| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | //***************************************************************************** |
| 5 | // File: frameinfo.cpp |
| 6 | // |
| 7 | |
| 8 | // |
| 9 | // Code to find control info about a stack frame. |
| 10 | // |
| 11 | //***************************************************************************** |
| 12 | |
| 13 | #include "stdafx.h" |
| 14 | |
| 15 | // Include so we can get information out of ComMethodFrame |
| 16 | #ifdef FEATURE_COMINTEROP |
| 17 | #include "COMToClrCall.h" |
| 18 | #endif |
| 19 | |
| 20 | // Get a frame pointer from a RegDisplay. |
| 21 | // This is mostly used for chains and stub frames (i.e. internal frames), where we don't need an exact |
| 22 | // frame pointer. This is why it is okay to use the current SP instead of the caller SP on IA64. |
| 23 | // We should really rename this and possibly roll it into GetFramePointer() when we move the stackwalker |
| 24 | // to OOP. |
| 25 | FramePointer GetSP(REGDISPLAY * pRDSrc) |
| 26 | { |
| 27 | FramePointer fp = FramePointer::MakeFramePointer( |
| 28 | (LPVOID)GetRegdisplaySP(pRDSrc)); |
| 29 | |
| 30 | return fp; |
| 31 | } |
| 32 | |
| 33 | // Get a frame pointer from a RegDisplay. |
| 34 | FramePointer GetFramePointer(REGDISPLAY * pRDSrc) |
| 35 | { |
| 36 | return FramePointer::MakeFramePointer(GetRegdisplaySP(pRDSrc)); |
| 37 | } |
| 38 | |
| 39 | //--------------------------------------------------------------------------------------- |
| 40 | // |
| 41 | // Convert a FramePointer to a StackFrame and return it. |
| 42 | // |
| 43 | // Arguments: |
| 44 | // fp - the FramePointer to be converted |
| 45 | // |
| 46 | // Return Value: |
| 47 | // a StackFrame equivalent to the given FramePointer |
| 48 | // |
| 49 | // Notes: |
| 50 | // We really should consolidate the two abstractions for "stack frame identifiers" |
| 51 | // (StackFrame and FramePointer) when we move the debugger stackwalker to OOP. |
| 52 | // |
| 53 | |
| 54 | FORCEINLINE StackFrame ConvertFPToStackFrame(FramePointer fp) |
| 55 | { |
| 56 | return StackFrame((UINT_PTR)fp.GetSPValue()); |
| 57 | } |
| 58 | |
| 59 | /* ------------------------------------------------------------------------- * |
| 60 | * DebuggerFrameInfo routines |
| 61 | * ------------------------------------------------------------------------- */ |
| 62 | |
| 63 | //struct DebuggerFrameData: Contains info used by the DebuggerWalkStackProc |
| 64 | // to do a stack walk. The info and pData fields are handed to the pCallback |
| 65 | // routine at each frame, |
| 66 | struct DebuggerFrameData |
| 67 | { |
| 68 | // Initialize this struct. Only done at the start of a stackwalk. |
| 69 | void Init( |
| 70 | Thread * _pThread, |
| 71 | FramePointer _targetFP, |
| 72 | BOOL fIgnoreNonmethodFrames, // generally true for stackwalking and false for stepping |
| 73 | DebuggerStackCallback _pCallback, |
| 74 | void *_pData |
| 75 | ) |
| 76 | { |
| 77 | LIMITED_METHOD_CONTRACT; |
| 78 | |
| 79 | this->pCallback = _pCallback; |
| 80 | this->pData = _pData; |
| 81 | |
| 82 | this->cRealCounter = 0; |
| 83 | |
| 84 | this->thread = _pThread; |
| 85 | this->targetFP = _targetFP; |
| 86 | this->targetFound = (_targetFP == LEAF_MOST_FRAME); |
| 87 | |
| 88 | this->ignoreNonmethodFrames = fIgnoreNonmethodFrames; |
| 89 | |
| 90 | // For now, we can tie these to flags together. |
| 91 | // In everett, we disable SIS (For backwards compat). |
| 92 | this->fProvideInternalFrames = (fIgnoreNonmethodFrames != 0); |
| 93 | |
| 94 | this->fNeedToSendEnterManagedChain = false; |
| 95 | this->fTrackingUMChain = false; |
| 96 | this->fHitExitFrame = false; |
| 97 | |
| 98 | this->info.eStubFrameType = STUBFRAME_NONE; |
| 99 | this->info.quickUnwind = false; |
| 100 | |
| 101 | this->info.frame = NULL; |
| 102 | this->needParentInfo = false; |
| 103 | |
| 104 | #ifdef WIN64EXCEPTIONS |
| 105 | this->fpParent = LEAF_MOST_FRAME; |
| 106 | this->info.fIsLeaf = true; |
| 107 | this->info.fIsFunclet = false; |
| 108 | this->info.fIsFilter = false; |
| 109 | #endif // WIN64EXCEPTIONS |
| 110 | |
| 111 | // Look strange? Go to definition of this field. I dare you. |
| 112 | this->info.fIgnoreThisFrameIfSuppressingUMChainFromComPlusMethodFrameGeneric = false; |
| 113 | |
| 114 | #if defined(_DEBUG) |
| 115 | this->previousFP = LEAF_MOST_FRAME; |
| 116 | #endif // _DEBUG |
| 117 | } |
| 118 | |
| 119 | // True if we need the next CrawlFrame to fill out part of this FrameInfo's data. |
| 120 | bool needParentInfo; |
| 121 | |
| 122 | // The FrameInfo that we'll dispatch to the pCallback. This matches against |
| 123 | // the CrawlFrame for that frame that the callback belongs too. |
| 124 | FrameInfo info; |
| 125 | |
| 126 | // Regdisplay that the EE stackwalker is updating. |
| 127 | REGDISPLAY regDisplay; |
| 128 | |
| 129 | |
| 130 | #ifdef WIN64EXCEPTIONS |
| 131 | // This is used to skip funclets in a stackwalk. It marks the frame pointer to which we should skip. |
| 132 | FramePointer fpParent; |
| 133 | #endif // WIN64EXCEPTIONS |
| 134 | #if defined(_DEBUG) |
| 135 | // For debugging, track the previous FramePointer so we can assert that we're |
| 136 | // making progress through the stack. |
| 137 | FramePointer previousFP; |
| 138 | #endif // _DEBUG |
| 139 | |
| 140 | // whether we have hit an exit frame or not (i.e. a M2U frame) |
| 141 | bool fHitExitFrame; |
| 142 | |
| 143 | private: |
| 144 | // The scope of this field is each section of managed method frames on the stack. |
| 145 | bool fNeedToSendEnterManagedChain; |
| 146 | |
| 147 | // Flag set when we first stack-walk to decide if we want to ignore certain frames. |
| 148 | // Stepping doesn't ignore these frames; end user stacktraces do. |
| 149 | BOOL ignoreNonmethodFrames; |
| 150 | |
| 151 | // Do we want callbacks for internal frames? |
| 152 | // Steppers generally don't. User stack-walk does. |
| 153 | bool fProvideInternalFrames; |
| 154 | |
| 155 | // Info for tracking unmanaged chains. |
| 156 | // We track the starting (leaf) context for an unmanaged chain, as well as the |
| 157 | // ending (root) framepointer. |
| 158 | bool fTrackingUMChain; |
| 159 | REGDISPLAY rdUMChainStart; |
| 160 | FramePointer fpUMChainEnd; |
| 161 | |
| 162 | // Thread that the stackwalk is for. |
| 163 | Thread *thread; |
| 164 | |
| 165 | |
| 166 | // Target FP indicates at what point in the stackwalk we'll start dispatching callbacks. |
| 167 | // Naturally, if this is LEAF_MOST_FRAME, then all callbacks will be dispatched |
| 168 | FramePointer targetFP; |
| 169 | bool targetFound; |
| 170 | |
| 171 | // Count # of callbacks we could have dispatched (assuming targetFP==LEAF_MOST_FRAME). |
| 172 | // Useful for detecting leaf. |
| 173 | int cRealCounter; |
| 174 | |
| 175 | // Callback & user-data supplied to that callback. |
| 176 | DebuggerStackCallback pCallback; |
| 177 | void *pData; |
| 178 | |
| 179 | private: |
| 180 | |
| 181 | // Raw invoke. This just does some consistency asserts, |
| 182 | // and invokes the callback if we're in the requested target range. |
| 183 | StackWalkAction RawInvokeCallback(FrameInfo * pInfo) |
| 184 | { |
| 185 | #ifdef _DEBUG |
| 186 | _ASSERTE(pInfo != NULL); |
| 187 | MethodDesc * md = pInfo->md; |
| 188 | // Invoke the callback to the user. Log what we're invoking. |
| 189 | LOG((LF_CORDB, LL_INFO10000, "DSWCallback: MD=%s,0x%p, Chain=%x, Stub=%x, Frame=0x%p, Internal=%d\n" , |
| 190 | ((md == NULL) ? "None" : md->m_pszDebugMethodName), md, |
| 191 | pInfo->chainReason, |
| 192 | pInfo->eStubFrameType, |
| 193 | pInfo->frame, pInfo->internal)); |
| 194 | |
| 195 | // Make sure we're providing a valid FrameInfo for the callback. |
| 196 | pInfo->AssertValid(); |
| 197 | #endif |
| 198 | // Update counter. This provides a convenient check for leaf FrameInfo. |
| 199 | this->cRealCounter++; |
| 200 | |
| 201 | |
| 202 | // Only invoke if we're past the target. |
| 203 | if (!this->targetFound && IsEqualOrCloserToLeaf(this->targetFP, this->info.fp)) |
| 204 | { |
| 205 | this->targetFound = true; |
| 206 | } |
| 207 | |
| 208 | if (this->targetFound) |
| 209 | { |
| 210 | return (pCallback)(pInfo, pData); |
| 211 | } |
| 212 | else |
| 213 | { |
| 214 | LOG((LF_CORDB, LL_INFO10000, "Not invoking yet.\n" )); |
| 215 | } |
| 216 | |
| 217 | return SWA_CONTINUE; |
| 218 | } |
| 219 | |
| 220 | public: |
| 221 | // Invoke a callback. This may do extra logic to preserve the interface between |
| 222 | // the LS stackwalker and the LS: |
| 223 | // - don't invoke if we're not at the target yet |
| 224 | // - send EnterManagedChains if we need it. |
| 225 | StackWalkAction InvokeCallback(FrameInfo * pInfo) |
| 226 | { |
| 227 | // Track if we've sent any managed code yet. |
| 228 | // If we haven't, then don't send the enter-managed chain. This catches cases |
| 229 | // when we have leaf-most unmanaged chain. |
| 230 | if ((pInfo->frame == NULL) && (pInfo->md != NULL)) |
| 231 | { |
| 232 | this->fNeedToSendEnterManagedChain = true; |
| 233 | } |
| 234 | |
| 235 | |
| 236 | // Do tracking to decide if we need to send a Enter-Managed chain. |
| 237 | if (pInfo->HasChainMarker()) |
| 238 | { |
| 239 | if (pInfo->managed) |
| 240 | { |
| 241 | // If we're dispatching a managed-chain, then we don't need to send another one. |
| 242 | fNeedToSendEnterManagedChain = false; |
| 243 | } |
| 244 | else |
| 245 | { |
| 246 | // If we're dispatching an UM chain, then send the Managed one. |
| 247 | // Note that the only unmanaged chains are ThreadStart chains and UM chains. |
| 248 | if (fNeedToSendEnterManagedChain) |
| 249 | { |
| 250 | fNeedToSendEnterManagedChain = false; |
| 251 | |
| 252 | FrameInfo f; |
| 253 | |
| 254 | // Assume entry chain's FP is one pointer-width after the upcoming UM chain. |
| 255 | FramePointer fpRoot = FramePointer::MakeFramePointer( |
| 256 | (BYTE*) GetRegdisplaySP(&pInfo->registers) - sizeof(DWORD*)); |
| 257 | |
| 258 | f.InitForEnterManagedChain(fpRoot); |
| 259 | if (RawInvokeCallback(&f) == SWA_ABORT) |
| 260 | { |
| 261 | return SWA_ABORT; |
| 262 | } |
| 263 | } |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | return RawInvokeCallback(pInfo); |
| 268 | } |
| 269 | |
| 270 | // Note that we should start tracking an Unmanaged Chain. |
| 271 | void BeginTrackingUMChain(FramePointer fpRoot, REGDISPLAY * pRDSrc) |
| 272 | { |
| 273 | LIMITED_METHOD_CONTRACT; |
| 274 | |
| 275 | _ASSERTE(!this->fTrackingUMChain); |
| 276 | |
| 277 | CopyREGDISPLAY(&this->rdUMChainStart, pRDSrc); |
| 278 | |
| 279 | this->fTrackingUMChain = true; |
| 280 | this->fpUMChainEnd = fpRoot; |
| 281 | this->fHitExitFrame = false; |
| 282 | |
| 283 | LOG((LF_CORDB, LL_EVERYTHING, "UM Chain starting at Frame=0x%p\n" , this->fpUMChainEnd.GetSPValue())); |
| 284 | |
| 285 | // This UM chain may get cancelled later, so don't even worry about toggling the fNeedToSendEnterManagedChain bit here. |
| 286 | // Invoke() will track whether to send an Enter-Managed chain or not. |
| 287 | } |
| 288 | |
| 289 | // For various heuristics, we may not want to send an UM chain. |
| 290 | void CancelUMChain() |
| 291 | { |
| 292 | LIMITED_METHOD_CONTRACT; |
| 293 | |
| 294 | _ASSERTE(this->fTrackingUMChain); |
| 295 | this->fTrackingUMChain = false; |
| 296 | } |
| 297 | |
| 298 | // True iff we're currently tracking an unmanaged chain. |
| 299 | bool IsTrackingUMChain() |
| 300 | { |
| 301 | LIMITED_METHOD_CONTRACT; |
| 302 | |
| 303 | return this->fTrackingUMChain; |
| 304 | } |
| 305 | |
| 306 | |
| 307 | |
| 308 | // Get/Set Regdisplay that starts an Unmanaged chain. |
| 309 | REGDISPLAY * GetUMChainStartRD() |
| 310 | { |
| 311 | LIMITED_METHOD_CONTRACT; |
| 312 | _ASSERTE(fTrackingUMChain); |
