
| 6505 | |
| 6506 | } |
| 6507 | |
| 6508 | |
| 6509 | // |
| 6510 | // Send a BreakpointSetError event to the Right Side if the given patch is for a breakpoint. Note: we don't care if this |
| 6511 | // fails, there is nothing we can do about it anyway, and the breakpoint just wont hit. |
| 6512 | // |
| 6513 | void Debugger::LockAndSendBreakpointSetError(PATCH_UNORDERED_ARRAY * listUnbindablePatches) |
| 6514 | { |
| 6515 | CONTRACTL |
| 6516 | { |
| 6517 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 6518 | GC_TRIGGERS; |
| 6519 | } |
| 6520 | CONTRACTL_END; |
| 6521 | |
| 6522 | _ASSERTE(listUnbindablePatches != NULL); |
| 6523 | |
| 6524 | if (CORDBUnrecoverableError(this)) |
| 6525 | return; |
| 6526 | |
| 6527 | |
| 6528 | ULONG count = listUnbindablePatches->Count(); |
| 6529 | _ASSERTE(count > 0); // must send at least 1 event. |
| 6530 | |
| 6531 | |
| 6532 | Thread *thread = g_pEEInterface->GetThread(); |
| 6533 | // Note that the debugger lock is reentrant, so we may or may not hold it already. |
| 6534 | SENDIPCEVENT_BEGIN(this, thread); |
| 6535 | |
| 6536 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 6537 | |
| 6538 | for(ULONG i = 0; i < count; i++) |
| 6539 | { |
| 6540 | DebuggerControllerPatch *patch = listUnbindablePatches->Table()[i]; |
| 6541 | _ASSERTE(patch != NULL); |
| 6542 | |
| 6543 | // Only do this for breakpoint controllers |
| 6544 | DebuggerController *controller = patch->controller; |
| 6545 | |
| 6546 | if (controller->GetDCType() != DEBUGGER_CONTROLLER_BREAKPOINT) |
| 6547 | { |
| 6548 | continue; |
| 6549 | } |
| 6550 | |
| 6551 | LOG((LF_CORDB, LL_INFO10000, "D::LASBSE:\n" )); |
| 6552 | |
| 6553 | // Send a breakpoint set error event to the Right Side. |
| 6554 | InitIPCEvent(ipce, DB_IPCE_BREAKPOINT_SET_ERROR, thread, thread->GetDomain()); |
| 6555 | |
| 6556 | ipce->BreakpointSetErrorData.breakpointToken.Set(static_cast<DebuggerBreakpoint*> (controller)); |
| 6557 | |
| 6558 | // IPC event is now initialized, so we can send it over. |
| 6559 | m_pRCThread->SendIPCEvent(); |
| 6560 | } |
| 6561 | |
| 6562 | // Stop all Runtime threads |
| 6563 | TrapAllRuntimeThreads(); |
| 6564 | |
| 6565 | // This will block on the continue |
| 6566 | SENDIPCEVENT_END; |
| 6567 | |
| 6568 | } |
| 6569 | |
| 6570 | // |
| 6571 | // Called from the controller to lock the debugger for event |
| 6572 | // sending. This is called before controller events are sent, like |
| 6573 | // breakpoint, step complete, and thread started. |
| 6574 | // |
| 6575 | // Note that it's possible that the debugger detached (and destroyed our IPC |
| 6576 | // events) while we're waiting for our turn. |
| 6577 | // So Callers should check for that case. |
| 6578 | void Debugger::LockForEventSending(DebuggerLockHolder *dbgLockHolder) |
| 6579 | { |
| 6580 | CONTRACTL |
| 6581 | { |
| 6582 | NOTHROW; |
| 6583 | GC_NOTRIGGER; |
| 6584 | MODE_PREEMPTIVE; |
| 6585 | } |
| 6586 | CONTRACTL_END; |
| 6587 | |
| 6588 | // @todo - Force our parents to bump up the stop-count. That way they can |
| 6589 | // guarantee it's balanced. |
| 6590 | IncCantStopCount(); |
| 6591 | _ASSERTE(IsInCantStopRegion()); |
| 6592 | |
| 6593 | // What we need is for caller to get the debugger lock |
| 6594 | if (dbgLockHolder != NULL) |
| 6595 | { |
| 6596 | dbgLockHolder->Acquire(); |
| 6597 | } |
| 6598 | |
| 6599 | #ifdef _DEBUG |
| 6600 | // Track our TID. We're not re-entrant. |
| 6601 | //_ASSERTE(m_tidLockedForEventSending == 0); |
| 6602 | m_tidLockedForEventSending = GetCurrentThreadId(); |
| 6603 | #endif |
| 6604 | |
| 6605 | } |
| 6606 | |
| 6607 | // |
| 6608 | // Called from the controller to unlock the debugger from event |
| 6609 | // sending. This is called after controller events are sent, like |
| 6610 | // breakpoint, step complete, and thread started. |
| 6611 | // |
| 6612 | void Debugger::UnlockFromEventSending(DebuggerLockHolder *dbgLockHolder) |
| 6613 | { |
| 6614 | CONTRACTL |
| 6615 | { |
| 6616 | NOTHROW; |
| 6617 | GC_NOTRIGGER; |
| 6618 | MODE_PREEMPTIVE; |
| 6619 | } |
| 6620 | CONTRACTL_END; |
| 6621 | |
| 6622 | #ifdef _DEBUG |
| 6623 | //_ASSERTE(m_tidLockedForEventSending == GetCurrentThreadId()); |
| 6624 | m_tidLockedForEventSending = 0; |
| 6625 | #endif |
| 6626 | if (dbgLockHolder != NULL) |
| 6627 | { |
| 6628 | dbgLockHolder->Release(); |
| 6629 | } |
| 6630 | // @todo - Force our parents to bump up the stop-count. That way they can |
| 6631 | // guarantee it's balanced. |
| 6632 | _ASSERTE(IsInCantStopRegion()); |
| 6633 | DecCantStopCount(); |
| 6634 | } |
| 6635 | |
| 6636 | |
| 6637 | // |
| 6638 | // Called from the controller after all events have been sent for a |
| 6639 | // thread to sync the process. |
| 6640 | // |
| 6641 | void Debugger::SyncAllThreads(DebuggerLockHolder *dbgLockHolder) |
| 6642 | { |
| 6643 | CONTRACTL |
| 6644 | { |
| 6645 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 6646 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 6647 | } |
| 6648 | CONTRACTL_END; |
| 6649 | |
| 6650 | if (CORDBUnrecoverableError(this)) |
| 6651 | return; |
| 6652 | |
| 6653 | STRESS_LOG0(LF_CORDB, LL_INFO10000, "D::SAT: sync all threads.\n" ); |
| 6654 | |
| 6655 | Thread *pThread = g_pEEInterface->GetThread(); |
| 6656 | (void)pThread; //prevent "unused variable" error from GCC |
| 6657 | _ASSERTE((pThread && |
| 6658 | !pThread->m_fPreemptiveGCDisabled) || |
| 6659 | g_fInControlC); |
| 6660 | |
| 6661 | _ASSERTE(ThreadHoldsLock()); |
| 6662 | |
| 6663 | // Stop all Runtime threads |
| 6664 | TrapAllRuntimeThreads(); |
| 6665 | } |
| 6666 | |
| 6667 | //--------------------------------------------------------------------------------------- |
| 6668 | // Launch a debugger and then trigger a breakpoint (either managed or native) |
| 6669 | // |
| 6670 | // Arguments: |
| 6671 | // useManagedBPForManagedAttach - TRUE if we should stop with a managed breakpoint |
| 6672 | // when managed attached, FALSE if we should always |
| 6673 | // stop with a native breakpoint |
| 6674 | // pThread - the managed thread that attempts to launch the registered debugger |
| 6675 | // pExceptionInfo - the unhandled exception info |
| 6676 | // explicitUserRequest - TRUE if this attach is caused by a call to the Debugger.Launch() API. |
| 6677 | // |
| 6678 | // Returns: |
| 6679 | // S_OK on success. Else failure. |
| 6680 | // |
| 6681 | // Notes: |
| 6682 | // This function doesn't try to stop the launched native debugger by calling DebugBreak(). |
| 6683 | // It sends a breakpoint event only for managed debuggers. |
| 6684 | // |
| 6685 | HRESULT Debugger::LaunchDebuggerForUser(Thread * pThread, EXCEPTION_POINTERS * pExceptionInfo, |
| 6686 | BOOL useManagedBPForManagedAttach, BOOL explicitUserRequest) |
| 6687 | { |
| 6688 | WRAPPER_NO_CONTRACT; |
| 6689 | |
| 6690 | LOG((LF_CORDB, LL_INFO10000, "D::LDFU: Attaching Debugger.\n" )); |
| 6691 | |
| 6692 | // |
| 6693 | // Initiate a jit attach |
| 6694 | // |
| 6695 | JitAttach(pThread, pExceptionInfo, useManagedBPForManagedAttach, explicitUserRequest); |
| 6696 | |
| 6697 | if (useManagedBPForManagedAttach) |
| 6698 | { |
| 6699 | if(CORDebuggerAttached() && (g_pEEInterface->GetThread() != NULL)) |
| 6700 | { |
| 6701 | // |
| 6702 | // Send a managed-breakpoint. |
| 6703 | // |
| 6704 | SendUserBreakpointAndSynchronize(g_pEEInterface->GetThread()); |
| 6705 | } |
| 6706 | else if (!CORDebuggerAttached() && IsDebuggerPresent()) |
| 6707 | { |
| 6708 | // |
| 6709 | // If the registered debugger is not a managed debugger, send a native breakpoint |
| 6710 | // |
| 6711 | DebugBreak(); |
| 6712 | } |
| 6713 | } |
| 6714 | else if(!useManagedBPForManagedAttach) |
| 6715 | { |
| 6716 | // |
| 6717 | // Send a native breakpoint |
| 6718 | // |
| 6719 | DebugBreak(); |
| 6720 | } |
| 6721 | |
| 6722 | if (!IsDebuggerPresent()) |
| 6723 | { |
| 6724 | LOG((LF_CORDB, LL_ERROR, "D::LDFU: Failed to launch the debugger.\n" )); |
| 6725 | } |
| 6726 | |
| 6727 | return S_OK; |
| 6728 | } |
| 6729 | |
| 6730 | |
| 6731 | // The following JDI structures will be passed to a debugger on Vista. Because we do not know when the debugger |
| 6732 | // will be done looking at them, and there is at most one debugger attaching to the process, we always set them |
| 6733 | // once and leave them set without the risk of clobbering something we care about. |
| 6734 | JIT_DEBUG_INFO Debugger::s_DebuggerLaunchJitInfo = {0}; |
| 6735 | EXCEPTION_RECORD Debugger::s_DebuggerLaunchJitInfoExceptionRecord = {0}; |
| 6736 | CONTEXT Debugger::s_DebuggerLaunchJitInfoContext = {0}; |
| 6737 | |
| 6738 | //---------------------------------------------------------------------------- |
| 6739 | // |
| 6740 | // InitDebuggerLaunchJitInfo - initialize JDI structure on Vista |
| 6741 | // |
| 6742 | // Arguments: |
| 6743 | // pThread - the managed thread with the unhandled excpetion |
| 6744 | // pExceptionInfo - unhandled exception info |
| 6745 | // |
| 6746 | // Return Value: |
| 6747 | // None |
| 6748 | // |
| 6749 | //---------------------------------------------------------------------------- |
| 6750 | void Debugger::InitDebuggerLaunchJitInfo(Thread * pThread, EXCEPTION_POINTERS * pExceptionInfo) |
| 6751 | { |
| 6752 | LIMITED_METHOD_CONTRACT; |
| 6753 | |
| 6754 | _ASSERTE((pExceptionInfo != NULL) && |
| 6755 | (pExceptionInfo->ContextRecord != NULL) && |
| 6756 | (pExceptionInfo->ExceptionRecord != NULL)); |
| 6757 | |
| 6758 | if ((pExceptionInfo == NULL) || (pExceptionInfo->ContextRecord == NULL) || (pExceptionInfo->ExceptionRecord == NULL)) |
| 6759 | { |
| 6760 | return; |
| 6761 | } |
| 6762 | |
| 6763 | s_DebuggerLaunchJitInfoExceptionRecord = *pExceptionInfo->ExceptionRecord; |
| 6764 | s_DebuggerLaunchJitInfoContext = *pExceptionInfo->ContextRecord; |
| 6765 | |
| 6766 | s_DebuggerLaunchJitInfo.dwSize = sizeof(s_DebuggerLaunchJitInfo); |
| 6767 | s_DebuggerLaunchJitInfo.dwThreadID = pThread == NULL ? GetCurrentThreadId() : pThread->GetOSThreadId(); |
| 6768 | s_DebuggerLaunchJitInfo.lpExceptionRecord = reinterpret_cast<ULONG64>(&s_DebuggerLaunchJitInfoExceptionRecord); |
| 6769 | s_DebuggerLaunchJitInfo.lpContextRecord = reinterpret_cast<ULONG64>(&s_DebuggerLaunchJitInfoContext); |
| 6770 | s_DebuggerLaunchJitInfo.lpExceptionAddress = s_DebuggerLaunchJitInfoExceptionRecord.ExceptionAddress != NULL ? |
| 6771 | reinterpret_cast<ULONG64>(s_DebuggerLaunchJitInfoExceptionRecord.ExceptionAddress) : |
| 6772 | reinterpret_cast<ULONG64>(reinterpret_cast<PVOID>(GetIP(pExceptionInfo->ContextRecord))); |
| 6773 | |
| 6774 | #if defined(_TARGET_X86_) |
| 6775 | s_DebuggerLaunchJitInfo.dwProcessorArchitecture = PROCESSOR_ARCHITECTURE_INTEL; |
| 6776 | #elif defined(_TARGET_AMD64_) |
| 6777 | s_DebuggerLaunchJitInfo.dwProcessorArchitecture = PROCESSOR_ARCHITECTURE_AMD64; |
| 6778 | #elif defined(_TARGET_ARM_) |
| 6779 | s_DebuggerLaunchJitInfo.dwProcessorArchitecture = PROCESSOR_ARCHITECTURE_ARM; |
| 6780 | #elif defined(_TARGET_ARM64_) |
| 6781 | s_DebuggerLaunchJitInfo.dwProcessorArchitecture = PROCESSOR_ARCHITECTURE_ARM64; |
| 6782 | #else |
| 6783 | #error Unknown processor. |
| 6784 | #endif |
| 6785 | } |
| 6786 | |
| 6787 | |
| 6788 | //---------------------------------------------------------------------------- |
| 6789 | // |
| 6790 | // GetDebuggerLaunchJitInfo - retrieve the initialized JDI structure on Vista |
| 6791 | // |
| 6792 | // Arguments: |
| 6793 | // None |
| 6794 | // |
| 6795 | // Return Value: |
| 6796 | // JIT_DEBUG_INFO * - pointer to JDI structure |
| 6797 | // |
| 6798 | //---------------------------------------------------------------------------- |
| 6799 | JIT_DEBUG_INFO * Debugger::GetDebuggerLaunchJitInfo(void) |
| 6800 | { |
| 6801 | LIMITED_METHOD_CONTRACT; |
| 6802 | |
| 6803 | _ASSERTE((s_DebuggerLaunchJitInfo.lpExceptionAddress != NULL) && |
| 6804 | (s_DebuggerLaunchJitInfo.lpExceptionRecord != NULL) && |
| 6805 | (s_DebuggerLaunchJitInfo.lpContextRecord != NULL) && |
| 6806 | (((EXCEPTION_RECORD *)(s_DebuggerLaunchJitInfo.lpExceptionRecord))->ExceptionAddress != NULL)); |
| 6807 | |
| 6808 | return &s_DebuggerLaunchJitInfo; |
| 6809 | } |
| 6810 | #endif // !DACCESS_COMPILE |
| 6811 | |
| 6812 | |
| 6813 | // This function checks the registry for the debug launch setting upon encountering an exception or breakpoint. |
| 6814 | DebuggerLaunchSetting Debugger::GetDbgJITDebugLaunchSetting() |
| 6815 | { |
| 6816 | CONTRACTL |
| 6817 | { |
| 6818 | NOTHROW; |
| 6819 | GC_NOTRIGGER; |
| 6820 | } |
| 6821 | CONTRACTL_END; |
| 6822 | |
| 6823 | #if FEATURE_PAL |
| 6824 | DebuggerLaunchSetting setting = DLS_ATTACH_DEBUGGER; |
| 6825 | #else |
| 6826 | BOOL bAuto = FALSE; |
| 6827 | |
| 6828 | DebuggerLaunchSetting setting = DLS_ASK_USER; |
| 6829 | |
| 6830 | DWORD cchDbgFormat = MAX_LONGPATH; |
| 6831 | INDEBUG(DWORD cchOldDbgFormat = cchDbgFormat); |
| 6832 | |
| 6833 | #if defined(DACCESS_COMPILE) |
| 6834 | WCHAR * wszDbgFormat = new (nothrow) WCHAR[cchDbgFormat]; |
| 6835 | #else |
| 6836 | WCHAR * wszDbgFormat = new (interopsafe, nothrow) WCHAR[cchDbgFormat]; |
| 6837 | #endif // DACCESS_COMPILE |
| 6838 | |
| 6839 | if (wszDbgFormat == NULL) |
| 6840 | { |
| 6841 | return setting; |
| 6842 | } |
| 6843 | |
| 6844 | HRESULT hr = GetDebuggerSettingInfoWorker(wszDbgFormat, &cchDbgFormat, &bAuto); |
| 6845 | while (hr == HRESULT_FROM_WIN32(ERROR_INSUFFICIENT_BUFFER)) |
| 6846 | { |
| 6847 | _ASSERTE(cchDbgFormat > cchOldDbgFormat); |
| 6848 | INDEBUG(cchOldDbgFormat = cchDbgFormat); |
| 6849 | |
| 6850 | #if defined(DACCESS_COMPILE) |
| 6851 | delete [] wszDbgFormat; |
| 6852 | wszDbgFormat = new (nothrow) WCHAR[cchDbgFormat]; |
| 6853 | #else |
| 6854 | DeleteInteropSafe(wszDbgFormat); |
| 6855 | wszDbgFormat = new (interopsafe, nothrow) WCHAR[cchDbgFormat]; |
| 6856 | #endif // DACCESS_COMPILE |
| 6857 | |
| 6858 | if (wszDbgFormat == NULL) |
| 6859 | { |
| 6860 | return setting; |
| 6861 | } |
| 6862 | |
| 6863 | hr = GetDebuggerSettingInfoWorker(wszDbgFormat, &cchDbgFormat, &bAuto); |
| 6864 | } |
| 6865 | |
| 6866 | #if defined(DACCESS_COMPILE) |
| 6867 | delete [] wszDbgFormat; |
| 6868 | #else |
| 6869 | DeleteInteropSafe(wszDbgFormat); |
| 6870 | #endif // DACCESS_COMPILE |
| 6871 | |
| 6872 | if (SUCCEEDED(hr) && bAuto) |
| 6873 | { |
| 6874 | setting = DLS_ATTACH_DEBUGGER; |
| 6875 | } |
| 6876 | #endif // FEATURE_PAL |
| 6877 | |
| 6878 | return setting; |
| 6879 | } |
| 6880 | |
| 6881 | // Returns a bitfield reflecting the managed debugging state at the time of |
| 6882 | // the jit attach. |
| 6883 | CLR_DEBUGGING_PROCESS_FLAGS Debugger::GetAttachStateFlags() |
| 6884 | { |
| 6885 | LIMITED_METHOD_DAC_CONTRACT; |
| 6886 | ULONG flags = CLRJitAttachState; |
| 6887 | return (CLR_DEBUGGING_PROCESS_FLAGS)flags; |
| 6888 | } |
| 6889 | |
| 6890 | #ifndef DACCESS_COMPILE |
| 6891 | //----------------------------------------------------------------------------- |
| 6892 | // Get the full launch string for a jit debugger. |
| 6893 | // |
| 6894 | // If a jit-debugger is registed, then writes string into pStrArgsBuf and |
| 6895 | // return true. |
| 6896 | // |
| 6897 | // If no jit-debugger is registered, then return false. |
| 6898 | // |
| 6899 | // Throws on error (like OOM). |
| 6900 | //----------------------------------------------------------------------------- |
| 6901 | bool Debugger::GetCompleteDebuggerLaunchString(SString * pStrArgsBuf) |
| 6902 | { |
| 6903 | CONTRACTL |
| 6904 | { |
| 6905 | THROWS; |
| 6906 | GC_NOTRIGGER; |
| 6907 | } |
| 6908 | CONTRACTL_END; |
| 6909 | |
| 6910 | #ifndef FEATURE_PAL |
| 6911 | DWORD pid = GetCurrentProcessId(); |
| 6912 | |
| 6913 | SString ssDebuggerString; |
| 6914 | GetDebuggerSettingInfo(ssDebuggerString, NULL); |
| 6915 | |
| 6916 | if (ssDebuggerString.IsEmpty()) |
| 6917 | { |
| 6918 | // No jit-debugger available. Don't make one up. |
| 6919 | return false; |
| 6920 | } |
| 6921 | |
| 6922 | // There is no security concern to expect that the debug string we retrieve from HKLM follows a certain |
| 6923 | // format because changing HKLM keys requires admin priviledge. Padding with zeros is not a security mitigation, |
| 6924 | // but rather a forward looking compability measure. If future verions of Windows introduces more parameters for |
| 6925 | // JIT debugger launch, it is preferrable to pass zeros than other random values for those unsupported parameters. |
| 6926 | pStrArgsBuf->Printf(ssDebuggerString, pid, GetUnmanagedAttachEvent(), GetDebuggerLaunchJitInfo(), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); |
| 6927 | |
| 6928 | return true; |
| 6929 | #else // !FEATURE_PAL |
| 6930 | return false; |
| 6931 | #endif // !FEATURE_PAL |
| 6932 | } |
| 6933 | |
| 6934 | // Proxy code for EDA |
| 6935 | struct EnsureDebuggerAttachedParams |
| 6936 | { |
| 6937 | Debugger * m_pThis; |
| 6938 | HRESULT m_retval; |
| 6939 | PROCESS_INFORMATION * m_pProcessInfo; |
| 6940 | EnsureDebuggerAttachedParams() : |
| 6941 | m_pThis(NULL), m_retval(E_FAIL), m_pProcessInfo(NULL) {LIMITED_METHOD_CONTRACT; } |
| 6942 | }; |
| 6943 | |
| 6944 | // This is called by the helper thread |
| 6945 | void EDAHelperStub(EnsureDebuggerAttachedParams * p) |
| 6946 | { |
| 6947 | WRAPPER_NO_CONTRACT; |
| 6948 | |
| 6949 | p->m_retval = p->m_pThis->EDAHelper(p->m_pProcessInfo); |
| 6950 | } |
| 6951 | |
| 6952 | // This gets called just like the normal version, but it sends the call over to the helper thread |
| 6953 | HRESULT Debugger::EDAHelperProxy(PROCESS_INFORMATION * pProcessInfo) |
| 6954 | { |
| 6955 | CONTRACTL |
| 6956 | { |
| 6957 | NOTHROW; |
| 6958 | GC_TRIGGERS; |
| 6959 | } |
| 6960 | CONTRACTL_END; |
| 6961 | |
| 6962 | _ASSERTE(!ThisIsHelperThreadWorker()); |
| 6963 | _ASSERTE(ThreadHoldsLock()); |
| 6964 | |
| 6965 | HRESULT hr = LazyInitWrapper(); |
| 6966 | if (FAILED(hr)) |
| 6967 | { |
| 6968 | // We already stress logged this case. |
| 6969 | return hr; |
| 6970 | } |
| 6971 | |
| 6972 | |
| 6973 | if (!IsGuardPageGone()) |
| 6974 | { |
| 6975 | return EDAHelper(pProcessInfo); |
| 6976 | } |
| 6977 | |
| 6978 | EnsureDebuggerAttachedParams p; |
| 6979 | p.m_pThis = this; |
| 6980 | p.m_pProcessInfo = pProcessInfo; |
| 6981 | |
| 6982 | LOG((LF_CORDB, LL_INFO1000000, "D::EDAHelperProxy\n" )); |
| 6983 | m_pRCThread->DoFavor((FAVORCALLBACK) EDAHelperStub, &p); |
| 6984 | LOG((LF_CORDB, LL_INFO1000000, "D::EDAHelperProxy return\n" )); |
| 6985 | |
| 6986 | return p.m_retval; |
| 6987 | } |
| 6988 | |
| 6989 | // E_ABORT - if the attach was declined |
| 6990 | // S_OK - Jit-attach successfully started |
| 6991 | HRESULT Debugger::EDAHelper(PROCESS_INFORMATION *pProcessInfo) |
| 6992 | { |
| 6993 | CONTRACTL |
| 6994 | { |
| 6995 | NOTHROW; |
| 6996 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 6997 | |
| 6998 | PRECONDITION(ThisMaybeHelperThread()); // on helper if stackoverflow. |
| 6999 | } |
| 7000 | CONTRACTL_END; |
| 7001 | |
| 7002 | #ifndef FEATURE_PAL |
| 7003 | LOG((LF_CORDB, LL_INFO10000, "D::EDA: thread 0x%x is launching the debugger.\n" , GetCurrentThreadId())); |
| 7004 | |
| 7005 | _ASSERTE(HasLazyData()); |
| 7006 | |
| 7007 | // Another potential hang. This may get run on the helper if we have a stack overflow. |
| 7008 | // Hopefully the odds of 1 thread hitting a stack overflow while another is stuck holding the heap |
| 7009 | // lock is very small. |
| 7010 | SUPPRESS_ALLOCATION_ASSERTS_IN_THIS_SCOPE; |
| 7011 | |
| 7012 | BOOL fCreateSucceeded = FALSE; |
| 7013 | |
| 7014 | StackSString strDbgCommand; |
| 7015 | const WCHAR * wszDbgCommand = NULL; |
| 7016 | SString strCurrentDir; |
| 7017 | const WCHAR * wszCurrentDir = NULL; |
| 7018 | |
| 7019 | EX_TRY |
| 7020 | { |
| 7021 | |
| 7022 | // Get the debugger to launch. The returned string is via the strDbgCommand out param. Throws on error. |
| 7023 | bool fHasDebugger = GetCompleteDebuggerLaunchString(&strDbgCommand); |
| 7024 | if (fHasDebugger) |
| 7025 | { |
| 7026 | wszDbgCommand = strDbgCommand.GetUnicode(); |
| 7027 | _ASSERTE(wszDbgCommand != NULL); // would have thrown on oom. |
| 7028 | |
| 7029 | LOG((LF_CORDB, LL_INFO10000, "D::EDA: launching with command [%S]\n" , wszDbgCommand)); |
| 7030 | |
| 7031 | ClrGetCurrentDirectory(strCurrentDir); |
| 7032 | wszCurrentDir = strCurrentDir.GetUnicode(); |
| 7033 | } |
| 7034 | } |
| 7035 | EX_CATCH |
| 7036 | { |
| 7037 | } |
| 7038 | EX_END_CATCH(SwallowAllExceptions); |
| 7039 | |
| 7040 | STARTUPINFOW startupInfo = {0}; |
| 7041 | startupInfo.cb = sizeof(STARTUPINFOW); |
| 7042 | |
| 7043 | DWORD errCreate = 0; |
| 7044 | |
| 7045 | if (wszDbgCommand != NULL) |
| 7046 | { |
| 7047 | // Create the debugger process |
| 7048 | // When we are launching an debugger, we need to let the child process inherit our handles. |
| 7049 | // This is necessary for the debugger to signal us that the attach is complete. |
| 7050 | fCreateSucceeded = WszCreateProcess(NULL, const_cast<WCHAR*> (wszDbgCommand), |
| 7051 | NULL, NULL, |
| 7052 | TRUE, |
| 7053 | CREATE_NEW_CONSOLE, |
| 7054 | NULL, wszCurrentDir, |
| 7055 | &startupInfo, |
| 7056 | pProcessInfo); |
| 7057 | errCreate = GetLastError(); |
| 7058 | } |
| 7059 | |
| 7060 | if (!fCreateSucceeded) |
| 7061 | { |
| 7062 | LOG((LF_CORDB, LL_INFO10000, "D::EDA: debugger did not launch successfully.\n" )); |
| 7063 | return E_ABORT; |
| 7064 | } |
| 7065 | |
| 7066 | LOG((LF_CORDB, LL_INFO10000, "D::EDA: debugger launched successfully.\n" )); |
| 7067 | return S_OK; |
| 7068 | #else // !FEATURE_PAL |
| 7069 | return E_ABORT; |
| 7070 | #endif // !FEATURE_PAL |
| 7071 | } |
| 7072 | |
| 7073 | // --------------------------------------------------------------------------------------------------------------------- |
| 7074 | // This function decides who wins the race for any jit attach and marks the appropriate state that a jit |
| 7075 | // attach is in progress. |
| 7076 | // |
| 7077 | // Arguments |
| 7078 | // willSendManagedEvent - indicates whether or not we plan to send a managed debug event after the jit attach |
| 7079 | // explicitUserRequest - TRUE if this attach is caused by a call to the Debugger.Launch() API. |
| 7080 | // |
| 7081 | // Returns |
| 7082 | // TRUE - if some other thread already has jit attach in progress -> this thread should block until that is complete |
| 7083 | // FALSE - this is the first thread to jit attach -> this thread should launch the debugger |
| 7084 | // |
| 7085 | // |
| 7086 | BOOL Debugger::PreJitAttach(BOOL willSendManagedEvent, BOOL willLaunchDebugger, BOOL explicitUserRequest) |
| 7087 | { |
| 7088 | CONTRACTL |
| 7089 | { |
| 7090 | NOTHROW; |
| 7091 | GC_NOTRIGGER; |
| 7092 | MODE_PREEMPTIVE; |
| 7093 | PRECONDITION(!ThisIsHelperThreadWorker()); |
| 7094 | } |
| 7095 | CONTRACTL_END; |
| 7096 | |
| 7097 | LOG( (LF_CORDB, LL_INFO10000, "D::PreJA: Entering\n" ) ); |
| 7098 | |
| 7099 | // Multiple threads may be calling this, so need to take the lock. |
| 7100 | if(!m_jitAttachInProgress) |
| 7101 | { |
| 7102 | // TODO: This is a known deadlock! Debugger::PreJitAttach is called during WatsonLastChance. |
| 7103 | // If the event (exception/crash) happens while this thread is holding the ThreadStore |
| 7104 | // lock, we may deadlock if another thread holds the DebuggerMutex and is waiting on |
| 7105 | // the ThreadStore lock. The DebuggerMutex has to be broken into two smaller locks |
| 7106 | // so that you can take that lock here when holding the ThreadStore lock. |
| 7107 | DebuggerLockHolder dbgLockHolder(this); |
| 7108 | |
| 7109 | if (!m_jitAttachInProgress) |
| 7110 | { |
| 7111 | m_jitAttachInProgress = TRUE; |
| 7112 | m_launchingDebugger = willLaunchDebugger; |
| 7113 | CLRJitAttachState = (willSendManagedEvent ? CLR_DEBUGGING_MANAGED_EVENT_PENDING : 0) | (explicitUserRequest ? CLR_DEBUGGING_MANAGED_EVENT_DEBUGGER_LAUNCH : 0); |
| 7114 | ResetEvent(GetUnmanagedAttachEvent()); |
| 7115 | ResetEvent(GetAttachEvent()); |
| 7116 | LOG( (LF_CORDB, LL_INFO10000, "D::PreJA: Leaving - first thread\n" ) ); |
| 7117 | return TRUE; |
| 7118 | } |
| 7119 | } |
| 7120 | |
| 7121 | LOG( (LF_CORDB, LL_INFO10000, "D::PreJA: Leaving - following thread\n" ) ); |
| 7122 | return FALSE; |
| 7123 | } |
| 7124 | |
| 7125 | //--------------------------------------------------------------------------------------------------------------------- |
| 7126 | // This function gets the jit debugger launched and waits for the native attach to complete |
| 7127 | // Make sure you called PreJitAttach and it returned TRUE before you call this |
| 7128 | // |
| 7129 | // Arguments: |
| 7130 | // pThread - the managed thread with the unhandled excpetion |
| 7131 | // pExceptionInfo - the unhandled exception info |
| 7132 | // |
| 7133 | // Returns: |
| 7134 | // S_OK if the debugger was launched successfully and a failing HRESULT otherwise |
| 7135 | // |
| 7136 | HRESULT Debugger::LaunchJitDebuggerAndNativeAttach(Thread * pThread, EXCEPTION_POINTERS * pExceptionInfo) |
| 7137 | { |
| 7138 | CONTRACTL |
| 7139 | { |
| 7140 | NOTHROW; |
| 7141 | GC_TRIGGERS; |
| 7142 | MODE_PREEMPTIVE; |
| 7143 | PRECONDITION(!ThisIsHelperThreadWorker()); |
| 7144 | } |
| 7145 | CONTRACTL_END; |
| 7146 | |
| 7147 | // You need to have called PreJitAttach first to determine which thread gets to launch the debugger |
| 7148 | _ASSERTE(m_jitAttachInProgress); |
| 7149 | |
| 7150 | LOG( (LF_CORDB, LL_INFO10000, "D::LJDANA: Entering\n" ) ); |
| 7151 | PROCESS_INFORMATION processInfo = {0}; |
| 7152 | DebuggerLockHolder dbgLockHolder(this); |
| 7153 | |
| 7154 | // <TODO> |
| 7155 | // If the JIT debugger failed to launch or if there is no JIT debugger, EDAHelperProxy will |
| 7156 | // switch to preemptive GC mode to display a dialog to the user indicating the JIT debugger |
| 7157 | // was unavailable. There are some rare cases where this could cause a deadlock with the |
| 7158 | // debugger lock; however these are rare enough that fixing this doesn't meet the bar for |
| 7159 | // Whidbey at this point. We might want to revisit this later however. |
| 7160 | // </TODO> |
| 7161 | CONTRACT_VIOLATION(GCViolation); |
| 7162 | |
| 7163 | { |
| 7164 | LOG((LF_CORDB, LL_INFO1000, "D::EDA: Initialize JDI.\n" )); |
| 7165 | |
| 7166 | EXCEPTION_POINTERS exceptionPointer; |
| 7167 | EXCEPTION_RECORD exceptionRecord; |
| 7168 | CONTEXT context; |
| 7169 | |
| 7170 | if (pExceptionInfo == NULL) |
| 7171 | { |
| 7172 | ZeroMemory(&exceptionPointer, sizeof(exceptionPointer)); |
| 7173 | ZeroMemory(&exceptionRecord, sizeof(exceptionRecord)); |
| 7174 | ZeroMemory(&context, sizeof(context)); |
| 7175 | |
| 7176 | context.ContextFlags = CONTEXT_CONTROL; |
| 7177 | ClrCaptureContext(&context); |
| 7178 | |
| 7179 | exceptionRecord.ExceptionAddress = reinterpret_cast<PVOID>(GetIP(&context)); |
| 7180 | exceptionPointer.ContextRecord = &context; |
| 7181 | exceptionPointer.ExceptionRecord = &exceptionRecord; |
| 7182 | |
| 7183 | pExceptionInfo = &exceptionPointer; |
| 7184 | } |
| 7185 | |
| 7186 | InitDebuggerLaunchJitInfo(pThread, pExceptionInfo); |
| 7187 | } |
| 7188 | |
| 7189 | // This will make the CreateProcess call to create the debugger process. |
| 7190 | // We then expect that the debugger process will turn around and attach to us. |
| 7191 | HRESULT hr = EDAHelperProxy(&processInfo); |
| 7192 | if(FAILED(hr)) |
| 7193 | { |
| 7194 | return hr; |
| 7195 | } |
| 7196 | |
| 7197 | LOG((LF_CORDB, LL_INFO10000, "D::LJDANA: waiting on m_exUnmanagedAttachEvent and debugger's process handle\n" )); |
| 7198 | DWORD dwHandles = 2; |
| 7199 | HANDLE arrHandles[2]; |
| 7200 | arrHandles[0] = GetUnmanagedAttachEvent(); |
| 7201 | arrHandles[1] = processInfo.hProcess; |
| 7202 | |
| 7203 | // Let the helper thread do the attach logic for us and wait for the |
| 7204 | // attach event. Must release the lock before blocking on a wait. |
| 7205 | dbgLockHolder.Release(); |
| 7206 | |
| 7207 | // Wait for one or the other to be set. Multiple threads could be waiting here. |
| 7208 | // The events are manual events, so when they go high, all threads will be released. |
| 7209 | DWORD res = WaitForMultipleObjectsEx(dwHandles, arrHandles, FALSE, INFINITE, FALSE); |
| 7210 | |
| 7211 | // We no long need to keep handles to the debugger process. |
| 7212 | CloseHandle(processInfo.hProcess); |
| 7213 | CloseHandle(processInfo.hThread); |
| 7214 | |
| 7215 | // Indicate to the caller that the attach was aborted |
| 7216 | if (res == WAIT_OBJECT_0 + 1) |
| 7217 | { |
| 7218 | LOG((LF_CORDB, LL_INFO10000, "D::LJDANA: Debugger process is unexpectedly terminated!\n" )); |
| 7219 | return E_FAIL; |
| 7220 | } |
| 7221 | |
| 7222 | // Otherwise, attach was successful (Note, only native attach is done so far) |
| 7223 | _ASSERTE((res == WAIT_OBJECT_0) && "WaitForMultipleObjectsEx failed!" ); |
| 7224 | LOG( (LF_CORDB, LL_INFO10000, "D::LJDANA: Leaving\n" ) ); |
| 7225 | return S_OK; |
| 7226 | |
| 7227 | } |
| 7228 | |
| 7229 | // Blocks until the debugger completes jit attach |
| 7230 | void Debugger::WaitForDebuggerAttach() |
| 7231 | { |
| 7232 | LIMITED_METHOD_CONTRACT; |
| 7233 | |
| 7234 | LOG( (LF_CORDB, LL_INFO10000, "D::WFDA:Entering\n" ) ); |
| 7235 | |
| 7236 | // if this thread previously called LaunchDebuggerAndNativeAttach then this wait is spurious, |
| 7237 | // the event is still set and it continues immediately. If this is an auxilliary thread however |
| 7238 | // then the wait is necessary |
| 7239 | // If we are not launching the debugger (e.g. unhandled exception on Win7), then we should not |
| 7240 | // wait on the unmanaged attach event. If the debugger is launched by the OS, then the unmanaged |
| 7241 | // attach event passed to the debugger is created by the OS, not by us, so our event will never |
| 7242 | // be signaled. |
| 7243 | if (m_launchingDebugger) |
| 7244 | { |
| 7245 | WaitForSingleObject(GetUnmanagedAttachEvent(), INFINITE); |
| 7246 | } |
| 7247 | |
| 7248 | // Wait until the pending managed debugger attach is completed |
| 7249 | if (CORDebuggerPendingAttach() && !CORDebuggerAttached()) |
| 7250 | { |
| 7251 | LOG( (LF_CORDB, LL_INFO10000, "D::WFDA: Waiting for managed attach too\n" ) ); |
| 7252 | WaitForSingleObject(GetAttachEvent(), INFINITE); |
| 7253 | } |
| 7254 | |
| 7255 | // We can't reset the event here because some threads may |
| 7256 | // be just about to wait on it. If we reset it before the |
| 7257 | // other threads hit the wait, they'll block. |
| 7258 | |
| 7259 | // We have an innate race here that can't easily fix. The best |
| 7260 | // we can do is have a super small window (by moving the reset as |
| 7261 | // far out this making it very unlikely that a thread will |
| 7262 | // hit the window. |
| 7263 | |
| 7264 | LOG( (LF_CORDB, LL_INFO10000, "D::WFDA: Leaving\n" ) ); |
| 7265 | } |
| 7266 | |
| 7267 | // Cleans up after jit attach is complete |
| 7268 | void Debugger::PostJitAttach() |
| 7269 | { |
| 7270 | CONTRACTL |
| 7271 | { |
| 7272 | NOTHROW; |
| 7273 | GC_NOTRIGGER; |
| 7274 | MODE_PREEMPTIVE; |
| 7275 | PRECONDITION(!ThisIsHelperThreadWorker()); |
| 7276 | } |
| 7277 | CONTRACTL_END; |
| 7278 | |
| 7279 | LOG( (LF_CORDB, LL_INFO10000, "D::PostJA: Entering\n" ) ); |
| 7280 | // Multiple threads may be calling this, so need to take the lock. |
| 7281 | DebuggerLockHolder dbgLockHolder(this); |
| 7282 | |
| 7283 | // clear the attaching flags which allows other threads to initiate jit attach if needed |
| 7284 | m_jitAttachInProgress = FALSE; |
| 7285 | m_launchingDebugger = FALSE; |
| 7286 | CLRJitAttachState = 0; |
| 7287 | |
| 7288 | // set the attaching events to unblock other threads waiting on this attach |
| 7289 | // regardless of whether or not it completed |
| 7290 | SetEvent(GetUnmanagedAttachEvent()); |
| 7291 | SetEvent(GetAttachEvent()); |
| 7292 | LOG( (LF_CORDB, LL_INFO10000, "D::PostJA: Leaving\n" ) ); |
| 7293 | } |
| 7294 | |
| 7295 | //--------------------------------------------------------------------------------------- |
| 7296 | // Launches a debugger and blocks waiting for it to either attach or abort the attach. |
| 7297 | // |
| 7298 | // Arguments: |
| 7299 | // pThread - the managed thread with the unhandled excpetion |
| 7300 | // pExceptionInfo - the unhandled exception info |
| 7301 | // willSendManagedEvent - TRUE if after getting attached we will send a managed debug event |
| 7302 | // explicitUserRequest - TRUE if this attach is caused by a call to the Debugger.Launch() API. |
| 7303 | // |
| 7304 | // Returns: |
| 7305 | // None. Callers can requery if a debugger is attached. |
| 7306 | // |
| 7307 | // Assumptions: |
| 7308 | // This may be called by multiple threads, each firing their own debug events. This function will handle locking. |
| 7309 | // Thus this could block for an arbitrary length of time: |
| 7310 | // - may need to prompt the user to decide if an attach occurs. |
| 7311 | // - may block waiting for a debugger to attach. |
| 7312 | // |
| 7313 | // Notes: |
| 7314 | // The launch string is retrieved from code:GetDebuggerSettingInfo. |
| 7315 | // This will not do a sync-complete. Instead, the caller can send a debug event (the jit-attach |
| 7316 | // event, such as a User-breakpoint or unhandled exception) and that can send a sync-complete, |
| 7317 | // just as if the debugger was always attached. This ensures that the jit-attach event is in the |
| 7318 | // same callback queue as any faked-up events that the Right-side Shim creates. |
| 7319 | // |
| 7320 | void Debugger::JitAttach(Thread * pThread, EXCEPTION_POINTERS * pExceptionInfo, BOOL willSendManagedEvent, BOOL explicitUserRequest) |
| 7321 | { |
| 7322 | CONTRACTL |
| 7323 | { |
| 7324 | NOTHROW; |
| 7325 | GC_TRIGGERS; |
| 7326 | MODE_ANY; |
| 7327 | |
| 7328 | PRECONDITION(!ThisIsHelperThreadWorker()); // Must be a managed thread |
| 7329 | } |
| 7330 | CONTRACTL_END; |
| 7331 | |
| 7332 | // Don't do anything if there is a native debugger already attached or the debugging support has been disabled. |
| 7333 | if (IsDebuggerPresent() || m_pRCThread == NULL) |
| 7334 | return; |
| 7335 | |
| 7336 | GCX_PREEMP_EEINTERFACE_TOGGLE_IFTHREAD(); |
| 7337 | |
| 7338 | EnsureDebuggerAttached(pThread, pExceptionInfo, willSendManagedEvent, explicitUserRequest); |
| 7339 | } |
| 7340 | |
| 7341 | //----------------------------------------------------------------------------- |
| 7342 | // Ensure that a debugger is attached. Will jit-attach if needed. |
| 7343 | // |
| 7344 | // Arguments |
| 7345 | // pThread - the managed thread with the unhandled excpetion |
| 7346 | // pExceptionInfo - the unhandled exception info |
| 7347 | // willSendManagedEvent - true if after getting (or staying) attached we will send |
| 7348 | // a managed debug event |
| 7349 | // explicitUserRequest - true if this attach is caused by a call to the |
| 7350 | // Debugger.Launch() API. |
| 7351 | // |
| 7352 | // Returns: |
| 7353 | // None. Either a debugger is attached or it is not. |
| 7354 | // |
| 7355 | // Notes: |
| 7356 | // There are several intermediate possible outcomes: |
| 7357 | // - Debugger already attached before this was called. |
| 7358 | // - JIT-atttach debugger spawned, and attached successfully. |
| 7359 | // - JIT-attach debugger spawned, but declined to attach. |
| 7360 | // - Failed to spawn jit-attach debugger. |
| 7361 | // |
| 7362 | // Ultimately, the only thing that matters at the end is whether a debugger |
| 7363 | // is now attached, which is retreived via CORDebuggerAttached(). |
| 7364 | //----------------------------------------------------------------------------- |
| 7365 | void Debugger::EnsureDebuggerAttached(Thread * pThread, EXCEPTION_POINTERS * pExceptionInfo, BOOL willSendManagedEvent, BOOL explicitUserRequest) |
| 7366 | { |
| 7367 | CONTRACTL |
| 7368 | { |
| 7369 | NOTHROW; |
| 7370 | GC_TRIGGERS; |
| 7371 | MODE_PREEMPTIVE; |
| 7372 | PRECONDITION(!ThisIsHelperThreadWorker()); |
| 7373 | } |
| 7374 | CONTRACTL_END; |
| 7375 | |
| 7376 | LOG( (LF_CORDB,LL_INFO10000,"D::EDA\n" ) ); |
| 7377 | |
| 7378 | HRESULT hr = S_OK; |
| 7379 | |
| 7380 | // We could be in three states: |
| 7381 | // 1) no debugger attached |
| 7382 | // 2) native attached but not managed (yet?) |
| 7383 | // 3) native attached and managed |
| 7384 | |
| 7385 | |
| 7386 | // There is a race condition here that can be hit if multiple threads |
| 7387 | // were to trigger jit attach at the right time |
| 7388 | // Thread 1 starts jit attach |
| 7389 | // Thread 2 also starts jit attach and gets to waiting for the attach complete |
| 7390 | // Thread 1 rapidly completes the jit attach then starts it again |
| 7391 | // Thread 2 may still be waiting from the first jit attach at this point |
| 7392 | // |
| 7393 | // Note that this isn't all that bad because if the debugger hasn't actually detached |
| 7394 | // in the middle then the second jit attach will complete almost instantly and thread 2 |
| 7395 | // is unblocked. If the debugger did detach in the middle then it seems reasonable for |
| 7396 | // thread 2 to continue to wait until until the debugger is attached once again for the |
| 7397 | // second attach. Basically if one jit attach completes and restarts fast enough it might |
| 7398 | // just go unnoticed by some threads and it will be as if it never happened. Doesn't seem |
| 7399 | // that bad as long as we know another jit attach is again in progress. |
| 7400 | |
| 7401 | BOOL startedJitAttach = FALSE; |
| 7402 | |
| 7403 | // First check to see if we need to launch the debugger ourselves |
| 7404 | if(PreJitAttach(willSendManagedEvent, TRUE, explicitUserRequest)) |
| 7405 | { |
| 7406 | // if the debugger is already attached then we can't launch one |
| 7407 | // and whatever attach state we are in is just what we get |
| 7408 | if(IsDebuggerPresent()) |
| 7409 | { |
| 7410 | // unblock other threads waiting on our attach and clean up |
| 7411 | PostJitAttach(); |
| 7412 | return; |
| 7413 | } |
| 7414 | else |
| 7415 | { |
| 7416 | hr = LaunchJitDebuggerAndNativeAttach(pThread, pExceptionInfo); |
| 7417 | if(FAILED(hr)) |
| 7418 | { |
| 7419 | // unblock other threads waiting on our attach and clean up |
| 7420 | PostJitAttach(); |
| 7421 | return; |
| 7422 | } |
| 7423 | } |
| 7424 | startedJitAttach = TRUE; |
| 7425 | } |
| 7426 | |
| 7427 | // at this point someone should have launched the native debugger and |
| 7428 | // it is somewhere between not attached and attach complete |
| 7429 | // (it might have even been completely attached before this function even started) |
| 7430 | // step 2 - wait for the attach to complete |
| 7431 | WaitForDebuggerAttach(); |
| 7432 | |
| 7433 | // step 3 - if we initiated then we also cleanup |
| 7434 | if(startedJitAttach) |
| 7435 | PostJitAttach(); |
| 7436 | LOG( (LF_CORDB, LL_INFO10000, "D::EDA:Leaving\n" ) ); |
| 7437 | } |
| 7438 | |
| 7439 | |
| 7440 | // Proxy code for AttachDebuggerForBreakpoint |
| 7441 | // Structure used in the proxy function callback |
| 7442 | struct SendExceptionOnHelperThreadParams |
| 7443 | { |
| 7444 | Debugger *m_pThis; |
| 7445 | HRESULT m_retval; |
| 7446 | Thread *m_pThread; |
| 7447 | OBJECTHANDLE m_exceptionHandle; |
| 7448 | bool m_continuable; |
| 7449 | FramePointer m_framePointer; |
| 7450 | SIZE_T m_nOffset; |
| 7451 | CorDebugExceptionCallbackType m_eventType; |
| 7452 | DWORD m_dwFlags; |
| 7453 | |
| 7454 | |
| 7455 | SendExceptionOnHelperThreadParams() : |
| 7456 | m_pThis(NULL), |
| 7457 | m_retval(S_OK), |
| 7458 | m_pThread(NULL) |
| 7459 | {LIMITED_METHOD_CONTRACT; } |
| 7460 | }; |
| 7461 | |
| 7462 | //************************************************************************** |
| 7463 | // This function sends Exception and ExceptionCallback2 event. |
| 7464 | // |
| 7465 | // Arguments: |
| 7466 | // pThread : managed thread which exception takes place |
| 7467 | // exceptionHandle : handle to the managed exception object (usually |
| 7468 | // something derived from System.Exception) |
| 7469 | // fContinuable : true iff continuable |
| 7470 | // framePointer : frame pointer associated with callback. |
| 7471 | // nOffset : il offset associated with callback. |
| 7472 | // eventType : type of callback |
| 7473 | // dwFlags : additional flags (see CorDebugExceptionFlags). |
| 7474 | // |
| 7475 | // Returns: |
| 7476 | // S_OK on sucess. Else some error. May also throw. |
| 7477 | // |
| 7478 | // Notes: |
| 7479 | // This is a helper for code:Debugger.SendExceptionEventsWorker. |
| 7480 | // See code:Debugger.SendException for more details about parameters. |
| 7481 | // This is always called on a managed thread (never the helper thread) |
| 7482 | // This will synchronize and block. |
| 7483 | //************************************************************************** |
| 7484 | HRESULT Debugger::SendExceptionHelperAndBlock( |
| 7485 | Thread *pThread, |
| 7486 | OBJECTHANDLE exceptionHandle, |
| 7487 | bool fContinuable, |
| 7488 | FramePointer framePointer, |
| 7489 | SIZE_T nOffset, |
| 7490 | CorDebugExceptionCallbackType eventType, |
| 7491 | DWORD dwFlags) |
| 7492 | |
| 7493 | { |
| 7494 | CONTRACTL |
| 7495 | { |
| 7496 | THROWS; |
| 7497 | GC_TRIGGERS; |
| 7498 | MODE_ANY; |
| 7499 | |
| 7500 | PRECONDITION(CheckPointer(pThread)); |
| 7501 | } |
| 7502 | CONTRACTL_END; |
| 7503 | |
| 7504 | HRESULT hr = S_OK; |
| 7505 | |
| 7506 | // This is a normal event to send from LS to RS |
| 7507 | SENDIPCEVENT_BEGIN(this, pThread); |
| 7508 | |
| 7509 | // This function can be called on helper thread or managed thread. |
| 7510 | // However, we should be holding locks upon entry |
| 7511 | |
| 7512 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 7513 | |
| 7514 | // |
| 7515 | // Send pre-Whidbey EXCEPTION IPC event. |
| 7516 | // |
| 7517 | InitIPCEvent(ipce, DB_IPCE_EXCEPTION, pThread, pThread->GetDomain()); |
| 7518 | |
| 7519 | ipce->Exception.vmExceptionHandle.SetRawPtr(exceptionHandle); |
| 7520 | ipce->Exception.firstChance = (eventType == DEBUG_EXCEPTION_FIRST_CHANCE); |
| 7521 | ipce->Exception.continuable = fContinuable; |
| 7522 | hr = m_pRCThread->SendIPCEvent(); |
| 7523 | |
| 7524 | _ASSERTE(SUCCEEDED(hr) && "D::SE: Send ExceptionCallback event failed." ); |
| 7525 | |
| 7526 | // |
| 7527 | // Send Whidbey EXCEPTION IPC event. |
| 7528 | // |
| 7529 | InitIPCEvent(ipce, DB_IPCE_EXCEPTION_CALLBACK2, pThread, pThread->GetDomain()); |
| 7530 | |
| 7531 | ipce->ExceptionCallback2.framePointer = framePointer; |
| 7532 | ipce->ExceptionCallback2.eventType = eventType; |
| 7533 | ipce->ExceptionCallback2.nOffset = nOffset; |
| 7534 | ipce->ExceptionCallback2.dwFlags = dwFlags; |
| 7535 | ipce->ExceptionCallback2.vmExceptionHandle.SetRawPtr(exceptionHandle); |
| 7536 | |
| 7537 | LOG((LF_CORDB, LL_INFO10000, "D::SE: sending ExceptionCallback2 event" )); |
| 7538 | hr = m_pRCThread->SendIPCEvent(); |
| 7539 | |
| 7540 | if (eventType == DEBUG_EXCEPTION_FIRST_CHANCE) |
| 7541 | { |
| 7542 | pThread->GetExceptionState()->GetFlags()->SetSentDebugFirstChance(); |
| 7543 | } |
| 7544 | else |
| 7545 | { |
| 7546 | _ASSERTE(eventType == DEBUG_EXCEPTION_UNHANDLED); |
| 7547 | } |
| 7548 | |
| 7549 | _ASSERTE(SUCCEEDED(hr) && "D::SE: Send ExceptionCallback2 event failed." ); |
| 7550 | |
| 7551 | if (SUCCEEDED(hr)) |
| 7552 | { |
| 7553 | // Stop all Runtime threads |
| 7554 | TrapAllRuntimeThreads(); |
| 7555 | } |
| 7556 | |
| 7557 | // Let other Runtime threads handle their events. |
| 7558 | SENDIPCEVENT_END; |
| 7559 | |
| 7560 | return hr; |
| 7561 | |
| 7562 | } |
| 7563 | |
| 7564 | // Send various first-chance / unhandled exception events. |
| 7565 | // |
| 7566 | // Assumptions: |
| 7567 | // Caller has already determined that we want to send exception events. |
| 7568 | // |
| 7569 | // Notes: |
| 7570 | // This is a helper function for code:Debugger.SendException |
| 7571 | void Debugger::SendExceptionEventsWorker( |
| 7572 | Thread * pThread, |
| 7573 | bool fFirstChance, |
| 7574 | bool fIsInterceptable, |
| 7575 | bool fContinuable, |
| 7576 | SIZE_T currentIP, |
| 7577 | FramePointer framePointer, |
| 7578 | bool atSafePlace) |
| 7579 | { |
| 7580 | HRESULT hr = S_OK; |
| 7581 | |
| 7582 | ThreadExceptionState* pExState = pThread->GetExceptionState(); |
| 7583 | // |
| 7584 | // Figure out parameters to the IPC events. |
| 7585 | // |
| 7586 | const BYTE *ip; |
| 7587 | |
| 7588 | SIZE_T nOffset = (SIZE_T)ICorDebugInfo::NO_MAPPING; |
| 7589 | DebuggerMethodInfo *pDebugMethodInfo = NULL; |
| 7590 | |
| 7591 | // If we're passed a zero IP or SP, then go to the ThreadExceptionState on the thread to get the data. Note: |
| 7592 | // we can only do this if there is a context in the pExState. There are cases (most notably the |
| 7593 | // EEPolicy::HandleFatalError case) where we don't have that. So we just leave the IP/SP 0. |
| 7594 | if ((currentIP == 0) && (pExState->GetContextRecord() != NULL)) |
| 7595 | { |
| 7596 | ip = (BYTE *)GetIP(pExState->GetContextRecord()); |
| 7597 | } |
| 7598 | else |
| 7599 | { |
| 7600 | ip = (BYTE *)currentIP; |
| 7601 | } |
| 7602 | |
| 7603 | if (g_pEEInterface->IsManagedNativeCode(ip)) |
| 7604 | { |
| 7605 | |
| 7606 | MethodDesc *pMethodDesc = g_pEEInterface->GetNativeCodeMethodDesc(PCODE(ip)); |
| 7607 | _ASSERTE(pMethodDesc != NULL); |
| 7608 | |
| 7609 | if (pMethodDesc != NULL) |
| 7610 | { |
| 7611 | DebuggerJitInfo *pDebugJitInfo = GetJitInfo(pMethodDesc, ip, &pDebugMethodInfo); |
| 7612 | |
| 7613 | if (pDebugJitInfo != NULL) |
| 7614 | { |
| 7615 | SIZE_T nativeOffset = CodeRegionInfo::GetCodeRegionInfo(pDebugJitInfo, pMethodDesc).AddressToOffset(ip); |
| 7616 | CorDebugMappingResult mapResult; |
| 7617 | DWORD which; |
| 7618 | |
| 7619 | nOffset = pDebugJitInfo->MapNativeOffsetToIL(nativeOffset, &mapResult, &which); |
| 7620 | } |
| 7621 | } |
| 7622 | } |
| 7623 | |
| 7624 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 7625 | |
| 7626 | if (fFirstChance) |
| 7627 | { |
| 7628 | // We can call into this method when there is no exception in progress to alert |
| 7629 | // the debugger to a stack overflow, however that case should never specify first |
| 7630 | // chance. An exception must be in progress to check the flags on the exception state |
| 7631 | _ASSERTE(pThread->IsExceptionInProgress()); |
| 7632 | |
| 7633 | // |
| 7634 | // Send the first chance exception if we have not already and if it is not suppressed |
| 7635 | // |
| 7636 | if (m_sendExceptionsOutsideOfJMC && !pExState->GetFlags()->SentDebugFirstChance()) |
| 7637 | { |
| 7638 | // Blocking here is especially important so that the debugger can mark any code as JMC. |
| 7639 | hr = SendExceptionHelperAndBlock( |
| 7640 | pThread, |
| 7641 | g_pEEInterface->GetThreadException(pThread), |
| 7642 | fContinuable, |
| 7643 | framePointer, |
| 7644 | nOffset, |
| 7645 | DEBUG_EXCEPTION_FIRST_CHANCE, |
| 7646 | fIsInterceptable ? DEBUG_EXCEPTION_CAN_BE_INTERCEPTED : 0); |
| 7647 | |
| 7648 | { |
| 7649 | // Toggle GC into COOP to block this thread. |
| 7650 | GCX_COOP_EEINTERFACE(); |
| 7651 | |
| 7652 | // |
| 7653 | // If we weren't at a safe place when we enabled PGC, then go ahead and unmark that fact now that we've successfully |
| 7654 | // disabled. |
| 7655 | // |
| 7656 | if (!atSafePlace) |
| 7657 | { |
| 7658 | g_pDebugger->DecThreadsAtUnsafePlaces(); |
| 7659 | } |
| 7660 | |
| 7661 | ProcessAnyPendingEvals(pThread); |
| 7662 | |
| 7663 | // |
| 7664 | // If we weren't at a safe place, increment the unsafe count before we enable preemptive mode. |
| 7665 | // |
| 7666 | if (!atSafePlace) |
| 7667 | { |
| 7668 | g_pDebugger->IncThreadsAtUnsafePlaces(); |
| 7669 | } |
| 7670 | } // end of GCX_CCOP_EEINTERFACE(); |
| 7671 | } //end if (m_sendExceptionsOutsideOfJMC && !SentDebugFirstChance()) |
| 7672 | |
| 7673 | // |
| 7674 | // If this is a JMC function, then we send a USER's first chance as well. |
| 7675 | // |
| 7676 | if ((pDebugMethodInfo != NULL) && |
| 7677 | pDebugMethodInfo->IsJMCFunction() && |
| 7678 | !pExState->GetFlags()->SentDebugUserFirstChance()) |
| 7679 | { |
| 7680 | SENDIPCEVENT_BEGIN(this, pThread); |
| 7681 | |
| 7682 | InitIPCEvent(ipce, DB_IPCE_EXCEPTION_CALLBACK2, pThread, pThread->GetDomain()); |
| 7683 | |
| 7684 | ipce->ExceptionCallback2.framePointer = framePointer; |
| 7685 | ipce->ExceptionCallback2.eventType = DEBUG_EXCEPTION_USER_FIRST_CHANCE; |
| 7686 | ipce->ExceptionCallback2.nOffset = nOffset; |
| 7687 | ipce->ExceptionCallback2.dwFlags = fIsInterceptable ? DEBUG_EXCEPTION_CAN_BE_INTERCEPTED : 0; |
| 7688 | ipce->ExceptionCallback2.vmExceptionHandle.SetRawPtr(g_pEEInterface->GetThreadException(pThread)); |
| 7689 | |
| 7690 | LOG((LF_CORDB, LL_INFO10000, "D::SE: sending ExceptionCallback2 (USER FIRST CHANCE)" )); |
| 7691 | hr = m_pRCThread->SendIPCEvent(); |
| 7692 | |
| 7693 | _ASSERTE(SUCCEEDED(hr) && "D::SE: Send ExceptionCallback2 (User) event failed." ); |
| 7694 | |
| 7695 | if (SUCCEEDED(hr)) |
| 7696 | { |
| 7697 | // Stop all Runtime threads |
| 7698 | TrapAllRuntimeThreads(); |
| 7699 | } |
| 7700 | |
| 7701 | pExState->GetFlags()->SetSentDebugUserFirstChance(); |
| 7702 | |
| 7703 | // Let other Runtime threads handle their events. |
| 7704 | SENDIPCEVENT_END; |
| 7705 | |
| 7706 | } // end if (!SentDebugUserFirstChance) |
| 7707 | |
| 7708 | } // end if (firstChance) |
| 7709 | else |
| 7710 | { |
| 7711 | // unhandled exception case |
| 7712 | // if there is no exception in progress then we are sending a fake exception object |
| 7713 | // as an indication of a fatal error (stack overflow). In this case it is illegal |
| 7714 | // to read GetFlags() from the exception state. |
| 7715 | // else if there is an exception in progress we only want to send the notification if |
| 7716 | // we did not already send a CHF, previous unhandled, or unwind begin notification |
| 7717 | BOOL sendNotification = TRUE; |
| 7718 | if(pThread->IsExceptionInProgress()) |
| 7719 | { |
| 7720 | sendNotification = !pExState->GetFlags()->DebugCatchHandlerFound() && |
| 7721 | !pExState->GetFlags()->SentDebugUnhandled() && |
| 7722 | !pExState->GetFlags()->SentDebugUnwindBegin(); |
| 7723 | } |
| 7724 | |
| 7725 | if(sendNotification) |
| 7726 | { |
| 7727 | hr = SendExceptionHelperAndBlock( |
| 7728 | pThread, |
| 7729 | g_pEEInterface->GetThreadException(pThread), |
| 7730 | fContinuable, |
| 7731 | LEAF_MOST_FRAME, |
| 7732 | (SIZE_T)ICorDebugInfo::NO_MAPPING, |
| 7733 | DEBUG_EXCEPTION_UNHANDLED, |
| 7734 | fIsInterceptable ? DEBUG_EXCEPTION_CAN_BE_INTERCEPTED : 0); |
| 7735 | |
| 7736 | if(pThread->IsExceptionInProgress()) |
| 7737 | { |
| 7738 | pExState->GetFlags()->SetSentDebugUnhandled(); |
| 7739 | } |
| 7740 | } |
| 7741 | |
| 7742 | } // end if (!firstChance) |
| 7743 | } |
| 7744 | |
| 7745 | // |
| 7746 | // SendException is called by Runtime threads to send that they've hit an Managed exception to the Right Side. |
| 7747 | // This may block this thread and suspend the debuggee, and let the debugger inspect us. |
| 7748 | // |
| 7749 | // The thread's throwable should be set so that the debugger can inspect the current exception. |
| 7750 | // It does not report native exceptions in native code (which is consistent because those don't have a |
| 7751 | // managed exception object). |
| 7752 | // |
| 7753 | // This may kick off a jit-attach (in which case fAttaching==true), and so may be called even when no debugger |
| 7754 | // is yet involved. |
| 7755 | // |
| 7756 | // Parameters: |
| 7757 | // pThread - the thread throwing the exception. |
| 7758 | // fFirstChance - true if this is a first chance exception. False if this is an unhandled exception. |
| 7759 | // currentIP - absolute native address of the exception if it is from managed code. If this is 0, we try to find it |
| 7760 | // based off the thread's current exception state. |
| 7761 | // currentSP - stack pointer of the exception. This will get converted into a FramePointer and then used by the debugger |
| 7762 | // to identify which stack frame threw the exception. |
| 7763 | // currentBSP - additional information for IA64 only to identify the stack frame. |
| 7764 | // fContinuable - not used. |
| 7765 | // fAttaching - true iff this exception may initiate a jit-attach. In the common case, if this is true, then |
| 7766 | // CorDebuggerAttached() is false. However, since a debugger can attach at any time, it's possible |
| 7767 | // for another debugger to race against the jit-attach and win. Thus this may err on the side of being true. |
| 7768 | // fForceNonInterceptable - This is used to determine if the exception is continuable (ie "Interceptible", |
