1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | //***************************************************************************** |
5 | // File: frameinfo.cpp |
6 | // |
7 | |
8 | // |
9 | // Code to find control info about a stack frame. |
10 | // |
11 | //***************************************************************************** |
12 | |
13 | #include "stdafx.h" |
14 | |
15 | // Include so we can get information out of ComMethodFrame |
16 | #ifdef FEATURE_COMINTEROP |
17 | #include "COMToClrCall.h" |
18 | #endif |
19 | |
20 | // Get a frame pointer from a RegDisplay. |
21 | // This is mostly used for chains and stub frames (i.e. internal frames), where we don't need an exact |
22 | // frame pointer. This is why it is okay to use the current SP instead of the caller SP on IA64. |
23 | // We should really rename this and possibly roll it into GetFramePointer() when we move the stackwalker |
24 | // to OOP. |
25 | FramePointer GetSP(REGDISPLAY * pRDSrc) |
26 | { |
27 | FramePointer fp = FramePointer::MakeFramePointer( |
28 | (LPVOID)GetRegdisplaySP(pRDSrc)); |
29 | |
30 | return fp; |
31 | } |
32 | |
33 | // Get a frame pointer from a RegDisplay. |
34 | FramePointer GetFramePointer(REGDISPLAY * pRDSrc) |
35 | { |
36 | return FramePointer::MakeFramePointer(GetRegdisplaySP(pRDSrc)); |
37 | } |
38 | |
39 | //--------------------------------------------------------------------------------------- |
40 | // |
41 | // Convert a FramePointer to a StackFrame and return it. |
42 | // |
43 | // Arguments: |
44 | // fp - the FramePointer to be converted |
45 | // |
46 | // Return Value: |
47 | // a StackFrame equivalent to the given FramePointer |
48 | // |
49 | // Notes: |
50 | // We really should consolidate the two abstractions for "stack frame identifiers" |
51 | // (StackFrame and FramePointer) when we move the debugger stackwalker to OOP. |
52 | // |
53 | |
54 | FORCEINLINE StackFrame ConvertFPToStackFrame(FramePointer fp) |
55 | { |
56 | return StackFrame((UINT_PTR)fp.GetSPValue()); |
57 | } |
58 | |
59 | /* ------------------------------------------------------------------------- * |
60 | * DebuggerFrameInfo routines |
61 | * ------------------------------------------------------------------------- */ |
62 | |
63 | //struct DebuggerFrameData: Contains info used by the DebuggerWalkStackProc |
64 | // to do a stack walk. The info and pData fields are handed to the pCallback |
65 | // routine at each frame, |
66 | struct DebuggerFrameData |
67 | { |
68 | // Initialize this struct. Only done at the start of a stackwalk. |
69 | void Init( |
70 | Thread * _pThread, |
71 | FramePointer _targetFP, |
72 | BOOL fIgnoreNonmethodFrames, // generally true for stackwalking and false for stepping |
73 | DebuggerStackCallback _pCallback, |
74 | void *_pData |
75 | ) |
76 | { |
77 | LIMITED_METHOD_CONTRACT; |
78 | |
79 | this->pCallback = _pCallback; |
80 | this->pData = _pData; |
81 | |
82 | this->cRealCounter = 0; |
83 | |
84 | this->thread = _pThread; |
85 | this->targetFP = _targetFP; |
86 | this->targetFound = (_targetFP == LEAF_MOST_FRAME); |
87 | |
88 | this->ignoreNonmethodFrames = fIgnoreNonmethodFrames; |
89 | |
90 | // For now, we can tie these to flags together. |
91 | // In everett, we disable SIS (For backwards compat). |
92 | this->fProvideInternalFrames = (fIgnoreNonmethodFrames != 0); |
93 | |
94 | this->fNeedToSendEnterManagedChain = false; |
95 | this->fTrackingUMChain = false; |
96 | this->fHitExitFrame = false; |
97 | |
98 | this->info.eStubFrameType = STUBFRAME_NONE; |
99 | this->info.quickUnwind = false; |
100 | |
101 | this->info.frame = NULL; |
102 | this->needParentInfo = false; |
103 | |
104 | #ifdef WIN64EXCEPTIONS |
105 | this->fpParent = LEAF_MOST_FRAME; |
106 | this->info.fIsLeaf = true; |
107 | this->info.fIsFunclet = false; |
108 | this->info.fIsFilter = false; |
109 | #endif // WIN64EXCEPTIONS |
110 | |
111 | // Look strange? Go to definition of this field. I dare you. |
112 | this->info.fIgnoreThisFrameIfSuppressingUMChainFromComPlusMethodFrameGeneric = false; |
113 | |
114 | #if defined(_DEBUG) |
115 | this->previousFP = LEAF_MOST_FRAME; |
116 | #endif // _DEBUG |
117 | } |
118 | |
119 | // True if we need the next CrawlFrame to fill out part of this FrameInfo's data. |
120 | bool needParentInfo; |
121 | |
122 | // The FrameInfo that we'll dispatch to the pCallback. This matches against |
123 | // the CrawlFrame for that frame that the callback belongs too. |
124 | FrameInfo info; |
125 | |
126 | // Regdisplay that the EE stackwalker is updating. |
127 | REGDISPLAY regDisplay; |
128 | |
129 | |
130 | #ifdef WIN64EXCEPTIONS |
131 | // This is used to skip funclets in a stackwalk. It marks the frame pointer to which we should skip. |
132 | FramePointer fpParent; |
133 | #endif // WIN64EXCEPTIONS |
134 | #if defined(_DEBUG) |
135 | // For debugging, track the previous FramePointer so we can assert that we're |
136 | // making progress through the stack. |
137 | FramePointer previousFP; |
138 | #endif // _DEBUG |
139 | |
140 | // whether we have hit an exit frame or not (i.e. a M2U frame) |
141 | bool fHitExitFrame; |
142 | |
143 | private: |
144 | // The scope of this field is each section of managed method frames on the stack. |
145 | bool fNeedToSendEnterManagedChain; |
146 | |
147 | // Flag set when we first stack-walk to decide if we want to ignore certain frames. |
148 | // Stepping doesn't ignore these frames; end user stacktraces do. |
149 | BOOL ignoreNonmethodFrames; |
150 | |
151 | // Do we want callbacks for internal frames? |
152 | // Steppers generally don't. User stack-walk does. |
153 | bool fProvideInternalFrames; |
154 | |
155 | // Info for tracking unmanaged chains. |
156 | // We track the starting (leaf) context for an unmanaged chain, as well as the |
157 | // ending (root) framepointer. |
158 | bool fTrackingUMChain; |
159 | REGDISPLAY rdUMChainStart; |
160 | FramePointer fpUMChainEnd; |
161 | |
162 | // Thread that the stackwalk is for. |
163 | Thread *thread; |
164 | |
165 | |
166 | // Target FP indicates at what point in the stackwalk we'll start dispatching callbacks. |
167 | // Naturally, if this is LEAF_MOST_FRAME, then all callbacks will be dispatched |
168 | FramePointer targetFP; |
169 | bool targetFound; |
170 | |
171 | // Count # of callbacks we could have dispatched (assuming targetFP==LEAF_MOST_FRAME). |
172 | // Useful for detecting leaf. |
173 | int cRealCounter; |
174 | |
175 | // Callback & user-data supplied to that callback. |
176 | DebuggerStackCallback pCallback; |
177 | void *pData; |
178 | |
179 | private: |
180 | |
181 | // Raw invoke. This just does some consistency asserts, |
182 | // and invokes the callback if we're in the requested target range. |
183 | StackWalkAction RawInvokeCallback(FrameInfo * pInfo) |
184 | { |
185 | #ifdef _DEBUG |
186 | _ASSERTE(pInfo != NULL); |
187 | MethodDesc * md = pInfo->md; |
188 | // Invoke the callback to the user. Log what we're invoking. |
189 | LOG((LF_CORDB, LL_INFO10000, "DSWCallback: MD=%s,0x%p, Chain=%x, Stub=%x, Frame=0x%p, Internal=%d\n" , |
190 | ((md == NULL) ? "None" : md->m_pszDebugMethodName), md, |
191 | pInfo->chainReason, |
192 | pInfo->eStubFrameType, |
193 | pInfo->frame, pInfo->internal)); |
194 | |
195 | // Make sure we're providing a valid FrameInfo for the callback. |
196 | pInfo->AssertValid(); |
197 | #endif |
198 | // Update counter. This provides a convenient check for leaf FrameInfo. |
199 | this->cRealCounter++; |
200 | |
201 | |
202 | // Only invoke if we're past the target. |
203 | if (!this->targetFound && IsEqualOrCloserToLeaf(this->targetFP, this->info.fp)) |
204 | { |
205 | this->targetFound = true; |
206 | } |
207 | |
208 | if (this->targetFound) |
209 | { |
210 | return (pCallback)(pInfo, pData); |
211 | } |
212 | else |
213 | { |
214 | LOG((LF_CORDB, LL_INFO10000, "Not invoking yet.\n" )); |
215 | } |
216 | |
217 | return SWA_CONTINUE; |
218 | } |
219 | |
220 | public: |
221 | // Invoke a callback. This may do extra logic to preserve the interface between |
222 | // the LS stackwalker and the LS: |
223 | // - don't invoke if we're not at the target yet |
224 | // - send EnterManagedChains if we need it. |
225 | StackWalkAction InvokeCallback(FrameInfo * pInfo) |
226 | { |
227 | // Track if we've sent any managed code yet. |
228 | // If we haven't, then don't send the enter-managed chain. This catches cases |
229 | // when we have leaf-most unmanaged chain. |
230 | if ((pInfo->frame == NULL) && (pInfo->md != NULL)) |
231 | { |
232 | this->fNeedToSendEnterManagedChain = true; |
233 | } |
234 | |
235 | |
236 | // Do tracking to decide if we need to send a Enter-Managed chain. |
237 | if (pInfo->HasChainMarker()) |
238 | { |
239 | if (pInfo->managed) |
240 | { |
241 | // If we're dispatching a managed-chain, then we don't need to send another one. |
242 | fNeedToSendEnterManagedChain = false; |
243 | } |
244 | else |
245 | { |
246 | // If we're dispatching an UM chain, then send the Managed one. |
247 | // Note that the only unmanaged chains are ThreadStart chains and UM chains. |
248 | if (fNeedToSendEnterManagedChain) |
249 | { |
250 | fNeedToSendEnterManagedChain = false; |
251 | |
252 | FrameInfo f; |
253 | |
254 | // Assume entry chain's FP is one pointer-width after the upcoming UM chain. |
255 | FramePointer fpRoot = FramePointer::MakeFramePointer( |
256 | (BYTE*) GetRegdisplaySP(&pInfo->registers) - sizeof(DWORD*)); |
257 | |
258 | f.InitForEnterManagedChain(fpRoot); |
259 | if (RawInvokeCallback(&f) == SWA_ABORT) |
260 | { |
261 | return SWA_ABORT; |
262 | } |
263 | } |
264 | } |
265 | } |
266 | |
267 | return RawInvokeCallback(pInfo); |
268 | } |
269 | |
270 | // Note that we should start tracking an Unmanaged Chain. |
271 | void BeginTrackingUMChain(FramePointer fpRoot, REGDISPLAY * pRDSrc) |
272 | { |
273 | LIMITED_METHOD_CONTRACT; |
274 | |
275 | _ASSERTE(!this->fTrackingUMChain); |
276 | |
277 | CopyREGDISPLAY(&this->rdUMChainStart, pRDSrc); |
278 | |
279 | this->fTrackingUMChain = true; |
280 | this->fpUMChainEnd = fpRoot; |
281 | this->fHitExitFrame = false; |
282 | |
283 | LOG((LF_CORDB, LL_EVERYTHING, "UM Chain starting at Frame=0x%p\n" , this->fpUMChainEnd.GetSPValue())); |
284 | |
285 | // This UM chain may get cancelled later, so don't even worry about toggling the fNeedToSendEnterManagedChain bit here. |
286 | // Invoke() will track whether to send an Enter-Managed chain or not. |
287 | } |
288 | |
289 | // For various heuristics, we may not want to send an UM chain. |
290 | void CancelUMChain() |
291 | { |
292 | LIMITED_METHOD_CONTRACT; |
293 | |
294 | _ASSERTE(this->fTrackingUMChain); |
295 | this->fTrackingUMChain = false; |
296 | } |
297 | |
298 | // True iff we're currently tracking an unmanaged chain. |
299 | bool IsTrackingUMChain() |
300 | { |
301 | LIMITED_METHOD_CONTRACT; |
302 | |
303 | return this->fTrackingUMChain; |
304 | } |
305 | |
306 | |
307 | |
308 | // Get/Set Regdisplay that starts an Unmanaged chain. |
309 | REGDISPLAY * GetUMChainStartRD() |
310 | { |
311 | LIMITED_METHOD_CONTRACT; |
312 | _ASSERTE(fTrackingUMChain); |
313 | return &rdUMChainStart; |
314 | } |
315 | |
316 | // Get/Set FramePointer that ends an unmanaged chain. |