| 313 | return &rdUMChainStart; |
| 314 | } |
| 315 | |
| 316 | // Get/Set FramePointer that ends an unmanaged chain. |
| 317 | void SetUMChainEnd(FramePointer fp) |
| 318 | { |
| 319 | LIMITED_METHOD_CONTRACT; |
| 320 | _ASSERTE(fTrackingUMChain); |
| 321 | fpUMChainEnd = fp; |
| 322 | } |
| 323 | |
| 324 | FramePointer GetUMChainEnd() |
| 325 | { |
| 326 | LIMITED_METHOD_CONTRACT; |
| 327 | _ASSERTE(fTrackingUMChain); |
| 328 | return fpUMChainEnd; |
| 329 | } |
| 330 | |
| 331 | // Get thread we're currently tracing. |
| 332 | Thread * GetThread() |
| 333 | { |
| 334 | LIMITED_METHOD_CONTRACT; |
| 335 | return thread; |
| 336 | } |
| 337 | |
| 338 | // Returns true if we're on the leaf-callback (ie, we haven't dispatched a callback yet. |
| 339 | bool IsLeafCallback() |
| 340 | { |
| 341 | LIMITED_METHOD_CONTRACT; |
| 342 | return cRealCounter == 0; |
| 343 | } |
| 344 | |
| 345 | bool ShouldProvideInternalFrames() |
| 346 | { |
| 347 | LIMITED_METHOD_CONTRACT; |
| 348 | return fProvideInternalFrames; |
| 349 | } |
| 350 | bool ShouldIgnoreNonmethodFrames() |
| 351 | { |
| 352 | LIMITED_METHOD_CONTRACT; |
| 353 | return ignoreNonmethodFrames != 0; |
| 354 | } |
| 355 | }; |
| 356 | |
| 357 | |
| 358 | //--------------------------------------------------------------------------------------- |
| 359 | // |
| 360 | // On IA64, the offset given by the OS during stackwalking is actually the offset at the call instruction. |
| 361 | // This is different from x86 and X64, where the offset is immediately after the call instruction. In order |
| 362 | // to have a uniform behaviour, we need to do adjust the relative offset on IA64. This function is a nop on |
| 363 | // other platforms. |
| 364 | // |
| 365 | // Arguments: |
| 366 | // pCF - the CrawlFrame for the current method frame |
| 367 | // pInfo - This is the FrameInfo for the current method frame. We need to use the fIsLeaf field, |
| 368 | // since no adjustment is necessary for leaf frames. |
| 369 | // |
| 370 | // Return Value: |
| 371 | // returns the adjusted relative offset |
| 372 | // |
| 373 | |
| 374 | inline ULONG AdjustRelOffset(CrawlFrame *pCF, |
| 375 | FrameInfo *pInfo) |
| 376 | { |
| 377 | CONTRACTL |
| 378 | { |
| 379 | NOTHROW; |
| 380 | GC_NOTRIGGER; |
| 381 | MODE_ANY; |
| 382 | PRECONDITION(pCF != NULL); |
| 383 | } |
| 384 | CONTRACTL_END; |
| 385 | |
| 386 | #if defined(_TARGET_ARM_) |
| 387 | return pCF->GetRelOffset() & ~THUMB_CODE; |
| 388 | #else |
| 389 | return pCF->GetRelOffset(); |
| 390 | #endif |
| 391 | } |
| 392 | |
| 393 | |
| 394 | //--------------------------------------------------------------------------------------- |
| 395 | // |
| 396 | // Even when there is an exit frame in the explicit frame chain, it does not necessarily mean that we have |
| 397 | // actually called out to unmanaged code yet or that we actually have a managed call site. Given an exit |
| 398 | // frame, this function determines if we have a managed call site and have already called out to unmanaged |
| 399 | // code. If we have, then we return the caller SP as the potential frame pointer. Otherwise we return |
| 400 | // LEAF_MOST_FRAME. |
| 401 | // |
| 402 | // Arguments: |
| 403 | // pFrame - the exit frame to be checked |
| 404 | // pData - the state of the current frame maintained by the debugger stackwalker |
| 405 | // pPotentialFP - This is an out parameter. It returns the caller SP of the last managed caller if |
| 406 | // there is a managed call site and we have already called out to unmanaged code. |
| 407 | // Otherwise, LEAF_MOST_FRAME is returned. |
| 408 | // |
| 409 | // Return Value: |
| 410 | // true - we have a managed call site and we have called out to unmanaged code |
| 411 | // false - otherwise |
| 412 | // |
| 413 | |
| 414 | bool HasExitRuntime(Frame *pFrame, DebuggerFrameData *pData, FramePointer *pPotentialFP) |
| 415 | { |
| 416 | CONTRACTL |
| 417 | { |
| 418 | NOTHROW; |
| 419 | GC_NOTRIGGER; // Callers demand this function be GC_NOTRIGGER. |
| 420 | MODE_ANY; |
| 421 | PRECONDITION(pFrame->GetFrameType() == Frame::TYPE_EXIT); |
| 422 | } |
| 423 | CONTRACTL_END; |
| 424 | |
| 425 | #ifdef _TARGET_X86_ |
| 426 | TADDR returnIP, returnSP; |
| 427 | |
| 428 | EX_TRY |
| 429 | { |
| 430 | // This is a real issue. This may be called while holding GC-forbid locks, and so |
| 431 | // this function can't trigger a GC. However, the only impl we have calls GC-trigger functions. |
| 432 | CONTRACT_VIOLATION(GCViolation); |
| 433 | pFrame->GetUnmanagedCallSite(NULL, &returnIP, &returnSP); |
| 434 | } |
| 435 | EX_CATCH |
| 436 | { |
| 437 | // We never expect an actual exception here (maybe in oom). |
| 438 | // If we get an exception, then simulate the default behavior for GetUnmanagedCallSite. |
| 439 | returnIP = NULL; |
| 440 | returnSP = NULL; // this will cause us to return true. |
| 441 | } |
| 442 | EX_END_CATCH(SwallowAllExceptions); |
| 443 | |
| 444 | LOG((LF_CORDB, LL_INFO100000, |
| 445 | "DWSP: TYPE_EXIT: returnIP=0x%08x, returnSP=0x%08x, frame=0x%08x, threadFrame=0x%08x, regSP=0x%08x\n" , |
| 446 | returnIP, returnSP, pFrame, pData->GetThread()->GetFrame(), GetRegdisplaySP(&pData->regDisplay))); |
| 447 | |
| 448 | if (pPotentialFP != NULL) |
| 449 | { |
| 450 | *pPotentialFP = FramePointer::MakeFramePointer((void*)returnSP); |
| 451 | } |
| 452 | |
| 453 | return ((pFrame != pData->GetThread()->GetFrame()) || |
| 454 | (returnSP == NULL) || |
| 455 | ((TADDR)GetRegdisplaySP(&pData->regDisplay) <= returnSP)); |
| 456 | |
| 457 | #else // _TARGET_X86_ |
| 458 | // DebuggerExitFrame always return a NULL returnSP on x86. |
| 459 | if (pFrame->GetVTablePtr() == DebuggerExitFrame::GetMethodFrameVPtr()) |
| 460 | { |
| 461 | if (pPotentialFP != NULL) |
| 462 | { |
| 463 | *pPotentialFP = LEAF_MOST_FRAME; |
| 464 | } |
| 465 | return true; |
| 466 | } |
| 467 | else if (pFrame->GetVTablePtr() == InlinedCallFrame::GetMethodFrameVPtr()) |
| 468 | { |
| 469 | InlinedCallFrame *pInlinedFrame = static_cast<InlinedCallFrame *>(pFrame); |
| 470 | LPVOID sp = (LPVOID)pInlinedFrame->GetCallSiteSP(); |
| 471 | |
| 472 | // The sp returned below is the sp of the caller, which is either an IL stub in the normal case |
| 473 | // or a normal managed method in the inlined pinvoke case. |
| 474 | // This sp may be the same as the frame's address, so we need to use the largest |
| 475 | // possible bsp value to make sure that this frame pointer is closer to the root than |
| 476 | // the frame pointer made from the frame address itself. |
| 477 | if (pPotentialFP != NULL) |
| 478 | { |
| 479 | *pPotentialFP = FramePointer::MakeFramePointer( (LPVOID)sp ); |
| 480 | } |
| 481 | |
| 482 | return ((pFrame != pData->GetThread()->GetFrame()) || |
| 483 | InlinedCallFrame::FrameHasActiveCall(pInlinedFrame)); |
| 484 | |
| 485 | } |
| 486 | else |
| 487 | { |
| 488 | // It'll be nice if there's a way to assert that the current frame is indeed of a |
| 489 | // derived class of TransitionFrame. |
| 490 | TransitionFrame *pTransFrame = static_cast<TransitionFrame*>(pFrame); |
| 491 | LPVOID sp = (LPVOID)pTransFrame->GetSP(); |
| 492 | |
| 493 | // The sp returned below is the sp of the caller, which is either an IL stub in the normal case |
| 494 | // or a normal managed method in the inlined pinvoke case. |
| 495 | // This sp may be the same as the frame's address, so we need to use the largest |
| 496 | // possible bsp value to make sure that this frame pointer is closer to the root than |
| 497 | // the frame pointer made from the frame address itself. |
| 498 | if (pPotentialFP != NULL) |
| 499 | { |
| 500 | *pPotentialFP = FramePointer::MakeFramePointer( (LPVOID)sp ); |
| 501 | } |
| 502 | |
| 503 | return true; |
| 504 | } |
| 505 | #endif // _TARGET_X86_ |
| 506 | } |
| 507 | |
| 508 | #ifdef _DEBUG |
| 509 | |
| 510 | //----------------------------------------------------------------------------- |
| 511 | // Debug helpers to get name of Frame. |
| 512 | //----------------------------------------------------------------------------- |
| 513 | LPCUTF8 FrameInfo::DbgGetClassName() |
| 514 | { |
| 515 | return (md == NULL) ? ("None" ) : (md->m_pszDebugClassName); |
| 516 | } |
| 517 | LPCUTF8 FrameInfo::DbgGetMethodName() |
| 518 | { |
| 519 | return (md == NULL) ? ("None" ) : (md->m_pszDebugMethodName); |
| 520 | } |
| 521 | |
| 522 | |
| 523 | //----------------------------------------------------------------------------- |
| 524 | // Debug helper to asserts invariants about a FrameInfo before we dispatch it. |
| 525 | //----------------------------------------------------------------------------- |
| 526 | void FrameInfo::AssertValid() |
| 527 | { |
| 528 | LIMITED_METHOD_CONTRACT; |
| 529 | |
| 530 | bool fMethod = this->HasMethodFrame(); |
| 531 | bool fStub = this->HasStubFrame(); |
| 532 | bool fChain = this->HasChainMarker(); |
| 533 | |
| 534 | // Can't be both Stub & Chain |
| 535 | _ASSERTE(!fStub || !fChain); |
| 536 | |
| 537 | // Must be at least a Method, Stub or Chain or Internal |
| 538 | _ASSERTE(fMethod || fStub || fChain || this->internal); |
| 539 | |
| 540 | // Check Managed status is consistent |
| 541 | if (fMethod) |
| 542 | { |
| 543 | _ASSERTE(this->managed); // We only report managed methods |
| 544 | } |
| 545 | if (fChain) |
| 546 | { |
| 547 | if (!managed) |
| 548 | { |
| 549 | // Only certain chains can be unmanaged |
| 550 | _ASSERTE((this->chainReason == CHAIN_THREAD_START) || |
| 551 | (this->chainReason == CHAIN_ENTER_UNMANAGED)); |
| 552 | } |
| 553 | else |
| 554 | { |
| 555 | // UM chains can never be managed. |
| 556 | _ASSERTE((this->chainReason != CHAIN_ENTER_UNMANAGED)); |
| 557 | } |
| 558 | |
| 559 | } |
| 560 | |
| 561 | // FramePointer should be valid |
| 562 | _ASSERTE(this->fp != LEAF_MOST_FRAME); |
| 563 | _ASSERTE((this->fp != ROOT_MOST_FRAME) || (chainReason== CHAIN_THREAD_START) || (chainReason == CHAIN_ENTER_UNMANAGED)); |
| 564 | |
| 565 | // If we have a Method, then we need an AppDomain. |
| 566 | // (RS will need it to do lookup) |
| 567 | if (fMethod) |
| 568 | { |
| 569 | _ASSERTE(currentAppDomain != NULL); |
| 570 | _ASSERTE(managed); |
| 571 | // Stubs may have a method w/o any code (eg, PInvoke wrapper). |
| 572 | // @todo - Frame::TYPE_TP_METHOD_FRAME breaks this assert. Are there other cases too? |
| 573 | //_ASSERTE(fStub || (pIJM != NULL)); |
| 574 | } |
| 575 | |
| 576 | if (fStub) |
| 577 | { |
| 578 | // All stubs (except LightWeightFunctions) match up w/a Frame. |
| 579 | _ASSERTE(this->frame || (eStubFrameType == STUBFRAME_LIGHTWEIGHT_FUNCTION)); |
| 580 | } |
| 581 | } |
| 582 | #endif |
| 583 | |
| 584 | //----------------------------------------------------------------------------- |
| 585 | // Get the DJI associated w/ this frame. This is a convenience function. |
| 586 | // This is recommended over using MethodDescs because DJI's are version-aware. |
| 587 | //----------------------------------------------------------------------------- |
| 588 | DebuggerJitInfo * FrameInfo::GetJitInfoFromFrame() |
| 589 | { |
| 590 | CONTRACTL |
| 591 | { |
| 592 | NOTHROW; |
| 593 | GC_NOTRIGGER; |
| 594 | } |
| 595 | CONTRACTL_END; |
| 596 | |
| 597 | // Not all FrameInfo objects correspond to actual code. |
| 598 | if (HasChainMarker() || HasStubFrame() || (frame != NULL)) |
| 599 | { |
| 600 | return NULL; |
| 601 | } |
| 602 | |
| 603 | DebuggerJitInfo *ji = NULL; |
| 604 | |
| 605 | // @todo - we shouldn't need both a MD and an IP here. |
| 606 | EX_TRY |
| 607 | { |
| 608 | _ASSERTE(this->md != NULL); |
| 609 | ji = g_pDebugger->GetJitInfo(this->md, (const BYTE*)GetControlPC(&(this->registers))); |
| 610 | _ASSERTE(ji != NULL); |
| 611 | _ASSERTE(ji->m_fd == this->md); |
| 612 | } |