| 7769 | // we can handle a DB_IPCE_INTERCEPT_EXCEPTION event for it). If true, then the exception can not be continued. |
| 7770 | // If false, we get continuation status from the exception properties of the current thread. |
| 7771 | // |
| 7772 | // Returns: |
| 7773 | // S_OK on success (common case by far). |
| 7774 | // propogates other errors. |
| 7775 | // |
| 7776 | HRESULT Debugger::SendException(Thread *pThread, |
| 7777 | bool fFirstChance, |
| 7778 | SIZE_T currentIP, |
| 7779 | SIZE_T currentSP, |
| 7780 | bool fContinuable, // not used by RS. |
| 7781 | bool fAttaching, |
| 7782 | bool fForceNonInterceptable, |
| 7783 | EXCEPTION_POINTERS * pExceptionInfo) |
| 7784 | { |
| 7785 | CONTRACTL |
| 7786 | { |
| 7787 | THROWS; |
| 7788 | GC_TRIGGERS; |
| 7789 | |
| 7790 | MODE_ANY; |
| 7791 | |
| 7792 | PRECONDITION(HasLazyData()); |
| 7793 | PRECONDITION(CheckPointer(pThread)); |
| 7794 | PRECONDITION((pThread->GetFilterContext() == NULL) || !fFirstChance); |
| 7795 | } |
| 7796 | CONTRACTL_END; |
| 7797 | |
| 7798 | LOG((LF_CORDB, LL_INFO10000, "D::SendException\n" )); |
| 7799 | |
| 7800 | if (CORDBUnrecoverableError(this)) |
| 7801 | { |
| 7802 | return (E_FAIL); |
| 7803 | } |
| 7804 | |
| 7805 | // Mark if we're at an unsafe place. |
| 7806 | AtSafePlaceHolder unsafePlaceHolder(pThread); |
| 7807 | |
| 7808 | // Grab the exception name from the current exception object to pass to the JIT attach. |
| 7809 | bool fIsInterceptable; |
| 7810 | |
| 7811 | if (fForceNonInterceptable) |
| 7812 | { |
| 7813 | fIsInterceptable = false; |
| 7814 | m_forceNonInterceptable = true; |
| 7815 | } |
| 7816 | else |
| 7817 | { |
| 7818 | fIsInterceptable = IsInterceptableException(pThread); |
| 7819 | m_forceNonInterceptable = false; |
| 7820 | } |
| 7821 | |
| 7822 | ThreadExceptionState* pExState = pThread->GetExceptionState(); |
| 7823 | BOOL managedEventNeeded = ((!fFirstChance) || |
| 7824 | (fFirstChance && (!pExState->GetFlags()->SentDebugFirstChance() || !pExState->GetFlags()->SentDebugUserFirstChance()))); |
| 7825 | |
| 7826 | // There must be a managed exception object to send a managed exception event |
| 7827 | if (g_pEEInterface->IsThreadExceptionNull(pThread) && (pThread->LastThrownObjectHandle() == NULL)) |
| 7828 | { |
| 7829 | managedEventNeeded = FALSE; |
| 7830 | } |
| 7831 | |
| 7832 | if (fAttaching) |
| 7833 | { |
| 7834 | JitAttach(pThread, pExceptionInfo, managedEventNeeded, FALSE); |
| 7835 | // If the jit-attach occurred, CORDebuggerAttached() may now be true and we can |
| 7836 | // just act as if a debugger was always attached. |
| 7837 | } |
| 7838 | |
| 7839 | if(managedEventNeeded) |
| 7840 | { |
| 7841 | { |
| 7842 | // We have to send enabled, so enable now. |
| 7843 | GCX_PREEMP_EEINTERFACE(); |
| 7844 | |
| 7845 | // Send the exception events. Even in jit-attach case, we should now be fully attached. |
| 7846 | if (CORDebuggerAttached()) |
| 7847 | { |
| 7848 | // Initialize frame-pointer associated with exception notification. |
| 7849 | LPVOID stackPointer; |
| 7850 | if ((currentSP == 0) && (pExState->GetContextRecord() != NULL)) |
| 7851 | { |
| 7852 | stackPointer = dac_cast<PTR_VOID>(GetSP(pExState->GetContextRecord())); |
| 7853 | } |
| 7854 | else |
| 7855 | { |
| 7856 | stackPointer = (LPVOID)currentSP; |
| 7857 | } |
| 7858 | FramePointer framePointer = FramePointer::MakeFramePointer(stackPointer); |
| 7859 | |
| 7860 | |
| 7861 | // Do the real work of sending the events |
| 7862 | SendExceptionEventsWorker( |
| 7863 | pThread, |
| 7864 | fFirstChance, |
| 7865 | fIsInterceptable, |
| 7866 | fContinuable, |
| 7867 | currentIP, |
| 7868 | framePointer, |
| 7869 | !unsafePlaceHolder.IsAtUnsafePlace()); |
| 7870 | } |
| 7871 | else |
| 7872 | { |
| 7873 | LOG((LF_CORDB,LL_INFO100, "D:SE: Skipping SendIPCEvent because not supposed to send anything, or RS detached.\n" )); |
| 7874 | } |
| 7875 | } |
| 7876 | |
| 7877 | // If we weren't at a safe place when we switched to PREEMPTIVE, then go ahead and unmark that fact now |
| 7878 | // that we're successfully back in COOPERATIVE mode. |
| 7879 | unsafePlaceHolder.Clear(); |
| 7880 | |
| 7881 | { |
| 7882 | GCX_COOP_EEINTERFACE(); |
| 7883 | ProcessAnyPendingEvals(pThread); |
| 7884 | } |
| 7885 | } |
| 7886 | |
| 7887 | if (CORDebuggerAttached()) |
| 7888 | { |
| 7889 | return S_FALSE; |
| 7890 | } |
| 7891 | else |
| 7892 | { |
| 7893 | return S_OK; |
| 7894 | } |
| 7895 | } |
| 7896 | |
| 7897 | |
| 7898 | /* |
| 7899 | * ProcessAnyPendingEvals |
| 7900 | * |
| 7901 | * This function checks for, and then processes, any pending func-evals. |
| 7902 | * |
| 7903 | * Parameters: |
| 7904 | * pThread - The thread to process. |
| 7905 | * |
| 7906 | * Returns: |
| 7907 | * None. |
| 7908 | * |
| 7909 | */ |
| 7910 | void Debugger::ProcessAnyPendingEvals(Thread *pThread) |
| 7911 | { |
| 7912 | CONTRACTL |
| 7913 | { |
| 7914 | THROWS; |
| 7915 | GC_TRIGGERS; |
| 7916 | MODE_COOPERATIVE; |
| 7917 | } |
| 7918 | CONTRACTL_END; |
| 7919 | |
| 7920 | #ifndef DACCESS_COMPILE |
| 7921 | |
| 7922 | // If no debugger is attached, then no evals to process. |
| 7923 | // We may get here in oom situations during jit-attach, so we'll check now and be safe. |
| 7924 | if (!CORDebuggerAttached()) |
| 7925 | { |
| 7926 | return; |
| 7927 | } |
| 7928 | |
| 7929 | // |
| 7930 | // Note: if there is a filter context installed, we may need remove it, do the eval, then put it back. I'm not 100% |
| 7931 | // sure which yet... it kinda depends on whether or not we really need the filter context updated due to a |
| 7932 | // collection during the func eval... |
| 7933 | // |
| 7934 | // If we need to do a func eval on this thread, then there will be a pending eval registered for this thread. We'll |
| 7935 | // loop so long as there are pending evals registered. We block in FuncEvalHijackWorker after sending up the |
| 7936 | // FuncEvalComplete event, so if the user asks for another func eval then there will be a new pending eval when we |
| 7937 | // loop and check again. |
| 7938 | // |
| 7939 | DebuggerPendingFuncEval *pfe; |
| 7940 | |
| 7941 | while (GetPendingEvals() != NULL && (pfe = GetPendingEvals()->GetPendingEval(pThread)) != NULL) |
| 7942 | { |
| 7943 | DebuggerEval *pDE = pfe->pDE; |
| 7944 | |
| 7945 | _ASSERTE(pDE->m_evalDuringException); |
| 7946 | _ASSERTE(pDE->m_thread == GetThread()); |
| 7947 | |
| 7948 | // Remove the pending eval from the hash. This ensures that if we take a first chance exception during the eval |
| 7949 | // that we can do another nested eval properly. |
| 7950 | GetPendingEvals()->RemovePendingEval(pThread); |
| 7951 | |
| 7952 | // Go ahead and do the pending func eval. pDE is invalid after this. |
| 7953 | void *ret; |
| 7954 | ret = ::FuncEvalHijackWorker(pDE); |
| 7955 | |
| 7956 | |
| 7957 | // The return value should be NULL when FuncEvalHijackWorker is called as part of an exception. |
| 7958 | _ASSERTE(ret == NULL); |
| 7959 | } |
| 7960 | |
| 7961 | // If we need to re-throw a ThreadAbortException, go ahead and do it now. |
| 7962 | if (GetThread()->m_StateNC & Thread::TSNC_DebuggerReAbort) |
| 7963 | { |
| 7964 | // Now clear the bit else we'll see it again when we process the Exception notification |
| 7965 | // from this upcoming UserAbort exception. |
| 7966 | pThread->ResetThreadStateNC(Thread::TSNC_DebuggerReAbort); |
| 7967 | pThread->UserAbort(Thread::TAR_Thread, EEPolicy::TA_Safe, INFINITE, Thread::UAC_Normal); |
| 7968 | } |
| 7969 | |
| 7970 | #endif |
| 7971 | |
| 7972 | } |
| 7973 | |
| 7974 | |
| 7975 | /* |
| 7976 | * FirstChanceManagedException is called by Runtime threads when crawling the managed stack frame |
| 7977 | * for a handler for the exception. It is called for each managed call on the stack. |
| 7978 | * |
| 7979 | * Parameters: |
| 7980 | * pThread - The thread the exception is occurring on. |
| 7981 | * currentIP - the IP in the current stack frame. |
| 7982 | * currentSP - the SP in the current stack frame. |
| 7983 | * |
| 7984 | * Returns: |
| 7985 | * Always FALSE. |
| 7986 | * |
| 7987 | */ |
| 7988 | bool Debugger::FirstChanceManagedException(Thread *pThread, SIZE_T currentIP, SIZE_T currentSP) |
| 7989 | { |
| 7990 | |
| 7991 | // @@@ |
| 7992 | // Implement DebugInterface |
| 7993 | // Can only be called from EE/exception |
| 7994 | // must be on managed thread. |
| 7995 | |
| 7996 | CONTRACTL |
| 7997 | { |
| 7998 | THROWS; |
| 7999 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 8000 | |
| 8001 | PRECONDITION(CORDebuggerAttached()); |
| 8002 | } |
| 8003 | CONTRACTL_END; |
| 8004 | |
| 8005 | LOG((LF_CORDB, LL_INFO10000, "D::FCE: First chance exception, TID:0x%x, \n" , GetThreadIdHelper(pThread))); |
| 8006 | |
| 8007 | _ASSERTE(GetThread() != NULL); |
| 8008 | |
| 8009 | #ifdef _DEBUG |
| 8010 | static ConfigDWORD d_fce; |
| 8011 | if (d_fce.val(CLRConfig::INTERNAL_D__FCE)) |
| 8012 | _ASSERTE(!"Stop in Debugger::FirstChanceManagedException?" ); |
| 8013 | #endif |
| 8014 | |
| 8015 | SendException(pThread, TRUE, currentIP, currentSP, FALSE, FALSE, FALSE, NULL); |
| 8016 | |
| 8017 | return false; |
| 8018 | } |
| 8019 | |
| 8020 | |
| 8021 | /* |
| 8022 | * FirstChanceManagedExceptionCatcherFound is called by Runtime threads when crawling the |
| 8023 | * managed stack frame and a handler for the exception is found. |
| 8024 | * |
| 8025 | * Parameters: |
| 8026 | * pThread - The thread the exception is occurring on. |
| 8027 | * pTct - Contains the function information that has the catch clause. |
| 8028 | * pEHClause - Contains the native offset information of the catch clause. |
| 8029 | * |
| 8030 | * Returns: |
| 8031 | * None. |
| 8032 | * |
| 8033 | */ |
| 8034 | void Debugger::FirstChanceManagedExceptionCatcherFound(Thread *pThread, |
| 8035 | MethodDesc *pMD, TADDR pMethodAddr, |
| 8036 | BYTE *currentSP, |
| 8037 | EE_ILEXCEPTION_CLAUSE *pEHClause) |
| 8038 | { |
| 8039 | |
| 8040 | CONTRACTL |
| 8041 | { |
| 8042 | THROWS; |
| 8043 | GC_TRIGGERS_FROM_GETJITINFO; |
| 8044 | MODE_ANY; |
| 8045 | } |
| 8046 | CONTRACTL_END; |
| 8047 | |
| 8048 | // @@@ |
| 8049 | // Implements DebugInterface |
| 8050 | // Call by EE/exception. Must be on managed thread |
| 8051 | _ASSERTE(GetThread() != NULL); |
| 8052 | |
| 8053 | // Quick check. |
| 8054 | if (!CORDebuggerAttached()) |
| 8055 | { |
| 8056 | return; |
| 8057 | } |
| 8058 | |
| 8059 | // Compute the offset |
| 8060 | |
| 8061 | DWORD nOffset = (DWORD)(SIZE_T)ICorDebugInfo::NO_MAPPING; |
| 8062 | DebuggerMethodInfo *pDebugMethodInfo = NULL; |
| 8063 | DebuggerJitInfo *pDebugJitInfo = NULL; |
| 8064 | bool isInJMCFunction = false; |
| 8065 | |
| 8066 | if (pMD != NULL) |
| 8067 | { |
| 8068 | _ASSERTE(!pMD->IsILStub()); |
| 8069 | |
| 8070 | pDebugJitInfo = GetJitInfo(pMD, (const BYTE *) pMethodAddr, &pDebugMethodInfo); |
| 8071 | if (pDebugMethodInfo != NULL) |
| 8072 | { |
| 8073 | isInJMCFunction = pDebugMethodInfo->IsJMCFunction(); |
| 8074 | } |
| 8075 | } |
| 8076 | |
| 8077 | // Here we check if debugger opted-out of receiving exception related events from outside of JMC methods |
| 8078 | // or this exception ever crossed JMC frame (in this case we have already sent user first chance event) |
| 8079 | if (m_sendExceptionsOutsideOfJMC || |
| 8080 | isInJMCFunction || |
| 8081 | pThread->GetExceptionState()->GetFlags()->SentDebugUserFirstChance()) |
| 8082 | { |
| 8083 | if (pDebugJitInfo != NULL) |
| 8084 | { |
| 8085 | CorDebugMappingResult mapResult; |
| 8086 | DWORD which; |
| 8087 | |
| 8088 | // Map the native instruction to the IL instruction. |
| 8089 | // Be sure to skip past the prolog on amd64/arm to get the right IL |
| 8090 | // instruction (on x86 there will not be a prolog as x86 does not use |
| 8091 | // funclets). |
| 8092 | nOffset = pDebugJitInfo->MapNativeOffsetToIL( |
| 8093 | pEHClause->HandlerStartPC, |
| 8094 | &mapResult, |
| 8095 | &which, |
| 8096 | TRUE |
| 8097 | ); |
| 8098 | } |
| 8099 | |
| 8100 | bool fIsInterceptable = IsInterceptableException(pThread); |
| 8101 | m_forceNonInterceptable = false; |
| 8102 | DWORD dwFlags = fIsInterceptable ? DEBUG_EXCEPTION_CAN_BE_INTERCEPTED : 0; |
| 8103 | |
| 8104 | FramePointer fp = FramePointer::MakeFramePointer(currentSP); |
| 8105 | SendCatchHandlerFound(pThread, fp, nOffset, dwFlags); |
| 8106 | } |
| 8107 | |
| 8108 | // flag that we catch handler found so that we won't send other mutually exclusive events |
| 8109 | // such as unwind begin or unhandled |
| 8110 | pThread->GetExceptionState()->GetFlags()->SetDebugCatchHandlerFound(); |
| 8111 | } |
| 8112 | |
| 8113 | // Filter to trigger CHF callback |
| 8114 | // Notify of a catch-handler found callback. |
| 8115 | LONG Debugger::NotifyOfCHFFilter(EXCEPTION_POINTERS* pExceptionPointers, PVOID pData) |
| 8116 | { |
| 8117 | CONTRACTL |
| 8118 | { |
| 8119 | if ((GetThread() == NULL) || g_pEEInterface->IsThreadExceptionNull(GetThread())) |
| 8120 | { |
| 8121 | NOTHROW; |
| 8122 | GC_NOTRIGGER; |
| 8123 | } |
| 8124 | else |
| 8125 | { |
| 8126 | THROWS; |
| 8127 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 8128 | } |
| 8129 | MODE_ANY; |
| 8130 | } |
| 8131 | CONTRACTL_END; |
| 8132 | |
| 8133 | SCAN_IGNORE_TRIGGER; // Scan can't handle conditional contracts. |
| 8134 | |
| 8135 | // @@@ |
| 8136 | // Implements DebugInterface |
| 8137 | // Can only be called from EE |
| 8138 | |
| 8139 | // If no debugger is attached, then don't bother sending the events. |
| 8140 | // This can't kick off a jit-attach. |
| 8141 | if (!CORDebuggerAttached()) |
| 8142 | { |
| 8143 | return EXCEPTION_CONTINUE_SEARCH; |
| 8144 | } |
| 8145 | |
| 8146 | // |
| 8147 | // If this exception has never bubbled thru to managed code, then there is no |
| 8148 | // useful information for the debugger and, in fact, it may be a completely |
| 8149 | // internally handled runtime exception, so we should do nothing. |
| 8150 | // |
| 8151 | if ((GetThread() == NULL) || g_pEEInterface->IsThreadExceptionNull(GetThread())) |
| 8152 | { |
| 8153 | return EXCEPTION_CONTINUE_SEARCH; |
| 8154 | } |
| 8155 | |
| 8156 | // Caller must pass in the stack address. This should match up w/ a Frame. |
| 8157 | BYTE * pCatcherStackAddr = (BYTE*) pData; |
| 8158 | |
| 8159 | // If we don't have any catcher frame, then use ebp from the context. |
| 8160 | if (pData == NULL) |
| 8161 | { |
| 8162 | pCatcherStackAddr = (BYTE*) GetFP(pExceptionPointers->ContextRecord); |
| 8163 | } |
| 8164 | else |
| 8165 | { |
| 8166 | #ifdef _DEBUG |
| 8167 | _ASSERTE(pData != NULL); |
| 8168 | { |
| 8169 | // We want the CHF stack addr to match w/ the Internal Frame Cordbg sees |
| 8170 | // in the stacktrace. |
| 8171 | // The Internal Frame comes from an EE Frame. This means that the CHF stack |
| 8172 | // addr must match that EE Frame exactly. Let's check that now. |
| 8173 | |
| 8174 | Frame * pFrame = reinterpret_cast<Frame*>(pData); |
| 8175 | // Calling a virtual method will enforce that we have a valid Frame. ;) |
| 8176 | // If we got passed in a random catch address, then when we cast to a Frame |
| 8177 | // the vtable pointer will be bogus and this call will AV. |
| 8178 | Frame::ETransitionType e; |
| 8179 | e = pFrame->GetTransitionType(); |
| 8180 | } |
| 8181 | #endif |
| 8182 | } |
| 8183 | |
| 8184 | // @todo - when Stubs-In-Stacktraces is always enabled, remove this. |
| 8185 | if (!g_EnableSIS) |
| 8186 | { |
| 8187 | return EXCEPTION_CONTINUE_SEARCH; |
| 8188 | } |
| 8189 | |
| 8190 | // Stubs don't have an IL offset. |
| 8191 | const SIZE_T offset = (SIZE_T)ICorDebugInfo::NO_MAPPING; |
| 8192 | Thread *pThread = GetThread(); |
| 8193 | DWORD dwFlags = IsInterceptableException(pThread) ? DEBUG_EXCEPTION_CAN_BE_INTERCEPTED : 0; |
| 8194 | m_forceNonInterceptable = false; |
| 8195 | |
| 8196 | FramePointer fp = FramePointer::MakeFramePointer(pCatcherStackAddr); |
| 8197 | |
| 8198 | // |
| 8199 | // If we have not sent a first-chance notification, do so now. |
| 8200 | // |
| 8201 | ThreadExceptionState* pExState = pThread->GetExceptionState(); |
| 8202 | |
| 8203 | if (!pExState->GetFlags()->SentDebugFirstChance()) |
| 8204 | { |
| 8205 | SendException(pThread, |
| 8206 | TRUE, // first-chance |
| 8207 | (SIZE_T)(GetIP(pExceptionPointers->ContextRecord)), // IP |
| 8208 | (SIZE_T)pCatcherStackAddr, // SP |
| 8209 | FALSE, // fContinuable |
| 8210 | FALSE, // attaching |
| 8211 | TRUE, // ForceNonInterceptable since we are transition stub, the first and last place |
| 8212 | // that will see this exception. |
| 8213 | pExceptionPointers); |
| 8214 | } |
| 8215 | |
| 8216 | // Here we check if debugger opted-out of receiving exception related events from outside of JMC methods |
| 8217 | // or this exception ever crossed JMC frame (in this case we have already sent user first chance event) |
| 8218 | if (m_sendExceptionsOutsideOfJMC || pExState->GetFlags()->SentDebugUserFirstChance()) |
| 8219 | { |
| 8220 | SendCatchHandlerFound(pThread, fp, offset, dwFlags); |
| 8221 | } |
| 8222 | |
| 8223 | // flag that we catch handler found so that we won't send other mutually exclusive events |
| 8224 | // such as unwind begin or unhandled |
| 8225 | pExState->GetFlags()->SetDebugCatchHandlerFound(); |
| 8226 | |
| 8227 | #ifdef DEBUGGING_SUPPORTED |
| 8228 | #ifdef DEBUGGER_EXCEPTION_INTERCEPTION_SUPPORTED |
| 8229 | if ( (pThread != NULL) && |
| 8230 | (pThread->IsExceptionInProgress()) && |
| 8231 | (pThread->GetExceptionState()->GetFlags()->DebuggerInterceptInfo()) ) |
| 8232 | { |
| 8233 | // |
| 8234 | // The debugger wants to intercept this exception. It may return in a failure case, |
| 8235 | // in which case we want to continue thru this path. |
| 8236 | // |
| 8237 | ClrDebuggerDoUnwindAndIntercept(X86_FIRST_ARG(EXCEPTION_CHAIN_END) pExceptionPointers->ExceptionRecord); |
| 8238 | } |
| 8239 | #endif // DEBUGGER_EXCEPTION_INTERCEPTION_SUPPORTED |
| 8240 | #endif // DEBUGGING_SUPPORTED |
| 8241 | |
| 8242 | return EXCEPTION_CONTINUE_SEARCH; |
| 8243 | } |
| 8244 | |
| 8245 | |
| 8246 | // Actually send the catch handler found event. |
| 8247 | // This can be used to send CHF for both regular managed catchers as well |
| 8248 | // as stubs that catch (Func-eval, COM-Interop, AppDomains) |
| 8249 | void Debugger::SendCatchHandlerFound( |
| 8250 | Thread * pThread, |
| 8251 | FramePointer fp, |
| 8252 | SIZE_T nOffset, |
| 8253 | DWORD dwFlags |
| 8254 | ) |
| 8255 | { |
| 8256 | |
| 8257 | CONTRACTL |
| 8258 | { |
| 8259 | THROWS; |
| 8260 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 8261 | MODE_ANY; |
| 8262 | } |
| 8263 | CONTRACTL_END; |
| 8264 | |
| 8265 | LOG((LF_CORDB, LL_INFO10000, "D::FirstChanceManagedExceptionCatcherFound\n" )); |
| 8266 | |
| 8267 | if (pThread == NULL) |
| 8268 | { |
| 8269 | _ASSERTE(!"Bad parameter" ); |
| 8270 | LOG((LF_CORDB, LL_INFO10000, "D::FirstChanceManagedExceptionCatcherFound - Bad parameter.\n" )); |
| 8271 | return; |
| 8272 | } |
| 8273 | |
| 8274 | if (CORDBUnrecoverableError(this)) |
| 8275 | { |
| 8276 | return; |
| 8277 | } |
| 8278 | |
| 8279 | // |
| 8280 | // Mark if we're at an unsafe place. |
| 8281 | // |
| 8282 | AtSafePlaceHolder unsafePlaceHolder(pThread); |
| 8283 | |
| 8284 | { |
| 8285 | GCX_COOP_EEINTERFACE(); |
| 8286 | |
| 8287 | { |
| 8288 | SENDIPCEVENT_BEGIN(this, pThread); |
| 8289 | |
| 8290 | if (CORDebuggerAttached() && |
| 8291 | !pThread->GetExceptionState()->GetFlags()->DebugCatchHandlerFound() && |
| 8292 | !pThread->GetExceptionState()->GetFlags()->SentDebugUnhandled() && |
| 8293 | !pThread->GetExceptionState()->GetFlags()->SentDebugUnwindBegin()) |
| 8294 | { |
| 8295 | HRESULT hr; |
| 8296 | |
| 8297 | // |
| 8298 | // Figure out parameters to the IPC events. |
| 8299 | // |
| 8300 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 8301 | |
| 8302 | // |
| 8303 | // Send Whidbey EXCEPTION IPC event. |
| 8304 | // |
| 8305 | InitIPCEvent(ipce, DB_IPCE_EXCEPTION_CALLBACK2, pThread, pThread->GetDomain()); |
| 8306 | |
| 8307 | ipce->ExceptionCallback2.framePointer = fp; |
| 8308 | ipce->ExceptionCallback2.eventType = DEBUG_EXCEPTION_CATCH_HANDLER_FOUND; |
| 8309 | ipce->ExceptionCallback2.nOffset = nOffset; |
| 8310 | ipce->ExceptionCallback2.dwFlags = dwFlags; |
| 8311 | ipce->ExceptionCallback2.vmExceptionHandle.SetRawPtr(g_pEEInterface->GetThreadException(pThread)); |
| 8312 | |
| 8313 | LOG((LF_CORDB, LL_INFO10000, "D::FCMECF: sending ExceptionCallback2" )); |
| 8314 | hr = m_pRCThread->SendIPCEvent(); |
| 8315 | |
| 8316 | _ASSERTE(SUCCEEDED(hr) && "D::FCMECF: Send ExceptionCallback2 event failed." ); |
| 8317 | |
| 8318 | // |
| 8319 | // Stop all Runtime threads |
| 8320 | // |
| 8321 | TrapAllRuntimeThreads(); |
| 8322 | |
| 8323 | } // end if (!Attached) |
| 8324 | else |
| 8325 | { |
| 8326 | LOG((LF_CORDB,LL_INFO1000, "D:FCMECF: Skipping SendIPCEvent because RS detached.\n" )); |
| 8327 | } |
| 8328 | |
| 8329 | // |
| 8330 | // Let other Runtime threads handle their events. |
| 8331 | // |
| 8332 | SENDIPCEVENT_END; |
| 8333 | } |
| 8334 | |
| 8335 | // |
| 8336 | // If we weren't at a safe place when we enabled PGC, then go ahead and unmark that fact now that we've successfully |
| 8337 | // disabled. |
| 8338 | // |
| 8339 | unsafePlaceHolder.Clear(); |
| 8340 | |
| 8341 | ProcessAnyPendingEvals(pThread); |
| 8342 | } // end of GCX_COOP_EEINTERFACE(); |
| 8343 | |
| 8344 | return; |
| 8345 | } |
| 8346 | |
| 8347 | /* |
| 8348 | * ManagedExceptionUnwindBegin is called by Runtime threads when crawling the |
| 8349 | * managed stack frame and unwinding them. |
| 8350 | * |
| 8351 | * Parameters: |
| 8352 | * pThread - The thread the unwind is occurring on. |
| 8353 | * |
| 8354 | * Returns: |
| 8355 | * None. |
| 8356 | * |
| 8357 | */ |
| 8358 | void Debugger::ManagedExceptionUnwindBegin(Thread *pThread) |
| 8359 | { |
| 8360 | CONTRACTL |
| 8361 | { |
| 8362 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 8363 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 8364 | } |
| 8365 | CONTRACTL_END; |
| 8366 | |
| 8367 | // @@@ |
| 8368 | // Implements DebugInterface |
| 8369 | // Can only be called on managed threads |
| 8370 | // |
| 8371 | |
| 8372 | LOG((LF_CORDB, LL_INFO10000, "D::ManagedExceptionUnwindBegin\n" )); |
| 8373 | |
| 8374 | if (pThread == NULL) |
| 8375 | { |
| 8376 | _ASSERTE(!"Bad parameter" ); |
| 8377 | LOG((LF_CORDB, LL_INFO10000, "D::ManagedExceptionUnwindBegin - Bad parameter.\n" )); |
| 8378 | return; |
| 8379 | } |
| 8380 | |
| 8381 | if (CORDBUnrecoverableError(this)) |
| 8382 | { |
| 8383 | return; |
| 8384 | } |
| 8385 | |
| 8386 | // |
| 8387 | // Mark if we're at an unsafe place. |
| 8388 | // |
| 8389 | AtSafePlaceHolder unsafePlaceHolder(pThread); |
| 8390 | { |
| 8391 | GCX_COOP_EEINTERFACE(); |
| 8392 | |
| 8393 | { |
| 8394 | SENDIPCEVENT_BEGIN(this, pThread); |
| 8395 | |
| 8396 | if (CORDebuggerAttached() && |
| 8397 | !pThread->GetExceptionState()->GetFlags()->SentDebugUnwindBegin() && |
| 8398 | !pThread->GetExceptionState()->GetFlags()->DebugCatchHandlerFound() && |
| 8399 | !pThread->GetExceptionState()->GetFlags()->SentDebugUnhandled()) |
| 8400 | { |
| 8401 | HRESULT hr; |
| 8402 | |
| 8403 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 8404 | |
| 8405 | // |
| 8406 | // Send Whidbey EXCEPTION IPC event. |
| 8407 | // |
| 8408 | InitIPCEvent(ipce, DB_IPCE_EXCEPTION_UNWIND, pThread, pThread->GetDomain()); |
| 8409 | |
| 8410 | ipce->ExceptionUnwind.eventType = DEBUG_EXCEPTION_UNWIND_BEGIN; |
| 8411 | ipce->ExceptionUnwind.dwFlags = 0; |
| 8412 | |
| 8413 | LOG((LF_CORDB, LL_INFO10000, "D::MEUB: sending ExceptionUnwind event" )); |
| 8414 | hr = m_pRCThread->SendIPCEvent(); |
| 8415 | |
| 8416 | _ASSERTE(SUCCEEDED(hr) && "D::MEUB: Send ExceptionUnwind event failed." ); |
| 8417 | |
| 8418 | pThread->GetExceptionState()->GetFlags()->SetSentDebugUnwindBegin(); |
| 8419 | |
| 8420 | // |
| 8421 | // Stop all Runtime threads |
| 8422 | // |
| 8423 | TrapAllRuntimeThreads(); |
| 8424 | |
| 8425 | } // end if (!Attached) |
| 8426 | |
| 8427 | // |
| 8428 | // Let other Runtime threads handle their events. |
| 8429 | // |
| 8430 | SENDIPCEVENT_END; |
| 8431 | } |
| 8432 | |
| 8433 | // |
| 8434 | // If we weren't at a safe place when we enabled PGC, then go ahead and unmark that fact now that we've successfully |
| 8435 | // disabled. |
| 8436 | // |
| 8437 | unsafePlaceHolder.Clear(); |
| 8438 | } |
| 8439 | |
| 8440 | return; |
| 8441 | } |
| 8442 | |
| 8443 | /* |
| 8444 | * DeleteInterceptContext |
| 8445 | * |
| 8446 | * This function is called by the VM to release any debugger specific information for an |
| 8447 | * exception object. It is called when the VM releases its internal exception stuff, i.e. |
| 8448 | * ExInfo on X86 and ExceptionTracker on WIN64. |
| 8449 | * |
| 8450 | * |
| 8451 | * Parameters: |
| 8452 | * pContext - Debugger specific context. |
| 8453 | * |
| 8454 | * Returns: |
| 8455 | * None. |
| 8456 | * |
| 8457 | * Notes: |
| 8458 | * pContext is just a pointer to a DebuggerContinuableExceptionBreakpoint. |
| 8459 | * |
| 8460 | */ |
| 8461 | void Debugger::DeleteInterceptContext(void *pContext) |
| 8462 | { |
| 8463 | LIMITED_METHOD_CONTRACT; |
| 8464 | |
| 8465 | DebuggerContinuableExceptionBreakpoint *pBp = (DebuggerContinuableExceptionBreakpoint *)pContext; |
| 8466 | |
| 8467 | if (pBp != NULL) |
| 8468 | { |
| 8469 | DeleteInteropSafe(pBp); |
| 8470 | } |
| 8471 | } |
| 8472 | |
| 8473 | |
| 8474 | // Get the frame point for an exception handler |
| 8475 | FramePointer GetHandlerFramePointer(BYTE *pStack) |
| 8476 | { |
| 8477 | FramePointer handlerFP; |
| 8478 | |
| 8479 | #if !defined(_TARGET_ARM_) && !defined(_TARGET_ARM64_) |
| 8480 | // Refer to the comment in DispatchUnwind() to see why we have to add |
| 8481 | // sizeof(LPVOID) to the handler ebp. |
| 8482 | handlerFP = FramePointer::MakeFramePointer(LPVOID(pStack + sizeof(void*))); |
| 8483 | #else |
| 8484 | // ARM is similar to IA64 in that it uses the establisher frame as the |
| 8485 | // handler. in this case we don't need to add sizeof(void*) to the FP. |
| 8486 | handlerFP = FramePointer::MakeFramePointer((LPVOID)pStack); |
| 8487 | #endif // _TARGET_ARM_ |
| 8488 | |
| 8489 | return handlerFP; |
| 8490 | } |
| 8491 | |
| 8492 | // |
| 8493 | // ExceptionFilter is called by the Runtime threads when an exception |
| 8494 | // is being processed. |
| 8495 | // - fd - MethodDesc of filter function |
| 8496 | // - pMethodAddr - any address inside of the method. This lets us resolve exactly which version |
| 8497 | // of the method is being executed (for EnC) |
| 8498 | // - offset - native offset to handler. |
| 8499 | // - pStack, pBStore - stack pointers. |
| 8500 | // |
| 8501 | void Debugger::ExceptionFilter(MethodDesc *fd, TADDR pMethodAddr, SIZE_T offset, BYTE *pStack) |
| 8502 | { |
| 8503 | CONTRACTL |
| 8504 | { |
| 8505 | MODE_COOPERATIVE; |
| 8506 | NOTHROW; |
| 8507 | GC_NOTRIGGER; |
| 8508 | |
| 8509 | PRECONDITION(!IsDbgHelperSpecialThread()); |
| 8510 | } |
| 8511 | CONTRACTL_END; |
| 8512 | |
| 8513 | LOG((LF_CORDB,LL_INFO10000, "D::EF: pStack:0x%x MD: %s::%s, offset:0x%x\n" , |
| 8514 | pStack, fd->m_pszDebugClassName, fd->m_pszDebugMethodName, offset)); |
| 8515 | |
| 8516 | // |
| 8517 | // !!! Need to think through logic for when to step through filter code - |
| 8518 | // perhaps only during a "step in". |
| 8519 | // |
| 8520 | |
| 8521 | // |
| 8522 | // !!! Eventually there may be some weird mechanics introduced for |
| 8523 | // returning from the filter that we have to understand. For now we should |
| 8524 | // be able to proceed normally. |
| 8525 | // |
| 8526 | |
| 8527 | FramePointer handlerFP; |
| 8528 | handlerFP = GetHandlerFramePointer(pStack); |
| 8529 | |
| 8530 | DebuggerJitInfo * pDJI = NULL; |
| 8531 | EX_TRY |
| 8532 | { |
| 8533 | pDJI = GetJitInfo(fd, (const BYTE *) pMethodAddr); |
| 8534 | } |
| 8535 | EX_CATCH |
| 8536 | { |
| 8537 | } |
| 8538 | EX_END_CATCH(SwallowAllExceptions); |
| 8539 | |
| 8540 | if (!fd->IsDynamicMethod() && (pDJI == NULL)) |
| 8541 | { |
| 8542 | // The only way we shouldn't have a DJI is from a dynamic method or from oom (which the LS doesn't handle). |
| 8543 | _ASSERTE(!"Debugger doesn't support OOM scenarios." ); |
| 8544 | return; |
| 8545 | } |
| 8546 | |
| 8547 | DebuggerController::DispatchUnwind(g_pEEInterface->GetThread(), |
| 8548 | fd, pDJI, offset, handlerFP, STEP_EXCEPTION_FILTER); |
| 8549 | } |
| 8550 | |
| 8551 | |
| 8552 | // |
| 8553 | // ExceptionHandle is called by Runtime threads when an exception is |
| 8554 | // being handled. |
| 8555 | // - fd - MethodDesc of filter function |
| 8556 | // - pMethodAddr - any address inside of the method. This lets us resolve exactly which version |
| 8557 | // of the method is being executed (for EnC) |
| 8558 | // - offset - native offset to handler. |
| 8559 | // - pStack, pBStore - stack pointers. |
| 8560 | // |
| 8561 | void Debugger::ExceptionHandle(MethodDesc *fd, TADDR pMethodAddr, SIZE_T offset, BYTE *pStack) |
| 8562 | { |
| 8563 | CONTRACTL |
| 8564 | { |
| 8565 | MODE_COOPERATIVE; |
| 8566 | NOTHROW; |
| 8567 | GC_NOTRIGGER; |
| 8568 | |
| 8569 | PRECONDITION(!IsDbgHelperSpecialThread()); |
| 8570 | } |
| 8571 | CONTRACTL_END; |
| 8572 | |
| 8573 | |
| 8574 | FramePointer handlerFP; |
| 8575 | handlerFP = GetHandlerFramePointer(pStack); |
| 8576 | |
| 8577 | DebuggerJitInfo * pDJI = NULL; |
| 8578 | EX_TRY |
| 8579 | { |
| 8580 | pDJI = GetJitInfo(fd, (const BYTE *) pMethodAddr); |
| 8581 | } |
| 8582 | EX_CATCH |
| 8583 | { |
| 8584 | } |
| 8585 | EX_END_CATCH(SwallowAllExceptions); |
| 8586 | |
| 8587 | if (!fd->IsDynamicMethod() && (pDJI == NULL)) |
| 8588 | { |
| 8589 | // The only way we shouldn't have a DJI is from a dynamic method or from oom (which the LS doesn't handle). |
| 8590 | _ASSERTE(!"Debugger doesn't support OOM scenarios." ); |
| 8591 | return; |
| 8592 | } |
| 8593 | |
| 8594 | |
| 8595 | DebuggerController::DispatchUnwind(g_pEEInterface->GetThread(), |
| 8596 | fd, pDJI, offset, handlerFP, STEP_EXCEPTION_HANDLER); |
| 8597 | } |
| 8598 | |
| 8599 | BOOL Debugger::ShouldAutoAttach() |
| 8600 | { |
| 8601 | CONTRACTL |
| 8602 | { |
| 8603 | NOTHROW; |
| 8604 | GC_NOTRIGGER; |
| 8605 | } |
| 8606 | CONTRACTL_END; |
| 8607 | |
| 8608 | _ASSERTE(!CORDebuggerAttached()); |
| 8609 | |
| 8610 | // We're relying on the caller to determine the |
| 8611 | |
| 8612 | LOG((LF_CORDB, LL_INFO1000000, "D::SAD\n" )); |
| 8613 | |
| 8614 | // Check if the user has specified a seting in the registry about what he |
| 8615 | // wants done when an unhandled exception occurs. |
| 8616 | DebuggerLaunchSetting dls = GetDbgJITDebugLaunchSetting(); |
| 8617 | |
| 8618 | return (dls == DLS_ATTACH_DEBUGGER); |
| 8619 | |
| 8620 | // @TODO cache the debugger launch setting. |
| 8621 | |
| 8622 | } |
| 8623 | |
| 8624 | BOOL Debugger::FallbackJITAttachPrompt() |
| 8625 | { |
| 8626 | _ASSERTE(!CORDebuggerAttached()); |
| 8627 | return (ATTACH_YES == this->ShouldAttachDebuggerProxy(false)); |
| 8628 | } |
| 8629 | |
| 8630 | void Debugger::MarkDebuggerAttachedInternal() |
| 8631 | { |
| 8632 | LIMITED_METHOD_CONTRACT; |
| 8633 | |
| 8634 | // Attach is complete now. |
| 8635 | LOG((LF_CORDB, LL_INFO10000, "D::FEDA: Attach Complete!\n" )); |
| 8636 | g_pEEInterface->MarkDebuggerAttached(); |
| 8637 | |
| 8638 | _ASSERTE(HasLazyData()); |
| 8639 | } |
| 8640 | void Debugger::MarkDebuggerUnattachedInternal() |
| 8641 | { |
| 8642 | LIMITED_METHOD_CONTRACT; |
| 8643 | |
| 8644 | _ASSERTE(HasLazyData()); |
| 8645 | |
| 8646 | g_pEEInterface->MarkDebuggerUnattached(); |
| 8647 | } |
| 8648 | |
| 8649 | //----------------------------------------------------------------------------- |
| 8650 | // Favor to do lazy initialization on helper thread. |
| 8651 | // This is needed to allow lazy intialization in Stack Overflow scenarios. |
| 8652 | // We may or may not already be initialized. |
| 8653 | //----------------------------------------------------------------------------- |
| 8654 | void LazyInitFavor(void *) |
| 8655 | { |
| 8656 | CONTRACTL |
| 8657 | { |
| 8658 | NOTHROW; |
| 8659 | MODE_ANY; |
| 8660 | } |
| 8661 | CONTRACTL_END; |
| 8662 | Debugger::DebuggerLockHolder dbgLockHolder(g_pDebugger); |
| 8663 | HRESULT hr; |
| 8664 | hr = g_pDebugger->LazyInitWrapper(); |
| 8665 | (void)hr; //prevent "unused variable" error from GCC |
| 8666 | |
| 8667 | // On checked builds, warn that we're hitting a scenario that debugging doesn't support. |
| 8668 | _ASSERTE(SUCCEEDED(hr) || !"Couldn't initialize lazy data for LastChanceManagedException" ); |
| 8669 | } |
| 8670 | |
| 8671 | /****************************************************************************** |
| 8672 | * |
| 8673 | ******************************************************************************/ |
| 8674 | LONG Debugger::LastChanceManagedException(EXCEPTION_POINTERS * pExceptionInfo, |
| 8675 | Thread *pThread, |
| 8676 | BOOL jitAttachRequested) |
| 8677 | { |
| 8678 | CONTRACTL |
| 8679 | { |
| 8680 | NOTHROW; |
| 8681 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 8682 | MODE_ANY; |
| 8683 | } |
| 8684 | CONTRACTL_END; |
| 8685 | |
| 8686 | // @@@ |
| 8687 | // Implements DebugInterface. |
| 8688 | // Can be run only on managed thread. |
| 8689 | |
| 8690 | LOG((LF_CORDB, LL_INFO10000, "D::LastChanceManagedException\n" )); |
| 8691 | |
| 8692 | // Don't stop for native debugging anywhere inside our inproc-Filters. |
| 8693 | CantStopHolder hHolder; |
| 8694 | |
| 8695 | EXCEPTION_RECORD * pExceptionRecord = pExceptionInfo->ExceptionRecord; |
| 8696 | CONTEXT * pContext = pExceptionInfo->ContextRecord; |
| 8697 | |
| 8698 | // You're allowed to call this function with a NULL exception record and context. If you do, then its assumed |
| 8699 | // that we want to head right down to asking the user if they want to attach a debugger. No need to try to |
| 8700 | // dispatch the exception to the debugger controllers. You have to pass NULL for both the exception record and |
| 8701 | // the context, though. They're a pair. Both have to be NULL, or both have to be valid. |
| 8702 | _ASSERTE(((pExceptionRecord != NULL) && (pContext != NULL)) || |
| 8703 | ((pExceptionRecord == NULL) && (pContext == NULL))); |
| 8704 | |
| 8705 | if (CORDBUnrecoverableError(this)) |
| 8706 | { |
| 8707 | return ExceptionContinueSearch; |
| 8708 | } |
| 8709 | |
| 8710 | // We don't do anything on the second pass |
| 8711 | if ((pExceptionRecord != NULL) && ((pExceptionRecord->ExceptionFlags & EXCEPTION_UNWINDING) != 0)) |
| 8712 | { |
| 8713 | return ExceptionContinueSearch; |
| 8714 | } |
| 8715 | |
| 8716 | // Let the controllers have a chance at it - this may be the only handler which can catch the exception if this |
| 8717 | // is a native patch. |
| 8718 | |
| 8719 | if ((pThread != NULL) && |
| 8720 | (pContext != NULL) && |
| 8721 | CORDebuggerAttached() && |
| 8722 | DebuggerController::DispatchNativeException(pExceptionRecord, |
| 8723 | pContext, |
| 8724 | pExceptionRecord->ExceptionCode, |
| 8725 | pThread)) |
| 8726 | { |
| 8727 | return ExceptionContinueExecution; |
| 8728 | } |
| 8729 | |
| 8730 | // Otherwise, run our last chance exception logic |
| 8731 | ATTACH_ACTION action; |
| 8732 | action = ATTACH_NO; |
| 8733 | |
| 8734 | if (CORDebuggerAttached() || jitAttachRequested) |
| 8735 | { |
| 8736 | LOG((LF_CORDB, LL_INFO10000, "D::BEH ... debugger attached.\n" )); |
| 8737 | |
| 8738 | Thread *thread = g_pEEInterface->GetThread(); |
| 8739 | _ASSERTE((thread != NULL) && (thread == pThread)); |
| 8740 | |
| 8741 | // ExceptionFlags is 0 for continuable, EXCEPTION_NONCONTINUABLE otherwise. Note that if we don't have an |
| 8742 | // exception record, then we assume this is a non-continuable exception. |
| 8743 | bool continuable = (pExceptionRecord != NULL) && (pExceptionRecord->ExceptionFlags == 0); |
| 8744 | |
| 8745 | LOG((LF_CORDB, LL_INFO10000, "D::BEH ... sending exception.\n" )); |
| 8746 | |
| 8747 | HRESULT hr = E_FAIL; |
| 8748 | |
| 8749 | // In the jit-attach case, lazy-init. We may be in a stack-overflow, so do it via a favor to avoid |
| 8750 | // using this thread's stack space. |
| 8751 | if (jitAttachRequested) |
| 8752 | { |
| 8753 | m_pRCThread->DoFavor((FAVORCALLBACK) LazyInitFavor, NULL); |
| 8754 | } |
| 8755 | |
| 8756 | // The only way we don't have lazy data at this point is in an OOM scenario, which |
| 8757 | // the debugger doesn't support. |
| 8758 | if (!HasLazyData()) |
| 8759 | { |
| 8760 | return ExceptionContinueSearch; |
| 8761 | } |
| 8762 | |
| 8763 | |
| 8764 | // In Whidbey, we used to set the filter CONTEXT when we hit an unhandled exception while doing |
| 8765 | // mixed-mode debugging. This helps the debugger walk the stack since it can skip the leaf |
| 8766 | // portion of the stack (including stack frames in the runtime) and start the stackwalk at the |
| 8767 | // faulting stack frame. The code to set the filter CONTEXT is in a hijack function which is only |
| 8768 | // used during mixed-mode debugging. |
| 8769 | if (m_pRCThread->GetDCB()->m_rightSideIsWin32Debugger) |
| 8770 | { |
| 8771 | GCX_COOP(); |
| 8772 | |
| 8773 | _ASSERTE(thread->GetFilterContext() == NULL); |
| 8774 | thread->SetFilterContext(pExceptionInfo->ContextRecord); |
| 8775 | } |
| 8776 | EX_TRY |
| 8777 | { |
| 8778 | // We pass the attaching status to SendException so that it knows |
| 8779 | // whether to attach a debugger or not. We should really do the |
| 8780 | // attach stuff out here and not bother with the flag. |
| 8781 | hr = SendException(thread, |
| 8782 | FALSE, |
| 8783 | ((pContext != NULL) ? (SIZE_T)GetIP(pContext) : NULL), |
| 8784 | ((pContext != NULL) ? (SIZE_T)GetSP(pContext) : NULL), |
| 8785 | continuable, |
| 8786 | !!jitAttachRequested, // If we are JIT attaching on an unhandled exceptioin, we force |
| 8787 | !!jitAttachRequested, // the exception to be uninterceptable. |
| 8788 | pExceptionInfo); |
| 8789 | } |
| 8790 | EX_CATCH |
| 8791 | { |
| 8792 | } |
| 8793 | EX_END_CATCH(SwallowAllExceptions); |
| 8794 | if (m_pRCThread->GetDCB()->m_rightSideIsWin32Debugger) |
| 8795 | { |
| 8796 | GCX_COOP(); |
| 8797 | |
| 8798 | thread->SetFilterContext(NULL); |
| 8799 | } |
| 8800 | } |
| 8801 | else |
| 8802 | { |
| 8803 | // Note: we don't do anything on NO or TERMINATE. We just return to the exception logic, which will abort the |
| 8804 | // app or not depending on what the CLR impl decides is appropiate. |
| 8805 | _ASSERTE(action == ATTACH_TERMINATE || action == ATTACH_NO); |
| 8806 | } |
| 8807 | |
| 8808 | return ExceptionContinueSearch; |
| 8809 | } |
| 8810 | |
| 8811 | // |
| 8812 | // NotifyUserOfFault notifies the user of a fault (unhandled exception |
| 8813 | // or user breakpoint) in the process, giving them the option to |
| 8814 | // attach a debugger or terminate the application. |
| 8815 | // |
| 8816 | int Debugger::NotifyUserOfFault(bool userBreakpoint, DebuggerLaunchSetting dls) |
| 8817 | { |
| 8818 | LOG((LF_CORDB, LL_INFO1000000, "D::NotifyUserOfFault\n" )); |
| 8819 | |
| 8820 | CONTRACTL |
| 8821 | { |
| 8822 | NOTHROW; |
| 8823 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT;; |
| 8824 | MODE_PREEMPTIVE; |
| 8825 | } |
| 8826 | CONTRACTL_END; |
| 8827 | |
| 8828 | int result = IDCANCEL; |
| 8829 | |
| 8830 | if (!CORDebuggerAttached()) |
| 8831 | { |
| 8832 | DWORD pid; |
| 8833 | DWORD tid; |
| 8834 | |
| 8835 | pid = GetCurrentProcessId(); |
| 8836 | tid = GetCurrentThreadId(); |
| 8837 | |
| 8838 | DWORD flags = 0; |
| 8839 | UINT resIDMessage = 0; |
| 8840 | |
| 8841 | if (userBreakpoint) |
| 8842 | { |
| 8843 | resIDMessage = IDS_DEBUG_USER_BREAKPOINT_MSG; |
| 8844 | flags |= MB_ABORTRETRYIGNORE | MB_ICONEXCLAMATION; |
| 8845 | } |
| 8846 | else |
| 8847 | { |
| 8848 | resIDMessage = IDS_DEBUG_UNHANDLED_EXCEPTION_MSG; |
| 8849 | flags |= MB_OKCANCEL | MB_ICONEXCLAMATION; |
| 8850 | } |
| 8851 | |
| 8852 | { |
| 8853 | // Another potential hang. This may get run on the helper if we have a stack overflow. |
| 8854 | // Hopefully the odds of 1 thread hitting a stack overflow while another is stuck holding the heap |
| 8855 | // lock is very small. |
| 8856 | SUPPRESS_ALLOCATION_ASSERTS_IN_THIS_SCOPE; |
| 8857 | |
| 8858 | result = MessageBox(resIDMessage, IDS_DEBUG_SERVICE_CAPTION, |
| 8859 | flags, TRUE, TRUE, pid, pid, tid, tid); |
| 8860 | } |
| 8861 | } |
| 8862 | |
| 8863 | LOG((LF_CORDB, LL_INFO1000000, "D::NotifyUserOfFault left\n" )); |
| 8864 | return result; |
| 8865 | } |
| 8866 | |
| 8867 | |
| 8868 | // Proxy for ShouldAttachDebugger |
| 8869 | struct ShouldAttachDebuggerParams { |
| 8870 | Debugger* m_pThis; |
| 8871 | bool m_fIsUserBreakpoint; |
| 8872 | Debugger::ATTACH_ACTION m_retval; |
| 8873 | }; |
| 8874 | |
| 8875 | // This is called by the helper thread |
| 8876 | void ShouldAttachDebuggerStub(ShouldAttachDebuggerParams * p) |
| 8877 | { |
| 8878 | WRAPPER_NO_CONTRACT; |
| 8879 | |
| 8880 | p->m_retval = p->m_pThis->ShouldAttachDebugger(p->m_fIsUserBreakpoint); |
| 8881 | } |
| 8882 | |
| 8883 | // This gets called just like the normal version, but it sends the call over to the helper thread |
| 8884 | Debugger::ATTACH_ACTION Debugger::ShouldAttachDebuggerProxy(bool fIsUserBreakpoint) |
| 8885 | { |
| 8886 | CONTRACTL |
| 8887 | { |
| 8888 | NOTHROW; |
| 8889 | GC_TRIGGERS; |
| 8890 | } |
| 8891 | CONTRACTL_END; |
| 8892 | |
| 8893 | if (!HasLazyData()) |
| 8894 | { |
| 8895 | DebuggerLockHolder lockHolder(this); |
| 8896 | HRESULT hr = LazyInitWrapper(); |
| 8897 | if (FAILED(hr)) |
| 8898 | { |
| 8899 | // We already stress logged this case. |
| 8900 | return ATTACH_NO; |
| 8901 | } |
| 8902 | } |
| 8903 | |
| 8904 | |
| 8905 | if (!IsGuardPageGone()) |
| 8906 | return ShouldAttachDebugger(fIsUserBreakpoint); |
| 8907 | |
| 8908 | ShouldAttachDebuggerParams p; |
| 8909 | p.m_pThis = this; |
| 8910 | p.m_fIsUserBreakpoint = fIsUserBreakpoint; |
| 8911 | |
| 8912 | LOG((LF_CORDB, LL_INFO1000000, "D::SADProxy\n" )); |
| 8913 | m_pRCThread->DoFavor((FAVORCALLBACK) ShouldAttachDebuggerStub, &p); |
| 8914 | LOG((LF_CORDB, LL_INFO1000000, "D::SADProxy return %d\n" , p.m_retval)); |
| 8915 | |
| 8916 | return p.m_retval; |
| 8917 | } |
| 8918 | |
| 8919 | //--------------------------------------------------------------------------------------- |
| 8920 | // Do policy to determine if we should attach a debugger. |
| 8921 | // |
| 8922 | // Arguments: |
| 8923 | // fIsUserBreakpoint - true iff this is in response to a user-breakpoint, else false. |
| 8924 | // |
| 8925 | // Returns: |
| 8926 | // Action to perform based off policy. |
| 8927 | // ATTACH_NO if a debugger is already attached. |
| 8928 | Debugger::ATTACH_ACTION Debugger::ShouldAttachDebugger(bool fIsUserBreakpoint) |
| 8929 | { |
| 8930 | CONTRACTL |
| 8931 | { |
| 8932 | NOTHROW; |
| 8933 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 8934 | MODE_ANY; |
| 8935 | } |
| 8936 | CONTRACTL_END; |
| 8937 | |
| 8938 | |
| 8939 | LOG((LF_CORDB, LL_INFO1000000, "D::SAD\n" )); |
| 8940 | |
| 8941 | // If the debugger is already attached, not necessary to re-attach |
| 8942 | if (CORDebuggerAttached()) |
| 8943 | { |
| 8944 | return ATTACH_NO; |
| 8945 | } |
| 8946 | |
| 8947 | // Check if the user has specified a seting in the registry about what he wants done when an unhandled exception |
| 8948 | // occurs. |
| 8949 | DebuggerLaunchSetting dls = GetDbgJITDebugLaunchSetting(); |
| 8950 | |
| 8951 | |
| 8952 | if (dls == DLS_ATTACH_DEBUGGER) |
| 8953 | { |
| 8954 | return ATTACH_YES; |
| 8955 | } |
| 8956 | else |
| 8957 | { |
| 8958 | // Only ask the user once if they wish to attach a debugger. This is because LastChanceManagedException can be called |
| 8959 | // twice, which causes ShouldAttachDebugger to be called twice, which causes the user to have to answer twice. |
| 8960 | static BOOL s_fHasAlreadyAsked = FALSE; |
| 8961 | static ATTACH_ACTION s_action; |
| 8962 | |
| 8963 | |
| 8964 | // This lock is also part of the above workaround. |
| 8965 | // Must go to preemptive to take this lock since we'll trigger down the road. |
| 8966 | GCX_PREEMP(); |
| 8967 | DebuggerLockHolder lockHolder(this); |
| 8968 | |
| 8969 | // We always want to ask about user breakpoints! |
| 8970 | if (!s_fHasAlreadyAsked || fIsUserBreakpoint) |
| 8971 | { |
| 8972 | if (!fIsUserBreakpoint) |
| 8973 | s_fHasAlreadyAsked = TRUE; |
| 8974 | |
| 8975 | // While we could theoretically run into a deadlock if another thread |
| 8976 | // which acquires the debugger lock in cooperative GC mode is blocked |
| 8977 | // on this thread while it is running arbitrary user code out of the |
| 8978 | // MessageBox message pump, given that this codepath will only be used |
| 8979 | // on Win9x and that the chances of this happenning are quite slim, |
| 8980 | // for Whidbey a GCViolation is acceptable. |
| 8981 | CONTRACT_VIOLATION(GCViolation); |
| 8982 | |
| 8983 | // Ask the user if they want to attach |
| 8984 | int iRes = NotifyUserOfFault(fIsUserBreakpoint, dls); |
| 8985 | |
| 8986 | // If it's a user-defined breakpoint, they must hit Retry to launch |
| 8987 | // the debugger. If it's an unhandled exception, user must press |
| 8988 | // Cancel to attach the debugger. |
| 8989 | if ((iRes == IDCANCEL) || (iRes == IDRETRY)) |
| 8990 | s_action = ATTACH_YES; |
| 8991 | |
| 8992 | else if ((iRes == IDABORT) || (iRes == IDOK)) |
| 8993 | s_action = ATTACH_TERMINATE; |
| 8994 | |
| 8995 | else |
| 8996 | s_action = ATTACH_NO; |
| 8997 | } |
| 8998 | |
| 8999 | // dbgLockHolder goes out of scope - implicit Release |
| 9000 | return s_action; |
| 9001 | } |
| 9002 | } |
| 9003 | |
| 9004 | |
| 9005 | //--------------------------------------------------------------------------------------- |
| 9006 | // SendUserBreakpoint is called by Runtime threads to send that they've hit |
| 9007 | // a user breakpoint to the Right Side. |
| 9008 | // |
| 9009 | // Parameters: |
| 9010 | // thread - managed thread that the breakpoint is on |
| 9011 | // |
| 9012 | // Notes: |
| 9013 | // A user breakpoint is generally triggered by a call to System.Diagnostics.Debugger.Break. |
| 9014 | // This can be very common. VB's 'stop' statement compiles to a Debugger.Break call. |
| 9015 | // Some other CLR facilities (MDAs) may call this directly too. |
| 9016 | // |
| 9017 | // This may trigger a Jit attach. |
| 9018 | // If the debugger is already attached, this will issue a step-out so that the UserBreakpoint |
| 9019 | // appears to come from the callsite. |
| 9020 | void Debugger::SendUserBreakpoint(Thread * thread) |
| 9021 | { |
| 9022 | CONTRACTL |
| 9023 | { |
| 9024 | THROWS; |
| 9025 | GC_TRIGGERS; |
| 9026 | MODE_ANY; |
| 9027 | |
| 9028 | PRECONDITION(thread != NULL); |
| 9029 | PRECONDITION(thread == ::GetThread()); |
| 9030 | } |
| 9031 | CONTRACTL_END; |
| 9032 | |
| 9033 | |
| 9034 | #ifdef _DEBUG |
| 9035 | // For testing Watson, we want a consistent way to be able to generate a |
| 9036 | // Fatal Execution Error |
| 9037 | // So we have a debug-only knob in this particular managed call that can be used |
| 9038 | // to artificially inject the error. |
| 9039 | // This is only for testing. |
| 9040 | static int fDbgInjectFEE = -1; |
| 9041 | |
| 9042 | if (fDbgInjectFEE == -1) |
| 9043 | fDbgInjectFEE = UnsafeGetConfigDWORD(CLRConfig::INTERNAL_DbgInjectFEE); |
| 9044 | |
| 9045 | if (fDbgInjectFEE) |
| 9046 | { |
| 9047 | STRESS_LOG0(LF_CORDB, LL_INFO10000, "Debugger posting bogus FEE b/c knob DbgInjectFEE is set.\n" ); |
| 9048 | EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE); |
| 9049 | // These never return. |
| 9050 | } |
| 9051 | #endif |
| 9052 | |
| 9053 | if (CORDBUnrecoverableError(this)) |
| 9054 | { |
| 9055 | return; |
| 9056 | } |
| 9057 | |
| 9058 | // UserBreakpoint behaves differently if we're under a debugger vs. a jit-attach. |
| 9059 | // If we're under the debugger, it does an additional step-out to get us back to the call site. |
| 9060 | |
| 9061 | // If already attached, then do a step-out and send the userbreak event. |
| 9062 | if (CORDebuggerAttached()) |
| 9063 | { |
| 9064 | // A debugger is already attached, so setup a DebuggerUserBreakpoint controller to get us out of the helper |
| 9065 | // that got us here. The DebuggerUserBreakpoint will call AttachDebuggerForBreakpoint for us when we're out |
| 9066 | // of the helper. The controller will delete itself when its done its work. |
| 9067 | DebuggerUserBreakpoint::HandleDebugBreak(thread); |
| 9068 | return; |
| 9069 | } |
| 9070 | |
| 9071 | ATTACH_ACTION dbgAction = ShouldAttachDebugger(true); |
| 9072 | |
| 9073 | // No debugger is attached. Consider a JIT attach. |
| 9074 | // This will do ShouldAttachDebugger() and wait for the results. |
| 9075 | // - It may terminate if the user requested that. |
| 9076 | // - It may do a full jit-attach. |
| 9077 | if (dbgAction == ATTACH_YES) |
| 9078 | { |
| 9079 | JitAttach(thread, NULL, TRUE, FALSE); |
| 9080 | } |
| 9081 | else if (dbgAction == ATTACH_TERMINATE) |
| 9082 | { |
| 9083 | // ATTACH_TERMINATE indicates the the user wants to terminate the app. |
| 9084 | LOG((LF_CORDB, LL_INFO10000, "D::SUB: terminating this process due to user request\n" )); |
| 9085 | |
| 9086 | // Should this go through the host? |
| 9087 | TerminateProcess(GetCurrentProcess(), 0); |
| 9088 | _ASSERTE(!"Should never reach this point." ); |
| 9089 | } |
| 9090 | else |
| 9091 | { |
| 9092 | _ASSERTE(dbgAction == ATTACH_NO); |
| 9093 | } |
| 9094 | |
| 9095 | if (CORDebuggerAttached()) |
| 9096 | { |
| 9097 | // On jit-attach, we just send the UserBreak event. Don't do an extra step-out. |
| 9098 | SendUserBreakpointAndSynchronize(thread); |
| 9099 | } |
| 9100 | else if (IsDebuggerPresent()) |
| 9101 | { |
| 9102 | DebugBreak(); |
| 9103 | } |
| 9104 | } |
| 9105 | |
| 9106 | |
| 9107 | // void Debugger::ThreadCreated(): ThreadCreated is called when |
| 9108 | // a new Runtime thread has been created, but before its ever seen |
| 9109 | // managed code. This is a callback invoked by the EE into the Debugger. |
| 9110 | // This will create a DebuggerThreadStarter patch, which will set |
| 9111 | // a patch at the first instruction in the managed code. When we hit |
| 9112 | // that patch, the DebuggerThreadStarter will invoke ThreadStarted, below. |
| 9113 | // |
| 9114 | // Thread* pRuntimeThread: The EE Thread object representing the |
| 9115 | // runtime thread that has just been created. |
| 9116 | void Debugger::ThreadCreated(Thread* pRuntimeThread) |
| 9117 | { |
| 9118 | CONTRACTL |
| 9119 | { |
| 9120 | NOTHROW; |
| 9121 | GC_NOTRIGGER; |
| 9122 | } |
| 9123 | CONTRACTL_END; |
| 9124 | |
| 9125 | // @@@ |
| 9126 | // This function implements the DebugInterface. But it is also called from Attach |
| 9127 | // logic internally. |
| 9128 | // |
| 9129 | |
| 9130 | if (CORDBUnrecoverableError(this)) |
| 9131 | return; |
| 9132 | |
| 9133 | LOG((LF_CORDB, LL_INFO100, "D::TC: thread created for 0x%x. ******\n" , |
| 9134 | GetThreadIdHelper(pRuntimeThread))); |
| 9135 | |
| 9136 | // Sanity check the thread. |
| 9137 | _ASSERTE(pRuntimeThread != NULL); |
| 9138 | _ASSERTE(pRuntimeThread->GetThreadId() != 0); |
| 9139 | |
| 9140 | |
| 9141 | // Create a thread starter and enable its WillEnterManaged code |
| 9142 | // callback. This will cause the starter to trigger once the |
| 9143 | // thread has hit managed code, which will cause |
| 9144 | // Debugger::ThreadStarted() to be called. NOTE: the starter will |
| 9145 | // be deleted automatically when its done its work. |
| 9146 | DebuggerThreadStarter *starter = new (interopsafe, nothrow) DebuggerThreadStarter(pRuntimeThread); |
| 9147 | |
| 9148 | if (starter == NULL) |
| 9149 | { |
| 9150 | CORDBDebuggerSetUnrecoverableWin32Error(this, 0, false); |
| 9151 | return; |
| 9152 | } |
| 9153 | |
| 9154 | starter->EnableTraceCall(LEAF_MOST_FRAME); |
| 9155 | } |
| 9156 | |
| 9157 | |
| 9158 | // void Debugger::ThreadStarted(): ThreadStarted is called when |
| 9159 | // a new Runtime thread has reached its first managed code. This is |
| 9160 | // called by the DebuggerThreadStarter patch's SendEvent method. |
| 9161 | // |
| 9162 | // Thread* pRuntimeThread: The EE Thread object representing the |
| 9163 | // runtime thread that has just hit managed code. |
| 9164 | void Debugger::ThreadStarted(Thread* pRuntimeThread) |
| 9165 | { |
| 9166 | CONTRACTL |
| 9167 | { |
| 9168 | NOTHROW; |
| 9169 | GC_NOTRIGGER; |
| 9170 | } |
| 9171 | CONTRACTL_END; |
| 9172 | |
| 9173 | // @@@ |