317 | void SetUMChainEnd(FramePointer fp) |
318 | { |
319 | LIMITED_METHOD_CONTRACT; |
320 | _ASSERTE(fTrackingUMChain); |
321 | fpUMChainEnd = fp; |
322 | } |
323 | |
324 | FramePointer GetUMChainEnd() |
325 | { |
326 | LIMITED_METHOD_CONTRACT; |
327 | _ASSERTE(fTrackingUMChain); |
328 | return fpUMChainEnd; |
329 | } |
330 | |
331 | // Get thread we're currently tracing. |
332 | Thread * GetThread() |
333 | { |
334 | LIMITED_METHOD_CONTRACT; |
335 | return thread; |
336 | } |
337 | |
338 | // Returns true if we're on the leaf-callback (ie, we haven't dispatched a callback yet. |
339 | bool IsLeafCallback() |
340 | { |
341 | LIMITED_METHOD_CONTRACT; |
342 | return cRealCounter == 0; |
343 | } |
344 | |
345 | bool ShouldProvideInternalFrames() |
346 | { |
347 | LIMITED_METHOD_CONTRACT; |
348 | return fProvideInternalFrames; |
349 | } |
350 | bool ShouldIgnoreNonmethodFrames() |
351 | { |
352 | LIMITED_METHOD_CONTRACT; |
353 | return ignoreNonmethodFrames != 0; |
354 | } |
355 | }; |
356 | |
357 | |
358 | //--------------------------------------------------------------------------------------- |
359 | // |
360 | // On IA64, the offset given by the OS during stackwalking is actually the offset at the call instruction. |
361 | // This is different from x86 and X64, where the offset is immediately after the call instruction. In order |
362 | // to have a uniform behaviour, we need to do adjust the relative offset on IA64. This function is a nop on |
363 | // other platforms. |
364 | // |
365 | // Arguments: |
366 | // pCF - the CrawlFrame for the current method frame |
367 | // pInfo - This is the FrameInfo for the current method frame. We need to use the fIsLeaf field, |
368 | // since no adjustment is necessary for leaf frames. |
369 | // |
370 | // Return Value: |
371 | // returns the adjusted relative offset |
372 | // |
373 | |
374 | inline ULONG AdjustRelOffset(CrawlFrame *pCF, |
375 | FrameInfo *pInfo) |
376 | { |
377 | CONTRACTL |
378 | { |
379 | NOTHROW; |
380 | GC_NOTRIGGER; |
381 | MODE_ANY; |
382 | PRECONDITION(pCF != NULL); |
383 | } |
384 | CONTRACTL_END; |
385 | |
386 | #if defined(_TARGET_ARM_) |
387 | return pCF->GetRelOffset() & ~THUMB_CODE; |
388 | #else |
389 | return pCF->GetRelOffset(); |
390 | #endif |
391 | } |
392 | |
393 | |
394 | //--------------------------------------------------------------------------------------- |
395 | // |
396 | // Even when there is an exit frame in the explicit frame chain, it does not necessarily mean that we have |
397 | // actually called out to unmanaged code yet or that we actually have a managed call site. Given an exit |
398 | // frame, this function determines if we have a managed call site and have already called out to unmanaged |
399 | // code. If we have, then we return the caller SP as the potential frame pointer. Otherwise we return |
400 | // LEAF_MOST_FRAME. |
401 | // |
402 | // Arguments: |
403 | // pFrame - the exit frame to be checked |
404 | // pData - the state of the current frame maintained by the debugger stackwalker |
405 | // pPotentialFP - This is an out parameter. It returns the caller SP of the last managed caller if |
406 | // there is a managed call site and we have already called out to unmanaged code. |
407 | // Otherwise, LEAF_MOST_FRAME is returned. |
408 | // |
409 | // Return Value: |
410 | // true - we have a managed call site and we have called out to unmanaged code |
411 | // false - otherwise |
412 | // |
413 | |
414 | bool HasExitRuntime(Frame *pFrame, DebuggerFrameData *pData, FramePointer *pPotentialFP) |
415 | { |
416 | CONTRACTL |
417 | { |
418 | NOTHROW; |
419 | GC_NOTRIGGER; // Callers demand this function be GC_NOTRIGGER. |
420 | MODE_ANY; |
421 | PRECONDITION(pFrame->GetFrameType() == Frame::TYPE_EXIT); |
422 | } |
423 | CONTRACTL_END; |
424 | |
425 | #ifdef _TARGET_X86_ |
426 | TADDR returnIP, returnSP; |
427 | |
428 | EX_TRY |
429 | { |
430 | // This is a real issue. This may be called while holding GC-forbid locks, and so |
431 | // this function can't trigger a GC. However, the only impl we have calls GC-trigger functions. |
432 | CONTRACT_VIOLATION(GCViolation); |
433 | pFrame->GetUnmanagedCallSite(NULL, &returnIP, &returnSP); |
434 | } |
435 | EX_CATCH |
436 | { |
437 | // We never expect an actual exception here (maybe in oom). |
438 | // If we get an exception, then simulate the default behavior for GetUnmanagedCallSite. |
439 | returnIP = NULL; |
440 | returnSP = NULL; // this will cause us to return true. |
441 | } |
442 | EX_END_CATCH(SwallowAllExceptions); |
443 | |
444 | LOG((LF_CORDB, LL_INFO100000, |
445 | "DWSP: TYPE_EXIT: returnIP=0x%08x, returnSP=0x%08x, frame=0x%08x, threadFrame=0x%08x, regSP=0x%08x\n" , |
446 | returnIP, returnSP, pFrame, pData->GetThread()->GetFrame(), GetRegdisplaySP(&pData->regDisplay))); |
447 | |
448 | if (pPotentialFP != NULL) |
449 | { |
450 | *pPotentialFP = FramePointer::MakeFramePointer((void*)returnSP); |
451 | } |
452 | |
453 | return ((pFrame != pData->GetThread()->GetFrame()) || |
454 | (returnSP == NULL) || |
455 | ((TADDR)GetRegdisplaySP(&pData->regDisplay) <= returnSP)); |
456 | |
457 | #else // _TARGET_X86_ |
458 | // DebuggerExitFrame always return a NULL returnSP on x86. |
459 | if (pFrame->GetVTablePtr() == DebuggerExitFrame::GetMethodFrameVPtr()) |
460 | { |
461 | if (pPotentialFP != NULL) |
462 | { |
463 | *pPotentialFP = LEAF_MOST_FRAME; |
464 | } |
465 | return true; |
466 | } |
467 | else if (pFrame->GetVTablePtr() == InlinedCallFrame::GetMethodFrameVPtr()) |
468 | { |
469 | InlinedCallFrame *pInlinedFrame = static_cast<InlinedCallFrame *>(pFrame); |
470 | LPVOID sp = (LPVOID)pInlinedFrame->GetCallSiteSP(); |
471 | |
472 | // The sp returned below is the sp of the caller, which is either an IL stub in the normal case |
473 | // or a normal managed method in the inlined pinvoke case. |
474 | // This sp may be the same as the frame's address, so we need to use the largest |
475 | // possible bsp value to make sure that this frame pointer is closer to the root than |
476 | // the frame pointer made from the frame address itself. |
477 | if (pPotentialFP != NULL) |
478 | { |
479 | *pPotentialFP = FramePointer::MakeFramePointer( (LPVOID)sp ); |
480 | } |
481 | |
482 | return ((pFrame != pData->GetThread()->GetFrame()) || |
483 | InlinedCallFrame::FrameHasActiveCall(pInlinedFrame)); |
484 | |
485 | } |
486 | else |
487 | { |
488 | // It'll be nice if there's a way to assert that the current frame is indeed of a |
489 | // derived class of TransitionFrame. |
490 | TransitionFrame *pTransFrame = static_cast<TransitionFrame*>(pFrame); |
491 | LPVOID sp = (LPVOID)pTransFrame->GetSP(); |
492 | |
493 | // The sp returned below is the sp of the caller, which is either an IL stub in the normal case |
494 | // or a normal managed method in the inlined pinvoke case. |
495 | // This sp may be the same as the frame's address, so we need to use the largest |
496 | // possible bsp value to make sure that this frame pointer is closer to the root than |
497 | // the frame pointer made from the frame address itself. |
498 | if (pPotentialFP != NULL) |
499 | { |
500 | *pPotentialFP = FramePointer::MakeFramePointer( (LPVOID)sp ); |
501 | } |
502 | |
503 | return true; |
504 | } |
505 | #endif // _TARGET_X86_ |
506 | } |
507 | |
508 | #ifdef _DEBUG |
509 | |
510 | //----------------------------------------------------------------------------- |
511 | // Debug helpers to get name of Frame. |
512 | //----------------------------------------------------------------------------- |
513 | LPCUTF8 FrameInfo::DbgGetClassName() |
514 | { |
515 | return (md == NULL) ? ("None" ) : (md->m_pszDebugClassName); |
516 | } |
517 | LPCUTF8 FrameInfo::DbgGetMethodName() |
518 | { |
519 | return (md == NULL) ? ("None" ) : (md->m_pszDebugMethodName); |
520 | } |
521 | |
522 | |
523 | //----------------------------------------------------------------------------- |
524 | // Debug helper to asserts invariants about a FrameInfo before we dispatch it. |
525 | //----------------------------------------------------------------------------- |
526 | void FrameInfo::AssertValid() |
527 | { |
528 | LIMITED_METHOD_CONTRACT; |
529 | |
530 | bool fMethod = this->HasMethodFrame(); |
531 | bool fStub = this->HasStubFrame(); |
532 | bool fChain = this->HasChainMarker(); |
533 | |
534 | // Can't be both Stub & Chain |
535 | _ASSERTE(!fStub || !fChain); |
536 | |
537 | // Must be at least a Method, Stub or Chain or Internal |
538 | _ASSERTE(fMethod || fStub || fChain || this->internal); |
539 | |
540 | // Check Managed status is consistent |
541 | if (fMethod) |
542 | { |
543 | _ASSERTE(this->managed); // We only report managed methods |
544 | } |
545 | if (fChain) |
546 | { |
547 | if (!managed) |
548 | { |
549 | // Only certain chains can be unmanaged |
550 | _ASSERTE((this->chainReason == CHAIN_THREAD_START) || |
551 | (this->chainReason == CHAIN_ENTER_UNMANAGED)); |
552 | } |
553 | else |
554 | { |
555 | // UM chains can never be managed. |
556 | _ASSERTE((this->chainReason != CHAIN_ENTER_UNMANAGED)); |
557 | } |
558 | |
559 | } |
560 | |
561 | // FramePointer should be valid |
562 | _ASSERTE(this->fp != LEAF_MOST_FRAME); |
563 | _ASSERTE((this->fp != ROOT_MOST_FRAME) || (chainReason== CHAIN_THREAD_START) || (chainReason == CHAIN_ENTER_UNMANAGED)); |
564 | |
565 | // If we have a Method, then we need an AppDomain. |
566 | // (RS will need it to do lookup) |
567 | if (fMethod) |
568 | { |
569 | _ASSERTE(currentAppDomain != NULL); |
570 | _ASSERTE(managed); |
571 | // Stubs may have a method w/o any code (eg, PInvoke wrapper). |
572 | // @todo - Frame::TYPE_TP_METHOD_FRAME breaks this assert. Are there other cases too? |
573 | //_ASSERTE(fStub || (pIJM != NULL)); |
574 | } |
575 | |
576 | if (fStub) |
577 | { |
578 | // All stubs (except LightWeightFunctions) match up w/a Frame. |
579 | _ASSERTE(this->frame || (eStubFrameType == STUBFRAME_LIGHTWEIGHT_FUNCTION)); |
580 | } |
581 | } |
582 | #endif |
583 | |
584 | //----------------------------------------------------------------------------- |
585 | // Get the DJI associated w/ this frame. This is a convenience function. |
586 | // This is recommended over using MethodDescs because DJI's are version-aware. |
587 | //----------------------------------------------------------------------------- |
588 | DebuggerJitInfo * FrameInfo::GetJitInfoFromFrame() |
589 | { |
590 | CONTRACTL |
591 | { |
592 | NOTHROW; |
593 | GC_NOTRIGGER; |
594 | } |
595 | CONTRACTL_END; |
596 | |
597 | // Not all FrameInfo objects correspond to actual code. |
598 | if (HasChainMarker() || HasStubFrame() || (frame != NULL)) |
599 | { |
600 | return NULL; |
601 | } |
602 | |
603 | DebuggerJitInfo *ji = NULL; |
604 | |
605 | // @todo - we shouldn't need both a MD and an IP here. |
606 | EX_TRY |
607 | { |
608 | _ASSERTE(this->md != NULL); |
609 | ji = g_pDebugger->GetJitInfo(this->md, (const BYTE*)GetControlPC(&(this->registers))); |
610 | _ASSERTE(ji != NULL); |
611 | _ASSERTE(ji->m_fd == this->md); |
612 | } |
613 | EX_CATCH |
614 | { |
615 | ji = NULL; |
616 | } |
617 | EX_END_CATCH(SwallowAllExceptions); |
618 | |
619 | return ji; |
620 | } |
621 | |