| 613 | EX_CATCH |
| 614 | { |
| 615 | ji = NULL; |
| 616 | } |
| 617 | EX_END_CATCH(SwallowAllExceptions); |
| 618 | |
| 619 | return ji; |
| 620 | } |
| 621 | |
| 622 | //----------------------------------------------------------------------------- |
| 623 | // Get the DMI associated w/ this frame. This is a convenience function. |
| 624 | // DMIs are 1:1 with the (token, module) pair. |
| 625 | //----------------------------------------------------------------------------- |
| 626 | DebuggerMethodInfo * FrameInfo::GetMethodInfoFromFrameOrThrow() |
| 627 | { |
| 628 | CONTRACTL |
| 629 | { |
| 630 | THROWS; |
| 631 | GC_NOTRIGGER; |
| 632 | } |
| 633 | CONTRACTL_END; |
| 634 | |
| 635 | MethodDesc * pDesc = this->md; |
| 636 | mdMethodDef token = pDesc-> GetMemberDef(); |
| 637 | Module * pRuntimeModule = pDesc->GetModule(); |
| 638 | |
| 639 | DebuggerMethodInfo *dmi = g_pDebugger->GetOrCreateMethodInfo(pRuntimeModule, token); |
| 640 | return dmi; |
| 641 | } |
| 642 | |
| 643 | |
| 644 | //----------------------------------------------------------------------------- |
| 645 | // Init a FrameInfo for a UM chain. |
| 646 | // We need a stackrange to give to an unmanaged debugger. |
| 647 | // pRDSrc->Esp will provide the start (leaf) marker. |
| 648 | // fpRoot will provide the end (root) portion. |
| 649 | //----------------------------------------------------------------------------- |
| 650 | void FrameInfo::InitForUMChain(FramePointer fpRoot, REGDISPLAY * pRDSrc) |
| 651 | { |
| 652 | _ASSERTE(pRDSrc != NULL); |
| 653 | |
| 654 | // Mark that we're an UM Chain (and nothing else). |
| 655 | this->frame = NULL; |
| 656 | this->md = NULL; |
| 657 | |
| 658 | // Fp will be the end (root) of the stack range. |
| 659 | // pRDSrc->Sp will be the start (leaf) of the stack range. |
| 660 | CopyREGDISPLAY(&(this->registers), pRDSrc); |
| 661 | this->fp = fpRoot; |
| 662 | |
| 663 | this->quickUnwind = false; |
| 664 | this->internal = false; |
| 665 | this->managed = false; |
| 666 | |
| 667 | // These parts of the FrameInfo can be ignored for a UM chain. |
| 668 | this->relOffset = 0; |
| 669 | this->pIJM = NULL; |
| 670 | this->MethodToken = METHODTOKEN(NULL, 0); |
| 671 | this->currentAppDomain = NULL; |
| 672 | this->exactGenericArgsToken = NULL; |
| 673 | |
| 674 | InitForScratchFrameInfo(); |
| 675 | |
| 676 | this->chainReason = CHAIN_ENTER_UNMANAGED; |
| 677 | this->eStubFrameType = STUBFRAME_NONE; |
| 678 | |
| 679 | #ifdef _DEBUG |
| 680 | FramePointer fpLeaf = GetSP(pRDSrc); |
| 681 | _ASSERTE(IsCloserToLeaf(fpLeaf, fpRoot)); |
| 682 | #endif |
| 683 | |
| 684 | #ifdef _DEBUG |
| 685 | // After we just init it, it had better be valid. |
| 686 | this->AssertValid(); |
| 687 | #endif |
| 688 | } |
| 689 | |
| 690 | |
| 691 | //--------------------------------------------------------------------------------------- |
| 692 | // |
| 693 | // This is just a small helper to initialize the fields which are specific to 64-bit. Note that you should |
| 694 | // only call this function on a scratch FrameInfo. Never call it on the FrameInfo used by the debugger |
| 695 | // stackwalker to store information on the current frame. |
| 696 | // |
| 697 | |
| 698 | void FrameInfo::InitForScratchFrameInfo() |
| 699 | { |
| 700 | #ifdef WIN64EXCEPTIONS |
| 701 | // The following flags cannot be trashed when we are calling this function on the curret FrameInfo |
| 702 | // (the one we keep track of across multiple stackwalker callbacks). Thus, make sure you do not call |
| 703 | // this function from InitForDynamicMethod(). In all other cases, we can call this method after we |
| 704 | // call InitFromStubHelper() because we are working on a local scratch variable. |
| 705 | this->fIsLeaf = false; |
| 706 | this->fIsFunclet = false; |
| 707 | this->fIsFilter = false; |
| 708 | #endif // WIN64EXCEPTIONS |
| 709 | } |
| 710 | |
| 711 | |
| 712 | //----------------------------------------------------------------------------- |
| 713 | // |
| 714 | // Init a FrameInfo for a stub. Stub frames map to internal frames on the RS. Stubs which we care about |
| 715 | // usually contain an explicit frame which translates to an internal frame on the RS. Dynamic method is |
| 716 | // the sole exception. |
| 717 | // |
| 718 | // Arguments: |
| 719 | // pCF - the CrawlFrame containing the state of the current frame |
| 720 | // pMDHint - some stubs have associated MethodDesc but others don't, |
| 721 | // which is why this argument can be NULL |
| 722 | // type - the type of the stub/internal frame |
| 723 | // |
| 724 | |
| 725 | void FrameInfo::InitFromStubHelper( |
| 726 | CrawlFrame * pCF, |
| 727 | MethodDesc * pMDHint, // NULL ok |
| 728 | CorDebugInternalFrameType type |
| 729 | ) |
| 730 | { |
| 731 | _ASSERTE(pCF != NULL); |
| 732 | |
| 733 | Frame * pFrame = pCF->GetFrame(); |
| 734 | |
| 735 | LOG((LF_CORDB, LL_EVERYTHING, "InitFromStubHelper. Frame=0x%p, type=%d\n" , pFrame, type)); |
| 736 | |
| 737 | // All Stubs have a Frame except for LightWeight methods |
| 738 | _ASSERTE((type == STUBFRAME_LIGHTWEIGHT_FUNCTION) || (pFrame != NULL)); |
| 739 | REGDISPLAY *pRDSrc = pCF->GetRegisterSet(); |
| 740 | |
| 741 | this->frame = pFrame; |
| 742 | |
| 743 | // Stub frames may be associated w/ a Method (as a hint). However this method |
| 744 | // will never have a JitManager b/c it will never have IL (if it had IL, we'd be a |
| 745 | // regulare frame, not a stub frame) |
| 746 | this->md = pMDHint; |
| 747 | |
| 748 | CopyREGDISPLAY(&this->registers, pRDSrc); |
| 749 | |
| 750 | // FramePointer must match up w/ an EE Frame b/c that's how we match |
| 751 | // we Exception callbacks. |
| 752 | if (pFrame != NULL) |
| 753 | { |
| 754 | this->fp = FramePointer::MakeFramePointer( |
| 755 | (LPVOID) pFrame); |
| 756 | } |
| 757 | else |
| 758 | { |
| 759 | this->fp = GetSP(pRDSrc); |
| 760 | } |
| 761 | |
| 762 | this->quickUnwind = false; |
| 763 | this->internal = false; |
| 764 | this->managed = true; |
| 765 | this->relOffset = 0; |
| 766 | this->ambientSP = NULL; |
| 767 | |
| 768 | |
| 769 | // Method associated w/a stub will never have a JitManager. |
| 770 | this->pIJM = NULL; |
| 771 | this->MethodToken = METHODTOKEN(NULL, 0); |
| 772 | this->currentAppDomain = pCF->GetAppDomain(); |
| 773 | this->exactGenericArgsToken = NULL; |
| 774 | |
| 775 | // Stub frames are mutually exclusive with chain markers. |
| 776 | this->chainReason = CHAIN_NONE; |
| 777 | this->eStubFrameType = type; |
| 778 | |
| 779 | #ifdef _DEBUG |
| 780 | // After we just init it, it had better be valid. |
| 781 | this->AssertValid(); |
| 782 | #endif |
| 783 | } |
| 784 | |
| 785 | //----------------------------------------------------------------------------- |
| 786 | // Initialize a FrameInfo to be used for an "InternalFrame" |
| 787 | // Frame should be a derived class of FramedMethodFrame. |
| 788 | // FrameInfo's MethodDesc will be for managed wrapper for native call. |
| 789 | //----------------------------------------------------------------------------- |
| 790 | void FrameInfo::InitForM2UInternalFrame(CrawlFrame * pCF) |
| 791 | { |
| 792 | // For a M2U call, there's a managed method wrapping the unmanaged call. Use that. |
| 793 | Frame * pFrame = pCF->GetFrame(); |
| 794 | _ASSERTE(pFrame->GetTransitionType() == Frame::TT_M2U); |
| 795 | FramedMethodFrame * pM2U = static_cast<FramedMethodFrame*> (pFrame); |
| 796 | MethodDesc * pMDWrapper = pM2U->GetFunction(); |
| 797 | |
| 798 | // Soem M2U transitions may not have a function associated w/ them, |
| 799 | // so pMDWrapper may be NULL. PInvokeCalliFrame is an example. |
| 800 | |
| 801 | InitFromStubHelper(pCF, pMDWrapper, STUBFRAME_M2U); |
| 802 | InitForScratchFrameInfo(); |
| 803 | } |
| 804 | |
| 805 | //----------------------------------------------------------------------------- |
| 806 | // Initialize for the U2M case... |
| 807 | //----------------------------------------------------------------------------- |
| 808 | void FrameInfo::InitForU2MInternalFrame(CrawlFrame * pCF) |
| 809 | { |
| 810 | PREFIX_ASSUME(pCF != NULL); |
| 811 | MethodDesc * pMDHint = NULL; |
| 812 | |
| 813 | #ifdef FEATURE_COMINTEROP |
| 814 | Frame * pFrame = pCF->GetFrame(); |
| 815 | PREFIX_ASSUME(pFrame != NULL); |
| 816 | |
| 817 | |
| 818 | // For regular U2M PInvoke cases, we don't care about MD b/c it's just going to |
| 819 | // be the next frame. |
| 820 | // If we're a COM2CLR call, perhaps we can get the MD for the interface. |
| 821 | if (pFrame->GetVTablePtr() == ComMethodFrame::GetMethodFrameVPtr()) |
| 822 | { |
| 823 | ComMethodFrame* pCOMFrame = static_cast<ComMethodFrame*> (pFrame); |
| 824 | ComCallMethodDesc* pCMD = reinterpret_cast<ComCallMethodDesc *> (pCOMFrame->ComMethodFrame::GetDatum()); |
| 825 | pMDHint = pCMD->GetInterfaceMethodDesc(); |
| 826 | |
| 827 | // Some COM-interop cases don't have an intermediate interface method desc, so |
| 828 | // pMDHint may be null. |
| 829 | } |
| 830 | #endif |
| 831 | |
| 832 | InitFromStubHelper(pCF, pMDHint, STUBFRAME_U2M); |
| 833 | InitForScratchFrameInfo(); |
| 834 | } |
| 835 | |
| 836 | //----------------------------------------------------------------------------- |
| 837 | // Init for an AD transition |
| 838 | //----------------------------------------------------------------------------- |
| 839 | void FrameInfo::InitForADTransition(CrawlFrame * pCF) |
| 840 | { |
| 841 | Frame * pFrame; |
| 842 | pFrame = pCF->GetFrame(); |
| 843 | _ASSERTE(pFrame->GetTransitionType() == Frame::TT_AppDomain); |
| 844 | MethodDesc * pMDWrapper = NULL; |
| 845 | |
| 846 | InitFromStubHelper(pCF, pMDWrapper, STUBFRAME_APPDOMAIN_TRANSITION); |
| 847 | InitForScratchFrameInfo(); |
| 848 | } |
| 849 | |
| 850 | |
| 851 | //----------------------------------------------------------------------------- |
| 852 | // Init frame for a dynamic method. |
| 853 | //----------------------------------------------------------------------------- |
| 854 | void FrameInfo::InitForDynamicMethod(CrawlFrame * pCF) |
| 855 | { |
| 856 | // These are just stack markers that there's a dynamic method on the callstack. |
| 857 | InitFromStubHelper(pCF, NULL, STUBFRAME_LIGHTWEIGHT_FUNCTION); |
| 858 | // Do not call InitForScratchFrameInfo() here! Please refer to the comment in that function. |
| 859 | } |
| 860 | |
| 861 | //----------------------------------------------------------------------------- |
| 862 | // Init an internal frame to mark a func-eval. |
| 863 | //----------------------------------------------------------------------------- |
| 864 | void FrameInfo::InitForFuncEval(CrawlFrame * pCF) |
| 865 | { |
| 866 | // We don't store a MethodDesc hint referring to the method we're going to invoke because |
| 867 | // uses of stub frames will assume the MD is relative to the AppDomain the frame is in. |
| 868 | // For cross-AD funcevals, we're invoking a method in a domain other than the one this frame |
| 869 | // is in. |
| 870 | MethodDesc * pMDHint = NULL; |
| 871 | |
| 872 | // Add a stub frame here to mark that there is a FuncEvalFrame on the stack. |
| 873 | InitFromStubHelper(pCF, pMDHint, STUBFRAME_FUNC_EVAL); |
| 874 | InitForScratchFrameInfo(); |
| 875 | } |
| 876 | |
| 877 | |
| 878 | //--------------------------------------------------------------------------------------- |
| 879 | // |
| 880 | // Initialize a FrameInfo for sending the CHAIN_THREAD_START reason. |
| 881 | // The common case is that the chain is NOT managed, since the lowest (closest to the root) managed method |
| 882 | // is usually called from unmanaged code. In fact, in Whidbey, we should never have a managed chain. |
| 883 | // |
| 884 | // Arguments: |
| 885 | // pRDSrc - a REGDISPLAY for the beginning (the leafmost frame) of the chain |
