1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | |
6 | #include "dbgtransportsession.h" |
7 | |
8 | #if (!defined(RIGHT_SIDE_COMPILE) && defined(FEATURE_DBGIPC_TRANSPORT_VM)) || (defined(RIGHT_SIDE_COMPILE) && defined(FEATURE_DBGIPC_TRANSPORT_DI)) |
9 | |
10 | // This is the entry type for the IPC event queue owned by the transport. |
11 | // Each entry contains the multiplexing type of the IPC event plus the |
12 | // IPC event itself. |
13 | struct DbgEventBufferEntry |
14 | { |
15 | public: |
16 | IPCEventType m_type; |
17 | BYTE m_event[CorDBIPC_BUFFER_SIZE]; // buffer for the IPC event |
18 | }; |
19 | |
20 | // |
21 | // Provides a robust and secure transport session between a debugger and a debuggee that are potentially on |
22 | // different machines. |
23 | // |
24 | // See DbgTransportSession.h for further detailed comments. |
25 | // |
26 | |
27 | #ifndef RIGHT_SIDE_COMPILE |
28 | // The one and only transport instance for the left side. Allocated and initialized during EE startup (from |
29 | // Debugger::Startup() in debugger.cpp). |
30 | DbgTransportSession *g_pDbgTransport = NULL; |
31 | |
32 | #include "ddmarshalutil.h" |
33 | #endif // !RIGHT_SIDE_COMPILE |
34 | |
35 | // No real work done in the constructor. Use Init() instead. |
36 | DbgTransportSession::DbgTransportSession() |
37 | { |
38 | m_ref = 1; |
39 | m_eState = SS_Closed; |
40 | } |
41 | |
42 | DbgTransportSession::~DbgTransportSession() |
43 | { |
44 | DbgTransportLog(LC_Proxy, "DbgTransportSession::~DbgTransportSession() called" ); |
45 | |
46 | // No other threads are now using session resources. We're free to deallocate them as we wish (if they |
47 | // were allocated in the first place). |
48 | if (m_hTransportThread) |
49 | CloseHandle(m_hTransportThread); |
50 | if (m_rghEventReadyEvent[IPCET_OldStyle]) |
51 | CloseHandle(m_rghEventReadyEvent[IPCET_OldStyle]); |
52 | if (m_rghEventReadyEvent[IPCET_DebugEvent]) |
53 | CloseHandle(m_rghEventReadyEvent[IPCET_DebugEvent]); |
54 | if (m_pEventBuffers) |
55 | delete [] m_pEventBuffers; |
56 | |
57 | #ifdef RIGHT_SIDE_COMPILE |
58 | if (m_hSessionOpenEvent) |
59 | CloseHandle(m_hSessionOpenEvent); |
60 | |
61 | if (m_hProcessExited) |
62 | CloseHandle(m_hProcessExited); |
63 | #endif // RIGHT_SIDE_COMPILE |
64 | |
65 | if (m_fInitStateLock) |
66 | m_sStateLock.Destroy(); |
67 | } |
68 | |
69 | // Allocates initial resources (including starting the transport thread). The session will start in the |
70 | // SS_Opening state. That is, the RS will immediately start trying to Connect() a connection while the LS will |
71 | // perform an accept()/Accept() to wait for a connection request. The RS needs an IP address and port number |
72 | // to initiate connections. These should be given in host byte order. The LS, on the other hand, requires the |
73 | // addresses of a couple of runtime data structures to service certain debugger requests that may be delivered |
74 | // once the session is established. |
75 | #ifdef RIGHT_SIDE_COMPILE |
76 | HRESULT DbgTransportSession::Init(const ProcessDescriptor& pd, HANDLE hProcessExited) |
77 | #else // RIGHT_SIDE_COMPILE |
78 | HRESULT DbgTransportSession::Init(DebuggerIPCControlBlock *pDCB, AppDomainEnumerationIPCBlock *pADB) |
79 | #endif // RIGHT_SIDE_COMPILE |
80 | { |
81 | _ASSERTE(m_eState == SS_Closed); |
82 | |
83 | // Start with a blank slate so that Shutdown() on a partially initialized instance will only do the |
84 | // cleanup necessary. |
85 | memset(this, 0, sizeof(*this)); |
86 | |
87 | // Because of the above memset the embeded classes/structs need to be reinitialized especially |
88 | // the two way pipe; it expects the in/out handles to be -1 instead of 0. |
89 | m_ref = 1; |
90 | m_pipe = TwoWayPipe(); |
91 | m_sStateLock = DbgTransportLock(); |
92 | |
93 | // Initialize all per-session state variables. |
94 | InitSessionState(); |
95 | |
96 | #ifdef RIGHT_SIDE_COMPILE |
97 | // The RS randomly allocates a session ID which is sent to the LS in the SessionRequest message. In the |
98 | // case of network errors during session formation this allows the LS to tell SessionRequest re-sends from |
99 | // a new request from a different RS. |
100 | HRESULT hr = CoCreateGuid(&m_sSessionID); |
101 | if (FAILED(hr)) |
102 | return hr; |
103 | #endif // RIGHT_SIDE_COMPILE |
104 | |
105 | |
106 | #ifdef RIGHT_SIDE_COMPILE |
107 | m_pd = pd; |
108 | |
109 | if (!DuplicateHandle(GetCurrentProcess(), |
110 | hProcessExited, |
111 | GetCurrentProcess(), |
112 | &m_hProcessExited, |
113 | 0, // ignored since we are going to pass DUPLICATE_SAME_ACCESS |
114 | FALSE, |
115 | DUPLICATE_SAME_ACCESS)) |
116 | { |
117 | return HRESULT_FROM_GetLastError(); |
118 | } |
119 | |
120 | m_fDebuggerAttached = false; |
121 | #else // RIGHT_SIDE_COMPILE |
122 | m_pDCB = pDCB; |
123 | m_pADB = pADB; |
124 | #endif // RIGHT_SIDE_COMPILE |
125 | |
126 | m_sStateLock.Init(); |
127 | m_fInitStateLock = true; |
128 | |
129 | #ifdef RIGHT_SIDE_COMPILE |
130 | m_hSessionOpenEvent = WszCreateEvent(NULL, TRUE, FALSE, NULL); // Manual reset, not signalled |
131 | if (m_hSessionOpenEvent == NULL) |
132 | return E_OUTOFMEMORY; |
133 | #else // RIGHT_SIDE_COMPILE |
134 | ProcessDescriptor pd = ProcessDescriptor::FromCurrentProcess(); |
135 | if (!m_pipe.CreateServer(pd)) { |
136 | return E_OUTOFMEMORY; |
137 | } |
138 | #endif // RIGHT_SIDE_COMPILE |
139 | |
140 | // Allocate some buffers to receive incoming events. The initial number is chosen arbitrarily, tune as |