622 | //----------------------------------------------------------------------------- |
623 | // Get the DMI associated w/ this frame. This is a convenience function. |
624 | // DMIs are 1:1 with the (token, module) pair. |
625 | //----------------------------------------------------------------------------- |
626 | DebuggerMethodInfo * FrameInfo::GetMethodInfoFromFrameOrThrow() |
627 | { |
628 | CONTRACTL |
629 | { |
630 | THROWS; |
631 | GC_NOTRIGGER; |
632 | } |
633 | CONTRACTL_END; |
634 | |
635 | MethodDesc * pDesc = this->md; |
636 | mdMethodDef token = pDesc-> GetMemberDef(); |
637 | Module * pRuntimeModule = pDesc->GetModule(); |
638 | |
639 | DebuggerMethodInfo *dmi = g_pDebugger->GetOrCreateMethodInfo(pRuntimeModule, token); |
640 | return dmi; |
641 | } |
642 | |
643 | |
644 | //----------------------------------------------------------------------------- |
645 | // Init a FrameInfo for a UM chain. |
646 | // We need a stackrange to give to an unmanaged debugger. |
647 | // pRDSrc->Esp will provide the start (leaf) marker. |
648 | // fpRoot will provide the end (root) portion. |
649 | //----------------------------------------------------------------------------- |
650 | void FrameInfo::InitForUMChain(FramePointer fpRoot, REGDISPLAY * pRDSrc) |
651 | { |
652 | _ASSERTE(pRDSrc != NULL); |
653 | |
654 | // Mark that we're an UM Chain (and nothing else). |
655 | this->frame = NULL; |
656 | this->md = NULL; |
657 | |
658 | // Fp will be the end (root) of the stack range. |
659 | // pRDSrc->Sp will be the start (leaf) of the stack range. |
660 | CopyREGDISPLAY(&(this->registers), pRDSrc); |
661 | this->fp = fpRoot; |
662 | |
663 | this->quickUnwind = false; |
664 | this->internal = false; |
665 | this->managed = false; |
666 | |
667 | // These parts of the FrameInfo can be ignored for a UM chain. |
668 | this->relOffset = 0; |
669 | this->pIJM = NULL; |
670 | this->MethodToken = METHODTOKEN(NULL, 0); |
671 | this->currentAppDomain = NULL; |
672 | this->exactGenericArgsToken = NULL; |
673 | |
674 | InitForScratchFrameInfo(); |
675 | |
676 | this->chainReason = CHAIN_ENTER_UNMANAGED; |
677 | this->eStubFrameType = STUBFRAME_NONE; |
678 | |
679 | #ifdef _DEBUG |
680 | FramePointer fpLeaf = GetSP(pRDSrc); |
681 | _ASSERTE(IsCloserToLeaf(fpLeaf, fpRoot)); |
682 | #endif |
683 | |
684 | #ifdef _DEBUG |
685 | // After we just init it, it had better be valid. |
686 | this->AssertValid(); |
687 | #endif |
688 | } |
689 | |
690 | |
691 | //--------------------------------------------------------------------------------------- |
692 | // |
693 | // This is just a small helper to initialize the fields which are specific to 64-bit. Note that you should |
694 | // only call this function on a scratch FrameInfo. Never call it on the FrameInfo used by the debugger |
695 | // stackwalker to store information on the current frame. |
696 | // |
697 | |
698 | void FrameInfo::InitForScratchFrameInfo() |
699 | { |
700 | #ifdef WIN64EXCEPTIONS |
701 | // The following flags cannot be trashed when we are calling this function on the curret FrameInfo |
702 | // (the one we keep track of across multiple stackwalker callbacks). Thus, make sure you do not call |
703 | // this function from InitForDynamicMethod(). In all other cases, we can call this method after we |
704 | // call InitFromStubHelper() because we are working on a local scratch variable. |
705 | this->fIsLeaf = false; |
706 | this->fIsFunclet = false; |
707 | this->fIsFilter = false; |
708 | #endif // WIN64EXCEPTIONS |
709 | } |
710 | |
711 | |
712 | //----------------------------------------------------------------------------- |
713 | // |
714 | // Init a FrameInfo for a stub. Stub frames map to internal frames on the RS. Stubs which we care about |
715 | // usually contain an explicit frame which translates to an internal frame on the RS. Dynamic method is |
716 | // the sole exception. |
717 | // |
718 | // Arguments: |
719 | // pCF - the CrawlFrame containing the state of the current frame |
720 | // pMDHint - some stubs have associated MethodDesc but others don't, |
721 | // which is why this argument can be NULL |
722 | // type - the type of the stub/internal frame |
723 | // |
724 | |
725 | void FrameInfo::InitFromStubHelper( |
726 | CrawlFrame * pCF, |
727 | MethodDesc * pMDHint, // NULL ok |
728 | CorDebugInternalFrameType type |
729 | ) |
730 | { |
731 | _ASSERTE(pCF != NULL); |
732 | |
733 | Frame * pFrame = pCF->GetFrame(); |
734 | |
735 | LOG((LF_CORDB, LL_EVERYTHING, "InitFromStubHelper. Frame=0x%p, type=%d\n" , pFrame, type)); |
736 | |
737 | // All Stubs have a Frame except for LightWeight methods |
738 | _ASSERTE((type == STUBFRAME_LIGHTWEIGHT_FUNCTION) || (pFrame != NULL)); |
739 | REGDISPLAY *pRDSrc = pCF->GetRegisterSet(); |
740 | |
741 | this->frame = pFrame; |
742 | |
743 | // Stub frames may be associated w/ a Method (as a hint). However this method |
744 | // will never have a JitManager b/c it will never have IL (if it had IL, we'd be a |
745 | // regulare frame, not a stub frame) |
746 | this->md = pMDHint; |
747 | |
748 | CopyREGDISPLAY(&this->registers, pRDSrc); |
749 | |
750 | // FramePointer must match up w/ an EE Frame b/c that's how we match |
751 | // we Exception callbacks. |
752 | if (pFrame != NULL) |
753 | { |
754 | this->fp = FramePointer::MakeFramePointer( |
755 | (LPVOID) pFrame); |
756 | } |
757 | else |
758 | { |
759 | this->fp = GetSP(pRDSrc); |
760 | } |
761 | |
762 | this->quickUnwind = false; |
763 | this->internal = false; |
764 | this->managed = true; |
765 | this->relOffset = 0; |
766 | this->ambientSP = NULL; |
767 | |
768 | |
769 | // Method associated w/a stub will never have a JitManager. |
770 | this->pIJM = NULL; |
771 | this->MethodToken = METHODTOKEN(NULL, 0); |
772 | this->currentAppDomain = pCF->GetAppDomain(); |
773 | this->exactGenericArgsToken = NULL; |
774 | |
775 | // Stub frames are mutually exclusive with chain markers. |
776 | this->chainReason = CHAIN_NONE; |
777 | this->eStubFrameType = type; |
778 | |
779 | #ifdef _DEBUG |
780 | // After we just init it, it had better be valid. |
781 | this->AssertValid(); |
782 | #endif |
783 | } |
784 | |
785 | //----------------------------------------------------------------------------- |
786 | // Initialize a FrameInfo to be used for an "InternalFrame" |
787 | // Frame should be a derived class of FramedMethodFrame. |
788 | // FrameInfo's MethodDesc will be for managed wrapper for native call. |
789 | //----------------------------------------------------------------------------- |
790 | void FrameInfo::InitForM2UInternalFrame(CrawlFrame * pCF) |
791 | { |
792 | // For a M2U call, there's a managed method wrapping the unmanaged call. Use that. |
793 | Frame * pFrame = pCF->GetFrame(); |
794 | _ASSERTE(pFrame->GetTransitionType() == Frame::TT_M2U); |
795 | FramedMethodFrame * pM2U = static_cast<FramedMethodFrame*> (pFrame); |
796 | MethodDesc * pMDWrapper = pM2U->GetFunction(); |
797 | |
798 | // Soem M2U transitions may not have a function associated w/ them, |
799 | // so pMDWrapper may be NULL. PInvokeCalliFrame is an example. |
800 | |
801 | InitFromStubHelper(pCF, pMDWrapper, STUBFRAME_M2U); |
802 | InitForScratchFrameInfo(); |
803 | } |
804 | |
805 | //----------------------------------------------------------------------------- |
806 | // Initialize for the U2M case... |
807 | //----------------------------------------------------------------------------- |
808 | void FrameInfo::InitForU2MInternalFrame(CrawlFrame * pCF) |
809 | { |
810 | PREFIX_ASSUME(pCF != NULL); |
811 | MethodDesc * pMDHint = NULL; |
812 | |
813 | #ifdef FEATURE_COMINTEROP |
814 | Frame * pFrame = pCF->GetFrame(); |
815 | PREFIX_ASSUME(pFrame != NULL); |
816 | |
817 | |
818 | // For regular U2M PInvoke cases, we don't care about MD b/c it's just going to |
819 | // be the next frame. |
820 | // If we're a COM2CLR call, perhaps we can get the MD for the interface. |
821 | if (pFrame->GetVTablePtr() == ComMethodFrame::GetMethodFrameVPtr()) |
822 | { |
823 | ComMethodFrame* pCOMFrame = static_cast<ComMethodFrame*> (pFrame); |
824 | ComCallMethodDesc* pCMD = reinterpret_cast<ComCallMethodDesc *> (pCOMFrame->ComMethodFrame::GetDatum()); |
825 | pMDHint = pCMD->GetInterfaceMethodDesc(); |
826 | |
827 | // Some COM-interop cases don't have an intermediate interface method desc, so |
828 | // pMDHint may be null. |
829 | } |
830 | #endif |
831 | |
832 | InitFromStubHelper(pCF, pMDHint, STUBFRAME_U2M); |
833 | InitForScratchFrameInfo(); |
834 | } |
835 | |
836 | //----------------------------------------------------------------------------- |
837 | // Init for an AD transition |
838 | //----------------------------------------------------------------------------- |
839 | void FrameInfo::InitForADTransition(CrawlFrame * pCF) |
840 | { |
841 | Frame * pFrame; |
842 | pFrame = pCF->GetFrame(); |
843 | _ASSERTE(pFrame->GetTransitionType() == Frame::TT_AppDomain); |
844 | MethodDesc * pMDWrapper = NULL; |
845 | |
846 | InitFromStubHelper(pCF, pMDWrapper, STUBFRAME_APPDOMAIN_TRANSITION); |
847 | InitForScratchFrameInfo(); |
848 | } |
849 | |
850 | |
851 | //----------------------------------------------------------------------------- |
852 | // Init frame for a dynamic method. |
853 | //----------------------------------------------------------------------------- |
854 | void FrameInfo::InitForDynamicMethod(CrawlFrame * pCF) |
855 | { |
856 | // These are just stack markers that there's a dynamic method on the callstack. |
857 | InitFromStubHelper(pCF, NULL, STUBFRAME_LIGHTWEIGHT_FUNCTION); |
858 | // Do not call InitForScratchFrameInfo() here! Please refer to the comment in that function. |
859 | } |
860 | |
861 | //----------------------------------------------------------------------------- |
862 | // Init an internal frame to mark a func-eval. |
863 | //----------------------------------------------------------------------------- |
864 | void FrameInfo::InitForFuncEval(CrawlFrame * pCF) |
865 | { |
866 | // We don't store a MethodDesc hint referring to the method we're going to invoke because |
867 | // uses of stub frames will assume the MD is relative to the AppDomain the frame is in. |
868 | // For cross-AD funcevals, we're invoking a method in a domain other than the one this frame |
869 | // is in. |
870 | MethodDesc * pMDHint = NULL; |
871 | |
872 | // Add a stub frame here to mark that there is a FuncEvalFrame on the stack. |
873 | InitFromStubHelper(pCF, pMDHint, STUBFRAME_FUNC_EVAL); |
874 | InitForScratchFrameInfo(); |
875 | } |
876 | |
877 | |
878 | //--------------------------------------------------------------------------------------- |
879 | // |
880 | // Initialize a FrameInfo for sending the CHAIN_THREAD_START reason. |
881 | // The common case is that the chain is NOT managed, since the lowest (closest to the root) managed method |
882 | // is usually called from unmanaged code. In fact, in Whidbey, we should never have a managed chain. |
883 | // |
884 | // Arguments: |
885 | // pRDSrc - a REGDISPLAY for the beginning (the leafmost frame) of the chain |
886 | // |
887 | void FrameInfo::InitForThreadStart(Thread * pThread, REGDISPLAY * pRDSrc) |