| 9174 | // This method implemented DebugInterface but it is also called from Controller |
| 9175 | |
| 9176 | if (CORDBUnrecoverableError(this)) |
| 9177 | return; |
| 9178 | |
| 9179 | LOG((LF_CORDB, LL_INFO100, "D::TS: thread attach : ID=%#x AD:%#x\n" , |
| 9180 | GetThreadIdHelper(pRuntimeThread), pRuntimeThread->GetDomain())); |
| 9181 | |
| 9182 | // We just need to send a VMPTR_Thread. The RS will get everything else it needs from DAC. |
| 9183 | // |
| 9184 | |
| 9185 | _ASSERTE((g_pEEInterface->GetThread() && |
| 9186 | !g_pEEInterface->GetThread()->m_fPreemptiveGCDisabled) || |
| 9187 | g_fInControlC); |
| 9188 | _ASSERTE(ThreadHoldsLock()); |
| 9189 | |
| 9190 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 9191 | InitIPCEvent(ipce, |
| 9192 | DB_IPCE_THREAD_ATTACH, |
| 9193 | pRuntimeThread, |
| 9194 | pRuntimeThread->GetDomain()); |
| 9195 | |
| 9196 | |
| 9197 | m_pRCThread->SendIPCEvent(); |
| 9198 | |
| 9199 | // |
| 9200 | // Well, if this thread got created _after_ we started sync'ing |
| 9201 | // then its Runtime thread flags don't have the fact that there |
| 9202 | // is a debug suspend pending. We need to call over to the |
| 9203 | // Runtime and set the flag in the thread now... |
| 9204 | // |
| 9205 | if (m_trappingRuntimeThreads) |
| 9206 | { |
| 9207 | g_pEEInterface->MarkThreadForDebugSuspend(pRuntimeThread); |
| 9208 | } |
| 9209 | } |
| 9210 | |
| 9211 | |
| 9212 | //--------------------------------------------------------------------------------------- |
| 9213 | // |
| 9214 | // DetachThread is called by Runtime threads when they are completing |
| 9215 | // their execution and about to be destroyed. |
| 9216 | // |
| 9217 | // Arguments: |
| 9218 | // pRuntimeThread - Pointer to the runtime's thread object to detach. |
| 9219 | // |
| 9220 | // Return Value: |
| 9221 | // None |
| 9222 | // |
| 9223 | //--------------------------------------------------------------------------------------- |
| 9224 | void Debugger::DetachThread(Thread *pRuntimeThread) |
| 9225 | { |
| 9226 | CONTRACTL |
| 9227 | { |
| 9228 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 9229 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 9230 | } |
| 9231 | CONTRACTL_END; |
| 9232 | |
| 9233 | if (CORDBUnrecoverableError(this)) |
| 9234 | { |
| 9235 | return; |
| 9236 | } |
| 9237 | |
| 9238 | if (m_ignoreThreadDetach) |
| 9239 | { |
| 9240 | return; |
| 9241 | } |
| 9242 | |
| 9243 | _ASSERTE (pRuntimeThread != NULL); |
| 9244 | |
| 9245 | |
| 9246 | LOG((LF_CORDB, LL_INFO100, "D::DT: thread detach : ID=%#x AD:%#x.\n" , |
| 9247 | GetThreadIdHelper(pRuntimeThread), pRuntimeThread->GetDomain())); |
| 9248 | |
| 9249 | |
| 9250 | // We may be killing a thread before the Thread-starter fired. |
| 9251 | // So check (and cancel) any outstanding thread-starters. |
| 9252 | // If we don't, this old thread starter may conflict w/ a new thread-starter |
| 9253 | // if AppDomains or EE Thread's get recycled. |
| 9254 | DebuggerController::CancelOutstandingThreadStarter(pRuntimeThread); |
| 9255 | |
| 9256 | // Controller lock is bigger than debugger lock. |
| 9257 | // Don't take debugger lock before the CancelOutStandingThreadStarter function. |
| 9258 | SENDIPCEVENT_BEGIN(this, pRuntimeThread); |
| 9259 | |
| 9260 | if (CORDebuggerAttached()) |
| 9261 | { |
| 9262 | // Send a detach thread event to the Right Side. |
| 9263 | DebuggerIPCEvent * pEvent = m_pRCThread->GetIPCEventSendBuffer(); |
| 9264 | |
| 9265 | InitIPCEvent(pEvent, |
| 9266 | DB_IPCE_THREAD_DETACH, |
| 9267 | pRuntimeThread, |
| 9268 | pRuntimeThread->GetDomain()); |
| 9269 | |
| 9270 | m_pRCThread->SendIPCEvent(); |
| 9271 | |
| 9272 | // Stop all Runtime threads |
| 9273 | TrapAllRuntimeThreads(); |
| 9274 | |
| 9275 | // This prevents a race condition where we blocked on the Lock() |
| 9276 | // above while another thread was sending an event and while we |
| 9277 | // were blocked the debugger suspended us and so we wouldn't be |
| 9278 | // resumed after the suspension about to happen below. |
| 9279 | pRuntimeThread->ResetThreadStateNC(Thread::TSNC_DebuggerUserSuspend); |
| 9280 | } |
| 9281 | else |
| 9282 | { |
| 9283 | LOG((LF_CORDB,LL_INFO1000, "D::DT: Skipping SendIPCEvent because RS detached." )); |
| 9284 | } |
| 9285 | |
| 9286 | SENDIPCEVENT_END; |
| 9287 | } |
| 9288 | |
| 9289 | |
| 9290 | // |
| 9291 | // SuspendComplete is called when the last Runtime thread reaches a safe point in response to having its trap flags set. |
| 9292 | // This may be called on either the real helper thread or someone doing helper thread duty. |
| 9293 | // |
| 9294 | // It could also be called for sending garbage collection events (see DebuggerRCThread::SendIPCEvent for more about the |
| 9295 | // thread mode associated with the events) |
| 9296 | // |
| 9297 | BOOL Debugger::SuspendComplete(bool isEESuspendedForGC) |
| 9298 | { |
| 9299 | CONTRACTL |
| 9300 | { |
| 9301 | NOTHROW; |
| 9302 | if (isEESuspendedForGC) { GC_NOTRIGGER; } else { GC_TRIGGERS; } |
| 9303 | // This will is conceptually mode-cooperative. |
| 9304 | // But we haven't marked the runtime as stopped yet (m_stopped), so the contract |
| 9305 | // subsystem doesn't realize it yet. |
| 9306 | DISABLED(MODE_COOPERATIVE); |
| 9307 | } |
| 9308 | CONTRACTL_END; |
| 9309 | |
| 9310 | // @@@ |
| 9311 | // Call from RCThread::MainLoop and TemporaryHelperThreadMainLoop. |
| 9312 | // when all threads suspended. Can happen on managed thread or helper thread. |
| 9313 | // If happen on managed thread, it must be doing the helper thread duty. |
| 9314 | // |
| 9315 | |
| 9316 | _ASSERTE(ThreadStore::HoldingThreadStore() || g_fProcessDetach); |
| 9317 | |
| 9318 | // We should be holding debugger lock m_mutex. |
| 9319 | _ASSERTE(ThreadHoldsLock()); |
| 9320 | |
| 9321 | // We can't throw here (we're in the middle of the runtime suspension logic). |
| 9322 | // But things below us throw. So we catch the exception, but then what state are we in? |
| 9323 | |
| 9324 | if (!isEESuspendedForGC) {_ASSERTE((!g_pEEInterface->GetThread() || !g_pEEInterface->GetThread()->m_fPreemptiveGCDisabled) || g_fInControlC); } |
| 9325 | if (!isEESuspendedForGC) { _ASSERTE(ThisIsHelperThreadWorker()); } |
| 9326 | |
| 9327 | STRESS_LOG0(LF_CORDB, LL_INFO10000, "D::SC: suspension complete\n" ); |
| 9328 | |
| 9329 | // We have suspended runtime. |
| 9330 | |
| 9331 | // We're stopped now. Marking m_stopped allows us to use MODE_COOPERATIVE contracts. |
| 9332 | if (isEESuspendedForGC) |
| 9333 | { |
| 9334 | _ASSERTE(!m_stopped); |
| 9335 | } |
| 9336 | else |
| 9337 | { |
| 9338 | _ASSERTE(!m_stopped && m_trappingRuntimeThreads); |
| 9339 | } |
| 9340 | m_stopped = true; |
| 9341 | |
| 9342 | |
| 9343 | // Send the sync complete event to the Right Side. |
| 9344 | { |
| 9345 | // If we fail to send the SyncComplete, what do we do? |
| 9346 | CONTRACT_VIOLATION(ThrowsViolation); |
| 9347 | |
| 9348 | SendSyncCompleteIPCEvent(isEESuspendedForGC); // sets m_stopped = true... |
| 9349 | } |
| 9350 | |
| 9351 | // Everything in the next scope is meant to mimic what we do UnlockForEventSending minus EnableEventHandling. |
| 9352 | // We do the EEH part when we get the Continue event. |
| 9353 | { |
| 9354 | #ifdef _DEBUG |
| 9355 | //_ASSERTE(m_tidLockedForEventSending == GetCurrentThreadId()); |
| 9356 | m_tidLockedForEventSending = 0; |
| 9357 | #endif |
| 9358 | |
| 9359 | // |
| 9360 | // Event handling is re-enabled by the RCThread in response to a |
| 9361 | // continue message from the Right Side. |
| 9362 | |
| 9363 | } |
| 9364 | |
| 9365 | // @todo - what should we do if this function failed? |
| 9366 | return TRUE; |
| 9367 | } |
| 9368 | |
| 9369 | |
| 9370 | |
| 9371 | |
| 9372 | //--------------------------------------------------------------------------------------- |
| 9373 | // |
| 9374 | // Debugger::SendCreateAppDomainEvent - notify the RS of an AppDomain |
| 9375 | // |
| 9376 | // Arguments: |
| 9377 | // pRuntimeAppdomain - pointer to the AppDomain |
| 9378 | // |
| 9379 | // Return Value: |
| 9380 | // None |
| 9381 | // |
| 9382 | // Notes: |
| 9383 | // This is used to notify the debugger of either a newly created |
| 9384 | // AppDomain (when fAttaching is FALSE) or of existing AppDomains |
| 9385 | // at attach time (fAttaching is TRUE). In both cases, this should |
| 9386 | // be called before any LoadModule/LoadAssembly events are sent for |
| 9387 | // this domain. Otherwise the RS will get an event for an AppDomain |
| 9388 | // it doesn't recognize and ASSERT. |
| 9389 | // |
| 9390 | // For the non-attach case this means there is no need to enumerate |
| 9391 | // the assemblies/modules in an AppDomain after sending this event |
| 9392 | // because we know there won't be any. |
| 9393 | // |
| 9394 | |
| 9395 | void Debugger::SendCreateAppDomainEvent(AppDomain * pRuntimeAppDomain) |
| 9396 | { |
| 9397 | CONTRACTL |
| 9398 | { |
| 9399 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 9400 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 9401 | |
| 9402 | MODE_COOPERATIVE; |
| 9403 | } |
| 9404 | CONTRACTL_END; |
| 9405 | |
| 9406 | if (CORDBUnrecoverableError(this)) |
| 9407 | { |
| 9408 | return; |
| 9409 | } |
| 9410 | |
| 9411 | STRESS_LOG2(LF_CORDB, LL_INFO10000, "D::SCADE: AppDomain creation:%#08x, %#08x\n" , |
| 9412 | pRuntimeAppDomain, pRuntimeAppDomain->GetId().m_dwId); |
| 9413 | |
| 9414 | |
| 9415 | |
| 9416 | Thread *pThread = g_pEEInterface->GetThread(); |
| 9417 | SENDIPCEVENT_BEGIN(this, pThread); |
| 9418 | |
| 9419 | |
| 9420 | |
| 9421 | // We may have detached while waiting in LockForEventSending, |
| 9422 | // in which case we can't send the event. |
| 9423 | if (CORDebuggerAttached()) |
| 9424 | { |
| 9425 | // Send a create appdomain event to the Right Side. |
| 9426 | DebuggerIPCEvent * pEvent = m_pRCThread->GetIPCEventSendBuffer(); |
| 9427 | |
| 9428 | InitIPCEvent(pEvent, |
| 9429 | DB_IPCE_CREATE_APP_DOMAIN, |
| 9430 | pThread, |
| 9431 | pRuntimeAppDomain); |
| 9432 | |
| 9433 | // Only send a pointer to the AppDomain, the RS will get everything else via DAC. |
| 9434 | pEvent->AppDomainData.vmAppDomain.SetRawPtr(pRuntimeAppDomain); |
| 9435 | m_pRCThread->SendIPCEvent(); |
| 9436 | |
| 9437 | TrapAllRuntimeThreads(); |
| 9438 | } |
| 9439 | |
| 9440 | // Let other Runtime threads handle their events. |
| 9441 | SENDIPCEVENT_END; |
| 9442 | |
| 9443 | } |
| 9444 | |
| 9445 | |
| 9446 | |
| 9447 | |
| 9448 | // |
| 9449 | // SendExitAppDomainEvent is called when an app domain is destroyed. |
| 9450 | // |
| 9451 | void Debugger::SendExitAppDomainEvent(AppDomain* pRuntimeAppDomain) |
| 9452 | { |
| 9453 | CONTRACTL |
| 9454 | { |
| 9455 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 9456 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 9457 | } |
| 9458 | CONTRACTL_END; |
| 9459 | |
| 9460 | if (CORDBUnrecoverableError(this)) |
| 9461 | return; |
| 9462 | |
| 9463 | LOG((LF_CORDB, LL_INFO100, "D::EAD: Exit AppDomain 0x%08x.\n" , |
| 9464 | pRuntimeAppDomain)); |
| 9465 | |
| 9466 | STRESS_LOG3(LF_CORDB, LL_INFO10000, "D::EAD: AppDomain exit:%#08x, %#08x, %#08x\n" , |
| 9467 | pRuntimeAppDomain, pRuntimeAppDomain->GetId().m_dwId, CORDebuggerAttached()); |
| 9468 | |
| 9469 | Thread *thread = g_pEEInterface->GetThread(); |
| 9470 | // Prevent other Runtime threads from handling events. |
| 9471 | SENDIPCEVENT_BEGIN(this, thread); |
| 9472 | |
| 9473 | if (CORDebuggerAttached()) |
| 9474 | { |
| 9475 | if (pRuntimeAppDomain->IsDefaultDomain() ) |
| 9476 | { |
| 9477 | // The Debugger expects to never get an unload event for the default Domain. |
| 9478 | // Currently we should never get here because g_fProcessDetach will be true by |
| 9479 | // the time this method is called. However, we'd like to know if this ever changes |
| 9480 | _ASSERTE(!"Trying to deliver notification of unload for default domain" ); |
| 9481 | return; |
| 9482 | } |
| 9483 | |
| 9484 | // Send the exit appdomain event to the Right Side. |
| 9485 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 9486 | InitIPCEvent(ipce, |
| 9487 | DB_IPCE_EXIT_APP_DOMAIN, |
| 9488 | thread, |
| 9489 | pRuntimeAppDomain); |
| 9490 | m_pRCThread->SendIPCEvent(); |
| 9491 | |
| 9492 | // Delete any left over modules for this appdomain. |
| 9493 | // Note that we're doing this under the lock. |
| 9494 | if (m_pModules != NULL) |
| 9495 | { |
| 9496 | DebuggerDataLockHolder ch(this); |
| 9497 | m_pModules->RemoveModules(pRuntimeAppDomain); |
| 9498 | } |
| 9499 | |
| 9500 | // Stop all Runtime threads |
| 9501 | TrapAllRuntimeThreads(); |
| 9502 | } |
| 9503 | else |
| 9504 | { |
| 9505 | LOG((LF_CORDB,LL_INFO1000, "D::EAD: Skipping SendIPCEvent because RS detached." )); |
| 9506 | } |
| 9507 | |
| 9508 | SENDIPCEVENT_END; |
| 9509 | } |
| 9510 | |
| 9511 | |
| 9512 | |
| 9513 | // |
| 9514 | // LoadAssembly is called when a new Assembly gets loaded. |
| 9515 | // |
| 9516 | void Debugger::LoadAssembly(DomainAssembly * pDomainAssembly) |
| 9517 | { |
| 9518 | CONTRACTL |
| 9519 | { |
| 9520 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 9521 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 9522 | } |
| 9523 | CONTRACTL_END; |
| 9524 | |
| 9525 | if (CORDBUnrecoverableError(this)) |
| 9526 | return; |
| 9527 | |
| 9528 | LOG((LF_CORDB, LL_INFO100, "D::LA: Load Assembly Asy:0x%p AD:0x%p which:%ls\n" , |
| 9529 | pDomainAssembly, pDomainAssembly->GetAppDomain(), pDomainAssembly->GetAssembly()->GetDebugName() )); |
| 9530 | |
| 9531 | if (!CORDebuggerAttached()) |
| 9532 | { |
| 9533 | return; |
| 9534 | } |
| 9535 | |
| 9536 | Thread *pThread = g_pEEInterface->GetThread(); |
| 9537 | SENDIPCEVENT_BEGIN(this, pThread) |
| 9538 | |
| 9539 | |
| 9540 | if (CORDebuggerAttached()) |
| 9541 | { |
| 9542 | // Send a load assembly event to the Right Side. |
| 9543 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 9544 | InitIPCEvent(ipce, |
| 9545 | DB_IPCE_LOAD_ASSEMBLY, |
| 9546 | pThread, |
| 9547 | pDomainAssembly->GetAppDomain()); |
| 9548 | |
| 9549 | ipce->AssemblyData.vmDomainAssembly.SetRawPtr(pDomainAssembly); |
| 9550 | |
| 9551 | m_pRCThread->SendIPCEvent(); |
| 9552 | } |
| 9553 | else |
| 9554 | { |
| 9555 | LOG((LF_CORDB,LL_INFO1000, "D::LA: Skipping SendIPCEvent because RS detached." )); |
| 9556 | } |
| 9557 | |
| 9558 | // Stop all Runtime threads |
| 9559 | if (CORDebuggerAttached()) |
| 9560 | { |
| 9561 | TrapAllRuntimeThreads(); |
| 9562 | } |
| 9563 | |
| 9564 | SENDIPCEVENT_END; |
| 9565 | } |
| 9566 | |
| 9567 | |
| 9568 | |
| 9569 | // |
| 9570 | // UnloadAssembly is called when a Runtime thread unloads an assembly. |
| 9571 | // |
| 9572 | void Debugger::UnloadAssembly(DomainAssembly * pDomainAssembly) |
| 9573 | { |
| 9574 | CONTRACTL |
| 9575 | { |
| 9576 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 9577 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 9578 | } |
| 9579 | CONTRACTL_END; |
| 9580 | |
| 9581 | if (CORDBUnrecoverableError(this)) |
| 9582 | return; |
| 9583 | |
| 9584 | LOG((LF_CORDB, LL_INFO100, "D::UA: Unload Assembly Asy:0x%p AD:0x%p which:%ls\n" , |
| 9585 | pDomainAssembly, pDomainAssembly->GetAppDomain(), pDomainAssembly->GetAssembly()->GetDebugName() )); |
| 9586 | |
| 9587 | Thread *thread = g_pEEInterface->GetThread(); |
| 9588 | // Note that the debugger lock is reentrant, so we may or may not hold it already. |
| 9589 | SENDIPCEVENT_BEGIN(this, thread); |
| 9590 | |
| 9591 | // Send the unload assembly event to the Right Side. |
| 9592 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 9593 | |
| 9594 | InitIPCEvent(ipce, |
| 9595 | DB_IPCE_UNLOAD_ASSEMBLY, |
| 9596 | thread, |
| 9597 | pDomainAssembly->GetAppDomain()); |
| 9598 | ipce->AssemblyData.vmDomainAssembly.SetRawPtr(pDomainAssembly); |
| 9599 | |
| 9600 | SendSimpleIPCEventAndBlock(); |
| 9601 | |
| 9602 | // This will block on the continue |
| 9603 | SENDIPCEVENT_END; |
| 9604 | |
| 9605 | } |
| 9606 | |
| 9607 | |
| 9608 | |
| 9609 | |
| 9610 | // |
| 9611 | // LoadModule is called when a Runtime thread loads a new module and a debugger |
| 9612 | // is attached. This also includes when a domain-neutral module is "loaded" into |
| 9613 | // a new domain. |
| 9614 | // |
| 9615 | // TODO: remove pszModuleName and perhaps other args. |
| 9616 | void Debugger::LoadModule(Module* pRuntimeModule, |
| 9617 | LPCWSTR pszModuleName, // module file name. |
| 9618 | DWORD dwModuleName, // length of pszModuleName in chars, not including null. |
| 9619 | Assembly *pAssembly, |
| 9620 | AppDomain *pAppDomain, |
| 9621 | DomainFile * pDomainFile, |
| 9622 | BOOL fAttaching) |
| 9623 | { |
| 9624 | |
| 9625 | CONTRACTL |
| 9626 | { |
| 9627 | NOTHROW; // not protected for Throws. |
| 9628 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 9629 | } |
| 9630 | CONTRACTL_END; |
| 9631 | |
| 9632 | // @@@@ |
| 9633 | // Implement DebugInterface but can be called internally as well. |
| 9634 | // This can be called by EE loading module or when we are attaching called by IteratingAppDomainForAttaching |
| 9635 | // |
| 9636 | _ASSERTE(!fAttaching); |
| 9637 | |
| 9638 | if (CORDBUnrecoverableError(this)) |
| 9639 | return; |
| 9640 | |
| 9641 | // If this is a dynamic module, then it's part of a multi-module assembly. The manifest |
| 9642 | // module within the assembly contains metadata for all the module names in the assembly. |
| 9643 | // When a new dynamic module is created, the manifest module's metadata is updated to |
| 9644 | // include the new module (see code:Assembly.CreateDynamicModule). |
| 9645 | // So we need to update the RS's copy of the metadata. One place the manifest module's |
| 9646 | // metadata gets used is in code:DacDbiInterfaceImpl.GetModuleSimpleName |
| 9647 | // |
| 9648 | // See code:ReflectionModule.CaptureModuleMetaDataToMemory for why we send the metadata-refresh here. |
| 9649 | if (pRuntimeModule->IsReflection() && !pRuntimeModule->IsManifest() && !fAttaching) |
| 9650 | { |
| 9651 | HRESULT hr = S_OK; |
| 9652 | EX_TRY |
| 9653 | { |
| 9654 | // The loader lookups may throw or togggle GC mode, so do them inside a TRY/Catch and |
| 9655 | // outside any debugger locks. |
| 9656 | Module * pManifestModule = pRuntimeModule->GetAssembly()->GetManifestModule(); |
| 9657 | |
| 9658 | _ASSERTE(pManifestModule != pRuntimeModule); |
| 9659 | _ASSERTE(pManifestModule->IsManifest()); |
| 9660 | _ASSERTE(pManifestModule->GetAssembly() == pRuntimeModule->GetAssembly()); |
| 9661 | |
| 9662 | DomainFile * pManifestDomainFile = pManifestModule->GetDomainFile(pAppDomain); |
| 9663 | |
| 9664 | DebuggerLockHolder dbgLockHolder(this); |
| 9665 | |
| 9666 | // Raise the debug event. |
| 9667 | // This still tells the debugger that the manifest module metadata is invalid and needs to |
| 9668 | // be refreshed. |
| 9669 | DebuggerIPCEvent eventMetadataUpdate; |
| 9670 | InitIPCEvent(&eventMetadataUpdate, DB_IPCE_METADATA_UPDATE, NULL, pAppDomain); |
| 9671 | |
| 9672 | eventMetadataUpdate.MetadataUpdateData.vmDomainFile.SetRawPtr(pManifestDomainFile); |
| 9673 | |
| 9674 | SendRawEvent(&eventMetadataUpdate); |
| 9675 | } |
| 9676 | EX_CATCH_HRESULT(hr); |
| 9677 | SIMPLIFYING_ASSUMPTION_SUCCEEDED(hr); |
| 9678 | } |
| 9679 | |
| 9680 | |
| 9681 | DebuggerModule * module = NULL; |
| 9682 | |
| 9683 | Thread *pThread = g_pEEInterface->GetThread(); |
| 9684 | SENDIPCEVENT_BEGIN(this, pThread); |
| 9685 | |
| 9686 | |
| 9687 | |
| 9688 | DebuggerIPCEvent* ipce = NULL; |
| 9689 | |
| 9690 | // Don't create new record if already loaded. We do still want to send the ModuleLoad event, however. |
| 9691 | // The RS has logic to ignore duplicate ModuleLoad events. We have to send what could possibly be a dup, though, |
| 9692 | // due to some really nasty issues with getting proper assembly and module load events from the loader when dealing |
| 9693 | // with shared assemblies. |
| 9694 | module = LookupOrCreateModule(pDomainFile); |
| 9695 | _ASSERTE(module != NULL); |
| 9696 | |
| 9697 | |
| 9698 | // During a real LoadModule event, debugger can change jit flags. |
| 9699 | // Can't do this during a fake event sent on attach. |
| 9700 | // This is cleared after we send the LoadModule event. |
| 9701 | module->SetCanChangeJitFlags(true); |
| 9702 | |
| 9703 | |
| 9704 | // @dbgtodo inspection - Check whether the DomainFile we get is consistent with the Module and AppDomain we get. |
| 9705 | // We should simply things when we actually get rid of DebuggerModule, possibly by just passing the |
| 9706 | // DomainFile around. |
| 9707 | _ASSERTE(module->GetDomainFile() == pDomainFile); |
| 9708 | _ASSERTE(module->GetAppDomain() == pDomainFile->GetAppDomain()); |
| 9709 | _ASSERTE(module->GetRuntimeModule() == pDomainFile->GetModule()); |
| 9710 | |
| 9711 | // Send a load module event to the Right Side. |
| 9712 | ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 9713 | InitIPCEvent(ipce,DB_IPCE_LOAD_MODULE, pThread, pAppDomain); |
| 9714 | |
| 9715 | ipce->LoadModuleData.vmDomainFile.SetRawPtr(pDomainFile); |
| 9716 | |
| 9717 | m_pRCThread->SendIPCEvent(); |
| 9718 | |
| 9719 | { |
| 9720 | // Stop all Runtime threads |
| 9721 | HRESULT hr = S_OK; |
| 9722 | EX_TRY |
| 9723 | { |
| 9724 | TrapAllRuntimeThreads(); |
| 9725 | } |
| 9726 | EX_CATCH_HRESULT(hr); // @dbgtodo synchronization - catch exception and go on to restore state. |
| 9727 | // Synchronization feature crew needs to figure out what happens to TrapAllRuntimeThreads(). |
| 9728 | } |
| 9729 | |
| 9730 | SENDIPCEVENT_END; |
| 9731 | |
| 9732 | // need to update pdb stream for SQL passed in pdb stream |
| 9733 | // regardless attach or not. |
| 9734 | // |
| 9735 | if (pRuntimeModule->IsIStream()) |
| 9736 | { |
| 9737 | // Just ignore failures. Caller was just sending a debug event and we don't |
| 9738 | // want that to interop non-debugging functionality. |
| 9739 | HRESULT hr = S_OK; |
| 9740 | EX_TRY |
| 9741 | { |
| 9742 | SendUpdateModuleSymsEventAndBlock(pRuntimeModule, pAppDomain); |
| 9743 | } |
| 9744 | EX_CATCH_HRESULT(hr); |
| 9745 | } |
| 9746 | |
| 9747 | // Now that we're done with the load module event, can no longer change Jit flags. |
| 9748 | module->SetCanChangeJitFlags(false); |
| 9749 | } |
| 9750 | |
| 9751 | |
| 9752 | //--------------------------------------------------------------------------------------- |
| 9753 | // |
| 9754 | // Special LS-only notification that a module has reached the FILE_LOADED level. For now |
| 9755 | // this is only useful to bind breakpoints in generic instantiations from NGENd modules |
| 9756 | // that we couldn't bind earlier (at LoadModule notification time) because the method |
| 9757 | // iterator refuses to consider modules earlier than the FILE_LOADED level. Normally |
| 9758 | // generic instantiations would have their breakpoints bound when they get JITted, but in |
| 9759 | // the case of NGEN that may never happen, so we need to bind them here. |
| 9760 | // |
| 9761 | // Arguments: |
| 9762 | // * pRuntimeModule - Module that just loaded |
| 9763 | // * pAppDomain - AD into which the Module was loaded |
| 9764 | // |
| 9765 | // Assumptions: |
| 9766 | // This is called during the loading process, and blocks that process from |
| 9767 | // completing. The module has reached the FILE_LOADED stage, but typically not yet |
| 9768 | // the IsReadyForTypeLoad stage. |
| 9769 | // |
| 9770 | |
| 9771 | void Debugger::LoadModuleFinished(Module * pRuntimeModule, AppDomain * pAppDomain) |
| 9772 | { |
| 9773 | CONTRACTL |
| 9774 | { |
| 9775 | SUPPORTS_DAC; |
| 9776 | STANDARD_VM_CHECK; |
| 9777 | } |
| 9778 | CONTRACTL_END; |
| 9779 | |
| 9780 | _ASSERTE(pRuntimeModule != NULL); |
| 9781 | _ASSERTE(pAppDomain != NULL); |
| 9782 | |
| 9783 | if (CORDBUnrecoverableError(this)) |
| 9784 | return; |
| 9785 | |
| 9786 | // Just as an optimization, skip binding breakpoints if there's no debugger attached. |
| 9787 | // If a debugger attaches at some point after here, it will be able to bind patches |
| 9788 | // by making the request at that time. If a debugger detaches at some point after |
| 9789 | // here, there's no harm in having extra patches bound. |
| 9790 | if (!CORDebuggerAttached()) |
| 9791 | return; |
| 9792 | |
| 9793 | // For now, this notification only does interesting work if the module that loaded is |
| 9794 | // an NGENd module, because all we care about in this notification is ensuring NGENd |
| 9795 | // methods get breakpoints bound on them |
| 9796 | if (!pRuntimeModule->HasNativeImage()) |
| 9797 | return; |
| 9798 | |
| 9799 | // This notification is called just before MODULE_READY_FOR_TYPELOAD gets set. But |
| 9800 | // for shared modules (loaded into multiple domains), MODULE_READY_FOR_TYPELOAD has |
| 9801 | // already been set if this module was already loaded into an earlier domain. For |
| 9802 | // such cases, there's no need to bind breakpoints now because the module has already |
| 9803 | // been fully loaded into at least one domain, and breakpoint binding has already |
| 9804 | // been done for us |
| 9805 | if (pRuntimeModule->IsReadyForTypeLoad()) |
| 9806 | return; |
| 9807 | |
| 9808 | #ifdef _DEBUG |
| 9809 | { |
| 9810 | // This notification is called once the module is loaded |
| 9811 | DomainFile * pDomainFile = pRuntimeModule->FindDomainFile(pAppDomain); |
| 9812 | _ASSERTE((pDomainFile != NULL) && (pDomainFile->GetLoadLevel() >= FILE_LOADED)); |
| 9813 | } |
| 9814 | #endif // _DEBUG |
| 9815 | |
| 9816 | // Find all IL Master patches for this module, and bind & activate their |
| 9817 | // corresponding slave patches. |
| 9818 | { |
| 9819 | DebuggerController::ControllerLockHolder ch; |
| 9820 | |
| 9821 | HASHFIND info; |
| 9822 | DebuggerPatchTable * pTable = DebuggerController::GetPatchTable(); |
| 9823 | |
| 9824 | for (DebuggerControllerPatch * pMasterPatchCur = pTable->GetFirstPatch(&info); |
| 9825 | pMasterPatchCur != NULL; |
| 9826 | pMasterPatchCur = pTable->GetNextPatch(&info)) |
| 9827 | { |
| 9828 | if (!pMasterPatchCur->IsILMasterPatch()) |
| 9829 | continue; |
| 9830 | |
| 9831 | DebuggerMethodInfo *dmi = GetOrCreateMethodInfo(pMasterPatchCur->key.module, pMasterPatchCur->key.md); |
| 9832 | |
| 9833 | // Found a relevant IL master patch. Now bind all corresponding slave patches |
| 9834 | // that belong to this Module |
| 9835 | DebuggerMethodInfo::DJIIterator it; |
| 9836 | dmi->IterateAllDJIs(pAppDomain, pRuntimeModule, pMasterPatchCur->pMethodDescFilter, &it); |
| 9837 | for (; !it.IsAtEnd(); it.Next()) |
| 9838 | { |
| 9839 | DebuggerJitInfo *dji = it.Current(); |
| 9840 | _ASSERTE(dji->m_jitComplete); |
| 9841 | |
| 9842 | if (dji->m_encVersion != pMasterPatchCur->GetEnCVersion()) |
| 9843 | continue; |
| 9844 | |
| 9845 | // Do we already have a slave for this DJI & Controller? If so, no need |
| 9846 | // to add another one |
| 9847 | BOOL fSlaveExists = FALSE; |
| 9848 | HASHFIND f; |
| 9849 | for (DebuggerControllerPatch * pSlavePatchCur = pTable->GetFirstPatch(&f); |
| 9850 | pSlavePatchCur != NULL; |
| 9851 | pSlavePatchCur = pTable->GetNextPatch(&f)) |
| 9852 | { |
| 9853 | if (pSlavePatchCur->IsILSlavePatch() && |
| 9854 | (pSlavePatchCur->GetDJI() == dji) && |
| 9855 | (pSlavePatchCur->controller == pMasterPatchCur->controller)) |
| 9856 | { |
| 9857 | fSlaveExists = TRUE; |
| 9858 | break; |
| 9859 | } |
| 9860 | } |
| 9861 | |
| 9862 | if (fSlaveExists) |
| 9863 | continue; |
| 9864 | |
| 9865 | pMasterPatchCur->controller->AddBindAndActivateILSlavePatch(pMasterPatchCur, dji); |
| 9866 | } |
| 9867 | } |
| 9868 | } |
| 9869 | } |
| 9870 | |
| 9871 | |
| 9872 | // Send the raw event for Updating symbols. Debugger must query for contents from out-of-process |
| 9873 | // |
| 9874 | // Arguments: |
| 9875 | // pRuntimeModule - required, module to send symbols for. May be domain neutral. |
| 9876 | // pAppDomain - required, appdomain that module is in. |
| 9877 | // |
| 9878 | // Notes: |
| 9879 | // This is just a ping event. Debugger must query for actual symbol contents. |
| 9880 | // This keeps the launch + attach cases identical. |
| 9881 | // This just sends the raw event and does not synchronize the runtime. |
| 9882 | // Use code:Debugger.SendUpdateModuleSymsEventAndBlock for that. |
| 9883 | void Debugger::SendRawUpdateModuleSymsEvent(Module *pRuntimeModule, AppDomain *pAppDomain) |
| 9884 | { |
| 9885 | CONTRACTL |
| 9886 | { |
| 9887 | NOTHROW; |
| 9888 | GC_NOTRIGGER; |
| 9889 | MODE_PREEMPTIVE; |
| 9890 | |
| 9891 | PRECONDITION(ThreadHoldsLock()); |
| 9892 | |
| 9893 | // Debugger must have been attached to get us to this point. |
| 9894 | // We hold the Debugger-lock, so debugger could not have detached from |
| 9895 | // underneath us either. |
| 9896 | PRECONDITION(CORDebuggerAttached()); |
| 9897 | } |
| 9898 | CONTRACTL_END; |
| 9899 | |
| 9900 | if (CORDBUnrecoverableError(this)) |
| 9901 | return; |
| 9902 | |
| 9903 | // This event is used to trigger the ICorDebugManagedCallback::UpdateModuleSymbols |
| 9904 | // callback. That callback is defined to pass a PDB stream, and so we still use this |
| 9905 | // only for legacy compatibility reasons when we've actually got PDB symbols. |
| 9906 | // New clients know they must request a new symbol reader after ClassLoad events. |
| 9907 | if (pRuntimeModule->GetInMemorySymbolStreamFormat() != eSymbolFormatPDB) |
| 9908 | return; // Non-PDB symbols |
| 9909 | |
| 9910 | DebuggerModule* module = LookupOrCreateModule(pRuntimeModule, pAppDomain); |
| 9911 | PREFIX_ASSUME(module != NULL); |
| 9912 | |
| 9913 | DebuggerIPCEvent* ipce = NULL; |
| 9914 | ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 9915 | InitIPCEvent(ipce, DB_IPCE_UPDATE_MODULE_SYMS, |
| 9916 | g_pEEInterface->GetThread(), |
| 9917 | pAppDomain); |
| 9918 | |
| 9919 | ipce->UpdateModuleSymsData.vmDomainFile.SetRawPtr((module ? module->GetDomainFile() : NULL)); |
| 9920 | |
| 9921 | m_pRCThread->SendIPCEvent(); |
| 9922 | } |
| 9923 | |
| 9924 | // |
| 9925 | // UpdateModuleSyms is called when the symbols for a module need to be |
| 9926 | // sent to the Right Side because they've changed. |
| 9927 | // |
| 9928 | // Arguments: |
| 9929 | // pRuntimeModule - required, module to send symbols for. May be domain neutral. |
| 9930 | // pAppDomain - required, appdomain that module is in. |
| 9931 | // |
| 9932 | // |
| 9933 | // Notes: |
| 9934 | // This will send the event (via code:Debugger.SendRawUpdateModuleSymsEvent) and then synchronize |
| 9935 | // the runtime waiting for a continue. |
| 9936 | // |
| 9937 | // This should only be called in cases where we reasonably expect to send symbols. |
| 9938 | // However, this may not send symbols if the symbols aren't available. |
| 9939 | void Debugger::SendUpdateModuleSymsEventAndBlock(Module* pRuntimeModule, AppDomain *pAppDomain) |
| 9940 | { |
| 9941 | CONTRACTL |
| 9942 | { |
| 9943 | THROWS; |
| 9944 | GC_TRIGGERS; |
| 9945 | MODE_ANY; |
| 9946 | } |
| 9947 | CONTRACTL_END; |
| 9948 | |
| 9949 | if (CORDBUnrecoverableError(this) || !CORDebuggerAttached()) |
| 9950 | { |
| 9951 | return; |
| 9952 | } |
| 9953 | |
| 9954 | CGrowableStream * pStream = pRuntimeModule->GetInMemorySymbolStream(); |
| 9955 | LOG((LF_CORDB, LL_INFO10000, "D::UMS: update module syms RuntimeModule:0x%08x CGrowableStream:0x%08x\n" , pRuntimeModule, pStream)); |
| 9956 | if (pStream == NULL) |
| 9957 | { |
| 9958 | // No in-memory Pdb available. |
| 9959 | STRESS_LOG1(LF_CORDB, LL_INFO10000, "No syms available %p" , pRuntimeModule); |
| 9960 | return; |
| 9961 | } |
| 9962 | |
| 9963 | SENDIPCEVENT_BEGIN(this, g_pEEInterface->GetThread()); // toggles to preemptive |
| 9964 | |
| 9965 | // Actually send the event |
| 9966 | if (CORDebuggerAttached()) |
| 9967 | { |
| 9968 | SendRawUpdateModuleSymsEvent(pRuntimeModule, pAppDomain); |
| 9969 | TrapAllRuntimeThreads(); |
| 9970 | } |
| 9971 | |
| 9972 | SENDIPCEVENT_END; |
| 9973 | } |
| 9974 | |
| 9975 | |
| 9976 | // |
| 9977 | // UnloadModule is called by the Runtime for each module (including shared ones) |
| 9978 | // in an AppDomain that is being unloaded, when a debugger is attached. |
| 9979 | // In the EE, a module may be domain-neutral and therefore shared across all AppDomains. |
| 9980 | // We abstract this detail away in the Debugger and consider each such EE module to correspond |
| 9981 | // to multiple "Debugger Module" instances (one per AppDomain). |
| 9982 | // Therefore, this doesn't necessarily mean the runtime is unloading the module, just |
| 9983 | // that the Debugger should consider it's (per-AppDomain) DebuggerModule to be unloaded. |
| 9984 | // |
| 9985 | void Debugger::UnloadModule(Module* pRuntimeModule, |
| 9986 | AppDomain *pAppDomain) |
| 9987 | { |
| 9988 | CONTRACTL |
| 9989 | { |
| 9990 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 9991 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 9992 | } |
| 9993 | CONTRACTL_END; |
| 9994 | |
| 9995 | // @@@@ |
| 9996 | // implements DebugInterface. |
| 9997 | // can only called by EE on Module::NotifyDebuggerUnload |
| 9998 | // |
| 9999 | |
| 10000 | if (CORDBUnrecoverableError(this)) |
| 10001 | return; |
| 10002 | |
| 10003 | |
| 10004 | |
| 10005 | LOG((LF_CORDB, LL_INFO100, "D::UM: unload module Mod:%#08x AD:%#08x runtimeMod:%#08x modName:%ls\n" , |
| 10006 | LookupOrCreateModule(pRuntimeModule, pAppDomain), pAppDomain, pRuntimeModule, pRuntimeModule->GetDebugName())); |
| 10007 | |
| 10008 | |
| 10009 | Thread *thread = g_pEEInterface->GetThread(); |
| 10010 | SENDIPCEVENT_BEGIN(this, thread); |
| 10011 | |
| 10012 | if (CORDebuggerAttached()) |
| 10013 | { |
| 10014 | |
| 10015 | DebuggerModule* module = LookupOrCreateModule(pRuntimeModule, pAppDomain); |
| 10016 | if (module == NULL) |
| 10017 | { |
| 10018 | LOG((LF_CORDB, LL_INFO100, "D::UM: module already unloaded AD:%#08x runtimeMod:%#08x modName:%ls\n" , |
| 10019 | pAppDomain, pRuntimeModule, pRuntimeModule->GetDebugName())); |
| 10020 | goto LExit; |
| 10021 | } |
| 10022 | _ASSERTE(module != NULL); |
| 10023 | |
| 10024 | STRESS_LOG3(LF_CORDB, LL_INFO10000, "D::UM: Unloading Mod:%#08x, %#08x, %#08x\n" , |
| 10025 | pRuntimeModule, pAppDomain, pRuntimeModule->IsIStream()); |
| 10026 | |
| 10027 | // Note: the appdomain the module was loaded in must match the appdomain we're unloading it from. If it doesn't, |
| 10028 | // then we've either found the wrong DebuggerModule in LookupModule or we were passed bad data. |
| 10029 | _ASSERTE(module->GetAppDomain() == pAppDomain); |
| 10030 | |
| 10031 | // Send the unload module event to the Right Side. |
| 10032 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 10033 | InitIPCEvent(ipce, DB_IPCE_UNLOAD_MODULE, thread, pAppDomain); |
| 10034 | ipce->UnloadModuleData.vmDomainFile.SetRawPtr((module ? module->GetDomainFile() : NULL)); |
| 10035 | ipce->UnloadModuleData.debuggerAssemblyToken.Set(pRuntimeModule->GetClassLoader()->GetAssembly()); |
| 10036 | m_pRCThread->SendIPCEvent(); |
| 10037 | |
| 10038 | // |
| 10039 | // Cleanup the module (only for resources consumed when a debugger is attached) |
| 10040 | // |
| 10041 | |
| 10042 | // Remove all patches that apply to this module/AppDomain combination |
| 10043 | AppDomain* domainToRemovePatchesIn = NULL; // all domains by default |
| 10044 | |
| 10045 | // Note that we'll explicitly NOT delete DebuggerControllers, so that |
| 10046 | // the Right Side can delete them later. |
| 10047 | DebuggerController::RemovePatchesFromModule(pRuntimeModule, domainToRemovePatchesIn); |
| 10048 | |
| 10049 | // Deactive all JMC functions in this module. We don't do this for shared assemblies |
| 10050 | // because JMC status is not maintained on a per-AppDomain basis and we don't |
| 10051 | // want to change the JMC behavior of the module in other domains. |
| 10052 | LOG((LF_CORDB, LL_EVERYTHING, "Setting all JMC methods to false:\n" )); |
| 10053 | DebuggerDataLockHolder debuggerDataLockHolder(this); |
| 10054 | DebuggerMethodInfoTable * pTable = GetMethodInfoTable(); |
| 10055 | if (pTable != NULL) |
| 10056 | { |
| 10057 | HASHFIND info; |
| 10058 | |
| 10059 | for (DebuggerMethodInfo *dmi = pTable->GetFirstMethodInfo(&info); |
| 10060 | dmi != NULL; |
| 10061 | dmi = pTable->GetNextMethodInfo(&info)) |
| 10062 | { |
| 10063 | if (dmi->m_module == pRuntimeModule) |
| 10064 | { |
| 10065 | dmi->SetJMCStatus(false); |
| 10066 | } |
| 10067 | } |
| 10068 | } |
| 10069 | LOG((LF_CORDB, LL_EVERYTHING, "Done clearing JMC methods!\n" )); |
| 10070 | |
| 10071 | // Delete the Left Side representation of the module. |
| 10072 | if (m_pModules != NULL) |
| 10073 | { |
| 10074 | DebuggerDataLockHolder chInfo(this); |
| 10075 | m_pModules->RemoveModule(pRuntimeModule, pAppDomain); |
| 10076 | } |
| 10077 | |
| 10078 | // Stop all Runtime threads |
| 10079 | TrapAllRuntimeThreads(); |
| 10080 | } |
| 10081 | else |
| 10082 | { |
| 10083 | LOG((LF_CORDB,LL_INFO1000, "D::UM: Skipping SendIPCEvent because RS detached." )); |
| 10084 | } |
| 10085 | |
| 10086 | LExit: |
| 10087 | SENDIPCEVENT_END; |
| 10088 | } |
| 10089 | |
| 10090 | // Called when this module is completely gone from ALL AppDomains, regardless of |
| 10091 | // whether a debugger is attached. |
| 10092 | // Note that this doesn't get called until after the ADUnload is complete, which happens |
| 10093 | // asyncronously in Whidbey (and won't happen at all if the process shuts down first). |
| 10094 | // This is normally not called only domain-neutral assemblies because they can't be unloaded. |
| 10095 | // However, it may be called if the loader fails to completely load a domain-neutral assembly. |
| 10096 | void Debugger::DestructModule(Module *pModule) |
| 10097 | { |
| 10098 | CONTRACTL |
| 10099 | { |
| 10100 | NOTHROW; |
| 10101 | GC_NOTRIGGER; |
| 10102 | } |
| 10103 | CONTRACTL_END; |
| 10104 | |
| 10105 | LOG((LF_CORDB, LL_INFO100, "D::DM: destruct module runtimeMod:%#08x modName:%ls\n" , |
| 10106 | pModule, pModule->GetDebugName())); |
| 10107 | |
| 10108 | // @@@ |
| 10109 | // Implements DebugInterface. |
| 10110 | // It is called for Module::Destruct. We do not need to send any IPC event. |
| 10111 | |
| 10112 | DebuggerLockHolder dbgLockHolder(this); |
| 10113 | |
| 10114 | // We should have removed all patches at AD unload time (or detach time if the |
| 10115 | // debugger detached). |
| 10116 | _ASSERTE( !DebuggerController::ModuleHasPatches(pModule) ); |
| 10117 | |
| 10118 | // Do module clean-up that applies even when no debugger is attached. |
| 10119 | // Ideally, we might like to do this cleanup more eagerly and detministically, |
| 10120 | // but we don't currently get any early AD unload callback from the loader |
| 10121 | // when no debugger is attached. Perhaps we should make the loader |
| 10122 | // call this callback earlier. |
| 10123 | RemoveModuleReferences(pModule); |
| 10124 | } |
| 10125 | |
| 10126 | |
| 10127 | // Internal helper to remove all the DJIs / DMIs and other references for a given Module. |
| 10128 | // If we don't remove the DJIs / DMIs, then we're subject to recycling bugs because the underlying |
| 10129 | // MethodDescs will get removed. Thus we'll look up a new MD and it will pull up an old DMI that matched |
| 10130 | // the old MD. Now the DMI and MD are out of sync and it's downhill from there. |
| 10131 | // Note that DMIs may be used (and need cleanup) even when no debugger is attached. |
| 10132 | void Debugger::RemoveModuleReferences( Module* pModule ) |
| 10133 | { |
| 10134 | _ASSERTE( ThreadHoldsLock() ); |
| 10135 | |
| 10136 | // We want to remove all references to the module from the various |
| 10137 | // tables. It's not just possible, but probable, that the module |
| 10138 | // will be re-loaded at the exact same address, and in that case, |
| 10139 | // we'll have piles of entries in our DJI table that mistakenly |
| 10140 | // match this new module. |
| 10141 | // Note that this doesn't apply to domain neutral assemblies, that only |
| 10142 | // get unloaded when the process dies. We won't be reclaiming their |
| 10143 | // DJIs/patches b/c the process is going to die, so we'll reclaim |
| 10144 | // the memory when the various hashtables are unloaded. |
| 10145 | |
| 10146 | if (m_pMethodInfos != NULL) |
| 10147 | { |
| 10148 | HRESULT hr = S_OK; |
| 10149 | if (!HasLazyData()) |
| 10150 | { |
| 10151 | hr = LazyInitWrapper(); |
| 10152 | } |
| 10153 | |
| 10154 | if (SUCCEEDED(hr)) |
| 10155 | { |
| 10156 | DebuggerDataLockHolder debuggerDataLockHolder(this); |
| 10157 | |
| 10158 | m_pMethodInfos->ClearMethodsOfModule(pModule); |
| 10159 | |
| 10160 | // DebuggerDataLockHolder out of scope - release implied |
| 10161 | } |
| 10162 | } |
| 10163 | } |
| 10164 | |
| 10165 | //--------------------------------------------------------------------------------------- |
| 10166 | // |
| 10167 | // SendClassLoadUnloadEvent - notify the RS of a class either loading or unloading. |
| 10168 | // |
| 10169 | // Arguments: |
| 10170 | // |
| 10171 | // fAttaching - true if a debugger is in the process of attaching |
| 10172 | // |
| 10173 | // Return Value: |
| 10174 | // None |
| 10175 | // |
| 10176 | //--------------------------------------------------------------------------------------- |
| 10177 | void Debugger::SendClassLoadUnloadEvent (mdTypeDef classMetadataToken, |
| 10178 | DebuggerModule * pClassDebuggerModule, |
| 10179 | Assembly *pAssembly, |
| 10180 | AppDomain *pAppDomain, |
| 10181 | BOOL fIsLoadEvent) |
| 10182 | { |
| 10183 | CONTRACTL |
| 10184 | { |
| 10185 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 10186 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 10187 | } |
| 10188 | CONTRACTL_END; |
| 10189 | |
| 10190 | |
| 10191 | LOG((LF_CORDB,LL_INFO10000, "D::SCLUE: Tok:0x%x isLoad:0x%x Mod:%#08x AD:%#08x\n" , |
| 10192 | classMetadataToken, fIsLoadEvent, pClassDebuggerModule, pAppDomain)); |
| 10193 | |
| 10194 | DebuggerIPCEvent * pEvent = m_pRCThread->GetIPCEventSendBuffer(); |
| 10195 | |
| 10196 | BOOL fIsReflection = pClassDebuggerModule->GetRuntimeModule()->IsReflection(); |
| 10197 | |
| 10198 | if (fIsLoadEvent == TRUE) |
| 10199 | { |
| 10200 | // We need to update Metadata before Symbols (since symbols depend on metadata) |
| 10201 | // It's debatable which needs to come first: Class Load or Sym update. |
| 10202 | // V1.1 sent Sym Update first so that binding at the class load has the latest symbols. |
| 10203 | // However, The Class Load may need to be in sync with updating new metadata, |
| 10204 | // and that has to come before the Sym update. |
| 10205 | InitIPCEvent(pEvent, DB_IPCE_LOAD_CLASS, g_pEEInterface->GetThread(), pAppDomain); |
| 10206 | |
| 10207 | pEvent->LoadClass.classMetadataToken = classMetadataToken; |
| 10208 | pEvent->LoadClass.vmDomainFile.SetRawPtr((pClassDebuggerModule ? pClassDebuggerModule->GetDomainFile() : NULL)); |
| 10209 | pEvent->LoadClass.classDebuggerAssemblyToken.Set(pAssembly); |
| 10210 | |
| 10211 | |
| 10212 | // For class loads in dynamic modules, RS knows that the metadata has now grown and is invalid. |
| 10213 | // RS will re-fetch new metadata from out-of-process. |
| 10214 | } |
| 10215 | else |
| 10216 | { |
| 10217 | InitIPCEvent(pEvent, DB_IPCE_UNLOAD_CLASS, g_pEEInterface->GetThread(), pAppDomain); |
| 10218 | |
| 10219 | pEvent->UnloadClass.classMetadataToken = classMetadataToken; |
| 10220 | pEvent->UnloadClass.vmDomainFile.SetRawPtr((pClassDebuggerModule ? pClassDebuggerModule->GetDomainFile() : NULL)); |
| 10221 | pEvent->UnloadClass.classDebuggerAssemblyToken.Set(pAssembly); |
| 10222 | } |
| 10223 | |
| 10224 | m_pRCThread->SendIPCEvent(); |
| 10225 | |
| 10226 | if (fIsLoadEvent && fIsReflection) |
| 10227 | { |
| 10228 | // Send the raw event, but don't actually sync and block the runtime. |
| 10229 | SendRawUpdateModuleSymsEvent(pClassDebuggerModule->GetRuntimeModule(), pAppDomain); |
| 10230 | } |
| 10231 | |
| 10232 | } |
| 10233 | |
| 10234 | |
| 10235 | |
| 10236 | /****************************************************************************** |
| 10237 | * |
| 10238 | ******************************************************************************/ |
| 10239 | BOOL Debugger::SendSystemClassLoadUnloadEvent(mdTypeDef classMetadataToken, |
| 10240 | Module *classModule, |
| 10241 | BOOL fIsLoadEvent) |
| 10242 | { |
| 10243 | CONTRACTL |
| 10244 | { |
| 10245 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 10246 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 10247 | } |
| 10248 | CONTRACTL_END; |
| 10249 | |
| 10250 | if (!m_dClassLoadCallbackCount) |
| 10251 | { |
| 10252 | return FALSE; |
| 10253 | } |
| 10254 | |
| 10255 | BOOL fRetVal = FALSE; |
| 10256 | |
| 10257 | Assembly *pAssembly = classModule->GetAssembly(); |
| 10258 | |
| 10259 | if (!m_pAppDomainCB->Lock()) |
| 10260 | return (FALSE); |
| 10261 | |
| 10262 | AppDomainInfo *pADInfo = m_pAppDomainCB->FindFirst(); |
| 10263 | |
| 10264 | while (pADInfo != NULL) |
| 10265 | { |
| 10266 | AppDomain *pAppDomain = pADInfo->m_pAppDomain; |
| 10267 | _ASSERTE(pAppDomain != NULL); |
| 10268 | |
| 10269 | // Only notify for app domains where the module has been fully loaded already |
| 10270 | // We used to make a different check here domain->ContainsAssembly() but that |
| 10271 | // triggers too early in the loading process. FindDomainFile will not become |
| 10272 | // non-NULL until the module is fully loaded into the domain which is what we |
| 10273 | // want. |
| 10274 | if (classModule->FindDomainFile(pAppDomain) != NULL ) |
| 10275 | { |
| 10276 | // Find the Left Side module that this class belongs in. |
| 10277 | DebuggerModule* pModule = LookupOrCreateModule(classModule, pAppDomain); |
| 10278 | _ASSERTE(pModule != NULL); |
| 10279 | |
| 10280 | // Only send a class load event if they're enabled for this module. |
| 10281 | if (pModule && pModule->ClassLoadCallbacksEnabled()) |
| 10282 | { |
| 10283 | SendClassLoadUnloadEvent(classMetadataToken, |
| 10284 | pModule, |
| 10285 | pAssembly, |
| 10286 | pAppDomain, |
| 10287 | fIsLoadEvent); |
| 10288 | fRetVal = TRUE; |
| 10289 | } |
| 10290 | } |
| 10291 | |
| 10292 | pADInfo = m_pAppDomainCB->FindNext(pADInfo); |
| 10293 | } |
| 10294 | |
| 10295 | m_pAppDomainCB->Unlock(); |
| 10296 | |
| 10297 | return fRetVal; |
| 10298 | } |
| 10299 | |
| 10300 | |
| 10301 | // |
| 10302 | // LoadClass is called when a Runtime thread loads a new Class. |
| 10303 | // Returns TRUE if an event is sent, FALSE otherwise |
| 10304 | BOOL Debugger::LoadClass(TypeHandle th, |
| 10305 | mdTypeDef classMetadataToken, |
| 10306 | Module *classModule, |
| 10307 | AppDomain *pAppDomain) |
| 10308 | { |
| 10309 | CONTRACTL |
| 10310 | { |
| 10311 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 10312 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 10313 | } |
| 10314 | CONTRACTL_END; |
| 10315 | |
| 10316 | // @@@ |
| 10317 | // Implements DebugInterface |
| 10318 | // This can be called by EE/Loader when class is loaded. |
| 10319 | // |
| 10320 | |
| 10321 | BOOL fRetVal = FALSE; |
| 10322 | |
| 10323 | if (CORDBUnrecoverableError(this)) |
| 10324 | return FALSE; |
| 10325 | |
| 10326 | // Note that pAppDomain may be null. The AppDomain isn't used here, and doesn't make a lot of sense since |
| 10327 | // we may be delivering the notification for a class in an assembly which is loaded into multiple AppDomains. We |
| 10328 | // handle this in SendSystemClassLoadUnloadEvent below by looping through all AppDomains and dispatching |
| 10329 | // events for each that contain this assembly. |
| 10330 | |
| 10331 | LOG((LF_CORDB, LL_INFO10000, "D::LC: load class Tok:%#08x Mod:%#08x AD:%#08x classMod:%#08x modName:%ls\n" , |
| 10332 | classMetadataToken, (pAppDomain == NULL) ? NULL : LookupOrCreateModule(classModule, pAppDomain), |
| 10333 | pAppDomain, classModule, classModule->GetDebugName())); |
| 10334 | |
| 10335 | // |
| 10336 | // If we're attaching, then we only need to send the event. We |
| 10337 | // don't need to disable event handling or lock the debugger |
| 10338 | // object. |
| 10339 | // |
| 10340 | SENDIPCEVENT_BEGIN(this, g_pEEInterface->GetThread()); |
| 10341 | |
| 10342 | if (CORDebuggerAttached()) |
| 10343 | { |
| 10344 | fRetVal = SendSystemClassLoadUnloadEvent(classMetadataToken, classModule, TRUE); |
| 10345 | |
| 10346 | if (fRetVal == TRUE) |
| 10347 | { |
| 10348 | // Stop all Runtime threads |
| 10349 | TrapAllRuntimeThreads(); |
| 10350 | } |
| 10351 | } |
| 10352 | else |
| 10353 | { |
| 10354 | LOG((LF_CORDB,LL_INFO1000, "D::LC: Skipping SendIPCEvent because RS detached." )); |
| 10355 | } |
| 10356 | |
| 10357 | SENDIPCEVENT_END; |
| 10358 | |
| 10359 | return fRetVal; |
| 10360 | } |
| 10361 | |
| 10362 | |
| 10363 | // |
| 10364 | // UnloadClass is called when a Runtime thread unloads a Class. |
| 10365 | // |
| 10366 | void Debugger::UnloadClass(mdTypeDef classMetadataToken, |
| 10367 | Module *classModule, |
| 10368 | AppDomain *pAppDomain) |
| 10369 | { |
| 10370 | CONTRACTL |
| 10371 | { |
| 10372 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 10373 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 10374 | } |
| 10375 | CONTRACTL_END; |
| 10376 | |
| 10377 | // @@@ |
| 10378 | // Implements DebugInterface |
| 10379 | // Can only be called from EE |
| 10380 | |
| 10381 | if (CORDBUnrecoverableError(this)) |
| 10382 | { |
| 10383 | return; |
| 10384 | } |
| 10385 | |
| 10386 | LOG((LF_CORDB, LL_INFO10000, "D::UC: unload class Tok:0x%08x Mod:%#08x AD:%#08x runtimeMod:%#08x modName:%ls\n" , |
| 10387 | classMetadataToken, LookupOrCreateModule(classModule, pAppDomain), pAppDomain, classModule, classModule->GetDebugName())); |
| 10388 | |
| 10389 | Assembly *pAssembly = classModule->GetClassLoader()->GetAssembly(); |
| 10390 | DebuggerModule *pModule = LookupOrCreateModule(classModule, pAppDomain); |
| 10391 | |
| 10392 | if ((pModule == NULL) || !pModule->ClassLoadCallbacksEnabled()) |
| 10393 | { |
| 10394 | return; |
| 10395 | } |
| 10396 | |
| 10397 | SENDIPCEVENT_BEGIN(this, g_pEEInterface->GetThread()); |
| 10398 | |
| 10399 | if (CORDebuggerAttached()) |
| 10400 | { |
| 10401 | _ASSERTE((pAppDomain != NULL) && (pAssembly != NULL) && (pModule != NULL)); |
| 10402 | |
| 10403 | SendClassLoadUnloadEvent(classMetadataToken, pModule, pAssembly, pAppDomain, FALSE); |
| 10404 | |
| 10405 | // Stop all Runtime threads |
| 10406 | TrapAllRuntimeThreads(); |
| 10407 | } |
| 10408 | else |
| 10409 | { |
| 10410 | LOG((LF_CORDB,LL_INFO1000, "D::UC: Skipping SendIPCEvent because RS detached." )); |
| 10411 | } |
| 10412 | |
| 10413 | // Let other Runtime threads handle their events. |
| 10414 | SENDIPCEVENT_END; |
| 10415 | |
| 10416 | } |
| 10417 | |
| 10418 | /****************************************************************************** |
| 10419 | * |
| 10420 | ******************************************************************************/ |
| 10421 | void Debugger::FuncEvalComplete(Thread* pThread, DebuggerEval *pDE) |
| 10422 | { |
| 10423 | CONTRACTL |
| 10424 | { |
| 10425 | THROWS; |
| 10426 | GC_NOTRIGGER; |
| 10427 | } |
| 10428 | CONTRACTL_END; |
| 10429 | |
| 10430 | #ifndef DACCESS_COMPILE |
| 10431 | |
| 10432 | if (CORDBUnrecoverableError(this)) |
| 10433 | return; |
| 10434 | |
| 10435 | LOG((LF_CORDB, LL_INFO1000, "D::FEC: func eval complete pDE:%p evalType:%d %s %s\n" , |
| 10436 | pDE, pDE->m_evalType, pDE->m_successful ? "Success" : "Fail" , pDE->m_aborted ? "Abort" : "Completed" )); |
| 10437 | |
| 10438 | |
| 10439 | _ASSERTE(pDE->m_completed); |
| 10440 | _ASSERTE((g_pEEInterface->GetThread() && !g_pEEInterface->GetThread()->m_fPreemptiveGCDisabled) || g_fInControlC); |
| 10441 | _ASSERTE(ThreadHoldsLock()); |
| 10442 | |
| 10443 | // If we need to rethrow a ThreadAbortException then set the thread's state so we remember that. |
| 10444 | if (pDE->m_rethrowAbortException) |
| 10445 | { |
| 10446 | pThread->SetThreadStateNC(Thread::TSNC_DebuggerReAbort); |
| 10447 | } |
| 10448 | |
| 10449 | |
| 10450 | // |
| 10451 | // Get the domain that the result is valid in. The RS will cache this in the ICorDebugValue |
| 10452 | // Note: it's possible that the AppDomain has (or is about to be) unloaded, which could lead to a |
| 10453 | // crash when we use the DebuggerModule. Ideally we'd only be using AppDomain IDs here. |
| 10454 | // We can't easily convert our ADID to an AppDomain* (SystemDomain::GetAppDomainFromId) |
| 10455 | // because we can't proove that that the AppDomain* would be valid (not unloaded). |
| 10456 | // |