| 886 | // |
| 887 | void FrameInfo::InitForThreadStart(Thread * pThread, REGDISPLAY * pRDSrc) |
| 888 | { |
| 889 | this->frame = (Frame *) FRAME_TOP; |
| 890 | this->md = NULL; |
| 891 | CopyREGDISPLAY(&(this->registers), pRDSrc); |
| 892 | this->fp = FramePointer::MakeFramePointer(pThread->GetCachedStackBase()); |
| 893 | this->quickUnwind = false; |
| 894 | this->internal = false; |
| 895 | this->managed = false; |
| 896 | this->relOffset = 0; |
| 897 | this->pIJM = NULL; |
| 898 | this->MethodToken = METHODTOKEN(NULL, 0); |
| 899 | |
| 900 | this->currentAppDomain = NULL; |
| 901 | this->exactGenericArgsToken = NULL; |
| 902 | |
| 903 | InitForScratchFrameInfo(); |
| 904 | |
| 905 | this->chainReason = CHAIN_THREAD_START; |
| 906 | this->eStubFrameType = STUBFRAME_NONE; |
| 907 | |
| 908 | #ifdef _DEBUG |
| 909 | // After we just init it, it had better be valid. |
| 910 | this->AssertValid(); |
| 911 | #endif |
| 912 | } |
| 913 | |
| 914 | |
| 915 | //--------------------------------------------------------------------------------------- |
| 916 | // |
| 917 | // Initialize a FrameInfo for sending a CHAIN_ENTER_MANAGED. |
| 918 | // A Enter-Managed chain is always sent immediately before an UM chain, meaning that the Enter-Managed chain |
| 919 | // is closer to the leaf than the UM chain. |
| 920 | // |
| 921 | // Arguments: |
| 922 | // fpRoot - This is the frame pointer for the Enter-Managed chain. It is currently arbitrarily set |
| 923 | // to be one stack slot higher (closer to the leaf) than the frame pointer of the beginning |
| 924 | // of the upcoming UM chain. |
| 925 | // |
| 926 | |
| 927 | void FrameInfo::InitForEnterManagedChain(FramePointer fpRoot) |
| 928 | { |
| 929 | // Nobody should use a EnterManagedChain's Frame*, but there's no |
| 930 | // good value to enforce that. |
| 931 | this->frame = (Frame *) FRAME_TOP; |
| 932 | this->md = NULL; |
| 933 | memset((void *)&this->registers, 0, sizeof(this->registers)); |
| 934 | this->fp = fpRoot; |
| 935 | |
| 936 | this->quickUnwind = true; |
| 937 | this->internal = false; |
| 938 | this->managed = true; |
| 939 | this->relOffset = 0; |
| 940 | this->pIJM = NULL; |
| 941 | this->MethodToken = METHODTOKEN(NULL, 0); |
| 942 | |
| 943 | this->currentAppDomain = NULL; |
| 944 | this->exactGenericArgsToken = NULL; |
| 945 | |
| 946 | InitForScratchFrameInfo(); |
| 947 | |
| 948 | this->chainReason = CHAIN_ENTER_MANAGED; |
| 949 | this->eStubFrameType = STUBFRAME_NONE; |
| 950 | } |
| 951 | |
| 952 | //----------------------------------------------------------------------------- |
| 953 | // Do tracking for UM chains. |
| 954 | // This may invoke the UMChain callback and M2U callback. |
| 955 | //----------------------------------------------------------------------------- |
| 956 | StackWalkAction TrackUMChain(CrawlFrame *pCF, DebuggerFrameData *d) |
| 957 | { |
| 958 | Frame *frame = g_pEEInterface->GetFrame(pCF); |
| 959 | |
| 960 | // If we encounter an ExitFrame out in the wild, then we'll convert it to an UM chain. |
| 961 | if (!d->IsTrackingUMChain()) |
| 962 | { |
| 963 | if ((frame != NULL) && (frame != FRAME_TOP) && (frame->GetFrameType() == Frame::TYPE_EXIT)) |
| 964 | { |
| 965 | LOG((LF_CORDB, LL_EVERYTHING, "DWSP. ExitFrame while not tracking\n" )); |
| 966 | REGDISPLAY* pRDSrc = pCF->GetRegisterSet(); |
| 967 | |
| 968 | d->BeginTrackingUMChain(GetSP(pRDSrc), pRDSrc); |
| 969 | |
| 970 | // fall through and we'll send the UM chain. |
| 971 | } |
| 972 | else |
| 973 | { |
| 974 | return SWA_CONTINUE; |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | _ASSERTE(d->IsTrackingUMChain()); |
| 979 | |
| 980 | |
| 981 | // If we're tracking an UM chain, then we need to: |
| 982 | // - possibly refine the start & end values as we get new information in the stacktrace. |
| 983 | // - possibly cancel the UM chain for various heuristics. |
| 984 | // - possibly dispatch if we've hit managed code again. |
| 985 | |
| 986 | bool fDispatchUMChain = false; |
| 987 | // UM Chain stops when managed code starts again. |
| 988 | if (frame != NULL) |
| 989 | { |
| 990 | // If it's just a EE Frame, then update this as a possible end of stack range for the UM chain. |
| 991 | // (The end of a stack range is closer to the root.) |
| 992 | d->SetUMChainEnd(FramePointer::MakeFramePointer((LPVOID)(frame))); |
| 993 | |
| 994 | |
| 995 | Frame::ETransitionType t = frame->GetTransitionType(); |
| 996 | int ft = frame->GetFrameType(); |
| 997 | |
| 998 | |
| 999 | // Sometimes we may not want to show an UM chain b/c we know it's just |
| 1000 | // code inside of mscorwks. (Eg: Funcevals & AD transitions both fall into this category). |
| 1001 | // These are perfectly valid UM chains and we could give them if we wanted to. |
| 1002 | if ((t == Frame::TT_AppDomain) || (ft == Frame::TYPE_FUNC_EVAL)) |
| 1003 | { |
| 1004 | d->CancelUMChain(); |
| 1005 | return SWA_CONTINUE; |
| 1006 | } |
| 1007 | |
| 1008 | // If we hit an M2U frame, then go ahead and dispatch the UM chain now. |
| 1009 | // This will likely also be an exit frame. |
| 1010 | if (t == Frame::TT_M2U) |
| 1011 | { |
| 1012 | fDispatchUMChain = true; |
| 1013 | } |
| 1014 | |
| 1015 | // If we get an Exit frame, we can use that to "prune" the UM chain to a more friendly state. |
| 1016 | // This heuristic is optional, it just eliminates lots of internal mscorwks frames from the callstack. |
| 1017 | // Note that this heuristic is only useful if we get a callback on the entry frame |
| 1018 | // (e.g. UMThkCallFrame) between the callback on the native marker and the callback on the exit frame. |
| 1019 | // Otherwise the REGDISPLAY will be the same. |
| 1020 | if (ft == Frame::TYPE_EXIT) |
| 1021 | { |
| 1022 | // If we have a valid reg-display (non-null IP) then update it. |
| 1023 | // We may have an invalid reg-display if we have an exit frame on an inactive thread. |
| 1024 | REGDISPLAY * pNewRD = pCF->GetRegisterSet(); |
| 1025 | if (GetControlPC(pNewRD) != NULL) |
| 1026 | { |
| 1027 | LOG((LF_CORDB, LL_EVERYTHING, "DWSP. updating RD while tracking UM chain\n" )); |
| 1028 | CopyREGDISPLAY(d->GetUMChainStartRD(), pNewRD); |
| 1029 | } |
| 1030 | |
| 1031 | FramePointer fpLeaf = GetSP(d->GetUMChainStartRD()); |
| 1032 | _ASSERTE(IsCloserToLeaf(fpLeaf, d->GetUMChainEnd())); |
| 1033 | |
| 1034 | |
| 1035 | _ASSERTE(!d->fHitExitFrame); // should only have 1 exit frame per UM chain code. |
| 1036 | d->fHitExitFrame = true; |
| 1037 | |
| 1038 | FramePointer potentialFP; |
| 1039 | |
| 1040 | FramePointer fpNewChainEnd = d->GetUMChainEnd(); |
| 1041 | |
| 1042 | // Check to see if we are inside the unmanaged call. We want to make sure we only report an exit frame after |
| 1043 | // we've really exited. There is a short period between where we setup the frame and when we actually exit |
| 1044 | // the runtime. This check is intended to ensure we're actually outside now. |
| 1045 | if (HasExitRuntime(frame, d, &potentialFP)) |
| 1046 | { |
| 1047 | LOG((LF_CORDB, LL_EVERYTHING, "HasExitRuntime. potentialFP=0x%p\n" , potentialFP.GetSPValue())); |
| 1048 | |
| 1049 | // If we have no call site, manufacture a FP using the current frame. |
| 1050 | // If we do have a call site, then the FP is actually going to be the caller SP, |
| 1051 | // where the caller is the last managed method before calling out to unmanaged code. |
| 1052 | if (potentialFP == LEAF_MOST_FRAME) |
| 1053 | { |
| 1054 | fpNewChainEnd = FramePointer::MakeFramePointer((LPVOID)((BYTE*)frame - sizeof(LPVOID))); |
| 1055 | } |
| 1056 | else |
| 1057 | { |
| 1058 | fpNewChainEnd = potentialFP; |
| 1059 | } |
| 1060 | |
| 1061 | } |
| 1062 | // For IL stubs, we may actually push an uninitialized InlinedCallFrame frame onto the frame chain |
| 1063 | // in jitted managed code, and then later on initialize it in a native runtime helper. In this case, if |
| 1064 | // HasExitRuntime() is false (meaning the frame is uninitialized), then we are actually still in managed |
| 1065 | // code and have not made the call to native code yet, so we should report an unmanaged chain. |
| 1066 | else |
| 1067 | { |
| 1068 | d->CancelUMChain(); |
| 1069 | return SWA_CONTINUE; |
| 1070 | } |
| 1071 | |
| 1072 | fDispatchUMChain = true; |
| 1073 | |
| 1074 | // If we got a valid chain end, then prune the UM chain accordingly. |
| 1075 | // Note that some EE Frames will give invalid info back so we have to check. |
| 1076 | // PInvokeCalliFrame is one example (when doing MC++ function pointers) |
| 1077 | if (IsCloserToRoot(fpNewChainEnd, fpLeaf)) |
| 1078 | { |
| 1079 | d->SetUMChainEnd(fpNewChainEnd); |
| 1080 | } |
| 1081 | else |
| 1082 | { |
| 1083 | _ASSERTE(IsCloserToLeaf(fpLeaf, d->GetUMChainEnd())); |
| 1084 | } |
| 1085 | } // end ExitFrame |
| 1086 | |
| 1087 | // Only CLR internal code / stubs can push Frames onto the Frame chain. |
| 1088 | // So if we hit a raw interceptor frame before we hit any managed frame, then this whole |
| 1089 | // UM chain must still be in CLR internal code. |
| 1090 | // Either way, this UM chain has ended (and some new chain based off the frame has started) |
| 1091 | // so we need to either Cancel the chain or dispatch it. |
| 1092 | if (frame->GetInterception() != Frame::INTERCEPTION_NONE) |
| 1093 | { |
| 1094 | // Interceptors may contain calls out to unmanaged code (such as unmanaged dllmain when |
| 1095 | // loading a new dll), so we need to dispatch these. |
| 1096 | // These extra UM chains don't show in Everett, and so everett debuggers on whidbey |
| 1097 | // may see new chains. |
| 1098 | // We need to ensure that whidbey debuggers are updated first. |
| 1099 | fDispatchUMChain = true; |
| 1100 | } |
| 1101 | } |
| 1102 | else |
| 1103 | { |
| 1104 | // If it's a real method (not just an EE Frame), then the UM chain is over. |
| 1105 | fDispatchUMChain = true; |
| 1106 | } |
| 1107 | |
| 1108 | |
| 1109 | if (fDispatchUMChain) |
| 1110 | { |
| 1111 | // Check if we should cancel the UM chain. |
| 1112 | |
| 1113 | // We need to discriminate between the following 2 cases: |
| 1114 | // 1) Managed -(a)-> mscorwks -(b)-> Managed (leaf) |
| 1115 | // 2) Native -(a)-> mscorwks -(b)-> Managed (leaf) |
| 1116 | // |
| 1117 | // --INCORRECT RATIONALE SEE "CORRECTION" BELOW-- |
| 1118 | // Case 1 could happen if a managed call injects a stub (such as w/ delegates). |
| 1119 | // In both cases, the (mscorwks-(b)->managed) transition causes a IsNativeMarker callback |
| 1120 | // which initiates a UM chain. In case 1, we want to cancel the UM chain, but |
| 1121 | // in case 2 we want to dispatch it. |
| 1122 | // The difference is case #2 will have some EE Frame at (b) and case #1 won't. |
| 1123 | // That EE Frame should have caused us to dispatch the call for the managed method, and |
| 1124 | // thus by the time we get around to dispatching the UM Chain, we shouldn't have a managed |
| 1125 | // method waiting to be dispatched in the DebuggerFrameData. |
| 1126 | // --END INCORRECT RATIONALE-- |
| 1127 | // |
| 1128 | // This is kind of messed up. First of all, the assertions on case 2 is not true on 64-bit. |
| 1129 | // We won't have an explicit frame at (b). Secondly, case 1 is not always true either. |
| 1130 | // Consider the case where we are calling a cctor at prestub time. This is what the stack may |
| 1131 | // look like: managed -> PrestubMethodFrame -> GCFrame -> managed (cctor) (leaf). In this case, |
| 1132 | // we will actually send the UM chain because we will have dispatched the call for the managed |
| 1133 | // method (the cctor) when we get a callback for the GCFrame. |
| 1134 | // |
| 1135 | // --INCORRECT SEE "CORRECTION" BELOW-- |