888 | { |
889 | this->frame = (Frame *) FRAME_TOP; |
890 | this->md = NULL; |
891 | CopyREGDISPLAY(&(this->registers), pRDSrc); |
892 | this->fp = FramePointer::MakeFramePointer(pThread->GetCachedStackBase()); |
893 | this->quickUnwind = false; |
894 | this->internal = false; |
895 | this->managed = false; |
896 | this->relOffset = 0; |
897 | this->pIJM = NULL; |
898 | this->MethodToken = METHODTOKEN(NULL, 0); |
899 | |
900 | this->currentAppDomain = NULL; |
901 | this->exactGenericArgsToken = NULL; |
902 | |
903 | InitForScratchFrameInfo(); |
904 | |
905 | this->chainReason = CHAIN_THREAD_START; |
906 | this->eStubFrameType = STUBFRAME_NONE; |
907 | |
908 | #ifdef _DEBUG |
909 | // After we just init it, it had better be valid. |
910 | this->AssertValid(); |
911 | #endif |
912 | } |
913 | |
914 | |
915 | //--------------------------------------------------------------------------------------- |
916 | // |
917 | // Initialize a FrameInfo for sending a CHAIN_ENTER_MANAGED. |
918 | // A Enter-Managed chain is always sent immediately before an UM chain, meaning that the Enter-Managed chain |
919 | // is closer to the leaf than the UM chain. |
920 | // |
921 | // Arguments: |
922 | // fpRoot - This is the frame pointer for the Enter-Managed chain. It is currently arbitrarily set |
923 | // to be one stack slot higher (closer to the leaf) than the frame pointer of the beginning |
924 | // of the upcoming UM chain. |
925 | // |
926 | |
927 | void FrameInfo::InitForEnterManagedChain(FramePointer fpRoot) |
928 | { |
929 | // Nobody should use a EnterManagedChain's Frame*, but there's no |
930 | // good value to enforce that. |
931 | this->frame = (Frame *) FRAME_TOP; |
932 | this->md = NULL; |
933 | memset((void *)&this->registers, 0, sizeof(this->registers)); |
934 | this->fp = fpRoot; |
935 | |
936 | this->quickUnwind = true; |
937 | this->internal = false; |
938 | this->managed = true; |
939 | this->relOffset = 0; |
940 | this->pIJM = NULL; |
941 | this->MethodToken = METHODTOKEN(NULL, 0); |
942 | |
943 | this->currentAppDomain = NULL; |
944 | this->exactGenericArgsToken = NULL; |
945 | |
946 | InitForScratchFrameInfo(); |
947 | |
948 | this->chainReason = CHAIN_ENTER_MANAGED; |
949 | this->eStubFrameType = STUBFRAME_NONE; |
950 | } |
951 | |
952 | //----------------------------------------------------------------------------- |
953 | // Do tracking for UM chains. |
954 | // This may invoke the UMChain callback and M2U callback. |
955 | //----------------------------------------------------------------------------- |
956 | StackWalkAction TrackUMChain(CrawlFrame *pCF, DebuggerFrameData *d) |
957 | { |
958 | Frame *frame = g_pEEInterface->GetFrame(pCF); |
959 | |
960 | // If we encounter an ExitFrame out in the wild, then we'll convert it to an UM chain. |
961 | if (!d->IsTrackingUMChain()) |
962 | { |
963 | if ((frame != NULL) && (frame != FRAME_TOP) && (frame->GetFrameType() == Frame::TYPE_EXIT)) |
964 | { |
965 | LOG((LF_CORDB, LL_EVERYTHING, "DWSP. ExitFrame while not tracking\n" )); |
966 | REGDISPLAY* pRDSrc = pCF->GetRegisterSet(); |
967 | |
968 | d->BeginTrackingUMChain(GetSP(pRDSrc), pRDSrc); |
969 | |
970 | // fall through and we'll send the UM chain. |
971 | } |
972 | else |
973 | { |
974 | return SWA_CONTINUE; |
975 | } |
976 | } |
977 | |
978 | _ASSERTE(d->IsTrackingUMChain()); |
979 | |
980 | |
981 | // If we're tracking an UM chain, then we need to: |
982 | // - possibly refine the start & end values as we get new information in the stacktrace. |
983 | // - possibly cancel the UM chain for various heuristics. |
984 | // - possibly dispatch if we've hit managed code again. |
985 | |
986 | bool fDispatchUMChain = false; |
987 | // UM Chain stops when managed code starts again. |
988 | if (frame != NULL) |
989 | { |
990 | // If it's just a EE Frame, then update this as a possible end of stack range for the UM chain. |
991 | // (The end of a stack range is closer to the root.) |
992 | d->SetUMChainEnd(FramePointer::MakeFramePointer((LPVOID)(frame))); |
993 | |
994 | |
995 | Frame::ETransitionType t = frame->GetTransitionType(); |
996 | int ft = frame->GetFrameType(); |
997 | |
998 | |
999 | // Sometimes we may not want to show an UM chain b/c we know it's just |
1000 | // code inside of mscorwks. (Eg: Funcevals & AD transitions both fall into this category). |
1001 | // These are perfectly valid UM chains and we could give them if we wanted to. |
1002 | if ((t == Frame::TT_AppDomain) || (ft == Frame::TYPE_FUNC_EVAL)) |
1003 | { |
1004 | d->CancelUMChain(); |
1005 | return SWA_CONTINUE; |
1006 | } |
1007 | |
1008 | // If we hit an M2U frame, then go ahead and dispatch the UM chain now. |
1009 | // This will likely also be an exit frame. |
1010 | if (t == Frame::TT_M2U) |
1011 | { |
1012 | fDispatchUMChain = true; |
1013 | } |
1014 | |
1015 | // If we get an Exit frame, we can use that to "prune" the UM chain to a more friendly state. |
1016 | // This heuristic is optional, it just eliminates lots of internal mscorwks frames from the callstack. |
1017 | // Note that this heuristic is only useful if we get a callback on the entry frame |
1018 | // (e.g. UMThkCallFrame) between the callback on the native marker and the callback on the exit frame. |
1019 | // Otherwise the REGDISPLAY will be the same. |
1020 | if (ft == Frame::TYPE_EXIT) |
1021 | { |
1022 | // If we have a valid reg-display (non-null IP) then update it. |
1023 | // We may have an invalid reg-display if we have an exit frame on an inactive thread. |
1024 | REGDISPLAY * pNewRD = pCF->GetRegisterSet(); |
1025 | if (GetControlPC(pNewRD) != NULL) |
1026 | { |
1027 | LOG((LF_CORDB, LL_EVERYTHING, "DWSP. updating RD while tracking UM chain\n" )); |
1028 | CopyREGDISPLAY(d->GetUMChainStartRD(), pNewRD); |
1029 | } |
1030 | |
1031 | FramePointer fpLeaf = GetSP(d->GetUMChainStartRD()); |
1032 | _ASSERTE(IsCloserToLeaf(fpLeaf, d->GetUMChainEnd())); |
1033 | |
1034 | |
1035 | _ASSERTE(!d->fHitExitFrame); // should only have 1 exit frame per UM chain code. |
1036 | d->fHitExitFrame = true; |
1037 | |
1038 | FramePointer potentialFP; |
1039 | |
1040 | FramePointer fpNewChainEnd = d->GetUMChainEnd(); |
1041 | |
1042 | // Check to see if we are inside the unmanaged call. We want to make sure we only report an exit frame after |
1043 | // we've really exited. There is a short period between where we setup the frame and when we actually exit |
1044 | // the runtime. This check is intended to ensure we're actually outside now. |
1045 | if (HasExitRuntime(frame, d, &potentialFP)) |
1046 | { |
1047 | LOG((LF_CORDB, LL_EVERYTHING, "HasExitRuntime. potentialFP=0x%p\n" , potentialFP.GetSPValue())); |
1048 | |
1049 | // If we have no call site, manufacture a FP using the current frame. |
1050 | // If we do have a call site, then the FP is actually going to be the caller SP, |
1051 | // where the caller is the last managed method before calling out to unmanaged code. |
1052 | if (potentialFP == LEAF_MOST_FRAME) |
1053 | { |
1054 | fpNewChainEnd = FramePointer::MakeFramePointer((LPVOID)((BYTE*)frame - sizeof(LPVOID))); |
1055 | } |
1056 | else |
1057 | { |
1058 | fpNewChainEnd = potentialFP; |
1059 | } |
1060 | |
1061 | } |
1062 | // For IL stubs, we may actually push an uninitialized InlinedCallFrame frame onto the frame chain |
1063 | // in jitted managed code, and then later on initialize it in a native runtime helper. In this case, if |
1064 | // HasExitRuntime() is false (meaning the frame is uninitialized), then we are actually still in managed |
1065 | // code and have not made the call to native code yet, so we should report an unmanaged chain. |
1066 | else |
1067 | { |
1068 | d->CancelUMChain(); |
1069 | return SWA_CONTINUE; |
1070 | } |
1071 | |
1072 | fDispatchUMChain = true; |
1073 | |
1074 | // If we got a valid chain end, then prune the UM chain accordingly. |
1075 | // Note that some EE Frames will give invalid info back so we have to check. |
1076 | // PInvokeCalliFrame is one example (when doing MC++ function pointers) |
1077 | if (IsCloserToRoot(fpNewChainEnd, fpLeaf)) |
1078 | { |
1079 | d->SetUMChainEnd(fpNewChainEnd); |
1080 | } |
1081 | else |
1082 | { |
1083 | _ASSERTE(IsCloserToLeaf(fpLeaf, d->GetUMChainEnd())); |
1084 | } |
1085 | } // end ExitFrame |
1086 | |
1087 | // Only CLR internal code / stubs can push Frames onto the Frame chain. |
1088 | // So if we hit a raw interceptor frame before we hit any managed frame, then this whole |
1089 | // UM chain must still be in CLR internal code. |
1090 | // Either way, this UM chain has ended (and some new chain based off the frame has started) |
1091 | // so we need to either Cancel the chain or dispatch it. |
1092 | if (frame->GetInterception() != Frame::INTERCEPTION_NONE) |
1093 | { |
1094 | // Interceptors may contain calls out to unmanaged code (such as unmanaged dllmain when |
1095 | // loading a new dll), so we need to dispatch these. |
1096 | // These extra UM chains don't show in Everett, and so everett debuggers on whidbey |
1097 | // may see new chains. |
1098 | // We need to ensure that whidbey debuggers are updated first. |
1099 | fDispatchUMChain = true; |
1100 | } |
1101 | } |
1102 | else |
1103 | { |
1104 | // If it's a real method (not just an EE Frame), then the UM chain is over. |
1105 | fDispatchUMChain = true; |
1106 | } |
1107 | |
1108 | |
1109 | if (fDispatchUMChain) |
1110 | { |
1111 | // Check if we should cancel the UM chain. |
1112 | |
1113 | // We need to discriminate between the following 2 cases: |
1114 | // 1) Managed -(a)-> mscorwks -(b)-> Managed (leaf) |
1115 | // 2) Native -(a)-> mscorwks -(b)-> Managed (leaf) |
1116 | // |
1117 | // --INCORRECT RATIONALE SEE "CORRECTION" BELOW-- |
1118 | // Case 1 could happen if a managed call injects a stub (such as w/ delegates). |
1119 | // In both cases, the (mscorwks-(b)->managed) transition causes a IsNativeMarker callback |
1120 | // which initiates a UM chain. In case 1, we want to cancel the UM chain, but |
1121 | // in case 2 we want to dispatch it. |
1122 | // The difference is case #2 will have some EE Frame at (b) and case #1 won't. |
1123 | // That EE Frame should have caused us to dispatch the call for the managed method, and |
1124 | // thus by the time we get around to dispatching the UM Chain, we shouldn't have a managed |
1125 | // method waiting to be dispatched in the DebuggerFrameData. |
1126 | // --END INCORRECT RATIONALE-- |
1127 | // |
1128 | // This is kind of messed up. First of all, the assertions on case 2 is not true on 64-bit. |
1129 | // We won't have an explicit frame at (b). Secondly, case 1 is not always true either. |
1130 | // Consider the case where we are calling a cctor at prestub time. This is what the stack may |
1131 | // look like: managed -> PrestubMethodFrame -> GCFrame -> managed (cctor) (leaf). In this case, |
1132 | // we will actually send the UM chain because we will have dispatched the call for the managed |
1133 | // method (the cctor) when we get a callback for the GCFrame. |
1134 | // |
1135 | // --INCORRECT SEE "CORRECTION" BELOW-- |
1136 | // Keep in mind that this is just a heuristic to reduce the number of UM chains we are sending |
1137 | // over to the RS. |