| 10457 | AppDomain *pDomain = pThread->GetDomain(); |
| 10458 | AppDomain *pResultDomain = ((pDE->m_debuggerModule == NULL) ? pDomain : pDE->m_debuggerModule->GetAppDomain()); |
| 10459 | _ASSERTE( pResultDomain->GetId() == pDE->m_appDomainId ); |
| 10460 | |
| 10461 | // Send a func eval complete event to the Right Side. |
| 10462 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 10463 | InitIPCEvent(ipce, DB_IPCE_FUNC_EVAL_COMPLETE, pThread, pDomain); |
| 10464 | |
| 10465 | ipce->FuncEvalComplete.funcEvalKey = pDE->m_funcEvalKey; |
| 10466 | ipce->FuncEvalComplete.successful = pDE->m_successful; |
| 10467 | ipce->FuncEvalComplete.aborted = pDE->m_aborted; |
| 10468 | ipce->FuncEvalComplete.resultAddr = pDE->m_result; |
| 10469 | ipce->FuncEvalComplete.vmAppDomain.SetRawPtr(pResultDomain); |
| 10470 | ipce->FuncEvalComplete.vmObjectHandle = pDE->m_vmObjectHandle; |
| 10471 | |
| 10472 | LOG((LF_CORDB, LL_INFO1000, "D::FEC: TypeHandle is %p\n" , pDE->m_resultType.AsPtr())); |
| 10473 | |
| 10474 | Debugger::TypeHandleToExpandedTypeInfo(pDE->m_retValueBoxing, // whether return values get boxed or not depends on the particular FuncEval we're doing... |
| 10475 | pResultDomain, |
| 10476 | pDE->m_resultType, |
| 10477 | &ipce->FuncEvalComplete.resultType); |
| 10478 | |
| 10479 | _ASSERTE(ipce->FuncEvalComplete.resultType.elementType != ELEMENT_TYPE_VALUETYPE); |
| 10480 | |
| 10481 | // We must adjust the result address to point to the right place |
| 10482 | ipce->FuncEvalComplete.resultAddr = ArgSlotEndianessFixup((ARG_SLOT*)ipce->FuncEvalComplete.resultAddr, |
| 10483 | GetSizeForCorElementType(ipce->FuncEvalComplete.resultType.elementType)); |
| 10484 | |
| 10485 | LOG((LF_CORDB, LL_INFO1000, "D::FEC: returned el %04x resultAddr %p\n" , |
| 10486 | ipce->FuncEvalComplete.resultType.elementType, ipce->FuncEvalComplete.resultAddr)); |
| 10487 | |
| 10488 | m_pRCThread->SendIPCEvent(); |
| 10489 | |
| 10490 | #endif |
| 10491 | } |
| 10492 | |
| 10493 | /****************************************************************************** |
| 10494 | * |
| 10495 | ******************************************************************************/ |
| 10496 | bool Debugger::ResumeThreads(AppDomain* pAppDomain) |
| 10497 | { |
| 10498 | CONTRACTL |
| 10499 | { |
| 10500 | NOTHROW; |
| 10501 | GC_NOTRIGGER; |
| 10502 | PRECONDITION(ThisIsHelperThreadWorker()); |
| 10503 | } |
| 10504 | CONTRACTL_END; |
| 10505 | |
| 10506 | // Okay, mark that we're not stopped anymore and let the |
| 10507 | // Runtime threads go... |
| 10508 | ReleaseAllRuntimeThreads(pAppDomain); |
| 10509 | |
| 10510 | // Return that we've continued the process. |
| 10511 | return true; |
| 10512 | } |
| 10513 | |
| 10514 | |
| 10515 | class CodeBuffer |
| 10516 | { |
| 10517 | public: |
| 10518 | |
| 10519 | BYTE *getCodeBuffer(DebuggerJitInfo *dji) |
| 10520 | { |
| 10521 | CONTRACTL |
| 10522 | { |
| 10523 | NOTHROW; |
| 10524 | GC_NOTRIGGER; |
| 10525 | } |
| 10526 | CONTRACTL_END; |
| 10527 | |
| 10528 | CodeRegionInfo codeRegionInfo = CodeRegionInfo::GetCodeRegionInfo(dji); |
| 10529 | |
| 10530 | if (codeRegionInfo.getAddrOfColdCode()) |
| 10531 | { |
| 10532 | _ASSERTE(codeRegionInfo.getSizeOfHotCode() != 0); |
| 10533 | _ASSERTE(codeRegionInfo.getSizeOfColdCode() != 0); |
| 10534 | S_SIZE_T totalSize = S_SIZE_T( codeRegionInfo.getSizeOfHotCode() ) + |
| 10535 | S_SIZE_T( codeRegionInfo.getSizeOfColdCode() ); |
| 10536 | if ( totalSize.IsOverflow() ) |
| 10537 | { |
| 10538 | _ASSERTE(0 && "Buffer overflow error in getCodeBuffer" ); |
| 10539 | return NULL; |
| 10540 | } |
| 10541 | |
| 10542 | BYTE *code = (BYTE *) buffer.AllocNoThrow( totalSize.Value() ); |
| 10543 | if (code) |
| 10544 | { |
| 10545 | memcpy(code, |
| 10546 | (void *) codeRegionInfo.getAddrOfHotCode(), |
| 10547 | codeRegionInfo.getSizeOfHotCode()); |
| 10548 | |
| 10549 | memcpy(code + codeRegionInfo.getSizeOfHotCode(), |
| 10550 | (void *) codeRegionInfo.getAddrOfColdCode(), |
| 10551 | codeRegionInfo.getSizeOfColdCode()); |
| 10552 | |
| 10553 | // Now patch the control transfer instructions |
| 10554 | } |
| 10555 | |
| 10556 | return code; |
| 10557 | } |
| 10558 | else |
| 10559 | { |
| 10560 | return dac_cast<PTR_BYTE>(codeRegionInfo.getAddrOfHotCode()); |
| 10561 | } |
| 10562 | } |
| 10563 | private: |
| 10564 | |
| 10565 | CQuickBytes buffer; |
| 10566 | }; |
| 10567 | |
| 10568 | |
| 10569 | //--------------------------------------------------------------------------------------- |
| 10570 | // |
| 10571 | // Called on the helper thread to serialize metadata so it can be read out-of-process. |
| 10572 | // |
| 10573 | // Arguments: |
| 10574 | // pModule - module that needs metadata serialization |
| 10575 | // countBytes - out value, holds the number of bytes which were allocated in the |
| 10576 | // serialized buffer |
| 10577 | // |
| 10578 | // Return Value: |
| 10579 | // A pointer to a serialized buffer of metadata. The caller should free this bufer using |
| 10580 | // DeleteInteropSafe |
| 10581 | // |
| 10582 | // Assumptions: |
| 10583 | // This is called on the helper-thread, or a thread pretending to be the helper-thread. |
| 10584 | // For any synchronous message, the debuggee should be synchronized. The only async |
| 10585 | // messages are Attach and Async-Break. |
| 10586 | // |
| 10587 | // |
| 10588 | //--------------------------------------------------------------------------------------- |
| 10589 | BYTE* Debugger::SerializeModuleMetaData(Module * pModule, DWORD * countBytes) |
| 10590 | { |
| 10591 | CONTRACTL |
| 10592 | { |
| 10593 | THROWS; |
| 10594 | GC_NOTRIGGER; |
| 10595 | } |
| 10596 | CONTRACTL_END; |
| 10597 | |
| 10598 | LOG((LF_CORDB, LL_INFO10000, "Debugger::SMMD called\n" )); |
| 10599 | |
| 10600 | // Do not release the emitter. This is a weak reference. |
| 10601 | IMetaDataEmit *pEmitter = pModule->GetEmitter(); |
| 10602 | _ASSERTE(pEmitter != NULL); |
| 10603 | |
| 10604 | HRESULT hr; |
| 10605 | BYTE* metadataBuffer = NULL; |
| 10606 | ReleaseHolder<IMDInternalEmit> pInternalEmitter; |
| 10607 | ULONG originalUpdateMode; |
| 10608 | hr = pEmitter->QueryInterface(IID_IMDInternalEmit, (void **)&pInternalEmitter); |
| 10609 | if(FAILED(hr)) |
| 10610 | { |
| 10611 | LOG((LF_CORDB, LL_INFO10, "Debugger::SMMD pEmitter doesn't support IID_IMDInternalEmit hr=0x%x\n" , hr)); |
| 10612 | ThrowHR(hr); |
| 10613 | } |
| 10614 | _ASSERTE(pInternalEmitter != NULL); |
| 10615 | |
| 10616 | hr = pInternalEmitter->SetMDUpdateMode(MDUpdateExtension, &originalUpdateMode); |
| 10617 | if(FAILED(hr)) |
| 10618 | { |
| 10619 | LOG((LF_CORDB, LL_INFO10, "Debugger::SMMD SetMDUpdateMode failed hr=0x%x\n" , hr)); |
| 10620 | ThrowHR(hr); |
| 10621 | } |
| 10622 | _ASSERTE(originalUpdateMode == MDUpdateFull); |
| 10623 | |
| 10624 | hr = pEmitter->GetSaveSize(cssQuick, countBytes); |
| 10625 | if(FAILED(hr)) |
| 10626 | { |
| 10627 | LOG((LF_CORDB, LL_INFO10, "Debugger::SMMD GetSaveSize failed hr=0x%x\n" , hr)); |
| 10628 | pInternalEmitter->SetMDUpdateMode(originalUpdateMode, NULL); |
| 10629 | ThrowHR(hr); |
| 10630 | } |
| 10631 | |
| 10632 | EX_TRY |
| 10633 | { |
| 10634 | metadataBuffer = new (interopsafe) BYTE[*countBytes]; |
| 10635 | } |
| 10636 | EX_CATCH |
| 10637 | { |
| 10638 | LOG((LF_CORDB, LL_INFO10, "Debugger::SMMD Allocation failed\n" )); |
| 10639 | pInternalEmitter->SetMDUpdateMode(originalUpdateMode, NULL); |
| 10640 | EX_RETHROW; |
| 10641 | } |
| 10642 | EX_END_CATCH(SwallowAllExceptions); |
| 10643 | _ASSERTE(metadataBuffer != NULL); // allocation would throw first |
| 10644 | |
| 10645 | // Caller ensures serialization that guarantees that the metadata doesn't grow underneath us. |
| 10646 | hr = pEmitter->SaveToMemory(metadataBuffer, *countBytes); |
| 10647 | if(FAILED(hr)) |
| 10648 | { |
| 10649 | LOG((LF_CORDB, LL_INFO10, "Debugger::SMMD SaveToMemory failed hr=0x%x\n" , hr)); |
| 10650 | DeleteInteropSafe(metadataBuffer); |
| 10651 | pInternalEmitter->SetMDUpdateMode(originalUpdateMode, NULL); |
| 10652 | ThrowHR(hr); |
| 10653 | } |
| 10654 | |
| 10655 | pInternalEmitter->SetMDUpdateMode(originalUpdateMode, NULL); |
| 10656 | LOG((LF_CORDB, LL_INFO10000, "Debugger::SMMD exiting\n" )); |
| 10657 | return metadataBuffer; |
| 10658 | } |
| 10659 | |
| 10660 | //--------------------------------------------------------------------------------------- |
| 10661 | // |
| 10662 | // Handle an IPC event from the Debugger. |
| 10663 | // |
| 10664 | // Arguments: |
| 10665 | // event - IPC event to handle. |
| 10666 | // |
| 10667 | // Return Value: |
| 10668 | // True if the event was a continue. Else false. |
| 10669 | // |
| 10670 | // Assumptions: |
| 10671 | // This is called on the helper-thread, or a thread pretending to be the helper-thread. |
| 10672 | // For any synchronous message, the debuggee should be synchronized. The only async |
| 10673 | // messages are Attach and Async-Break. |
| 10674 | // |
| 10675 | // Notes: |
| 10676 | // HandleIPCEvent is called by the RC thread in response to an event |
| 10677 | // from the Debugger Interface. No other IPC events, nor any Runtime |
| 10678 | // events will come in until this method returns. Returns true if this |
| 10679 | // was a Continue event. |
| 10680 | // |
| 10681 | // If this function is called on native debugger helper thread, we will |
| 10682 | // handle everything. However if this is called on managed thread doing |
| 10683 | // helper thread duty, we will fail on operation since we are mainly |
| 10684 | // waiting for CONTINUE message from the RS. |
| 10685 | // |
| 10686 | // |
| 10687 | //--------------------------------------------------------------------------------------- |
| 10688 | |
| 10689 | #ifdef _PREFAST_ |
| 10690 | #pragma warning(push) |
| 10691 | #pragma warning(disable:21000) // Suppress PREFast warning about overly large function |
| 10692 | #endif |
| 10693 | bool Debugger::HandleIPCEvent(DebuggerIPCEvent * pEvent) |
| 10694 | { |
| 10695 | CONTRACTL |
| 10696 | { |
| 10697 | THROWS; |
| 10698 | if (g_pEEInterface->GetThread() != NULL) { GC_TRIGGERS; } else { GC_NOTRIGGER; } |
| 10699 | |
| 10700 | PRECONDITION(ThisIsHelperThreadWorker()); |
| 10701 | |
| 10702 | if (m_stopped) |
| 10703 | { |
| 10704 | MODE_COOPERATIVE; |
| 10705 | } |
| 10706 | else |
| 10707 | { |
| 10708 | MODE_ANY; |
| 10709 | } |
| 10710 | } |
| 10711 | CONTRACTL_END; |
| 10712 | |
| 10713 | // If we're the temporary helper thread, then we may reject certain operations. |
| 10714 | bool temporaryHelp = ThisIsTempHelperThread(); |
| 10715 | |
| 10716 | |
| 10717 | #ifdef _DEBUG |
| 10718 | // This reg key allows us to test our unhandled event filter installed in HandleIPCEventWrapper |
| 10719 | // to make sure it works properly. |
| 10720 | static int s_fDbgFaultInHandleIPCEvent = -1; |
| 10721 | if (s_fDbgFaultInHandleIPCEvent == -1) |
| 10722 | { |
| 10723 | s_fDbgFaultInHandleIPCEvent = UnsafeGetConfigDWORD(CLRConfig::INTERNAL_DbgFaultInHandleIPCEvent); |
| 10724 | } |
| 10725 | |
| 10726 | // If we need to fault, let's generate an access violation. |
| 10727 | if (s_fDbgFaultInHandleIPCEvent) |
| 10728 | { |
| 10729 | *((volatile BYTE *)0) = 0; |
| 10730 | } |
| 10731 | #endif |
| 10732 | |
| 10733 | BOOL fSuccess; |
| 10734 | bool fContinue = false; |
| 10735 | HRESULT hr = S_OK; |
| 10736 | |
| 10737 | LOG((LF_CORDB, LL_INFO10000, "D::HIPCE: got %s\n" , IPCENames::GetName(pEvent->type))); |
| 10738 | DbgLog((DebuggerIPCEventType)(pEvent->type & DB_IPCE_TYPE_MASK)); |
| 10739 | |
| 10740 | // As for runtime is considered stopped, it means that managed threads will not |
| 10741 | // execute anymore managed code. However, these threads may be still running for |
| 10742 | // unmanaged code. So it is not true that we do not need to hold the lock while processing |
| 10743 | // synchrnoized event. |
| 10744 | // |
| 10745 | // The worst of all, it is the special case where user break point and exception can |
| 10746 | // be sent as part of attach if debugger was launched by managed app. |
| 10747 | // |
| 10748 | DebuggerLockHolder dbgLockHolder(this, FALSE); |
| 10749 | bool lockedThreadStore = false; |
| 10750 | |
| 10751 | if ((pEvent->type & DB_IPCE_TYPE_MASK) == DB_IPCE_ASYNC_BREAK || |
| 10752 | (pEvent->type & DB_IPCE_TYPE_MASK) == DB_IPCE_ATTACHING || |
| 10753 | this->m_willBlockOnGarbageCollectionEvent) |
| 10754 | { |
| 10755 | if (!this->m_willBlockOnGarbageCollectionEvent && !this->m_stopped) |
| 10756 | { |
| 10757 | lockedThreadStore = true; |
| 10758 | ThreadSuspend::LockThreadStore(ThreadSuspend::SUSPEND_FOR_DEBUGGER); |
| 10759 | } |
| 10760 | dbgLockHolder.Acquire(); |
| 10761 | } |
| 10762 | else |
| 10763 | { |
| 10764 | _ASSERTE(m_stopped); |
| 10765 | _ASSERTE(ThreadHoldsLock()); |
| 10766 | } |
| 10767 | |
| 10768 | |
| 10769 | switch (pEvent->type & DB_IPCE_TYPE_MASK) |
| 10770 | { |
| 10771 | |
| 10772 | case DB_IPCE_ATTACHING: |
| 10773 | // In V3, Attach is atomic, meaning that there isn't a complex handshake back and forth between LS + RS. |
| 10774 | // the RS sends a single-attaching event and attaches at the first response from the Left-side. |
| 10775 | StartCanaryThread(); |
| 10776 | |
| 10777 | // In V3 after attaching event was handled we iterate throughout all ADs and made shadow copies of PDBs in the BIN directories. |
| 10778 | // After all AppDomain, DomainAssembly and modules iteration was available in out-of-proccess model in V4 the code that enables |
| 10779 | // PDBs to be copied was not called at attach time. |
| 10780 | // Eliminating PDBs copying side effect is an issue: Dev10 #927143 |
| 10781 | EX_TRY |
| 10782 | { |
| 10783 | IterateAppDomainsForPdbs(); |
| 10784 | } |
| 10785 | EX_CATCH_HRESULT(hr); // ignore failures |
| 10786 | |
| 10787 | if (m_jitAttachInProgress) |
| 10788 | { |
| 10789 | // For jit-attach, mark that we're attached now. |
| 10790 | // This lets callers to code:Debugger.JitAttach check the flag and |
| 10791 | // send the jit-attach event just like a normal event. |
| 10792 | MarkDebuggerAttachedInternal(); |
| 10793 | |
| 10794 | // set the managed attach event so that waiting threads can continue |
| 10795 | VERIFY(SetEvent(GetAttachEvent())); |
| 10796 | break; |
| 10797 | } |
| 10798 | |
| 10799 | VERIFY(SetEvent(GetAttachEvent())); |
| 10800 | |
| 10801 | // |
| 10802 | // For regular (non-jit) attach, fall through to do an async break. |
| 10803 | // |
| 10804 | |
| 10805 | case DB_IPCE_ASYNC_BREAK: |
| 10806 | { |
| 10807 | if (temporaryHelp) |
| 10808 | { |
| 10809 | // Don't support async break on temporary helper thread. |
| 10810 | // Well, this function does not return HR. So this means that |
| 10811 | // ASYNC_BREAK event will be catching silently while we are |
| 10812 | // doing helper thread duty! |
| 10813 | // |
| 10814 | hr = CORDBG_E_NOTREADY; |
| 10815 | } |
| 10816 | else |
| 10817 | { |
| 10818 | // not synchornized. We get debugger lock upon the function entry |
| 10819 | _ASSERTE(ThreadHoldsLock()); |
| 10820 | |
| 10821 | // Simply trap all Runtime threads if we're not already trying to. |
| 10822 | if (!m_willBlockOnGarbageCollectionEvent && !m_trappingRuntimeThreads) |
| 10823 | { |
| 10824 | // If the RS sent an Async-break, then that's an explicit request. |
| 10825 | m_RSRequestedSync = TRUE; |
| 10826 | TrapAllRuntimeThreads(); // Non-blocking... |
| 10827 | } |
| 10828 | } |
| 10829 | break; |
| 10830 | } |
| 10831 | |
| 10832 | case DB_IPCE_CONTINUE: |
| 10833 | { |
| 10834 | if (this->m_isBlockedOnGarbageCollectionEvent) |
| 10835 | { |
| 10836 | this->m_stopped = false; |
| 10837 | SetEvent(this->GetGarbageCollectionBlockerEvent()); |
| 10838 | } |
| 10839 | else |
| 10840 | { |
| 10841 | fContinue = ResumeThreads(pEvent->vmAppDomain.GetRawPtr()); |
| 10842 | |
| 10843 | // |
| 10844 | // Go ahead and release the TSL now that we're continuing. This ensures that we've held |
| 10845 | // the thread store lock the entire time the Runtime was just stopped. |
| 10846 | // |
| 10847 | ThreadSuspend::UnlockThreadStore(FALSE, ThreadSuspend::SUSPEND_FOR_DEBUGGER); |
| 10848 | } |
| 10849 | GetCanary()->ClearCache(); |
| 10850 | break; |
| 10851 | } |
| 10852 | |
| 10853 | case DB_IPCE_BREAKPOINT_ADD: |
| 10854 | { |
| 10855 | |
| 10856 | // |
| 10857 | // Currently, we can't create a breakpoint before a |
| 10858 | // function desc is available. |
| 10859 | // Also, we can't know if a breakpoint is ok |
| 10860 | // prior to the method being JITted. |
| 10861 | // |
| 10862 | |
| 10863 | _ASSERTE(hr == S_OK); |
| 10864 | DebuggerBreakpoint * pDebuggerBP = NULL; |
| 10865 | |
| 10866 | DebuggerModule * pDebuggerModule = LookupOrCreateModule(pEvent->BreakpointData.vmDomainFile); |
| 10867 | Module * pModule = pDebuggerModule->GetRuntimeModule(); |
| 10868 | DebuggerMethodInfo * pDMI = GetOrCreateMethodInfo(pModule, pEvent->BreakpointData.funcMetadataToken); |
| 10869 | MethodDesc * pMethodDesc = pEvent->BreakpointData.nativeCodeMethodDescToken.UnWrap(); |
| 10870 | |
| 10871 | DebuggerJitInfo * pDJI = NULL; |
| 10872 | if ((pMethodDesc != NULL) && (pDMI != NULL)) |
| 10873 | { |
| 10874 | pDJI = pDMI->FindOrCreateInitAndAddJitInfo(pMethodDesc, NULL /* startAddr */); |
| 10875 | } |
| 10876 | |
| 10877 | { |
| 10878 | // If we haven't been either JITted or EnC'd yet, then |
| 10879 | // we'll put a patch in by offset, implicitly relative |
| 10880 | // to the first version of the code. |
| 10881 | |
| 10882 | pDebuggerBP = new (interopsafe, nothrow) DebuggerBreakpoint(pModule, |
| 10883 | pEvent->BreakpointData.funcMetadataToken, |
| 10884 | pEvent->vmAppDomain.GetRawPtr(), |
| 10885 | pEvent->BreakpointData.offset, |
| 10886 | !pEvent->BreakpointData.isIL, |
| 10887 | pEvent->BreakpointData.encVersion, |
| 10888 | pMethodDesc, |
| 10889 | pDJI, |
| 10890 | pEvent->BreakpointData.nativeCodeMethodDescToken == NULL, |
| 10891 | &fSuccess); |
| 10892 | |
| 10893 | TRACE_ALLOC(pDebuggerBP); |
| 10894 | |
| 10895 | if ((pDebuggerBP != NULL) && !fSuccess) |
| 10896 | { |
| 10897 | DeleteInteropSafe(pDebuggerBP); |
| 10898 | pDebuggerBP = NULL; |
| 10899 | hr = CORDBG_E_UNABLE_TO_SET_BREAKPOINT; |
| 10900 | } |
| 10901 | } |
| 10902 | |
| 10903 | if ((pDebuggerBP == NULL) && !FAILED(hr)) |
| 10904 | { |
| 10905 | hr = E_OUTOFMEMORY; |
| 10906 | } |
| 10907 | |
| 10908 | LOG((LF_CORDB,LL_INFO10000,"\tBP Add: BPTOK:" |
| 10909 | "0x%x, tok=0x%08x, offset=0x%x, isIL=%d dm=0x%x m=0x%x\n" , |
| 10910 | pDebuggerBP, |
| 10911 | pEvent->BreakpointData.funcMetadataToken, |
| 10912 | pEvent->BreakpointData.offset, |
| 10913 | pEvent->BreakpointData.isIL, |
| 10914 | pDebuggerModule, |
| 10915 | pModule)); |
| 10916 | |
| 10917 | // |
| 10918 | // We're using a two-way event here, so we place the |
| 10919 | // result event into the _receive_ buffer, not the send |
| 10920 | // buffer. |
| 10921 | // |
| 10922 | |
| 10923 | DebuggerIPCEvent * pIPCResult = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 10924 | |
| 10925 | InitIPCEvent(pIPCResult, |
| 10926 | DB_IPCE_BREAKPOINT_ADD_RESULT, |
| 10927 | g_pEEInterface->GetThread(), |
| 10928 | pEvent->vmAppDomain); |
| 10929 | |
| 10930 | pIPCResult->BreakpointData.breakpointToken.Set(pDebuggerBP); |
| 10931 | pIPCResult->hr = hr; |
| 10932 | |
| 10933 | m_pRCThread->SendIPCReply(); |
| 10934 | } |
| 10935 | break; |
| 10936 | |
| 10937 | case DB_IPCE_STEP: |
| 10938 | { |
| 10939 | LOG((LF_CORDB,LL_INFO10000, "D::HIPCE: stepIn:0x%x frmTok:0x%x" |
| 10940 | "StepIn:0x%x RangeIL:0x%x RangeCount:0x%x MapStop:0x%x " |
| 10941 | "InterceptStop:0x%x AppD:0x%x\n" , |
| 10942 | pEvent->StepData.stepIn, |
| 10943 | pEvent->StepData.frameToken.GetSPValue(), |
| 10944 | pEvent->StepData.stepIn, |
| 10945 | pEvent->StepData.rangeIL, |
| 10946 | pEvent->StepData.rangeCount, |
| 10947 | pEvent->StepData.rgfMappingStop, |
| 10948 | pEvent->StepData.rgfInterceptStop, |
| 10949 | pEvent->vmAppDomain.GetRawPtr())); |
| 10950 | |
| 10951 | // <TODO>@todo memory allocation - bad if we're synced</TODO> |
| 10952 | Thread * pThread = pEvent->StepData.vmThreadToken.GetRawPtr(); |
| 10953 | AppDomain * pAppDomain = pEvent->vmAppDomain.GetRawPtr(); |
| 10954 | |
| 10955 | DebuggerIPCEvent * pIPCResult = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 10956 | |
| 10957 | InitIPCEvent(pIPCResult, |
| 10958 | DB_IPCE_STEP_RESULT, |
| 10959 | pThread, |
| 10960 | pEvent->vmAppDomain); |
| 10961 | |
| 10962 | if (temporaryHelp) |
| 10963 | { |
| 10964 | // Can't step on the temporary helper thread. |
| 10965 | pIPCResult->hr = CORDBG_E_NOTREADY; |
| 10966 | } |
| 10967 | else |
| 10968 | { |
| 10969 | DebuggerStepper * pStepper; |
| 10970 | |
| 10971 | if (pEvent->StepData.IsJMCStop) |
| 10972 | { |
| 10973 | pStepper = new (interopsafe, nothrow) DebuggerJMCStepper(pThread, |
| 10974 | pEvent->StepData.rgfMappingStop, |
| 10975 | pEvent->StepData.rgfInterceptStop, |
| 10976 | pAppDomain); |
| 10977 | } |
| 10978 | else |
| 10979 | { |
| 10980 | pStepper = new (interopsafe, nothrow) DebuggerStepper(pThread, |
| 10981 | pEvent->StepData.rgfMappingStop, |
| 10982 | pEvent->StepData.rgfInterceptStop, |
| 10983 | pAppDomain); |
| 10984 | } |
| 10985 | |
| 10986 | if (pStepper == NULL) |
| 10987 | { |
| 10988 | pIPCResult->hr = E_OUTOFMEMORY; |
| 10989 | |
| 10990 | m_pRCThread->SendIPCReply(); |
| 10991 | |
| 10992 | break; |
| 10993 | } |
| 10994 | TRACE_ALLOC(pStepper); |
| 10995 | |
| 10996 | unsigned int cRanges = pEvent->StepData.totalRangeCount; |
| 10997 | |
| 10998 | _ASSERTE(cRanges == 0 || ((cRanges > 0) && (cRanges == pEvent->StepData.rangeCount))); |
| 10999 | |
| 11000 | if (!pStepper->Step(pEvent->StepData.frameToken, |
| 11001 | pEvent->StepData.stepIn, |
| 11002 | &(pEvent->StepData.range), |
| 11003 | cRanges, |
| 11004 | ((cRanges > 0) ? pEvent->StepData.rangeIL : false))) |
| 11005 | { |
| 11006 | pIPCResult->hr = E_OUTOFMEMORY; |
| 11007 | |
| 11008 | m_pRCThread->SendIPCReply(); |
| 11009 | |
| 11010 | DeleteInteropSafe(pStepper); |
| 11011 | break; |
| 11012 | } |
| 11013 | |
| 11014 | pIPCResult->StepData.stepperToken.Set(pStepper); |
| 11015 | |
| 11016 | |
| 11017 | } // end normal step case. |
| 11018 | |
| 11019 | |
| 11020 | m_pRCThread->SendIPCReply(); |
| 11021 | } |
| 11022 | break; |
| 11023 | |
| 11024 | case DB_IPCE_STEP_OUT: |
| 11025 | { |
| 11026 | // <TODO>@todo memory allocation - bad if we're synced</TODO> |
| 11027 | Thread * pThread = pEvent->StepData.vmThreadToken.GetRawPtr(); |
| 11028 | AppDomain * pAppDomain = pEvent->vmAppDomain.GetRawPtr(); |
| 11029 | |
| 11030 | DebuggerIPCEvent * pIPCResult = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 11031 | |
| 11032 | InitIPCEvent(pIPCResult, |
| 11033 | DB_IPCE_STEP_RESULT, |
| 11034 | pThread, |
| 11035 | pAppDomain); |
| 11036 | |
| 11037 | if (temporaryHelp) |
| 11038 | { |
| 11039 | // Can't step on the temporary helper thread. |
| 11040 | pIPCResult->hr = CORDBG_E_NOTREADY; |
| 11041 | } |
| 11042 | else |
| 11043 | { |
| 11044 | DebuggerStepper * pStepper; |
| 11045 | |
| 11046 | if (pEvent->StepData.IsJMCStop) |
| 11047 | { |
| 11048 | pStepper = new (interopsafe, nothrow) DebuggerJMCStepper(pThread, |
| 11049 | pEvent->StepData.rgfMappingStop, |
| 11050 | pEvent->StepData.rgfInterceptStop, |
| 11051 | pAppDomain); |
| 11052 | } |
| 11053 | else |
| 11054 | { |
| 11055 | pStepper = new (interopsafe, nothrow) DebuggerStepper(pThread, |
| 11056 | pEvent->StepData.rgfMappingStop, |
| 11057 | pEvent->StepData.rgfInterceptStop, |
| 11058 | pAppDomain); |
| 11059 | } |
| 11060 | |
| 11061 | |
| 11062 | if (pStepper == NULL) |
| 11063 | { |
| 11064 | pIPCResult->hr = E_OUTOFMEMORY; |
| 11065 | m_pRCThread->SendIPCReply(); |
| 11066 | |
| 11067 | break; |
| 11068 | } |
| 11069 | |
| 11070 | TRACE_ALLOC(pStepper); |
| 11071 | |
| 11072 | // Safe to stack trace b/c we're stopped. |
| 11073 | StackTraceTicket ticket(pThread); |
| 11074 | |
| 11075 | pStepper->StepOut(pEvent->StepData.frameToken, ticket); |
| 11076 | |
| 11077 | pIPCResult->StepData.stepperToken.Set(pStepper); |
| 11078 | } |
| 11079 | |
| 11080 | m_pRCThread->SendIPCReply(); |
| 11081 | } |
| 11082 | break; |
| 11083 | |
| 11084 | case DB_IPCE_BREAKPOINT_REMOVE: |
| 11085 | { |
| 11086 | // <TODO>@todo memory allocation - bad if we're synced</TODO> |
| 11087 | |
| 11088 | DebuggerBreakpoint * pDebuggerBP = pEvent->BreakpointData.breakpointToken.UnWrap(); |
| 11089 | |
| 11090 | pDebuggerBP->Delete(); |
| 11091 | } |
| 11092 | break; |
| 11093 | |
| 11094 | case DB_IPCE_STEP_CANCEL: |
| 11095 | { |
| 11096 | // <TODO>@todo memory allocation - bad if we're synced</TODO> |
| 11097 | LOG((LF_CORDB,LL_INFO10000, "D:HIPCE:Got STEP_CANCEL for stepper 0x%p\n" , |
| 11098 | pEvent->StepData.stepperToken.UnWrap())); |
| 11099 | |
| 11100 | DebuggerStepper * pStepper = pEvent->StepData.stepperToken.UnWrap(); |
| 11101 | |
| 11102 | pStepper->Delete(); |
| 11103 | } |
| 11104 | break; |
| 11105 | |
| 11106 | case DB_IPCE_SET_ALL_DEBUG_STATE: |
| 11107 | { |
| 11108 | Thread * pThread = pEvent->SetAllDebugState.vmThreadToken.GetRawPtr(); |
| 11109 | CorDebugThreadState debugState = pEvent->SetAllDebugState.debugState; |
| 11110 | |
| 11111 | LOG((LF_CORDB,LL_INFO10000,"HandleIPCE: SetAllDebugState: except thread 0x%08x (ID:0x%x) to state 0x%x\n" , |
| 11112 | pThread, |
| 11113 | (pThread != NULL) ? GetThreadIdHelper(pThread) : 0, |
| 11114 | debugState)); |
| 11115 | |
| 11116 | if (!g_fProcessDetach) |
| 11117 | { |
| 11118 | g_pEEInterface->SetAllDebugState(pThread, debugState); |
| 11119 | } |
| 11120 | |
| 11121 | STRESS_LOG1(LF_CORDB,LL_INFO10000,"HandleIPC: Got 0x%x back from SetAllDebugState\n" , hr); |
| 11122 | |
| 11123 | // Just send back an HR. |
| 11124 | DebuggerIPCEvent * pIPCResult = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 11125 | |
| 11126 | PREFIX_ASSUME(pIPCResult != NULL); |
| 11127 | |
| 11128 | InitIPCEvent(pIPCResult, DB_IPCE_SET_DEBUG_STATE_RESULT, NULL, NULL); |
| 11129 | |
| 11130 | pIPCResult->hr = S_OK; |
| 11131 | |
| 11132 | m_pRCThread->SendIPCReply(); |
| 11133 | } |
| 11134 | break; |
| 11135 | |
| 11136 | case DB_IPCE_GET_GCHANDLE_INFO: |
| 11137 | // Given an unvalidated GC-handle, find out all the info about it to view the object |
| 11138 | // at the other end |
| 11139 | { |
| 11140 | OBJECTHANDLE objectHandle = pEvent->GetGCHandleInfo.GCHandle.GetRawPtr(); |
| 11141 | |
| 11142 | DebuggerIPCEvent * pIPCResult = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 11143 | |
| 11144 | PREFIX_ASSUME(pIPCResult != NULL); |
| 11145 | |
| 11146 | InitIPCEvent(pIPCResult, DB_IPCE_GET_GCHANDLE_INFO_RESULT, NULL, NULL); |
| 11147 | |
| 11148 | bool fValid = SUCCEEDED(ValidateGCHandle(objectHandle)); |
| 11149 | |
| 11150 | AppDomain * pAppDomain = NULL; |
| 11151 | |
| 11152 | if(fValid) |
| 11153 | { |
| 11154 | // Get the appdomain |
| 11155 | IGCHandleManager *mgr = GCHandleUtilities::GetGCHandleManager(); |
| 11156 | ADIndex appDomainIndex = ADIndex(reinterpret_cast<DWORD>(mgr->GetHandleContext(objectHandle))); |
| 11157 | pAppDomain = SystemDomain::GetAppDomainAtIndex(appDomainIndex); |
| 11158 | |
| 11159 | _ASSERTE(pAppDomain != NULL); |
| 11160 | } |
| 11161 | |
| 11162 | pIPCResult->hr = S_OK; |
| 11163 | pIPCResult->GetGCHandleInfoResult.vmAppDomain.SetRawPtr(pAppDomain); |
| 11164 | pIPCResult->GetGCHandleInfoResult.fValid = fValid; |
| 11165 | |
| 11166 | m_pRCThread->SendIPCReply(); |
| 11167 | |
| 11168 | } |
| 11169 | break; |
| 11170 | |
| 11171 | case DB_IPCE_GET_BUFFER: |
| 11172 | { |
| 11173 | GetAndSendBuffer(m_pRCThread, pEvent->GetBuffer.bufSize); |
| 11174 | } |
| 11175 | break; |
| 11176 | |
| 11177 | case DB_IPCE_RELEASE_BUFFER: |
| 11178 | { |
| 11179 | SendReleaseBuffer(m_pRCThread, pEvent->ReleaseBuffer.pBuffer); |
| 11180 | } |
| 11181 | break; |
| 11182 | #ifdef EnC_SUPPORTED |
| 11183 | case DB_IPCE_APPLY_CHANGES: |
| 11184 | { |
| 11185 | LOG((LF_ENC, LL_INFO100, "D::HIPCE: DB_IPCE_APPLY_CHANGES 1\n" )); |
| 11186 | |
| 11187 | DebuggerModule * pDebuggerModule = LookupOrCreateModule(pEvent->ApplyChanges.vmDomainFile); |
| 11188 | // |
| 11189 | // @todo handle error. |
| 11190 | // |
| 11191 | hr = ApplyChangesAndSendResult(pDebuggerModule, |
| 11192 | pEvent->ApplyChanges.cbDeltaMetadata, |
| 11193 | (BYTE*) CORDB_ADDRESS_TO_PTR(pEvent->ApplyChanges.pDeltaMetadata), |
| 11194 | pEvent->ApplyChanges.cbDeltaIL, |
| 11195 | (BYTE*) CORDB_ADDRESS_TO_PTR(pEvent->ApplyChanges.pDeltaIL)); |
| 11196 | |
| 11197 | LOG((LF_ENC, LL_INFO100, "D::HIPCE: DB_IPCE_APPLY_CHANGES 2\n" )); |
| 11198 | } |
| 11199 | break; |
| 11200 | #endif // EnC_SUPPORTED |
| 11201 | |
| 11202 | case DB_IPCE_SET_CLASS_LOAD_FLAG: |
| 11203 | { |
| 11204 | DebuggerModule *pDebuggerModule = LookupOrCreateModule(pEvent->SetClassLoad.vmDomainFile); |
| 11205 | |
| 11206 | _ASSERTE(pDebuggerModule != NULL); |
| 11207 | |
| 11208 | LOG((LF_CORDB, LL_INFO10000, |
| 11209 | "D::HIPCE: class load flag is %d for module 0x%p\n" , |
| 11210 | pEvent->SetClassLoad.flag, |
| 11211 | pDebuggerModule)); |
| 11212 | |
| 11213 | pDebuggerModule->EnableClassLoadCallbacks((BOOL)pEvent->SetClassLoad.flag); |
| 11214 | } |
| 11215 | break; |
| 11216 | |
| 11217 | case DB_IPCE_IS_TRANSITION_STUB: |
| 11218 | GetAndSendTransitionStubInfo((CORDB_ADDRESS_TYPE*)pEvent->IsTransitionStub.address); |
| 11219 | break; |
| 11220 | |
| 11221 | case DB_IPCE_MODIFY_LOGSWITCH: |
| 11222 | g_pEEInterface->DebuggerModifyingLogSwitch (pEvent->LogSwitchSettingMessage.iLevel, |
| 11223 | pEvent->LogSwitchSettingMessage.szSwitchName.GetString()); |
| 11224 | |
| 11225 | break; |
| 11226 | |
| 11227 | case DB_IPCE_ENABLE_LOG_MESSAGES: |
| 11228 | { |
| 11229 | bool fOnOff = pEvent->LogSwitchSettingMessage.iLevel ? true : false; |
| 11230 | EnableLogMessages (fOnOff); |
| 11231 | } |
| 11232 | break; |
| 11233 | |
| 11234 | case DB_IPCE_SET_IP: |
| 11235 | |
| 11236 | { |
| 11237 | // This is a synchronous event (reply required) |
| 11238 | DebuggerIPCEvent * pIPCResult = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 11239 | |
| 11240 | // Don't have an explicit reply msg |
| 11241 | InitIPCReply(pIPCResult, DB_IPCE_SET_IP); |
| 11242 | |
| 11243 | if (temporaryHelp) |
| 11244 | { |
| 11245 | pIPCResult->hr = CORDBG_E_NOTREADY; |
| 11246 | } |
| 11247 | else if (!g_fProcessDetach) |
| 11248 | { |
| 11249 | // |
| 11250 | // Since this pointer is coming from the RS, it may be NULL or something |
| 11251 | // unexpected in an OOM situation. Quickly just sanity check them. |
| 11252 | // |
| 11253 | Thread * pThread = pEvent->SetIP.vmThreadToken.GetRawPtr(); |
| 11254 | Module * pModule = pEvent->SetIP.vmDomainFile.GetRawPtr()->GetModule(); |
| 11255 | |
| 11256 | // Get the DJI for this function |
| 11257 | DebuggerMethodInfo * pDMI = GetOrCreateMethodInfo(pModule, pEvent->SetIP.mdMethod); |
| 11258 | DebuggerJitInfo * pDJI = NULL; |
| 11259 | if (pDMI != NULL) |
| 11260 | { |
| 11261 | // In the EnC case, if we look for an older version, we need to find the DJI by starting |
| 11262 | // address, rather than just by MethodDesc. In the case of generics, we may need to create a DJI, so we |
| 11263 | pDJI = pDMI->FindOrCreateInitAndAddJitInfo(pEvent->SetIP.vmMethodDesc.GetRawPtr(), |
| 11264 | PINSTRToPCODE((TADDR)pEvent->SetIP.startAddress)); |
| 11265 | } |
| 11266 | |
| 11267 | if ((pDJI != NULL) && (pThread != NULL) && (pModule != NULL)) |
| 11268 | { |
| 11269 | CHECK_IF_CAN_TAKE_HELPER_LOCKS_IN_THIS_SCOPE(&(pIPCResult->hr), GetCanary()); |
| 11270 | |
| 11271 | if (SUCCEEDED(pIPCResult->hr)) |
| 11272 | { |
| 11273 | pIPCResult->hr = SetIP(pEvent->SetIP.fCanSetIPOnly, |
| 11274 | pThread, |
| 11275 | pModule, |
| 11276 | pEvent->SetIP.mdMethod, |
| 11277 | pDJI, |
| 11278 | pEvent->SetIP.offset, |
| 11279 | pEvent->SetIP.fIsIL |
| 11280 | ); |
| 11281 | } |
| 11282 | } |
| 11283 | else |
| 11284 | { |
| 11285 | pIPCResult->hr = E_INVALIDARG; |
| 11286 | } |
| 11287 | } |
| 11288 | else |
| 11289 | { |
| 11290 | pIPCResult->hr = S_OK; |
| 11291 | } |
| 11292 | |
| 11293 | // Send the result |
| 11294 | m_pRCThread->SendIPCReply(); |
| 11295 | } |
| 11296 | break; |
| 11297 | |
| 11298 | case DB_IPCE_DETACH_FROM_PROCESS: |
| 11299 | LOG((LF_CORDB, LL_INFO10000, "Detaching from process!\n" )); |
| 11300 | |
| 11301 | // Delete all controllers (remove patches etc.) |
| 11302 | DebuggerController::DeleteAllControllers(); |
| 11303 | // Note that we'd like to be able to do this assert here |
| 11304 | // _ASSERTE(DebuggerController::GetNumberOfPatches() == 0); |
| 11305 | // However controllers may get queued for deletion if there is outstanding |
| 11306 | // work and so we can't gaurentee the deletion will complete now. |
| 11307 | // @dbgtodo inspection: This shouldn't be an issue in the complete V3 architecture |
| 11308 | |
| 11309 | MarkDebuggerUnattachedInternal(); |
| 11310 | |
| 11311 | m_pRCThread->RightSideDetach(); |
| 11312 | |
| 11313 | |
| 11314 | // Clear JMC status |
| 11315 | { |
| 11316 | LOG((LF_CORDB, LL_EVERYTHING, "Setting all JMC methods to false:\n" )); |
| 11317 | // On detach, set all DMI's JMC status to false. |
| 11318 | // We have to do this b/c we clear the DebuggerModules and allocated |
| 11319 | // new ones on re-attach; and the DMI & DM need to be in sync |
| 11320 | // (in this case, agreeing that JMC-status = false). |
| 11321 | // This also syncs the EE modules and disables all JMC probes. |
| 11322 | DebuggerMethodInfoTable * pMethodInfoTable = g_pDebugger->GetMethodInfoTable(); |
| 11323 | |
| 11324 | if (pMethodInfoTable != NULL) |
| 11325 | { |
| 11326 | HASHFIND hashFind; |
| 11327 | DebuggerDataLockHolder debuggerDataLockHolder(this); |
| 11328 | |
| 11329 | for (DebuggerMethodInfo * pMethodInfo = pMethodInfoTable->GetFirstMethodInfo(&hashFind); |
| 11330 | pMethodInfo != NULL; |
| 11331 | pMethodInfo = pMethodInfoTable->GetNextMethodInfo(&hashFind)) |
| 11332 | { |
| 11333 | pMethodInfo->SetJMCStatus(false); |
| 11334 | } |
| 11335 | } |
| 11336 | LOG((LF_CORDB, LL_EVERYTHING, "Done clearing JMC methods!\n" )); |
| 11337 | } |
| 11338 | |
| 11339 | // Clean up the hash of DebuggerModules |
| 11340 | // This method is overridden to also free all DebuggerModule objects |
| 11341 | if (m_pModules != NULL) |
| 11342 | { |
| 11343 | |
| 11344 | // Removes all DebuggerModules |
| 11345 | DebuggerDataLockHolder ch(this); |
| 11346 | m_pModules->Clear(); |
| 11347 | |
| 11348 | } |
| 11349 | |
| 11350 | // Reply to the detach message before we release any Runtime threads. This ensures that the debugger will get |
| 11351 | // the detach reply before the process exits if the main thread is near exiting. |
| 11352 | m_pRCThread->SendIPCReply(); |
| 11353 | |
| 11354 | if (this->m_isBlockedOnGarbageCollectionEvent) |
| 11355 | { |
| 11356 | this->m_stopped = FALSE; |
| 11357 | SetEvent(this->GetGarbageCollectionBlockerEvent()); |
| 11358 | } |
| 11359 | else |
| 11360 | { |
| 11361 | // Let the process run free now... there is no debugger to bother it anymore. |
| 11362 | fContinue = ResumeThreads(pEvent->vmAppDomain.GetRawPtr()); |
| 11363 | |
| 11364 | // |
| 11365 | // Go ahead and release the TSL now that we're continuing. This ensures that we've held |
| 11366 | // the thread store lock the entire time the Runtime was just stopped. |
| 11367 | // |
| 11368 | ThreadSuspend::UnlockThreadStore(FALSE, ThreadSuspend::SUSPEND_FOR_DEBUGGER); |
| 11369 | } |
| 11370 | |
| 11371 | break; |
| 11372 | |
| 11373 | #ifndef DACCESS_COMPILE |
| 11374 | |
| 11375 | case DB_IPCE_FUNC_EVAL: |
| 11376 | { |
| 11377 | // This is a synchronous event (reply required) |
| 11378 | pEvent = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 11379 | |
| 11380 | Thread * pThread = pEvent->FuncEval.vmThreadToken.GetRawPtr(); |
| 11381 | |
| 11382 | InitIPCEvent(pEvent, DB_IPCE_FUNC_EVAL_SETUP_RESULT, pThread, pThread->GetDomain()); |
| 11383 | |
| 11384 | BYTE * pbArgDataArea = NULL; |
| 11385 | DebuggerEval * pDebuggerEvalKey = NULL; |
| 11386 | |
| 11387 | pEvent->hr = FuncEvalSetup(&(pEvent->FuncEval), &pbArgDataArea, &pDebuggerEvalKey); |
| 11388 | |
| 11389 | // Send the result of how the func eval setup went. |
| 11390 | pEvent->FuncEvalSetupComplete.argDataArea = PTR_TO_CORDB_ADDRESS(pbArgDataArea); |
| 11391 | pEvent->FuncEvalSetupComplete.debuggerEvalKey.Set(pDebuggerEvalKey); |
| 11392 | |
| 11393 | m_pRCThread->SendIPCReply(); |
| 11394 | } |
| 11395 | |
| 11396 | break; |
| 11397 | |
| 11398 | #endif |
| 11399 | |
| 11400 | case DB_IPCE_SET_REFERENCE: |
| 11401 | { |
| 11402 | // This is a synchronous event (reply required) |
| 11403 | pEvent = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 11404 | |
| 11405 | InitIPCReply(pEvent, DB_IPCE_SET_REFERENCE_RESULT); |
| 11406 | |
| 11407 | pEvent->hr = SetReference(pEvent->SetReference.objectRefAddress, |
| 11408 | pEvent->SetReference.vmObjectHandle, |
| 11409 | pEvent->SetReference.newReference); |
| 11410 | |
| 11411 | // Send the result of how the set reference went. |
| 11412 | m_pRCThread->SendIPCReply(); |
| 11413 | } |
| 11414 | break; |
| 11415 | |
| 11416 | case DB_IPCE_SET_VALUE_CLASS: |
| 11417 | { |
| 11418 | // This is a synchronous event (reply required) |
| 11419 | pEvent = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 11420 | |
| 11421 | InitIPCReply(pEvent, DB_IPCE_SET_VALUE_CLASS_RESULT); |
| 11422 | |
| 11423 | pEvent->hr = SetValueClass(pEvent->SetValueClass.oldData, |
| 11424 | pEvent->SetValueClass.newData, |
| 11425 | &pEvent->SetValueClass.type); |
| 11426 | |
| 11427 | // Send the result of how the set reference went. |
| 11428 | m_pRCThread->SendIPCReply(); |
| 11429 | } |
| 11430 | break; |
| 11431 | |
| 11432 | case DB_IPCE_GET_THREAD_FOR_TASKID: |
| 11433 | { |
| 11434 | Thread *pThreadRet = NULL; |
| 11435 | |
| 11436 | // This is a synchronous event (reply required) |
| 11437 | pEvent = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 11438 | |
| 11439 | InitIPCReply(pEvent, DB_IPCE_GET_THREAD_FOR_TASKID_RESULT); |
| 11440 | |
| 11441 | pEvent->GetThreadForTaskIdResult.vmThreadToken.SetRawPtr(pThreadRet); |
| 11442 | pEvent->hr = S_OK; |
| 11443 | |
| 11444 | m_pRCThread->SendIPCReply(); |
| 11445 | } |
| 11446 | break; |
| 11447 | |
| 11448 | case DB_IPCE_CREATE_HANDLE: |
| 11449 | { |
| 11450 | Object * pObject = (Object*)pEvent->CreateHandle.objectToken; |
| 11451 | OBJECTREF objref = ObjectToOBJECTREF(pObject); |
| 11452 | AppDomain * pAppDomain = pEvent->vmAppDomain.GetRawPtr(); |
| 11453 | BOOL fStrong = pEvent->CreateHandle.fStrong; |
| 11454 | OBJECTHANDLE objectHandle; |
| 11455 | |
| 11456 | // This is a synchronous event (reply required) |
| 11457 | pEvent = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 11458 | |
| 11459 | InitIPCReply(pEvent, DB_IPCE_CREATE_HANDLE_RESULT); |
| 11460 | |
| 11461 | { |
| 11462 | // Handle creation may need to allocate memory. |
| 11463 | // The API specifically limits the number of handls Cordbg can create, |
| 11464 | // so we could preallocate and fail allocating anything beyond that. |
| 11465 | CHECK_IF_CAN_TAKE_HELPER_LOCKS_IN_THIS_SCOPE(&(pEvent->hr), GetCanary()); |
| 11466 | |
| 11467 | if (SUCCEEDED(pEvent->hr)) |
| 11468 | { |
| 11469 | if (fStrong == TRUE) |
| 11470 | { |
| 11471 | // create strong handle |
| 11472 | objectHandle = pAppDomain->CreateStrongHandle(objref); |
| 11473 | } |
| 11474 | else |
| 11475 | { |
| 11476 | // create the weak long handle |
| 11477 | objectHandle = pAppDomain->CreateLongWeakHandle(objref); |
| 11478 | } |
| 11479 | pEvent->CreateHandleResult.vmObjectHandle.SetRawPtr(objectHandle); |
| 11480 | } |
| 11481 | } |
| 11482 | |
| 11483 | m_pRCThread->SendIPCReply(); |
| 11484 | break; |
| 11485 | } |
| 11486 | |
| 11487 | case DB_IPCE_DISPOSE_HANDLE: |
| 11488 | { |
| 11489 | // DISPOSE an object handle |
| 11490 | OBJECTHANDLE objectHandle = pEvent->DisposeHandle.vmObjectHandle.GetRawPtr(); |
| 11491 | |
| 11492 | if (pEvent->DisposeHandle.fStrong == TRUE) |
| 11493 | { |
| 11494 | DestroyStrongHandle(objectHandle); |
| 11495 | } |
| 11496 | else |
| 11497 | { |
| 11498 | DestroyLongWeakHandle(objectHandle); |
| 11499 | } |
| 11500 | break; |
| 11501 | } |
| 11502 | |
| 11503 | #ifndef DACCESS_COMPILE |
| 11504 | |
| 11505 | case DB_IPCE_FUNC_EVAL_ABORT: |
| 11506 | { |
| 11507 | LOG((LF_CORDB, LL_INFO1000, "D::HIPCE: Got FuncEvalAbort for pDE:%08x\n" , |
| 11508 | pEvent->FuncEvalAbort.debuggerEvalKey.UnWrap())); |
| 11509 | |
| 11510 | // This is a synchronous event (reply required) |
| 11511 | |
| 11512 | pEvent = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 11513 | InitIPCReply(pEvent,DB_IPCE_FUNC_EVAL_ABORT_RESULT); |
| 11514 | |
| 11515 | pEvent->hr = FuncEvalAbort(pEvent->FuncEvalAbort.debuggerEvalKey.UnWrap()); |
| 11516 | |
| 11517 | m_pRCThread->SendIPCReply(); |
| 11518 | } |
| 11519 | break; |
| 11520 | |
| 11521 | case DB_IPCE_FUNC_EVAL_RUDE_ABORT: |
| 11522 | { |
| 11523 | LOG((LF_CORDB, LL_INFO1000, "D::HIPCE: Got FuncEvalRudeAbort for pDE:%08x\n" , |
| 11524 | pEvent->FuncEvalRudeAbort.debuggerEvalKey.UnWrap())); |
| 11525 | |
| 11526 | // This is a synchronous event (reply required) |
| 11527 | |
| 11528 | pEvent = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 11529 | |
| 11530 | InitIPCReply(pEvent, DB_IPCE_FUNC_EVAL_RUDE_ABORT_RESULT); |
| 11531 | |
| 11532 | pEvent->hr = FuncEvalRudeAbort(pEvent->FuncEvalRudeAbort.debuggerEvalKey.UnWrap()); |
| 11533 | |
| 11534 | m_pRCThread->SendIPCReply(); |
| 11535 | } |
| 11536 | break; |
| 11537 | |
| 11538 | case DB_IPCE_FUNC_EVAL_CLEANUP: |
| 11539 | |
| 11540 | // This is a synchronous event (reply required) |
| 11541 | |
| 11542 | pEvent = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 11543 | |
| 11544 | InitIPCReply(pEvent,DB_IPCE_FUNC_EVAL_CLEANUP_RESULT); |
| 11545 | |
| 11546 | pEvent->hr = FuncEvalCleanup(pEvent->FuncEvalCleanup.debuggerEvalKey.UnWrap()); |
| 11547 | |
| 11548 | m_pRCThread->SendIPCReply(); |
| 11549 | |
| 11550 | break; |
| 11551 | |
| 11552 | #endif |
| 11553 | |
| 11554 | case DB_IPCE_CONTROL_C_EVENT_RESULT: |
| 11555 | { |
| 11556 | // store the result of whether the event has been handled by the debugger and |
| 11557 | // wake up the thread waiting for the result |
| 11558 | SetDebuggerHandlingCtrlC(pEvent->hr == S_OK); |
| 11559 | VERIFY(SetEvent(GetCtrlCMutex())); |
| 11560 | } |
| 11561 | break; |
| 11562 | |
| 11563 | // Set the JMC status on invididual methods |
| 11564 | case DB_IPCE_SET_METHOD_JMC_STATUS: |
| 11565 | { |
| 11566 | // Get the info out of the event |
| 11567 | DebuggerModule * pDebuggerModule = LookupOrCreateModule(pEvent->SetJMCFunctionStatus.vmDomainFile); |
| 11568 | Module * pModule = pDebuggerModule->GetRuntimeModule(); |
| 11569 | |
| 11570 | bool fStatus = (pEvent->SetJMCFunctionStatus.dwStatus != 0); |
| 11571 | |
| 11572 | mdMethodDef token = pEvent->SetJMCFunctionStatus.funcMetadataToken; |
| 11573 | |
| 11574 | // Prepare reply |
| 11575 | pEvent = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 11576 | |
| 11577 | InitIPCEvent(pEvent, DB_IPCE_SET_METHOD_JMC_STATUS_RESULT, NULL, NULL); |
| 11578 | |
| 11579 | pEvent->hr = S_OK; |
| 11580 | |
| 11581 | if (pDebuggerModule->HasAnyOptimizedCode() && fStatus) |
| 11582 | { |
| 11583 | // If there's optimized code, then we can't be set JMC status to true. |
| 11584 | // That's because JMC probes are not injected in optimized code, and we |
| 11585 | // need a JMC probe to have a JMC function. |
| 11586 | pEvent->hr = CORDBG_E_CANT_SET_TO_JMC; |
| 11587 | } |
| 11588 | else |
| 11589 | { |
| 11590 | DebuggerDataLockHolder debuggerDataLockHolder(this); |
| 11591 | // This may be called on an unjitted method, so we may |
| 11592 | // have to create the MethodInfo. |
| 11593 | DebuggerMethodInfo * pMethodInfo = GetOrCreateMethodInfo(pModule, token); |
| 11594 | |
| 11595 | if (pMethodInfo == NULL) |
| 11596 | { |
| 11597 | pEvent->hr = E_OUTOFMEMORY; |
| 11598 | } |
| 11599 | else |
| 11600 | { |
| 11601 | // Update the storage on the LS |
| 11602 | pMethodInfo->SetJMCStatus(fStatus); |
| 11603 | } |
| 11604 | } |
| 11605 | |
| 11606 | // Send reply |
| 11607 | m_pRCThread->SendIPCReply(); |
| 11608 | } |
| 11609 | break; |
| 11610 | |
| 11611 | // Get the JMC status on a given function |
| 11612 | case DB_IPCE_GET_METHOD_JMC_STATUS: |
| 11613 | { |
| 11614 | // Get the method |
| 11615 | DebuggerModule * pDebuggerModule = LookupOrCreateModule(pEvent->SetJMCFunctionStatus.vmDomainFile); |
| 11616 | |
| 11617 | Module * pModule = pDebuggerModule->GetRuntimeModule(); |
| 11618 | |
| 11619 | mdMethodDef token = pEvent->SetJMCFunctionStatus.funcMetadataToken; |
| 11620 | |
| 11621 | // Init reply |
| 11622 | pEvent = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 11623 | InitIPCEvent(pEvent, DB_IPCE_GET_METHOD_JMC_STATUS_RESULT, NULL, NULL); |
| 11624 | |
| 11625 | // |
| 11626 | // This may be called on an unjitted method, so we may |
| 11627 | // have to create the MethodInfo. |
| 11628 | // |
| 11629 | DebuggerMethodInfo * pMethodInfo = GetOrCreateMethodInfo(pModule, token); |
| 11630 | |
| 11631 | if (pMethodInfo == NULL) |
| 11632 | { |
| 11633 | pEvent->hr = E_OUTOFMEMORY; |
| 11634 | } |
| 11635 | else |
| 11636 | { |
| 11637 | bool fStatus = pMethodInfo->IsJMCFunction(); |
| 11638 | pEvent->SetJMCFunctionStatus.dwStatus = fStatus; |
| 11639 | pEvent->hr = S_OK; |
| 11640 | } |
| 11641 | |
| 11642 | m_pRCThread->SendIPCReply(); |
| 11643 | } |
| 11644 | break; |
| 11645 | |
| 11646 | case DB_IPCE_SET_MODULE_JMC_STATUS: |
| 11647 | { |
| 11648 | // Get data out of event |
| 11649 | DebuggerModule * pDebuggerModule = LookupOrCreateModule(pEvent->SetJMCFunctionStatus.vmDomainFile); |
| 11650 | |
| 11651 | bool fStatus = (pEvent->SetJMCFunctionStatus.dwStatus != 0); |
| 11652 | |
| 11653 | // Prepare reply |
| 11654 | pEvent = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 11655 | |
| 11656 | InitIPCReply(pEvent, DB_IPCE_SET_MODULE_JMC_STATUS_RESULT); |
| 11657 | |
| 11658 | pEvent->hr = S_OK; |
| 11659 | |
| 11660 | if (pDebuggerModule->HasAnyOptimizedCode() && fStatus) |
| 11661 | { |
| 11662 | // If there's optimized code, then we can't be set JMC status to true. |
| 11663 | // That's because JMC probes are not injected in optimized code, and we |
| 11664 | // need a JMC probe to have a JMC function. |
| 11665 | pEvent->hr = CORDBG_E_CANT_SET_TO_JMC; |
| 11666 | } |
| 11667 | else |
| 11668 | { |
| 11669 | g_pDebugger->SetModuleDefaultJMCStatus(pDebuggerModule->GetRuntimeModule(), fStatus); |
| 11670 | } |
| 11671 | |
| 11672 | |
| 11673 | |
| 11674 | // Send reply |
| 11675 | m_pRCThread->SendIPCReply(); |
| 11676 | } |
| 11677 | break; |
| 11678 | |
| 11679 | |
| 11680 | case DB_IPCE_INTERCEPT_EXCEPTION: |
| 11681 | GetAndSendInterceptCommand(pEvent); |
| 11682 | break; |
| 11683 | |
| 11684 | case DB_IPCE_RESOLVE_UPDATE_METADATA_1: |
| 11685 | { |
| 11686 | |
| 11687 | LOG((LF_CORDB, LL_INFO10000, "D::HIPCE Handling DB_IPCE_RESOLVE_UPDATE_METADATA_1\n" )); |
| 11688 | // This isn't ideal - Making SerializeModuleMetaData not call new is hard, |
| 11689 | // but the odds of trying to load a module after a thread is stopped w/ |
| 11690 | // the heap lock should be pretty low. |
| 11691 | // All of the metadata calls can violate this and call new. |
| 11692 | SUPPRESS_ALLOCATION_ASSERTS_IN_THIS_SCOPE; |
| 11693 | |
| 11694 | Module * pModule = pEvent->MetadataUpdateRequest.vmModule.GetRawPtr(); |
| 11695 | LOG((LF_CORDB, LL_INFO100000, "D::HIPCE Got module 0x%x\n" , pModule)); |
| 11696 | |
| 11697 | DWORD countBytes = 0; |
| 11698 | |
| 11699 | // This will allocate memory. Debugger will then copy from here and send a |
| 11700 | // DB_IPCE_RESOLVE_UPDATE_METADATA_2 to free this memory. |
| 11701 | BYTE* pData = NULL; |
| 11702 | EX_TRY |
| 11703 | { |
| 11704 | LOG((LF_CORDB, LL_INFO100000, "D::HIPCE Calling SerializeModuleMetaData\n" )); |
| 11705 | pData = SerializeModuleMetaData(pModule, &countBytes); |
| 11706 | |
| 11707 | } |
| 11708 | EX_CATCH_HRESULT(hr); |
| 11709 | |
| 11710 | LOG((LF_CORDB, LL_INFO100000, "D::HIPCE hr is 0x%x\n" , hr)); |
| 11711 | |
| 11712 | DebuggerIPCEvent * pResult = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 11713 | InitIPCEvent(pResult, DB_IPCE_RESOLVE_UPDATE_METADATA_1_RESULT, NULL, NULL); |
| 11714 | |
| 11715 | pResult->MetadataUpdateRequest.pMetadataStart = pData; |
| 11716 | pResult->MetadataUpdateRequest.nMetadataSize = countBytes; |
| 11717 | pResult->hr = hr; |
| 11718 | LOG((LF_CORDB, LL_INFO1000000, "D::HIPCE metadataStart=0x%x, nMetadataSize=0x%x\n" , pData, countBytes)); |
| 11719 | |
| 11720 | m_pRCThread->SendIPCReply(); |
| 11721 | LOG((LF_CORDB, LL_INFO1000000, "D::HIPCE reply sent\n" )); |
| 11722 | } |
| 11723 | break; |
| 11724 | |
| 11725 | case DB_IPCE_RESOLVE_UPDATE_METADATA_2: |
| 11726 | { |
| 11727 | // Delete memory allocated with DB_IPCE_RESOLVE_UPDATE_METADATA_1. |
| 11728 | BYTE * pData = (BYTE *) pEvent->MetadataUpdateRequest.pMetadataStart; |
| 11729 | DeleteInteropSafe(pData); |
| 11730 | |
| 11731 | DebuggerIPCEvent * pResult = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 11732 | InitIPCEvent(pResult, DB_IPCE_RESOLVE_UPDATE_METADATA_2_RESULT, NULL, NULL); |
| 11733 | pResult->hr = S_OK; |
| 11734 | m_pRCThread->SendIPCReply(); |
| 11735 | } |
| 11736 | |
| 11737 | break; |
| 11738 | |
| 11739 | default: |
| 11740 | // We should never get an event that we don't know about. |
| 11741 | CONSISTENCY_CHECK_MSGF(false, ("Unknown Debug-Event on LS:id=0x%08x." , pEvent->type)); |
| 11742 | LOG((LF_CORDB, LL_INFO10000, "Unknown event type: 0x%08x\n" , |
| 11743 | pEvent->type)); |
| 11744 | } |
| 11745 | |
| 11746 | STRESS_LOG0(LF_CORDB, LL_INFO10000, "D::HIPCE: finished handling event\n" ); |
| 11747 | |
| 11748 | if (lockedThreadStore) |
| 11749 | { |
| 11750 | ThreadSuspend::UnlockThreadStore(FALSE, ThreadSuspend::SUSPEND_FOR_DEBUGGER); |
| 11751 | } |
| 11752 | // dbgLockHolder goes out of scope - implicit Release |
| 11753 | return fContinue; |
| 11754 | } |
| 11755 | #ifdef _PREFAST_ |
| 11756 | #pragma warning(pop) |
| 11757 | #endif |
| 11758 | |
| 11759 | /* |
| 11760 | * GetAndSendInterceptCommand |
| 11761 | * |
| 11762 | * This function processes an INTERCEPT_EXCEPTION IPC event, sending the appropriate response. |
| 11763 | * |
| 11764 | * Parameters: |
| 11765 | * event - the event to process. |
| 11766 | * |
| 11767 | * Returns: |
| 11768 | * hr - HRESULT. |
| 11769 | * |
| 11770 | */ |
| 11771 | HRESULT Debugger::GetAndSendInterceptCommand(DebuggerIPCEvent *event) |
| 11772 | { |
| 11773 | CONTRACTL |
| 11774 | { |
| 11775 | THROWS; |
| 11776 | GC_TRIGGERS_FROM_GETJITINFO; |
| 11777 | } |
| 11778 | CONTRACTL_END; |
| 11779 | |
| 11780 | HRESULT hr = S_OK; |
| 11781 | |
| 11782 | _ASSERTE((event->type & DB_IPCE_TYPE_MASK) == DB_IPCE_INTERCEPT_EXCEPTION); |
| 11783 | |
| 11784 | // |
| 11785 | // Simple state validation first. |
| 11786 | // |
| 11787 | Thread *pThread = event->InterceptException.vmThreadToken.GetRawPtr(); |
| 11788 | |
| 11789 | if ((pThread != NULL) && |
| 11790 | !m_forceNonInterceptable && |
| 11791 | IsInterceptableException(pThread)) |
| 11792 | { |
| 11793 | ThreadExceptionState* pExState = pThread->GetExceptionState(); |
| 11794 | |
| 11795 | // We can only have one interception going on at any given time. |
| 11796 | if (!pExState->GetFlags()->DebuggerInterceptInfo()) |
| 11797 | { |
| 11798 | // |
| 11799 | // Now start processing the parameters from the event. |
| 11800 | // |
| 11801 | FramePointer targetFramePointer = event->InterceptException.frameToken; |
| 11802 | |
| 11803 | ControllerStackInfo csi; |
| 11804 | |
| 11805 | // Safe because we're stopped. |
| 11806 | StackTraceTicket ticket(pThread); |
| 11807 | csi.GetStackInfo(ticket, pThread, targetFramePointer, NULL); |
| 11808 | |
| 11809 | if (csi.m_targetFrameFound) |
| 11810 | { |
| 11811 | // |
| 11812 | // If the target frame is below the point where the current exception was |
| 11813 | // thrown from, then we should reject this interception command. This |
| 11814 | // can happen in a func-eval during an exception callback, or during a |
| 11815 | // breakpoint in a filter function. Or it can just be a user error. |
| 11816 | // |
| 11817 | CONTEXT* pContext = pExState->GetContextRecord(); |
| 11818 | |
| 11819 | // This is an approximation on IA64, where we should use the caller SP instead of |
| 11820 | // the current SP. However, if the targetFramePointer is valid, the comparison should |
| 11821 | // still work. targetFramePointer should be valid because it ultimately comes from a |