141 | // necessary. This array will need to grow if it fills with unread events (it takes our client a little |
142 | // time to process each incoming receive). In general, however, one side will not send an unbounded stream |
143 | // of events to the other without waiting for some kind of response. More usual are small bursts of events |
144 | // to represent variable sized data (such as a stack trace). |
145 | m_cEventBuffers = 10; |
146 | m_pEventBuffers = (DbgEventBufferEntry *)new (nothrow) BYTE[m_cEventBuffers * sizeof(DbgEventBufferEntry)]; |
147 | if (m_pEventBuffers == NULL) |
148 | return E_OUTOFMEMORY; |
149 | |
150 | m_rghEventReadyEvent[IPCET_OldStyle] = WszCreateEvent(NULL, FALSE, FALSE, NULL); // Auto reset, not signalled |
151 | if (m_rghEventReadyEvent[IPCET_OldStyle] == NULL) |
152 | return E_OUTOFMEMORY; |
153 | |
154 | m_rghEventReadyEvent[IPCET_DebugEvent] = WszCreateEvent(NULL, FALSE, FALSE, NULL); // Auto reset, not signalled |
155 | if (m_rghEventReadyEvent[IPCET_DebugEvent] == NULL) |
156 | return E_OUTOFMEMORY; |
157 | |
158 | // Start the transport thread which handles forming and re-forming connections, driving the session |
159 | // state to SS_Open and receiving and initially processing all incoming traffic. |
160 | AddRef(); |
161 | m_hTransportThread = CreateThread(NULL, 0, TransportWorkerStatic, this, 0, NULL); |
162 | if (m_hTransportThread == NULL) |
163 | { |
164 | Release(); |
165 | return E_OUTOFMEMORY; |
166 | } |
167 | |
168 | return S_OK; |
169 | } |
170 | |
171 | // Drive the session to the SS_Closed state, which will deallocate all remaining transport resources |
172 | // (including terminating the transport thread). If this is the RS and the session state is SS_Open at the |
173 | // time of this call a graceful disconnect will be attempted (which tells the LS to go back to SS_Opening to |
174 | // look for a new RS rather than interpreting the disconnection as a temporary error and going into |
175 | // SS_Resync). On either side the session will no longer be functional after this call returns (though Init() |
176 | // may be called again to start over from the beginning). |
177 | void DbgTransportSession::Shutdown() |
178 | { |
179 | DbgTransportLog(LC_Proxy, "DbgTransportSession::Shutdown() called" ); |
180 | |
181 | // The transport thread is allocated last in Init() (since it uses all the other resources that Init() |
182 | // prepares). Don't do any transport related stuff unless this was allocated (which can happen if |
183 | // Shutdown() is called after an Init() failure). |
184 | |
185 | if (m_hTransportThread) |
186 | { |
187 | // From SS_Open state try a graceful disconnect. |
188 | if (m_eState == SS_Open) |
189 | { |
190 | DbgTransportLog(LC_Session, "Sending 'SessionClose'" ); |
191 | DBG_TRANSPORT_INC_STAT(SentSessionClose); |
192 | Message sMessage; |
193 | sMessage.Init(MT_SessionClose); |
194 | SendMessage(&sMessage, false); |
195 | } |
196 | |
197 | // Must take the state lock to make a state transition. |
198 | { |
199 | TransportLockHolder sLockHolder(&m_sStateLock); |
200 | |
201 | // Remember previous state and transition to SS_Closed. |
202 | SessionState ePreviousState = m_eState; |
203 | m_eState = SS_Closed; |
204 | |
205 | if (ePreviousState != SS_Closed) |
206 | { |
207 | m_pipe.Disconnect(); |
208 | } |
209 | |
210 | } // Leave m_sStateLock |
211 | |
212 | #ifdef RIGHT_SIDE_COMPILE |
213 | // Signal the m_hSessionOpenEvent now to quickly error out any callers of WaitForSessionToOpen(). |
214 | SetEvent(m_hSessionOpenEvent); |
215 | #endif // RIGHT_SIDE_COMPILE |
216 | } |
217 | |
218 | // The transport instance is no longer valid |
219 | Release(); |
220 | } |
221 | |
222 | #ifndef RIGHT_SIDE_COMPILE |
223 | |
224 | // Cleans up the named pipe connection so no tmp files are left behind. Does only |
225 | // the minimum and must be safe to call at any time. Called during PAL ExitProcess, |
226 | // TerminateProcess and for unhandled native exceptions and asserts. |
227 | void DbgTransportSession::AbortConnection() |
228 | { |
229 | m_pipe.Disconnect(); |
230 | } |
231 | |
232 | // API used only by the LS to drive the transport into a state where it won't accept connections. This is used |
233 | // when no proxy is detected at startup but it's too late to shutdown all of the debugging system easily. It's |
234 | // mainly paranoia to increase the protection of your system when the proxy isn't started. |
235 | void DbgTransportSession::Neuter() |
236 | { |
237 | // Simply set the session state to SS_Closed. The transport thread will switch itself off if it ever gets |
238 | // a connection but the rest of the transport resources remain valid (so the debugger helper thread won't |
239 | // AV on a deallocated handle, which might happen if we simply called Shutdown()). |
240 | m_eState = SS_Closed; |
241 | } |
242 | |
243 | #else // RIGHT_SIDE_COMPILE |
244 | |
245 | // Used by debugger side (RS) to cleanup the target (LS) named pipes |
246 | // and semaphores when the debugger detects the debuggee process exited. |
247 | void DbgTransportSession::CleanupTargetProcess() |
248 | { |
249 | m_pipe.CleanupTargetProcess(); |
250 | } |
251 | |
252 | // On the RS it may be useful to wait and see if the session can reach the SS_Open state. If the target |
253 | // runtime has terminated for some reason then we'll never reach the open state. So the method below gives the |