1138 | // --END INCORRECT -- |
1139 | // |
1140 | // CORRECTION: These UM chains also feed into the results of at least ControllerStackInfo and probably other |
1141 | // places. Issue 650903 is a concrete example of how not filtering a UM chain causes correctness |
1142 | // issues in the LS. This code may still have bugs in it based on those incorrect assumptions. |
1143 | // A narrow fix for 650903 is the only thing that was changed at the time of adding this comment. |
1144 | if (d->needParentInfo && d->info.HasMethodFrame()) |
1145 | { |
1146 | LOG((LF_CORDB, LL_EVERYTHING, "Cancelling UM Chain b/c it's internal\n" )); |
1147 | d->CancelUMChain(); |
1148 | return SWA_CONTINUE; |
1149 | } |
1150 | |
1151 | // If we're NOT ignoring non-method frames, and we didn't get an explicit ExitFrame somewhere |
1152 | // in this chain, then don't send the non-leaf UM chain. |
1153 | // The practical cause here is that w/o an exit frame, we don't know where the UM chain |
1154 | // is starting (could be from anywhere in mscorwks). And we can't patch any random spot in |
1155 | // mscorwks. |
1156 | // Sending leaf-UM chains is OK b/c we can't step-out to them (they're the leaf, duh). |
1157 | // (ignoreNonmethodFrames is generally false for stepping and true for regular |
1158 | // end-user stacktraces.) |
1159 | // |
1160 | // This check is probably unnecessary. The client of the debugger stackwalker should make |
1161 | // the decision themselves as to what to do with the UM chain callbacks. |
1162 | // |
1163 | // -- INCORRECT SEE SEE "CORRECTION" BELOW -- |
1164 | // Currently, both |
1165 | // ControllerStackInfo and InterceptorStackInfo ignore UM chains completely anyway. |
1166 | // (For an example, refer to the cctor example in the previous comment.) |
1167 | // -- END INCORRECT -- |
1168 | // |
1169 | // CORRECTION: See issue 650903 for a concrete example of ControllerStackInfo getting a different |
1170 | // result based on a UM chain that wasn't filtered. This code may still have issues in |
1171 | // it based on those incorrect assumptions. A narrow fix for 650903 is the only thing |
1172 | // that was changed at the time of adding this comment. |
1173 | if (!d->fHitExitFrame && !d->ShouldIgnoreNonmethodFrames() && !d->IsLeafCallback()) |
1174 | { |
1175 | LOG((LF_CORDB, LL_EVERYTHING, "Cancelling UM Chain b/c it's stepper not requested\n" )); |
1176 | d->CancelUMChain(); |
1177 | return SWA_CONTINUE; |
1178 | } |
1179 | |
1180 | |
1181 | // Ok, we haven't cancelled it yet, so go ahead and send the UM chain. |
1182 | FrameInfo f; |
1183 | FramePointer fpRoot = d->GetUMChainEnd(); |
1184 | FramePointer fpLeaf = GetSP(d->GetUMChainStartRD()); |
1185 | |
1186 | // If we didn't actually get any range, then don't bother sending it. |
1187 | if (fpRoot == fpLeaf) |
1188 | { |
1189 | d->CancelUMChain(); |
1190 | return SWA_CONTINUE; |
1191 | } |
1192 | |
1193 | f.InitForUMChain(fpRoot, d->GetUMChainStartRD()); |
1194 | |
1195 | #ifdef FEATURE_COMINTEROP |
1196 | if ((frame != NULL) && |
1197 | (frame->GetVTablePtr() == ComPlusMethodFrame::GetMethodFrameVPtr())) |
1198 | { |
1199 | // This condition is part of the fix for 650903. (See |
1200 | // code:ControllerStackInfo::WalkStack and code:DebuggerStepper::TrapStepOut |
1201 | // for the other parts.) Here, we know that the frame we're looking it may be |
1202 | // a ComPlusMethodFrameGeneric (this info is not otherwise plubmed down into |
1203 | // the walker; even though the walker does get to see "f.frame", that may not |
1204 | // be "frame"). Given this, if the walker chooses to ignore these frames |
1205 | // (while doing a Step Out during managed-only debugging), then it can ignore |
1206 | // this frame. |
1207 | f.fIgnoreThisFrameIfSuppressingUMChainFromComPlusMethodFrameGeneric = true; |
1208 | } |
1209 | #endif // FEATURE_COMINTEROP |
1210 | |
1211 | if (d->InvokeCallback(&f) == SWA_ABORT) |
1212 | { |
1213 | // don't need to cancel if they abort. |
1214 | return SWA_ABORT; |
1215 | } |
1216 | d->CancelUMChain(); // now that we've sent it, we're done. |
1217 | |
1218 | |
1219 | // Check for a M2U internal frame. |
1220 | if (d->ShouldProvideInternalFrames() && (frame != NULL) && (frame != FRAME_TOP)) |
1221 | { |
1222 | // We want to dispatch a M2U transition right after we dispatch the UM chain. |
1223 | Frame::ETransitionType t = frame->GetTransitionType(); |
1224 | if (t == Frame::TT_M2U) |
1225 | { |
1226 | // Frame for a M2U transition. |
1227 | FrameInfo fM2U; |
1228 | fM2U.InitForM2UInternalFrame(pCF); |
1229 | if (d->InvokeCallback(&fM2U) == SWA_ABORT) |
1230 | { |
1231 | return SWA_ABORT; |
1232 | } |
1233 | } |
1234 | } |
1235 | |
1236 | |
1237 | } |
1238 | |
1239 | return SWA_CONTINUE; |
1240 | } |
1241 | |
1242 | //--------------------------------------------------------------------------------------- |
1243 | // |
1244 | // A frame pointer is a unique identifier for a particular stack location. This function returns the |
1245 | // frame pointer for the current frame, whether it is a method frame or an explicit frame. |
1246 | // |
1247 | // Arguments: |
1248 | // pData - the state of the current frame maintained by the debugger stackwalker |
1249 | // pCF - the CrawlFrame for the current callback by the real stackwalker (i.e. StackWalkFramesEx()); |
1250 | // this is NULL for the case where we fake an extra callbakc to top off a debugger stackwalk |
1251 | // |
1252 | // Return Value: |
1253 | // the frame pointer for the current frame |
1254 | // |
1255 | |
1256 | FramePointer GetFramePointerForDebugger(DebuggerFrameData* pData, CrawlFrame* pCF) |
1257 | { |
1258 | CONTRACTL |
1259 | { |
1260 | NOTHROW; |
1261 | GC_NOTRIGGER; |
1262 | MODE_ANY; |
1263 | } |
1264 | CONTRACTL_END; |
1265 | |
1266 | FramePointer fpResult; |
1267 | |
1268 | #if defined(WIN64EXCEPTIONS) |
1269 | if (pData->info.frame == NULL) |
1270 | { |
1271 | // This is a managed method frame. |
1272 | fpResult = FramePointer::MakeFramePointer((LPVOID)GetRegdisplayStackMark(&pData->info.registers)); |
1273 | } |
1274 | else |
1275 | { |
1276 | // This is an actual frame. |
1277 | fpResult = FramePointer::MakeFramePointer((LPVOID)(pData->info.frame)); |
1278 | } |
1279 | |
1280 | #else // !WIN64EXCEPTIONS |
1281 | if ((pCF == NULL || !pCF->IsFrameless()) && pData->info.frame != NULL) |
1282 | { |
1283 | // |
1284 | // If we're in an explicit frame now, and the previous frame was |
1285 | // also an explicit frame, pPC will not have been updated. So |
1286 | // use the address of the frame itself as fp. |
1287 | // |
1288 | fpResult = FramePointer::MakeFramePointer((LPVOID)(pData->info.frame)); |
1289 | |
1290 | LOG((LF_CORDB, LL_INFO100000, "GFPFD: Two explicit frames in a row; using frame address 0x%p\n" , |
1291 | pData->info.frame)); |
1292 | } |
1293 | else |
1294 | { |
1295 | // |
1296 | // Otherwise use pPC as the frame pointer, as this will be |
1297 | // pointing to the return address on the stack. |
1298 | // |
1299 | fpResult = FramePointer::MakeFramePointer((LPVOID)GetRegdisplayStackMark(&(pData->regDisplay))); |
1300 | } |
1301 | |
1302 | #endif // !WIN64EXCEPTIONS |
1303 | |
1304 | LOG((LF_CORDB, LL_INFO100000, "GFPFD: Frame pointer is 0x%p\n" , fpResult.GetSPValue())); |
1305 | |
1306 | return fpResult; |
1307 | } |
1308 | |
1309 | |
1310 | #ifdef WIN64EXCEPTIONS |
1311 | //--------------------------------------------------------------------------------------- |
1312 | // |
1313 | // This function is called to determine if we should start skipping funclets. If we should, then we return the |
1314 | // frame pointer for the parent method frame. Otherwise we return LEAF_MOST_FRAME. If we are already skipping |
1315 | // frames, then we return the current frame pointer for the parent method frame. |
1316 | // |
1317 | // The return value of this function corresponds to the return value of ExceptionTracker::FindParentStackFrame(). |
1318 | // Refer to that function for more information. |
1319 | // |
1320 | // Arguments: |
1321 | // fpCurrentParentMarker - This is the current frame pointer of the parent method frame. It can be |
1322 | // LEAF_MOST_FRAME if we are not currently skipping funclets. |
1323 | // pCF - the CrawlFrame for the current callback from the real stackwalker |
1324 | // fIsNonFilterFuncletFrame - whether the current frame is a non-filter funclet frame |
1325 | // |
1326 | // Return Value: |
1327 | // LEAF_MOST_FRAME - skipping not required |
1328 | // ROOT_MOST_FRAME - skip one frame and try again |
1329 | // anything else - skip all frames up to but not including the returned frame pointer |
1330 | // |
1331 | |
1332 | inline FramePointer CheckForParentFP(FramePointer fpCurrentParentMarker, CrawlFrame* pCF, bool fIsNonFilterFuncletFrame) |
1333 | { |
1334 | WRAPPER_NO_CONTRACT; |
1335 | |
1336 | if (fpCurrentParentMarker == LEAF_MOST_FRAME) |
1337 | { |
1338 | // When we encounter a funclet, we simply stop processing frames until we hit the parent |
1339 | // of the funclet. Funclets and their parents have the same MethodDesc pointers, and they |
1340 | // should really be treated as one frame. However, we report both of them and let the callers |
1341 | // decide what they want to do with them. For example, DebuggerThread::TraceAndSendStack() |
1342 | // should never report both frames, but ControllerStackInfo::GetStackInfo() may need both to |
1343 | // determine where to put a patch. We use the fpParent as a flag to indicate if we are |
1344 | // searching for a parent of a funclet. |
1345 | // |
1346 | // Note that filter funclets are an exception. We don't skip them. |
1347 | if (fIsNonFilterFuncletFrame) |
1348 | { |
1349 | // We really should be using the same structure, but FramePointer is used everywhere in the debugger...... |
1350 | StackFrame sfParent = g_pEEInterface->FindParentStackFrame(pCF); |
1351 | return FramePointer::MakeFramePointer((LPVOID)sfParent.SP); |
1352 | } |
1353 | else |
1354 | { |
1355 | return LEAF_MOST_FRAME; |
1356 | } |
1357 | } |
1358 | else |
1359 | { |
1360 | // Just return the current marker if we are already skipping frames. |
1361 | return fpCurrentParentMarker; |
1362 | } |
1363 | } |
1364 | #endif // WIN64EXCEPTIONS |
1365 | |
1366 | |
1367 | //----------------------------------------------------------------------------- |
1368 | // StackWalkAction DebuggerWalkStackProc(): This is the callback called |
1369 | // by the EE stackwalker. |
1370 | // Note that since we don't know what the frame pointer for frame |
1371 | // X is until we've looked at the caller of frame X, we actually end up |
1372 | // stashing the info and pData pointers in the DebuggerFrameDat struct, and |
1373 | // then invoking pCallback when we've moved up one level, into the caller's |
1374 | // frame. We use the needParentInfo field to indicate that the previous frame |
1375 | // needed this (parental) info, and so when it's true we should invoke |
1376 | // pCallback. |
1377 | // What happens is this: if the previous frame set needParentInfo, then we |
1378 | // do pCallback (and set needParentInfo to false). |
1379 | // Then we look at the current frame - if it's frameless (ie, |