| 11822 | // full stackwalk. |
| 11823 | FramePointer excepFramePointer = FramePointer::MakeFramePointer(GetSP(pContext)); |
| 11824 | |
| 11825 | if (IsCloserToRoot(excepFramePointer, targetFramePointer)) |
| 11826 | { |
| 11827 | hr = CORDBG_E_CURRENT_EXCEPTION_IS_OUTSIDE_CURRENT_EXECUTION_SCOPE; |
| 11828 | goto LSendResponse; |
| 11829 | } |
| 11830 | |
| 11831 | |
| 11832 | // |
| 11833 | // If the instruction that faulted is not in this managed code, at the leaf |
| 11834 | // frame, then the IP is actually the return address from the managed or |
| 11835 | // unmanaged function that really did fault. Thus, we actually want the |
| 11836 | // IP of the call instruction. I fake this by simply subtracting 1 from |
| 11837 | // the IP, which is close enough approximation for the search below. |
| 11838 | // |
| 11839 | if (pExState->GetContextRecord() != NULL) |
| 11840 | { |
| 11841 | // If the faulting instruction is not in managed code, then the interception frame |
| 11842 | // must be non-leaf. |
| 11843 | if (!g_pEEInterface->IsManagedNativeCode((BYTE *)(GetIP(pExState->GetContextRecord())))) |
| 11844 | { |
| 11845 | csi.m_activeFrame.relOffset--; |
| 11846 | } |
| 11847 | else |
| 11848 | { |
| 11849 | MethodDesc *pMethodDesc = g_pEEInterface->GetNativeCodeMethodDesc(dac_cast<PCODE>(GetIP(pExState->GetContextRecord()))); |
| 11850 | |
| 11851 | // check if the interception frame is the leaf frame |
| 11852 | if ((pMethodDesc == NULL) || |
| 11853 | (pMethodDesc != csi.m_activeFrame.md) || |
| 11854 | (GetSP(pExState->GetContextRecord()) != GetRegdisplaySP(&(csi.m_activeFrame.registers)))) |
| 11855 | { |
| 11856 | csi.m_activeFrame.relOffset--; |
| 11857 | } |
| 11858 | } |
| 11859 | } |
| 11860 | |
| 11861 | // |
| 11862 | // Now adjust the IP to be the previous zero-stack depth sequence point. |
| 11863 | // |
| 11864 | SIZE_T foundOffset = 0; |
| 11865 | DebuggerJitInfo *pJitInfo = csi.m_activeFrame.GetJitInfoFromFrame(); |
| 11866 | |
| 11867 | if (pJitInfo != NULL) |
| 11868 | { |
| 11869 | ICorDebugInfo::SourceTypes src; |
| 11870 | |
| 11871 | ULONG relOffset = csi.m_activeFrame.relOffset; |
| 11872 | |
| 11873 | #if defined(WIN64EXCEPTIONS) |
| 11874 | int funcletIndex = PARENT_METHOD_INDEX; |
| 11875 | |
| 11876 | // For funclets, we need to make sure that the stack empty sequence point we use is |
| 11877 | // in the same funclet as the current offset. |
| 11878 | if (csi.m_activeFrame.IsFuncletFrame()) |
| 11879 | { |
| 11880 | funcletIndex = pJitInfo->GetFuncletIndex(relOffset, DebuggerJitInfo::GFIM_BYOFFSET); |
| 11881 | } |
| 11882 | |
| 11883 | // Refer to the loop using pMap below. |
| 11884 | DebuggerILToNativeMap* pMap = NULL; |
| 11885 | #endif // WIN64EXCEPTIONS |
| 11886 | |
| 11887 | for (unsigned int i = 0; i < pJitInfo->GetSequenceMapCount(); i++) |
| 11888 | { |
| 11889 | SIZE_T startOffset = pJitInfo->GetSequenceMap()[i].nativeStartOffset; |
| 11890 | |
| 11891 | if (DbgIsSpecialILOffset(pJitInfo->GetSequenceMap()[i].ilOffset)) |
| 11892 | { |
| 11893 | LOG((LF_CORDB, LL_INFO10000, |
| 11894 | "D::HIPCE: not placing breakpoint at special offset 0x%x\n" , startOffset)); |
| 11895 | continue; |
| 11896 | } |
| 11897 | |
| 11898 | if ((i >= 1) && (startOffset == pJitInfo->GetSequenceMap()[i-1].nativeStartOffset)) |
| 11899 | { |
| 11900 | LOG((LF_CORDB, LL_INFO10000, |
| 11901 | "D::HIPCE: not placing redundant breakpoint at duplicate offset 0x%x\n" , startOffset)); |
| 11902 | continue; |
| 11903 | } |
| 11904 | |
| 11905 | if (startOffset > relOffset) |
| 11906 | { |
| 11907 | LOG((LF_CORDB, LL_INFO10000, |
| 11908 | "D::HIPCE: Stopping scan for breakpoint at offset 0x%x\n" , startOffset)); |
| 11909 | continue; |
| 11910 | } |
| 11911 | |
| 11912 | src = pJitInfo->GetSequenceMap()[i].source; |
| 11913 | |
| 11914 | if (!(src & ICorDebugInfo::STACK_EMPTY)) |
| 11915 | { |
| 11916 | LOG((LF_CORDB, LL_INFO10000, "D::HIPCE: not placing E&C breakpoint at offset " |
| 11917 | "0x%x b/c not STACK_EMPTY:it's 0x%x\n" , startOffset, src)); |
| 11918 | continue; |
| 11919 | } |
| 11920 | |
| 11921 | if ((foundOffset < startOffset) && (startOffset <= relOffset) |
| 11922 | #if defined(WIN64EXCEPTIONS) |
| 11923 | // Check if we are still in the same funclet. |
| 11924 | && (funcletIndex == pJitInfo->GetFuncletIndex(startOffset, DebuggerJitInfo::GFIM_BYOFFSET)) |
| 11925 | #endif // WIN64EXCEPTIONS |
| 11926 | ) |
| 11927 | { |
| 11928 | LOG((LF_CORDB, LL_INFO10000, "D::HIPCE: updating breakpoint at native offset 0x%x\n" , |
| 11929 | startOffset)); |
| 11930 | foundOffset = startOffset; |
| 11931 | #if defined(WIN64EXCEPTIONS) |
| 11932 | // Save the map entry for modification later. |
| 11933 | pMap = &(pJitInfo->GetSequenceMap()[i]); |
| 11934 | #endif // WIN64EXCEPTIONS |
| 11935 | } |
| 11936 | } |
| 11937 | |
| 11938 | #if defined(WIN64EXCEPTIONS) |
| 11939 | // This is nasty. Starting recently we could have multiple sequence points with the same IL offset |
| 11940 | // in the SAME funclet/parent method (previously different sequence points with the same IL offset |
| 11941 | // imply that they are in different funclet/parent method). Fortunately, we only run into this |
| 11942 | // if we have a loop which throws a range check failed exception. The code for throwing the |
| 11943 | // exception executes out of line (this is JIT-specific, of course). The following loop makes sure |
| 11944 | // that when we interecept the exception, we intercept it at the smallest native offset instead |
| 11945 | // of intercepting it right before we throw the exception. |
| 11946 | for (/* no initialization */; pMap > pJitInfo->GetSequenceMap() ; pMap--) |
| 11947 | { |
| 11948 | if (pMap->ilOffset == (pMap-1)->ilOffset) |
| 11949 | { |
| 11950 | foundOffset = (pMap-1)->nativeStartOffset; |
| 11951 | } |
| 11952 | else |
| 11953 | { |
| 11954 | break; |
| 11955 | } |
| 11956 | } |
| 11957 | _ASSERTE(foundOffset < relOffset); |
| 11958 | #endif // WIN64EXCEPTIONS |
| 11959 | |
| 11960 | // |
| 11961 | // Set up a breakpoint on the intercept IP |
| 11962 | // |
| 11963 | DebuggerContinuableExceptionBreakpoint *pBreakpoint; |
| 11964 | |
| 11965 | pBreakpoint = new (interopsafe, nothrow) DebuggerContinuableExceptionBreakpoint(pThread, |
| 11966 | foundOffset, |
| 11967 | pJitInfo, |
| 11968 | csi.m_activeFrame.currentAppDomain |
| 11969 | ); |
| 11970 | |
| 11971 | if (pBreakpoint != NULL) |
| 11972 | { |
| 11973 | // |
| 11974 | // Set up the VM side of intercepting. |
| 11975 | // |
| 11976 | if (pExState->GetDebuggerState()->SetDebuggerInterceptInfo(csi.m_activeFrame.pIJM, |
| 11977 | pThread, |
| 11978 | csi.m_activeFrame.MethodToken, |
| 11979 | csi.m_activeFrame.md, |
| 11980 | foundOffset, |
| 11981 | #if defined (_TARGET_ARM_ )|| defined (_TARGET_ARM64_ ) |
| 11982 | // ARM requires the caller stack pointer, not the current stack pointer |
| 11983 | CallerStackFrame::FromRegDisplay(&(csi.m_activeFrame.registers)), |
| 11984 | #else |
| 11985 | StackFrame::FromRegDisplay(&(csi.m_activeFrame.registers)), |
| 11986 | #endif |
| 11987 | pExState->GetFlags() |
| 11988 | )) |
| 11989 | { |
| 11990 | // |
| 11991 | // Make sure no more exception callbacks come thru. |
| 11992 | // |
| 11993 | pExState->GetFlags()->SetSentDebugFirstChance(); |
| 11994 | pExState->GetFlags()->SetSentDebugUserFirstChance(); |
| 11995 | pExState->GetFlags()->SetSentDebugUnwindBegin(); |
| 11996 | |
| 11997 | // |
| 11998 | // Save off this breakpoint, so that if the exception gets unwound before we hit |
| 11999 | // the breakpoint - the exception info can call back to remove it. |
| 12000 | // |
| 12001 | pExState->GetDebuggerState()->SetDebuggerInterceptContext((void *)pBreakpoint); |
| 12002 | |
| 12003 | hr = S_OK; |
| 12004 | } |
| 12005 | else // VM could not set up for intercept |
| 12006 | { |
| 12007 | DeleteInteropSafe(pBreakpoint); |
| 12008 | hr = E_INVALIDARG; |
| 12009 | } |
| 12010 | |
| 12011 | } |
| 12012 | else // could not allocate for breakpoint |
| 12013 | { |
| 12014 | hr = E_OUTOFMEMORY; |
| 12015 | } |
| 12016 | |
| 12017 | } |
| 12018 | else // could not get JitInfo |
| 12019 | { |
| 12020 | hr = E_FAIL; |
| 12021 | } |
| 12022 | |
| 12023 | } |
| 12024 | else // target frame not found. |
| 12025 | { |
| 12026 | hr = E_INVALIDARG; |
| 12027 | } |
| 12028 | |
| 12029 | } |
| 12030 | else // already set up for an intercept. |
| 12031 | { |
| 12032 | hr = CORDBG_E_INTERCEPT_FRAME_ALREADY_SET; |
| 12033 | } |
| 12034 | |
| 12035 | } |
| 12036 | else if (pThread == NULL) |
| 12037 | { |
| 12038 | hr = E_INVALIDARG; // pThread is NULL. |
| 12039 | } |
| 12040 | else |
| 12041 | { |
| 12042 | hr = CORDBG_E_NONINTERCEPTABLE_EXCEPTION; |
| 12043 | } |
| 12044 | |
| 12045 | LSendResponse: |
| 12046 | |
| 12047 | // |
| 12048 | // Prepare reply |
| 12049 | // |
| 12050 | event = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 12051 | InitIPCReply(event, DB_IPCE_INTERCEPT_EXCEPTION_RESULT); |
| 12052 | event->hr = hr; |
| 12053 | |
| 12054 | // |
| 12055 | // Send reply |
| 12056 | // |
| 12057 | m_pRCThread->SendIPCReply(); |
| 12058 | |
| 12059 | return hr; |
| 12060 | } |
| 12061 | |
| 12062 | // Poll & wait for the real helper thread to come up. |
| 12063 | // It's possible that the helper thread is blocked by DllMain, and so we can't |
| 12064 | // Wait infinite. If this poll does timeout, then it just means we're likely |
| 12065 | // go do helper duty instead of have the real helper do it. |
| 12066 | void Debugger::PollWaitingForHelper() |
| 12067 | { |
| 12068 | |
| 12069 | LOG((LF_CORDB, LL_INFO10000, "PollWaitingForHelper() start\n" )); |
| 12070 | |
| 12071 | DebuggerIPCControlBlock * pDCB = g_pRCThread->GetDCB(); |
| 12072 | |
| 12073 | PREFIX_ASSUME(pDCB != NULL); |
| 12074 | |
| 12075 | int nTotalMSToWait = 8 * 1000; |
| 12076 | |
| 12077 | // Spin waiting for either the real helper thread or a temp. to be ready. |
| 12078 | // This should never timeout unless the helper is blocked on the loader lock. |
| 12079 | while (!pDCB->m_helperThreadId && !pDCB->m_temporaryHelperThreadId) |
| 12080 | { |
| 12081 | STRESS_LOG1(LF_CORDB,LL_INFO1000, "PollWaitForHelper. %d\n" , nTotalMSToWait); |
| 12082 | |
| 12083 | // If we hold the lock, we'll block the helper thread and this poll is not useful |
| 12084 | _ASSERTE(!ThreadHoldsLock()); |
| 12085 | |
| 12086 | const DWORD dwTime = 50; |
| 12087 | ClrSleepEx(dwTime, FALSE); |
| 12088 | nTotalMSToWait -= dwTime; |
| 12089 | |
| 12090 | if (nTotalMSToWait <= 0) |
| 12091 | { |
| 12092 | LOG((LF_CORDB, LL_INFO10000, "PollWaitingForHelper() timeout\n" )); |
| 12093 | return; |
| 12094 | } |
| 12095 | } |
| 12096 | |
| 12097 | LOG((LF_CORDB, LL_INFO10000, "PollWaitingForHelper() succeed\n" )); |
| 12098 | return; |
| 12099 | } |
| 12100 | |
| 12101 | |
| 12102 | |
| 12103 | |
| 12104 | void Debugger::TypeHandleToBasicTypeInfo(AppDomain *pAppDomain, TypeHandle th, DebuggerIPCE_BasicTypeData *res) |
| 12105 | { |
| 12106 | CONTRACTL |
| 12107 | { |
| 12108 | THROWS; |
| 12109 | GC_NOTRIGGER; |
| 12110 | } |
| 12111 | CONTRACTL_END; |
| 12112 | |
| 12113 | LOG((LF_CORDB, LL_INFO10000, "D::THTBTI: converting left-side type handle to basic right-side type info, ELEMENT_TYPE: %d.\n" , th.GetSignatureCorElementType())); |
| 12114 | // GetSignatureCorElementType returns E_T_CLASS for E_T_STRING... :-( |
| 12115 | if (th.IsNull()) |
| 12116 | { |
| 12117 | res->elementType = ELEMENT_TYPE_VOID; |
| 12118 | } |
| 12119 | else if (th.GetMethodTable() == g_pObjectClass) |
| 12120 | { |
| 12121 | res->elementType = ELEMENT_TYPE_OBJECT; |
| 12122 | } |
| 12123 | else if (th.GetMethodTable() == g_pStringClass) |
| 12124 | { |
| 12125 | res->elementType = ELEMENT_TYPE_STRING; |
| 12126 | } |
| 12127 | else |
| 12128 | { |
| 12129 | res->elementType = th.GetSignatureCorElementType(); |
| 12130 | } |
| 12131 | |
| 12132 | switch (res->elementType) |
| 12133 | { |
| 12134 | case ELEMENT_TYPE_ARRAY: |
| 12135 | case ELEMENT_TYPE_SZARRAY: |
| 12136 | case ELEMENT_TYPE_PTR: |
| 12137 | case ELEMENT_TYPE_FNPTR: |
| 12138 | case ELEMENT_TYPE_BYREF: |
| 12139 | res->vmTypeHandle = WrapTypeHandle(th); |
| 12140 | res->metadataToken = mdTokenNil; |
| 12141 | res->vmDomainFile.SetRawPtr(NULL); |
| 12142 | break; |
| 12143 | |
| 12144 | case ELEMENT_TYPE_CLASS: |
| 12145 | case ELEMENT_TYPE_VALUETYPE: |
| 12146 | { |
| 12147 | res->vmTypeHandle = th.HasInstantiation() ? WrapTypeHandle(th) : VMPTR_TypeHandle::NullPtr(); |
| 12148 | // only set if instantiated |
| 12149 | res->metadataToken = th.GetCl(); |
| 12150 | DebuggerModule * pDModule = LookupOrCreateModule(th.GetModule(), pAppDomain); |
| 12151 | res->vmDomainFile.SetRawPtr((pDModule ? pDModule->GetDomainFile() : NULL)); |
| 12152 | break; |
| 12153 | } |
| 12154 | |
| 12155 | default: |
| 12156 | res->vmTypeHandle = VMPTR_TypeHandle::NullPtr(); |
| 12157 | res->metadataToken = mdTokenNil; |
| 12158 | res->vmDomainFile.SetRawPtr(NULL); |
| 12159 | break; |
| 12160 | } |
| 12161 | return; |
| 12162 | } |
| 12163 | |
| 12164 | void Debugger::TypeHandleToExpandedTypeInfo(AreValueTypesBoxed boxed, |
| 12165 | AppDomain *pAppDomain, |
| 12166 | TypeHandle th, |
| 12167 | DebuggerIPCE_ExpandedTypeData *res) |
| 12168 | { |
| 12169 | CONTRACTL |
| 12170 | { |
| 12171 | THROWS; |
| 12172 | GC_NOTRIGGER; |
| 12173 | } |
| 12174 | CONTRACTL_END; |
| 12175 | |
| 12176 | if (th.IsNull()) |
| 12177 | { |
| 12178 | res->elementType = ELEMENT_TYPE_VOID; |
| 12179 | } |
| 12180 | else if (th.GetMethodTable() == g_pObjectClass) |
| 12181 | { |
| 12182 | res->elementType = ELEMENT_TYPE_OBJECT; |
| 12183 | } |
| 12184 | else if (th.GetMethodTable() == g_pStringClass) |
| 12185 | { |
| 12186 | res->elementType = ELEMENT_TYPE_STRING; |
| 12187 | } |
| 12188 | else |
| 12189 | { |
| 12190 | LOG((LF_CORDB, LL_INFO10000, "D::THTETI: converting left-side type handle to expanded right-side type info, ELEMENT_TYPE: %d.\n" , th.GetSignatureCorElementType())); |
| 12191 | // GetSignatureCorElementType returns E_T_CLASS for E_T_STRING... :-( |
| 12192 | res->elementType = th.GetSignatureCorElementType(); |
| 12193 | } |
| 12194 | |
| 12195 | switch (res->elementType) |
| 12196 | { |
| 12197 | case ELEMENT_TYPE_ARRAY: |
| 12198 | case ELEMENT_TYPE_SZARRAY: |
| 12199 | _ASSERTE(th.IsArray()); |
| 12200 | res->ArrayTypeData.arrayRank = th.AsArray()->GetRank(); |
| 12201 | TypeHandleToBasicTypeInfo(pAppDomain, |
| 12202 | th.AsArray()->GetArrayElementTypeHandle(), |
| 12203 | &(res->ArrayTypeData.arrayTypeArg)); |
| 12204 | break; |
| 12205 | |
| 12206 | case ELEMENT_TYPE_PTR: |
| 12207 | case ELEMENT_TYPE_BYREF: |
| 12208 | if (boxed == AllBoxed) |
| 12209 | { |
| 12210 | res->elementType = ELEMENT_TYPE_CLASS; |
| 12211 | goto treatAllValuesAsBoxed; |
| 12212 | } |
| 12213 | _ASSERTE(th.IsTypeDesc()); |
| 12214 | TypeHandleToBasicTypeInfo(pAppDomain, |
| 12215 | th.AsTypeDesc()->GetTypeParam(), |
| 12216 | &(res->UnaryTypeData.unaryTypeArg)); |
| 12217 | break; |
| 12218 | |
| 12219 | case ELEMENT_TYPE_VALUETYPE: |
| 12220 | if (boxed == OnlyPrimitivesUnboxed || boxed == AllBoxed) |
| 12221 | res->elementType = ELEMENT_TYPE_CLASS; |
| 12222 | // drop through |
| 12223 | |
| 12224 | case ELEMENT_TYPE_CLASS: |
| 12225 | { |
| 12226 | treatAllValuesAsBoxed: |
| 12227 | res->ClassTypeData.typeHandle = th.HasInstantiation() ? WrapTypeHandle(th) : VMPTR_TypeHandle::NullPtr(); // only set if instantiated |
| 12228 | res->ClassTypeData.metadataToken = th.GetCl(); |
| 12229 | DebuggerModule * pModule = LookupOrCreateModule(th.GetModule(), pAppDomain); |
| 12230 | res->ClassTypeData.vmDomainFile.SetRawPtr((pModule ? pModule->GetDomainFile() : NULL)); |
| 12231 | _ASSERTE(!res->ClassTypeData.vmDomainFile.IsNull()); |
| 12232 | break; |
| 12233 | } |
| 12234 | |
| 12235 | case ELEMENT_TYPE_FNPTR: |
| 12236 | { |
| 12237 | if (boxed == AllBoxed) |
| 12238 | { |
| 12239 | res->elementType = ELEMENT_TYPE_CLASS; |
| 12240 | goto treatAllValuesAsBoxed; |
| 12241 | } |
| 12242 | res->NaryTypeData.typeHandle = WrapTypeHandle(th); |
| 12243 | break; |
| 12244 | } |
| 12245 | default: |
| 12246 | // The element type is sufficient, unless the type is effectively a "boxed" |
| 12247 | // primitive value type... |
| 12248 | if (boxed == AllBoxed) |
| 12249 | { |
| 12250 | res->elementType = ELEMENT_TYPE_CLASS; |
| 12251 | goto treatAllValuesAsBoxed; |
| 12252 | } |
| 12253 | break; |
| 12254 | } |
| 12255 | LOG((LF_CORDB, LL_INFO10000, "D::THTETI: converted left-side type handle to expanded right-side type info, res->ClassTypeData.typeHandle = 0x%08x.\n" , res->ClassTypeData.typeHandle.GetRawPtr())); |
| 12256 | return; |
| 12257 | } |
| 12258 | |
| 12259 | |
| 12260 | HRESULT Debugger::BasicTypeInfoToTypeHandle(DebuggerIPCE_BasicTypeData *data, TypeHandle *pRes) |
| 12261 | { |
| 12262 | CONTRACTL |
| 12263 | { |
| 12264 | NOTHROW; |
| 12265 | GC_NOTRIGGER; |
| 12266 | } |
| 12267 | CONTRACTL_END; |
| 12268 | |
| 12269 | LOG((LF_CORDB, LL_INFO10000, "D::BTITTH: expanding basic right-side type to left-side type, ELEMENT_TYPE: %d.\n" , data->elementType)); |
| 12270 | *pRes = TypeHandle(); |
| 12271 | TypeHandle th; |
| 12272 | switch (data->elementType) |
| 12273 | { |
| 12274 | case ELEMENT_TYPE_ARRAY: |
| 12275 | case ELEMENT_TYPE_SZARRAY: |
| 12276 | case ELEMENT_TYPE_PTR: |
| 12277 | case ELEMENT_TYPE_BYREF: |
| 12278 | _ASSERTE(!data->vmTypeHandle.IsNull()); |
| 12279 | th = GetTypeHandle(data->vmTypeHandle); |
| 12280 | break; |
| 12281 | |
| 12282 | case ELEMENT_TYPE_CLASS: |
| 12283 | case ELEMENT_TYPE_VALUETYPE: |
| 12284 | { |
| 12285 | if (!data->vmTypeHandle.IsNull()) |
| 12286 | { |
| 12287 | th = GetTypeHandle(data->vmTypeHandle); |
| 12288 | } |
| 12289 | else |
| 12290 | { |
| 12291 | DebuggerModule *pDebuggerModule = g_pDebugger->LookupOrCreateModule(data->vmDomainFile); |
| 12292 | |
| 12293 | th = g_pEEInterface->FindLoadedClass(pDebuggerModule->GetRuntimeModule(), data->metadataToken); |
| 12294 | if (th.IsNull()) |
| 12295 | { |
| 12296 | LOG((LF_CORDB, LL_INFO10000, "D::ETITTH: class isn't loaded.\n" )); |
| 12297 | return CORDBG_E_CLASS_NOT_LOADED; |
| 12298 | } |
| 12299 | |
| 12300 | _ASSERTE(th.GetNumGenericArgs() == 0); |
| 12301 | } |
| 12302 | break; |
| 12303 | } |
| 12304 | |
| 12305 | case ELEMENT_TYPE_FNPTR: |
| 12306 | { |
| 12307 | _ASSERTE(!data->vmTypeHandle.IsNull()); |
| 12308 | th = GetTypeHandle(data->vmTypeHandle); |
| 12309 | break; |
| 12310 | } |
| 12311 | |
| 12312 | default: |
| 12313 | th = g_pEEInterface->FindLoadedElementType(data->elementType); |
| 12314 | break; |
| 12315 | } |
| 12316 | if (th.IsNull()) |
| 12317 | return CORDBG_E_CLASS_NOT_LOADED; |
| 12318 | *pRes = th; |
| 12319 | return S_OK; |
| 12320 | } |
| 12321 | |
| 12322 | // Iterate through the type argument data, creating type handles as we go. |
| 12323 | void Debugger::TypeDataWalk::ReadTypeHandles(unsigned int nTypeArgs, TypeHandle *ppResults) |
| 12324 | { |
| 12325 | WRAPPER_NO_CONTRACT; |
| 12326 | |
| 12327 | for (unsigned int i = 0; i < nTypeArgs; i++) |
| 12328 | ppResults[i] = ReadTypeHandle(); |
| 12329 | } |
| 12330 | |
| 12331 | TypeHandle Debugger::TypeDataWalk::ReadInstantiation(Module *pModule, mdTypeDef tok, unsigned int nTypeArgs) |
| 12332 | { |
| 12333 | WRAPPER_NO_CONTRACT; |
| 12334 | |
| 12335 | DWORD dwAllocSize; |
| 12336 | if (!ClrSafeInt<DWORD>::multiply(nTypeArgs, sizeof(TypeHandle), dwAllocSize)) |
| 12337 | { |
| 12338 | ThrowHR(COR_E_OVERFLOW); |
| 12339 | } |
| 12340 | TypeHandle * inst = (TypeHandle *) _alloca(dwAllocSize); |
| 12341 | ReadTypeHandles(nTypeArgs, inst) ; |
| 12342 | TypeHandle th = g_pEEInterface->LoadInstantiation(pModule, tok, nTypeArgs, inst); |
| 12343 | if (th.IsNull()) |
| 12344 | COMPlusThrow(kArgumentException, W("Argument_InvalidGenericArg" )); |
| 12345 | return th; |
| 12346 | } |
| 12347 | |
| 12348 | TypeHandle Debugger::TypeDataWalk::ReadTypeHandle() |
| 12349 | { |
| 12350 | CONTRACTL |
| 12351 | { |
| 12352 | THROWS; |
| 12353 | GC_TRIGGERS; |
| 12354 | } |
| 12355 | CONTRACTL_END; |
| 12356 | |
| 12357 | DebuggerIPCE_TypeArgData * data = ReadOne(); |
| 12358 | if (!data) |
| 12359 | COMPlusThrow(kArgumentException, W("Argument_InvalidGenericArg" )); |
| 12360 | |
| 12361 | LOG((LF_CORDB, LL_INFO10000, "D::ETITTH: expanding right-side type to left-side type, ELEMENT_TYPE: %d.\n" , data->data.elementType)); |
| 12362 | |
| 12363 | TypeHandle th; |
| 12364 | CorElementType et = data->data.elementType; |
| 12365 | switch (et) |
| 12366 | { |
| 12367 | case ELEMENT_TYPE_ARRAY: |
| 12368 | case ELEMENT_TYPE_SZARRAY: |
| 12369 | case ELEMENT_TYPE_PTR: |
| 12370 | case ELEMENT_TYPE_BYREF: |
| 12371 | if(data->numTypeArgs == 1) |
| 12372 | { |
| 12373 | TypeHandle typar = ReadTypeHandle(); |
| 12374 | switch (et) |
| 12375 | { |
| 12376 | case ELEMENT_TYPE_ARRAY: |
| 12377 | case ELEMENT_TYPE_SZARRAY: |
| 12378 | th = g_pEEInterface->LoadArrayType(data->data.elementType, typar, data->data.ArrayTypeData.arrayRank); |
| 12379 | break; |
| 12380 | case ELEMENT_TYPE_PTR: |
| 12381 | case ELEMENT_TYPE_BYREF: |
| 12382 | th = g_pEEInterface->LoadPointerOrByrefType(data->data.elementType, typar); |
| 12383 | break; |
| 12384 | default: |
| 12385 | _ASSERTE(0); |
| 12386 | } |
| 12387 | } |
| 12388 | break; |
| 12389 | |
| 12390 | case ELEMENT_TYPE_CLASS: |
| 12391 | case ELEMENT_TYPE_VALUETYPE: |
| 12392 | { |
| 12393 | DebuggerModule *pDebuggerModule = g_pDebugger->LookupOrCreateModule(data->data.ClassTypeData.vmDomainFile); |
| 12394 | th = ReadInstantiation(pDebuggerModule->GetRuntimeModule(), data->data.ClassTypeData.metadataToken, data->numTypeArgs); |
| 12395 | break; |
| 12396 | } |
| 12397 | |
| 12398 | case ELEMENT_TYPE_FNPTR: |
| 12399 | { |
| 12400 | SIZE_T cbAllocSize; |
| 12401 | if ((!ClrSafeInt<SIZE_T>::multiply(data->numTypeArgs, sizeof(TypeHandle), cbAllocSize)) || |
| 12402 | (cbAllocSize != (size_t)(cbAllocSize))) |
| 12403 | { |
| 12404 | _ASSERTE(COR_E_OVERFLOW); |
| 12405 | cbAllocSize = UINT_MAX; |
| 12406 | } |
| 12407 | TypeHandle * inst = (TypeHandle *) _alloca(cbAllocSize); |
| 12408 | ReadTypeHandles(data->numTypeArgs, inst) ; |
| 12409 | th = g_pEEInterface->LoadFnptrType(inst, data->numTypeArgs); |
| 12410 | break; |
| 12411 | } |
| 12412 | |
| 12413 | default: |
| 12414 | th = g_pEEInterface->LoadElementType(data->data.elementType); |
| 12415 | break; |
| 12416 | } |
| 12417 | if (th.IsNull()) |
| 12418 | COMPlusThrow(kArgumentNullException, W("ArgumentNull_Type" )); |
| 12419 | return th; |
| 12420 | |
| 12421 | } |
| 12422 | |
| 12423 | // |
| 12424 | // GetAndSendTransitionStubInfo figures out if an address is a stub |
| 12425 | // address and sends the result back to the right side. |
| 12426 | // |
| 12427 | void Debugger::GetAndSendTransitionStubInfo(CORDB_ADDRESS_TYPE *stubAddress) |
| 12428 | { |
| 12429 | CONTRACTL |
| 12430 | { |
| 12431 | NOTHROW; |
| 12432 | GC_NOTRIGGER; |
| 12433 | } |
| 12434 | CONTRACTL_END; |
| 12435 | |
| 12436 | LOG((LF_CORDB, LL_INFO10000, "D::GASTSI: IsTransitionStub. Addr=0x%08x\n" , stubAddress)); |
| 12437 | |
| 12438 | bool result = false; |
| 12439 | |
| 12440 | result = g_pEEInterface->IsStub((const BYTE *)stubAddress); |
| 12441 | |
| 12442 | |
| 12443 | // If its not a stub, then maybe its an address in mscoree? |
| 12444 | if (result == false) |
| 12445 | { |
| 12446 | result = (IsIPInModule(g_pMSCorEE, (PCODE)stubAddress) == TRUE); |
| 12447 | } |
| 12448 | |
| 12449 | // This is a synchronous event (reply required) |
| 12450 | DebuggerIPCEvent *event = m_pRCThread->GetIPCEventReceiveBuffer(); |
| 12451 | InitIPCEvent(event, DB_IPCE_IS_TRANSITION_STUB_RESULT, NULL, NULL); |
| 12452 | event->IsTransitionStubResult.isStub = result; |
| 12453 | |
| 12454 | // Send the result |
| 12455 | m_pRCThread->SendIPCReply(); |
| 12456 | } |
| 12457 | |
| 12458 | /* |
| 12459 | * A generic request for a buffer in the left-side for use by the right-side |
| 12460 | * |
| 12461 | * This is a synchronous event (reply required). |
| 12462 | */ |
| 12463 | HRESULT Debugger::GetAndSendBuffer(DebuggerRCThread* rcThread, ULONG bufSize) |
| 12464 | { |
| 12465 | CONTRACTL |
| 12466 | { |
| 12467 | NOTHROW; |
| 12468 | GC_NOTRIGGER; |
| 12469 | } |
| 12470 | CONTRACTL_END; |
| 12471 | |
| 12472 | // This is a synchronous event (reply required) |
| 12473 | DebuggerIPCEvent* event = rcThread->GetIPCEventReceiveBuffer(); |
| 12474 | PREFIX_ASSUME(event != NULL); |
| 12475 | InitIPCEvent(event, DB_IPCE_GET_BUFFER_RESULT, NULL, NULL); |
| 12476 | |
| 12477 | // Allocate the buffer |
| 12478 | event->GetBufferResult.hr = AllocateRemoteBuffer( bufSize, &event->GetBufferResult.pBuffer ); |
| 12479 | |
| 12480 | // Send the result |
| 12481 | return rcThread->SendIPCReply(); |
| 12482 | } |
| 12483 | |
| 12484 | /* |
| 12485 | * Allocate a buffer in the left-side for use by the right-side |
| 12486 | */ |
| 12487 | HRESULT Debugger::AllocateRemoteBuffer( ULONG bufSize, void **ppBuffer ) |
| 12488 | { |
| 12489 | CONTRACTL |
| 12490 | { |
| 12491 | NOTHROW; |
| 12492 | GC_NOTRIGGER; |
| 12493 | } |
| 12494 | CONTRACTL_END; |
| 12495 | |
| 12496 | // The call to Append below will call CUnorderedArray, which will call unsafe New. |
| 12497 | HRESULT hr; |
| 12498 | CHECK_IF_CAN_TAKE_HELPER_LOCKS_IN_THIS_SCOPE(&hr, GetCanary()); |
| 12499 | if( FAILED(hr) ) |
| 12500 | { |
| 12501 | return hr; |
| 12502 | } |
| 12503 | |
| 12504 | // Actually allocate the buffer |
| 12505 | BYTE* pBuffer = new (interopsafe, nothrow) BYTE[bufSize]; |
| 12506 | |
| 12507 | LOG((LF_CORDB, LL_EVERYTHING, "D::ARB: new'd 0x%x\n" , *ppBuffer)); |
| 12508 | |
| 12509 | // Check for out of memory error |
| 12510 | if (pBuffer == NULL) |
| 12511 | { |
| 12512 | return E_OUTOFMEMORY; |
| 12513 | } |
| 12514 | |
| 12515 | // Track the allocation so we can free it later |
| 12516 | void **ppNextBlob = GetMemBlobs()->Append(); |
| 12517 | if( ppNextBlob == NULL ) |
| 12518 | { |
| 12519 | DeleteInteropSafe( pBuffer ); |
| 12520 | return E_OUTOFMEMORY; |
| 12521 | } |
| 12522 | *ppNextBlob = pBuffer; |
| 12523 | |
| 12524 | // Return the allocated memory |
| 12525 | *ppBuffer = pBuffer; |
| 12526 | return S_OK; |
| 12527 | } |
| 12528 | |
| 12529 | /* |
| 12530 | * Used to release a previously-requested buffer |
| 12531 | * |
| 12532 | * This is a synchronous event (reply required). |
| 12533 | */ |
| 12534 | HRESULT Debugger::SendReleaseBuffer(DebuggerRCThread* rcThread, void *pBuffer) |
| 12535 | { |
| 12536 | CONTRACTL |
| 12537 | { |
| 12538 | NOTHROW; |
| 12539 | GC_NOTRIGGER; |
| 12540 | } |
| 12541 | CONTRACTL_END; |
| 12542 | |
| 12543 | LOG((LF_CORDB,LL_INFO10000, "D::SRB for buffer 0x%x\n" , pBuffer)); |
| 12544 | |
| 12545 | // This is a synchronous event (reply required) |
| 12546 | DebuggerIPCEvent* event = rcThread->GetIPCEventReceiveBuffer(); |
| 12547 | PREFIX_ASSUME(event != NULL); |
| 12548 | InitIPCEvent(event, DB_IPCE_RELEASE_BUFFER_RESULT, NULL, NULL); |
| 12549 | |
| 12550 | _ASSERTE(pBuffer != NULL); |
| 12551 | |
| 12552 | // Free the memory |
| 12553 | ReleaseRemoteBuffer(pBuffer, true); |
| 12554 | |
| 12555 | // Indicate success in reply |
| 12556 | event->ReleaseBufferResult.hr = S_OK; |
| 12557 | |
| 12558 | // Send the result |
| 12559 | return rcThread->SendIPCReply(); |
| 12560 | } |
| 12561 | |
| 12562 | |
| 12563 | // |
| 12564 | // Used to delete the buffer previously-requested by the right side. |
| 12565 | // We've factored the code since both the ~Debugger and SendReleaseBuffer |
| 12566 | // methods do this. |
| 12567 | // |
| 12568 | HRESULT Debugger::ReleaseRemoteBuffer(void *pBuffer, bool removeFromBlobList) |
| 12569 | { |
| 12570 | CONTRACTL |
| 12571 | { |
| 12572 | NOTHROW; |
| 12573 | GC_NOTRIGGER; |
| 12574 | } |
| 12575 | CONTRACTL_END; |
| 12576 | |
| 12577 | LOG((LF_CORDB, LL_EVERYTHING, "D::RRB: Releasing RS-alloc'd buffer 0x%x\n" , pBuffer)); |
| 12578 | |
| 12579 | // Remove the buffer from the blob list if necessary. |
| 12580 | if (removeFromBlobList) |
| 12581 | { |
| 12582 | USHORT cBlobs = GetMemBlobs()->Count(); |
| 12583 | void **rgpBlobs = GetMemBlobs()->Table(); |
| 12584 | |
| 12585 | USHORT i; |
| 12586 | for (i = 0; i < cBlobs; i++) |
| 12587 | { |
| 12588 | if (rgpBlobs[i] == pBuffer) |
| 12589 | { |
| 12590 | GetMemBlobs()->DeleteByIndex(i); |
| 12591 | break; |
| 12592 | } |
| 12593 | } |
| 12594 | |
| 12595 | // We should have found a match. All buffers passed to ReleaseRemoteBuffer |
| 12596 | // should have been allocated with AllocateRemoteBuffer and not yet freed. |
| 12597 | _ASSERTE( i < cBlobs ); |
| 12598 | } |
| 12599 | |
| 12600 | // Delete the buffer. (Need cast for GCC template support) |
| 12601 | DeleteInteropSafe( (BYTE*)pBuffer ); |
| 12602 | |
| 12603 | return S_OK; |
| 12604 | } |
| 12605 | |
| 12606 | // |
| 12607 | // UnrecoverableError causes the Left Side to enter a state where no more |
| 12608 | // debugging can occur and we leave around enough information for the |
| 12609 | // Right Side to tell what happened. |
| 12610 | // |
| 12611 | void Debugger::UnrecoverableError(HRESULT errorHR, |
| 12612 | unsigned int errorCode, |
| 12613 | const char *errorFile, |
| 12614 | unsigned int errorLine, |
| 12615 | bool exitThread) |
| 12616 | { |
| 12617 | CONTRACTL |
| 12618 | { |
| 12619 | NOTHROW; |
| 12620 | GC_NOTRIGGER; |
| 12621 | } |
| 12622 | CONTRACTL_END; |
| 12623 | |
| 12624 | LOG((LF_CORDB, LL_INFO10, |
| 12625 | "Unrecoverable error: hr=0x%08x, code=%d, file=%s, line=%d\n" , |
| 12626 | errorHR, errorCode, errorFile, errorLine)); |
| 12627 | |
| 12628 | // |
| 12629 | // Setting this will ensure that not much else happens... |
| 12630 | // |
| 12631 | m_unrecoverableError = TRUE; |
| 12632 | |
| 12633 | // |
| 12634 | // Fill out the control block with the error. |
| 12635 | // in-proc will find out when the function fails |
| 12636 | // |
| 12637 | DebuggerIPCControlBlock *pDCB = m_pRCThread->GetDCB(); |
| 12638 | |
| 12639 | PREFIX_ASSUME(pDCB != NULL); |
| 12640 | |
| 12641 | pDCB->m_errorHR = errorHR; |
| 12642 | pDCB->m_errorCode = errorCode; |
| 12643 | |
| 12644 | // |
| 12645 | // If we're told to, exit the thread. |
| 12646 | // |
| 12647 | if (exitThread) |
| 12648 | { |
| 12649 | LOG((LF_CORDB, LL_INFO10, |
| 12650 | "Thread exiting due to unrecoverable error.\n" )); |
| 12651 | ExitThread(errorHR); |
| 12652 | } |
| 12653 | } |
| 12654 | |
| 12655 | // |
| 12656 | // Callback for IsThreadAtSafePlace's stack walk. |
| 12657 | // |
| 12658 | StackWalkAction Debugger::AtSafePlaceStackWalkCallback(CrawlFrame *pCF, |
| 12659 | VOID* data) |
| 12660 | { |
| 12661 | CONTRACTL |
| 12662 | { |
| 12663 | NOTHROW; |
| 12664 | GC_NOTRIGGER; |
| 12665 | |
| 12666 | PRECONDITION(CheckPointer(pCF)); |
| 12667 | PRECONDITION(CheckPointer(data)); |
| 12668 | } |
| 12669 | CONTRACTL_END; |
| 12670 | |
| 12671 | bool *atSafePlace = (bool*)data; |
| 12672 | LOG((LF_CORDB, LL_INFO100000, "D:AtSafePlaceStackWalkCallback\n" )); |
| 12673 | |
| 12674 | if (pCF->IsFrameless() && pCF->IsActiveFunc()) |
| 12675 | { |
| 12676 | LOG((LF_CORDB, LL_INFO1000000, "D:AtSafePlaceStackWalkCallback, IsFrameLess() and IsActiveFunc()\n" )); |
| 12677 | if (g_pEEInterface->CrawlFrameIsGcSafe(pCF)) |
| 12678 | { |
| 12679 | LOG((LF_CORDB, LL_INFO1000000, "D:AtSafePlaceStackWalkCallback - TRUE: CrawlFrameIsGcSafe()\n" )); |
| 12680 | *atSafePlace = true; |
| 12681 | } |
| 12682 | } |
| 12683 | return SWA_ABORT; |
| 12684 | } |
| 12685 | |
| 12686 | // |
| 12687 | // Determine, via a quick one frame stack walk, if a given thread is |
| 12688 | // in a gc safe place. |
| 12689 | // |
| 12690 | bool Debugger::IsThreadAtSafePlaceWorker(Thread *thread) |
| 12691 | { |
| 12692 | CONTRACTL |
| 12693 | { |
| 12694 | NOTHROW; |
| 12695 | GC_NOTRIGGER; |
| 12696 | |
| 12697 | PRECONDITION(CheckPointer(thread)); |
| 12698 | } |
| 12699 | CONTRACTL_END; |
| 12700 | |
| 12701 | bool atSafePlace = false; |
| 12702 | |
| 12703 | // Setup our register display. |
| 12704 | REGDISPLAY rd; |
| 12705 | CONTEXT *context = g_pEEInterface->GetThreadFilterContext(thread); |
| 12706 | |
| 12707 | _ASSERTE(!(g_pEEInterface->GetThreadFilterContext(thread) && ISREDIRECTEDTHREAD(thread))); |
| 12708 | if (context != NULL) |
| 12709 | { |
| 12710 | g_pEEInterface->InitRegDisplay(thread, &rd, context, TRUE); |
| 12711 | } |
| 12712 | else |
| 12713 | { |
| 12714 | CONTEXT ctx; |
| 12715 | ZeroMemory(&rd, sizeof(rd)); |
| 12716 | ZeroMemory(&ctx, sizeof(ctx)); |
| 12717 | #if defined(_TARGET_X86_) && !defined(WIN64EXCEPTIONS) |
| 12718 | rd.ControlPC = ctx.Eip; |
| 12719 | rd.PCTAddr = (TADDR)&(ctx.Eip); |
| 12720 | #else |
| 12721 | FillRegDisplay(&rd, &ctx); |
| 12722 | #endif |
| 12723 | |
| 12724 | if (ISREDIRECTEDTHREAD(thread)) |
| 12725 | { |
| 12726 | thread->GetFrame()->UpdateRegDisplay(&rd); |
| 12727 | } |
| 12728 | } |
| 12729 | |
| 12730 | // Do the walk. If it fails, we don't care, because we default |
| 12731 | // atSafePlace to false. |
| 12732 | g_pEEInterface->StackWalkFramesEx( |
| 12733 | thread, |
| 12734 | &rd, |
| 12735 | Debugger::AtSafePlaceStackWalkCallback, |
| 12736 | (VOID*)(&atSafePlace), |
| 12737 | QUICKUNWIND | HANDLESKIPPEDFRAMES | |
| 12738 | DISABLE_MISSING_FRAME_DETECTION | SKIP_GSCOOKIE_CHECK); |
| 12739 | |
| 12740 | #ifdef LOGGING |
| 12741 | if (!atSafePlace) |
| 12742 | LOG((LF_CORDB | LF_GC, LL_INFO1000, |
| 12743 | "Thread 0x%x is not at a safe place.\n" , |
| 12744 | GetThreadIdHelper(thread))); |
| 12745 | #endif |
| 12746 | |
| 12747 | return atSafePlace; |
| 12748 | } |
| 12749 | |
| 12750 | bool Debugger::IsThreadAtSafePlace(Thread *thread) |
| 12751 | { |
| 12752 | CONTRACTL |
| 12753 | { |
| 12754 | NOTHROW; |
| 12755 | GC_NOTRIGGER; |
| 12756 | |
| 12757 | PRECONDITION(CheckPointer(thread)); |
| 12758 | } |
| 12759 | CONTRACTL_END; |
| 12760 | |
| 12761 | |
| 12762 | if (m_fShutdownMode) |
| 12763 | { |
| 12764 | return true; |
| 12765 | } |
| 12766 | |
| 12767 | // <TODO> |
| 12768 | // |
| 12769 | // Make sure this fix is evaluated when doing real work for debugging SO handling. |
| 12770 | // |
| 12771 | // On the Stack Overflow code path calling IsThreadAtSafePlaceWorker as it is |
| 12772 | // currently implemented is way too stack intensive. For now we cheat and just |
| 12773 | // say that if a thread is in the middle of handling a SO it is NOT at a safe |
| 12774 | // place. This is a reasonably safe assumption to make and hopefully shouldn't |
| 12775 | // result in deadlocking the debugger. |
| 12776 | if ( (thread->IsExceptionInProgress()) && |
| 12777 | (g_pEEInterface->GetThreadException(thread) == CLRException::GetPreallocatedStackOverflowExceptionHandle()) ) |
| 12778 | { |
| 12779 | return false; |
| 12780 | } |
| 12781 | // </TODO> |
| 12782 | else |
| 12783 | { |
| 12784 | return IsThreadAtSafePlaceWorker(thread); |
| 12785 | } |
| 12786 | } |
| 12787 | |
| 12788 | //----------------------------------------------------------------------------- |
| 12789 | // Get the complete user state flags. |
| 12790 | // This will collect flags both from the EE and from the LS. |
| 12791 | // This is the real implementation of the RS's ICorDebugThread::GetUserState(). |
| 12792 | // |
| 12793 | // Parameters: |
| 12794 | // pThread - non-null thread to get state for. |
| 12795 | // |
| 12796 | // Returns: a CorDebugUserState flags enum describing state. |
| 12797 | //----------------------------------------------------------------------------- |
| 12798 | CorDebugUserState Debugger::GetFullUserState(Thread *pThread) |
| 12799 | { |
| 12800 | CONTRACTL |
| 12801 | { |
| 12802 | NOTHROW; |
| 12803 | GC_NOTRIGGER; |
| 12804 | PRECONDITION(CheckPointer(pThread)); |
| 12805 | } |
| 12806 | CONTRACTL_END; |
| 12807 | |
| 12808 | CorDebugUserState state = g_pEEInterface->GetPartialUserState(pThread); |
| 12809 | |
| 12810 | bool fSafe = IsThreadAtSafePlace(pThread); |
| 12811 | if (!fSafe) |
| 12812 | { |
| 12813 | state = (CorDebugUserState) (state | USER_UNSAFE_POINT); |
| 12814 | } |
| 12815 | |
| 12816 | return state; |
| 12817 | } |
| 12818 | |
| 12819 | /****************************************************************************** |
| 12820 | * |
| 12821 | * Helper for debugger to get an unique thread id |
| 12822 | * |
| 12823 | ******************************************************************************/ |
| 12824 | DWORD Debugger::GetThreadIdHelper(Thread *pThread) |
| 12825 | { |
| 12826 | WRAPPER_NO_CONTRACT; |
| 12827 | |
| 12828 | return pThread->GetOSThreadId(); |
| 12829 | } |
| 12830 | |
| 12831 | //----------------------------------------------------------------------------- |
| 12832 | // Called by EnC during remapping to get information about the local vars. |
| 12833 | // EnC will then use this to set values in the new version to their corresponding |
| 12834 | // values from the old version. |
| 12835 | // |
| 12836 | // Returns a pointer to the debugger's copies of the maps. Caller |
| 12837 | // does not own the memory provided via vars outparameter. |
| 12838 | //----------------------------------------------------------------------------- |
| 12839 | void Debugger::GetVarInfo(MethodDesc * fd, // [IN] method of interest |
| 12840 | void *DebuggerVersionToken, // [IN] which edit version |
| 12841 | SIZE_T * cVars, // [OUT] size of 'vars' |
| 12842 | const ICorDebugInfo::NativeVarInfo **vars // [OUT] map telling where local vars are stored |
| 12843 | ) |
| 12844 | { |
| 12845 | CONTRACTL |
| 12846 | { |
| 12847 | THROWS; |
| 12848 | GC_TRIGGERS_FROM_GETJITINFO; |
| 12849 | } |
| 12850 | CONTRACTL_END; |
| 12851 | |
| 12852 | DebuggerJitInfo * ji = (DebuggerJitInfo *)DebuggerVersionToken; |
| 12853 | |
| 12854 | // If we didn't supply a DJI, then we're asking for the most recent version. |
| 12855 | if (ji == NULL) |
| 12856 | { |
| 12857 | ji = GetLatestJitInfoFromMethodDesc(fd); |
| 12858 | } |
| 12859 | _ASSERTE(fd == ji->m_fd); |
| 12860 | |
| 12861 | PREFIX_ASSUME(ji != NULL); |
| 12862 | |
| 12863 | *vars = ji->GetVarNativeInfo(); |
| 12864 | *cVars = ji->GetVarNativeInfoCount(); |
| 12865 | } |
| 12866 | |
| 12867 | #include "openum.h" |
| 12868 | |
| 12869 | #ifdef EnC_SUPPORTED |
| 12870 | |
| 12871 | //--------------------------------------------------------------------------------------- |
| 12872 | // |
| 12873 | // Apply an EnC edit to the CLR datastructures and send the result event to the |
| 12874 | // debugger right-side. |
| 12875 | // |
| 12876 | // Arguments: |
| 12877 | // pDebuggerModule - the module in which the edit should occur |
| 12878 | // cbMetadata - the number of bytes in pMetadata |
| 12879 | // pMetadata - pointer to the delta metadata |
| 12880 | // cbIL - the number of bytes in pIL |
| 12881 | // pIL - pointer to the delta IL |
| 12882 | // |
| 12883 | // Return Value: |
| 12884 | // |
| 12885 | // Assumptions: |
| 12886 | // |
| 12887 | // Notes: |
| 12888 | // |
| 12889 | // This is just the first half of processing an EnC request (hot swapping). This updates |
| 12890 | // the metadata and other CLR data structures to reflect the edit, but does not directly |
| 12891 | // affect code which is currently running. In order to achieve on-stack replacement |
| 12892 | // (remap of running code), we mine all old methods with "EnC remap breakpoints" |
| 12893 | // (instances of DebuggerEnCBreakpoint) at many sequence points. When one of those |
| 12894 | // breakpoints is hit, we give the debugger a RemapOpportunity event and give it a |
| 12895 | // chance to remap the execution to the new version of the method. |
| 12896 | // |
| 12897 | |
| 12898 | HRESULT Debugger::ApplyChangesAndSendResult(DebuggerModule * pDebuggerModule, |
| 12899 | DWORD cbMetadata, |
| 12900 | BYTE *pMetadata, |
| 12901 | DWORD cbIL, |
| 12902 | BYTE *pIL) |
| 12903 | { |
| 12904 | CONTRACTL |
| 12905 | { |
| 12906 | THROWS; |
| 12907 | GC_NOTRIGGER; |
| 12908 | } |
| 12909 | CONTRACTL_END; |
| 12910 | |
| 12911 | // @todo - if EnC never works w/ interop, caller New on the helper thread may be ok. |
| 12912 | SUPPRESS_ALLOCATION_ASSERTS_IN_THIS_SCOPE; |
| 12913 | |
| 12914 | HRESULT hr = S_OK; |
| 12915 | |
| 12916 | LOG((LF_ENC, LL_INFO100, "Debugger::ApplyChangesAndSendResult\n" )); |
| 12917 | |
| 12918 | Module *pModule = pDebuggerModule->GetRuntimeModule(); |
| 12919 | if (! pModule->IsEditAndContinueEnabled()) |
| 12920 | { |
| 12921 | hr = CORDBG_E_ENC_MODULE_NOT_ENC_ENABLED; |
| 12922 | } |
| 12923 | else |
| 12924 | { |
| 12925 | // Violation with the following call stack: |
| 12926 | // CONTRACT in MethodTableBuilder::InitMethodDesc |
| 12927 | // CONTRACT in EEClass::AddMethod |
| 12928 | // CONTRACT in EditAndContinueModule::AddMethod |
| 12929 | // CONTRACT in EditAndContinueModule::ApplyEditAndContinue |
| 12930 | // CONTRACT in EEDbgInterfaceImpl::EnCApplyChanges |
| 12931 | // VIOLATED--> CONTRACT in Debugger::ApplyChangesAndSendResult |
| 12932 | CONTRACT_VIOLATION(GCViolation); |
| 12933 | |
| 12934 | // Tell the VM to apply the edit |
| 12935 | hr = g_pEEInterface->EnCApplyChanges( |
| 12936 | (EditAndContinueModule*)pModule, cbMetadata, pMetadata, cbIL, pIL); |
| 12937 | } |
| 12938 | |
| 12939 | LOG((LF_ENC, LL_INFO100, "Debugger::ApplyChangesAndSendResult 2\n" )); |
| 12940 | |
| 12941 | DebuggerIPCEvent* event = m_pRCThread->GetIPCEventSendBuffer(); |
| 12942 | InitIPCEvent(event, |
| 12943 | DB_IPCE_APPLY_CHANGES_RESULT, |
| 12944 | NULL, |
| 12945 | NULL); |
| 12946 | |
| 12947 | event->ApplyChangesResult.hr = hr; |
| 12948 | |
| 12949 | // Send the result |
| 12950 | return m_pRCThread->SendIPCEvent(); |
| 12951 | } |
| 12952 | |
| 12953 | // |
| 12954 | // This structure is used to hold a list of the sequence points in a function and |
| 12955 | // determine which should have remap breakpoints applied to them for EnC |
| 12956 | // |
| 12957 | class EnCSequencePointHelper |
| 12958 | { |
| 12959 | public: |
| 12960 | // Calculates remap info given the supplied JitInfo |
| 12961 | EnCSequencePointHelper(DebuggerJitInfo *pJitInfo); |
| 12962 | ~EnCSequencePointHelper(); |
| 12963 | |
| 12964 | // Returns true if the specified sequence point (given by it's index in the |
| 12965 | // sequence point table in the JitInfo) should get an EnC remap breakpoint. |
| 12966 | BOOL ShouldSetRemapBreakpoint(unsigned int offsetIndex); |
| 12967 | |
| 12968 | private: |
| 12969 | DebuggerJitInfo *m_pJitInfo; |
| 12970 | |
| 12971 | DebugOffsetToHandlerInfo *m_pOffsetToHandlerInfo; |
| 12972 | }; |
| 12973 | |
| 12974 | // |
| 12975 | // Goes through the list of sequence points for a function and determines whether or not each |
| 12976 | // is a valid Remap Breakpoint location (not in a special offset, must be empty stack, and not in a handler. |
| 12977 | // |
| 12978 | EnCSequencePointHelper::EnCSequencePointHelper(DebuggerJitInfo *pJitInfo) |
| 12979 | : m_pOffsetToHandlerInfo(NULL), |
| 12980 | m_pJitInfo(pJitInfo) |
| 12981 | { |
| 12982 | CONTRACTL |
| 12983 | { |
| 12984 | THROWS; |
| 12985 | GC_NOTRIGGER; |
| 12986 | } |
| 12987 | CONTRACTL_END; |
| 12988 | |
| 12989 | if (m_pJitInfo->GetSequenceMapCount() == 0) |
| 12990 | { |
| 12991 | return; |
| 12992 | } |
| 12993 | |
| 12994 | // Construct a list of native offsets we may want to place EnC breakpoints at |
| 12995 | m_pOffsetToHandlerInfo = new DebugOffsetToHandlerInfo[m_pJitInfo->GetSequenceMapCount()]; |
| 12996 | for (unsigned int i = 0; i < m_pJitInfo->GetSequenceMapCount(); i++) |
| 12997 | { |
| 12998 | // By default this slot is unused. We want the indexes in m_pOffsetToHandlerInfo |
| 12999 | // to correspond to the indexes of m_pJitInfo->GetSequenceMapCount, so we rely |
| 13000 | // on a -1 offset to indicate that a DebuggerOffsetToHandlerInfo is unused. |
| 13001 | // However, it would be cleaner and permit a simpler API to the EE if we just |
| 13002 | // had an array mapping the offsets instead. |
| 13003 | m_pOffsetToHandlerInfo[i].offset = (SIZE_T) -1; |
| 13004 | m_pOffsetToHandlerInfo[i].isInFilterOrHandler = FALSE; |
| 13005 | |
| 13006 | SIZE_T offset = m_pJitInfo->GetSequenceMap()[i].nativeStartOffset; |
| 13007 | |
| 13008 | // Check if this is a "special" IL offset, such as representing the prolog or eppilog, |
| 13009 | // or other region not directly mapped to native code. |
| 13010 | if (DbgIsSpecialILOffset(pJitInfo->GetSequenceMap()[i].ilOffset)) |
| 13011 | { |
| 13012 | LOG((LF_ENC, LL_INFO10000, |
| 13013 | "D::UF: not placing E&C breakpoint at special offset 0x%x (IL: 0x%x)\n" , |
| 13014 | offset, m_pJitInfo->GetSequenceMap()[i].ilOffset)); |
| 13015 | continue; |
| 13016 | } |
| 13017 | |
| 13018 | // Skip duplicate sequence points |
| 13019 | if (i >=1 && offset == pJitInfo->GetSequenceMap()[i-1].nativeStartOffset) |
| 13020 | { |
| 13021 | LOG((LF_ENC, LL_INFO10000, |
| 13022 | "D::UF: not placing redundant E&C " |
| 13023 | "breakpoint at duplicate offset 0x%x (IL: 0x%x)\n" , |
| 13024 | offset, m_pJitInfo->GetSequenceMap()[i].ilOffset)); |
| 13025 | continue; |
| 13026 | } |
| 13027 | |
| 13028 | // Skip sequence points that aren't due to the evaluation stack being empty |
| 13029 | // We can only remap at stack-empty points (since we don't have a mapping for |
| 13030 | // contents of the evaluation stack). |
| 13031 | if (!(pJitInfo->GetSequenceMap()[i].source & ICorDebugInfo::STACK_EMPTY)) |
| 13032 | { |
| 13033 | LOG((LF_ENC, LL_INFO10000, |
| 13034 | "D::UF: not placing E&C breakpoint at offset " |
| 13035 | "0x%x (IL: 0x%x) b/c not STACK_EMPTY:it's 0x%x\n" , offset, |
| 13036 | m_pJitInfo->GetSequenceMap()[i].ilOffset, pJitInfo->GetSequenceMap()[i].source)); |
| 13037 | continue; |
| 13038 | } |
| 13039 | |
| 13040 | // So far this sequence point looks good, so store it's native offset so we can get |
| 13041 | // EH information about it from the EE. |
| 13042 | LOG((LF_ENC, LL_INFO10000, |
| 13043 | "D::UF: possibly placing E&C breakpoint at offset " |
| 13044 | "0x%x (IL: 0x%x)\n" , offset, m_pJitInfo->GetSequenceMap()[i].ilOffset)); |
| 13045 | m_pOffsetToHandlerInfo[i].offset = m_pJitInfo->GetSequenceMap()[i].nativeStartOffset; |
| 13046 | |
| 13047 | } |
| 13048 | |
| 13049 | // Ask the EE to fill in the isInFilterOrHandler bit for the native offsets we're interested in |
| 13050 | g_pEEInterface->DetermineIfOffsetsInFilterOrHandler( |
| 13051 | (BYTE *)pJitInfo->m_addrOfCode, m_pOffsetToHandlerInfo, m_pJitInfo->GetSequenceMapCount()); |
| 13052 | } |
| 13053 | |
| 13054 | EnCSequencePointHelper::~EnCSequencePointHelper() |
| 13055 | { |
| 13056 | CONTRACTL |
| 13057 | { |
| 13058 | THROWS; |
| 13059 | GC_NOTRIGGER; |
| 13060 | } |
| 13061 | CONTRACTL_END; |
| 13062 | |
| 13063 | if (m_pOffsetToHandlerInfo) |
| 13064 | { |
| 13065 | delete m_pOffsetToHandlerInfo; |
| 13066 | } |
| 13067 | } |
| 13068 | |
| 13069 | // |
| 13070 | // Returns if we should set a remap breakpoint at a given offset. We only set them at 0-depth stack |
| 13071 | // and not when inside a handler, either finally, filter, or catch |
| 13072 | // |
| 13073 | BOOL EnCSequencePointHelper::ShouldSetRemapBreakpoint(unsigned int offsetIndex) |
| 13074 | { |
| 13075 | CONTRACTL |
| 13076 | { |
| 13077 | NOTHROW; |
| 13078 | GC_NOTRIGGER; |
| 13079 | MODE_ANY; |
| 13080 | CANNOT_TAKE_LOCK; |
| 13081 | } |
| 13082 | CONTRACTL_END; |
| 13083 | |
| 13084 | { |
| 13085 | // GetSequenceMapCount calls LazyInitBounds() which can eventually |
| 13086 | // call ExecutionManager::IncrementReader |
| 13087 | CONTRACT_VIOLATION(TakesLockViolation); |
| 13088 | _ASSERTE(offsetIndex <= m_pJitInfo->GetSequenceMapCount()); |
| 13089 | } |
| 13090 | |
| 13091 | // If this slot is unused (offset -1), we excluded it early |
| 13092 | if (m_pOffsetToHandlerInfo[offsetIndex].offset == (SIZE_T) -1) |
| 13093 | { |
| 13094 | return FALSE; |
| 13095 | } |
| 13096 | |
| 13097 | // Otherwise, check the isInFilterOrHandler bit |
| 13098 | if (m_pOffsetToHandlerInfo[offsetIndex].isInFilterOrHandler) |
| 13099 | { |
| 13100 | LOG((LF_ENC, LL_INFO10000, |
| 13101 | "D::UF: not placing E&C breakpoint in filter/handler at offset 0x%x\n" , |
| 13102 | m_pOffsetToHandlerInfo[offsetIndex].offset)); |
| 13103 | return FALSE; |
| 13104 | } |
| 13105 | |
| 13106 | return TRUE; |
| 13107 | } |
| 13108 | |
| 13109 | |
| 13110 | //----------------------------------------------------------------------------- |
| 13111 | // For each function that's EnC-ed, the EE will call either UpdateFunction |
| 13112 | // (if the function already is loaded + jitted) or AddFunction |
| 13113 | // |
| 13114 | // This is called before the EE updates the MethodDesc, so pMD does not yet |
| 13115 | // point to the version we'll be remapping to. |
| 13116 | //----------------------------------------------------------------------------- |
| 13117 | HRESULT Debugger::UpdateFunction(MethodDesc* pMD, SIZE_T encVersion) |
| 13118 | { |
| 13119 | CONTRACTL |
| 13120 | { |
| 13121 | THROWS; |
| 13122 | GC_TRIGGERS_FROM_GETJITINFO; |
| 13123 | PRECONDITION(ThisIsHelperThread()); // guarantees we're serialized. |
| 13124 | PRECONDITION(IsStopped()); |
| 13125 | } |
| 13126 | CONTRACTL_END; |
| 13127 | |
| 13128 | LOG((LF_CORDB, LL_INFO10000, "D::UF: updating " |
| 13129 | "%s::%s to version %d\n" , pMD->m_pszDebugClassName, pMD->m_pszDebugMethodName, encVersion)); |
| 13130 | |
| 13131 | // tell the RS that this function has been updated so that it can create new CorDBFunction |
| 13132 | Module *pModule = g_pEEInterface->MethodDescGetModule(pMD); |
| 13133 | _ASSERTE(pModule != NULL); |
| 13134 | mdToken methodDef = pMD->GetMemberDef(); |
| 13135 | SendEnCUpdateEvent(DB_IPCE_ENC_UPDATE_FUNCTION, |
| 13136 | pModule, |
| 13137 | methodDef, |
| 13138 | pMD->GetMethodTable()->GetCl(), |
| 13139 | encVersion); |
| 13140 | |
| 13141 | DebuggerMethodInfo *dmi = GetOrCreateMethodInfo(pModule, methodDef); |
| 13142 | if (dmi == NULL) |
| 13143 | { |
| 13144 | return E_OUTOFMEMORY; |
| 13145 | } |
| 13146 | |
| 13147 | // The DMI always holds the most current EnC version number. We always JIT the most |
| 13148 | // current version of the function, so when we do see a JitBegin we will create a new |
| 13149 | // dji for it and stash the current version there. We don't want to change the current |
| 13150 | // jit info because it has to maintain the version for the code it corresponds to. |
| 13151 | dmi->SetCurrentEnCVersion(encVersion); |
| 13152 | |
| 13153 | // This is called before the MethodDesc is updated to point to the new function. |
| 13154 | // So this call will get the most recent old function. |
| 13155 | DebuggerJitInfo *pJitInfo = GetLatestJitInfoFromMethodDesc(pMD); |
| 13156 | |
| 13157 | if (pJitInfo == NULL ) |
| 13158 | { |
| 13159 | LOG((LF_CORDB,LL_INFO10000,"Unable to get DJI by recently " |
| 13160 | "D::UF: JITted version number (it hasn't been jitted yet)," |
| 13161 | "which is fine\n" )); |
| 13162 | return S_OK; |
| 13163 | } |
| 13164 | |
| 13165 | // |
| 13166 | // Mine the old version of the method with patches so that we can provide |
| 13167 | // remap opportunities whenever the old version of the method is executed. |
| 13168 | // |
| 13169 | |
| 13170 | if (pJitInfo->m_encBreakpointsApplied) |
| 13171 | { |
| 13172 | LOG((LF_CORDB,LL_INFO10000,"D::UF: Breakpoints already applied\n" )); |
| 13173 | return S_OK; |
| 13174 | } |
| 13175 | |
| 13176 | LOG((LF_CORDB,LL_INFO10000,"D::UF: Applying breakpoints\n" )); |
| 13177 | |
| 13178 | // We only place the patches if we have jit info for this |
| 13179 | // function, i.e., its already been jitted. Otherwise, the EE will |
| 13180 | // pickup the new method on the next JIT anyway. |
| 13181 | |
| 13182 | EnCSequencePointHelper sequencePointHelper(pJitInfo); |
| 13183 | |
| 13184 | // For each offset in the IL->Native map, set a new EnC breakpoint on the |
| 13185 | // ones that we know could be remap points. |
| 13186 | for (unsigned int i = 0; i < pJitInfo->GetSequenceMapCount(); i++) |
| 13187 | { |
| 13188 | // Skip if this isn't a valid remap point (eg. is in an exception handler) |
| 13189 | if (! sequencePointHelper.ShouldSetRemapBreakpoint(i)) |
| 13190 | { |
| 13191 | continue; |
| 13192 | } |
| 13193 | |
| 13194 | SIZE_T offset = pJitInfo->GetSequenceMap()[i].nativeStartOffset; |
| 13195 | |
| 13196 | LOG((LF_CORDB, LL_INFO10000, |
| 13197 | "D::UF: placing E&C breakpoint at native offset 0x%x\n" , |
| 13198 | offset)); |
| 13199 | |
| 13200 | DebuggerEnCBreakpoint *bp; |
| 13201 | |
| 13202 | // Create and activate a new EnC remap breakpoint here in the old version of the method |