| 1136 | // Keep in mind that this is just a heuristic to reduce the number of UM chains we are sending |
| 1137 | // over to the RS. |
| 1138 | // --END INCORRECT -- |
| 1139 | // |
| 1140 | // CORRECTION: These UM chains also feed into the results of at least ControllerStackInfo and probably other |
| 1141 | // places. Issue 650903 is a concrete example of how not filtering a UM chain causes correctness |
| 1142 | // issues in the LS. This code may still have bugs in it based on those incorrect assumptions. |
| 1143 | // A narrow fix for 650903 is the only thing that was changed at the time of adding this comment. |
| 1144 | if (d->needParentInfo && d->info.HasMethodFrame()) |
| 1145 | { |
| 1146 | LOG((LF_CORDB, LL_EVERYTHING, "Cancelling UM Chain b/c it's internal\n" )); |
| 1147 | d->CancelUMChain(); |
| 1148 | return SWA_CONTINUE; |
| 1149 | } |
| 1150 | |
| 1151 | // If we're NOT ignoring non-method frames, and we didn't get an explicit ExitFrame somewhere |
| 1152 | // in this chain, then don't send the non-leaf UM chain. |
| 1153 | // The practical cause here is that w/o an exit frame, we don't know where the UM chain |
| 1154 | // is starting (could be from anywhere in mscorwks). And we can't patch any random spot in |
| 1155 | // mscorwks. |
| 1156 | // Sending leaf-UM chains is OK b/c we can't step-out to them (they're the leaf, duh). |
| 1157 | // (ignoreNonmethodFrames is generally false for stepping and true for regular |
| 1158 | // end-user stacktraces.) |
| 1159 | // |
| 1160 | // This check is probably unnecessary. The client of the debugger stackwalker should make |
| 1161 | // the decision themselves as to what to do with the UM chain callbacks. |
| 1162 | // |
| 1163 | // -- INCORRECT SEE SEE "CORRECTION" BELOW -- |
| 1164 | // Currently, both |
| 1165 | // ControllerStackInfo and InterceptorStackInfo ignore UM chains completely anyway. |
| 1166 | // (For an example, refer to the cctor example in the previous comment.) |
| 1167 | // -- END INCORRECT -- |
| 1168 | // |
| 1169 | // CORRECTION: See issue 650903 for a concrete example of ControllerStackInfo getting a different |
| 1170 | // result based on a UM chain that wasn't filtered. This code may still have issues in |
| 1171 | // it based on those incorrect assumptions. A narrow fix for 650903 is the only thing |
| 1172 | // that was changed at the time of adding this comment. |
| 1173 | if (!d->fHitExitFrame && !d->ShouldIgnoreNonmethodFrames() && !d->IsLeafCallback()) |
| 1174 | { |
| 1175 | LOG((LF_CORDB, LL_EVERYTHING, "Cancelling UM Chain b/c it's stepper not requested\n" )); |
| 1176 | d->CancelUMChain(); |
| 1177 | return SWA_CONTINUE; |
| 1178 | } |
| 1179 | |
| 1180 | |
| 1181 | // Ok, we haven't cancelled it yet, so go ahead and send the UM chain. |
| 1182 | FrameInfo f; |
| 1183 | FramePointer fpRoot = d->GetUMChainEnd(); |
| 1184 | FramePointer fpLeaf = GetSP(d->GetUMChainStartRD()); |
| 1185 | |
| 1186 | // If we didn't actually get any range, then don't bother sending it. |
| 1187 | if (fpRoot == fpLeaf) |
| 1188 | { |
| 1189 | d->CancelUMChain(); |
| 1190 | return SWA_CONTINUE; |
| 1191 | } |
| 1192 | |
| 1193 | f.InitForUMChain(fpRoot, d->GetUMChainStartRD()); |
| 1194 | |
| 1195 | #ifdef FEATURE_COMINTEROP |
| 1196 | if ((frame != NULL) && |
| 1197 | (frame->GetVTablePtr() == ComPlusMethodFrame::GetMethodFrameVPtr())) |
| 1198 | { |
| 1199 | // This condition is part of the fix for 650903. (See |
| 1200 | // code:ControllerStackInfo::WalkStack and code:DebuggerStepper::TrapStepOut |
| 1201 | // for the other parts.) Here, we know that the frame we're looking it may be |
| 1202 | // a ComPlusMethodFrameGeneric (this info is not otherwise plubmed down into |
| 1203 | // the walker; even though the walker does get to see "f.frame", that may not |
| 1204 | // be "frame"). Given this, if the walker chooses to ignore these frames |
| 1205 | // (while doing a Step Out during managed-only debugging), then it can ignore |
| 1206 | // this frame. |
| 1207 | f.fIgnoreThisFrameIfSuppressingUMChainFromComPlusMethodFrameGeneric = true; |
| 1208 | } |
| 1209 | #endif // FEATURE_COMINTEROP |
| 1210 | |
| 1211 | if (d->InvokeCallback(&f) == SWA_ABORT) |
| 1212 | { |
| 1213 | // don't need to cancel if they abort. |
| 1214 | return SWA_ABORT; |
| 1215 | } |
| 1216 | d->CancelUMChain(); // now that we've sent it, we're done. |
| 1217 | |
| 1218 | |
| 1219 | // Check for a M2U internal frame. |
| 1220 | if (d->ShouldProvideInternalFrames() && (frame != NULL) && (frame != FRAME_TOP)) |
| 1221 | { |
| 1222 | // We want to dispatch a M2U transition right after we dispatch the UM chain. |
| 1223 | Frame::ETransitionType t = frame->GetTransitionType(); |
| 1224 | if (t == Frame::TT_M2U) |
| 1225 | { |
| 1226 | // Frame for a M2U transition. |
| 1227 | FrameInfo fM2U; |
| 1228 | fM2U.InitForM2UInternalFrame(pCF); |
| 1229 | if (d->InvokeCallback(&fM2U) == SWA_ABORT) |
| 1230 | { |
| 1231 | return SWA_ABORT; |
| 1232 | } |
| 1233 | } |
| 1234 | } |
| 1235 | |
| 1236 | |
| 1237 | } |
| 1238 | |
| 1239 | return SWA_CONTINUE; |
| 1240 | } |
| 1241 | |
| 1242 | //--------------------------------------------------------------------------------------- |
| 1243 | // |
| 1244 | // A frame pointer is a unique identifier for a particular stack location. This function returns the |
| 1245 | // frame pointer for the current frame, whether it is a method frame or an explicit frame. |
| 1246 | // |
| 1247 | // Arguments: |
| 1248 | // pData - the state of the current frame maintained by the debugger stackwalker |
| 1249 | // pCF - the CrawlFrame for the current callback by the real stackwalker (i.e. StackWalkFramesEx()); |
| 1250 | // this is NULL for the case where we fake an extra callbakc to top off a debugger stackwalk |
| 1251 | // |
| 1252 | // Return Value: |
| 1253 | // the frame pointer for the current frame |
| 1254 | // |
| 1255 | |
| 1256 | FramePointer GetFramePointerForDebugger(DebuggerFrameData* pData, CrawlFrame* pCF) |
| 1257 | { |
| 1258 | CONTRACTL |
| 1259 | { |
| 1260 | NOTHROW; |
| 1261 | GC_NOTRIGGER; |
| 1262 | MODE_ANY; |
| 1263 | } |
| 1264 | CONTRACTL_END; |
| 1265 | |
| 1266 | FramePointer fpResult; |
| 1267 | |
| 1268 | #if defined(WIN64EXCEPTIONS) |
| 1269 | if (pData->info.frame == NULL) |
| 1270 | { |
| 1271 | // This is a managed method frame. |
| 1272 | fpResult = FramePointer::MakeFramePointer((LPVOID)GetRegdisplayStackMark(&pData->info.registers)); |
| 1273 | } |
| 1274 | else |
| 1275 | { |
| 1276 | // This is an actual frame. |
| 1277 | fpResult = FramePointer::MakeFramePointer((LPVOID)(pData->info.frame)); |
| 1278 | } |
| 1279 | |
| 1280 | #else // !WIN64EXCEPTIONS |
| 1281 | if ((pCF == NULL || !pCF->IsFrameless()) && pData->info.frame != NULL) |
| 1282 | { |
| 1283 | // |
| 1284 | // If we're in an explicit frame now, and the previous frame was |
| 1285 | // also an explicit frame, pPC will not have been updated. So |
| 1286 | // use the address of the frame itself as fp. |
| 1287 | // |
| 1288 | fpResult = FramePointer::MakeFramePointer((LPVOID)(pData->info.frame)); |
| 1289 | |
| 1290 | LOG((LF_CORDB, LL_INFO100000, "GFPFD: Two explicit frames in a row; using frame address 0x%p\n" , |
| 1291 | pData->info.frame)); |
| 1292 | } |
| 1293 | else |
| 1294 | { |
| 1295 | // |
| 1296 | // Otherwise use pPC as the frame pointer, as this will be |
| 1297 | // pointing to the return address on the stack. |
| 1298 | // |
| 1299 | fpResult = FramePointer::MakeFramePointer((LPVOID)GetRegdisplayStackMark(&(pData->regDisplay))); |
| 1300 | } |
| 1301 | |
| 1302 | #endif // !WIN64EXCEPTIONS |
| 1303 | |
| 1304 | LOG((LF_CORDB, LL_INFO100000, "GFPFD: Frame pointer is 0x%p\n" , fpResult.GetSPValue())); |
| 1305 | |
| 1306 | return fpResult; |
| 1307 | } |
| 1308 | |
| 1309 | |
| 1310 | #ifdef WIN64EXCEPTIONS |
| 1311 | //--------------------------------------------------------------------------------------- |
| 1312 | // |
| 1313 | // This function is called to determine if we should start skipping funclets. If we should, then we return the |
| 1314 | // frame pointer for the parent method frame. Otherwise we return LEAF_MOST_FRAME. If we are already skipping |
| 1315 | // frames, then we return the current frame pointer for the parent method frame. |
| 1316 | // |
| 1317 | // The return value of this function corresponds to the return value of ExceptionTracker::FindParentStackFrame(). |
| 1318 | // Refer to that function for more information. |
| 1319 | // |
| 1320 | // Arguments: |
| 1321 | // fpCurrentParentMarker - This is the current frame pointer of the parent method frame. It can be |
| 1322 | // LEAF_MOST_FRAME if we are not currently skipping funclets. |
| 1323 | // pCF - the CrawlFrame for the current callback from the real stackwalker |
| 1324 | // fIsNonFilterFuncletFrame - whether the current frame is a non-filter funclet frame |
| 1325 | // |
| 1326 | // Return Value: |
| 1327 | // LEAF_MOST_FRAME - skipping not required |
| 1328 | // ROOT_MOST_FRAME - skip one frame and try again |
| 1329 | // anything else - skip all frames up to but not including the returned frame pointer |
| 1330 | // |
| 1331 | |
| 1332 | inline FramePointer CheckForParentFP(FramePointer fpCurrentParentMarker, CrawlFrame* pCF, bool fIsNonFilterFuncletFrame) |
| 1333 | { |
| 1334 | WRAPPER_NO_CONTRACT; |
| 1335 | |
| 1336 | if (fpCurrentParentMarker == LEAF_MOST_FRAME) |
| 1337 | { |
| 1338 | // When we encounter a funclet, we simply stop processing frames until we hit the parent |
| 1339 | // of the funclet. Funclets and their parents have the same MethodDesc pointers, and they |
| 1340 | // should really be treated as one frame. However, we report both of them and let the callers |
| 1341 | // decide what they want to do with them. For example, DebuggerThread::TraceAndSendStack() |
| 1342 | // should never report both frames, but ControllerStackInfo::GetStackInfo() may need both to |
| 1343 | // determine where to put a patch. We use the fpParent as a flag to indicate if we are |
| 1344 | // searching for a parent of a funclet. |
| 1345 | // |
| 1346 | // Note that filter funclets are an exception. We don't skip them. |
| 1347 | if (fIsNonFilterFuncletFrame) |
| 1348 | { |
| 1349 | // We really should be using the same structure, but FramePointer is used everywhere in the debugger...... |
| 1350 | StackFrame sfParent = g_pEEInterface->FindParentStackFrame(pCF); |
| 1351 | return FramePointer::MakeFramePointer((LPVOID)sfParent.SP); |
| 1352 | } |
| 1353 | else |
| 1354 | { |
| 1355 | return LEAF_MOST_FRAME; |
| 1356 | } |
| 1357 | } |
| 1358 | else |
| 1359 | { |
| 1360 | // Just return the current marker if we are already skipping frames. |
| 1361 | return fpCurrentParentMarker; |
| 1362 | } |
| 1363 | } |
| 1364 | #endif // WIN64EXCEPTIONS |
| 1365 | |
| 1366 | |
| 1367 | //----------------------------------------------------------------------------- |
| 1368 | // StackWalkAction DebuggerWalkStackProc(): This is the callback called |
| 1369 | // by the EE stackwalker. |
| 1370 | // Note that since we don't know what the frame pointer for frame |
| 1371 | // X is until we've looked at the caller of frame X, we actually end up |
| 1372 | // stashing the info and pData pointers in the DebuggerFrameDat struct, and |
| 1373 | // then invoking pCallback when we've moved up one level, into the caller's |
| 1374 | // frame. We use the needParentInfo field to indicate that the previous frame |
| 1375 | // needed this (parental) info, and so when it's true we should invoke |
| 1376 | // pCallback. |
| 1377 | // What happens is this: if the previous frame set needParentInfo, then we |
| 1378 | // do pCallback (and set needParentInfo to false). |
| 1379 | // Then we look at the current frame - if it's frameless (ie, |