1380 | // managed), then we set needParentInfo to callback in the next frame. |
1381 | // Otherwise we must be at a chain boundary, and so we set the chain reason |
1382 | // appropriately. We then figure out what type of frame it is, setting |
1383 | // flags depending on the type. If the user should see this frame, then |
1384 | // we'll set needParentInfo to record it's existence. Lastly, if we're in |
1385 | // a funky frame, we'll explicitly update the register set, since the |
1386 | // CrawlFrame doesn't do it automatically. |
1387 | //----------------------------------------------------------------------------- |
1388 | StackWalkAction DebuggerWalkStackProc(CrawlFrame *pCF, void *data) |
1389 | { |
1390 | DebuggerFrameData *d = (DebuggerFrameData *)data; |
1391 | |
1392 | if (pCF->IsNativeMarker()) |
1393 | { |
1394 | #ifdef WIN64EXCEPTIONS |
1395 | // The tricky part here is that we want to skip all frames between a funclet method frame |
1396 | // and the parent method frame UNLESS the funclet is a filter. Moreover, we should never |
1397 | // let a native marker execute the rest of this method, so we just short-circuit it here. |
1398 | if ((d->fpParent != LEAF_MOST_FRAME) || d->info.IsNonFilterFuncletFrame()) |
1399 | { |
1400 | return SWA_CONTINUE; |
1401 | } |
1402 | #endif // WIN64EXCEPTIONS |
1403 | |
1404 | // This REGDISPLAY is for the native method immediately following the managed method for which |
1405 | // we have received the previous callback, i.e. the native caller of the last managed method |
1406 | // we have encountered. |
1407 | REGDISPLAY* pRDSrc = pCF->GetRegisterSet(); |
1408 | d->BeginTrackingUMChain(GetSP(pRDSrc), pRDSrc); |
1409 | |
1410 | return SWA_CONTINUE; |
1411 | } |
1412 | |
1413 | // Note that a CrawlFrame may have both a methoddesc & an EE Frame. |
1414 | Frame *frame = g_pEEInterface->GetFrame(pCF); |
1415 | MethodDesc *md = pCF->GetFunction(); |
1416 | |
1417 | LOG((LF_CORDB, LL_EVERYTHING, "Calling DebuggerWalkStackProc. Frame=0x%p, md=0x%p(%s), native_marker=%d\n" , |
1418 | frame, md, (md == NULL || md == (MethodDesc*)POISONC) ? "null" : md->m_pszDebugMethodName, pCF->IsNativeMarker() )); |
1419 | |
1420 | // The fp for a frame must be obtained from the _next_ frame. Fill it in now for the previous frame, if appropriate. |
1421 | if (d->needParentInfo) |
1422 | { |
1423 | LOG((LF_CORDB, LL_INFO100000, "DWSP: NeedParentInfo.\n" )); |
1424 | |
1425 | d->info.fp = GetFramePointerForDebugger(d, pCF); |
1426 | |
1427 | #if defined(_DEBUG) && !defined(_TARGET_ARM_) && !defined(_TARGET_ARM64_) |
1428 | // Make sure the stackwalk is making progress. |
1429 | // On ARM this is invalid as the stack pointer does necessarily have to move when unwinding a frame. |
1430 | _ASSERTE(IsCloserToLeaf(d->previousFP, d->info.fp)); |
1431 | |
1432 | d->previousFP = d->info.fp; |
1433 | #endif // _DEBUG && !_TARGET_ARM_ |
1434 | |
1435 | d->needParentInfo = false; |
1436 | |
1437 | { |
1438 | // Don't invoke Stubs if we're not asking for internal frames. |
1439 | bool fDoInvoke = true; |
1440 | if (!d->ShouldProvideInternalFrames()) |
1441 | { |
1442 | if (d->info.HasStubFrame()) |
1443 | { |
1444 | fDoInvoke = false; |
1445 | } |
1446 | } |
1447 | |
1448 | LOG((LF_CORDB, LL_INFO1000000, "DWSP: handling our target\n" )); |
1449 | |
1450 | if (fDoInvoke) |
1451 | { |
1452 | if (d->InvokeCallback(&d->info) == SWA_ABORT) |
1453 | { |
1454 | return SWA_ABORT; |
1455 | } |
1456 | } |
1457 | |
1458 | // @todo - eventually we should be initing our frame-infos properly |
1459 | // and thus should be able to remove this. |
1460 | d->info.eStubFrameType = STUBFRAME_NONE; |
1461 | } |
1462 | } // if (d->needParentInfo) |
1463 | |
1464 | |
1465 | #ifdef WIN64EXCEPTIONS |
1466 | // The tricky part here is that we want to skip all frames between a funclet method frame |
1467 | // and the parent method frame UNLESS the funclet is a filter. We only have to check for fpParent |
1468 | // here (instead of checking d->info.fIsFunclet and d->info.fIsFilter as well, as in the beginning of |
1469 | // this method) is because at this point, fpParent is already set by the code above. |
1470 | if (d->fpParent == LEAF_MOST_FRAME) |
1471 | #endif // WIN64EXCEPTIONS |
1472 | { |
1473 | // Track the UM chain after we flush any managed goo from the last iteration. |
1474 | if (TrackUMChain(pCF, d) == SWA_ABORT) |
1475 | { |
1476 | return SWA_ABORT; |
1477 | } |
1478 | } |
1479 | |
1480 | |
1481 | // Track if we want to send a callback for this Frame / Method |
1482 | bool use=false; |
1483 | |
1484 | // |
1485 | // Examine the frame. |
1486 | // |
1487 | |
1488 | // We assume that the stack walker is just updating the |
1489 | // register display we passed in - assert it to be sure |
1490 | _ASSERTE(pCF->GetRegisterSet() == &d->regDisplay); |
1491 | |
1492 | #ifdef WIN64EXCEPTIONS |
1493 | Frame* pPrevFrame = d->info.frame; |
1494 | |
1495 | // Here we need to determine if we are in a non-leaf frame, in which case we want to adjust the relative offset. |
1496 | // Also, we need to check if this frame has faulted (throws a native exception), since if it has, then it should be |
1497 | // considered the leaf frame (and thus we don't need to update the relative offset). |
1498 | if (pCF->IsActiveFrame() || pCF->HasFaulted()) |
1499 | { |
1500 | d->info.fIsLeaf = true; |
1501 | } |
1502 | else if ( (pPrevFrame != NULL) && |
1503 | (pPrevFrame->GetFrameType() == Frame::TYPE_EXIT) && |
1504 | !HasExitRuntime(pPrevFrame, d, NULL) ) |
1505 | { |
1506 | // This is for the inlined NDirectMethodFrameGeneric case. We have not exit the runtime yet, so the current |
1507 | // frame should still be regarded as the leaf frame. |
1508 | d->info.fIsLeaf = true; |
1509 | } |
1510 | else |
1511 | { |
1512 | d->info.fIsLeaf = false; |
1513 | } |
1514 | |
1515 | d->info.fIsFunclet = pCF->IsFunclet(); |
1516 | d->info.fIsFilter = false; |
1517 | if (d->info.fIsFunclet) |
1518 | { |
1519 | d->info.fIsFilter = pCF->IsFilterFunclet(); |
1520 | } |
1521 | |
1522 | if (pCF->IsFrameless()) |
1523 | { |
1524 | // Check if we are skipping. |
1525 | if (d->fpParent != LEAF_MOST_FRAME) |
1526 | { |
1527 | // If fpParent is ROOT_MOST_FRAME, then we just need to skip one frame. Otherwise, we should stop |
1528 | // skipping if the current frame pointer matches fpParent. In either case, clear fpParent, and |
1529 | // then check again. |
1530 | if ((d->fpParent == ROOT_MOST_FRAME) || |
1531 | ExceptionTracker::IsUnwoundToTargetParentFrame(pCF, ConvertFPToStackFrame(d->fpParent))) |
1532 | { |
1533 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Stopping to skip funclet at 0x%p.\n" , d->fpParent.GetSPValue())); |
1534 | |
1535 | d->fpParent = LEAF_MOST_FRAME; |
1536 | d->fpParent = CheckForParentFP(d->fpParent, pCF, d->info.IsNonFilterFuncletFrame()); |
1537 | } |
1538 | } |
1539 | } |
1540 | |
1541 | #endif // WIN64EXCEPTIONS |
1542 | |
1543 | d->info.frame = frame; |
1544 | d->info.ambientSP = NULL; |
1545 | |
1546 | // Record the appdomain that the thread was in when it |
1547 | // was running code for this frame. |
1548 | d->info.currentAppDomain = pCF->GetAppDomain(); |
1549 | |
1550 | // Grab all the info from CrawlFrame that we need to |
1551 | // check for "Am I in an exeption code blob?" now. |
1552 | |
1553 | #ifdef WIN64EXCEPTIONS |
1554 | // We are still searching for the parent of the last funclet we encounter. |
1555 | if (d->fpParent != LEAF_MOST_FRAME) |
1556 | { |
1557 | // We do nothing here. |
1558 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Skipping to parent method frame at 0x%p.\n" , d->fpParent.GetSPValue())); |
1559 | } |
1560 | else |
1561 | #endif // WIN64EXCEPTIONS |
1562 | // We should ignore IL stubs with no frames in our stackwalking. |
1563 | // The only exception is dynamic methods. We want to report them when SIS is turned on. |
1564 | if ((md != NULL) && md->IsILStub() && pCF->IsFrameless()) |
1565 | { |
1566 | #ifdef FEATURE_MULTICASTSTUB_AS_IL |
1567 | if(md->AsDynamicMethodDesc()->IsMulticastStub()) |
1568 | { |
1569 | use = true; |
1570 | d->info.managed = true; |
1571 | d->info.internal = false; |
1572 | } |
1573 | #endif |
1574 | // We do nothing here. |
1575 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Skip frameless IL stub.\n" )); |
1576 | } |
1577 | else |
1578 | // For frames w/o method data, send them as an internal stub frame. |
1579 | if ((md != NULL) && md->IsDynamicMethod()) |
1580 | { |
1581 | // Only Send the frame if "InternalFrames" are requested. |
1582 | // Else completely ignore it. |
1583 | if (d->ShouldProvideInternalFrames()) |
1584 | { |
1585 | d->info.InitForDynamicMethod(pCF); |
1586 | |
1587 | // We'll loop around to get the FramePointer. Only modification to FrameInfo |
1588 | // after this is filling in framepointer and resetting MD. |
1589 | use = true; |
1590 | } |
1591 | } |
1592 | else if (pCF->IsFrameless()) |
1593 | { |
1594 | // Regular managed-method. |
1595 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Is frameless.\n" )); |
1596 | use = true; |
1597 | d->info.managed = true; |
1598 | d->info.internal = false; |
1599 | d->info.chainReason = CHAIN_NONE; |
1600 | d->needParentInfo = true; // Possibly need chain reason |
1601 | d->info.relOffset = AdjustRelOffset(pCF, &(d->info)); |
1602 | d->info.pIJM = pCF->GetJitManager(); |
1603 | d->info.MethodToken = pCF->GetMethodToken(); |
1604 | |
1605 | #ifdef _TARGET_X86_ |
1606 | // This is collecting the ambientSP a lot more than we actually need it. Only time we need it is |
1607 | // inspecting local vars that are based off the ambient esp. |
1608 | d->info.ambientSP = pCF->GetAmbientSPFromCrawlFrame(); |
1609 | #endif |
1610 | } |
1611 | else |
1612 | { |
1613 | d->info.pIJM = NULL; |
1614 | d->info.MethodToken = METHODTOKEN(NULL, 0); |
1615 | |
1616 | // |
1617 | // Retrieve any interception info |
1618 | // |
1619 | |
1620 | // Each interception type in the switch statement below is associated with a chain reason. |
1621 | // The other chain reasons are: |
1622 | // CHAIN_INTERCEPTION - not used |
1623 | // CHAIN_PROCESS_START - not used |
1624 | // CHAIN_THREAD_START - thread start |
1625 | // CHAIN_ENTER_MANAGED - managed chain |
1626 | // CHAIN_ENTER_UNMANAGED - unmanaged chain |
1627 | // CHAIN_DEBUGGER_EVAL - not used |
1628 | // CHAIN_CONTEXT_SWITCH - not used |
1629 | // CHAIN_FUNC_EVAL - funceval |
1630 | |
1631 | switch (frame->GetInterception()) |
1632 | { |
1633 | case Frame::INTERCEPTION_CLASS_INIT: |
1634 | // |
1635 | // Fall through |
1636 | // |
1637 | |
1638 | // V2 assumes that the only thing the prestub intercepts is the class constructor |
1639 | case Frame::INTERCEPTION_PRESTUB: |
1640 | d->info.chainReason = CHAIN_CLASS_INIT; |
1641 | break; |
1642 | |
1643 | case Frame::INTERCEPTION_EXCEPTION: |
1644 | d->info.chainReason = CHAIN_EXCEPTION_FILTER; |
1645 | break; |
1646 | |
1647 | case Frame::INTERCEPTION_CONTEXT: |
1648 | d->info.chainReason = CHAIN_CONTEXT_POLICY; |
1649 | break; |
1650 | |
1651 | case Frame::INTERCEPTION_SECURITY: |
1652 | d->info.chainReason = CHAIN_SECURITY; |
1653 | break; |
1654 | |
1655 | default: |
1656 | d->info.chainReason = CHAIN_NONE; |
1657 | } |