254 | // RS a way to try and establish a connection for a reasonable amount of time and to time out otherwise. They |
255 | // could then call Shutdown on the session and report an error back to the rest of the debugger. The method |
256 | // returns true if the session opened within the time given (in milliseconds) and false otherwise. |
257 | bool DbgTransportSession::WaitForSessionToOpen(DWORD dwTimeout) |
258 | { |
259 | DWORD dwRet = WaitForSingleObject(m_hSessionOpenEvent, dwTimeout); |
260 | if (m_eState == SS_Closed) |
261 | return false; |
262 | |
263 | if (dwRet == WAIT_TIMEOUT) |
264 | DbgTransportLog(LC_Proxy, "DbgTransportSession::WaitForSessionToOpen(%u) timed out" , dwTimeout); |
265 | |
266 | return dwRet == WAIT_OBJECT_0; |
267 | } |
268 | |
269 | //--------------------------------------------------------------------------------------- |
270 | // |
271 | // A valid ticket is returned if no other client is currently acting as the debugger. |
272 | // If the caller passes in a valid ticket, this function will return true without invalidating the ticket. |
273 | // |
274 | // Arguments: |
275 | // pTicket - out parameter; set to a valid ticket if the client has successfully registered as the debugger |
276 | // |
277 | // Return Value: |
278 | // Return true if the client has successfully registered as the debugger. |
279 | // |
280 | |
281 | bool DbgTransportSession::UseAsDebugger(DebugTicket * pTicket) |
282 | { |
283 | TransportLockHolder sLockHolder(&m_sStateLock); |
284 | if (m_fDebuggerAttached) |
285 | { |
286 | if (pTicket->IsValid()) |
287 | { |
288 | // The client already holds a valid ticket. |
289 | return true; |
290 | } |
291 | else |
292 | { |
293 | // Another client of this session has already indicated that it's using this session to debug. |
294 | _ASSERTE(!pTicket->IsValid()); |
295 | return false; |
296 | } |
297 | } |
298 | else |
299 | { |
300 | m_fDebuggerAttached = true; |
301 | pTicket->SetValid(); |
302 | return true; |
303 | } |
304 | } |
305 | |
306 | //--------------------------------------------------------------------------------------- |
307 | // |
308 | // A valid ticket is required in order for this function to succeed. After this function succeeds, |
309 | // another client can request to be the debugger. |
310 | // |
311 | // Arguments: |
312 | // pTicket - the client's ticket; must be valid for this function to succeed |
313 | // |
314 | // Return Value: |
315 | // Return true if the client has successfully unregistered as the debugger. |
316 | // Return false if no client is currently acting as the debugger or if the client's ticket is invalid. |
317 | // |
318 | |
319 | bool DbgTransportSession::StopUsingAsDebugger(DebugTicket * pTicket) |
320 | { |
321 | TransportLockHolder sLockHolder(&m_sStateLock); |
322 | if (m_fDebuggerAttached && pTicket->IsValid()) |
323 | { |
324 | // The caller is indeed the owner of the debug ticket. |
325 | m_fDebuggerAttached = false; |
326 | pTicket->SetInvalid(); |
327 | return true; |
328 | } |
329 | else |
330 | { |
331 | return false; |
332 | } |
333 | } |
334 | #endif // RIGHT_SIDE_COMPILE |
335 | |
336 | // Sends a pre-initialized event to the other side. |
337 | HRESULT DbgTransportSession::SendEvent(DebuggerIPCEvent *pEvent) |
338 | { |
339 | DbgTransportLog(LC_Events, "Sending '%s'" , IPCENames::GetName(pEvent->type)); |
340 | DBG_TRANSPORT_INC_STAT(SentEvent); |
341 | |
342 | return SendEventWorker(pEvent, IPCET_OldStyle); |
343 | } |
344 | |
345 | // Sends a pre-initialized event to the other side, but pretend that this is coming from the native pipeline. |
346 | // See code:IPCEventType for more information. |
347 | HRESULT DbgTransportSession::SendDebugEvent(DebuggerIPCEvent * pEvent) |
348 | { |
349 | DbgTransportLog(LC_Events, "Sending '%s' as DEBUG_EVENT" , IPCENames::GetName(pEvent->type)); |
350 | DBG_TRANSPORT_INC_STAT(SentEvent); |
351 | |
352 | return SendEventWorker(pEvent, IPCET_DebugEvent); |
353 | } |
354 | |
355 | // Retrieves the auto-reset handle which is signalled by the session each time a new event is received from |
356 | // the other side. |
357 | HANDLE DbgTransportSession::GetIPCEventReadyEvent() |
358 | { |
359 | return m_rghEventReadyEvent[IPCET_OldStyle]; |
360 | } |
361 | |
362 | // Retrieves the auto-reset handle which is signalled by the session each time a new event (disguised as a |
363 | // debug event) is received from the other side. |
364 | HANDLE DbgTransportSession::GetDebugEventReadyEvent() |
365 | { |
366 | return m_rghEventReadyEvent[IPCET_DebugEvent]; |
367 | } |
368 | |
369 | // Copies the last event received from the other side into the provided buffer. This should only be called |
370 | // (once) after the event returned from GetIPCEEventReadyEvent()/GetDebugEventReadyEvent() has been signalled. |
371 | void DbgTransportSession::GetNextEvent(DebuggerIPCEvent *pEvent, DWORD cbEvent) |
372 | { |
373 | _ASSERTE(cbEvent <= CorDBIPC_BUFFER_SIZE); |
374 | |
375 | // Must acquire the state lock to synchronize us wrt to the transport thread (clients already guarantee |
376 | // they serialize calls to this and waiting on m_rghEventReadyEvent). |
377 | TransportLockHolder sLockHolder(&m_sStateLock); |
378 | |
379 | // There must be at least one valid event waiting (this call does not block). |
380 | _ASSERTE(m_cValidEventBuffers); |
381 | |
382 | // Copy the first valid event into the client's buffer. |
383 | memcpy(pEvent, &m_pEventBuffers[m_idxEventBufferHead].m_event, cbEvent); |