| 1380 | // managed), then we set needParentInfo to callback in the next frame. |
| 1381 | // Otherwise we must be at a chain boundary, and so we set the chain reason |
| 1382 | // appropriately. We then figure out what type of frame it is, setting |
| 1383 | // flags depending on the type. If the user should see this frame, then |
| 1384 | // we'll set needParentInfo to record it's existence. Lastly, if we're in |
| 1385 | // a funky frame, we'll explicitly update the register set, since the |
| 1386 | // CrawlFrame doesn't do it automatically. |
| 1387 | //----------------------------------------------------------------------------- |
| 1388 | StackWalkAction DebuggerWalkStackProc(CrawlFrame *pCF, void *data) |
| 1389 | { |
| 1390 | DebuggerFrameData *d = (DebuggerFrameData *)data; |
| 1391 | |
| 1392 | if (pCF->IsNativeMarker()) |
| 1393 | { |
| 1394 | #ifdef WIN64EXCEPTIONS |
| 1395 | // The tricky part here is that we want to skip all frames between a funclet method frame |
| 1396 | // and the parent method frame UNLESS the funclet is a filter. Moreover, we should never |
| 1397 | // let a native marker execute the rest of this method, so we just short-circuit it here. |
| 1398 | if ((d->fpParent != LEAF_MOST_FRAME) || d->info.IsNonFilterFuncletFrame()) |
| 1399 | { |
| 1400 | return SWA_CONTINUE; |
| 1401 | } |
| 1402 | #endif // WIN64EXCEPTIONS |
| 1403 | |
| 1404 | // This REGDISPLAY is for the native method immediately following the managed method for which |
| 1405 | // we have received the previous callback, i.e. the native caller of the last managed method |
| 1406 | // we have encountered. |
| 1407 | REGDISPLAY* pRDSrc = pCF->GetRegisterSet(); |
| 1408 | d->BeginTrackingUMChain(GetSP(pRDSrc), pRDSrc); |
| 1409 | |
| 1410 | return SWA_CONTINUE; |
| 1411 | } |
| 1412 | |
| 1413 | // Note that a CrawlFrame may have both a methoddesc & an EE Frame. |
| 1414 | Frame *frame = g_pEEInterface->GetFrame(pCF); |
| 1415 | MethodDesc *md = pCF->GetFunction(); |
| 1416 | |
| 1417 | LOG((LF_CORDB, LL_EVERYTHING, "Calling DebuggerWalkStackProc. Frame=0x%p, md=0x%p(%s), native_marker=%d\n" , |
| 1418 | frame, md, (md == NULL || md == (MethodDesc*)POISONC) ? "null" : md->m_pszDebugMethodName, pCF->IsNativeMarker() )); |
| 1419 | |
| 1420 | // The fp for a frame must be obtained from the _next_ frame. Fill it in now for the previous frame, if appropriate. |
| 1421 | if (d->needParentInfo) |
| 1422 | { |
| 1423 | LOG((LF_CORDB, LL_INFO100000, "DWSP: NeedParentInfo.\n" )); |
| 1424 | |
| 1425 | d->info.fp = GetFramePointerForDebugger(d, pCF); |
| 1426 | |
| 1427 | #if defined(_DEBUG) && !defined(_TARGET_ARM_) && !defined(_TARGET_ARM64_) |
| 1428 | // Make sure the stackwalk is making progress. |
| 1429 | // On ARM this is invalid as the stack pointer does necessarily have to move when unwinding a frame. |
| 1430 | _ASSERTE(IsCloserToLeaf(d->previousFP, d->info.fp)); |
| 1431 | |
| 1432 | d->previousFP = d->info.fp; |
| 1433 | #endif // _DEBUG && !_TARGET_ARM_ |
| 1434 | |
| 1435 | d->needParentInfo = false; |
| 1436 | |
| 1437 | { |
| 1438 | // Don't invoke Stubs if we're not asking for internal frames. |
| 1439 | bool fDoInvoke = true; |
| 1440 | if (!d->ShouldProvideInternalFrames()) |
| 1441 | { |
| 1442 | if (d->info.HasStubFrame()) |
| 1443 | { |
| 1444 | fDoInvoke = false; |
| 1445 | } |
| 1446 | } |
| 1447 | |
| 1448 | LOG((LF_CORDB, LL_INFO1000000, "DWSP: handling our target\n" )); |
| 1449 | |
| 1450 | if (fDoInvoke) |
| 1451 | { |
| 1452 | if (d->InvokeCallback(&d->info) == SWA_ABORT) |
| 1453 | { |
| 1454 | return SWA_ABORT; |
| 1455 | } |
| 1456 | } |
| 1457 | |
| 1458 | // @todo - eventually we should be initing our frame-infos properly |
| 1459 | // and thus should be able to remove this. |
| 1460 | d->info.eStubFrameType = STUBFRAME_NONE; |
| 1461 | } |
| 1462 | } // if (d->needParentInfo) |
| 1463 | |
| 1464 | |
| 1465 | #ifdef WIN64EXCEPTIONS |
| 1466 | // The tricky part here is that we want to skip all frames between a funclet method frame |
| 1467 | // and the parent method frame UNLESS the funclet is a filter. We only have to check for fpParent |
| 1468 | // here (instead of checking d->info.fIsFunclet and d->info.fIsFilter as well, as in the beginning of |
| 1469 | // this method) is because at this point, fpParent is already set by the code above. |
| 1470 | if (d->fpParent == LEAF_MOST_FRAME) |
| 1471 | #endif // WIN64EXCEPTIONS |
| 1472 | { |
| 1473 | // Track the UM chain after we flush any managed goo from the last iteration. |
| 1474 | if (TrackUMChain(pCF, d) == SWA_ABORT) |
| 1475 | { |
| 1476 | return SWA_ABORT; |
| 1477 | } |
| 1478 | } |
| 1479 | |
| 1480 | |
| 1481 | // Track if we want to send a callback for this Frame / Method |
| 1482 | bool use=false; |
| 1483 | |
| 1484 | // |
| 1485 | // Examine the frame. |
| 1486 | // |
| 1487 | |
| 1488 | // We assume that the stack walker is just updating the |
| 1489 | // register display we passed in - assert it to be sure |
| 1490 | _ASSERTE(pCF->GetRegisterSet() == &d->regDisplay); |
| 1491 | |
| 1492 | #ifdef WIN64EXCEPTIONS |
| 1493 | Frame* pPrevFrame = d->info.frame; |
| 1494 | |
| 1495 | // Here we need to determine if we are in a non-leaf frame, in which case we want to adjust the relative offset. |
| 1496 | // Also, we need to check if this frame has faulted (throws a native exception), since if it has, then it should be |
| 1497 | // considered the leaf frame (and thus we don't need to update the relative offset). |
| 1498 | if (pCF->IsActiveFrame() || pCF->HasFaulted()) |
| 1499 | { |
| 1500 | d->info.fIsLeaf = true; |
| 1501 | } |
| 1502 | else if ( (pPrevFrame != NULL) && |
| 1503 | (pPrevFrame->GetFrameType() == Frame::TYPE_EXIT) && |
| 1504 | !HasExitRuntime(pPrevFrame, d, NULL) ) |
| 1505 | { |
| 1506 | // This is for the inlined NDirectMethodFrameGeneric case. We have not exit the runtime yet, so the current |
| 1507 | // frame should still be regarded as the leaf frame. |
| 1508 | d->info.fIsLeaf = true; |
| 1509 | } |
| 1510 | else |
| 1511 | { |
| 1512 | d->info.fIsLeaf = false; |
| 1513 | } |
| 1514 | |
| 1515 | d->info.fIsFunclet = pCF->IsFunclet(); |
| 1516 | d->info.fIsFilter = false; |
| 1517 | if (d->info.fIsFunclet) |
| 1518 | { |
| 1519 | d->info.fIsFilter = pCF->IsFilterFunclet(); |
| 1520 | } |
| 1521 | |
| 1522 | if (pCF->IsFrameless()) |
| 1523 | { |
| 1524 | // Check if we are skipping. |
| 1525 | if (d->fpParent != LEAF_MOST_FRAME) |
| 1526 | { |
| 1527 | // If fpParent is ROOT_MOST_FRAME, then we just need to skip one frame. Otherwise, we should stop |
| 1528 | // skipping if the current frame pointer matches fpParent. In either case, clear fpParent, and |
| 1529 | // then check again. |
| 1530 | if ((d->fpParent == ROOT_MOST_FRAME) || |
| 1531 | ExceptionTracker::IsUnwoundToTargetParentFrame(pCF, ConvertFPToStackFrame(d->fpParent))) |
| 1532 | { |
| 1533 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Stopping to skip funclet at 0x%p.\n" , d->fpParent.GetSPValue())); |
| 1534 | |
| 1535 | d->fpParent = LEAF_MOST_FRAME; |
| 1536 | d->fpParent = CheckForParentFP(d->fpParent, pCF, d->info.IsNonFilterFuncletFrame()); |
| 1537 | } |
| 1538 | } |
| 1539 | } |
| 1540 | |
| 1541 | #endif // WIN64EXCEPTIONS |
| 1542 | |
| 1543 | d->info.frame = frame; |
| 1544 | d->info.ambientSP = NULL; |
| 1545 | |
| 1546 | // Record the appdomain that the thread was in when it |
| 1547 | // was running code for this frame. |
| 1548 | d->info.currentAppDomain = pCF->GetAppDomain(); |
| 1549 | |
| 1550 | // Grab all the info from CrawlFrame that we need to |
| 1551 | // check for "Am I in an exeption code blob?" now. |
| 1552 | |
| 1553 | #ifdef WIN64EXCEPTIONS |
| 1554 | // We are still searching for the parent of the last funclet we encounter. |
| 1555 | if (d->fpParent != LEAF_MOST_FRAME) |
| 1556 | { |
| 1557 | // We do nothing here. |
| 1558 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Skipping to parent method frame at 0x%p.\n" , d->fpParent.GetSPValue())); |
| 1559 | } |
| 1560 | else |
| 1561 | #endif // WIN64EXCEPTIONS |
| 1562 | // We should ignore IL stubs with no frames in our stackwalking. |
| 1563 | // The only exception is dynamic methods. We want to report them when SIS is turned on. |
| 1564 | if ((md != NULL) && md->IsILStub() && pCF->IsFrameless()) |
| 1565 | { |
| 1566 | #ifdef FEATURE_MULTICASTSTUB_AS_IL |
| 1567 | if(md->AsDynamicMethodDesc()->IsMulticastStub()) |
| 1568 | { |
| 1569 | use = true; |
| 1570 | d->info.managed = true; |
| 1571 | d->info.internal = false; |
| 1572 | } |
| 1573 | #endif |
| 1574 | // We do nothing here. |
| 1575 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Skip frameless IL stub.\n" )); |
| 1576 | } |
| 1577 | else |
| 1578 | // For frames w/o method data, send them as an internal stub frame. |
| 1579 | if ((md != NULL) && md->IsDynamicMethod()) |
| 1580 | { |
| 1581 | // Only Send the frame if "InternalFrames" are requested. |
| 1582 | // Else completely ignore it. |
| 1583 | if (d->ShouldProvideInternalFrames()) |
| 1584 | { |
| 1585 | d->info.InitForDynamicMethod(pCF); |
| 1586 | |
| 1587 | // We'll loop around to get the FramePointer. Only modification to FrameInfo |
| 1588 | // after this is filling in framepointer and resetting MD. |
| 1589 | use = true; |
| 1590 | } |
| 1591 | } |
| 1592 | else if (pCF->IsFrameless()) |
| 1593 | { |
| 1594 | // Regular managed-method. |
| 1595 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Is frameless.\n" )); |
| 1596 | use = true; |
| 1597 | d->info.managed = true; |
| 1598 | d->info.internal = false; |
| 1599 | d->info.chainReason = CHAIN_NONE; |
| 1600 | d->needParentInfo = true; // Possibly need chain reason |
| 1601 | d->info.relOffset = AdjustRelOffset(pCF, &(d->info)); |
| 1602 | d->info.pIJM = pCF->GetJitManager(); |
| 1603 | d->info.MethodToken = pCF->GetMethodToken(); |
| 1604 | |
| 1605 | #ifdef _TARGET_X86_ |
| 1606 | // This is collecting the ambientSP a lot more than we actually need it. Only time we need it is |
| 1607 | // inspecting local vars that are based off the ambient esp. |
| 1608 | d->info.ambientSP = pCF->GetAmbientSPFromCrawlFrame(); |
| 1609 | #endif |
| 1610 | } |
| 1611 | else |
| 1612 | { |
| 1613 | d->info.pIJM = NULL; |
| 1614 | d->info.MethodToken = METHODTOKEN(NULL, 0); |
| 1615 | |
| 1616 | // |
| 1617 | // Retrieve any interception info |
| 1618 | // |
| 1619 | |
| 1620 | // Each interception type in the switch statement below is associated with a chain reason. |
| 1621 | // The other chain reasons are: |
| 1622 | // CHAIN_INTERCEPTION - not used |
| 1623 | // CHAIN_PROCESS_START - not used |
| 1624 | // CHAIN_THREAD_START - thread start |
| 1625 | // CHAIN_ENTER_MANAGED - managed chain |
| 1626 | // CHAIN_ENTER_UNMANAGED - unmanaged chain |
| 1627 | // CHAIN_DEBUGGER_EVAL - not used |
| 1628 | // CHAIN_CONTEXT_SWITCH - not used |
| 1629 | // CHAIN_FUNC_EVAL - funceval |
| 1630 | |
| 1631 | switch (frame->GetInterception()) |
| 1632 | { |
| 1633 | case Frame::INTERCEPTION_CLASS_INIT: |
| 1634 | // |
| 1635 | // Fall through |
| 1636 | // |
| 1637 | |
| 1638 | // V2 assumes that the only thing the prestub intercepts is the class constructor |
| 1639 | case Frame::INTERCEPTION_PRESTUB: |
| 1640 | d->info.chainReason = CHAIN_CLASS_INIT; |
| 1641 | break; |
| 1642 | |
| 1643 | case Frame::INTERCEPTION_EXCEPTION: |
| 1644 | d->info.chainReason = CHAIN_EXCEPTION_FILTER; |
| 1645 | break; |
| 1646 | |
| 1647 | case Frame::INTERCEPTION_CONTEXT: |
| 1648 | d->info.chainReason = CHAIN_CONTEXT_POLICY; |
| 1649 | break; |
| 1650 | |
| 1651 | case Frame::INTERCEPTION_SECURITY: |
| 1652 | d->info.chainReason = CHAIN_SECURITY; |
| 1653 | break; |
| 1654 | |
| 1655 | default: |