1658 | |
1659 | // |
1660 | // Look at the frame type to figure out how to treat it. |
1661 | // |
1662 | |
1663 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Chain reason is 0x%X.\n" , d->info.chainReason)); |
1664 | |
1665 | switch (frame->GetFrameType()) |
1666 | { |
1667 | case Frame::TYPE_ENTRY: // We now ignore entry + exit frames. |
1668 | case Frame::TYPE_EXIT: |
1669 | case Frame::TYPE_HELPER_METHOD_FRAME: |
1670 | case Frame::TYPE_INTERNAL: |
1671 | |
1672 | /* If we have a specific interception type, use it. However, if this |
1673 | is the top-most frame (with a specific type), we can ignore it |
1674 | and it wont appear in the stack-trace */ |
1675 | #define INTERNAL_FRAME_ACTION(d, use) \ |
1676 | (d)->info.managed = true; \ |
1677 | (d)->info.internal = false; \ |
1678 | use = true |
1679 | |
1680 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Frame type is TYPE_INTERNAL.\n" )); |
1681 | if (d->info.chainReason == CHAIN_NONE || pCF->IsActiveFrame()) |
1682 | { |
1683 | use = false; |
1684 | } |
1685 | else |
1686 | { |
1687 | INTERNAL_FRAME_ACTION(d, use); |
1688 | } |
1689 | break; |
1690 | |
1691 | case Frame::TYPE_INTERCEPTION: |
1692 | case Frame::TYPE_SECURITY: // Security is a sub-type of interception |
1693 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Frame type is TYPE_INTERCEPTION/TYPE_SECURITY.\n" )); |
1694 | d->info.managed = true; |
1695 | d->info.internal = true; |
1696 | use = true; |
1697 | break; |
1698 | |
1699 | case Frame::TYPE_CALL: |
1700 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Frame type is TYPE_CALL.\n" )); |
1701 | // In V4, StubDispatchFrame is only used on 64-bit (and PPC?) but not on x86. x86 uses a |
1702 | // different code path which sets up a HelperMethodFrame instead. In V4.5, x86 and ARM |
1703 | // both use the 64-bit code path and they set up a StubDispatchFrame as well. This causes |
1704 | // a problem in the debugger stackwalker (see Dev11 Issue 13229) since the two frame types |
1705 | // are treated differently. More specifically, a StubDispatchFrame causes the debugger |
1706 | // stackwalk to make an invalid callback, i.e. a callback which is not for a managed method, |
1707 | // an explicit frame, or a chain. |
1708 | // |
1709 | // Ideally we would just change the StubDispatchFrame to behave like a HMF, but it's |
1710 | // too big of a change for an in-place release. For now I'm just making surgical fixes in |
1711 | // the debugger stackwalker. This may introduce behavioural changes in on X64, but the |
1712 | // chance of that is really small. StubDispatchFrame is only used in the virtual stub |
1713 | // disptch code path. It stays on the stack in a small time window and it's not likely to |
1714 | // be on the stack while some managed methods closer to the leaf are on the stack. There is |
1715 | // only one scenario I know of, and that's the repro for Dev11 13229, but that's for x86 only. |
1716 | // The jitted code on X64 behaves differently. |
1717 | // |
1718 | // Note that there is a corresponding change in DacDbiInterfaceImpl::GetInternalFrameType(). |
1719 | if (frame->GetVTablePtr() == StubDispatchFrame::GetMethodFrameVPtr()) |
1720 | { |
1721 | use = false; |
1722 | } |
1723 | else |
1724 | { |
1725 | d->info.managed = true; |
1726 | d->info.internal = false; |
1727 | use = true; |
1728 | } |
1729 | break; |
1730 | |
1731 | case Frame::TYPE_FUNC_EVAL: |
1732 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Frame type is TYPE_FUNC_EVAL.\n" )); |
1733 | d->info.managed = true; |
1734 | d->info.internal = true; |
1735 | // This is actually a nop. We reset the chain reason in InitForFuncEval() below. |
1736 | // So is a FuncEvalFrame a chain or an internal frame? |
1737 | d->info.chainReason = CHAIN_FUNC_EVAL; |
1738 | |
1739 | { |
1740 | // We only show a FuncEvalFrame if the funceval is not trying to abort the thread. |
1741 | FuncEvalFrame *pFuncEvalFrame = static_cast<FuncEvalFrame *>(frame); |
1742 | use = pFuncEvalFrame->ShowFrame() ? true : false; |
1743 | } |
1744 | |
1745 | // Send Internal frame. This is "inside" (leafmost) the chain, so we send it first |
1746 | // since sending starts from the leaf. |
1747 | if (use && d->ShouldProvideInternalFrames()) |
1748 | { |
1749 | FrameInfo f; |
1750 | f.InitForFuncEval(pCF); |
1751 | if (d->InvokeCallback(&f) == SWA_ABORT) |
1752 | { |
1753 | return SWA_ABORT; |
1754 | } |
1755 | } |
1756 | |
1757 | break; |
1758 | |
1759 | // Put frames we want to ignore here: |
1760 | case Frame::TYPE_MULTICAST: |
1761 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Frame type is TYPE_MULTICAST.\n" )); |
1762 | if (d->ShouldIgnoreNonmethodFrames()) |
1763 | { |
1764 | // Multicast frames exist only to gc protect the arguments |
1765 | // between invocations of a delegate. They don't have code that |
1766 | // we can (currently) show the user (we could change this with |
1767 | // work, but why bother? It's an internal stub, and even if the |
1768 | // user could see it, they can't modify it). |
1769 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Skipping frame 0x%x b/c it's " |
1770 | "a multicast frame!\n" , frame)); |
1771 | use = false; |
1772 | } |
1773 | else |
1774 | { |
1775 | LOG((LF_CORDB, LL_INFO100000, "DWSP: NOT Skipping frame 0x%x even thought it's " |
1776 | "a multicast frame!\n" , frame)); |
1777 | INTERNAL_FRAME_ACTION(d, use); |
1778 | } |
1779 | break; |
1780 | |
1781 | default: |
1782 | _ASSERTE(!"Invalid frame type!" ); |
1783 | break; |
1784 | } |
1785 | } |
1786 | |
1787 | |
1788 | // Check for ICorDebugInternalFrame stuff. |
1789 | // These callbacks are dispatched out of band. |
1790 | if (d->ShouldProvideInternalFrames() && (frame != NULL) && (frame != FRAME_TOP)) |
1791 | { |
1792 | Frame::ETransitionType t = frame->GetTransitionType(); |
1793 | FrameInfo f; |
1794 | bool fUse = false; |
1795 | |
1796 | if (t == Frame::TT_U2M) |
1797 | { |
1798 | // We can invoke the Internal U2M frame now. |
1799 | f.InitForU2MInternalFrame(pCF); |
1800 | fUse = true; |
1801 | } |
1802 | else if (t == Frame::TT_AppDomain) |
1803 | { |
1804 | // Internal frame for an Appdomain transition. |
1805 | // We used to ignore frames for ADs which we hadn't sent a Create event for yet. In V3 we send AppDomain |
1806 | // create events immediately (before any assemblies are loaded), so this should no longer be an issue. |
1807 | f.InitForADTransition(pCF); |
1808 | fUse = true; |
1809 | } |
1810 | |
1811 | // Frame's setup. Now invoke the callback. |
1812 | if (fUse) |
1813 | { |
1814 | if (d->InvokeCallback(&f) == SWA_ABORT) |
1815 | { |
1816 | return SWA_ABORT; |
1817 | } |
1818 | } |
1819 | } // should we give frames? |
1820 | |
1821 | |
1822 | |
1823 | if (use) |
1824 | { |
1825 | // |
1826 | // If we are returning a complete stack walk from the helper thread, then we |
1827 | // need to gather information to instantiate generics. However, a stepper doing |
1828 | // a stackwalk does not need this information, so skip in that case. |
1829 | // |
1830 | if (d->ShouldIgnoreNonmethodFrames()) |
1831 | { |
1832 | // Finding sizes of value types on the argument stack while |
1833 | // looking for the arg runs the class loader in non-load mode. |
1834 | ENABLE_FORBID_GC_LOADER_USE_IN_THIS_SCOPE(); |
1835 | d->info.exactGenericArgsToken = pCF->GetExactGenericArgsToken(); |
1836 | } |
1837 | else |
1838 | { |
1839 | d->info.exactGenericArgsToken = NULL; |
1840 | } |
1841 | |
1842 | d->info.md = md; |
1843 | CopyREGDISPLAY(&(d->info.registers), &(d->regDisplay)); |
1844 | |
1845 | #if defined(_TARGET_AMD64_) |
1846 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Saving REGDISPLAY with sp = 0x%p, pc = 0x%p.\n" , |
1847 | GetRegdisplaySP(&(d->info.registers)), |
1848 | GetControlPC(&(d->info.registers)))); |
1849 | #endif // _TARGET_AMD64_ |
1850 | |
1851 | d->needParentInfo = true; |
1852 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Setting needParentInfo\n" )); |
1853 | } |
1854 | |
1855 | #if defined(WIN64EXCEPTIONS) |
1856 | d->fpParent = CheckForParentFP(d->fpParent, pCF, d->info.IsNonFilterFuncletFrame()); |
1857 | #endif // WIN64EXCEPTIONS |
1858 | |
1859 | // |
1860 | // The stackwalker doesn't update the register set for the |
1861 | // case where a non-frameless frame is returning to another |
1862 | // non-frameless frame. Cover this case. |
1863 | // |
1864 | // !!! This assumes that updating the register set multiple times |
1865 | // for a given frame times is not a bad thing... |
1866 | // |
1867 | if (!pCF->IsFrameless()) |
1868 | { |
1869 | LOG((LF_CORDB, LL_INFO100000, "DWSP: updating regdisplay.\n" )); |
1870 | pCF->GetFrame()->UpdateRegDisplay(&d->regDisplay); |
1871 | } |
1872 | |
1873 | return SWA_CONTINUE; |
1874 | } |
1875 | |
1876 | #if defined(_TARGET_X86_) && defined(FEATURE_INTEROP_DEBUGGING) |
1877 | // Helper to get the Wait-Sleep-Join bit from the thread |
1878 | bool IsInWaitSleepJoin(Thread * pThread) |
1879 | { |
1880 | // Partial User state is sufficient because that has the bit we're checking against. |
1881 | CorDebugUserState cts = g_pEEInterface->GetPartialUserState(pThread); |
1882 | return ((cts & USER_WAIT_SLEEP_JOIN) != 0); |
1883 | } |
1884 | |
1885 | //----------------------------------------------------------------------------- |
1886 | // Decide if we should send an UM leaf chain. |
1887 | // This goes through a bunch of heuristics. |
1888 | // The driving guidelines here are: |
1889 | // - we try not to send an UM chain if it's just internal mscorwks stuff |
1890 | // and we know it can't have native user code. |
1891 | // (ex, anything beyond a filter context, various hijacks, etc). |
1892 | // - If it may have native user code, we send it anyway. |
1893 | //----------------------------------------------------------------------------- |
1894 | bool ShouldSendUMLeafChain(Thread * pThread) |
1895 | { |
1896 | // If we're in shutodown, don't bother trying to sniff for an UM leaf chain. |
1897 | // @todo - we'd like to never even be trying to stack trace on shutdown, this |
1898 | // comes up when we do helper thread duty on shutdown. |
1899 | if (g_fProcessDetach) |
1900 | { |
1901 | return false; |
1902 | } |
1903 | |
1904 | if (pThread->IsUnstarted() || pThread->IsDead()) |
1905 | { |
1906 | return false; |
1907 | } |
1908 | |
1909 | // If a thread is suspended for sync purposes, it was suspended from managed |
1910 | // code and the only native code is a mscorwks hijack. |
1911 | // There are a few caveats here: |
1912 | // - This means a thread will lose it's UM chain. But what if a user inactive thread |
1913 | // enters the CLR from native code and hits a GC toggle? We'll lose that entire |
1914 | // UM chain. |
1915 | // - at a managed-only stop, preemptive threads are still live. Thus a thread |
1916 | // may not have this state set, run a little, try to enter the GC, and then get |
1917 | // this state set. Thus we'll lose the UM chain right out from under our noses. |
1918 | Thread::ThreadState ts = pThread->GetSnapshotState(); |
1919 | if ((ts & Thread::TS_SyncSuspended) != 0) |
1920 | { |
1921 | // If we've been stopped inside the runtime (eg, at a gc-toggle) but |