384 | |
385 | // Move the index of the head of the valid list forward (which may in fact move it back to the start of |
386 | // the array since the list is circular). This reduces the number of valid entries by one. Note that these |
387 | // two adjustments do not affect the tail of the list in any way. In the limit case the head will end up |
388 | // pointing to the same event as the tail (and m_cValidEventBuffers will be zero). |
389 | m_idxEventBufferHead = (m_idxEventBufferHead + 1) % m_cEventBuffers; |
390 | m_cValidEventBuffers--; |
391 | _ASSERTE(((m_idxEventBufferHead + m_cValidEventBuffers) % m_cEventBuffers) == m_idxEventBufferTail); |
392 | |
393 | // If there's at least one more valid event we can signal event ready now. |
394 | if (m_cValidEventBuffers) |
395 | { |
396 | SetEvent(m_rghEventReadyEvent[m_pEventBuffers[m_idxEventBufferHead].m_type]); |
397 | } |
398 | } |
399 | |
400 | |
401 | |
402 | void MarshalDCBTransportToDCB(DebuggerIPCControlBlockTransport* pIn, DebuggerIPCControlBlock* pOut) |
403 | { |
404 | pOut->m_DCBSize = pIn->m_DCBSize; |
405 | pOut->m_verMajor = pIn->m_verMajor; |
406 | pOut->m_verMinor = pIn->m_verMinor; |
407 | pOut->m_checkedBuild = pIn->m_checkedBuild; |
408 | pOut->m_bHostingInFiber = pIn->m_bHostingInFiber; |
409 | pOut->padding2 = pIn->padding2; |
410 | pOut->padding3 = pIn->padding3; |
411 | |
412 | pOut->m_leftSideProtocolCurrent = pIn->m_leftSideProtocolCurrent; |
413 | pOut->m_leftSideProtocolMinSupported = pIn->m_leftSideProtocolMinSupported; |
414 | |
415 | pOut->m_rightSideProtocolCurrent = pIn->m_rightSideProtocolCurrent; |
416 | pOut->m_rightSideProtocolMinSupported = pIn->m_rightSideProtocolMinSupported; |
417 | |
418 | pOut->m_errorHR = pIn->m_errorHR; |
419 | pOut->m_errorCode = pIn->m_errorCode; |
420 | |
421 | #if defined(DBG_TARGET_WIN64) |
422 | pOut->padding4 = pIn->padding4; |
423 | #endif // DBG_TARGET_WIN64 |
424 | |
425 | |
426 | // |
427 | //pOut->m_rightSideEventAvailable |
428 | //pOut->m_rightSideEventRead |
429 | //pOut->m_paddingObsoleteLSEA |
430 | //pOut->m_paddingObsoleteLSER |
431 | //pOut->m_rightSideProcessHandle |
432 | //pOut->m_leftSideUnmanagedWaitEvent |
433 | |
434 | pOut->m_realHelperThreadId = pIn->m_realHelperThreadId; |
435 | pOut->m_helperThreadId = pIn->m_helperThreadId; |
436 | pOut->m_temporaryHelperThreadId = pIn->m_temporaryHelperThreadId; |
437 | pOut->m_CanaryThreadId = pIn->m_CanaryThreadId; |
438 | pOut->m_pRuntimeOffsets = pIn->m_pRuntimeOffsets; |
439 | pOut->m_helperThreadStartAddr = pIn->m_helperThreadStartAddr; |
440 | pOut->m_helperRemoteStartAddr = pIn->m_helperRemoteStartAddr; |
441 | pOut->m_specialThreadList = pIn->m_specialThreadList; |
442 | |
443 | // |
444 | //pOut->m_receiveBuffer |
445 | //pOut->m_sendBuffer |
446 | |
447 | pOut->m_specialThreadListLength = pIn->m_specialThreadListLength; |
448 | pOut->m_shutdownBegun = pIn->m_shutdownBegun; |
449 | pOut->m_rightSideIsWin32Debugger = pIn->m_rightSideIsWin32Debugger; |
450 | pOut->m_specialThreadListDirty = pIn->m_specialThreadListDirty; |
451 | |
452 | pOut->m_rightSideShouldCreateHelperThread = pIn->m_rightSideShouldCreateHelperThread; |
453 | |
454 | } |
455 | |
456 | void MarshalDCBToDCBTransport(DebuggerIPCControlBlock* pIn, DebuggerIPCControlBlockTransport* pOut) |
457 | { |
458 | pOut->m_DCBSize = pIn->m_DCBSize; |
459 | pOut->m_verMajor = pIn->m_verMajor; |
460 | pOut->m_verMinor = pIn->m_verMinor; |
461 | pOut->m_checkedBuild = pIn->m_checkedBuild; |
462 | pOut->m_bHostingInFiber = pIn->m_bHostingInFiber; |
463 | pOut->padding2 = pIn->padding2; |
464 | pOut->padding3 = pIn->padding3; |
465 | |
466 | pOut->m_leftSideProtocolCurrent = pIn->m_leftSideProtocolCurrent; |
467 | pOut->m_leftSideProtocolMinSupported = pIn->m_leftSideProtocolMinSupported; |
468 | |
469 | pOut->m_rightSideProtocolCurrent = pIn->m_rightSideProtocolCurrent; |
470 | pOut->m_rightSideProtocolMinSupported = pIn->m_rightSideProtocolMinSupported; |
471 | |
472 | pOut->m_errorHR = pIn->m_errorHR; |
473 | pOut->m_errorCode = pIn->m_errorCode; |
474 | |
475 | #if defined(DBG_TARGET_WIN64) |
476 | pOut->padding4 = pIn->padding4; |
477 | #endif // DBG_TARGET_WIN64 |
478 | |
479 | pOut->m_realHelperThreadId = pIn->m_realHelperThreadId; |
480 | pOut->m_helperThreadId = pIn->m_helperThreadId; |
481 | pOut->m_temporaryHelperThreadId = pIn->m_temporaryHelperThreadId; |
482 | pOut->m_CanaryThreadId = pIn->m_CanaryThreadId; |
483 | pOut->m_pRuntimeOffsets = pIn->m_pRuntimeOffsets; |
484 | pOut->m_helperThreadStartAddr = pIn->m_helperThreadStartAddr; |
485 | pOut->m_helperRemoteStartAddr = pIn->m_helperRemoteStartAddr; |
486 | pOut->m_specialThreadList = pIn->m_specialThreadList; |
487 | |
488 | pOut->m_specialThreadListLength = pIn->m_specialThreadListLength; |
489 | pOut->m_shutdownBegun = pIn->m_shutdownBegun; |
490 | pOut->m_rightSideIsWin32Debugger = pIn->m_rightSideIsWin32Debugger; |
491 | pOut->m_specialThreadListDirty = pIn->m_specialThreadListDirty; |
492 | |
493 | pOut->m_rightSideShouldCreateHelperThread = pIn->m_rightSideShouldCreateHelperThread; |
494 | } |
495 | |
496 | |
497 | |
498 | #ifdef RIGHT_SIDE_COMPILE |
499 | // Read and write memory on the LS from the RS. |
500 | HRESULT DbgTransportSession::ReadMemory(PBYTE pbRemoteAddress, PBYTE pbBuffer, SIZE_T cbBuffer) |
501 | { |
502 | DbgTransportLog(LC_Requests, "Sending 'ReadMemory(0x%08X, %u)'" , pbRemoteAddress, cbBuffer); |
503 | DBG_TRANSPORT_INC_STAT(SentReadMemory); |
504 | |