| 13203 | bp = new (interopsafe) DebuggerEnCBreakpoint( offset, |
| 13204 | pJitInfo, |
| 13205 | DebuggerEnCBreakpoint::REMAP_PENDING, |
| 13206 | (AppDomain *)pModule->GetDomain()); |
| 13207 | |
| 13208 | _ASSERTE(bp != NULL); |
| 13209 | } |
| 13210 | |
| 13211 | pJitInfo->m_encBreakpointsApplied = true; |
| 13212 | |
| 13213 | return S_OK; |
| 13214 | } |
| 13215 | |
| 13216 | // Called to update a function that hasn't yet been loaded (and so we don't have a MethodDesc). |
| 13217 | // This may be updating an existing function on a type that hasn't been loaded |
| 13218 | // or adding a new function to a type that hasn't been loaded. |
| 13219 | // We need to notify the debugger so that it can properly track version info. |
| 13220 | HRESULT Debugger::UpdateNotYetLoadedFunction(mdMethodDef token, Module * pModule, SIZE_T encVersion) |
| 13221 | { |
| 13222 | CONTRACTL |
| 13223 | { |
| 13224 | THROWS; |
| 13225 | GC_NOTRIGGER; |
| 13226 | |
| 13227 | PRECONDITION(ThisIsHelperThread()); |
| 13228 | PRECONDITION(ThreadHoldsLock()); // must have lock since we're on helper and stopped. |
| 13229 | } |
| 13230 | CONTRACTL_END; |
| 13231 | |
| 13232 | DebuggerMethodInfo *dmi = GetOrCreateMethodInfo(pModule, token); |
| 13233 | if (! dmi) |
| 13234 | { |
| 13235 | return E_OUTOFMEMORY; |
| 13236 | } |
| 13237 | dmi->SetCurrentEnCVersion(encVersion); |
| 13238 | |
| 13239 | |
| 13240 | // Must tell the RS that this function has been added so that it can create new CorDBFunction. |
| 13241 | mdTypeDef classToken = 0; |
| 13242 | |
| 13243 | HRESULT hr = pModule->GetMDImport()->GetParentToken(token, &classToken); |
| 13244 | if (FAILED(hr)) |
| 13245 | { |
| 13246 | // We never expect this to actually fail, but just in case it does for some other crazy reason, |
| 13247 | // we'll return before we AV. |
| 13248 | CONSISTENCY_CHECK_MSGF(false, ("Class lookup failed:mdToken:0x%08x, pModule=%p. hr=0x%08x\n" , token, pModule, hr)); |
| 13249 | return hr; |
| 13250 | } |
| 13251 | |
| 13252 | SendEnCUpdateEvent(DB_IPCE_ENC_ADD_FUNCTION, pModule, token, classToken, encVersion); |
| 13253 | |
| 13254 | |
| 13255 | return S_OK; |
| 13256 | } |
| 13257 | |
| 13258 | // Called to add a new function when the type has been loaded already. |
| 13259 | // This is effectively the same as above, except that we're given a |
| 13260 | // MethodDesc instead of a module and token. |
| 13261 | // This should probably be merged into a single method since the caller |
| 13262 | // should always have a module and token available in both cases. |
| 13263 | HRESULT Debugger::AddFunction(MethodDesc* pMD, SIZE_T encVersion) |
| 13264 | { |
| 13265 | CONTRACTL |
| 13266 | { |
| 13267 | THROWS; |
| 13268 | GC_NOTRIGGER; |
| 13269 | |
| 13270 | PRECONDITION(ThisIsHelperThread()); |
| 13271 | PRECONDITION(ThreadHoldsLock()); // must have lock since we're on helper and stopped. |
| 13272 | } |
| 13273 | CONTRACTL_END; |
| 13274 | |
| 13275 | DebuggerDataLockHolder debuggerDataLockHolder(this); |
| 13276 | |
| 13277 | LOG((LF_CORDB, LL_INFO10000, "D::AF: adding " |
| 13278 | "%s::%s to version %d\n" , pMD->m_pszDebugClassName, pMD->m_pszDebugMethodName, encVersion)); |
| 13279 | |
| 13280 | _ASSERTE(pMD != NULL); |
| 13281 | Module *pModule = g_pEEInterface->MethodDescGetModule(pMD); |
| 13282 | _ASSERTE(pModule != NULL); |
| 13283 | mdToken methodDef = pMD->GetMemberDef(); |
| 13284 | |
| 13285 | // tell the RS that this function has been added so that it can create new CorDBFunction |
| 13286 | SendEnCUpdateEvent( DB_IPCE_ENC_ADD_FUNCTION, |
| 13287 | pModule, |
| 13288 | methodDef, |
| 13289 | pMD->GetMethodTable()->GetCl(), |
| 13290 | encVersion); |
| 13291 | |
| 13292 | DebuggerMethodInfo *dmi = CreateMethodInfo(pModule, methodDef); |
| 13293 | if (! dmi) |
| 13294 | { |
| 13295 | return E_OUTOFMEMORY; |
| 13296 | } |
| 13297 | dmi->SetCurrentEnCVersion(encVersion); |
| 13298 | |
| 13299 | return S_OK; |
| 13300 | } |
| 13301 | |
| 13302 | // Invoke when a field is added to a class using EnC |
| 13303 | HRESULT Debugger::AddField(FieldDesc* pFD, SIZE_T encVersion) |
| 13304 | { |
| 13305 | CONTRACTL |
| 13306 | { |
| 13307 | NOTHROW; |
| 13308 | GC_NOTRIGGER; |
| 13309 | } |
| 13310 | CONTRACTL_END; |
| 13311 | |
| 13312 | LOG((LF_CORDB, LL_INFO10000, "D::AFld: adding " |
| 13313 | "%8.8d::%8.8d to version %d\n" , pFD->GetApproxEnclosingMethodTable()->GetCl(), pFD->GetMemberDef(), encVersion)); |
| 13314 | |
| 13315 | // tell the RS that this field has been added so that it can update it's structures |
| 13316 | SendEnCUpdateEvent( DB_IPCE_ENC_ADD_FIELD, |
| 13317 | pFD->GetModule(), |
| 13318 | pFD->GetMemberDef(), |
| 13319 | pFD->GetApproxEnclosingMethodTable()->GetCl(), |
| 13320 | encVersion); |
| 13321 | |
| 13322 | return S_OK; |
| 13323 | } |
| 13324 | |
| 13325 | // |
| 13326 | // RemapComplete is called when we are just about to resume into |
| 13327 | // the function so that we can setup our breakpoint to trigger |
| 13328 | // a call to the RemapComplete callback once the function is actually |
| 13329 | // on the stack. We need to wait until the function is jitted before |
| 13330 | // we can add the trigger, which doesn't happen until we call |
| 13331 | // ResumeInUpdatedFunction in the VM |
| 13332 | // |
| 13333 | // addr is address within the given function, which we use to determine |
| 13334 | // exact EnC version. |
| 13335 | // |
| 13336 | HRESULT Debugger::RemapComplete(MethodDesc* pMD, TADDR addr, SIZE_T nativeOffset) |
| 13337 | { |
| 13338 | CONTRACTL |
| 13339 | { |
| 13340 | THROWS; |
| 13341 | GC_TRIGGERS_FROM_GETJITINFO; |
| 13342 | } |
| 13343 | CONTRACTL_END; |
| 13344 | |
| 13345 | _ASSERTE(pMD != NULL); |
| 13346 | _ASSERTE(addr != NULL); |
| 13347 | |
| 13348 | LOG((LF_CORDB, LL_INFO10000, "D::RC: installed remap complete patch for " |
| 13349 | "%s::%s to version %d\n" , pMD->m_pszDebugClassName, pMD->m_pszDebugMethodName)); |
| 13350 | |
| 13351 | DebuggerMethodInfo *dmi = GetOrCreateMethodInfo(pMD->GetModule(), pMD->GetMemberDef()); |
| 13352 | |
| 13353 | if (dmi == NULL) |
| 13354 | { |
| 13355 | return E_OUTOFMEMORY; |
| 13356 | } |
| 13357 | |
| 13358 | DebuggerJitInfo *pJitInfo = GetJitInfo(pMD, (const BYTE *) addr); |
| 13359 | |
| 13360 | if (pJitInfo == NULL) |
| 13361 | { |
| 13362 | _ASSERTE(!"Debugger doesn't handle OOM" ); |
| 13363 | return E_OUTOFMEMORY; |
| 13364 | } |
| 13365 | _ASSERTE(pJitInfo->m_addrOfCode + nativeOffset == addr); |
| 13366 | |
| 13367 | DebuggerEnCBreakpoint *bp; |
| 13368 | |
| 13369 | // Create and activate a new REMAP_COMPLETE EnC breakpoint to let us know when |
| 13370 | // the EE has completed the remap process. |
| 13371 | // This will be deleted when the patch is hit. |
| 13372 | bp = new (interopsafe, nothrow) DebuggerEnCBreakpoint( nativeOffset, |
| 13373 | pJitInfo, |
| 13374 | DebuggerEnCBreakpoint::REMAP_COMPLETE, |
| 13375 | (AppDomain *)pMD->GetModule()->GetDomain()); |
| 13376 | if (bp == NULL) |
| 13377 | { |
| 13378 | return E_OUTOFMEMORY; |
| 13379 | } |
| 13380 | |
| 13381 | return S_OK; |
| 13382 | } |
| 13383 | |
| 13384 | //----------------------------------------------------------------------------- |
| 13385 | // Called by EnC stuff to map an IL offset to a native offset for the given |
| 13386 | // method described by (pMD, nativeFnxStart). |
| 13387 | // |
| 13388 | // pMD - methoddesc for method being remapped |
| 13389 | // ilOffset - incoming offset in old method to remap. |
| 13390 | // nativeFnxStart - address of new function. This can be used to find the DJI |
| 13391 | // for the new method. |
| 13392 | // nativeOffset - outparameter for native linear offset relative to start address. |
| 13393 | //----------------------------------------------------------------------------- |
| 13394 | |
| 13395 | HRESULT Debugger::MapILInfoToCurrentNative(MethodDesc *pMD, |
| 13396 | SIZE_T ilOffset, |
| 13397 | TADDR nativeFnxStart, |
| 13398 | SIZE_T *nativeOffset) |
| 13399 | { |
| 13400 | CONTRACTL |
| 13401 | { |
| 13402 | THROWS; |
| 13403 | GC_TRIGGERS_FROM_GETJITINFO; |
| 13404 | PRECONDITION(nativeOffset != NULL); |
| 13405 | PRECONDITION(CheckPointer(pMD)); |
| 13406 | PRECONDITION(nativeFnxStart != NULL); |
| 13407 | } |
| 13408 | CONTRACTL_END; |
| 13409 | |
| 13410 | _ASSERTE(HasLazyData()); // only used for EnC, should have already inited. |
| 13411 | |
| 13412 | |
| 13413 | LOG((LF_CORDB, LL_INFO1000000, "D::MILITCN: %s::%s ilOff:0x%x, " |
| 13414 | ", natFnx:0x%x dji:0x%x\n" , pMD->m_pszDebugClassName, |
| 13415 | pMD->m_pszDebugMethodName, ilOffset, nativeFnxStart)); |
| 13416 | |
| 13417 | *nativeOffset = 0; |
| 13418 | DebuggerJitInfo *djiTo = GetJitInfo( pMD, (const BYTE *)nativeFnxStart); |
| 13419 | if (djiTo == NULL) |
| 13420 | { |
| 13421 | _ASSERTE(!"No DJI in EnC case: should only happen on oom. Debugger doesn't support OOM." ); |
| 13422 | return E_FAIL; |
| 13423 | } |
| 13424 | |
| 13425 | DebuggerJitInfo::ILToNativeOffsetIterator it; |
| 13426 | djiTo->InitILToNativeOffsetIterator(it, ilOffset); |
| 13427 | *nativeOffset = it.CurrentAssertOnlyOne(NULL); |
| 13428 | return S_OK; |
| 13429 | } |
| 13430 | |
| 13431 | #endif // EnC_SUPPORTED |
| 13432 | |
| 13433 | //--------------------------------------------------------------------------------------- |
| 13434 | // Hijack worker stub called from asm stub. This can then delegate to other hijacks. |
| 13435 | // |
| 13436 | // Arguments: |
| 13437 | // pContext - context from which we were hijacked. Always non-null. |
| 13438 | // pRecord - exception record if hijacked from an exception event. |
| 13439 | // Else null (if hijacked from a managed IP). |
| 13440 | // reason - hijack reason. Use this to delegate to the proper hijack stub. |
| 13441 | // pData - arbitrary data for the hijack to use. (eg, such as a DebuggerEval object) |
| 13442 | // |
| 13443 | // Returns: |
| 13444 | // This does not return. Instead it restores this threads context to pContext. |
| 13445 | // |
| 13446 | // Assumptions: |
| 13447 | // If hijacked at an exception event, the debugger must have cleared the exception. |
| 13448 | // |
| 13449 | // Notes: |
| 13450 | // The debugger hijacked the thread to get us here via the DacDbi Hijack primitive. |
| 13451 | // This is called from a hand coded asm stub. |
| 13452 | // |
| 13453 | void STDCALL ExceptionHijackWorker( |
| 13454 | CONTEXT * pContext, |
| 13455 | EXCEPTION_RECORD * pRecord, |
| 13456 | EHijackReason::EHijackReason reason, |
| 13457 | void * pData) |
| 13458 | { |
| 13459 | STRESS_LOG0(LF_CORDB,LL_INFO100, "D::EHW: Enter ExceptionHijackWorker\n" ); |
| 13460 | |
| 13461 | // We could have many different reasons for hijacking. Switch and invoke the proper hijacker. |
| 13462 | switch(reason) |
| 13463 | { |
| 13464 | case EHijackReason::kUnhandledException: |
| 13465 | STRESS_LOG0(LF_CORDB,LL_INFO10, "D::EHW: Calling g_pDebugger->UnhandledHijackWorker()\n" ); |
| 13466 | _ASSERTE(pData == NULL); |
| 13467 | g_pDebugger->UnhandledHijackWorker(pContext, pRecord); |
| 13468 | break; |
| 13469 | #ifdef FEATURE_INTEROP_DEBUGGING |
| 13470 | case EHijackReason::kM2UHandoff: |
| 13471 | _ASSERTE(pData == NULL); |
| 13472 | g_pDebugger->M2UHandoffHijackWorker(pContext, pRecord); |
| 13473 | break; |
| 13474 | case EHijackReason::kFirstChanceSuspend: |
| 13475 | _ASSERTE(pData == NULL); |
| 13476 | g_pDebugger->FirstChanceSuspendHijackWorker(pContext, pRecord); |
| 13477 | break; |
| 13478 | case EHijackReason::kGenericHijack: |
| 13479 | _ASSERTE(pData == NULL); |
| 13480 | g_pDebugger->GenericHijackFunc(); |
| 13481 | break; |
| 13482 | #endif |
| 13483 | default: |
| 13484 | CONSISTENCY_CHECK_MSGF(false, ("Unrecognized Hijack code: %d" , reason)); |
| 13485 | } |
| 13486 | |
| 13487 | // Currently, no Hijack actually returns yet. |
| 13488 | UNREACHABLE(); |
| 13489 | |
| 13490 | // If we return to this point, then we'll restore ourselves. |
| 13491 | // We've got the context that we were hijacked from, so we should be able to just |
| 13492 | // call SetThreadContext on ourself to fix us. |
| 13493 | } |
| 13494 | |
| 13495 | #if defined(WIN64EXCEPTIONS) && !defined(FEATURE_PAL) |
| 13496 | |
| 13497 | #if defined(_TARGET_AMD64_) |
| 13498 | // ---------------------------------------------------------------------------- |
| 13499 | // EmptyPersonalityRoutine |
| 13500 | // |
| 13501 | // Description: |
| 13502 | // This personality routine is used to work around a limitation of the OS unwinder when we return |
| 13503 | // ExceptionCollidedUnwind. |
| 13504 | // See code:ExceptionHijackPersonalityRoutine for more information. |
| 13505 | // |
| 13506 | // Arguments: |
| 13507 | // * pExceptionRecord - not used |
| 13508 | // * MemoryStackFp - not used |
| 13509 | // * BackingStoreFp - not used |
| 13510 | // * pContextRecord - not used |
| 13511 | // * pDispatcherContext - not used |
| 13512 | // * GlobalPointer - not used |
| 13513 | // |
| 13514 | // Return Value: |
| 13515 | // Always return ExceptionContinueSearch. |
| 13516 | // |
| 13517 | |
| 13518 | EXCEPTION_DISPOSITION EmptyPersonalityRoutine(IN PEXCEPTION_RECORD pExceptionRecord, |
| 13519 | IN ULONG64 MemoryStackFp, |
| 13520 | IN OUT PCONTEXT pContextRecord, |
| 13521 | IN OUT PDISPATCHER_CONTEXT pDispatcherContext) |
| 13522 | { |
| 13523 | LIMITED_METHOD_CONTRACT; |
| 13524 | return ExceptionContinueSearch; |
| 13525 | } |
| 13526 | #endif // _TARGET_AMD64_ |
| 13527 | |
| 13528 | //--------------------------------------------------------------------------------------- |
| 13529 | // Personality routine for unwinder the assembly hijack stub on 64-bit. |
| 13530 | // |
| 13531 | // Arguments: |
| 13532 | // standard Personality routine signature. |
| 13533 | // |
| 13534 | // Assumptions: |
| 13535 | // This is caleld by the OS exception logic during exception handling. |
| 13536 | // |
| 13537 | // Notes: |
| 13538 | // We just need 1 personality routine for the tiny assembly hijack stub. |
| 13539 | // All the C++ code invoked by the stub is ok. |
| 13540 | // |
| 13541 | // This needs to fetch the original context that this thread was hijacked from |
| 13542 | // (which the hijack pushed onto the stack) and pass that back to the OS. This lets |
| 13543 | // ths OS unwind out of the hijack. |
| 13544 | // |
| 13545 | // This function should only be executed if an unhandled exception is intercepted by a managed debugger. |
| 13546 | // Otherwise there should never be a 2nd pass exception dispatch crossing the hijack stub. |
| 13547 | // |
| 13548 | // The basic idea here is straightforward. The OS does an exception dispatch and hit our hijack stub. |
| 13549 | // Since the hijack stub is not unwindable, we need a personality routine to restore the CONTEXT and |
| 13550 | // tell the OS to continue the dispatch with that CONTEXT by returning ExceptionCollidedUnwind. |
| 13551 | // |
| 13552 | // However, empricially, the OS expects that when we return ExceptionCollidedUnwind, the function |
| 13553 | // represented by the CONTEXT has a personality routine. The OS will actually AV if we return a NULL |
| 13554 | // personality routine. |
| 13555 | // |
| 13556 | // On AMD64, we work around this by using an empty personality routine. |
| 13557 | |
| 13558 | EXTERN_C EXCEPTION_DISPOSITION |
| 13559 | ExceptionHijackPersonalityRoutine(IN PEXCEPTION_RECORD pExceptionRecord |
| 13560 | WIN64_ARG(IN ULONG64 MemoryStackFp) |
| 13561 | NOT_WIN64_ARG(IN ULONG32 MemoryStackFp), |
| 13562 | IN OUT PCONTEXT pContextRecord, |
| 13563 | IN OUT PDISPATCHER_CONTEXT pDispatcherContext |
| 13564 | ) |
| 13565 | { |
| 13566 | #if defined(_TARGET_AMD64_) |
| 13567 | CONTEXT * pHijackContext = NULL; |
| 13568 | |
| 13569 | // Get the 1st parameter (the Context) from hijack worker. |
| 13570 | // EstablisherFrame points to the stack slot 8 bytes above the |
| 13571 | // return address to the ExceptionHijack. This would contain the |
| 13572 | // parameters passed to ExceptionHijackWorker, which is marked |
| 13573 | // STDCALL, but the x64 calling convention lets the |
| 13574 | // ExceptionHijackWorker use that stack space, resulting in the |
| 13575 | // context being overwritten. Instead, we get the context from the |
| 13576 | // previous stack frame, which contains the arguments to |
| 13577 | // ExceptionHijack, placed there by the debugger in |
| 13578 | // DacDbiInterfaceImpl::Hijack. This works because ExceptionHijack |
| 13579 | // allocates exactly 4 stack slots. |
| 13580 | pHijackContext = *reinterpret_cast<CONTEXT **>(pDispatcherContext->EstablisherFrame + 0x20); |
| 13581 | |
| 13582 | // This copies pHijackContext into pDispatcherContext, which the OS can then |
| 13583 | // use to walk the stack. |
| 13584 | FixupDispatcherContext(pDispatcherContext, pHijackContext, pContextRecord, (PEXCEPTION_ROUTINE)EmptyPersonalityRoutine); |
| 13585 | #else |
| 13586 | _ASSERTE(!"NYI - ExceptionHijackPersonalityRoutine()" ); |
| 13587 | #endif |
| 13588 | |
| 13589 | // Returning ExceptionCollidedUnwind will cause the OS to take our new context record and |
| 13590 | // dispatcher context and restart the exception dispatching on this call frame, which is |
| 13591 | // exactly the behavior we want. |
| 13592 | return ExceptionCollidedUnwind; |
| 13593 | } |
| 13594 | #endif // WIN64EXCEPTIONS && !FEATURE_PAL |
| 13595 | |
| 13596 | |
| 13597 | // UEF Prototype from excep.cpp |
| 13598 | LONG InternalUnhandledExceptionFilter_Worker(EXCEPTION_POINTERS *pExceptionInfo); |
| 13599 | |
| 13600 | //--------------------------------------------------------------------------------------- |
| 13601 | // Hijack for a 2nd-chance exception. Will invoke the CLR's UEF. |
| 13602 | // |
| 13603 | // Arguments: |
| 13604 | // pContext - context that this thread was hijacked from. |
| 13605 | // pRecord - exception record of the exception that this was hijacked at. |
| 13606 | // pData - random data. |
| 13607 | // Notes: |
| 13608 | // When under a native-debugger, the OS does not invoking the Unhandled Exception Filter (UEF). |
| 13609 | // It dispatches a 2nd-chance Exception event instead. |
| 13610 | // However, the CLR's UEF does lots of useful work (like dispatching the 2nd-chance managed exception, |
| 13611 | // allowing func-eval on 2nd-chance, and allowing intercepting unhandled exceptions). |
| 13612 | // So we'll emulate the OS behavior here by invoking the CLR's UEF directly. |
| 13613 | // |
| 13614 | void Debugger::UnhandledHijackWorker(CONTEXT * pContext, EXCEPTION_RECORD * pRecord) |
| 13615 | { |
| 13616 | CONTRACTL |
| 13617 | { |
| 13618 | // The ultimate protection shield is that this hijack can be executed under the same circumstances |
| 13619 | // as a top-level UEF that pinvokes into managed code |
| 13620 | // - That means we're GC-triggers safe |
| 13621 | // - that means that we can crawl the stack. (1st-pass EH logic ensures this). |
| 13622 | // We need to be GC-triggers because this may invoke a func-eval. |
| 13623 | GC_TRIGGERS; |
| 13624 | |
| 13625 | // Don't throw out of a hijack! There's nobody left to catch this. |
| 13626 | NOTHROW; |
| 13627 | |
| 13628 | // We expect to always be in preemptive here by the time we get this unhandled notification. |
| 13629 | // We know this is true because a native UEF is preemptive. |
| 13630 | // More detail: |
| 13631 | // 1) If we got here from a software exception (eg, Throw from C#), then the jit helper |
| 13632 | // toggled us to preemptive before calling RaiseException(). |
| 13633 | // 2) If we got here from a hardware exception in managed code, then the 1st-pass already did |
| 13634 | // some magic to get us into preemptive. On x86, this is magic. On 64-bit, it did some magic |
| 13635 | // to push a Faulting-Exception-Frame and rethrow the exception as a software exception. |
| 13636 | MODE_PREEMPTIVE; |
| 13637 | |
| 13638 | |
| 13639 | PRECONDITION(CheckPointer(pContext)); |
| 13640 | PRECONDITION(CheckPointer(pRecord)); |
| 13641 | } |
| 13642 | CONTRACTL_END; |
| 13643 | |
| 13644 | EXCEPTION_POINTERS exceptionInfo; |
| 13645 | exceptionInfo.ContextRecord = pContext; |
| 13646 | exceptionInfo.ExceptionRecord = pRecord; |
| 13647 | |
| 13648 | // Snag the Runtime thread. Since we're hijacking a managed exception, we should always have one. |
| 13649 | Thread * pThread = g_pEEInterface->GetThread(); |
| 13650 | (void)pThread; //prevent "unused variable" error from GCC |
| 13651 | _ASSERTE(pThread != NULL); |
| 13652 | |
| 13653 | BOOL fSOException = FALSE; |
| 13654 | |
| 13655 | if ((pRecord != NULL) && |
| 13656 | (pRecord->ExceptionCode == STATUS_STACK_OVERFLOW)) |
| 13657 | { |
| 13658 | fSOException = TRUE; |
| 13659 | } |
| 13660 | |
| 13661 | // because we hijack here during jit attach invoked by the OS we need to make sure that the debugger is completely |
| 13662 | // attached before continuing. If we ever hijacked here when an attach was not in progress this function returns |
| 13663 | // immediately so no problems there. |
| 13664 | WaitForDebuggerAttach(); |
| 13665 | PostJitAttach(); |
| 13666 | |
| 13667 | // On Win7 WatsonLastChance returns CONTINUE_SEARCH for unhandled exceptions execpt stack overflow, and |
| 13668 | // lets OS launch debuggers for us. Before the unhandled exception reaches the OS, CLR UEF has already |
| 13669 | // processed this unhandled exception. Thus, we should not call into CLR UEF again if it is the case. |
| 13670 | if (pThread && |
| 13671 | (pThread->HasThreadStateNC(Thread::TSNC_ProcessedUnhandledException) || |
| 13672 | pThread->HasThreadStateNC(Thread::TSNC_AppDomainContainUnhandled) || |
| 13673 | fSOException)) |
| 13674 | { |
| 13675 | |
| 13676 | FrameWithCookie<FaultingExceptionFrame> fef; |
| 13677 | #if defined(WIN64EXCEPTIONS) |
| 13678 | *((&fef)->GetGSCookiePtr()) = GetProcessGSCookie(); |
| 13679 | #endif // WIN64EXCEPTIONS |
| 13680 | if ((pContext != NULL) && fSOException) |
| 13681 | { |
| 13682 | GCX_COOP(); // Must be cooperative to modify frame chain. |
| 13683 | |
| 13684 | // EEPolicy::HandleFatalStackOverflow pushes a FaultingExceptionFrame on the stack after SO |
| 13685 | // exception. Our hijack code runs in the exception context, and overwrites the stack space |
| 13686 | // after SO excpetion, so this frame was popped out before invoking RaiseFailFast. We need to |
| 13687 | // put it back here for running func-eval code. |
| 13688 | // This cumbersome code should be removed once SO synchronization is moved to be completely |
| 13689 | // out-of-process. |
| 13690 | fef.InitAndLink(pContext); |
| 13691 | } |
| 13692 | |
| 13693 | STRESS_LOG0(LF_CORDB, LL_INFO10, "D::EHW: Calling NotifyDebuggerLastChance\n" ); |
| 13694 | NotifyDebuggerLastChance(pThread, &exceptionInfo, TRUE); |
| 13695 | |
| 13696 | // Continuing from a second chance managed exception causes the process to exit. |
| 13697 | TerminateProcess(GetCurrentProcess(), 0); |
| 13698 | } |
| 13699 | |
| 13700 | // Since this is a unhandled managed exception: |
| 13701 | // - we always have a Thread* object. |
| 13702 | // - we always have a throwable |
| 13703 | // - we executed through the 1st-pass of the EH logic. This means the 1st-pass could do work |
| 13704 | // to enforce certain invariants (like the ones listed here, or ensuring the thread can be crawled) |
| 13705 | |
| 13706 | // Need to call the CLR's UEF. This will do all the key work including: |
| 13707 | // - send the managed 2nd-chance exception event. |
| 13708 | // - deal with synchronization. |
| 13709 | // - allow func-evals. |
| 13710 | // - deal with interception. |
| 13711 | |
| 13712 | // If intercepted, then this never returns. It will manually invoke the unwinders and fix the context. |
| 13713 | |
| 13714 | // InternalUnhandledExceptionFilter_Worker has a throws contract, but should not be throwing in any |
| 13715 | // conditions we care about. This hijack should never throw, so catch everything. |
| 13716 | HRESULT hrIgnore; |
| 13717 | EX_TRY |
| 13718 | { |
| 13719 | InternalUnhandledExceptionFilter_Worker(&exceptionInfo); |
| 13720 | } |
| 13721 | EX_CATCH_HRESULT(hrIgnore); |
| 13722 | |
| 13723 | // Continuing from a second chance managed exception causes the process to exit. |
| 13724 | TerminateProcess(GetCurrentProcess(), 0); |
| 13725 | } |
| 13726 | |
| 13727 | #ifdef FEATURE_INTEROP_DEBUGGING |
| 13728 | // |
| 13729 | // This is the handler function that is put in place of a thread's top-most SEH handler function when it is hijacked by |
| 13730 | // the Right Side during an unmanaged first chance exception. |
| 13731 | // |
| 13732 | typedef EXCEPTION_DISPOSITION (__cdecl *SEHHandler)(EXCEPTION_RECORD *pExceptionRecord, |
| 13733 | EXCEPTION_REGISTRATION_RECORD *pEstablisherFrame, |
| 13734 | CONTEXT *pContext, |
| 13735 | void *DispatcherContext); |
| 13736 | #define DOSPEW 0 |
| 13737 | |
| 13738 | #if DOSPEW |
| 13739 | #define SPEW(s) s |
| 13740 | #else |
| 13741 | #define SPEW(s) |
| 13742 | #endif |
| 13743 | |
| 13744 | |
| 13745 | |
| 13746 | |
| 13747 | //----------------------------------------------------------------------------- |
| 13748 | // Hijack when we have a M2U handoff. |
| 13749 | // This happens when we do a step-out from Managed-->Unmanaged, and so we hit a managed patch in Native code. |
| 13750 | // This also happens when a managed stepper does a step-in to unmanaged code. |
| 13751 | // Since we're in native code, there's no CPFH, and so we have to hijack. |
| 13752 | // @todo- could this be removed? Step-out to native is illegal in v2.0, and do existing |
| 13753 | // CLR filters catch the step-in patch? |
| 13754 | // @dbgtodo controller/stepping - this will be completely unneeded in V3 when all stepping is oop |
| 13755 | //----------------------------------------------------------------------------- |
| 13756 | VOID Debugger::M2UHandoffHijackWorker(CONTEXT *pContext, |
| 13757 | EXCEPTION_RECORD *pExceptionRecord) |
| 13758 | { |
| 13759 | // We must use a static contract here because the function does not return normally |
| 13760 | STATIC_CONTRACT_NOTHROW; |
| 13761 | STATIC_CONTRACT_GC_TRIGGERS; // from sending managed event |
| 13762 | STATIC_CONTRACT_MODE_PREEMPTIVE; // we're in umanaged code. |
| 13763 | SO_NOT_MAINLINE_FUNCTION; |
| 13764 | |
| 13765 | |
| 13766 | LOG((LF_CORDB, LL_INFO1000, "D::M2UHHW: Context=0x%p exception record=0x%p\n" , |
| 13767 | pContext, pExceptionRecord)); |
| 13768 | |
| 13769 | // We should only be here for a BP |
| 13770 | _ASSERTE(pExceptionRecord->ExceptionCode == STATUS_BREAKPOINT); |
| 13771 | |
| 13772 | // Get the current runtime thread. This is only an optimized TLS access. |
| 13773 | // Since we're coming off a managed-step, we should always have a thread. |
| 13774 | Thread *pEEThread = g_pEEInterface->GetThread(); |
| 13775 | _ASSERTE(pEEThread != NULL); |
| 13776 | |
| 13777 | _ASSERTE(!pEEThread->GetInteropDebuggingHijacked()); |
| 13778 | pEEThread->SetInteropDebuggingHijacked(TRUE); |
| 13779 | |
| 13780 | //win32 has a weird property where EIP points after the BP in the debug event |
| 13781 | //so we are adjusting it to point at the BP |
| 13782 | CORDbgAdjustPCForBreakInstruction((DT_CONTEXT*)pContext); |
| 13783 | LOG((LF_CORDB, LL_INFO1000, "D::M2UHHW: Context ip set to 0x%p\n" , GetIP(pContext))); |
| 13784 | |
| 13785 | _ASSERTE(!ISREDIRECTEDTHREAD(pEEThread)); |
| 13786 | |
| 13787 | // Don't bother setting FilterContext here because we already pass it to FirstChanceNativeException. |
| 13788 | // Shortcut right to our dispatch native exception logic, there may be no COMPlusFrameHandler in place! |
| 13789 | EX_TRY |
| 13790 | { |
| 13791 | LOG((LF_CORDB, LL_INFO1000, "D::M2UHHW: Calling FirstChanceNativeException\n" )); |
| 13792 | bool okay; |
| 13793 | okay = g_pDebugger->FirstChanceNativeException(pExceptionRecord, |
| 13794 | pContext, |
| 13795 | pExceptionRecord->ExceptionCode, |
| 13796 | pEEThread); |
| 13797 | _ASSERTE(okay == true); |
| 13798 | LOG((LF_CORDB, LL_INFO1000, "D::M2UHHW: FirstChanceNativeException returned\n" )); |
| 13799 | } |
| 13800 | EX_CATCH |
| 13801 | { |
| 13802 | // It would be really bad if somebody threw here. We're actually outside of managed code, |
| 13803 | // so there's not a lot we can do besides just swallow the exception and hope for the best. |
| 13804 | LOG((LF_CORDB, LL_INFO1000, "D::M2UHHW: ERROR! FirstChanceNativeException threw an exception\n" )); |
| 13805 | } |
| 13806 | EX_END_CATCH(SwallowAllExceptions); |
| 13807 | |
| 13808 | _ASSERTE(!ISREDIRECTEDTHREAD(pEEThread)); |
| 13809 | _ASSERTE(pEEThread->GetInteropDebuggingHijacked()); |
| 13810 | pEEThread->SetInteropDebuggingHijacked(FALSE); |
| 13811 | |
| 13812 | // This signal will be received by the RS and it will use SetThreadContext |
| 13813 | // to clear away the entire hijack frame. This function does not return. |
| 13814 | LOG((LF_CORDB, LL_INFO1000, "D::M2UHHW: Flaring hijack complete\n" )); |
| 13815 | SignalHijackComplete(); |
| 13816 | |
| 13817 | _ASSERTE(!"UNREACHABLE" ); |
| 13818 | } |
| 13819 | |
| 13820 | //----------------------------------------------------------------------------- |
| 13821 | // This hijack is run after receiving an IB event that we don't know how the |
| 13822 | // debugger will want to continue. Under the covers we clear the event and divert |
| 13823 | // execution here where we block until the debugger decides whether or not to clear |
| 13824 | // the event. At that point we exit this hijack and the LS diverts execution back |
| 13825 | // to the offending instruction. |
| 13826 | // We don't know: |
| 13827 | // - whether we have an EE-thread? |
| 13828 | // - how we're going to continue this (handled / not-handled). |
| 13829 | // |
| 13830 | // But we do know that: |
| 13831 | // - this exception does not belong to the CLR. |
| 13832 | // - this thread is not in cooperative mode. |
| 13833 | //----------------------------------------------------------------------------- |
| 13834 | LONG Debugger::FirstChanceSuspendHijackWorker(CONTEXT *pContext, |
| 13835 | EXCEPTION_RECORD *pExceptionRecord) |
| 13836 | { |
| 13837 | // if we aren't set up to do interop debugging this function should just bail out |
| 13838 | if(m_pRCThread == NULL) |
| 13839 | return EXCEPTION_CONTINUE_SEARCH; |
| 13840 | |
| 13841 | DebuggerIPCControlBlock *pDCB = m_pRCThread->GetDCB(); |
| 13842 | if(pDCB == NULL) |
| 13843 | return EXCEPTION_CONTINUE_SEARCH; |
| 13844 | |
| 13845 | if (!pDCB->m_rightSideIsWin32Debugger) |
| 13846 | return EXCEPTION_CONTINUE_SEARCH; |
| 13847 | |
| 13848 | // at this point we know that there is an interop debugger attached. This makes it safe to send |
| 13849 | // flares |
| 13850 | #if DOSPEW |
| 13851 | DWORD tid = GetCurrentThreadId(); |
| 13852 | #endif |
| 13853 | |
| 13854 | SPEW(fprintf(stderr, "0x%x D::FCHF: in first chance hijack filter.\n" , tid)); |
| 13855 | SPEW(fprintf(stderr, "0x%x D::FCHF: pExceptionRecord=0x%p (%d), pContext=0x%p (%d)\n" , tid, pExceptionRecord, sizeof(EXCEPTION_RECORD), |
| 13856 | pContext, sizeof(CONTEXT))); |
| 13857 | #if defined(_TARGET_AMD64_) |
| 13858 | SPEW(fprintf(stderr, "0x%x D::FCHF: code=0x%08x, addr=0x%p, Rip=0x%p, Rsp=0x%p, EFlags=0x%08x\n" , |
| 13859 | tid, pExceptionRecord->ExceptionCode, pExceptionRecord->ExceptionAddress, pContext->Rip, pContext->Rsp, |
| 13860 | pContext->EFlags)); |
| 13861 | #elif defined(_TARGET_X86_) |
| 13862 | SPEW(fprintf(stderr, "0x%x D::FCHF: code=0x%08x, addr=0x%08x, Eip=0x%08x, Esp=0x%08x, EFlags=0x%08x\n" , |
| 13863 | tid, pExceptionRecord->ExceptionCode, pExceptionRecord->ExceptionAddress, pContext->Eip, pContext->Esp, |
| 13864 | pContext->EFlags)); |
| 13865 | #elif defined(_TARGET_ARM64_) |
| 13866 | SPEW(fprintf(stderr, "0x%x D::FCHF: code=0x%08x, addr=0x%08x, Pc=0x%p, Sp=0x%p, EFlags=0x%08x\n" , |
| 13867 | tid, pExceptionRecord->ExceptionCode, pExceptionRecord->ExceptionAddress, pContext->Pc, pContext->Sp, |
| 13868 | pContext->EFlags)); |
| 13869 | #endif |
| 13870 | |
| 13871 | // This memory is used as IPC during the hijack. We will place a pointer to this in |
| 13872 | // the EE debugger word (a TLS slot that works even on the debugger break-in thread) |
| 13873 | // and then the RS can write info into the memory. |
| 13874 | DebuggerIPCFirstChanceData fcd; |
| 13875 | |
| 13876 | // Accessing through the volatile pointer to fend off some potential compiler optimizations. |
| 13877 | // If the debugger changes that data from OOP we need to see those updates |
| 13878 | volatile DebuggerIPCFirstChanceData* pFcd = &fcd; |
| 13879 | |
| 13880 | // The Windows native break in thread does not have TLS storage allocated. |
| 13881 | bool debuggerBreakInThread = (NtCurrentTeb()->ThreadLocalStoragePointer == NULL); |
| 13882 | { |
| 13883 | // Hijack filters are always in the can't stop range. |
| 13884 | // The RS knows this b/c it knows which threads it hijacked. |
| 13885 | // Bump up the CS counter so that any further calls in the LS can see this too. |
| 13886 | // (This makes places where we assert that we're in a CS region happy). |
| 13887 | CantStopHolder hCantStop(!debuggerBreakInThread); |
| 13888 | |
| 13889 | // Get the current runtime thread. This is only an optimized TLS access. |
| 13890 | Thread *pEEThread = debuggerBreakInThread ? NULL : g_pEEInterface->GetThread(); |
| 13891 | |
| 13892 | // Hook up the memory so RS can get to it |
| 13893 | fcd.pLeftSideContext.Set((DT_CONTEXT*)pContext); |
| 13894 | fcd.action = HIJACK_ACTION_EXIT_UNHANDLED; |
| 13895 | fcd.debugCounter = 0; |
| 13896 | |
| 13897 | SPEW(fprintf(stderr, "0x%x D::FCHF: Set debugger word to 0x%p.\n" , tid, pFcd)); |
| 13898 | g_pEEInterface->SetThreadDebuggerWord((VOID*)pFcd); |
| 13899 | |
| 13900 | // Signal the RS to tell us what to do |
| 13901 | SPEW(fprintf(stderr, "0x%x D::FCHF: Signaling hijack started.\n" , tid)); |
| 13902 | SignalHijackStarted(); |
| 13903 | SPEW(fprintf(stderr, "0x%x D::FCHF: Signaling hijack started complete. DebugCounter=0x%x\n" , tid, pFcd->debugCounter)); |
| 13904 | |
| 13905 | if (pFcd->action == HIJACK_ACTION_WAIT) |
| 13906 | { |
| 13907 | // This exception does NOT belong to the CLR. |
| 13908 | // If we belong to the CLR, then we either: |
| 13909 | // - were a M2U transition, in which case we should be in a different Hijack |
| 13910 | // - were a CLR exception in CLR code, in which case we should have continued and let the inproc handlers get it. |
| 13911 | SPEW(fprintf(stderr, "0x%x D::FCHF: exception does not belong to the Runtime, pEEThread=0x%p, pContext=0x%p\n" , |
| 13912 | tid, pEEThread, pContext)); |
| 13913 | |
| 13914 | if (pEEThread != NULL) |
| 13915 | { |
| 13916 | _ASSERTE(!pEEThread->GetInteropDebuggingHijacked()); // hijack is not re-entrant. |
| 13917 | pEEThread->SetInteropDebuggingHijacked(TRUE); |
| 13918 | |
| 13919 | // Setting the FilterContext must be done in cooperative mode (since it's like pushing a Frame onto the Frame chain). |
| 13920 | // Thus we have a violation. We don't really need the filter context specifically here, we're just using |
| 13921 | // it for legacy purposes as a way to stash the context of the original exception (that this thread was hijacked from). |
| 13922 | // @todo - use another way to store the context indepedent of the Filter context. |
| 13923 | CONTRACT_VIOLATION(ModeViolation); |
| 13924 | _ASSERTE(g_pEEInterface->GetThreadFilterContext(pEEThread) == NULL); |
| 13925 | g_pEEInterface->SetThreadFilterContext(pEEThread, pContext); |
| 13926 | } |
| 13927 | |
| 13928 | // Wait for the continue. We may / may not have an EE Thread for this, (and we're definitely |
| 13929 | // not doing fiber-mode debugging), so just use a raw win32 API, and not some fancy fiber-safe call. |
| 13930 | SPEW(fprintf(stderr, "0x%x D::FCHF: waiting for continue.\n" , tid)); |
| 13931 | DWORD ret = WaitForSingleObject(g_pDebugger->m_pRCThread->GetDCB()->m_leftSideUnmanagedWaitEvent, INFINITE); |
| 13932 | SPEW(fprintf(stderr, "0x%x D::FCHF: waiting for continue complete.\n" , tid)); |
| 13933 | |
| 13934 | if (ret != WAIT_OBJECT_0) |
| 13935 | { |
| 13936 | SPEW(fprintf(stderr, "0x%x D::FCHF: wait failed!\n" , tid)); |
| 13937 | } |
| 13938 | |
| 13939 | if (pEEThread != NULL) |
| 13940 | { |
| 13941 | _ASSERTE(pEEThread->GetInteropDebuggingHijacked()); |
| 13942 | pEEThread->SetInteropDebuggingHijacked(FALSE); |
| 13943 | _ASSERTE(!ISREDIRECTEDTHREAD(pEEThread)); |
| 13944 | |
| 13945 | // See violation above. |
| 13946 | CONTRACT_VIOLATION(ModeViolation); |
| 13947 | g_pEEInterface->SetThreadFilterContext(pEEThread, NULL); |
| 13948 | _ASSERTE(g_pEEInterface->GetThreadFilterContext(pEEThread) == NULL); |
| 13949 | } |
| 13950 | } |
| 13951 | |
| 13952 | SPEW(fprintf(stderr, "0x%x D::FCHF: signaling HijackComplete.\n" , tid)); |
| 13953 | SignalHijackComplete(); |
| 13954 | SPEW(fprintf(stderr, "0x%x D::FCHF: done signaling HijackComplete. DebugCounter=0x%x\n" , tid, pFcd->debugCounter)); |
| 13955 | |
| 13956 | // we should know what we are about to do now |
| 13957 | _ASSERTE(pFcd->action != HIJACK_ACTION_WAIT); |
| 13958 | |
| 13959 | // cleanup from above |
| 13960 | SPEW(fprintf(stderr, "0x%x D::FCHF: set debugger word = NULL.\n" , tid)); |
| 13961 | g_pEEInterface->SetThreadDebuggerWord(NULL); |
| 13962 | |
| 13963 | } // end can't stop region |
| 13964 | |
| 13965 | if (pFcd->action == HIJACK_ACTION_EXIT_HANDLED) |
| 13966 | { |
| 13967 | SPEW(fprintf(stderr, "0x%x D::FCHF: exiting with CONTINUE_EXECUTION\n" , tid)); |
| 13968 | return EXCEPTION_CONTINUE_EXECUTION; |
| 13969 | } |
| 13970 | else |
| 13971 | { |
| 13972 | SPEW(fprintf(stderr, "0x%x D::FCHF: exiting with CONTINUE_SEARCH\n" , tid)); |
| 13973 | _ASSERTE(pFcd->action == HIJACK_ACTION_EXIT_UNHANDLED); |
| 13974 | return EXCEPTION_CONTINUE_SEARCH; |
| 13975 | } |
| 13976 | } |
| 13977 | |
| 13978 | #if defined(_TARGET_X86_) || defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_) |
| 13979 | void GenericHijackFuncHelper() |
| 13980 | { |
| 13981 | #if DOSPEW |
| 13982 | DWORD tid = GetCurrentThreadId(); |
| 13983 | #endif |
| 13984 | |
| 13985 | // The Windows native break in thread does not have TLS storage allocated. |
| 13986 | bool debuggerBreakInThread = (NtCurrentTeb()->ThreadLocalStoragePointer == NULL); |
| 13987 | |
| 13988 | // Hijack filters are always in the can't stop range. |
| 13989 | // The RS knows this b/c it knows which threads it hijacked. |
| 13990 | // Bump up the CS counter so that any further calls in the LS can see this too. |
| 13991 | // (This makes places where we assert that we're in a CS region happy). |
| 13992 | CantStopHolder hCantStop(!debuggerBreakInThread); |
| 13993 | |
| 13994 | SPEW(fprintf(stderr, "0x%x D::GHF: in generic hijack.\n" , tid)); |
| 13995 | |
| 13996 | // There is no need to setup any context pointer or interact with the Right Side in anyway. We simply wait for |
| 13997 | // the continue event to be set. |
| 13998 | SPEW(fprintf(stderr, "0x%x D::GHF: waiting for continue.\n" , tid)); |
| 13999 | |
| 14000 | // If this thread has an EE thread and that EE thread has preemptive gc disabled, then mark that there is a |
| 14001 | // thread at an unsafe place and enable pgc. This will allow us to sync even with this thread hijacked. |
| 14002 | bool disabled = false; |
| 14003 | |
| 14004 | Thread *pEEThread = debuggerBreakInThread ? NULL : g_pEEInterface->GetThread(); |
| 14005 | |
| 14006 | if (pEEThread != NULL) |
| 14007 | { |
| 14008 | disabled = g_pEEInterface->IsPreemptiveGCDisabled(); |
| 14009 | _ASSERTE(!disabled); |
| 14010 | |
| 14011 | _ASSERTE(!pEEThread->GetInteropDebuggingHijacked()); |
| 14012 | pEEThread->SetInteropDebuggingHijacked(TRUE); |
| 14013 | } |
| 14014 | |
| 14015 | DWORD ret = WaitForSingleObject(g_pRCThread->GetDCB()->m_leftSideUnmanagedWaitEvent, |
| 14016 | INFINITE); |
| 14017 | |
| 14018 | if (ret != WAIT_OBJECT_0) |
| 14019 | { |
| 14020 | SPEW(fprintf(stderr, "0x%x D::GHF: wait failed!\n" , tid)); |
| 14021 | } |
| 14022 | |
| 14023 | // Get the continue type. Non-zero means that the exception was not cleared by the Right Side and therefore has |
| 14024 | // not been handled. Zero means that the exception has been cleared. (Presumably, the debugger altered the |
| 14025 | // thread's context before clearing the exception, so continuing will give a different result.) |
| 14026 | DWORD continueType = 0; |
| 14027 | |
| 14028 | void* threadDebuggerWord = g_pEEInterface->GetThreadDebuggerWord(); |
| 14029 | |
| 14030 | if (pEEThread != NULL) |
| 14031 | { |
| 14032 | // We've got a Thread ptr, so get the continue type out of the thread's debugger word. |
| 14033 | continueType = (DWORD)threadDebuggerWord; |
| 14034 | |
| 14035 | _ASSERTE(pEEThread->GetInteropDebuggingHijacked()); |
| 14036 | pEEThread->SetInteropDebuggingHijacked(FALSE); |
| 14037 | } |
| 14038 | else if (threadDebuggerWord != NULL) |
| 14039 | { |
| 14040 | continueType = 1; |
| 14041 | g_pEEInterface->SetThreadDebuggerWord(NULL); |
| 14042 | } |
| 14043 | |
| 14044 | SPEW(fprintf(stderr, "0x%x D::GHF: continued with %d.\n" , tid, continueType)); |
| 14045 | |
| 14046 | if (continueType) |
| 14047 | { |
| 14048 | SPEW(fprintf(stderr, "0x%x D::GHF: calling ExitProcess\n" , tid)); |
| 14049 | |
| 14050 | // Continuing from a second chance exception without clearing the exception causes the process to |
| 14051 | // exit. Note: the continue type will only be non-zero if this hijack was setup for a second chance |
| 14052 | // exception. If the hijack was setup for another type of debug event, then we'll never get here. |
| 14053 | // |
| 14054 | // We explicitly terminate the process directly instead of going through any escalation policy because: |
| 14055 | // 1) that's what a native-only debugger would do. Interop and Native-only should be the same. |
| 14056 | // 2) there's no CLR escalation policy anyways for *native* unhandled exceptions. |
| 14057 | // 3) The escalation policy may do lots of extra confusing work (like fire MDAs) that can only cause |
| 14058 | // us grief. |
| 14059 | TerminateProcess(GetCurrentProcess(), 0); |
| 14060 | } |
| 14061 | |
| 14062 | SPEW(fprintf(stderr, "0x%x D::GHF: signaling continue...\n" , tid)); |
| 14063 | } |
| 14064 | #endif |
| 14065 | |
| 14066 | |
| 14067 | // |
| 14068 | // This is the function that a thread is hijacked to by the Right Side during a variety of debug events. This function |
| 14069 | // must be naked. |
| 14070 | // |
| 14071 | #if defined(_TARGET_X86_) |
| 14072 | __declspec(naked) |
| 14073 | #endif // defined (_x86_) |
| 14074 | void Debugger::GenericHijackFunc(void) |
| 14075 | { |
| 14076 | #if defined(_TARGET_X86_) || defined(_TARGET_AMD64_) |
| 14077 | |
| 14078 | #if defined(_TARGET_X86_) |
| 14079 | _asm |
| 14080 | { |
| 14081 | push ebp |
| 14082 | mov ebp,esp |
| 14083 | sub esp,__LOCAL_SIZE |
| 14084 | } |
| 14085 | #endif |
| 14086 | // We can't have C++ classes w/ dtors in a declspec naked, so just have call into a helper. |
| 14087 | GenericHijackFuncHelper(); |
| 14088 | |
| 14089 | #if defined(_TARGET_X86_) |
| 14090 | _asm |
| 14091 | { |
| 14092 | mov esp,ebp |
| 14093 | pop ebp |
| 14094 | } |
| 14095 | #endif |
| 14096 | |
| 14097 | // This signals the Right Side that this thread is ready to have its context restored. |
| 14098 | ExceptionNotForRuntime(); |
| 14099 | |
| 14100 | #else |
| 14101 | _ASSERTE(!"@todo - port GenericHijackFunc" ); |
| 14102 | #endif // defined (_x86_) |
| 14103 | |
| 14104 | _ASSERTE(!"Should never get here (Debugger::GenericHijackFunc)" ); |
| 14105 | } |
| 14106 | |
| 14107 | |
| 14108 | |
| 14109 | |
| 14110 | //#ifdef _TARGET_X86_ |
| 14111 | // |
| 14112 | // This is the function that is called when we determine that a first chance exception hijack has |
| 14113 | // begun and memory is prepared for the RS to tell the LS what to do |
| 14114 | // |
| 14115 | void Debugger::SignalHijackStarted(void) |
| 14116 | { |
| 14117 | WRAPPER_NO_CONTRACT; |
| 14118 | |
| 14119 | #if defined(FEATURE_INTEROP_DEBUGGING) |
| 14120 | SignalHijackStartedFlare(); |
| 14121 | #else |
| 14122 | _ASSERTE(!"@todo - port the flares to the platform your running on." ); |
| 14123 | #endif |
| 14124 | } |
| 14125 | |
| 14126 | // |
| 14127 | // This is the function that is called when we determine that a first chance exception really belongs to the Runtime, |
| 14128 | // and that that exception is due to a managed->unmanaged transition. This notifies the Right Side of this and the Right |
| 14129 | // Side fixes up the thread's execution state from there, making sure to remember that it needs to continue to hide the |
| 14130 | // hijack state of the thread. |
| 14131 | // |
| 14132 | void Debugger::ExceptionForRuntimeHandoffStart(void) |
| 14133 | { |
| 14134 | WRAPPER_NO_CONTRACT; |
| 14135 | |
| 14136 | #if defined(FEATURE_INTEROP_DEBUGGING) |
| 14137 | ExceptionForRuntimeHandoffStartFlare(); |
| 14138 | #else |
| 14139 | _ASSERTE(!"@todo - port the flares to the platform your running on." ); |
| 14140 | #endif |
| 14141 | |
| 14142 | } |
| 14143 | |
| 14144 | // |
| 14145 | // This is the function that is called when the original handler returns after we've determined that an exception was |
| 14146 | // due to a managed->unmanaged transition. This notifies the Right Side of this and the Right Side fixes up the thread's |
| 14147 | // execution state from there, making sure to turn off its flag indicating that the thread's hijack state should still |
| 14148 | // be hidden. |
| 14149 | // |
| 14150 | void Debugger::ExceptionForRuntimeHandoffComplete(void) |
| 14151 | { |
| 14152 | WRAPPER_NO_CONTRACT; |
| 14153 | |
| 14154 | #if defined(FEATURE_INTEROP_DEBUGGING) |
| 14155 | ExceptionForRuntimeHandoffCompleteFlare(); |
| 14156 | #else |
| 14157 | _ASSERTE(!"@todo - port the flares to the platform your running on." ); |
| 14158 | #endif |
| 14159 | |
| 14160 | } |
| 14161 | |
| 14162 | // |
| 14163 | // This signals the RS that a hijack function is ready to return. This will cause the RS to restore |
| 14164 | // the thread context |
| 14165 | // |
| 14166 | void Debugger::SignalHijackComplete(void) |
| 14167 | { |
| 14168 | WRAPPER_NO_CONTRACT; |
| 14169 | |
| 14170 | #if defined(FEATURE_INTEROP_DEBUGGING) |
| 14171 | SignalHijackCompleteFlare(); |
| 14172 | #else |
| 14173 | _ASSERTE(!"@todo - port the flares to the platform your running on." ); |
| 14174 | #endif |
| 14175 | |
| 14176 | } |
| 14177 | |
| 14178 | // |
| 14179 | // This is the function that is called when we determine that a first chance exception does not belong to the |
| 14180 | // Runtime. This notifies the Right Side of this and the Right Side fixes up the thread's execution state from there. |
| 14181 | // |
| 14182 | void Debugger::ExceptionNotForRuntime(void) |
| 14183 | { |
| 14184 | WRAPPER_NO_CONTRACT; |
| 14185 | |
| 14186 | #if defined(FEATURE_INTEROP_DEBUGGING) |
| 14187 | ExceptionNotForRuntimeFlare(); |
| 14188 | #else |
| 14189 | _ASSERTE(!"@todo - port the flares to the platform your running on." ); |
| 14190 | #endif |
| 14191 | } |
| 14192 | |
| 14193 | // |
| 14194 | // This is the function that is called when we want to send a sync complete event to the Right Side when it is the Win32 |
| 14195 | // debugger of this process. This notifies the Right Side of this and the Right Side fixes up the thread's execution |
| 14196 | // state from there. |
| 14197 | // |
| 14198 | void Debugger::NotifyRightSideOfSyncComplete(void) |
| 14199 | { |
| 14200 | WRAPPER_NO_CONTRACT; |
| 14201 | STRESS_LOG0(LF_CORDB, LL_INFO100000, "D::NRSOSC: Sending flare...\n" ); |
| 14202 | #if defined(FEATURE_INTEROP_DEBUGGING) |
| 14203 | NotifyRightSideOfSyncCompleteFlare(); |
| 14204 | #else |
| 14205 | _ASSERTE(!"@todo - port the flares to the platform your running on." ); |
| 14206 | #endif |
| 14207 | STRESS_LOG0(LF_CORDB, LL_INFO100000, "D::NRSOSC: Flare sent\n" ); |
| 14208 | } |
| 14209 | |
| 14210 | #endif // FEATURE_INTEROP_DEBUGGING |
| 14211 | |
| 14212 | /****************************************************************************** |
| 14213 | * |
| 14214 | ******************************************************************************/ |
| 14215 | bool Debugger::GetILOffsetFromNative (MethodDesc *pFunc, const BYTE *pbAddr, |
| 14216 | DWORD nativeOffset, DWORD *ilOffset) |
| 14217 | { |
| 14218 | CONTRACTL |
| 14219 | { |
| 14220 | THROWS; |
| 14221 | GC_TRIGGERS_FROM_GETJITINFO; |
| 14222 | } |
| 14223 | CONTRACTL_END; |
| 14224 | |
| 14225 | _ASSERTE(pFunc != NULL); |
| 14226 | _ASSERTE(pbAddr != NULL); |
| 14227 | |
| 14228 | if (!HasLazyData()) |
| 14229 | { |
| 14230 | DebuggerLockHolder dbgLockHolder(this); |
| 14231 | // This is an entry path into the debugger, so make sure we're inited. |
| 14232 | LazyInit(); |
| 14233 | } |
| 14234 | |
| 14235 | // Sometimes we'll get called w/ an instantiating stub MD. |
| 14236 | if (pFunc->IsWrapperStub()) |
| 14237 | { |
| 14238 | pFunc = pFunc->GetWrappedMethodDesc(); |
| 14239 | } |
| 14240 | |
| 14241 | if (pFunc->IsDynamicMethod()) |
| 14242 | { |
| 14243 | return false; |
| 14244 | } |
| 14245 | |
| 14246 | DebuggerMethodInfo *methodInfo = GetOrCreateMethodInfo(pFunc->GetModule(), pFunc->GetMemberDef()); |
| 14247 | if (methodInfo == NULL) |
| 14248 | { |
| 14249 | return false; |
| 14250 | } |
| 14251 | |
| 14252 | PCODE methodStartAddress = g_pEEInterface->GetNativeCodeStartAddress((PCODE)pbAddr); |
| 14253 | if (methodStartAddress == NULL) |
| 14254 | { |
| 14255 | return false; |
| 14256 | } |
| 14257 | |
| 14258 | DebuggerJitInfo *jitInfo = methodInfo->FindOrCreateInitAndAddJitInfo(pFunc, methodStartAddress); |
| 14259 | if (jitInfo == NULL) |
| 14260 | { |
| 14261 | return false; |
| 14262 | } |
| 14263 | |
| 14264 | CorDebugMappingResult map; |
| 14265 | DWORD whichIDontCare; |
| 14266 | *ilOffset = jitInfo->MapNativeOffsetToIL( |
| 14267 | nativeOffset, |
| 14268 | &map, |
| 14269 | &whichIDontCare); |
| 14270 | return true; |
| 14271 | } |
| 14272 | |
| 14273 | /****************************************************************************** |
| 14274 | * |
| 14275 | ******************************************************************************/ |
| 14276 | DWORD Debugger::GetHelperThreadID(void ) |
| 14277 | { |
| 14278 | LIMITED_METHOD_CONTRACT; |
| 14279 | |
| 14280 | return m_pRCThread ? m_pRCThread->GetDCB()->m_temporaryHelperThreadId : 0; |
| 14281 | } |
| 14282 | |
| 14283 | |
| 14284 | // HRESULT Debugger::InsertToMethodInfoList(): Make sure |
| 14285 | // that there's only one head of the the list of DebuggerMethodInfos |
| 14286 | // for the (implicitly) given MethodDef/Module pair. |
| 14287 | HRESULT |
| 14288 | Debugger::InsertToMethodInfoList( DebuggerMethodInfo *dmi ) |
| 14289 | { |
| 14290 | CONTRACTL |
| 14291 | { |
| 14292 | THROWS; |
| 14293 | GC_NOTRIGGER; |
| 14294 | } |
| 14295 | CONTRACTL_END; |
| 14296 | |
| 14297 | LOG((LF_CORDB,LL_INFO10000,"D:IAHOL DMI: dmi:0x%08x\n" , dmi)); |
| 14298 | |
| 14299 | HRESULT hr = S_OK; |
| 14300 | |
| 14301 | _ASSERTE(dmi != NULL); |
| 14302 | |
| 14303 | _ASSERTE(HasDebuggerDataLock()); |
| 14304 | |
| 14305 | // CHECK_DJI_TABLE_DEBUGGER; |
| 14306 | |
| 14307 | hr = CheckInitMethodInfoTable(); |
| 14308 | |
| 14309 | if (FAILED(hr)) { |
| 14310 | return (hr); |
| 14311 | } |
| 14312 | |
| 14313 | DebuggerMethodInfo *dmiPrev = m_pMethodInfos->GetMethodInfo(dmi->m_module, dmi->m_token); |
| 14314 | |
| 14315 | _ASSERTE((dmiPrev == NULL) || ((dmi->m_token == dmiPrev->m_token) && (dmi->m_module == dmiPrev->m_module))); |
| 14316 | |
| 14317 | LOG((LF_CORDB,LL_INFO10000,"D:IAHOL: current head of dmi list:0x%08x\n" ,dmiPrev)); |
| 14318 | |
| 14319 | if (dmiPrev != NULL) |
| 14320 | { |
| 14321 | dmi->m_prevMethodInfo = dmiPrev; |
| 14322 | dmiPrev->m_nextMethodInfo = dmi; |
| 14323 | |
| 14324 | _ASSERTE(dmi->m_module != NULL); |
| 14325 | hr = m_pMethodInfos->OverwriteMethodInfo(dmi->m_module, |
| 14326 | dmi->m_token, |
| 14327 | dmi, |
| 14328 | FALSE); |
| 14329 | |
| 14330 | LOG((LF_CORDB,LL_INFO10000,"D:IAHOL: DMI version 0x%04x for token 0x%08x\n" , |
| 14331 | dmi->GetCurrentEnCVersion(),dmi->m_token)); |
| 14332 | } |
| 14333 | else |
| 14334 | { |
| 14335 | LOG((LF_CORDB, LL_EVERYTHING, "AddMethodInfo being called in D:IAHOL\n" )); |
| 14336 | hr = m_pMethodInfos->AddMethodInfo(dmi->m_module, |
| 14337 | dmi->m_token, |
| 14338 | dmi); |
| 14339 | } |
| 14340 | #ifdef _DEBUG |
| 14341 | dmiPrev = m_pMethodInfos->GetMethodInfo(dmi->m_module, dmi->m_token); |
| 14342 | LOG((LF_CORDB,LL_INFO10000,"D:IAHOL: new head of dmi list:0x%08x\n" , |