| 1656 | d->info.chainReason = CHAIN_NONE; |
| 1657 | } |
| 1658 | |
| 1659 | // |
| 1660 | // Look at the frame type to figure out how to treat it. |
| 1661 | // |
| 1662 | |
| 1663 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Chain reason is 0x%X.\n" , d->info.chainReason)); |
| 1664 | |
| 1665 | switch (frame->GetFrameType()) |
| 1666 | { |
| 1667 | case Frame::TYPE_ENTRY: // We now ignore entry + exit frames. |
| 1668 | case Frame::TYPE_EXIT: |
| 1669 | case Frame::TYPE_HELPER_METHOD_FRAME: |
| 1670 | case Frame::TYPE_INTERNAL: |
| 1671 | |
| 1672 | /* If we have a specific interception type, use it. However, if this |
| 1673 | is the top-most frame (with a specific type), we can ignore it |
| 1674 | and it wont appear in the stack-trace */ |
| 1675 | #define INTERNAL_FRAME_ACTION(d, use) \ |
| 1676 | (d)->info.managed = true; \ |
| 1677 | (d)->info.internal = false; \ |
| 1678 | use = true |
| 1679 | |
| 1680 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Frame type is TYPE_INTERNAL.\n" )); |
| 1681 | if (d->info.chainReason == CHAIN_NONE || pCF->IsActiveFrame()) |
| 1682 | { |
| 1683 | use = false; |
| 1684 | } |
| 1685 | else |
| 1686 | { |
| 1687 | INTERNAL_FRAME_ACTION(d, use); |
| 1688 | } |
| 1689 | break; |
| 1690 | |
| 1691 | case Frame::TYPE_INTERCEPTION: |
| 1692 | case Frame::TYPE_SECURITY: // Security is a sub-type of interception |
| 1693 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Frame type is TYPE_INTERCEPTION/TYPE_SECURITY.\n" )); |
| 1694 | d->info.managed = true; |
| 1695 | d->info.internal = true; |
| 1696 | use = true; |
| 1697 | break; |
| 1698 | |
| 1699 | case Frame::TYPE_CALL: |
| 1700 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Frame type is TYPE_CALL.\n" )); |
| 1701 | // In V4, StubDispatchFrame is only used on 64-bit (and PPC?) but not on x86. x86 uses a |
| 1702 | // different code path which sets up a HelperMethodFrame instead. In V4.5, x86 and ARM |
| 1703 | // both use the 64-bit code path and they set up a StubDispatchFrame as well. This causes |
| 1704 | // a problem in the debugger stackwalker (see Dev11 Issue 13229) since the two frame types |
| 1705 | // are treated differently. More specifically, a StubDispatchFrame causes the debugger |
| 1706 | // stackwalk to make an invalid callback, i.e. a callback which is not for a managed method, |
| 1707 | // an explicit frame, or a chain. |
| 1708 | // |
| 1709 | // Ideally we would just change the StubDispatchFrame to behave like a HMF, but it's |
| 1710 | // too big of a change for an in-place release. For now I'm just making surgical fixes in |
| 1711 | // the debugger stackwalker. This may introduce behavioural changes in on X64, but the |
| 1712 | // chance of that is really small. StubDispatchFrame is only used in the virtual stub |
| 1713 | // disptch code path. It stays on the stack in a small time window and it's not likely to |
| 1714 | // be on the stack while some managed methods closer to the leaf are on the stack. There is |
| 1715 | // only one scenario I know of, and that's the repro for Dev11 13229, but that's for x86 only. |
| 1716 | // The jitted code on X64 behaves differently. |
| 1717 | // |
| 1718 | // Note that there is a corresponding change in DacDbiInterfaceImpl::GetInternalFrameType(). |
| 1719 | if (frame->GetVTablePtr() == StubDispatchFrame::GetMethodFrameVPtr()) |
| 1720 | { |
| 1721 | use = false; |
| 1722 | } |
| 1723 | else |
| 1724 | { |
| 1725 | d->info.managed = true; |
| 1726 | d->info.internal = false; |
| 1727 | use = true; |
| 1728 | } |
| 1729 | break; |
| 1730 | |
| 1731 | case Frame::TYPE_FUNC_EVAL: |
| 1732 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Frame type is TYPE_FUNC_EVAL.\n" )); |
| 1733 | d->info.managed = true; |
| 1734 | d->info.internal = true; |
| 1735 | // This is actually a nop. We reset the chain reason in InitForFuncEval() below. |
| 1736 | // So is a FuncEvalFrame a chain or an internal frame? |
| 1737 | d->info.chainReason = CHAIN_FUNC_EVAL; |
| 1738 | |
| 1739 | { |
| 1740 | // We only show a FuncEvalFrame if the funceval is not trying to abort the thread. |
| 1741 | FuncEvalFrame *pFuncEvalFrame = static_cast<FuncEvalFrame *>(frame); |
| 1742 | use = pFuncEvalFrame->ShowFrame() ? true : false; |
| 1743 | } |
| 1744 | |
| 1745 | // Send Internal frame. This is "inside" (leafmost) the chain, so we send it first |
| 1746 | // since sending starts from the leaf. |
| 1747 | if (use && d->ShouldProvideInternalFrames()) |
| 1748 | { |
| 1749 | FrameInfo f; |
| 1750 | f.InitForFuncEval(pCF); |
| 1751 | if (d->InvokeCallback(&f) == SWA_ABORT) |
| 1752 | { |
| 1753 | return SWA_ABORT; |
| 1754 | } |
| 1755 | } |
| 1756 | |
| 1757 | break; |
| 1758 | |
| 1759 | // Put frames we want to ignore here: |
| 1760 | case Frame::TYPE_MULTICAST: |
| 1761 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Frame type is TYPE_MULTICAST.\n" )); |
| 1762 | if (d->ShouldIgnoreNonmethodFrames()) |
| 1763 | { |
| 1764 | // Multicast frames exist only to gc protect the arguments |
| 1765 | // between invocations of a delegate. They don't have code that |
| 1766 | // we can (currently) show the user (we could change this with |
| 1767 | // work, but why bother? It's an internal stub, and even if the |
| 1768 | // user could see it, they can't modify it). |
| 1769 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Skipping frame 0x%x b/c it's " |
| 1770 | "a multicast frame!\n" , frame)); |
| 1771 | use = false; |
| 1772 | } |
| 1773 | else |
| 1774 | { |
| 1775 | LOG((LF_CORDB, LL_INFO100000, "DWSP: NOT Skipping frame 0x%x even thought it's " |
| 1776 | "a multicast frame!\n" , frame)); |
| 1777 | INTERNAL_FRAME_ACTION(d, use); |
| 1778 | } |
| 1779 | break; |
| 1780 | |
| 1781 | default: |
| 1782 | _ASSERTE(!"Invalid frame type!" ); |
| 1783 | break; |
| 1784 | } |
| 1785 | } |
| 1786 | |
| 1787 | |
| 1788 | // Check for ICorDebugInternalFrame stuff. |
| 1789 | // These callbacks are dispatched out of band. |
| 1790 | if (d->ShouldProvideInternalFrames() && (frame != NULL) && (frame != FRAME_TOP)) |
| 1791 | { |
| 1792 | Frame::ETransitionType t = frame->GetTransitionType(); |
| 1793 | FrameInfo f; |
| 1794 | bool fUse = false; |
| 1795 | |
| 1796 | if (t == Frame::TT_U2M) |
| 1797 | { |
| 1798 | // We can invoke the Internal U2M frame now. |
| 1799 | f.InitForU2MInternalFrame(pCF); |
| 1800 | fUse = true; |
| 1801 | } |
| 1802 | else if (t == Frame::TT_AppDomain) |
| 1803 | { |
| 1804 | // Internal frame for an Appdomain transition. |
| 1805 | // We used to ignore frames for ADs which we hadn't sent a Create event for yet. In V3 we send AppDomain |
| 1806 | // create events immediately (before any assemblies are loaded), so this should no longer be an issue. |
| 1807 | f.InitForADTransition(pCF); |
| 1808 | fUse = true; |
| 1809 | } |
| 1810 | |
| 1811 | // Frame's setup. Now invoke the callback. |
| 1812 | if (fUse) |
| 1813 | { |
| 1814 | if (d->InvokeCallback(&f) == SWA_ABORT) |
| 1815 | { |
| 1816 | return SWA_ABORT; |
| 1817 | } |
| 1818 | } |
| 1819 | } // should we give frames? |
| 1820 | |
| 1821 | |
| 1822 | |
| 1823 | if (use) |
| 1824 | { |
| 1825 | // |
| 1826 | // If we are returning a complete stack walk from the helper thread, then we |
| 1827 | // need to gather information to instantiate generics. However, a stepper doing |
| 1828 | // a stackwalk does not need this information, so skip in that case. |
| 1829 | // |
| 1830 | if (d->ShouldIgnoreNonmethodFrames()) |
| 1831 | { |
| 1832 | // Finding sizes of value types on the argument stack while |
| 1833 | // looking for the arg runs the class loader in non-load mode. |
| 1834 | ENABLE_FORBID_GC_LOADER_USE_IN_THIS_SCOPE(); |
| 1835 | d->info.exactGenericArgsToken = pCF->GetExactGenericArgsToken(); |
| 1836 | } |
| 1837 | else |
| 1838 | { |
| 1839 | d->info.exactGenericArgsToken = NULL; |
| 1840 | } |
| 1841 | |
| 1842 | d->info.md = md; |
| 1843 | CopyREGDISPLAY(&(d->info.registers), &(d->regDisplay)); |
| 1844 | |
| 1845 | #if defined(_TARGET_AMD64_) |
| 1846 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Saving REGDISPLAY with sp = 0x%p, pc = 0x%p.\n" , |
| 1847 | GetRegdisplaySP(&(d->info.registers)), |
| 1848 | GetControlPC(&(d->info.registers)))); |
| 1849 | #endif // _TARGET_AMD64_ |
| 1850 | |
| 1851 | d->needParentInfo = true; |
| 1852 | LOG((LF_CORDB, LL_INFO100000, "DWSP: Setting needParentInfo\n" )); |
| 1853 | } |
| 1854 | |
| 1855 | #if defined(WIN64EXCEPTIONS) |
| 1856 | d->fpParent = CheckForParentFP(d->fpParent, pCF, d->info.IsNonFilterFuncletFrame()); |
| 1857 | #endif // WIN64EXCEPTIONS |
| 1858 | |
| 1859 | // |
| 1860 | // The stackwalker doesn't update the register set for the |
| 1861 | // case where a non-frameless frame is returning to another |
| 1862 | // non-frameless frame. Cover this case. |
| 1863 | // |
| 1864 | // !!! This assumes that updating the register set multiple times |
| 1865 | // for a given frame times is not a bad thing... |
| 1866 | // |
| 1867 | if (!pCF->IsFrameless()) |
| 1868 | { |
| 1869 | LOG((LF_CORDB, LL_INFO100000, "DWSP: updating regdisplay.\n" )); |
| 1870 | pCF->GetFrame()->UpdateRegDisplay(&d->regDisplay); |
| 1871 | } |
| 1872 | |
| 1873 | return SWA_CONTINUE; |
| 1874 | } |
| 1875 | |
| 1876 | #if defined(_TARGET_X86_) && defined(FEATURE_INTEROP_DEBUGGING) |
| 1877 | // Helper to get the Wait-Sleep-Join bit from the thread |
| 1878 | bool IsInWaitSleepJoin(Thread * pThread) |
| 1879 | { |
| 1880 | // Partial User state is sufficient because that has the bit we're checking against. |
| 1881 | CorDebugUserState cts = g_pEEInterface->GetPartialUserState(pThread); |
| 1882 | return ((cts & USER_WAIT_SLEEP_JOIN) != 0); |
| 1883 | } |
| 1884 | |
| 1885 | //----------------------------------------------------------------------------- |
| 1886 | // Decide if we should send an UM leaf chain. |
| 1887 | // This goes through a bunch of heuristics. |
| 1888 | // The driving guidelines here are: |
| 1889 | // - we try not to send an UM chain if it's just internal mscorwks stuff |
| 1890 | // and we know it can't have native user code. |
| 1891 | // (ex, anything beyond a filter context, various hijacks, etc). |
| 1892 | // - If it may have native user code, we send it anyway. |
| 1893 | //----------------------------------------------------------------------------- |
| 1894 | bool ShouldSendUMLeafChain(Thread * pThread) |
| 1895 | { |
| 1896 | // If we're in shutodown, don't bother trying to sniff for an UM leaf chain. |
| 1897 | // @todo - we'd like to never even be trying to stack trace on shutdown, this |
| 1898 | // comes up when we do helper thread duty on shutdown. |
| 1899 | if (g_fProcessDetach) |
| 1900 | { |
| 1901 | return false; |
| 1902 | } |
| 1903 | |
| 1904 | if (pThread->IsUnstarted() || pThread->IsDead()) |
| 1905 | { |
| 1906 | return false; |
| 1907 | } |
| 1908 | |
| 1909 | // If a thread is suspended for sync purposes, it was suspended from managed |
| 1910 | // code and the only native code is a mscorwks hijack. |
| 1911 | // There are a few caveats here: |
| 1912 | // - This means a thread will lose it's UM chain. But what if a user inactive thread |
| 1913 | // enters the CLR from native code and hits a GC toggle? We'll lose that entire |
| 1914 | // UM chain. |
| 1915 | // - at a managed-only stop, preemptive threads are still live. Thus a thread |
| 1916 | // may not have this state set, run a little, try to enter the GC, and then get |
| 1917 | // this state set. Thus we'll lose the UM chain right out from under our noses. |
| 1918 | Thread::ThreadState ts = pThread->GetSnapshotState(); |
| 1919 | if ((ts & Thread::TS_SyncSuspended) != 0) |
| 1920 | { |
| 1921 | // If we've been stopped inside the runtime (eg, at a gc-toggle) but |