505 | Message sMessage; |
506 | sMessage.Init(MT_ReadMemory, NULL, 0, pbBuffer, (DWORD)cbBuffer); |
507 | sMessage.m_sHeader.TypeSpecificData.MemoryAccess.m_pbLeftSideBuffer = pbRemoteAddress; |
508 | sMessage.m_sHeader.TypeSpecificData.MemoryAccess.m_cbLeftSideBuffer = (DWORD)cbBuffer; |
509 | |
510 | HRESULT hr = SendRequestMessageAndWait(&sMessage); |
511 | if (FAILED(hr)) |
512 | return hr; |
513 | |
514 | // If we reached here the send was successful but the actual memory operation may not have been (due to |
515 | // unmapped memory or page protections etc.). So the final result comes back to us in the reply. |
516 | return sMessage.m_sHeader.TypeSpecificData.MemoryAccess.m_hrResult; |
517 | } |
518 | |
519 | HRESULT DbgTransportSession::WriteMemory(PBYTE pbRemoteAddress, PBYTE pbBuffer, SIZE_T cbBuffer) |
520 | { |
521 | DbgTransportLog(LC_Requests, "Sending 'WriteMemory(0x%08X, %u)'" , pbRemoteAddress, cbBuffer); |
522 | DBG_TRANSPORT_INC_STAT(SentWriteMemory); |
523 | |
524 | Message sMessage; |
525 | sMessage.Init(MT_WriteMemory, pbBuffer, (DWORD)cbBuffer); |
526 | sMessage.m_sHeader.TypeSpecificData.MemoryAccess.m_pbLeftSideBuffer = pbRemoteAddress; |
527 | sMessage.m_sHeader.TypeSpecificData.MemoryAccess.m_cbLeftSideBuffer = (DWORD)cbBuffer; |
528 | |
529 | HRESULT hr = SendRequestMessageAndWait(&sMessage); |
530 | if (FAILED(hr)) |
531 | return hr; |
532 | |
533 | // If we reached here the send was successful but the actual memory operation may not have been (due to |
534 | // unmapped memory or page protections etc.). So the final result comes back to us in the reply. |
535 | return sMessage.m_sHeader.TypeSpecificData.MemoryAccess.m_hrResult; |
536 | } |
537 | |
538 | HRESULT DbgTransportSession::VirtualUnwind(DWORD threadId, ULONG32 contextSize, PBYTE context) |
539 | { |
540 | DbgTransportLog(LC_Requests, "Sending 'VirtualUnwind'" ); |
541 | DBG_TRANSPORT_INC_STAT(SentVirtualUnwind); |
542 | |
543 | Message sMessage; |
544 | sMessage.Init(MT_VirtualUnwind, context, contextSize, context, contextSize); |
545 | return SendRequestMessageAndWait(&sMessage); |
546 | } |
547 | |
548 | // Read and write the debugger control block on the LS from the RS. |
549 | HRESULT DbgTransportSession::GetDCB(DebuggerIPCControlBlock *pDCB) |
550 | { |
551 | DbgTransportLog(LC_Requests, "Sending 'GetDCB'" ); |
552 | DBG_TRANSPORT_INC_STAT(SentGetDCB); |
553 | |
554 | Message sMessage; |
555 | DebuggerIPCControlBlockTransport dcbt; |
556 | sMessage.Init(MT_GetDCB, NULL, 0, (PBYTE)&dcbt, sizeof(DebuggerIPCControlBlockTransport)); |
557 | HRESULT ret = SendRequestMessageAndWait(&sMessage); |
558 | |
559 | MarshalDCBTransportToDCB(&dcbt, pDCB); |
560 | return ret; |
561 | } |
562 | |
563 | HRESULT DbgTransportSession::SetDCB(DebuggerIPCControlBlock *pDCB) |
564 | { |
565 | DbgTransportLog(LC_Requests, "Sending 'SetDCB'" ); |
566 | DBG_TRANSPORT_INC_STAT(SentSetDCB); |
567 | |
568 | DebuggerIPCControlBlockTransport dcbt; |
569 | MarshalDCBToDCBTransport(pDCB, &dcbt); |
570 | |
571 | Message sMessage; |
572 | sMessage.Init(MT_SetDCB, (PBYTE)&dcbt, sizeof(DebuggerIPCControlBlockTransport)); |
573 | return SendRequestMessageAndWait(&sMessage); |
574 | |
575 | } |
576 | |
577 | // Read the AppDomain control block on the LS from the RS. |
578 | HRESULT DbgTransportSession::GetAppDomainCB(AppDomainEnumerationIPCBlock *pADB) |
579 | { |
580 | DbgTransportLog(LC_Requests, "Sending 'GetAppDomainCB'" ); |
581 | DBG_TRANSPORT_INC_STAT(SentGetAppDomainCB); |
582 | |
583 | Message sMessage; |
584 | sMessage.Init(MT_GetAppDomainCB, NULL, 0, (PBYTE)pADB, sizeof(AppDomainEnumerationIPCBlock)); |
585 | return SendRequestMessageAndWait(&sMessage); |
586 | } |
587 | |
588 | #endif // RIGHT_SIDE_COMPILE |
589 | |
590 | // Worker function for code:DbgTransportSession::SendEvent and code:DbgTransportSession::SendDebugEvent. |
591 | HRESULT DbgTransportSession::SendEventWorker(DebuggerIPCEvent * pEvent, IPCEventType type) |
592 | { |
593 | DWORD cbEvent = GetEventSize(pEvent); |
594 | _ASSERTE(cbEvent <= CorDBIPC_BUFFER_SIZE); |
595 | |
596 | Message sMessage; |
597 | sMessage.Init(MT_Event, (PBYTE)pEvent, cbEvent); |
598 | |
599 | // Store the event type in the header as well, it's sometimes useful for debugging. |
600 | sMessage.m_sHeader.TypeSpecificData.Event.m_eIPCEventType = type; |
601 | sMessage.m_sHeader.TypeSpecificData.Event.m_eType = pEvent->type; |
602 | |
603 | return SendMessage(&sMessage, false); |
604 | } |
605 | |
606 | // Sends a pre-formatted message (including the data block, if any). The fWaitsForReply indicates whether the |
607 | // caller is going to block until some sort of reply message is received (for instance an event that must be |
608 | // ack'd or a request such as MT_GetDCB that needs a reply). SendMessage() uses this to determine whether it |
609 | // needs to buffer the message before placing it on the send queue (since it may need to resend the message |
610 | // after a transitory network failure). |
611 | HRESULT DbgTransportSession::SendMessage(Message *pMessage, bool fWaitsForReply) |
612 | { |
613 | // Serialize the whole operation under the state lock. In particular we need to make allocating the |
614 | // message ID atomic wrt placing the message on the connection (to ensure our IDs are seen in order by the |
615 | // other side). We also need to hold the lock while manipulating the send queue (to prevent corruption) |
616 | // and while determining whether to send immediately or not depending on the session state (to avoid |