| 14343 | dmiPrev)); |
| 14344 | #endif //_DEBUG |
| 14345 | |
| 14346 | // DebuggerDataLockHolder out of scope - release implied |
| 14347 | return hr; |
| 14348 | } |
| 14349 | |
| 14350 | //----------------------------------------------------------------------------- |
| 14351 | // Helper to get an SString through the IPC buffer. |
| 14352 | // We do this by putting the SString data into a LS_RS_buffer object, |
| 14353 | // and then the RS reads it out as soon as it's queued. |
| 14354 | // It's very very important that the SString's buffer is around while we send the event. |
| 14355 | // So we pass the SString by reference in case there's an implicit conversion (because |
| 14356 | // we don't want to do the conversion on a temporary object and then lose that object). |
| 14357 | //----------------------------------------------------------------------------- |
| 14358 | void SetLSBufferFromSString(Ls_Rs_StringBuffer * pBuffer, SString & str) |
| 14359 | { |
| 14360 | // Copy string contents (+1 for null terminator) into a LS_RS_Buffer. |
| 14361 | // Then the RS can pull it out as a null-terminated string. |
| 14362 | pBuffer->SetLsData( |
| 14363 | (BYTE*) str.GetUnicode(), |
| 14364 | (str.GetCount() +1)* sizeof(WCHAR) |
| 14365 | ); |
| 14366 | } |
| 14367 | |
| 14368 | //************************************************************* |
| 14369 | // structure that we to marshal MDA Notification event data. |
| 14370 | //************************************************************* |
| 14371 | struct SendMDANotificationParams |
| 14372 | { |
| 14373 | Thread * m_pThread; // may be NULL. Lets us send on behalf of other threads. |
| 14374 | |
| 14375 | // Pass SStrings by ptr in case to guarantee that they're shared (in case we internally modify their storage). |
| 14376 | SString * m_szName; |
| 14377 | SString * m_szDescription; |
| 14378 | SString * m_szXML; |
| 14379 | CorDebugMDAFlags m_flags; |
| 14380 | |
| 14381 | SendMDANotificationParams( |
| 14382 | Thread * pThread, // may be NULL. Lets us send on behalf of other threads. |
| 14383 | SString * szName, |
| 14384 | SString * szDescription, |
| 14385 | SString * szXML, |
| 14386 | CorDebugMDAFlags flags |
| 14387 | ) : |
| 14388 | m_pThread(pThread), |
| 14389 | m_szName(szName), |
| 14390 | m_szDescription(szDescription), |
| 14391 | m_szXML(szXML), |
| 14392 | m_flags(flags) |
| 14393 | { |
| 14394 | LIMITED_METHOD_CONTRACT; |
| 14395 | } |
| 14396 | |
| 14397 | }; |
| 14398 | |
| 14399 | //----------------------------------------------------------------------------- |
| 14400 | // Actually send the MDA event. (Could be on any thread) |
| 14401 | // Parameters: |
| 14402 | // params - data to initialize the IPC event. |
| 14403 | //----------------------------------------------------------------------------- |
| 14404 | void Debugger::SendRawMDANotification( |
| 14405 | SendMDANotificationParams * params |
| 14406 | ) |
| 14407 | { |
| 14408 | // Send the unload assembly event to the Right Side. |
| 14409 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 14410 | |
| 14411 | Thread * pThread = params->m_pThread; |
| 14412 | AppDomain *pAppDomain = (pThread != NULL) ? pThread->GetDomain() : NULL; |
| 14413 | |
| 14414 | InitIPCEvent(ipce, |
| 14415 | DB_IPCE_MDA_NOTIFICATION, |
| 14416 | pThread, |
| 14417 | pAppDomain); |
| 14418 | |
| 14419 | SetLSBufferFromSString(&ipce->MDANotification.szName, *(params->m_szName)); |
| 14420 | SetLSBufferFromSString(&ipce->MDANotification.szDescription, *(params->m_szDescription)); |
| 14421 | SetLSBufferFromSString(&ipce->MDANotification.szXml, *(params->m_szXML)); |
| 14422 | ipce->MDANotification.dwOSThreadId = GetCurrentThreadId(); |
| 14423 | ipce->MDANotification.flags = params->m_flags; |
| 14424 | |
| 14425 | m_pRCThread->SendIPCEvent(); |
| 14426 | } |
| 14427 | |
| 14428 | //----------------------------------------------------------------------------- |
| 14429 | // Send an MDA notification. This ultimately translates to an ICorDebugMDA object on the Right-Side. |
| 14430 | // Called by EE to send a MDA debug event. This will block on the debug event |
| 14431 | // until the RS continues us. |
| 14432 | // Debugger may or may not be attached. If bAttached, then this |
| 14433 | // will trigger a jitattach as well. |
| 14434 | // See MDA documentation for what szName, szDescription + szXML should look like. |
| 14435 | // The debugger just passes them through. |
| 14436 | // |
| 14437 | // Parameters: |
| 14438 | // pThread - thread for debug event. May be null. |
| 14439 | // szName - short name of MDA. |
| 14440 | // szDescription - full description of MDA. |
| 14441 | // szXML - xml string for MDA. |
| 14442 | // bAttach - do a JIT-attach |
| 14443 | //----------------------------------------------------------------------------- |
| 14444 | void Debugger::SendMDANotification( |
| 14445 | Thread * pThread, // may be NULL. Lets us send on behalf of other threads. |
| 14446 | SString * szName, |
| 14447 | SString * szDescription, |
| 14448 | SString * szXML, |
| 14449 | CorDebugMDAFlags flags, |
| 14450 | BOOL bAttach |
| 14451 | ) |
| 14452 | { |
| 14453 | CONTRACTL |
| 14454 | { |
| 14455 | THROWS; |
| 14456 | GC_TRIGGERS; |
| 14457 | MODE_ANY; |
| 14458 | } |
| 14459 | CONTRACTL_END; |
| 14460 | |
| 14461 | PREFIX_ASSUME(szName != NULL); |
| 14462 | PREFIX_ASSUME(szDescription != NULL); |
| 14463 | PREFIX_ASSUME(szXML != NULL); |
| 14464 | |
| 14465 | // Note: we normally don't send events like this when there is an unrecoverable error. However, |
| 14466 | // if a host attempts to setup fiber mode on a thread, then we'll set an unrecoverable error |
| 14467 | // and use an MDA to 1) tell the user and 2) get the Right Side to notice the unrecoverable error. |
| 14468 | // Therefore, we'll go ahead and send a MDA event if the unrecoverable error is |
| 14469 | // CORDBG_E_CANNOT_DEBUG_FIBER_PROCESS. |
| 14470 | DebuggerIPCControlBlock *pDCB = m_pRCThread->GetDCB(); |
| 14471 | |
| 14472 | |
| 14473 | // If the MDA is ocuring very early in startup before the DCB is setup, then bail. |
| 14474 | if (pDCB == NULL) |
| 14475 | { |
| 14476 | return; |
| 14477 | } |
| 14478 | |
| 14479 | if (CORDBUnrecoverableError(this) && (pDCB->m_errorHR != CORDBG_E_CANNOT_DEBUG_FIBER_PROCESS)) |
| 14480 | { |
| 14481 | return; |
| 14482 | } |
| 14483 | |
| 14484 | // Validate flags. Make sure that folks don't start passing flags that we don't handle. |
| 14485 | // If pThread != current thread, caller should either pass in MDA_FLAG_SLIP or guarantee |
| 14486 | // that pThread is not slipping. |
| 14487 | _ASSERTE((flags & ~(MDA_FLAG_SLIP)) == 0); |
| 14488 | |
| 14489 | // Helper thread should not be triggering MDAs. The helper thread is executing code in a very constrained |
| 14490 | // and controlled region and shouldn't be able to do anything dangerous. |
| 14491 | // If we revise this in the future, we should probably just post the event to the RS w/ use the MDA_FLAG_SLIP flag, |
| 14492 | // and then not bother suspending the runtime. The RS will get it on its next event. |
| 14493 | // The jit-attach logic below assumes we're not on the helper. (If we are on the helper, then a debugger should already |
| 14494 | // be attached) |
| 14495 | if (ThisIsHelperThreadWorker()) |
| 14496 | { |
| 14497 | CONSISTENCY_CHECK_MSGF(false, ("MDA '%s' fired on *helper* thread.\r\nDesc:%s" , |
| 14498 | szName->GetUnicode(), szDescription->GetUnicode() |
| 14499 | )); |
| 14500 | |
| 14501 | // If for some reason we're wrong about the assert above, we'll just ignore the MDA (rather than potentially deadlock) |
| 14502 | return; |
| 14503 | } |
| 14504 | |
| 14505 | // Public entry point into the debugger. May cause a jit-attach, so we may need to be lazily-init. |
| 14506 | if (!HasLazyData()) |
| 14507 | { |
| 14508 | DebuggerLockHolder dbgLockHolder(this); |
| 14509 | // This is an entry path into the debugger, so make sure we're inited. |
| 14510 | LazyInit(); |
| 14511 | } |
| 14512 | |
| 14513 | |
| 14514 | // Cases: |
| 14515 | // 1) Debugger already attached, send event normally (ignore severity) |
| 14516 | // 2) No debugger attached, Non-severe probe - ignore. |
| 14517 | // 3) No debugger attached, Severe-probe - do a jit-attach. |
| 14518 | bool fTryJitAttach = bAttach == TRUE; |
| 14519 | |
| 14520 | // Check case #2 - no debugger, and no jit-attach. Early opt out. |
| 14521 | if (!CORDebuggerAttached() && !fTryJitAttach) |
| 14522 | { |
| 14523 | return; |
| 14524 | } |
| 14525 | |
| 14526 | if (pThread == NULL) |
| 14527 | { |
| 14528 | // If there's no thread object, then we're not blocking after the event, |
| 14529 | // and thus this probe may slip. |
| 14530 | flags = (CorDebugMDAFlags) (flags | MDA_FLAG_SLIP); |
| 14531 | } |
| 14532 | |
| 14533 | { |
| 14534 | GCX_PREEMP_EEINTERFACE_TOGGLE_IFTHREAD(); |
| 14535 | |
| 14536 | // For "Severe" probes, we'll do a jit attach dialog |
| 14537 | if (fTryJitAttach) |
| 14538 | { |
| 14539 | // May return: |
| 14540 | // - S_OK if we do a jit-attach, |
| 14541 | // - S_FALSE if a debugger is already attached. |
| 14542 | // - Error in other cases.. |
| 14543 | |
| 14544 | JitAttach(pThread, NULL, TRUE, FALSE); |
| 14545 | } |
| 14546 | |
| 14547 | // Debugger may be attached now... |
| 14548 | if (CORDebuggerAttached()) |
| 14549 | { |
| 14550 | SendMDANotificationParams params(pThread, szName, szDescription, szXML, flags); |
| 14551 | |
| 14552 | // Non-attach case. Send like normal event. |
| 14553 | // This includes if someone launch the debugger during the meantime. |
| 14554 | // just send the event |
| 14555 | SENDIPCEVENT_BEGIN(this, pThread); |
| 14556 | |
| 14557 | // Send Log message event to the Right Side |
| 14558 | SendRawMDANotification(¶ms); |
| 14559 | |
| 14560 | // Stop all Runtime threads |
| 14561 | // Even if we don't have a managed thead object, this will catch us at the next good spot. |
| 14562 | TrapAllRuntimeThreads(); |
| 14563 | |
| 14564 | // Let other Runtime threads handle their events. |
| 14565 | SENDIPCEVENT_END; |
| 14566 | } |
| 14567 | } // end of GCX_PREEMP_EEINTERFACE_TOGGLE() |
| 14568 | } |
| 14569 | |
| 14570 | //************************************************************* |
| 14571 | // This method sends a log message over to the right side for the debugger to log it. |
| 14572 | // |
| 14573 | // The CLR doesn't assign any semantics to the level or cateogory values. |
| 14574 | // The BCL has a level convention (LoggingLevels enum), but this isn't exposed publicly, |
| 14575 | // so we shouldn't base our behavior on it in any way. |
| 14576 | //************************************************************* |
| 14577 | void Debugger::SendLogMessage(int iLevel, |
| 14578 | SString * pSwitchName, |
| 14579 | SString * pMessage) |
| 14580 | { |
| 14581 | CONTRACTL |
| 14582 | { |
| 14583 | GC_TRIGGERS; |
| 14584 | THROWS; |
| 14585 | } |
| 14586 | CONTRACTL_END; |
| 14587 | |
| 14588 | LOG((LF_CORDB, LL_INFO10000, "D::SLM: Sending log message.\n" )); |
| 14589 | |
| 14590 | // Send the message only if the debugger is attached to this appdomain. |
| 14591 | // Note the the debugger may detach at any time, so we'll have to check |
| 14592 | // this again after we get the lock. |
| 14593 | AppDomain *pAppDomain = g_pEEInterface->GetThread()->GetDomain(); |
| 14594 | |
| 14595 | if (!CORDebuggerAttached()) |
| 14596 | { |
| 14597 | return; |
| 14598 | } |
| 14599 | |
| 14600 | Thread *pThread = g_pEEInterface->GetThread(); |
| 14601 | SENDIPCEVENT_BEGIN(this, pThread); |
| 14602 | |
| 14603 | // Send Log message event to the Right Side |
| 14604 | SendRawLogMessage( |
| 14605 | pThread, |
| 14606 | pAppDomain, |
| 14607 | iLevel, |
| 14608 | pSwitchName, |
| 14609 | pMessage); |
| 14610 | |
| 14611 | // Stop all Runtime threads |
| 14612 | TrapAllRuntimeThreads(); |
| 14613 | |
| 14614 | // Let other Runtime threads handle their events. |
| 14615 | SENDIPCEVENT_END; |
| 14616 | } |
| 14617 | |
| 14618 | |
| 14619 | //************************************************************* |
| 14620 | // |
| 14621 | // Helper function to just send LogMessage event. Can be called on either |
| 14622 | // helper thread or managed thread. |
| 14623 | // |
| 14624 | //************************************************************* |
| 14625 | void Debugger::SendRawLogMessage( |
| 14626 | Thread *pThread, |
| 14627 | AppDomain *pAppDomain, |
| 14628 | int iLevel, |
| 14629 | SString * pCategory, |
| 14630 | SString * pMessage |
| 14631 | ) |
| 14632 | { |
| 14633 | DebuggerIPCEvent* ipce; |
| 14634 | |
| 14635 | |
| 14636 | // We should have hold debugger lock |
| 14637 | // This can happen on either native helper thread or managed thread |
| 14638 | _ASSERTE(ThreadHoldsLock()); |
| 14639 | |
| 14640 | // It's possible that the debugger dettached while we were waiting |
| 14641 | // for our lock. Check again and abort the event if it did. |
| 14642 | if (!CORDebuggerAttached()) |
| 14643 | { |
| 14644 | return; |
| 14645 | } |
| 14646 | |
| 14647 | ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 14648 | |
| 14649 | // Send a LogMessage event to the Right Side |
| 14650 | InitIPCEvent(ipce, |
| 14651 | DB_IPCE_FIRST_LOG_MESSAGE, |
| 14652 | pThread, |
| 14653 | pAppDomain); |
| 14654 | |
| 14655 | ipce->FirstLogMessage.iLevel = iLevel; |
| 14656 | ipce->FirstLogMessage.szCategory.SetString(pCategory->GetUnicode()); |
| 14657 | SetLSBufferFromSString(&ipce->FirstLogMessage.szContent, *pMessage); |
| 14658 | |
| 14659 | m_pRCThread->SendIPCEvent(); |
| 14660 | } |
| 14661 | |
| 14662 | |
| 14663 | // This function sends a message to the right side informing it about |
| 14664 | // the creation/modification of a LogSwitch |
| 14665 | void Debugger::SendLogSwitchSetting(int iLevel, |
| 14666 | int iReason, |
| 14667 | __in_z LPCWSTR pLogSwitchName, |
| 14668 | __in_z LPCWSTR pParentSwitchName) |
| 14669 | { |
| 14670 | CONTRACTL |
| 14671 | { |
| 14672 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 14673 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 14674 | } |
| 14675 | CONTRACTL_END; |
| 14676 | |
| 14677 | LOG((LF_CORDB, LL_INFO1000, "D::SLSS: Sending log switch message switch=%S parent=%S.\n" , |
| 14678 | pLogSwitchName, pParentSwitchName)); |
| 14679 | |
| 14680 | // Send the message only if the debugger is attached to this appdomain. |
| 14681 | if (!CORDebuggerAttached()) |
| 14682 | { |
| 14683 | return; |
| 14684 | } |
| 14685 | |
| 14686 | Thread *pThread = g_pEEInterface->GetThread(); |
| 14687 | SENDIPCEVENT_BEGIN(this, pThread); |
| 14688 | |
| 14689 | if (CORDebuggerAttached()) |
| 14690 | { |
| 14691 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 14692 | InitIPCEvent(ipce, |
| 14693 | DB_IPCE_LOGSWITCH_SET_MESSAGE, |
| 14694 | pThread, |
| 14695 | pThread->GetDomain()); |
| 14696 | |
| 14697 | ipce->LogSwitchSettingMessage.iLevel = iLevel; |
| 14698 | ipce->LogSwitchSettingMessage.iReason = iReason; |
| 14699 | |
| 14700 | |
| 14701 | ipce->LogSwitchSettingMessage.szSwitchName.SetString(pLogSwitchName); |
| 14702 | |
| 14703 | if (pParentSwitchName == NULL) |
| 14704 | { |
| 14705 | pParentSwitchName = W("" ); |
| 14706 | } |
| 14707 | |
| 14708 | ipce->LogSwitchSettingMessage.szParentSwitchName.SetString(pParentSwitchName); |
| 14709 | |
| 14710 | m_pRCThread->SendIPCEvent(); |
| 14711 | |
| 14712 | // Stop all Runtime threads |
| 14713 | TrapAllRuntimeThreads(); |
| 14714 | } |
| 14715 | else |
| 14716 | { |
| 14717 | LOG((LF_CORDB,LL_INFO1000, "D::SLSS: Skipping SendIPCEvent because RS detached." )); |
| 14718 | } |
| 14719 | |
| 14720 | SENDIPCEVENT_END; |
| 14721 | } |
| 14722 | |
| 14723 | // send a custom debugger notification to the RS |
| 14724 | // Arguments: |
| 14725 | // input: pThread - thread on which the notification occurred |
| 14726 | // pDomain - domain file for the domain in which the notification occurred |
| 14727 | // classToken - metadata token for the type of the notification object |
| 14728 | void Debugger::SendCustomDebuggerNotification(Thread * pThread, |
| 14729 | DomainFile * pDomain, |
| 14730 | mdTypeDef classToken) |
| 14731 | { |
| 14732 | CONTRACTL |
| 14733 | { |
| 14734 | GC_TRIGGERS; |
| 14735 | THROWS; |
| 14736 | } |
| 14737 | CONTRACTL_END; |
| 14738 | |
| 14739 | LOG((LF_CORDB, LL_INFO10000, "D::SLM: Sending log message.\n" )); |
| 14740 | |
| 14741 | // Send the message only if the debugger is attached to this appdomain. |
| 14742 | // Note the the debugger may detach at any time, so we'll have to check |
| 14743 | // this again after we get the lock. |
| 14744 | if (!CORDebuggerAttached()) |
| 14745 | { |
| 14746 | return; |
| 14747 | } |
| 14748 | |
| 14749 | Thread *curThread = g_pEEInterface->GetThread(); |
| 14750 | SENDIPCEVENT_BEGIN(this, curThread); |
| 14751 | |
| 14752 | if (CORDebuggerAttached()) |
| 14753 | { |
| 14754 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 14755 | InitIPCEvent(ipce, |
| 14756 | DB_IPCE_CUSTOM_NOTIFICATION, |
| 14757 | curThread, |
| 14758 | curThread->GetDomain()); |
| 14759 | |
| 14760 | VMPTR_DomainFile vmDomainFile = VMPTR_DomainFile::MakePtr(pDomain); |
| 14761 | |
| 14762 | ipce->CustomNotification.classToken = classToken; |
| 14763 | ipce->CustomNotification.vmDomainFile = vmDomainFile; |
| 14764 | |
| 14765 | |
| 14766 | m_pRCThread->SendIPCEvent(); |
| 14767 | |
| 14768 | // Stop all Runtime threads |
| 14769 | TrapAllRuntimeThreads(); |
| 14770 | } |
| 14771 | else |
| 14772 | { |
| 14773 | LOG((LF_CORDB,LL_INFO1000, "D::SCDN: Skipping SendIPCEvent because RS detached." )); |
| 14774 | } |
| 14775 | |
| 14776 | SENDIPCEVENT_END; |
| 14777 | } |
| 14778 | |
| 14779 | |
| 14780 | //----------------------------------------------------------------------------- |
| 14781 | // |
| 14782 | // Add the AppDomain to the list stored in the IPC block. It adds the id and |
| 14783 | // the name. |
| 14784 | // |
| 14785 | // Arguments: |
| 14786 | // pAppDomain - The runtime app domain object to add. |
| 14787 | // |
| 14788 | // Return Value: |
| 14789 | // S_OK on success, else detailed error code. |
| 14790 | // |
| 14791 | HRESULT Debugger::AddAppDomainToIPC(AppDomain *pAppDomain) |
| 14792 | { |
| 14793 | CONTRACTL |
| 14794 | { |
| 14795 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 14796 | GC_TRIGGERS; |
| 14797 | MODE_ANY; |
| 14798 | } |
| 14799 | CONTRACTL_END; |
| 14800 | |
| 14801 | HRESULT hr = S_OK; |
| 14802 | LPCWSTR szName = NULL; |
| 14803 | |
| 14804 | LOG((LF_CORDB, LL_INFO100, "D::AADTIPC: Executing AADTIPC for AppDomain 0x%08x (0x%x).\n" , |
| 14805 | pAppDomain, |
| 14806 | pAppDomain->GetId().m_dwId)); |
| 14807 | |
| 14808 | STRESS_LOG2(LF_CORDB, LL_INFO10000, "D::AADTIPC: AddAppDomainToIPC:%#08x, %#08x\n" , |
| 14809 | pAppDomain, pAppDomain->GetId().m_dwId); |
| 14810 | |
| 14811 | |
| 14812 | |
| 14813 | _ASSERTE(m_pAppDomainCB->m_iTotalSlots > 0); |
| 14814 | _ASSERTE(m_pAppDomainCB->m_rgListOfAppDomains != NULL); |
| 14815 | |
| 14816 | { |
| 14817 | // |
| 14818 | // We need to synchronize this routine with the attach logic. The "normal" |
| 14819 | // attach case uses the HelperThread and TrapAllRuntimeThreads to synchronize |
| 14820 | // the runtime before sending any of the events (including AppDomainCreates) |
| 14821 | // to the right-side. Thus, we can synchronize with this case by forcing us |
| 14822 | // to go co-operative. If we were already co-op, then the helper thread will |
| 14823 | // wait to start the attach until all co-op threads are paused. If we were |
| 14824 | // pre-emptive, then going co-op will suspend us until the HelperThread finishes. |
| 14825 | // |
| 14826 | // The second case is under the IPC event for ATTACHING, which is where there are |
| 14827 | // zero app domains, so it is considered an 'early attach' case. To synchronize |
| 14828 | // with this we have to grab and hold the AppDomainDB lock. |
| 14829 | // |
| 14830 | |
| 14831 | GCX_COOP(); |
| 14832 | |
| 14833 | // Lock the list |
| 14834 | if (!m_pAppDomainCB->Lock()) |
| 14835 | { |
| 14836 | return E_FAIL; |
| 14837 | } |
| 14838 | |
| 14839 | // Get a free entry from the list |
| 14840 | AppDomainInfo *pAppDomainInfo = m_pAppDomainCB->GetFreeEntry(); |
| 14841 | |
| 14842 | // Function returns NULL if the list is full and a realloc failed. |
| 14843 | if (!pAppDomainInfo) |
| 14844 | { |
| 14845 | hr = E_OUTOFMEMORY; |
| 14846 | goto LErrExit; |
| 14847 | } |
| 14848 | |
| 14849 | // copy the ID |
| 14850 | pAppDomainInfo->m_id = pAppDomain->GetId().m_dwId; |
| 14851 | |
| 14852 | // Now set the AppDomainName. |
| 14853 | |
| 14854 | /* |
| 14855 | * TODO : |
| 14856 | * |
| 14857 | * Make sure that returning NULL here does not result in a catastrophic |
| 14858 | * failure. |
| 14859 | * |
| 14860 | * GetFriendlyNameNoThrow may call SetFriendlyName, which may call |
| 14861 | * UpdateAppDomainEntryInIPC. There is no recursive death, however, because |
| 14862 | * the AppDomainInfo object does not contain a pointer to the app domain |
| 14863 | * yet. |
| 14864 | */ |
| 14865 | szName = pAppDomain->GetFriendlyNameForDebugger(); |
| 14866 | pAppDomainInfo->SetName(szName); |
| 14867 | |
| 14868 | // Save on to the appdomain pointer |
| 14869 | pAppDomainInfo->m_pAppDomain = pAppDomain; |
| 14870 | |
| 14871 | // bump the used slot count |
| 14872 | m_pAppDomainCB->m_iNumOfUsedSlots++; |
| 14873 | |
| 14874 | LErrExit: |
| 14875 | // UnLock the list |
| 14876 | m_pAppDomainCB->Unlock(); |
| 14877 | |
| 14878 | // Send event to debugger if one is attached. |
| 14879 | if (CORDebuggerAttached()) |
| 14880 | { |
| 14881 | SendCreateAppDomainEvent(pAppDomain); |
| 14882 | } |
| 14883 | } |
| 14884 | |
| 14885 | return hr; |
| 14886 | } |
| 14887 | |
| 14888 | |
| 14889 | /****************************************************************************** |
| 14890 | * Remove the AppDomain from the list stored in the IPC block and send an ExitAppDomain |
| 14891 | * event to the debugger if attached. |
| 14892 | ******************************************************************************/ |
| 14893 | HRESULT Debugger::RemoveAppDomainFromIPC (AppDomain *pAppDomain) |
| 14894 | { |
| 14895 | CONTRACTL |
| 14896 | { |
| 14897 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 14898 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 14899 | SO_INTOLERANT; |
| 14900 | } |
| 14901 | CONTRACTL_END; |
| 14902 | |
| 14903 | HRESULT hr = E_FAIL; |
| 14904 | |
| 14905 | LOG((LF_CORDB, LL_INFO100, "D::RADFIPC: Executing RADFIPC for AppDomain 0x%08x (0x%x).\n" , |
| 14906 | pAppDomain, |
| 14907 | pAppDomain->GetId().m_dwId)); |
| 14908 | |
| 14909 | // if none of the slots are occupied, then simply return. |
| 14910 | if (m_pAppDomainCB->m_iNumOfUsedSlots == 0) |
| 14911 | return hr; |
| 14912 | |
| 14913 | // Lock the list |
| 14914 | if (!m_pAppDomainCB->Lock()) |
| 14915 | return (E_FAIL); |
| 14916 | |
| 14917 | |
| 14918 | // Look for the entry |
| 14919 | AppDomainInfo *pADInfo = m_pAppDomainCB->FindEntry(pAppDomain); |
| 14920 | |
| 14921 | // Shouldn't be trying to remove an appdomain that was never added |
| 14922 | if (!pADInfo) |
| 14923 | { |
| 14924 | // We'd like to assert this, but there is a small window where we may have |
| 14925 | // called AppDomain::Init (and so it's fair game to call Stop, and hence come here), |
| 14926 | // but not yet published the app domain. |
| 14927 | // _ASSERTE(!"D::RADFIPC: trying to remove an AppDomain that was never added"); |
| 14928 | hr = (E_FAIL); |
| 14929 | goto ErrExit; |
| 14930 | } |
| 14931 | |
| 14932 | // Release the entry |
| 14933 | m_pAppDomainCB->FreeEntry(pADInfo); |
| 14934 | |
| 14935 | ErrExit: |
| 14936 | // UnLock the list |
| 14937 | m_pAppDomainCB->Unlock(); |
| 14938 | |
| 14939 | // send event to debugger if one is attached |
| 14940 | if (CORDebuggerAttached()) |
| 14941 | { |
| 14942 | SendExitAppDomainEvent(pAppDomain); |
| 14943 | } |
| 14944 | |
| 14945 | return hr; |
| 14946 | } |
| 14947 | |
| 14948 | /****************************************************************************** |
| 14949 | * Update the AppDomain in the list stored in the IPC block. |
| 14950 | ******************************************************************************/ |
| 14951 | HRESULT Debugger::UpdateAppDomainEntryInIPC(AppDomain *pAppDomain) |
| 14952 | { |
| 14953 | CONTRACTL |
| 14954 | { |
| 14955 | NOTHROW; |
| 14956 | if (GetThread()) { GC_TRIGGERS;} else {DISABLED(GC_NOTRIGGER);} |
| 14957 | SO_INTOLERANT; |
| 14958 | } |
| 14959 | CONTRACTL_END; |
| 14960 | |
| 14961 | HRESULT hr = S_OK; |
| 14962 | LPCWSTR szName = NULL; |
| 14963 | |
| 14964 | LOG((LF_CORDB, LL_INFO100, |
| 14965 | "D::UADEIIPC: Executing UpdateAppDomainEntryInIPC ad:0x%x.\n" , |
| 14966 | pAppDomain)); |
| 14967 | |
| 14968 | // if none of the slots are occupied, then simply return. |
| 14969 | if (m_pAppDomainCB->m_iNumOfUsedSlots == 0) |
| 14970 | return (E_FAIL); |
| 14971 | |
| 14972 | // Lock the list |
| 14973 | if (!m_pAppDomainCB->Lock()) |
| 14974 | return (E_FAIL); |
| 14975 | |
| 14976 | // Look up the info entry |
| 14977 | AppDomainInfo *pADInfo = m_pAppDomainCB->FindEntry(pAppDomain); |
| 14978 | |
| 14979 | if (!pADInfo) |
| 14980 | { |
| 14981 | hr = E_FAIL; |
| 14982 | goto ErrExit; |
| 14983 | } |
| 14984 | |
| 14985 | // Update the name only if new name is non-null |
| 14986 | szName = pADInfo->m_pAppDomain->GetFriendlyNameForDebugger(); |
| 14987 | pADInfo->SetName(szName); |
| 14988 | |
| 14989 | LOG((LF_CORDB, LL_INFO100, |
| 14990 | "D::UADEIIPC: New name:%ls (AD:0x%x)\n" , pADInfo->m_szAppDomainName, |
| 14991 | pAppDomain)); |
| 14992 | |
| 14993 | ErrExit: |
| 14994 | // UnLock the list |
| 14995 | m_pAppDomainCB->Unlock(); |
| 14996 | |
| 14997 | return hr; |
| 14998 | } |
| 14999 | |
| 15000 | HRESULT Debugger::CopyModulePdb(Module* pRuntimeModule) |
| 15001 | { |
| 15002 | CONTRACTL |
| 15003 | { |
| 15004 | THROWS; |
| 15005 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 15006 | SO_NOT_MAINLINE; |
| 15007 | |
| 15008 | PRECONDITION(ThisIsHelperThread()); |
| 15009 | MODE_ANY; |
| 15010 | } |
| 15011 | CONTRACTL_END; |
| 15012 | |
| 15013 | if (!pRuntimeModule->IsVisibleToDebugger()) |
| 15014 | { |
| 15015 | return S_OK; |
| 15016 | } |
| 15017 | |
| 15018 | HRESULT hr = S_OK; |
| 15019 | |
| 15020 | return hr; |
| 15021 | } |
| 15022 | |
| 15023 | /****************************************************************************** |
| 15024 | * When attaching to a process, this is called to enumerate all of the |
| 15025 | * AppDomains currently in the process and allow modules pdbs to be copied over to the shadow dir maintaining out V2 in-proc behaviour. |
| 15026 | ******************************************************************************/ |
| 15027 | HRESULT Debugger::IterateAppDomainsForPdbs() |
| 15028 | { |
| 15029 | CONTRACTL |
| 15030 | { |
| 15031 | THROWS; |
| 15032 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 15033 | SO_NOT_MAINLINE; |
| 15034 | |
| 15035 | PRECONDITION(ThisIsHelperThread()); |
| 15036 | MODE_ANY; |
| 15037 | } |
| 15038 | CONTRACTL_END; |
| 15039 | |
| 15040 | STRESS_LOG0(LF_CORDB, LL_INFO100, "Entered function IterateAppDomainsForPdbs()\n" ); |
| 15041 | HRESULT hr = S_OK; |
| 15042 | |
| 15043 | // Lock the list |
| 15044 | if (!m_pAppDomainCB->Lock()) |
| 15045 | return (E_FAIL); |
| 15046 | |
| 15047 | // Iterate through the app domains |
| 15048 | AppDomainInfo *pADInfo = m_pAppDomainCB->FindFirst(); |
| 15049 | |
| 15050 | while (pADInfo) |
| 15051 | { |
| 15052 | STRESS_LOG3(LF_CORDB, LL_INFO100, "Iterating over domain %#08x AD:%#08x %ls\n" , pADInfo->m_pAppDomain->GetId().m_dwId, pADInfo->m_pAppDomain, pADInfo->m_szAppDomainName); |
| 15053 | |
| 15054 | AppDomain::AssemblyIterator i; |
| 15055 | i = pADInfo->m_pAppDomain->IterateAssembliesEx((AssemblyIterationFlags)(kIncludeLoaded | kIncludeLoading | kIncludeExecution)); |
| 15056 | CollectibleAssemblyHolder<DomainAssembly *> pDomainAssembly; |
| 15057 | while (i.Next(pDomainAssembly.This())) |
| 15058 | { |
| 15059 | if (!pDomainAssembly->IsVisibleToDebugger()) |
| 15060 | continue; |
| 15061 | |
| 15062 | DomainAssembly::ModuleIterator j = pDomainAssembly->IterateModules(kModIterIncludeLoading); |
| 15063 | while (j.Next()) |
| 15064 | { |
| 15065 | DomainFile * pDomainFile = j.GetDomainFile(); |
| 15066 | if (!pDomainFile->ShouldNotifyDebugger()) |
| 15067 | continue; |
| 15068 | |
| 15069 | Module* pRuntimeModule = pDomainFile->GetModule(); |
| 15070 | CopyModulePdb(pRuntimeModule); |
| 15071 | } |
| 15072 | if (pDomainAssembly->ShouldNotifyDebugger()) |
| 15073 | { |
| 15074 | CopyModulePdb(pDomainAssembly->GetModule()); |
| 15075 | } |
| 15076 | } |
| 15077 | |
| 15078 | // Get the next appdomain in the list |
| 15079 | pADInfo = m_pAppDomainCB->FindNext(pADInfo); |
| 15080 | } |
| 15081 | |
| 15082 | // Unlock the list |
| 15083 | m_pAppDomainCB->Unlock(); |
| 15084 | |
| 15085 | STRESS_LOG0(LF_CORDB, LL_INFO100, "Exiting function IterateAppDomainsForPdbs\n" ); |
| 15086 | |
| 15087 | return hr; |
| 15088 | } |
| 15089 | |
| 15090 | |
| 15091 | /****************************************************************************** |
| 15092 | * |
| 15093 | ******************************************************************************/ |
| 15094 | HRESULT Debugger::InitAppDomainIPC(void) |
| 15095 | { |
| 15096 | CONTRACTL |
| 15097 | { |
| 15098 | THROWS; |
| 15099 | GC_NOTRIGGER; |
| 15100 | SO_INTOLERANT; |
| 15101 | |
| 15102 | PRECONDITION(CheckPointer(m_pAppDomainCB)); |
| 15103 | } |
| 15104 | CONTRACTL_END; |
| 15105 | |
| 15106 | // Ensure that if we throw here, the Terminate will get called and cleanup all resources. |
| 15107 | // This will make Init an atomic operation - it either fully inits or fully fails. |
| 15108 | class EnsureCleanup |
| 15109 | { |
| 15110 | Debugger * m_pThis; |
| 15111 | |
| 15112 | public: |
| 15113 | EnsureCleanup(Debugger * pThis) |
| 15114 | { |
| 15115 | m_pThis = pThis; |
| 15116 | } |
| 15117 | |
| 15118 | void SupressCleanup() |
| 15119 | { |
| 15120 | m_pThis = NULL; |
| 15121 | } |
| 15122 | |
| 15123 | ~EnsureCleanup() |
| 15124 | { |
| 15125 | if (m_pThis != NULL) |
| 15126 | { |
| 15127 | m_pThis->TerminateAppDomainIPC(); |
| 15128 | } |
| 15129 | } |
| 15130 | } hEnsureCleanup(this); |
| 15131 | |
| 15132 | DWORD dwStrLen = 0; |
| 15133 | SString szExeName; |
| 15134 | int i; |
| 15135 | |
| 15136 | // all fields in the object can be zero initialized. |
| 15137 | // If we throw, before fully initializing this, then cleanup won't try to free |
| 15138 | // uninited values. |
| 15139 | ZeroMemory(m_pAppDomainCB, sizeof(*m_pAppDomainCB)); |
| 15140 | |
| 15141 | // Create a mutex to allow the Left and Right Sides to properly |
| 15142 | // synchronize. The Right Side will spin until m_hMutex is valid, |
| 15143 | // then it will acquire it before accessing the data. |
| 15144 | HandleHolder hMutex(WszCreateMutex(NULL, TRUE/*hold*/, NULL)); |
| 15145 | if (hMutex == NULL) |
| 15146 | { |
| 15147 | ThrowLastError(); |
| 15148 | } |
| 15149 | if (!m_pAppDomainCB->m_hMutex.SetLocal(hMutex)) |
| 15150 | { |
| 15151 | ThrowLastError(); |
| 15152 | } |
| 15153 | hMutex.SuppressRelease(); |
| 15154 | |
| 15155 | m_pAppDomainCB->m_iSizeInBytes = INITIAL_APP_DOMAIN_INFO_LIST_SIZE * |
| 15156 | sizeof (AppDomainInfo); |
| 15157 | |
| 15158 | // Number of slots in AppDomainListElement array |
| 15159 | m_pAppDomainCB->m_rgListOfAppDomains = new AppDomainInfo[INITIAL_APP_DOMAIN_INFO_LIST_SIZE]; |
| 15160 | _ASSERTE(m_pAppDomainCB->m_rgListOfAppDomains != NULL); // throws on oom |
| 15161 | |
| 15162 | |
| 15163 | m_pAppDomainCB->m_iTotalSlots = INITIAL_APP_DOMAIN_INFO_LIST_SIZE; |
| 15164 | |
| 15165 | // Initialize each AppDomainListElement |
| 15166 | for (i = 0; i < INITIAL_APP_DOMAIN_INFO_LIST_SIZE; i++) |
| 15167 | { |
| 15168 | m_pAppDomainCB->m_rgListOfAppDomains[i].FreeEntry(); |
| 15169 | } |
| 15170 | |
| 15171 | // also initialize the process name |
| 15172 | dwStrLen = WszGetModuleFileName(NULL, |
| 15173 | szExeName); |
| 15174 | |
| 15175 | |
| 15176 | // If we couldn't get the name, then use a nice default. |
| 15177 | if (dwStrLen == 0) |
| 15178 | { |
| 15179 | szExeName.Set(W("<NoProcessName>" )); |
| 15180 | dwStrLen = szExeName.GetCount(); |
| 15181 | } |
| 15182 | |
| 15183 | // If we got the name, copy it into a buffer. dwStrLen is the |
| 15184 | // count of characters in the name, not including the null |
| 15185 | // terminator. |
| 15186 | m_pAppDomainCB->m_szProcessName = new WCHAR[dwStrLen + 1]; |
| 15187 | _ASSERTE(m_pAppDomainCB->m_szProcessName != NULL); // throws on oom |
| 15188 | |
| 15189 | wcscpy_s(m_pAppDomainCB->m_szProcessName, dwStrLen + 1, szExeName); |
| 15190 | |
| 15191 | // Add 1 to the string length so the Right Side will copy out the |
| 15192 | // null terminator, too. |
| 15193 | m_pAppDomainCB->m_iProcessNameLengthInBytes = (dwStrLen + 1) * sizeof(WCHAR); |
| 15194 | |
| 15195 | if (m_pAppDomainCB->m_hMutex != NULL) |
| 15196 | { |
| 15197 | m_pAppDomainCB->Unlock(); |
| 15198 | } |
| 15199 | |
| 15200 | hEnsureCleanup.SupressCleanup(); |
| 15201 | return S_OK; |
| 15202 | } |
| 15203 | |
| 15204 | /****************************************************************************** |
| 15205 | * Unitialize the AppDomain IPC block |
| 15206 | * Returns: |
| 15207 | * S_OK -if fully unitialized |
| 15208 | * E_FAIL - if we can't get ownership of the block, and thus no unitialization |
| 15209 | * work is done. |
| 15210 | ******************************************************************************/ |
| 15211 | HRESULT Debugger::TerminateAppDomainIPC(void) |
| 15212 | { |
| 15213 | CONTRACTL |
| 15214 | { |
| 15215 | NOTHROW; |
| 15216 | GC_NOTRIGGER; |
| 15217 | SO_INTOLERANT; |
| 15218 | } |
| 15219 | CONTRACTL_END; |
| 15220 | |
| 15221 | // If we have no AppDomain block, then we can consider it's already terminated. |
| 15222 | if (m_pAppDomainCB == NULL) |
| 15223 | return S_OK; |
| 15224 | |
| 15225 | HRESULT hr = S_OK; |
| 15226 | |
| 15227 | // Lock the list |
| 15228 | // If there's no mutex, then we're in a partially created state. |
| 15229 | // This means InitAppDomainIPC failed halfway through. But we're still thread safe |
| 15230 | // since other threads can't access us if we don't have the mutex. |
| 15231 | if ((m_pAppDomainCB->m_hMutex != NULL) && !m_pAppDomainCB->Lock()) |
| 15232 | { |
| 15233 | // The callers don't check our return value, we may want to know when we can't gracefully clean up |
| 15234 | LOG((LF_CORDB, LL_INFO10, "Debugger::TerminateAppDomainIPC: Failed to get AppDomain IPC lock, not cleaning up.\n" )); |
| 15235 | |
| 15236 | // If the lock is valid, but we can't get it, then we can't really |
| 15237 | // uninitialize since someone else is using the block. |
| 15238 | return (E_FAIL); |
| 15239 | } |
| 15240 | |
| 15241 | // The shared IPC segment could still be around after the debugger |
| 15242 | // object has been destroyed during process shutdown. So, reset |
| 15243 | // the UsedSlots count to 0 so that any out of process clients |
| 15244 | // enumeratingthe app domains in this process see 0 AppDomains. |
| 15245 | m_pAppDomainCB->m_iNumOfUsedSlots = 0; |
| 15246 | m_pAppDomainCB->m_iTotalSlots = 0; |
| 15247 | |
| 15248 | // Now delete the memory allocated for AppDomainInfo array |
| 15249 | delete [] m_pAppDomainCB->m_rgListOfAppDomains; |
| 15250 | m_pAppDomainCB->m_rgListOfAppDomains = NULL; |
| 15251 | |
| 15252 | delete [] m_pAppDomainCB->m_szProcessName; |
| 15253 | m_pAppDomainCB->m_szProcessName = NULL; |
| 15254 | m_pAppDomainCB->m_iProcessNameLengthInBytes = 0; |
| 15255 | |
| 15256 | // Set the mutex handle to NULL. |
| 15257 | // If the Right Side acquires the mutex, it will verify |
| 15258 | // that the handle is still not NULL. If it is, then it knows it |
| 15259 | // really lost. |
| 15260 | RemoteHANDLE m = m_pAppDomainCB->m_hMutex; |
| 15261 | m_pAppDomainCB->m_hMutex.m_hLocal = NULL; |
| 15262 | |
| 15263 | // And bring us back to a fully unintialized state. |
| 15264 | ZeroMemory(m_pAppDomainCB, sizeof(*m_pAppDomainCB)); |
| 15265 | |
| 15266 | // We're done. release and close the mutex. Note that this must be done |
| 15267 | // after we clear it out above to ensure there is no race condition. |
| 15268 | if( m != NULL ) |
| 15269 | { |
| 15270 | VERIFY(ReleaseMutex(m)); |
| 15271 | m.Close(); |
| 15272 | } |
| 15273 | |
| 15274 | return hr; |
| 15275 | } |
| 15276 | |
| 15277 | |
| 15278 | #ifndef DACCESS_COMPILE |
| 15279 | |
| 15280 | // |
| 15281 | // FuncEvalSetup sets up a function evaluation for the given method on the given thread. |
| 15282 | // |
| 15283 | HRESULT Debugger::FuncEvalSetup(DebuggerIPCE_FuncEvalInfo *pEvalInfo, |
| 15284 | BYTE **argDataArea, |
| 15285 | DebuggerEval **debuggerEvalKey) |
| 15286 | { |
| 15287 | CONTRACTL |
| 15288 | { |
| 15289 | NOTHROW; |
| 15290 | GC_NOTRIGGER; |
| 15291 | SO_NOT_MAINLINE; |
| 15292 | } |
| 15293 | CONTRACTL_END; |
| 15294 | |
| 15295 | Thread *pThread = pEvalInfo->vmThreadToken.GetRawPtr(); |
| 15296 | |
| 15297 | |
| 15298 | // |
| 15299 | // If TS_AbortRequested (which may have been set by a pending FuncEvalAbort), |
| 15300 | // we will not be able to do a new func-eval |
| 15301 | // |
| 15302 | // <TODO>@TODO: Remember the current value of m_State, reset m_State as appropriate, |
| 15303 | // do the new func-eval, and then set m_State to the original value</TODO> |
| 15304 | if (pThread->m_State & Thread::TS_AbortRequested) |
| 15305 | return CORDBG_E_FUNC_EVAL_BAD_START_POINT; |
| 15306 | |
| 15307 | if (g_fProcessDetach) |
| 15308 | return CORDBG_E_FUNC_EVAL_BAD_START_POINT; |
| 15309 | |
| 15310 | // If there is no guard page on this thread, then we've taken a stack overflow exception and can't run managed |
| 15311 | // code on this thread. Therefore, we can't do a func eval on this thread. |
| 15312 | if (!pThread->DetermineIfGuardPagePresent()) |
| 15313 | { |
| 15314 | return CORDBG_E_ILLEGAL_IN_STACK_OVERFLOW; |
| 15315 | } |
| 15316 | |
| 15317 | bool fInException = pEvalInfo->evalDuringException; |
| 15318 | |
| 15319 | // The thread has to be at a GC safe place for now, just in case the func eval causes a collection. Processing an |
| 15320 | // exception also counts as a "safe place." Eventually, we'd like to have to avoid this check and eval anyway, but |
| 15321 | // that's a way's off... |
| 15322 | if (!fInException && !g_pDebugger->IsThreadAtSafePlace(pThread)) |
| 15323 | return CORDBG_E_ILLEGAL_AT_GC_UNSAFE_POINT; |
| 15324 | |
| 15325 | // For now, we assume that the target thread must be stopped in managed code due to a single step or a |
| 15326 | // breakpoint. Being stopped while sending a first or second chance exception is also valid, and there may or may |
| 15327 | // not be a filter context when we do a func eval from such places. This will loosen over time, eventually allowing |
| 15328 | // threads that are stopped anywhere in managed code to perform func evals. |
| 15329 | CONTEXT *filterContext = GetManagedStoppedCtx(pThread); |
| 15330 | |
| 15331 | if (filterContext == NULL && !fInException) |
| 15332 | { |
| 15333 | return CORDBG_E_ILLEGAL_AT_GC_UNSAFE_POINT; |
| 15334 | } |
| 15335 | |
| 15336 | // Create a DebuggerEval to hold info about this eval while its in progress. Constructor copies the thread's |
| 15337 | // CONTEXT. |
| 15338 | DebuggerEval *pDE = new (interopsafe, nothrow) DebuggerEval(filterContext, pEvalInfo, fInException); |
| 15339 | |
| 15340 | if (pDE == NULL) |
| 15341 | { |
| 15342 | return E_OUTOFMEMORY; |
| 15343 | } |
| 15344 | else if (!pDE->Init()) |
| 15345 | { |
| 15346 | // We fail to change the m_breakpointInstruction field to PAGE_EXECUTE_READWRITE permission. |
| 15347 | return E_FAIL; |
| 15348 | } |
| 15349 | |
| 15350 | SIZE_T argDataAreaSize = 0; |
| 15351 | |
| 15352 | argDataAreaSize += pEvalInfo->genericArgsNodeCount * sizeof(DebuggerIPCE_TypeArgData); |
| 15353 | |
| 15354 | if ((pEvalInfo->funcEvalType == DB_IPCE_FET_NORMAL) || |
| 15355 | (pEvalInfo->funcEvalType == DB_IPCE_FET_NEW_OBJECT) || |
| 15356 | (pEvalInfo->funcEvalType == DB_IPCE_FET_NEW_OBJECT_NC)) |
| 15357 | argDataAreaSize += pEvalInfo->argCount * sizeof(DebuggerIPCE_FuncEvalArgData); |
| 15358 | else if (pEvalInfo->funcEvalType == DB_IPCE_FET_NEW_STRING) |
| 15359 | argDataAreaSize += pEvalInfo->stringSize; |
| 15360 | else if (pEvalInfo->funcEvalType == DB_IPCE_FET_NEW_ARRAY) |
| 15361 | argDataAreaSize += pEvalInfo->arrayRank * sizeof(SIZE_T); |
| 15362 | |
| 15363 | if (argDataAreaSize > 0) |
| 15364 | { |
| 15365 | pDE->m_argData = new (interopsafe, nothrow) BYTE[argDataAreaSize]; |
| 15366 | |
| 15367 | if (pDE->m_argData == NULL) |
| 15368 | { |
| 15369 | DeleteInteropSafeExecutable(pDE); |
| 15370 | return E_OUTOFMEMORY; |
| 15371 | } |
| 15372 | |
| 15373 | // Pass back the address of the argument data area so the right side can write to it for us. |
| 15374 | *argDataArea = pDE->m_argData; |
| 15375 | } |
| 15376 | |
| 15377 | // Set the thread's IP (in the filter context) to our hijack function if we're stopped due to a breakpoint or single |
| 15378 | // step. |
| 15379 | if (!fInException) |
| 15380 | { |
| 15381 | _ASSERTE(filterContext != NULL); |
| 15382 | |
| 15383 | ::SetIP(filterContext, (UINT_PTR)GetEEFuncEntryPoint(::FuncEvalHijack)); |
| 15384 | |
| 15385 | // Don't be fooled into thinking you can push things onto the thread's stack now. If the thread is stopped at a |
| 15386 | // breakpoint or from a single step, then its really suspended in the SEH filter. ESP in the thread's CONTEXT, |
| 15387 | // therefore, points into the middle of the thread's current stack. So we pass things we need in the hijack in |
| 15388 | // the thread's registers. |
| 15389 | |
| 15390 | // Set the first argument to point to the DebuggerEval. |
| 15391 | #if defined(_TARGET_X86_) |
| 15392 | filterContext->Eax = (DWORD)pDE; |
| 15393 | #elif defined(_TARGET_AMD64_) |
| 15394 | #ifdef UNIX_AMD64_ABI |
| 15395 | filterContext->Rdi = (SIZE_T)pDE; |
| 15396 | #else // UNIX_AMD64_ABI |
| 15397 | filterContext->Rcx = (SIZE_T)pDE; |
| 15398 | #endif // !UNIX_AMD64_ABI |
| 15399 | #elif defined(_TARGET_ARM_) |
| 15400 | filterContext->R0 = (DWORD)pDE; |
| 15401 | #elif defined(_TARGET_ARM64_) |
| 15402 | filterContext->X0 = (SIZE_T)pDE; |
| 15403 | #else |
| 15404 | PORTABILITY_ASSERT("Debugger::FuncEvalSetup is not implemented on this platform." ); |
| 15405 | #endif |
| 15406 | |
| 15407 | // |
| 15408 | // To prevent GCs until the func-eval gets a chance to run, we increment the counter here. |
| 15409 | // We only need to do this if we have changed the filter CONTEXT, since the stack will be unwalkable |
| 15410 | // in this case. |
| 15411 | // |
| 15412 | g_pDebugger->IncThreadsAtUnsafePlaces(); |
| 15413 | } |
| 15414 | else |
| 15415 | { |
| 15416 | HRESULT hr = CheckInitPendingFuncEvalTable(); |
| 15417 | |
| 15418 | if (FAILED(hr)) |
| 15419 | { |
| 15420 | DeleteInteropSafeExecutable(pDE); // Note this runs the destructor for DebuggerEval, which releases its internal buffers |
| 15421 | return (hr); |
| 15422 | } |
| 15423 | // If we're in an exception, then add a pending eval for this thread. This will cause us to perform the func |
| 15424 | // eval when the user continues the process after the current exception event. |
| 15425 | GetPendingEvals()->AddPendingEval(pDE->m_thread, pDE); |
| 15426 | } |
| 15427 | |
| 15428 | |
| 15429 | // Return that all went well. Tracing the stack at this point should not show that the func eval is setup, but it |
| 15430 | // will show a wrong IP, so it shouldn't be done. |
| 15431 | *debuggerEvalKey = pDE; |
| 15432 | |
| 15433 | LOG((LF_CORDB, LL_INFO100000, "D:FES for pDE:%08x evalType:%d on thread %#x, id=0x%x\n" , |
| 15434 | pDE, pDE->m_evalType, pThread, GetThreadIdHelper(pThread))); |
| 15435 | |
| 15436 | return S_OK; |
| 15437 | } |
| 15438 | |
| 15439 | // |
| 15440 | // FuncEvalSetupReAbort sets up a function evaluation specifically to rethrow a ThreadAbortException on the given |
| 15441 | // thread. |
| 15442 | // |
| 15443 | HRESULT Debugger::FuncEvalSetupReAbort(Thread *pThread, Thread::ThreadAbortRequester requester) |
| 15444 | { |
| 15445 | CONTRACTL |
| 15446 | { |
| 15447 | NOTHROW; |
| 15448 | GC_NOTRIGGER; |
| 15449 | SO_NOT_MAINLINE; |
| 15450 | } |
| 15451 | CONTRACTL_END; |
| 15452 | |
| 15453 | LOG((LF_CORDB, LL_INFO1000, |
| 15454 | "D::FESRA: performing reabort on thread %#x, id=0x%x\n" , |
| 15455 | pThread, GetThreadIdHelper(pThread))); |
| 15456 | |
| 15457 | // The thread has to be at a GC safe place. It should be, since this is only done in response to a previous eval |
| 15458 | // completing with a ThreadAbortException. |
| 15459 | if (!g_pDebugger->IsThreadAtSafePlace(pThread)) |
| 15460 | return CORDBG_E_ILLEGAL_AT_GC_UNSAFE_POINT; |
| 15461 | |
| 15462 | // Grab the filter context. |
| 15463 | CONTEXT *filterContext = GetManagedStoppedCtx(pThread); |
| 15464 | |
| 15465 | if (filterContext == NULL) |
| 15466 | { |
| 15467 | return CORDBG_E_ILLEGAL_AT_GC_UNSAFE_POINT; |
| 15468 | } |
| 15469 | |
| 15470 | // Create a DebuggerEval to hold info about this eval while its in progress. Constructor copies the thread's |
| 15471 | // CONTEXT. |
| 15472 | DebuggerEval *pDE = new (interopsafe, nothrow) DebuggerEval(filterContext, pThread, requester); |
| 15473 | |
| 15474 | if (pDE == NULL) |
| 15475 | { |
| 15476 | return E_OUTOFMEMORY; |
| 15477 | } |
| 15478 | else if (!pDE->Init()) |
| 15479 | { |
| 15480 | // We fail to change the m_breakpointInstruction field to PAGE_EXECUTE_READWRITE permission. |
| 15481 | return E_FAIL; |
| 15482 | } |
| 15483 | |
| 15484 | // Set the thread's IP (in the filter context) to our hijack function. |
| 15485 | _ASSERTE(filterContext != NULL); |
| 15486 | |
| 15487 | ::SetIP(filterContext, (UINT_PTR)GetEEFuncEntryPoint(::FuncEvalHijack)); |
| 15488 | |
| 15489 | #ifdef _TARGET_X86_ // reliance on filterContext->Eip & Eax |
| 15490 | // Set EAX to point to the DebuggerEval. |
| 15491 | filterContext->Eax = (DWORD)pDE; |
| 15492 | #elif defined(_TARGET_AMD64_) |
| 15493 | // Set RCX to point to the DebuggerEval. |
| 15494 | filterContext->Rcx = (SIZE_T)pDE; |
| 15495 | #elif defined(_TARGET_ARM_) |
| 15496 | filterContext->R0 = (DWORD)pDE; |
| 15497 | #elif defined(_TARGET_ARM64_) |
| 15498 | filterContext->X0 = (SIZE_T)pDE; |
| 15499 | #else |
| 15500 | PORTABILITY_ASSERT("FuncEvalSetupReAbort (Debugger.cpp) is not implemented on this platform." ); |
| 15501 | #endif |
| 15502 | |
| 15503 | // Now clear the bit requesting a re-abort |
| 15504 | pThread->ResetThreadStateNC(Thread::TSNC_DebuggerReAbort); |
| 15505 | |
| 15506 | g_pDebugger->IncThreadsAtUnsafePlaces(); |
| 15507 | |
| 15508 | // Return that all went well. Tracing the stack at this point should not show that the func eval is setup, but it |
| 15509 | // will show a wrong IP, so it shouldn't be done. |
| 15510 | |
| 15511 | return S_OK; |
| 15512 | } |
| 15513 | |
| 15514 | // |
| 15515 | // FuncEvalAbort: Does a gentle abort of a func-eval already in progress. |
| 15516 | // Because this type of abort waits for the thread to get to a good state, |
| 15517 | // it may never return, or may time out. |
| 15518 | // |
| 15519 | |
| 15520 | // |
| 15521 | // Wait at most 0.5 seconds. |
| 15522 | // |
| 15523 | #define FUNC_EVAL_DEFAULT_TIMEOUT_VALUE 500 |
| 15524 | |
| 15525 | HRESULT |
| 15526 | Debugger::FuncEvalAbort( |
| 15527 | DebuggerEval *debuggerEvalKey |
| 15528 | ) |
| 15529 | { |
| 15530 | CONTRACTL |
| 15531 | { |
| 15532 | THROWS; |
| 15533 | GC_NOTRIGGER; |
| 15534 | } |
| 15535 | CONTRACTL_END; |
| 15536 | |
| 15537 | DebuggerEval *pDE = (DebuggerEval*) debuggerEvalKey; |
| 15538 | HRESULT hr = S_OK; |
| 15539 | CHECK_IF_CAN_TAKE_HELPER_LOCKS_IN_THIS_SCOPE(&hr, GetCanary()); |
| 15540 | if (FAILED(hr)) |
| 15541 | { |
| 15542 | return hr; |
| 15543 | } |
| 15544 | |
| 15545 | |
| 15546 | if (pDE->m_aborting == DebuggerEval::FE_ABORT_NONE) |
| 15547 | { |
| 15548 | // Remember that we're aborting this func eval. |
| 15549 | pDE->m_aborting = DebuggerEval::FE_ABORT_NORMAL; |
| 15550 | |
| 15551 | LOG((LF_CORDB, LL_INFO1000, |
| 15552 | "D::FEA: performing UserAbort on thread %#x, id=0x%x\n" , |
| 15553 | pDE->m_thread, GetThreadIdHelper(pDE->m_thread))); |
| 15554 | |
| 15555 | if (!g_fProcessDetach && !pDE->m_completed) |
| 15556 | { |
| 15557 | // |
| 15558 | // Perform a stop on the thread that the eval is running on. |
| 15559 | // This will cause a ThreadAbortException to be thrown on the thread. |
| 15560 | // |
| 15561 | EX_TRY |
| 15562 | { |
| 15563 | hr = pDE->m_thread->UserAbort(Thread::TAR_FuncEval, EEPolicy::TA_Safe, (DWORD)FUNC_EVAL_DEFAULT_TIMEOUT_VALUE, Thread::UAC_Normal); |
| 15564 | if (hr == HRESULT_FROM_WIN32(ERROR_TIMEOUT)) |
| 15565 | { |
| 15566 | hr = S_OK; |
| 15567 | } |
| 15568 | } |
| 15569 | EX_CATCH |
| 15570 | { |
| 15571 | _ASSERTE(!"Unknown exception from UserAbort(), not expected" ); |
| 15572 | } |
| 15573 | EX_END_CATCH(EX_RETHROW); |
| 15574 | |
| 15575 | } |
| 15576 | |
| 15577 | LOG((LF_CORDB, LL_INFO1000, "D::FEA: UserAbort complete.\n" )); |
| 15578 | } |
| 15579 | |
| 15580 | return hr; |
| 15581 | } |
| 15582 | |
| 15583 | // |
| 15584 | // FuncEvalRudeAbort: Does a rude abort of a func-eval in progress. This |
| 15585 | // leaves the thread in an undetermined state. |
| 15586 | // |
| 15587 | HRESULT |
| 15588 | Debugger::FuncEvalRudeAbort( |
| 15589 | DebuggerEval *debuggerEvalKey |
| 15590 | ) |
| 15591 | { |
| 15592 | CONTRACTL |
| 15593 | { |
| 15594 | THROWS; |
| 15595 | GC_NOTRIGGER; |
| 15596 | SO_NOT_MAINLINE; |
| 15597 | } |
| 15598 | CONTRACTL_END; |
| 15599 | |
| 15600 | HRESULT hr = S_OK; |
| 15601 | CHECK_IF_CAN_TAKE_HELPER_LOCKS_IN_THIS_SCOPE(&hr, GetCanary()); |
| 15602 | if (FAILED(hr)) |
| 15603 | { |
| 15604 | return hr; |
| 15605 | } |
| 15606 | |
| 15607 | |
| 15608 | DebuggerEval *pDE = debuggerEvalKey; |
| 15609 | |
| 15610 | |
| 15611 | if (!(pDE->m_aborting & DebuggerEval::FE_ABORT_RUDE)) |
| 15612 | { |
| 15613 | // |
| 15614 | // Remember that we're aborting this func eval. |
| 15615 | // |
| 15616 | pDE->m_aborting = (DebuggerEval::FUNC_EVAL_ABORT_TYPE)(pDE->m_aborting | DebuggerEval::FE_ABORT_RUDE); |
| 15617 | |
| 15618 | LOG((LF_CORDB, LL_INFO1000, |
| 15619 | "D::FEA: performing RudeAbort on thread %#x, id=0x%x\n" , |
| 15620 | pDE->m_thread, Debugger::GetThreadIdHelper(pDE->m_thread))); |
| 15621 | |
| 15622 | if (!g_fProcessDetach && !pDE->m_completed) |
| 15623 | { |
| 15624 | // |
| 15625 | // Perform a stop on the thread that the eval is running on. |
| 15626 | // This will cause a ThreadAbortException to be thrown on the thread. |
| 15627 | // |
| 15628 | EX_TRY |
| 15629 | { |
| 15630 | hr = pDE->m_thread->UserAbort(Thread::TAR_FuncEval, EEPolicy::TA_Rude, (DWORD)FUNC_EVAL_DEFAULT_TIMEOUT_VALUE, Thread::UAC_Normal); |
| 15631 | if (hr == HRESULT_FROM_WIN32(ERROR_TIMEOUT)) |
| 15632 | { |
| 15633 | hr = S_OK; |
| 15634 | } |
| 15635 | } |
| 15636 | EX_CATCH |
| 15637 | { |
| 15638 | _ASSERTE(!"Unknown exception from UserAbort(), not expected" ); |
| 15639 | EX_RETHROW; |
| 15640 | } |
| 15641 | EX_END_CATCH(RethrowTerminalExceptions); |
| 15642 | } |
| 15643 | |
| 15644 | LOG((LF_CORDB, LL_INFO1000, "D::FEA: RudeAbort complete.\n" )); |
| 15645 | } |
| 15646 | |
| 15647 | return hr; |
| 15648 | } |
| 15649 | |
| 15650 | // |
| 15651 | // FuncEvalCleanup cleans up after a function evaluation is released. |
| 15652 | // |
| 15653 | HRESULT Debugger::FuncEvalCleanup(DebuggerEval *debuggerEvalKey) |
| 15654 | { |
| 15655 | LIMITED_METHOD_CONTRACT; |
| 15656 | |
| 15657 | DebuggerEval *pDE = debuggerEvalKey; |
| 15658 | |
| 15659 | _ASSERTE(pDE->m_completed); |
| 15660 | |
| 15661 | LOG((LF_CORDB, LL_INFO1000, "D::FEC: pDE:%08x 0x%08x, id=0x%x\n" , |
| 15662 | pDE, pDE->m_thread, GetThreadIdHelper(pDE->m_thread))); |
| 15663 | |
| 15664 | DeleteInteropSafeExecutable(pDE->m_bpInfoSegment); |
| 15665 | DeleteInteropSafe(pDE); |
| 15666 | |
| 15667 | return S_OK; |
| 15668 | } |
| 15669 | |
| 15670 | #endif // ifndef DACCESS_COMPILE |
| 15671 | |
| 15672 | // |
| 15673 | // SetReference sets an object reference for the Right Side, |
| 15674 | // respecting the write barrier for references that are in the heap. |
| 15675 | // |
| 15676 | HRESULT Debugger::SetReference(void *objectRefAddress, |
| 15677 | VMPTR_OBJECTHANDLE vmObjectHandle, |