| 1922 | // not actually at a stopping context, then the thread must have some |
| 1923 | // leafframes in mscorwks. |
| 1924 | // We can detect this case by checking if GetManagedStoppedCtx(pThread) == NULL. |
| 1925 | // This is very significant for notifcations (like LogMessage) that are |
| 1926 | // dispatches from within mscorwks w/o a filter context. |
| 1927 | // We don't send a UM chain for these cases because that would |
| 1928 | // cause managed debug events to be dispatched w/ UM chains on the callstack. |
| 1929 | // And that just seems wrong ... |
| 1930 | |
| 1931 | return false; |
| 1932 | } |
| 1933 | |
| 1934 | #ifdef FEATURE_HIJACK |
| 1935 | if ((ts & Thread::TS_Hijacked) != 0) |
| 1936 | { |
| 1937 | return false; |
| 1938 | } |
| 1939 | #endif |
| 1940 | |
| 1941 | // This is pretty subjective. If we have a thread stopped in a managed sleep, |
| 1942 | // managed wait, or managed join, then don't bother showing the native end of the |
| 1943 | // stack. This check can be removed w/o impacting correctness. |
| 1944 | // @todo - may be a problem if Sleep/Wait/Join go through a hosting interface |
| 1945 | // which lands us in native user code. |
| 1946 | // Partial User state is sufficient because that has the bit we're checking against. |
| 1947 | if (IsInWaitSleepJoin(pThread)) |
| 1948 | { |
| 1949 | return false; |
| 1950 | } |
| 1951 | |
| 1952 | // If we're tracing ourselves, we must be in managed code. |
| 1953 | // Native user code can't initiate a managed stackwalk. |
| 1954 | if (pThread == GetThread()) |
| 1955 | { |
| 1956 | return false; |
| 1957 | } |
| 1958 | |
| 1959 | return true; |
| 1960 | } |
| 1961 | |
| 1962 | //----------------------------------------------------------------------------- |
| 1963 | // Prepare a Leaf UM chain. This assumes we should send an UM leaf chain. |
| 1964 | // Returns true if we actually prep for an UM leaf, |
| 1965 | // false if we don't. |
| 1966 | //----------------------------------------------------------------------------- |
| 1967 | bool PrepareLeafUMChain(DebuggerFrameData * pData, CONTEXT * pCtxTemp) |
| 1968 | { |
| 1969 | // Get the current user context (depends on if we're the active thread or not). |
| 1970 | Thread * thread = pData->GetThread(); |
| 1971 | REGDISPLAY * pRDSrc = NULL; |
| 1972 | REGDISPLAY rdTemp; |
| 1973 | |
| 1974 | |
| 1975 | #ifdef _DEBUG |
| 1976 | // Anybody stopped at an native debug event (and hijacked) should have a filter ctx. |
| 1977 | if (thread->GetInteropDebuggingHijacked() && (thread->GetFrame() != NULL) && (thread->GetFrame() != FRAME_TOP)) |
| 1978 | { |
| 1979 | _ASSERTE(g_pEEInterface->GetThreadFilterContext(thread) != NULL); |
| 1980 | } |
| 1981 | #endif |
| 1982 | |
| 1983 | // If we're hijacked, then we assume we're in native code. This covers the active thread case. |
| 1984 | if (g_pEEInterface->GetThreadFilterContext(thread) != NULL) |
| 1985 | { |
| 1986 | LOG((LF_CORDB, LL_EVERYTHING, "DWS - sending special case UM Chain.\n" )); |
| 1987 | |
| 1988 | // This will get it from the filter ctx. |
| 1989 | pRDSrc = &(pData->regDisplay); |
| 1990 | } |
| 1991 | else |
| 1992 | { |
| 1993 | // For inactive thread, we may not be hijacked. So just get the current ctx. |
| 1994 | // This will use a filter ctx if we have one. |
| 1995 | // We may suspend a thread in native code w/o hijacking it, so it's still at it's live context. |
| 1996 | // This can happen when we get a debug event on 1 thread; and then switch to look at another thread. |
| 1997 | // This is very common when debugging apps w/ cross-thread causality (including COM STA objects) |
| 1998 | pRDSrc = &rdTemp; |
| 1999 | |
| 2000 | bool fOk; |
| 2001 | |
| 2002 | |
| 2003 | // We need to get thread's context (InitRegDisplay will do that under the covers). |
| 2004 | // If this is our thread, we're in bad shape. Fortunately that should never happen. |
| 2005 | _ASSERTE(thread != GetThread()); |
| 2006 | |
| 2007 | Thread::SuspendThreadResult str = thread->SuspendThread(); |
| 2008 | if (str != Thread::STR_Success) |
| 2009 | { |
| 2010 | return false; |
| 2011 | } |
| 2012 | |
| 2013 | // @todo - this context is less important because the RS will overwrite it with the live context. |
| 2014 | // We don't need to even bother getting it. We can just intialize the regdisplay w/ a sentinal. |
| 2015 | fOk = g_pEEInterface->InitRegDisplay(thread, pRDSrc, pCtxTemp, false); |
| 2016 | thread->ResumeThread(); |
| 2017 | |
| 2018 | if (!fOk) |
| 2019 | { |
| 2020 | return false; |
| 2021 | } |
| 2022 | } |
| 2023 | |
| 2024 | // By now we have a Regdisplay from somewhere (filter ctx, current ctx, etc). |
| 2025 | _ASSERTE(pRDSrc != NULL); |
| 2026 | |
| 2027 | // If we're stopped in mscorwks (b/c of a handler for a managed BP), then the filter ctx will |
| 2028 | // still be set out in jitted code. |
| 2029 | // If our regdisplay is out in UM code , then send a UM chain. |
| 2030 | BYTE* ip = (BYTE*) GetControlPC(pRDSrc); |
| 2031 | if (g_pEEInterface->IsManagedNativeCode(ip)) |
| 2032 | { |
| 2033 | return false; |
| 2034 | } |
| 2035 | |
| 2036 | LOG((LF_CORDB, LL_EVERYTHING, "DWS - sending leaf UM Chain.\n" )); |
| 2037 | |
| 2038 | // Get the ending fp. We may not have any managed goo on the stack (eg, native thread called |
| 2039 | // into a managed method and then returned from it). |
| 2040 | FramePointer fpRoot; |
| 2041 | Frame * pFrame = thread->GetFrame(); |
| 2042 | if ((pFrame != NULL) && (pFrame != FRAME_TOP)) |
| 2043 | { |
| 2044 | fpRoot = FramePointer::MakeFramePointer((void*) pFrame); |
| 2045 | } |
| 2046 | else |
| 2047 | { |
| 2048 | fpRoot= ROOT_MOST_FRAME; |
| 2049 | } |
| 2050 | |
| 2051 | |
| 2052 | // Start tracking an UM chain. We won't actually send the UM chain until |
| 2053 | // we hit managed code. Since this is the leaf, we don't need to send an |
| 2054 | // Enter-Managed chain either. |
| 2055 | pData->BeginTrackingUMChain(fpRoot, pRDSrc); |
| 2056 | |
| 2057 | return true; |
| 2058 | } |
| 2059 | #endif // defined(_TARGET_X86_) && defined(FEATURE_INTEROP_DEBUGGING) |
| 2060 | |
| 2061 | //----------------------------------------------------------------------------- |
| 2062 | // Entry function for the debugger's stackwalking layer. |
| 2063 | // This will invoke pCallback(FrameInfo * pInfo, pData) for each 'frame' |
| 2064 | //----------------------------------------------------------------------------- |
| 2065 | StackWalkAction DebuggerWalkStack(Thread *thread, |
| 2066 | FramePointer targetFP, |
| 2067 | CONTEXT *context, |
| 2068 | BOOL contextValid, |
| 2069 | DebuggerStackCallback pCallback, |
| 2070 | void *pData, |
| 2071 | BOOL fIgnoreNonmethodFrames) |
| 2072 | { |
| 2073 | _ASSERTE(context != NULL); |
| 2074 | |
| 2075 | DebuggerFrameData data; |
| 2076 | |
| 2077 | StackWalkAction result = SWA_CONTINUE; |
| 2078 | bool fRegInit = false; |
| 2079 | |
| 2080 | LOG((LF_CORDB, LL_EVERYTHING, "DebuggerWalkStack called\n" )); |
| 2081 | |
| 2082 | if(contextValid || g_pEEInterface->GetThreadFilterContext(thread) != NULL) |
| 2083 | { |
| 2084 | fRegInit = g_pEEInterface->InitRegDisplay(thread, &data.regDisplay, context, contextValid != 0); |
| 2085 | _ASSERTE(fRegInit); |
| 2086 | } |
| 2087 | |
| 2088 | if (!fRegInit) |
| 2089 | { |
| 2090 | #if defined(CONTEXT_EXTENDED_REGISTERS) |
| 2091 | |
| 2092 | // Note: the size of a CONTEXT record contains the extended registers, but the context pointer we're given |
| 2093 | // here may not have room for them. Therefore, we only set the non-extended part of the context to 0. |
| 2094 | memset((void *)context, 0, offsetof(CONTEXT, ExtendedRegisters)); |
| 2095 | #else |
| 2096 | memset((void *)context, 0, sizeof(CONTEXT)); |
| 2097 | #endif |
| 2098 | memset((void *)&data, 0, sizeof(data)); |
| 2099 | |
| 2100 | #if defined(_TARGET_X86_) |
| 2101 | // @todo - this seems pointless. context->Eip will be 0; and when we copy it over to the DebuggerRD, |
| 2102 | // the context will be completely null. |
| 2103 | data.regDisplay.ControlPC = context->Eip; |
| 2104 | data.regDisplay.PCTAddr = (TADDR)&(context->Eip); |
| 2105 | |
| 2106 | #else |
| 2107 | // |
| 2108 | // @TODO: this should be the code for all platforms now that it uses FillRegDisplay, |
| 2109 | // which encapsulates the platform variances. This could all be avoided if we used |
| 2110 | // StackWalkFrames instead of StackWalkFramesEx. |
| 2111 | // |
| 2112 | ::SetIP(context, 0); |
| 2113 | ::SetSP(context, 0); |
| 2114 | FillRegDisplay(&data.regDisplay, context); |
| 2115 | |
| 2116 | ::SetSP(data.regDisplay.pCallerContext, 0); |
| 2117 | #endif |
| 2118 | } |
| 2119 | |
| 2120 | data.Init(thread, targetFP, fIgnoreNonmethodFrames, pCallback, pData); |
| 2121 | |
| 2122 | |
| 2123 | #if defined(_TARGET_X86_) && defined(FEATURE_INTEROP_DEBUGGING) |
| 2124 | CONTEXT ctxTemp; // Temp context for Leaf UM chain. Need it here so that it stays alive for whole stackwalk. |
| 2125 | |
| 2126 | // Important case for Interop Debugging - |
| 2127 | // We may be stopped in Native Code (perhaps at a BP) w/ no Transition frame on the stack! |
| 2128 | // We still need to send an UM Chain for this case. |
| 2129 | if (ShouldSendUMLeafChain(thread)) |
| 2130 | { |
| 2131 | // It's possible this may fail (eg, GetContext fails on win9x), so we're not guaranteed |
| 2132 | // to be sending an UM chain even though we want to. |
| 2133 | PrepareLeafUMChain(&data, &ctxTemp); |
| 2134 | |
| 2135 | } |
| 2136 | #endif // defined(_TARGET_X86_) && defined(FEATURE_INTEROP_DEBUGGING) |
| 2137 | |
| 2138 | if ((result != SWA_FAILED) && !thread->IsUnstarted() && !thread->IsDead()) |
| 2139 | { |
| 2140 | int flags = 0; |
| 2141 | |
| 2142 | result = g_pEEInterface->StackWalkFramesEx(thread, &data.regDisplay, |
| 2143 | DebuggerWalkStackProc, |
| 2144 | &data, |
| 2145 | flags | HANDLESKIPPEDFRAMES | NOTIFY_ON_U2M_TRANSITIONS | |
| 2146 | ALLOW_ASYNC_STACK_WALK | SKIP_GSCOOKIE_CHECK); |
| 2147 | } |
| 2148 | else |
| 2149 | { |
| 2150 | result = SWA_DONE; |
| 2151 | } |
| 2152 | |
| 2153 | if (result == SWA_DONE || result == SWA_FAILED) // SWA_FAILED if no frames |
| 2154 | { |
| 2155 | // Since Debugger StackWalk callbacks are delayed 1 frame from EE stackwalk callbacks, we |
| 2156 | // have to touch up the 1 leftover here. |
| 2157 | // |
| 2158 | // This is safe only because we use the REGDISPLAY of the native marker callback for any subsequent |
| 2159 | // explicit frames which do not update the REGDISPLAY. It's kind of fragile. If we can change |
| 2160 | // the x86 real stackwalker to unwind one frame ahead of time, we can get rid of this code. |
| 2161 | if (data.needParentInfo) |
| 2162 | { |
| 2163 | data.info.fp = GetFramePointerForDebugger(&data, NULL); |
| 2164 | |
| 2165 | if (data.InvokeCallback(&data.info) == SWA_ABORT) |
| 2166 | { |
| 2167 | return SWA_ABORT; |
| 2168 | } |
| 2169 | } |
| 2170 | |
| 2171 | // |
| 2172 | // Top off the stack trace as necessary w/ a thread-start chain. |
| 2173 | // |
| 2174 | REGDISPLAY * pRegDisplay = &(data.regDisplay); |
| 2175 | if (data.IsTrackingUMChain()) |
| 2176 | { |
| 2177 | // This is the common case b/c managed code gets called from native code. |
| 2178 | pRegDisplay = data.GetUMChainStartRD(); |
| 2179 | } |
| 2180 | |
| 2181 | |
| 2182 | // All Thread starts in unmanaged code (at something like kernel32!BaseThreadStart), |
| 2183 | // so all ThreadStart chains must be unmanaged. |
| 2184 | // InvokeCallback will fabricate the EnterManaged chain if we haven't already sent one. |
| 2185 | data.info.InitForThreadStart(thread, pRegDisplay); |
| 2186 | result = data.InvokeCallback(&data.info); |
| 2187 | |
| 2188 | } |
| 2189 | return result; |
| 2190 | } |
| 2191 | |