617 | // posting a send on a closed and possibly recycled socket). |
618 | { |
619 | TransportLockHolder sLockHolder(&m_sStateLock); |
620 | |
621 | // Perform any last updates to the header or data block here since we might be about to encrypt them. |
622 | |
623 | // Give this message a unique ID (useful both to track which messages need to be resent on a network |
624 | // failure and to match replies to the original message). |
625 | pMessage->m_sHeader.m_dwId = m_dwNextMessageId++; |
626 | |
627 | // Use this message send to piggyback an acknowledgement of the last message we processed from the |
628 | // other side (this will allow the other side to discard one or more buffered messages from its send |
629 | // queue). |
630 | pMessage->m_sHeader.m_dwLastSeenId = m_dwLastMessageIdSeen; |
631 | |
632 | // If the caller isn't waiting around for a reply we must make a copy of the message to place on the |
633 | // send queue. |
634 | pMessage->m_pOrigMessage = pMessage; |
635 | Message *pMessageCopy = NULL; |
636 | PBYTE pDataBlockCopy = NULL; |
637 | if (!fWaitsForReply) |
638 | { |
639 | // Allocate a new message (includes an embedded message header). |
640 | pMessageCopy = new (nothrow) Message(); |
641 | if (pMessageCopy == NULL) |
642 | return E_OUTOFMEMORY; |
643 | |
644 | // Allocate a new data block if one is being used. |
645 | if (pMessage->m_pbDataBlock) |
646 | { |
647 | pDataBlockCopy = new (nothrow) BYTE[pMessage->m_cbDataBlock]; |
648 | if (pDataBlockCopy == NULL) |
649 | { |
650 | delete pMessageCopy; |
651 | return E_OUTOFMEMORY; |
652 | } |
653 | } |
654 | |
655 | // Copy the message descriptor over. |
656 | memcpy(pMessageCopy, pMessage, sizeof(Message)); |
657 | |
658 | // And the data block if applicable. |
659 | if (pDataBlockCopy) |
660 | memcpy(pDataBlockCopy, pMessage->m_pbDataBlock, pMessage->m_cbDataBlock); |
661 | |
662 | // The message copy still points to the wrong data block (if there is one). |
663 | pMessageCopy->m_pbDataBlock = pDataBlockCopy; |
664 | |
665 | // Point the copy back to the original message. |
666 | pMessageCopy->m_pOrigMessage = pMessage; |
667 | |
668 | // From now on we'll use the copy. |
669 | pMessage = pMessageCopy; |
670 | } |
671 | |
672 | // Check the session state. |
673 | if (m_eState == SS_Closed) |
674 | { |
675 | // SS_Closed is bad news, we'll never recover from that so error the send immediately. |
676 | if (pMessageCopy) |
677 | delete pMessageCopy; |
678 | if (pDataBlockCopy) |
679 | delete [] pDataBlockCopy; |
680 | |
681 | return E_ABORT; |
682 | } |
683 | |
684 | // Don't queue session management messages. We always recreate these if we need to re-send them. |
685 | if (pMessage->m_sHeader.m_eType > MT_SessionClose) |
686 | { |
687 | // Regardless of session state we always queue the message for at least as long as it takes us to |
688 | // be sure the other side has received the message. |
689 | if (m_pSendQueueLast == NULL) |
690 | { |
691 | // Queue is currently empty. |
692 | m_pSendQueueFirst = pMessage; |
693 | m_pSendQueueLast = pMessage; |
694 | pMessage->m_pNext = NULL; |
695 | } |
696 | else |
697 | { |
698 | // Place on end of queue. |
699 | m_pSendQueueLast->m_pNext = pMessage; |
700 | m_pSendQueueLast = pMessage; |
701 | pMessage->m_pNext = NULL; |
702 | } |
703 | } |
704 | |
705 | // If the state is SS_Open we can send the message now. |
706 | if (m_eState == SS_Open) |
707 | { |
708 | // Send the message header block followed by the data block if it's provided. Any network error will |
709 | // be reported internally by SendBlock and result in a transition to the SS_Resync_NC state (and an |
710 | // eventual resend of the data). |
711 | if (SendBlock((PBYTE)&pMessage->m_sHeader, sizeof(MessageHeader)) && pMessage->m_pbDataBlock) |
712 | SendBlock(pMessage->m_pbDataBlock, pMessage->m_cbDataBlock); |
713 | } |
714 | |
715 | // If the state wasn't open there's nothing more to be done. The state will eventually transition to |
716 | // either SS_Open (in which case the transport thread will send all pending messages for us at the |
717 | // transition point) or SS_Closed (where the transport thread will drain the queue and discard each |
718 | // message, setting m_fAborted if necessary). |
719 | |
720 | } // Leave m_sStateLock |
721 | |
722 | return S_OK; |
723 | } |
724 | |
725 | // Helper method for sending messages requiring a reply (such as MT_GetDCB) and waiting on the result. |
726 | HRESULT DbgTransportSession::SendRequestMessageAndWait(Message *pMessage) |
727 | { |
728 | // Allocate event to wait for reply on. |
729 | pMessage->m_hReplyEvent = WszCreateEvent(NULL, FALSE, FALSE, NULL); // Auto-reset, not signalled |
730 | if (pMessage->m_hReplyEvent == NULL) |
731 | return E_OUTOFMEMORY; |
732 | |
733 | // Duplicate the handle to the event. It's necessary to have two handles to the same event because |
734 | // both this thread and the message pumping thread may be trying to access the handle at the same |
735 | // time (e.g. closing the handle). So we make a duplicate handle. This thread is responsible for |
736 | // closing hReplyEvent (the local variable) whereas the message pumping thread is responsible for |
737 | // closing the handle on the message. |
738 | HANDLE hReplyEvent = NULL; |
739 | if (!DuplicateHandle(GetCurrentProcess(), |
740 | pMessage->m_hReplyEvent, |
741 | GetCurrentProcess(), |
742 | &hReplyEvent, |