1922 | // not actually at a stopping context, then the thread must have some |
1923 | // leafframes in mscorwks. |
1924 | // We can detect this case by checking if GetManagedStoppedCtx(pThread) == NULL. |
1925 | // This is very significant for notifcations (like LogMessage) that are |
1926 | // dispatches from within mscorwks w/o a filter context. |
1927 | // We don't send a UM chain for these cases because that would |
1928 | // cause managed debug events to be dispatched w/ UM chains on the callstack. |
1929 | // And that just seems wrong ... |
1930 | |
1931 | return false; |
1932 | } |
1933 | |
1934 | #ifdef FEATURE_HIJACK |
1935 | if ((ts & Thread::TS_Hijacked) != 0) |
1936 | { |
1937 | return false; |
1938 | } |
1939 | #endif |
1940 | |
1941 | // This is pretty subjective. If we have a thread stopped in a managed sleep, |
1942 | // managed wait, or managed join, then don't bother showing the native end of the |
1943 | // stack. This check can be removed w/o impacting correctness. |
1944 | // @todo - may be a problem if Sleep/Wait/Join go through a hosting interface |
1945 | // which lands us in native user code. |
1946 | // Partial User state is sufficient because that has the bit we're checking against. |
1947 | if (IsInWaitSleepJoin(pThread)) |
1948 | { |
1949 | return false; |
1950 | } |
1951 | |
1952 | // If we're tracing ourselves, we must be in managed code. |
1953 | // Native user code can't initiate a managed stackwalk. |
1954 | if (pThread == GetThread()) |
1955 | { |
1956 | return false; |
1957 | } |
1958 | |
1959 | return true; |
1960 | } |
1961 | |
1962 | //----------------------------------------------------------------------------- |
1963 | // Prepare a Leaf UM chain. This assumes we should send an UM leaf chain. |
1964 | // Returns true if we actually prep for an UM leaf, |
1965 | // false if we don't. |
1966 | //----------------------------------------------------------------------------- |
1967 | bool PrepareLeafUMChain(DebuggerFrameData * pData, CONTEXT * pCtxTemp) |
1968 | { |
1969 | // Get the current user context (depends on if we're the active thread or not). |
1970 | Thread * thread = pData->GetThread(); |
1971 | REGDISPLAY * pRDSrc = NULL; |
1972 | REGDISPLAY rdTemp; |
1973 | |
1974 | |
1975 | #ifdef _DEBUG |
1976 | // Anybody stopped at an native debug event (and hijacked) should have a filter ctx. |
1977 | if (thread->GetInteropDebuggingHijacked() && (thread->GetFrame() != NULL) && (thread->GetFrame() != FRAME_TOP)) |
1978 | { |
1979 | _ASSERTE(g_pEEInterface->GetThreadFilterContext(thread) != NULL); |
1980 | } |
1981 | #endif |
1982 | |
1983 | // If we're hijacked, then we assume we're in native code. This covers the active thread case. |
1984 | if (g_pEEInterface->GetThreadFilterContext(thread) != NULL) |
1985 | { |
1986 | LOG((LF_CORDB, LL_EVERYTHING, "DWS - sending special case UM Chain.\n" )); |
1987 | |
1988 | // This will get it from the filter ctx. |
1989 | pRDSrc = &(pData->regDisplay); |
1990 | } |
1991 | else |
1992 | { |
1993 | // For inactive thread, we may not be hijacked. So just get the current ctx. |
1994 | // This will use a filter ctx if we have one. |
1995 | // We may suspend a thread in native code w/o hijacking it, so it's still at it's live context. |
1996 | // This can happen when we get a debug event on 1 thread; and then switch to look at another thread. |
1997 | // This is very common when debugging apps w/ cross-thread causality (including COM STA objects) |
1998 | pRDSrc = &rdTemp; |
1999 | |
2000 | bool fOk; |
2001 | |
2002 | |
2003 | // We need to get thread's context (InitRegDisplay will do that under the covers). |
2004 | // If this is our thread, we're in bad shape. Fortunately that should never happen. |
2005 | _ASSERTE(thread != GetThread()); |
2006 | |
2007 | Thread::SuspendThreadResult str = thread->SuspendThread(); |
2008 | if (str != Thread::STR_Success) |
2009 | { |
2010 | return false; |
2011 | } |
2012 | |
2013 | // @todo - this context is less important because the RS will overwrite it with the live context. |
2014 | // We don't need to even bother getting it. We can just intialize the regdisplay w/ a sentinal. |
2015 | fOk = g_pEEInterface->InitRegDisplay(thread, pRDSrc, pCtxTemp, false); |
2016 | thread->ResumeThread(); |
2017 | |
2018 | if (!fOk) |
2019 | { |
2020 | return false; |
2021 | } |
2022 | } |
2023 | |
2024 | // By now we have a Regdisplay from somewhere (filter ctx, current ctx, etc). |
2025 | _ASSERTE(pRDSrc != NULL); |
2026 | |
2027 | // If we're stopped in mscorwks (b/c of a handler for a managed BP), then the filter ctx will |
2028 | // still be set out in jitted code. |
2029 | // If our regdisplay is out in UM code , then send a UM chain. |
2030 | BYTE* ip = (BYTE*) GetControlPC(pRDSrc); |
2031 | if (g_pEEInterface->IsManagedNativeCode(ip)) |
2032 | { |
2033 | return false; |
2034 | } |
2035 | |
2036 | LOG((LF_CORDB, LL_EVERYTHING, "DWS - sending leaf UM Chain.\n" )); |
2037 | |
2038 | // Get the ending fp. We may not have any managed goo on the stack (eg, native thread called |
2039 | // into a managed method and then returned from it). |
2040 | FramePointer fpRoot; |
2041 | Frame * pFrame = thread->GetFrame(); |
2042 | if ((pFrame != NULL) && (pFrame != FRAME_TOP)) |
2043 | { |
2044 | fpRoot = FramePointer::MakeFramePointer((void*) pFrame); |
2045 | } |
2046 | else |
2047 | { |
2048 | fpRoot= ROOT_MOST_FRAME; |
2049 | } |
2050 | |
2051 | |
2052 | // Start tracking an UM chain. We won't actually send the UM chain until |
2053 | // we hit managed code. Since this is the leaf, we don't need to send an |
2054 | // Enter-Managed chain either. |
2055 | pData->BeginTrackingUMChain(fpRoot, pRDSrc); |
2056 | |
2057 | return true; |
2058 | } |
2059 | #endif // defined(_TARGET_X86_) && defined(FEATURE_INTEROP_DEBUGGING) |
2060 | |
2061 | //----------------------------------------------------------------------------- |
2062 | // Entry function for the debugger's stackwalking layer. |
2063 | // This will invoke pCallback(FrameInfo * pInfo, pData) for each 'frame' |
2064 | //----------------------------------------------------------------------------- |
2065 | StackWalkAction DebuggerWalkStack(Thread *thread, |
2066 | FramePointer targetFP, |
2067 | CONTEXT *context, |
2068 | BOOL contextValid, |
2069 | DebuggerStackCallback pCallback, |
2070 | void *pData, |
2071 | BOOL fIgnoreNonmethodFrames) |
2072 | { |
2073 | _ASSERTE(context != NULL); |
2074 | |
2075 | DebuggerFrameData data; |
2076 | |
2077 | StackWalkAction result = SWA_CONTINUE; |
2078 | bool fRegInit = false; |
2079 | |
2080 | LOG((LF_CORDB, LL_EVERYTHING, "DebuggerWalkStack called\n" )); |
2081 | |
2082 | if(contextValid || g_pEEInterface->GetThreadFilterContext(thread) != NULL) |
2083 | { |
2084 | fRegInit = g_pEEInterface->InitRegDisplay(thread, &data.regDisplay, context, contextValid != 0); |
2085 | _ASSERTE(fRegInit); |
2086 | } |
2087 | |
2088 | if (!fRegInit) |
2089 | { |
2090 | #if defined(CONTEXT_EXTENDED_REGISTERS) |
2091 | |
2092 | // Note: the size of a CONTEXT record contains the extended registers, but the context pointer we're given |
2093 | // here may not have room for them. Therefore, we only set the non-extended part of the context to 0. |
2094 | memset((void *)context, 0, offsetof(CONTEXT, ExtendedRegisters)); |
2095 | #else |
2096 | memset((void *)context, 0, sizeof(CONTEXT)); |
2097 | #endif |
2098 | memset((void *)&data, 0, sizeof(data)); |
2099 | |
2100 | #if defined(_TARGET_X86_) |
2101 | // @todo - this seems pointless. context->Eip will be 0; and when we copy it over to the DebuggerRD, |
2102 | // the context will be completely null. |
2103 | data.regDisplay.ControlPC = context->Eip; |
2104 | data.regDisplay.PCTAddr = (TADDR)&(context->Eip); |
2105 | |
2106 | #else |
2107 | // |
2108 | // @TODO: this should be the code for all platforms now that it uses FillRegDisplay, |
2109 | // which encapsulates the platform variances. This could all be avoided if we used |
2110 | // StackWalkFrames instead of StackWalkFramesEx. |
2111 | // |
2112 | ::SetIP(context, 0); |
2113 | ::SetSP(context, 0); |
2114 | FillRegDisplay(&data.regDisplay, context); |
2115 | |
2116 | ::SetSP(data.regDisplay.pCallerContext, 0); |
2117 | #endif |
2118 | } |
2119 | |
2120 | data.Init(thread, targetFP, fIgnoreNonmethodFrames, pCallback, pData); |
2121 | |
2122 | |
2123 | #if defined(_TARGET_X86_) && defined(FEATURE_INTEROP_DEBUGGING) |
2124 | CONTEXT ctxTemp; // Temp context for Leaf UM chain. Need it here so that it stays alive for whole stackwalk. |
2125 | |
2126 | // Important case for Interop Debugging - |
2127 | // We may be stopped in Native Code (perhaps at a BP) w/ no Transition frame on the stack! |
2128 | // We still need to send an UM Chain for this case. |
2129 | if (ShouldSendUMLeafChain(thread)) |
2130 | { |
2131 | // It's possible this may fail (eg, GetContext fails on win9x), so we're not guaranteed |
2132 | // to be sending an UM chain even though we want to. |
2133 | PrepareLeafUMChain(&data, &ctxTemp); |
2134 | |
2135 | } |
2136 | #endif // defined(_TARGET_X86_) && defined(FEATURE_INTEROP_DEBUGGING) |
2137 | |
2138 | if ((result != SWA_FAILED) && !thread->IsUnstarted() && !thread->IsDead()) |
2139 | { |
2140 | int flags = 0; |
2141 | |
2142 | result = g_pEEInterface->StackWalkFramesEx(thread, &data.regDisplay, |
2143 | DebuggerWalkStackProc, |
2144 | &data, |
2145 | flags | HANDLESKIPPEDFRAMES | NOTIFY_ON_U2M_TRANSITIONS | |
2146 | ALLOW_ASYNC_STACK_WALK | SKIP_GSCOOKIE_CHECK); |
2147 | } |
2148 | else |
2149 | { |
2150 | result = SWA_DONE; |
2151 | } |
2152 | |
2153 | if (result == SWA_DONE || result == SWA_FAILED) // SWA_FAILED if no frames |
2154 | { |
2155 | // Since Debugger StackWalk callbacks are delayed 1 frame from EE stackwalk callbacks, we |
2156 | // have to touch up the 1 leftover here. |
2157 | // |
2158 | // This is safe only because we use the REGDISPLAY of the native marker callback for any subsequent |
2159 | // explicit frames which do not update the REGDISPLAY. It's kind of fragile. If we can change |
2160 | // the x86 real stackwalker to unwind one frame ahead of time, we can get rid of this code. |
2161 | if (data.needParentInfo) |
2162 | { |
2163 | data.info.fp = GetFramePointerForDebugger(&data, NULL); |
2164 | |
2165 | if (data.InvokeCallback(&data.info) == SWA_ABORT) |
2166 | { |
2167 | return SWA_ABORT; |
2168 | } |
2169 | } |
2170 | |
2171 | // |
2172 | // Top off the stack trace as necessary w/ a thread-start chain. |
2173 | // |
2174 | REGDISPLAY * pRegDisplay = &(data.regDisplay); |
2175 | if (data.IsTrackingUMChain()) |
2176 | { |
2177 | // This is the common case b/c managed code gets called from native code. |
2178 | pRegDisplay = data.GetUMChainStartRD(); |
2179 | } |
2180 | |
2181 | |
2182 | // All Thread starts in unmanaged code (at something like kernel32!BaseThreadStart), |
2183 | // so all ThreadStart chains must be unmanaged. |
2184 | // InvokeCallback will fabricate the EnterManaged chain if we haven't already sent one. |
2185 | data.info.InitForThreadStart(thread, pRegDisplay); |
2186 | result = data.InvokeCallback(&data.info); |
2187 | |
2188 | } |
2189 | return result; |
2190 | } |
2191 | |