| 15678 | void *newReference) |
| 15679 | { |
| 15680 | CONTRACTL |
| 15681 | { |
| 15682 | NOTHROW; |
| 15683 | GC_NOTRIGGER; |
| 15684 | } |
| 15685 | CONTRACTL_END; |
| 15686 | |
| 15687 | HRESULT hr = S_OK; |
| 15688 | |
| 15689 | hr = ValidateObject((Object *)newReference); |
| 15690 | if (FAILED(hr)) |
| 15691 | { |
| 15692 | return hr; |
| 15693 | } |
| 15694 | |
| 15695 | |
| 15696 | // If the object ref isn't in a handle, then go ahead and use |
| 15697 | // SetObjectReference. |
| 15698 | if (vmObjectHandle.IsNull()) |
| 15699 | { |
| 15700 | OBJECTREF *dst = (OBJECTREF*)objectRefAddress; |
| 15701 | OBJECTREF src = *((OBJECTREF*)&newReference); |
| 15702 | |
| 15703 | SetObjectReferenceUnchecked(dst, src); |
| 15704 | } |
| 15705 | else |
| 15706 | { |
| 15707 | |
| 15708 | // If the object reference to set is inside of a handle, then |
| 15709 | // fixup the handle. |
| 15710 | OBJECTHANDLE h = vmObjectHandle.GetRawPtr(); |
| 15711 | OBJECTREF src = *((OBJECTREF*)&newReference); |
| 15712 | |
| 15713 | IGCHandleManager* mgr = GCHandleUtilities::GetGCHandleManager(); |
| 15714 | mgr->StoreObjectInHandle(h, OBJECTREFToObject(src)); |
| 15715 | } |
| 15716 | |
| 15717 | return S_OK; |
| 15718 | } |
| 15719 | |
| 15720 | // |
| 15721 | // SetValueClass sets a value class for the Right Side, respecting the write barrier for references that are embedded |
| 15722 | // within in the value class. |
| 15723 | // |
| 15724 | HRESULT Debugger::SetValueClass(void *oldData, void *newData, DebuggerIPCE_BasicTypeData * type) |
| 15725 | { |
| 15726 | CONTRACTL |
| 15727 | { |
| 15728 | NOTHROW; |
| 15729 | GC_NOTRIGGER; |
| 15730 | } |
| 15731 | CONTRACTL_END; |
| 15732 | |
| 15733 | HRESULT hr = S_OK; |
| 15734 | |
| 15735 | TypeHandle th; |
| 15736 | hr = BasicTypeInfoToTypeHandle(type, &th); |
| 15737 | |
| 15738 | if (FAILED(hr)) |
| 15739 | return CORDBG_E_CLASS_NOT_LOADED; |
| 15740 | |
| 15741 | // Update the value class. |
| 15742 | CopyValueClassUnchecked(oldData, newData, th.GetMethodTable()); |
| 15743 | |
| 15744 | // Free the buffer that is holding the new data. This is a buffer that was created in response to a GET_BUFFER |
| 15745 | // message, so we release it with ReleaseRemoteBuffer. |
| 15746 | ReleaseRemoteBuffer((BYTE*)newData, true); |
| 15747 | |
| 15748 | return hr; |
| 15749 | } |
| 15750 | |
| 15751 | /****************************************************************************** |
| 15752 | * |
| 15753 | ******************************************************************************/ |
| 15754 | HRESULT Debugger::SetILInstrumentedCodeMap(MethodDesc *fd, |
| 15755 | BOOL fStartJit, |
| 15756 | ULONG32 cILMapEntries, |
| 15757 | COR_IL_MAP rgILMapEntries[]) |
| 15758 | { |
| 15759 | CONTRACTL |
| 15760 | { |
| 15761 | THROWS; |
| 15762 | GC_TRIGGERS_FROM_GETJITINFO; |
| 15763 | } |
| 15764 | CONTRACTL_END; |
| 15765 | |
| 15766 | if (!HasLazyData()) |
| 15767 | { |
| 15768 | DebuggerLockHolder dbgLockHolder(this); |
| 15769 | // This is an entry path into the debugger, so make sure we're inited. |
| 15770 | LazyInit(); |
| 15771 | } |
| 15772 | |
| 15773 | DebuggerMethodInfo * dmi = GetOrCreateMethodInfo(fd->GetModule(), fd->GetMemberDef()); |
| 15774 | if (dmi == NULL) |
| 15775 | { |
| 15776 | return E_OUTOFMEMORY; |
| 15777 | } |
| 15778 | |
| 15779 | dmi->SetInstrumentedILMap(rgILMapEntries, cILMapEntries); |
| 15780 | |
| 15781 | return S_OK; |
| 15782 | } |
| 15783 | |
| 15784 | // |
| 15785 | // EarlyHelperThreadDeath handles the case where the helper |
| 15786 | // thread has been ripped out from underneath of us by |
| 15787 | // ExitProcess or TerminateProcess. These calls are bad, whacking |
| 15788 | // all threads except the caller in the process. This can happen, for |
| 15789 | // instance, when an app calls ExitProcess. All threads are wacked, |
| 15790 | // the main thread calls all DLL main's, and the EE starts shutting |
| 15791 | // down in its DLL main with the helper thread terminated. |
| 15792 | // |
| 15793 | void Debugger::EarlyHelperThreadDeath(void) |
| 15794 | { |
| 15795 | WRAPPER_NO_CONTRACT; |
| 15796 | |
| 15797 | if (m_pRCThread) |
| 15798 | m_pRCThread->EarlyHelperThreadDeath(); |
| 15799 | } |
| 15800 | |
| 15801 | // |
| 15802 | // This tells the debugger that shutdown of the in-proc debugging services has begun. We need to know this during |
| 15803 | // managed/unmanaged debugging so we can stop doing certian things to the process (like hijacking threads.) |
| 15804 | // |
| 15805 | void Debugger::ShutdownBegun(void) |
| 15806 | { |
| 15807 | CONTRACTL |
| 15808 | { |
| 15809 | NOTHROW; |
| 15810 | GC_NOTRIGGER; |
| 15811 | SO_INTOLERANT; |
| 15812 | } |
| 15813 | CONTRACTL_END; |
| 15814 | |
| 15815 | |
| 15816 | // Shouldn't be Debugger-stopped if we're shutting down. |
| 15817 | // However, shutdown can occur in preemptive mode. Thus if the RS does an AsyncBreak late |
| 15818 | // enough, then the LS will appear to be stopped but may still shutdown. |
| 15819 | // Since the debuggee can exit asynchronously at any time (eg, suppose somebody forcefully |
| 15820 | // kills it with taskman), this doesn't introduce a new case. |
| 15821 | // That aside, it would be great to be able to assert this: |
| 15822 | //_ASSERTE(!IsStopped()); |
| 15823 | |
| 15824 | if (m_pRCThread != NULL) |
| 15825 | { |
| 15826 | DebuggerIPCControlBlock *dcb = m_pRCThread->GetDCB(); |
| 15827 | |
| 15828 | if ((dcb != NULL) && (dcb->m_rightSideIsWin32Debugger)) |
| 15829 | dcb->m_shutdownBegun = true; |
| 15830 | } |
| 15831 | } |
| 15832 | |
| 15833 | /* |
| 15834 | * LockDebuggerForShutdown |
| 15835 | * |
| 15836 | * This routine is used during shutdown to tell the in-process portion of the |
| 15837 | * debugger to synchronize with any threads that are currently using the |
| 15838 | * debugging facilities such that no more threads will run debugging services. |
| 15839 | * |
| 15840 | * This is accomplished by transitioning the debugger lock in to a state where |
| 15841 | * it will block all threads, except for the finalizer, shutdown, and helper thread. |
| 15842 | */ |
| 15843 | void Debugger::LockDebuggerForShutdown(void) |
| 15844 | { |
| 15845 | #ifndef DACCESS_COMPILE |
| 15846 | |
| 15847 | CONTRACTL |
| 15848 | { |
| 15849 | NOTHROW; |
| 15850 | GC_NOTRIGGER; |
| 15851 | SO_INTOLERANT; |
| 15852 | MODE_ANY; |
| 15853 | } |
| 15854 | CONTRACTL_END; |
| 15855 | |
| 15856 | DebuggerLockHolder dbgLockHolder(this); |
| 15857 | |
| 15858 | // Shouldn't be Debugger-stopped if we're shutting down. |
| 15859 | // However, shutdown can occur in preemptive mode. Thus if the RS does an AsyncBreak late |
| 15860 | // enough, then the LS will appear to be stopped but may still shutdown. |
| 15861 | // Since the debuggee can exit asynchronously at any time (eg, suppose somebody forcefully |
| 15862 | // kills it with taskman), this doesn't introduce a new case. |
| 15863 | // That aside, it would be great to be able to assert this: |
| 15864 | //_ASSERTE(!IsStopped()); |
| 15865 | |
| 15866 | // After setting this flag, nonspecial threads will not be able to |
| 15867 | // take the debugger lock. |
| 15868 | m_fShutdownMode = true; |
| 15869 | |
| 15870 | m_ignoreThreadDetach = TRUE; |
| 15871 | #else |
| 15872 | DacNotImpl(); |
| 15873 | #endif |
| 15874 | } |
| 15875 | |
| 15876 | |
| 15877 | /* |
| 15878 | * DisableDebugger |
| 15879 | * |
| 15880 | * This routine is used by the EE to inform the debugger that it should block all |
| 15881 | * threads from executing as soon as it can. Any thread entering the debugger can |
| 15882 | * block infinitely, as well. |
| 15883 | * |
| 15884 | * This is accomplished by transitioning the debugger lock into a mode where it will |
| 15885 | * block all threads infinitely rather than taking the lock. |
| 15886 | * |
| 15887 | */ |
| 15888 | void Debugger::DisableDebugger(void) |
| 15889 | { |
| 15890 | #ifndef DACCESS_COMPILE |
| 15891 | |
| 15892 | CONTRACTL |
| 15893 | { |
| 15894 | NOTHROW; |
| 15895 | GC_NOTRIGGER; |
| 15896 | SO_INTOLERANT; |
| 15897 | PRECONDITION(ThisMaybeHelperThread()); |
| 15898 | } |
| 15899 | CONTRACTL_END; |
| 15900 | |
| 15901 | m_fDisabled = true; |
| 15902 | |
| 15903 | CORDBDebuggerSetUnrecoverableError(this, CORDBG_E_DEBUGGING_DISABLED, false); |
| 15904 | |
| 15905 | #else |
| 15906 | DacNotImpl(); |
| 15907 | #endif |
| 15908 | } |
| 15909 | |
| 15910 | |
| 15911 | /**************************************************************************** |
| 15912 | * This will perform the duties of the helper thread if none already exists. |
| 15913 | * This is called in the case that the loader lock is held and so no new |
| 15914 | * threads can be spun up to be the helper thread, so the existing thread |
| 15915 | * must be the helper thread until a new one can spin up. |
| 15916 | * This is also called in the shutdown case (g_fProcessDetach==true) and our |
| 15917 | * helper may have already been blown away. |
| 15918 | ***************************************************************************/ |
| 15919 | void Debugger::DoHelperThreadDuty() |
| 15920 | { |
| 15921 | CONTRACTL |
| 15922 | { |
| 15923 | SO_NOT_MAINLINE; |
| 15924 | THROWS; |
| 15925 | WRAPPER(GC_TRIGGERS); |
| 15926 | } |
| 15927 | CONTRACTL_END; |
| 15928 | |
| 15929 | // This should not be a real helper thread. |
| 15930 | _ASSERTE(!IsDbgHelperSpecialThread()); |
| 15931 | _ASSERTE(ThreadHoldsLock()); |
| 15932 | |
| 15933 | // We may be here in the shutdown case (only if the shutdown started after we got here). |
| 15934 | // We'll get killed randomly anyways, so not much we can do. |
| 15935 | |
| 15936 | // These assumptions are based off us being called from TART. |
| 15937 | _ASSERTE(ThreadStore::HoldingThreadStore() || g_fProcessDetach); // got this from TART |
| 15938 | _ASSERTE(m_trappingRuntimeThreads); // We're only called from TART. |
| 15939 | _ASSERTE(!m_stopped); // we haven't sent the sync-complete yet. |
| 15940 | |
| 15941 | // Can't have 2 threads doing helper duty. |
| 15942 | _ASSERTE(m_pRCThread->GetDCB()->m_temporaryHelperThreadId == 0); |
| 15943 | |
| 15944 | LOG((LF_CORDB, LL_INFO1000, |
| 15945 | "D::SSCIPCE: helper thread is not ready, doing helper " |
| 15946 | "thread duty...\n" )); |
| 15947 | |
| 15948 | // We're the temporary helper thread now. |
| 15949 | DWORD dwMyTID = GetCurrentThreadId(); |
| 15950 | m_pRCThread->GetDCB()->m_temporaryHelperThreadId = dwMyTID; |
| 15951 | |
| 15952 | // Make sure the helper thread has something to wait on while |
| 15953 | // we're trying to be the helper thread. |
| 15954 | VERIFY(ResetEvent(m_pRCThread->GetHelperThreadCanGoEvent())); |
| 15955 | |
| 15956 | // We have not sent the sync-complete flare yet. |
| 15957 | |
| 15958 | // Now that we've synchronized, we'll eventually send the sync-complete. But we're currently within the |
| 15959 | // scope of sombody already sending an event. So unlock from that event so that we can send the sync-complete. |
| 15960 | // Don't release the debugger lock |
| 15961 | // |
| 15962 | UnlockFromEventSending(NULL); |
| 15963 | |
| 15964 | // We are the temporary helper thread. We will not deal with everything! But just pump for |
| 15965 | // continue. |
| 15966 | // |
| 15967 | m_pRCThread->TemporaryHelperThreadMainLoop(); |
| 15968 | |
| 15969 | // We do not need to relock it since we never release it. |
| 15970 | LockForEventSending(NULL); |
| 15971 | _ASSERTE(ThreadHoldsLock()); |
| 15972 | |
| 15973 | |
| 15974 | STRESS_LOG1(LF_CORDB, LL_INFO1000, |
| 15975 | "D::SSCIPCE: done doing helper thread duty. " |
| 15976 | "Current helper thread id=0x%x\n" , |
| 15977 | m_pRCThread->GetDCB()->m_helperThreadId); |
| 15978 | |
| 15979 | // We're not the temporary helper thread anymore. |
| 15980 | _ASSERTE(m_pRCThread->GetDCB()->m_temporaryHelperThreadId == dwMyTID); |
| 15981 | m_pRCThread->GetDCB()->m_temporaryHelperThreadId = 0; |
| 15982 | |
| 15983 | // Let the helper thread go if its waiting on us. |
| 15984 | VERIFY(SetEvent(m_pRCThread->GetHelperThreadCanGoEvent())); |
| 15985 | } |
| 15986 | |
| 15987 | |
| 15988 | |
| 15989 | // This function is called from the EE to notify the right side |
| 15990 | // whenever the name of a thread or AppDomain changes |
| 15991 | // |
| 15992 | // Notes: |
| 15993 | // This just sends a ping event to notify that the name has been changed. |
| 15994 | // It does not send the actual updated name. Instead, the debugger can query for the name. |
| 15995 | // |
| 15996 | // For an AppDomain name change: |
| 15997 | // - pAppDoamin != NULL |
| 15998 | // - name retrieved via ICorDebugAppDomain::GetName |
| 15999 | // |
| 16000 | // For a Thread name change: |
| 16001 | // - pAppDomain == NULL, pThread != NULL |
| 16002 | // - name retrieved via a func-eval of Thread::get_Name |
| 16003 | HRESULT Debugger::NameChangeEvent(AppDomain *pAppDomain, Thread *pThread) |
| 16004 | { |
| 16005 | CONTRACTL |
| 16006 | { |
| 16007 | SO_NOT_MAINLINE; |
| 16008 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 16009 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 16010 | } |
| 16011 | CONTRACTL_END; |
| 16012 | |
| 16013 | // Don't try to send one of these if the thread really isn't setup |
| 16014 | // yet. This can happen when initially setting up an app domain, |
| 16015 | // before the appdomain create event has been sent. Since the app |
| 16016 | // domain create event hasn't been sent yet in this case, its okay |
| 16017 | // to do this... |
| 16018 | if (g_pEEInterface->GetThread() == NULL) |
| 16019 | return S_OK; |
| 16020 | |
| 16021 | // Skip if thread doesn't yet have native ID. |
| 16022 | // This can easily happen if an app sets Thread.Name before it calls Thread.Start. |
| 16023 | // Since this is just a ping-event, it's ignorable. The debugger can query the thread name at Thread.Start in this case. |
| 16024 | // This emulates whidbey semantics. |
| 16025 | if (pThread != NULL) |
| 16026 | { |
| 16027 | if (pThread->GetOSThreadId() == 0) |
| 16028 | { |
| 16029 | return S_OK; |
| 16030 | } |
| 16031 | } |
| 16032 | |
| 16033 | LOG((LF_CORDB, LL_INFO1000, "D::NCE: Sending NameChangeEvent 0x%x 0x%x\n" , |
| 16034 | pAppDomain, pThread)); |
| 16035 | |
| 16036 | Thread *curThread = g_pEEInterface->GetThread(); |
| 16037 | SENDIPCEVENT_BEGIN(this, curThread); |
| 16038 | |
| 16039 | if (CORDebuggerAttached()) |
| 16040 | { |
| 16041 | |
| 16042 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 16043 | InitIPCEvent(ipce, |
| 16044 | DB_IPCE_NAME_CHANGE, |
| 16045 | curThread, |
| 16046 | curThread->GetDomain()); |
| 16047 | |
| 16048 | |
| 16049 | if (pAppDomain) |
| 16050 | { |
| 16051 | ipce->NameChange.eventType = APP_DOMAIN_NAME_CHANGE; |
| 16052 | ipce->NameChange.vmAppDomain.SetRawPtr(pAppDomain); |
| 16053 | } |
| 16054 | else |
| 16055 | { |
| 16056 | // Thread Name |
| 16057 | ipce->NameChange.eventType = THREAD_NAME_CHANGE; |
| 16058 | _ASSERTE (pThread); |
| 16059 | ipce->NameChange.vmThread.SetRawPtr(pThread); |
| 16060 | } |
| 16061 | |
| 16062 | m_pRCThread->SendIPCEvent(); |
| 16063 | |
| 16064 | // Stop all Runtime threads |
| 16065 | TrapAllRuntimeThreads(); |
| 16066 | } |
| 16067 | else |
| 16068 | { |
| 16069 | LOG((LF_CORDB,LL_INFO1000, "D::NCE: Skipping SendIPCEvent because RS detached." )); |
| 16070 | } |
| 16071 | |
| 16072 | SENDIPCEVENT_END; |
| 16073 | |
| 16074 | return S_OK; |
| 16075 | |
| 16076 | } |
| 16077 | |
| 16078 | //--------------------------------------------------------------------------------------- |
| 16079 | // |
| 16080 | // Send an event to the RS indicating that there's a Ctrl-C or Ctrl-Break. |
| 16081 | // |
| 16082 | // Arguments: |
| 16083 | // dwCtrlType - represents the type of the event (Ctrl-C or Ctrl-Break) |
| 16084 | // |
| 16085 | // Return Value: |
| 16086 | // Return TRUE if the event has been handled by the debugger. |
| 16087 | // |
| 16088 | |
| 16089 | BOOL Debugger::SendCtrlCToDebugger(DWORD dwCtrlType) |
| 16090 | { |
| 16091 | CONTRACTL |
| 16092 | { |
| 16093 | SO_NOT_MAINLINE; |
| 16094 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 16095 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 16096 | } |
| 16097 | CONTRACTL_END; |
| 16098 | |
| 16099 | LOG((LF_CORDB, LL_INFO1000, "D::SCCTD: Sending CtrlC Event 0x%x\n" , dwCtrlType)); |
| 16100 | |
| 16101 | // Prevent other Runtime threads from handling events. |
| 16102 | Thread *pThread = g_pEEInterface->GetThread(); |
| 16103 | SENDIPCEVENT_BEGIN(this, pThread); |
| 16104 | |
| 16105 | if (CORDebuggerAttached()) |
| 16106 | { |
| 16107 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 16108 | InitIPCEvent(ipce, |
| 16109 | DB_IPCE_CONTROL_C_EVENT, |
| 16110 | pThread, |
| 16111 | NULL); |
| 16112 | |
| 16113 | // The RS doesn't do anything with dwCtrlType |
| 16114 | m_pRCThread->SendIPCEvent(); |
| 16115 | |
| 16116 | // Stop all Runtime threads |
| 16117 | TrapAllRuntimeThreads(); |
| 16118 | } |
| 16119 | else |
| 16120 | { |
| 16121 | LOG((LF_CORDB,LL_INFO1000, "D::SCCTD: Skipping SendIPCEvent because RS detached." )); |
| 16122 | } |
| 16123 | |
| 16124 | SENDIPCEVENT_END; |
| 16125 | |
| 16126 | // now wait for notification from the right side about whether or not |
| 16127 | // the out-of-proc debugger is handling ControlC events. |
| 16128 | ::WaitForSingleObject(GetCtrlCMutex(), INFINITE); |
| 16129 | |
| 16130 | return GetDebuggerHandlingCtrlC(); |
| 16131 | } |
| 16132 | |
| 16133 | // Allows the debugger to keep an up to date list of special threads |
| 16134 | HRESULT Debugger::UpdateSpecialThreadList(DWORD cThreadArrayLength, |
| 16135 | DWORD *rgdwThreadIDArray) |
| 16136 | { |
| 16137 | LIMITED_METHOD_CONTRACT; |
| 16138 | |
| 16139 | _ASSERTE(g_pRCThread != NULL); |
| 16140 | |
| 16141 | DebuggerIPCControlBlock *pIPC = g_pRCThread->GetDCB(); |
| 16142 | _ASSERTE(pIPC); |
| 16143 | |
| 16144 | if (!pIPC) |
| 16145 | return (E_FAIL); |
| 16146 | |
| 16147 | // Save the thread list information, and mark the dirty bit so |
| 16148 | // the right side knows. |
| 16149 | pIPC->m_specialThreadList = rgdwThreadIDArray; |
| 16150 | pIPC->m_specialThreadListLength = cThreadArrayLength; |
| 16151 | pIPC->m_specialThreadListDirty = true; |
| 16152 | |
| 16153 | return (S_OK); |
| 16154 | } |
| 16155 | |
| 16156 | // Updates the pointer for the debugger services |
| 16157 | void Debugger::SetIDbgThreadControl(IDebuggerThreadControl *pIDbgThreadControl) |
| 16158 | { |
| 16159 | CONTRACTL |
| 16160 | { |
| 16161 | SO_NOT_MAINLINE; |
| 16162 | NOTHROW; |
| 16163 | GC_NOTRIGGER; |
| 16164 | } |
| 16165 | CONTRACTL_END; |
| 16166 | if (m_pIDbgThreadControl) |
| 16167 | m_pIDbgThreadControl->Release(); |
| 16168 | |
| 16169 | m_pIDbgThreadControl = pIDbgThreadControl; |
| 16170 | |
| 16171 | if (m_pIDbgThreadControl) |
| 16172 | m_pIDbgThreadControl->AddRef(); |
| 16173 | } |
| 16174 | |
| 16175 | // |
| 16176 | // If a thread is Win32 suspended right after hitting a breakpoint instruction, but before the OS has transitioned the |
| 16177 | // thread over to the user-level exception dispatching logic, then we may see the IP pointing after the breakpoint |
| 16178 | // instruction. There are times when the Runtime will use the IP to try to determine what code as run in the prolog or |
| 16179 | // epilog, most notably when unwinding a frame. If the thread is suspended in such a case, then the unwind will believe |
| 16180 | // that the instruction that the breakpoint replaced has really been executed, which is not true. This confuses the |
| 16181 | // unwinding logic. This function is called from Thread::HandledJITCase() to help us recgonize when this may have |
| 16182 | // happened and allow us to skip the unwind and abort the HandledJITCase. |
| 16183 | // |
| 16184 | // The criteria is this: |
| 16185 | // |
| 16186 | // 1) If a debugger is attached. |
| 16187 | // |
| 16188 | // 2) If the instruction before the IP is a breakpoint instruction. |
| 16189 | // |
| 16190 | // 3) If the IP is in the prolog or epilog of a managed function. |
| 16191 | // |
| 16192 | BOOL Debugger::IsThreadContextInvalid(Thread *pThread) |
| 16193 | { |
| 16194 | CONTRACTL |
| 16195 | { |
| 16196 | SO_NOT_MAINLINE; |
| 16197 | NOTHROW; |
| 16198 | GC_NOTRIGGER; |
| 16199 | } |
| 16200 | CONTRACTL_END; |
| 16201 | |
| 16202 | BOOL invalid = FALSE; |
| 16203 | |
| 16204 | // Get the thread context. |
| 16205 | CONTEXT ctx; |
| 16206 | ctx.ContextFlags = CONTEXT_CONTROL; |
| 16207 | BOOL success = pThread->GetThreadContext(&ctx); |
| 16208 | |
| 16209 | if (success) |
| 16210 | { |
| 16211 | // Check single-step flag |
| 16212 | if (IsSSFlagEnabled(reinterpret_cast<DT_CONTEXT *>(&ctx) ARM_ARG(pThread))) |
| 16213 | { |
| 16214 | // Can't hijack a thread whose SS-flag is set. This could lead to races |
| 16215 | // with the thread taking the SS-exception. |
| 16216 | // The debugger's controller filters will poll for GC to avoid starvation. |
| 16217 | STRESS_LOG0(LF_CORDB, LL_EVERYTHING, "HJC - Hardware trace flag applied\n" ); |
| 16218 | return TRUE; |
| 16219 | } |
| 16220 | } |
| 16221 | |
| 16222 | if (success) |
| 16223 | { |
| 16224 | #ifdef _TARGET_X86_ |
| 16225 | // Grab Eip - 1 |
| 16226 | LPVOID address = (((BYTE*)GetIP(&ctx)) - 1); |
| 16227 | |
| 16228 | EX_TRY |
| 16229 | { |
| 16230 | // Use AVInRuntimeImplOkHolder. |
| 16231 | AVInRuntimeImplOkayHolder AVOkay; |
| 16232 | |
| 16233 | // Is it a breakpoint? |
| 16234 | if (AddressIsBreakpoint((CORDB_ADDRESS_TYPE*)address)) |
| 16235 | { |
| 16236 | size_t prologSize; // Unused... |
| 16237 | if (g_pEEInterface->IsInPrologOrEpilog((BYTE*)GetIP(&ctx), &prologSize)) |
| 16238 | { |
| 16239 | LOG((LF_CORDB, LL_INFO1000, "D::ITCI: thread is after a BP and in prolog or epilog.\n" )); |
| 16240 | invalid = TRUE; |
| 16241 | } |
| 16242 | } |
| 16243 | } |
| 16244 | EX_CATCH |
| 16245 | { |
| 16246 | // If we fault trying to read the byte before EIP, then we know that its not a breakpoint. |
| 16247 | // Do nothing. The default return value is FALSE. |
| 16248 | } |
| 16249 | EX_END_CATCH(SwallowAllExceptions); |
| 16250 | #else // _TARGET_X86_ |
| 16251 | // Non-x86 can detect whether the thread is suspended after an exception is hit but before |
| 16252 | // the kernel has dispatched the exception to user mode by trap frame reporting. |
| 16253 | // See Thread::IsContextSafeToRedirect(). |
| 16254 | #endif // _TARGET_X86_ |
| 16255 | } |
| 16256 | else |
| 16257 | { |
| 16258 | // If we can't get the context, then its definetly invalid... ;) |
| 16259 | LOG((LF_CORDB, LL_INFO1000, "D::ITCI: couldn't get thread's context!\n" )); |
| 16260 | invalid = TRUE; |
| 16261 | } |
| 16262 | |
| 16263 | return invalid; |
| 16264 | } |
| 16265 | |
| 16266 | |
| 16267 | // notification when a SQL connection begins |
| 16268 | void Debugger::CreateConnection(CONNID dwConnectionId, __in_z WCHAR *wzName) |
| 16269 | { |
| 16270 | CONTRACTL |
| 16271 | { |
| 16272 | SO_NOT_MAINLINE; |
| 16273 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 16274 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 16275 | } |
| 16276 | CONTRACTL_END; |
| 16277 | |
| 16278 | LOG((LF_CORDB,LL_INFO1000, "D::CreateConnection %d\n." , dwConnectionId)); |
| 16279 | |
| 16280 | if (CORDBUnrecoverableError(this)) |
| 16281 | return; |
| 16282 | |
| 16283 | Thread *pThread = g_pEEInterface->GetThread(); |
| 16284 | SENDIPCEVENT_BEGIN(this, pThread); |
| 16285 | |
| 16286 | if (CORDebuggerAttached()) |
| 16287 | { |
| 16288 | DebuggerIPCEvent* ipce; |
| 16289 | |
| 16290 | // Send a update module syns event to the Right Side. |
| 16291 | ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 16292 | InitIPCEvent(ipce, DB_IPCE_CREATE_CONNECTION, |
| 16293 | pThread, |
| 16294 | NULL); |
| 16295 | ipce->CreateConnection.connectionId = dwConnectionId; |
| 16296 | _ASSERTE(wzName != NULL); |
| 16297 | ipce->CreateConnection.wzConnectionName.SetString(wzName); |
| 16298 | |
| 16299 | m_pRCThread->SendIPCEvent(); |
| 16300 | } |
| 16301 | else |
| 16302 | { |
| 16303 | LOG((LF_CORDB,LL_INFO1000, "D::CreateConnection: Skipping SendIPCEvent because RS detached." )); |
| 16304 | } |
| 16305 | |
| 16306 | // Stop all Runtime threads if we actually sent an event |
| 16307 | if (CORDebuggerAttached()) |
| 16308 | { |
| 16309 | TrapAllRuntimeThreads(); |
| 16310 | } |
| 16311 | |
| 16312 | SENDIPCEVENT_END; |
| 16313 | } |
| 16314 | |
| 16315 | // notification when a SQL connection ends |
| 16316 | void Debugger::DestroyConnection(CONNID dwConnectionId) |
| 16317 | { |
| 16318 | CONTRACTL |
| 16319 | { |
| 16320 | SO_NOT_MAINLINE; |
| 16321 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 16322 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 16323 | } |
| 16324 | CONTRACTL_END; |
| 16325 | |
| 16326 | LOG((LF_CORDB,LL_INFO1000, "D::DestroyConnection %d\n." , dwConnectionId)); |
| 16327 | |
| 16328 | if (CORDBUnrecoverableError(this)) |
| 16329 | return; |
| 16330 | |
| 16331 | Thread *thread = g_pEEInterface->GetThread(); |
| 16332 | // Note that the debugger lock is reentrant, so we may or may not hold it already. |
| 16333 | SENDIPCEVENT_BEGIN(this, thread); |
| 16334 | |
| 16335 | // Send a update module syns event to the Right Side. |
| 16336 | DebuggerIPCEvent* ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 16337 | InitIPCEvent(ipce, DB_IPCE_DESTROY_CONNECTION, |
| 16338 | thread, |
| 16339 | NULL); |
| 16340 | ipce->ConnectionChange.connectionId = dwConnectionId; |
| 16341 | |
| 16342 | // IPC event is now initialized, so we can send it over. |
| 16343 | SendSimpleIPCEventAndBlock(); |
| 16344 | |
| 16345 | // This will block on the continue |
| 16346 | SENDIPCEVENT_END; |
| 16347 | |
| 16348 | } |
| 16349 | |
| 16350 | // notification for SQL connection changes |
| 16351 | void Debugger::ChangeConnection(CONNID dwConnectionId) |
| 16352 | { |
| 16353 | CONTRACTL |
| 16354 | { |
| 16355 | SO_NOT_MAINLINE; |
| 16356 | MAY_DO_HELPER_THREAD_DUTY_THROWS_CONTRACT; |
| 16357 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 16358 | } |
| 16359 | CONTRACTL_END; |
| 16360 | |
| 16361 | LOG((LF_CORDB,LL_INFO1000, "D::ChangeConnection %d\n." , dwConnectionId)); |
| 16362 | |
| 16363 | if (CORDBUnrecoverableError(this)) |
| 16364 | return; |
| 16365 | |
| 16366 | Thread *pThread = g_pEEInterface->GetThread(); |
| 16367 | SENDIPCEVENT_BEGIN(this, pThread); |
| 16368 | |
| 16369 | if (CORDebuggerAttached()) |
| 16370 | { |
| 16371 | DebuggerIPCEvent* ipce; |
| 16372 | |
| 16373 | // Send a update module syns event to the Right Side. |
| 16374 | ipce = m_pRCThread->GetIPCEventSendBuffer(); |
| 16375 | InitIPCEvent(ipce, DB_IPCE_CHANGE_CONNECTION, |
| 16376 | pThread, |
| 16377 | NULL); |
| 16378 | ipce->ConnectionChange.connectionId = dwConnectionId; |
| 16379 | m_pRCThread->SendIPCEvent(); |
| 16380 | } |
| 16381 | else |
| 16382 | { |
| 16383 | LOG((LF_CORDB,LL_INFO1000, "D::ChangeConnection: Skipping SendIPCEvent because RS detached." )); |
| 16384 | } |
| 16385 | |
| 16386 | // Stop all Runtime threads if we actually sent an event |
| 16387 | if (CORDebuggerAttached()) |
| 16388 | { |
| 16389 | TrapAllRuntimeThreads(); |
| 16390 | } |
| 16391 | |
| 16392 | SENDIPCEVENT_END; |
| 16393 | } |
| 16394 | |
| 16395 | |
| 16396 | // |
| 16397 | // Are we the helper thread? |
| 16398 | // Some important things about running on the helper thread: |
| 16399 | // - there's only 1, so guaranteed to be thread-safe. |
| 16400 | // - we'll never run managed code. |
| 16401 | // - therefore, Never GC. |
| 16402 | // - It listens for events from the RS. |
| 16403 | // - It's the only thread to send a sync complete. |
| 16404 | // |
| 16405 | bool ThisIsHelperThreadWorker(void) |
| 16406 | { |
| 16407 | CONTRACTL |
| 16408 | { |
| 16409 | NOTHROW; |
| 16410 | GC_NOTRIGGER; |
| 16411 | SO_TOLERANT; |
| 16412 | } |
| 16413 | CONTRACTL_END; |
| 16414 | |
| 16415 | // This can |
| 16416 | Thread * pThread; |
| 16417 | pThread = GetThreadNULLOk(); |
| 16418 | |
| 16419 | // First check for a real helper thread. This will do a FLS access. |
| 16420 | bool fIsHelperThread = !!IsDbgHelperSpecialThread(); |
| 16421 | if (fIsHelperThread) |
| 16422 | { |
| 16423 | // If we're on the real helper thread, we never run managed code |
| 16424 | // and so we'd better not have an EE thread object. |
| 16425 | _ASSERTE((pThread == NULL) || !"The helper thread should not being running managed code.\n" |
| 16426 | "Are you running managed code inside the dllmain? If so, your scenario is invalid and this" |
| 16427 | "assert is only the tip of the iceberg.\n" ); |
| 16428 | return true; |
| 16429 | } |
| 16430 | |
| 16431 | // Even if we're not on the real helper thread, we may still be on a thread |
| 16432 | // pretending to be the helper. (Helper Duty, etc). |
| 16433 | DWORD id = GetCurrentThreadId(); |
| 16434 | |
| 16435 | // Check for temporary helper thread. |
| 16436 | if (ThisIsTempHelperThread(id)) |
| 16437 | { |
| 16438 | return true; |
| 16439 | } |
| 16440 | |
| 16441 | return false; |
| 16442 | } |
| 16443 | |
| 16444 | // |
| 16445 | // Make call to the static method. |
| 16446 | // This is exposed to the contracts susbsystem so that the helper thread can call |
| 16447 | // things on MODE_COOPERATIVE. |
| 16448 | // |
| 16449 | bool Debugger::ThisIsHelperThread(void) |
| 16450 | { |
| 16451 | WRAPPER_NO_CONTRACT; |
| 16452 | |
| 16453 | return ThisIsHelperThreadWorker(); |
| 16454 | } |
| 16455 | |
| 16456 | // Check if we're the temporary helper thread. Have 2 forms of this, 1 that assumes the current |
| 16457 | // thread (but has the overhead of an extra call to GetCurrentThreadId() if we laready know the tid. |
| 16458 | bool ThisIsTempHelperThread() |
| 16459 | { |
| 16460 | WRAPPER_NO_CONTRACT; |
| 16461 | |
| 16462 | DWORD id = GetCurrentThreadId(); |
| 16463 | return ThisIsTempHelperThread(id); |
| 16464 | } |
| 16465 | |
| 16466 | bool ThisIsTempHelperThread(DWORD tid) |
| 16467 | { |
| 16468 | WRAPPER_NO_CONTRACT; |
| 16469 | |
| 16470 | // If helper thread class isn't created, then there's no helper thread. |
| 16471 | // No one is doing helper thread duty either. |
| 16472 | // It's also possible we're in a shutdown case and have already deleted the |
| 16473 | // data for the helper thread. |
| 16474 | if (g_pRCThread != NULL) |
| 16475 | { |
| 16476 | // May be the temporary helper thread... |
| 16477 | DebuggerIPCControlBlock * pBlock = g_pRCThread->GetDCB(); |
| 16478 | if (pBlock != NULL) |
| 16479 | { |
| 16480 | DWORD idTemp = pBlock->m_temporaryHelperThreadId; |
| 16481 | |
| 16482 | if (tid == idTemp) |
| 16483 | { |
| 16484 | return true; |
| 16485 | } |
| 16486 | } |
| 16487 | } |
| 16488 | return false; |
| 16489 | |
| 16490 | } |
| 16491 | |
| 16492 | |
| 16493 | // This function is called when host call ICLRSecurityAttributeManager::setDacl. |
| 16494 | // It will redacl our SSE, RSEA, RSER events. |
| 16495 | HRESULT Debugger::ReDaclEvents(PSECURITY_DESCRIPTOR securityDescriptor) |
| 16496 | { |
| 16497 | WRAPPER_NO_CONTRACT; |
| 16498 | |
| 16499 | return m_pRCThread->ReDaclEvents(securityDescriptor); |
| 16500 | } |
| 16501 | |
| 16502 | /* static */ |
| 16503 | void Debugger::AcquireDebuggerDataLock(Debugger *pDebugger) |
| 16504 | { |
| 16505 | WRAPPER_NO_CONTRACT; |
| 16506 | |
| 16507 | if (!g_fProcessDetach) |
| 16508 | { |
| 16509 | pDebugger->GetDebuggerDataLock()->Enter(); |
| 16510 | } |
| 16511 | } |
| 16512 | |
| 16513 | /* static */ |
| 16514 | void Debugger::ReleaseDebuggerDataLock(Debugger *pDebugger) |
| 16515 | { |
| 16516 | WRAPPER_NO_CONTRACT; |
| 16517 | |
| 16518 | if (!g_fProcessDetach) |
| 16519 | { |
| 16520 | pDebugger->GetDebuggerDataLock()->Leave(); |
| 16521 | } |
| 16522 | } |
| 16523 | |
| 16524 | |
| 16525 | #else // DACCESS_COMPILE |
| 16526 | |
| 16527 | // determine whether the LS holds the data lock. If it does, we will assume the locked data is in an |
| 16528 | // inconsistent state and will throw an exception. The DAC will execute this if we are executing code |
| 16529 | // that takes the lock. |
| 16530 | // Arguments: input: pDebugger - the LS debugger data structure |
| 16531 | /* static */ |
| 16532 | void Debugger::AcquireDebuggerDataLock(Debugger *pDebugger) |
| 16533 | { |
| 16534 | SUPPORTS_DAC; |
| 16535 | |
| 16536 | if (pDebugger->GetDebuggerDataLock()->GetEnterCount() != 0) |
| 16537 | { |
| 16538 | ThrowHR(CORDBG_E_PROCESS_NOT_SYNCHRONIZED); |
| 16539 | } |
| 16540 | } |
| 16541 | |
| 16542 | void Debugger::ReleaseDebuggerDataLock(Debugger *pDebugger) |
| 16543 | { |
| 16544 | } |
| 16545 | #endif // DACCESS_COMPILE |
| 16546 | |
| 16547 | /* ------------------------------------------------------------------------ * |
| 16548 | * Functions for DebuggerHeap executable memory allocations |
| 16549 | * ------------------------------------------------------------------------ */ |
| 16550 | |
| 16551 | DebuggerHeapExecutableMemoryAllocator::~DebuggerHeapExecutableMemoryAllocator() |
| 16552 | { |
| 16553 | while (m_pages != NULL) |
| 16554 | { |
| 16555 | DebuggerHeapExecutableMemoryPage *temp = m_pages->GetNextPage(); |
| 16556 | |
| 16557 | // Free this page |
| 16558 | INDEBUG(BOOL ret =) VirtualFree(m_pages, 0, MEM_RELEASE); |
| 16559 | ASSERT(ret == TRUE); |
| 16560 | |
| 16561 | m_pages = temp; |
| 16562 | } |
| 16563 | |
| 16564 | ASSERT(m_pages == NULL); |
| 16565 | } |
| 16566 | |
| 16567 | void* DebuggerHeapExecutableMemoryAllocator::Allocate(DWORD numberOfBytes) |
| 16568 | { |
| 16569 | if (numberOfBytes > DBG_MAX_EXECUTABLE_ALLOC_SIZE) |
| 16570 | { |
| 16571 | ASSERT(!"Allocating more than DBG_MAX_EXECUTABLE_ALLOC_SIZE at once is unsupported and breaks our assumptions." ); |
| 16572 | return NULL; |
| 16573 | } |
| 16574 | |
| 16575 | if (numberOfBytes == 0) |
| 16576 | { |
| 16577 | // Should we allocate anything in this case? |
| 16578 | ASSERT(!"Allocate called with 0 for numberOfBytes!" ); |
| 16579 | return NULL; |
| 16580 | } |
| 16581 | |
| 16582 | CrstHolder execMemAllocCrstHolder(&m_execMemAllocMutex); |
| 16583 | |
| 16584 | int chunkToUse = -1; |
| 16585 | DebuggerHeapExecutableMemoryPage *pageToAllocateOn = NULL; |
| 16586 | for (DebuggerHeapExecutableMemoryPage *currPage = m_pages; currPage != NULL; currPage = currPage->GetNextPage()) |
| 16587 | { |
| 16588 | if (CheckPageForAvailability(currPage, &chunkToUse)) |
| 16589 | { |
| 16590 | pageToAllocateOn = currPage; |
| 16591 | break; |
| 16592 | } |
| 16593 | } |
| 16594 | |
| 16595 | if (pageToAllocateOn == NULL) |
| 16596 | { |
| 16597 | // No existing page had availability, so create a new page and use that. |
| 16598 | pageToAllocateOn = AddNewPage(); |
| 16599 | if (pageToAllocateOn == NULL) |
| 16600 | { |
| 16601 | ASSERT(!"Call to AddNewPage failed!" ); |
| 16602 | return NULL; |
| 16603 | } |
| 16604 | |
| 16605 | if (!CheckPageForAvailability(pageToAllocateOn, &chunkToUse)) |
| 16606 | { |
| 16607 | ASSERT(!"No availability on new page?" ); |
| 16608 | return NULL; |
| 16609 | } |
| 16610 | } |
| 16611 | |
| 16612 | return ChangePageUsage(pageToAllocateOn, chunkToUse, ChangePageUsageAction::ALLOCATE); |
| 16613 | } |
| 16614 | |
| 16615 | int DebuggerHeapExecutableMemoryAllocator::Free(void* addr) |
| 16616 | { |
| 16617 | ASSERT(addr != NULL); |
| 16618 | |
| 16619 | CrstHolder execMemAllocCrstHolder(&m_execMemAllocMutex); |
| 16620 | |
| 16621 | DebuggerHeapExecutableMemoryPage *pageToFreeIn = static_cast<DebuggerHeapExecutableMemoryChunk*>(addr)->data.startOfPage; |
| 16622 | |
| 16623 | if (pageToFreeIn == NULL) |
| 16624 | { |
| 16625 | ASSERT(!"Couldn't locate page in which to free!" ); |
| 16626 | return -1; |
| 16627 | } |
| 16628 | |
| 16629 | int chunkNum = static_cast<DebuggerHeapExecutableMemoryChunk*>(addr)->data.chunkNumber; |
| 16630 | |
| 16631 | // Sanity check: assert that the address really represents the start of a chunk. |
| 16632 | ASSERT(((uint64_t)addr - (uint64_t)pageToFreeIn) % 64 == 0); |
| 16633 | |
| 16634 | ChangePageUsage(pageToFreeIn, chunkNum, ChangePageUsageAction::FREE); |
| 16635 | |
| 16636 | return 0; |
| 16637 | } |
| 16638 | |
| 16639 | DebuggerHeapExecutableMemoryPage* DebuggerHeapExecutableMemoryAllocator::AddNewPage() |
| 16640 | { |
| 16641 | void* newPageAddr = VirtualAlloc(NULL, sizeof(DebuggerHeapExecutableMemoryPage), MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE); |
| 16642 | |
| 16643 | DebuggerHeapExecutableMemoryPage *newPage = new (newPageAddr) DebuggerHeapExecutableMemoryPage; |
| 16644 | newPage->SetNextPage(m_pages); |
| 16645 | |
| 16646 | // Add the new page to the linked list of pages |
| 16647 | m_pages = newPage; |
| 16648 | return newPage; |
| 16649 | } |
| 16650 | |
| 16651 | bool DebuggerHeapExecutableMemoryAllocator::CheckPageForAvailability(DebuggerHeapExecutableMemoryPage* page, /* _Out_ */ int* chunkToUse) |
| 16652 | { |
| 16653 | uint64_t occupancy = page->GetPageOccupancy(); |
| 16654 | bool available = occupancy != UINT64_MAX; |
| 16655 | |
| 16656 | if (!available) |
| 16657 | { |
| 16658 | if (chunkToUse) |
| 16659 | { |
| 16660 | *chunkToUse = -1; |
| 16661 | } |
| 16662 | |
| 16663 | return false; |
| 16664 | } |
| 16665 | |
| 16666 | if (chunkToUse) |
| 16667 | { |
| 16668 | // Start i at 62 because first chunk is reserved |
| 16669 | for (int i = 62; i >= 0; i--) |
| 16670 | { |
| 16671 | uint64_t mask = ((uint64_t)1 << i); |
| 16672 | if ((mask & occupancy) == 0) |
| 16673 | { |
| 16674 | *chunkToUse = 64 - i - 1; |
| 16675 | break; |
| 16676 | } |
| 16677 | } |
| 16678 | } |
| 16679 | |
| 16680 | return true; |
| 16681 | } |
| 16682 | |
| 16683 | void* DebuggerHeapExecutableMemoryAllocator::ChangePageUsage(DebuggerHeapExecutableMemoryPage* page, int chunkNumber, ChangePageUsageAction action) |
| 16684 | { |
| 16685 | ASSERT(action == ChangePageUsageAction::ALLOCATE || action == ChangePageUsageAction::FREE); |
| 16686 | |
| 16687 | uint64_t mask = (uint64_t)0x1 << (64 - chunkNumber - 1); |
| 16688 | |
| 16689 | uint64_t prevOccupancy = page->GetPageOccupancy(); |
| 16690 | uint64_t newOccupancy = (action == ChangePageUsageAction::ALLOCATE) ? (prevOccupancy | mask) : (prevOccupancy ^ mask); |
| 16691 | page->SetPageOccupancy(newOccupancy); |
| 16692 | |
| 16693 | return page->GetPointerToChunk(chunkNumber); |
| 16694 | } |
| 16695 | |
| 16696 | /* ------------------------------------------------------------------------ * |
| 16697 | * DebuggerHeap impl |
| 16698 | * ------------------------------------------------------------------------ */ |
| 16699 | |
| 16700 | DebuggerHeap::DebuggerHeap() |
| 16701 | { |
| 16702 | #ifdef USE_INTEROPSAFE_HEAP |
| 16703 | m_hHeap = NULL; |
| 16704 | #endif |
| 16705 | m_fExecutable = FALSE; |
| 16706 | } |
| 16707 | |
| 16708 | DebuggerHeap::~DebuggerHeap() |
| 16709 | { |
| 16710 | CONTRACTL |
| 16711 | { |
| 16712 | SO_INTOLERANT; |
| 16713 | NOTHROW; |
| 16714 | GC_NOTRIGGER; |
| 16715 | } |
| 16716 | CONTRACTL_END; |
| 16717 | |
| 16718 | Destroy(); |
| 16719 | } |
| 16720 | |
| 16721 | void DebuggerHeap::Destroy() |
| 16722 | { |
| 16723 | #ifdef USE_INTEROPSAFE_HEAP |
| 16724 | if (IsInit()) |
| 16725 | { |
| 16726 | ::HeapDestroy(m_hHeap); |
| 16727 | m_hHeap = NULL; |
| 16728 | } |
| 16729 | #endif |
| 16730 | #ifdef FEATURE_PAL |
| 16731 | if (m_execMemAllocator != NULL) |
| 16732 | { |
| 16733 | delete m_execMemAllocator; |
| 16734 | } |
| 16735 | #endif |
| 16736 | } |
| 16737 | |
| 16738 | bool DebuggerHeap::IsInit() |
| 16739 | { |
| 16740 | LIMITED_METHOD_CONTRACT; |
| 16741 | #ifdef USE_INTEROPSAFE_HEAP |
| 16742 | return m_hHeap != NULL; |
| 16743 | #else |
| 16744 | return true; |
| 16745 | #endif |
| 16746 | } |
| 16747 | |
| 16748 | HRESULT DebuggerHeap::Init(BOOL fExecutable) |
| 16749 | { |
| 16750 | CONTRACTL |
| 16751 | { |
| 16752 | SO_INTOLERANT; |
| 16753 | NOTHROW; |
| 16754 | GC_NOTRIGGER; |
| 16755 | } |
| 16756 | CONTRACTL_END; |
| 16757 | |
| 16758 | // Have knob catch if we don't want to lazy init the debugger. |
| 16759 | _ASSERTE(!g_DbgShouldntUseDebugger); |
| 16760 | m_fExecutable = fExecutable; |
| 16761 | |
| 16762 | #ifdef USE_INTEROPSAFE_HEAP |
| 16763 | // If already inited, then we're done. |
| 16764 | // We normally don't double-init. However, we may oom between when we allocate the heap and when we do other initialization. |
| 16765 | // We don't worry about backout code to free the heap. Rather, we'll just leave it alive and nop if we try to allocate it again. |
| 16766 | if (IsInit()) |
| 16767 | { |
| 16768 | return S_OK; |
| 16769 | } |
| 16770 | |
| 16771 | #ifndef HEAP_CREATE_ENABLE_EXECUTE |
| 16772 | #define HEAP_CREATE_ENABLE_EXECUTE 0x00040000 // winnt create heap with executable pages |
| 16773 | #endif |
| 16774 | |
| 16775 | // Create a standard, grow-able, thread-safe heap. |
| 16776 | DWORD dwFlags = ((fExecutable == TRUE)? HEAP_CREATE_ENABLE_EXECUTE : 0); |
| 16777 | m_hHeap = ::HeapCreate(dwFlags, 0, 0); |
| 16778 | if (m_hHeap == NULL) |
| 16779 | { |
| 16780 | return HRESULT_FROM_GetLastError(); |
| 16781 | } |
| 16782 | #endif |
| 16783 | |
| 16784 | #ifdef FEATURE_PAL |
| 16785 | m_execMemAllocator = new (nothrow) DebuggerHeapExecutableMemoryAllocator(); |
| 16786 | ASSERT(m_execMemAllocator != NULL); |
| 16787 | if (m_execMemAllocator == NULL) |
| 16788 | { |
| 16789 | return E_OUTOFMEMORY; |
| 16790 | } |
| 16791 | #endif |
| 16792 | |
| 16793 | return S_OK; |
| 16794 | } |
| 16795 | |
| 16796 | // Only use canaries on x86 b/c they throw of alignment on Ia64. |
| 16797 | #if defined(_DEBUG) && defined(_TARGET_X86_) |
| 16798 | #define USE_INTEROPSAFE_CANARY |
| 16799 | #endif |
| 16800 | |
| 16801 | #ifdef USE_INTEROPSAFE_CANARY |
| 16802 | // Small header to to prefix interop-heap blocks. |
| 16803 | // This lets us enforce that we don't delete interopheap data from a non-interop heap. |
| 16804 | struct InteropHeapCanary |
| 16805 | { |
| 16806 | ULONGLONG m_canary; |
| 16807 | |
| 16808 | // Raw address - this is what the heap alloc + free routines use. |
| 16809 | // User address - this is what the user sees after we adjust the raw address for the canary |
| 16810 | |
| 16811 | // Given a raw address to an allocated block, get the canary + mark it. |
| 16812 | static InteropHeapCanary * GetFromRawAddr(void * pStart) |
| 16813 | { |
| 16814 | _ASSERTE(pStart != NULL); |
| 16815 | InteropHeapCanary * p = (InteropHeapCanary*) pStart; |
| 16816 | p->Mark(); |
| 16817 | return p; |
| 16818 | } |
| 16819 | |
| 16820 | // Get the raw address from this canary. |
| 16821 | void * GetRawAddr() |
| 16822 | { |
| 16823 | return (void*) this; |
| 16824 | } |
| 16825 | |
| 16826 | // Get a canary from a start address. |
| 16827 | static InteropHeapCanary * GetFromUserAddr(void * pStart) |
| 16828 | { |
| 16829 | _ASSERTE(pStart != NULL); |
| 16830 | InteropHeapCanary * p = ((InteropHeapCanary*) pStart)-1; |
| 16831 | p->Check(); |
| 16832 | return p; |
| 16833 | } |
| 16834 | void * GetUserAddr() |
| 16835 | { |
| 16836 | this->Check(); |
| 16837 | return (void*) (this + 1); |
| 16838 | } |
| 16839 | |
| 16840 | protected: |
| 16841 | void Check() |
| 16842 | { |
| 16843 | CONSISTENCY_CHECK_MSGF((m_canary == kInteropHeapCookie), |
| 16844 | ("Using InteropSafe delete on non-interopsafe allocated memory.\n" )); |
| 16845 | } |
| 16846 | void Mark() |
| 16847 | { |
| 16848 | m_canary = kInteropHeapCookie; |
| 16849 | } |
| 16850 | static const ULONGLONG kInteropHeapCookie = 0x12345678; |
| 16851 | }; |
| 16852 | #endif // USE_INTEROPSAFE_CANARY |
| 16853 | |
| 16854 | void *DebuggerHeap::Alloc(DWORD size) |
| 16855 | { |
| 16856 | CONTRACTL |
| 16857 | { |
| 16858 | SO_INTOLERANT; |
| 16859 | NOTHROW; |
| 16860 | GC_NOTRIGGER; |
| 16861 | } |
| 16862 | CONTRACTL_END; |
| 16863 | |
| 16864 | #ifdef USE_INTEROPSAFE_CANARY |
| 16865 | // Make sure we allocate enough space for the canary at the start. |
| 16866 | size += sizeof(InteropHeapCanary); |
| 16867 | #endif |
| 16868 | |
| 16869 | void *ret; |
| 16870 | #ifdef USE_INTEROPSAFE_HEAP |
| 16871 | _ASSERTE(m_hHeap != NULL); |
| 16872 | ret = ::HeapAlloc(m_hHeap, HEAP_ZERO_MEMORY, size); |
| 16873 | #else // USE_INTEROPSAFE_HEAP |
| 16874 | |
| 16875 | bool allocateOnHeap = true; |
| 16876 | HANDLE hExecutableHeap = NULL; |
| 16877 | |
| 16878 | #ifdef FEATURE_PAL |
| 16879 | if (m_fExecutable) |
| 16880 | { |
| 16881 | allocateOnHeap = false; |
| 16882 | ret = m_execMemAllocator->Allocate(size); |
| 16883 | } |
| 16884 | else |
| 16885 | { |
| 16886 | hExecutableHeap = ClrGetProcessHeap(); |
| 16887 | } |
| 16888 | #else // FEATURE_PAL |
| 16889 | hExecutableHeap = ClrGetProcessExecutableHeap(); |
| 16890 | #endif |
| 16891 | |
| 16892 | if (allocateOnHeap) |
| 16893 | { |
| 16894 | if (hExecutableHeap == NULL) |
| 16895 | { |
| 16896 | return NULL; |
| 16897 | } |
| 16898 | |
| 16899 | ret = ClrHeapAlloc(hExecutableHeap, NULL, S_SIZE_T(size)); |
| 16900 | } |
| 16901 | |
| 16902 | #endif // USE_INTEROPSAFE_HEAP |
| 16903 | |
| 16904 | #ifdef USE_INTEROPSAFE_CANARY |
| 16905 | if (ret == NULL) |
| 16906 | { |
| 16907 | return NULL; |
| 16908 | } |
| 16909 | InteropHeapCanary * pCanary = InteropHeapCanary::GetFromRawAddr(ret); |
| 16910 | ret = pCanary->GetUserAddr(); |
| 16911 | #endif |
| 16912 | |
| 16913 | return ret; |
| 16914 | } |
| 16915 | |
| 16916 | // Realloc memory. |
| 16917 | // If this fails, the original memory is still valid. |
| 16918 | void *DebuggerHeap::Realloc(void *pMem, DWORD newSize, DWORD oldSize) |
| 16919 | { |
| 16920 | CONTRACTL |
| 16921 | { |
| 16922 | SO_NOT_MAINLINE; |
| 16923 | NOTHROW; |
| 16924 | GC_NOTRIGGER; |
| 16925 | } |
| 16926 | CONTRACTL_END; |
| 16927 | |
| 16928 | _ASSERTE(pMem != NULL); |
| 16929 | _ASSERTE(newSize != 0); |
| 16930 | _ASSERTE(oldSize != 0); |
| 16931 | |
| 16932 | #if defined(USE_INTEROPSAFE_HEAP) && !defined(USE_INTEROPSAFE_CANARY) && !defined(FEATURE_PAL) |
| 16933 | // No canaries in this case. |
| 16934 | // Call into realloc. |
| 16935 | void *ret; |
| 16936 | |
| 16937 | _ASSERTE(m_hHeap != NULL); |
| 16938 | ret = ::HeapReAlloc(m_hHeap, HEAP_ZERO_MEMORY, pMem, newSize); |
| 16939 | #else |
| 16940 | // impl Realloc on top of alloc & free. |
| 16941 | void *ret; |
| 16942 | |
| 16943 | ret = this->Alloc(newSize); |
| 16944 | if (ret == NULL) |
| 16945 | { |
| 16946 | // Not supposed to free original memory in failure condition. |
| 16947 | return NULL; |
| 16948 | } |
| 16949 | |
| 16950 | memcpy(ret, pMem, oldSize); |
| 16951 | this->Free(pMem); |
| 16952 | #endif |
| 16953 | |
| 16954 | return ret; |
| 16955 | } |
| 16956 | |
| 16957 | void DebuggerHeap::Free(void *pMem) |
| 16958 | { |
| 16959 | CONTRACTL |
| 16960 | { |
| 16961 | SO_INTOLERANT; |
| 16962 | NOTHROW; |
| 16963 | GC_NOTRIGGER; |
| 16964 | } |
| 16965 | CONTRACTL_END; |
| 16966 | |
| 16967 | #ifdef USE_INTEROPSAFE_CANARY |
| 16968 | // Check for canary |
| 16969 | |
| 16970 | if (pMem != NULL) |
| 16971 | { |
| 16972 | InteropHeapCanary * pCanary = InteropHeapCanary::GetFromUserAddr(pMem); |
| 16973 | pMem = pCanary->GetRawAddr(); |
| 16974 | } |
| 16975 | #endif |
| 16976 | |
| 16977 | #ifdef USE_INTEROPSAFE_HEAP |
| 16978 | if (pMem != NULL) |
| 16979 | { |
| 16980 | _ASSERTE(m_hHeap != NULL); |
| 16981 | ::HeapFree(m_hHeap, 0, pMem); |
| 16982 | } |
| 16983 | #else |
| 16984 | if (pMem != NULL) |
| 16985 | { |
| 16986 | #ifndef FEATURE_PAL |
| 16987 | HANDLE hProcessExecutableHeap = ClrGetProcessExecutableHeap(); |
| 16988 | _ASSERTE(hProcessExecutableHeap != NULL); |
| 16989 | ClrHeapFree(hProcessExecutableHeap, NULL, pMem); |
| 16990 | #else // !FEATURE_PAL |
| 16991 | if(!m_fExecutable) |
| 16992 | { |
| 16993 | HANDLE hProcessHeap = ClrGetProcessHeap(); |
| 16994 | _ASSERTE(hProcessHeap != NULL); |
| 16995 | ClrHeapFree(hProcessHeap, NULL, pMem); |
| 16996 | } |
| 16997 | else |
| 16998 | { |
| 16999 | INDEBUG(int ret =) m_execMemAllocator->Free(pMem); |
| 17000 | _ASSERTE(ret == 0); |
| 17001 | } |
| 17002 | #endif // !FEATURE_PAL |
| 17003 | } |
| 17004 | #endif |
| 17005 | } |
| 17006 | |
| 17007 | #ifndef DACCESS_COMPILE |
| 17008 | |
| 17009 | |
| 17010 | // Undef this so we can call them from the EE versions. |
| 17011 | #undef UtilMessageBoxVA |
| 17012 | |
| 17013 | // Message box API for the left side of the debugger. This API handles calls from the |
| 17014 | // debugger helper thread as well as from normal EE threads. It is the only one that |
| 17015 | // should be used from inside the debugger left side. |
| 17016 | int Debugger::MessageBox( |
| 17017 | UINT uText, // Resource Identifier for Text message |
| 17018 | UINT uCaption, // Resource Identifier for Caption |
| 17019 | UINT uType, // Style of MessageBox |
| 17020 | BOOL displayForNonInteractive, // Display even if the process is running non interactive |
| 17021 | BOOL showFileNameInTitle, // Flag to show FileName in Caption |
| 17022 | ...) // Additional Arguments |
| 17023 | { |
| 17024 | CONTRACTL |
| 17025 | { |
| 17026 | MAY_DO_HELPER_THREAD_DUTY_GC_TRIGGERS_CONTRACT; |
| 17027 | MODE_PREEMPTIVE; |
| 17028 | NOTHROW; |
| 17029 | |
| 17030 | PRECONDITION(ThisMaybeHelperThread()); |
| 17031 | } |
| 17032 | CONTRACTL_END; |
| 17033 | |
| 17034 | va_list marker; |
| 17035 | va_start(marker, showFileNameInTitle); |
| 17036 | |
| 17037 | // Add the MB_TASKMODAL style to indicate that the dialog should be displayed on top of the windows |
| 17038 | // owned by the current thread and should prevent interaction with them until dismissed. |
| 17039 | uType |= MB_TASKMODAL; |
| 17040 | |
| 17041 | int result = UtilMessageBoxVA(NULL, uText, uCaption, uType, displayForNonInteractive, showFileNameInTitle, marker); |
| 17042 | va_end( marker ); |
| 17043 | |
| 17044 | return result; |
| 17045 | } |
| 17046 | |
| 17047 | // Redefine this to an error just in case code is added after this point in the file. |
| 17048 | #define UtilMessageBoxVA __error("Use g_pDebugger->MessageBox from inside the left side of the debugger") |
| 17049 | |
| 17050 | #else // DACCESS_COMPILE |
| 17051 | void |
| 17052 | Debugger::EnumMemoryRegions(CLRDataEnumMemoryFlags flags) |
| 17053 | { |
| 17054 | DAC_ENUM_VTHIS(); |
| 17055 | SUPPORTS_DAC; |
| 17056 | _ASSERTE(m_rgHijackFunction != NULL); |
| 17057 | |
| 17058 | if ( flags != CLRDATA_ENUM_MEM_TRIAGE) |
| 17059 | { |
| 17060 | if (m_pMethodInfos.IsValid()) |
| 17061 | { |
| 17062 | m_pMethodInfos->EnumMemoryRegions(flags); |
| 17063 | } |
| 17064 | |
| 17065 | DacEnumMemoryRegion(dac_cast<TADDR>(m_pLazyData), |
| 17066 | sizeof(DebuggerLazyInit)); |
| 17067 | } |
| 17068 | |
| 17069 | // Needed for stack walking from an initial native context. If the debugger can find the |
| 17070 | // on-disk image of clr.dll, then this is not necessary. |
| 17071 | DacEnumMemoryRegion(dac_cast<TADDR>(m_rgHijackFunction), sizeof(MemoryRange)*kMaxHijackFunctions); |
| 17072 | } |
| 17073 | |
| 17074 | |
| 17075 | // This code doesn't hang out in Frame/TransitionFrame/FuncEvalFrame::EnumMemoryRegions() like it would |
| 17076 | // for other normal VM objects because we don't want to have code in VM directly referencing LS types. |
| 17077 | // Frames.h's FuncEvalFrame simply does a forward decl of DebuggerEval and gets away with it because it |
| 17078 | // never does anything but a cast of a TADDR. |
| 17079 | void |
| 17080 | Debugger::EnumMemoryRegionsIfFuncEvalFrame(CLRDataEnumMemoryFlags flags, Frame * pFrame) |
| 17081 | { |
| 17082 | SUPPORTS_DAC; |
| 17083 | |
| 17084 | if ((pFrame != NULL) && (pFrame->GetFrameType() == Frame::TYPE_FUNC_EVAL)) |
| 17085 | { |
| 17086 | FuncEvalFrame * pFEF = dac_cast<PTR_FuncEvalFrame>(pFrame); |
| 17087 | DebuggerEval * pDE = pFEF->GetDebuggerEval(); |
| 17088 | |
| 17089 | if (pDE != NULL) |
| 17090 | { |
| 17091 | DacEnumMemoryRegion(dac_cast<TADDR>(pDE), sizeof(DebuggerEval), true); |
| 17092 | |
| 17093 | if (pDE->m_debuggerModule != NULL) |
| 17094 | DacEnumMemoryRegion(dac_cast<TADDR>(pDE->m_debuggerModule), sizeof(DebuggerModule), true); |
| 17095 | } |
| 17096 | } |
| 17097 | } |
| 17098 | |
| 17099 | #endif // #ifdef DACCESS_COMPILE |
| 17100 | |
| 17101 | #ifndef DACCESS_COMPILE |
| 17102 | void Debugger::StartCanaryThread() |
| 17103 | { |
| 17104 | // we need to already have the rcthread running and the pointer stored |
| 17105 | _ASSERTE(m_pRCThread != NULL && g_pRCThread == m_pRCThread); |
| 17106 | _ASSERTE(m_pRCThread->GetDCB() != NULL); |
| 17107 | _ASSERTE(GetCanary() != NULL); |
| 17108 | |
| 17109 | GetCanary()->Init(); |
| 17110 | } |
| 17111 | #endif // DACCESS_COMPILE |
| 17112 | |
| 17113 | #endif //DEBUGGING_SUPPORTED |
| 17114 | |