743 | 0, // ignored since we are going to pass DUPLICATE_SAME_ACCESS |
744 | FALSE, |
745 | DUPLICATE_SAME_ACCESS)) |
746 | { |
747 | return HRESULT_FROM_GetLastError(); |
748 | } |
749 | |
750 | // Send the request. |
751 | HRESULT hr = SendMessage(pMessage, true); |
752 | if (FAILED(hr)) |
753 | { |
754 | // In this case, we need to close both handles since the message is never put into the send queue. |
755 | // This thread is the only one who has access to the message. |
756 | CloseHandle(pMessage->m_hReplyEvent); |
757 | CloseHandle(hReplyEvent); |
758 | return hr; |
759 | } |
760 | |
761 | // At this point, the message pumping thread may receive the reply any time. It may even receive the |
762 | // reply message even before we wait on the event. Keep this in mind. |
763 | |
764 | // Wait for a reply (by the time this event is signalled the message header will have been overwritten by |
765 | // the reply and any output buffer provided will have been filled in). |
766 | #if defined(RIGHT_SIDE_COMPILE) |
767 | HANDLE rgEvents[] = { hReplyEvent, m_hProcessExited }; |
768 | #else // !RIGHT_SIDE_COMPILE |
769 | HANDLE rgEvents[] = { hReplyEvent }; |
770 | #endif // RIGHT_SIDE_COMPILE |
771 | |
772 | DWORD dwResult = WaitForMultipleObjectsEx(sizeof(rgEvents)/sizeof(rgEvents[0]), rgEvents, FALSE, INFINITE, FALSE); |
773 | |
774 | if (dwResult == WAIT_OBJECT_0) |
775 | { |
776 | // This is the normal case. The message pumping thread receives a reply from the debuggee process. |
777 | // It signals the event to wake up this thread. |
778 | CloseHandle(hReplyEvent); |
779 | |
780 | // Check whether the session aborted us due to a Shutdown(). |
781 | if (pMessage->m_fAborted) |
782 | return E_ABORT; |
783 | } |
784 | #if defined(RIGHT_SIDE_COMPILE) |
785 | else if (dwResult == (WAIT_OBJECT_0 + 1)) |
786 | { |
787 | // This is the complicated case. This thread wakes up because the debuggee process is terminated. |
788 | // At the same time, the message pumping thread may be in the process of handling the reply message. |
789 | // We need to be careful here because there is a race condition. |
790 | |
791 | // Remove the original message from the send queue. This is because in the case of a blocking message, |
792 | // the message can be allocated on the stack. Thus, the message becomes invalid when we return from |
793 | // this function. The message pumping thread may have beaten this thread to it. That's ok since |
794 | // RemoveMessageFromSendQueue() takes the state lock. |
795 | Message * pOriginalMessage = RemoveMessageFromSendQueue(pMessage->m_sHeader.m_dwId); |
796 | _ASSERTE((pOriginalMessage == NULL) || (pOriginalMessage == pMessage)); |
797 | |
798 | // If the message pumping thread has beaten this thread to removing the original message, then this |
799 | // thread must wait until the message pumping thread is done with the message before returning. |
800 | // Otherwise, the message may become invalid when the message pumping thread is accessing it. |
801 | // Fortunately, in this case, we know the message pumping thread is going to signal the event. |
802 | if (pOriginalMessage == NULL) |
803 | { |
804 | WaitForSingleObject(hReplyEvent, INFINITE); |
805 | } |
806 | |
807 | CloseHandle(hReplyEvent); |
808 | return CORDBG_E_PROCESS_TERMINATED; |
809 | } |
810 | #endif // RIGHT_SIDE_COMPILE |
811 | else |
812 | { |
813 | // Should never get here. |
814 | CloseHandle(hReplyEvent); |
815 | UNREACHABLE(); |
816 | } |
817 | |
818 | return S_OK; |
819 | } |
820 | |
821 | // Sends a single contiguous buffer of host memory over the connection. The caller is responsible for holding |
822 | // the state lock and ensuring the session state is SS_Open. Returns false if the send failed (the error will |
823 | // have already caused the recovery logic to kick in, so handling it is not required, the boolean is just |
824 | // returned so that any further blocks in the message are not sent). |
825 | bool DbgTransportSession::SendBlock(PBYTE pbBuffer, DWORD cbBuffer) |
826 | { |
827 | _ASSERTE(m_eState == SS_Opening || m_eState == SS_Resync || m_eState == SS_Open); |
828 | _ASSERTE(m_pipe.GetState() == TwoWayPipe::ServerConnected || m_pipe.GetState() == TwoWayPipe::ClientConnected); |
829 | _ASSERTE(cbBuffer > 0); |
830 | |
831 | DBG_TRANSPORT_INC_STAT(SentBlocks); |
832 | DBG_TRANSPORT_ADD_STAT(SentBytes, cbBuffer); |
833 | |
834 | //DbgTransportLog(LC_Proxy, "SendBlock(%08X, %u)", pbBuffer, cbBuffer); |
835 | bool fSuccess; |
836 | if (DBG_TRANSPORT_SHOULD_INJECT_FAULT(Send)) |
837 | fSuccess = false; |
838 | else |
839 | fSuccess = (m_pipe.Write(pbBuffer, cbBuffer) == cbBuffer); |
840 | |
841 | if (!fSuccess) |
842 | { |
843 | DbgTransportLog(LC_NetErrors, "Network error on Send()" ); |
844 | DBG_TRANSPORT_INC_STAT(SendErrors); |
845 | HandleNetworkError(true); |
846 | return false; |
847 | } |
848 | |
849 | return true; |
850 | } |
851 | |
852 | // Receives a single contiguous buffer of host memory over the connection. No state lock needs to be held |
853 | // (receives are serialized by the fact they're only performed on the transport thread). Returns false if a |
854 | // network error is encountered (which will automatically transition the session into the correct retry |
855 | // state). |
856 | bool DbgTransportSession::ReceiveBlock(PBYTE pbBuffer, DWORD cbBuffer) |
857 | { |
858 | _ASSERTE(m_pipe.GetState() == TwoWayPipe::ServerConnected || m_pipe.GetState() == TwoWayPipe::ClientConnected); |
859 | _ASSERTE(cbBuffer > 0); |
860 | |
861 | DBG_TRANSPORT_INC_STAT(ReceivedBlocks); |
862 | DBG_TRANSPORT_ADD_STAT(ReceivedBytes, cbBuffer); |
863 | |
864 | //DbgTransportLog(LC_Proxy, "ReceiveBlock(%08X, %u)", pbBuffer, cbBuffer); |
865 | |
866 | bool fSuccess; |
867 | if (DBG_TRANSPORT_SHOULD_INJECT_FAULT(Receive)) |
868 | fSuccess = false; |
869 | else |
870 | fSuccess = (m_pipe.Read(pbBuffer, cbBuffer) == cbBuffer); |
871 | |
872 | if (!fSuccess) |
873 | { |
874 | DbgTransportLog(LC_NetErrors, "Network error on Receive()" ); |
875 | DBG_TRANSPORT_INC_STAT(ReceiveErrors); |
876 | HandleNetworkError(false); |
877 | return false; |
878 | } |
879 | |
880 | return true; |
881 | } |
882 | |
883 | // Called upon encountering a network error (e.g. an error from Send() or Receive()). This handles pushing the |
884 | // session state into SS_Resync_NC or SS_Opening_NC in order to start the recovery process. |
885 | void DbgTransportSession::HandleNetworkError(bool fCallerHoldsStateLock) |
886 | { |
887 | _ASSERTE(m_eState == SS_Open || m_eState == SS_Opening || m_eState == SS_Resync || !fCallerHoldsStateLock); |
888 | |
889 | // Check the easy cases first which don't require us to take the lock (because we don't transition the |
890 | // state). These are the SS_Closed state (a network error doesn't matter when we're closing down the |
891 | // session anyway) and the SS_*_NC states (which indicate someone else beat us to it, closed the |
892 | // connection and has started recovery). |
893 | if (m_eState == SS_Closed || |
894 | m_eState == SS_Opening_NC || |
895 | m_eState == SS_Resync_NC) |
896 | return; |
897 | |
898 | // We need the state lock to perform a state transition. |
899 | if (!fCallerHoldsStateLock) |
900 | m_sStateLock.Enter(); |
901 | |
902 | switch (m_eState) |
903 | { |
904 | case SS_Closed: |
905 | case SS_Opening_NC: |
906 | case SS_Resync_NC: |
907 | // Still need to cope with the no-op states handled above since we could have transitioned into them |
908 | // before we took the lock. |
909 | break; |
910 | |
911 | case SS_Opening: |
912 | // All work to transition SS_Opening to SS_Open is performed by the transport thread, so we know we're |
913 | // on that thread. Consequently it's just enough to set the state to SS_Opening_NC and the thread will |
914 | // notice the change when the SendMessage() or ReceiveBlock() call completes. |
915 | m_eState = SS_Opening_NC; |
916 | break; |
917 | |
918 | case SS_Resync: |
919 | // Likewise, all the work to transition SS_Resync to SS_Open is performed by the transport thread, so |
920 | // we know we're on that thread. |
921 | m_eState = SS_Resync_NC; |
922 | break; |
923 | |
924 | case SS_Open: |
925 | // The state change to SS_Resync_NC will prompt the transport thread (which might be this thread) that |
926 | // it should discard the current connection and reform a new one. It will also cause sends to be |
927 | // queued instead of sent. In case we're not the transport thread and instead it is currently stuck in |
928 | // a Receive (I don't entirely trust the connection to immediately fail these on a network problem) |
929 | // we'll call CancelReceive() to abort the operation. The transport thread itself will handle the |
930 | // actual Destroy() (having one thread do this management greatly simplifies things). |
931 | m_eState = SS_Resync_NC; |
932 | m_pipe.Disconnect(); |
933 | break; |
934 | |
935 | default: |
936 | _ASSERTE(!"Unknown session state" ); |
937 | } |
938 | |
939 | if (!fCallerHoldsStateLock) |
940 | m_sStateLock.Leave(); |
941 | } |
942 | |
943 | // Scan the send queue and discard any messages which have been processed by the other side according to the |
944 | // specified ID). Messages waiting on a reply message (e.g. MT_GetDCB) will be retained until that reply is |
945 | // processed. FlushSendQueue will take the state lock. |
946 | void DbgTransportSession::FlushSendQueue(DWORD dwLastProcessedId) |
947 | { |
948 | // Must access the send queue under the state lock. |
949 | TransportLockHolder sLockHolder(&m_sStateLock); |
950 | |
951 | // Note that message headers (and data blocks) may be encrypted. Use the cached fields in the Message |
952 | // structure to compare message IDs and types. |
953 | |
954 | Message *pMsg = m_pSendQueueFirst; |
955 | Message *pLastMsg = NULL; |
956 | while (pMsg) |
957 | { |
958 | if (pMsg->m_sHeader.m_dwId <= dwLastProcessedId) |
959 | { |
960 | // Message has been seen and processed by other side. |
961 | // Check if we can discard it (i.e. it's not waiting on a reply message that needs the original |
962 | // request to hang around). |
963 | #ifdef RIGHT_SIDE_COMPILE |
964 | MessageType eType = pMsg->m_sHeader.m_eType; |
965 | if (eType != MT_ReadMemory && |
966 | eType != MT_WriteMemory && |
967 | eType != MT_VirtualUnwind && |
968 | eType != MT_GetDCB && |
969 | eType != MT_SetDCB && |
970 | eType != MT_GetAppDomainCB) |
971 | #endif // RIGHT_SIDE_COMPILE |
972 | { |
973 | #ifdef RIGHT_SIDE_COMPILE |
974 | _ASSERTE(eType == MT_Event); |
975 | #endif // RIGHT_SIDE_COMPILE |
976 | |
977 | // We can discard this message. |
978 | |
979 | // Unlink it from the queue. |
980 | if (pLastMsg == NULL) |
981 | m_pSendQueueFirst = pMsg->m_pNext; |
982 | else |
983 | pLastMsg->m_pNext = pMsg->m_pNext; |
984 | if (m_pSendQueueLast == pMsg) |
985 | m_pSendQueueLast = pLastMsg; |
986 | |
987 | Message *pDiscardMsg = pMsg; |
988 | pMsg = pMsg->m_pNext; |
989 | |
990 | // If the message is a copy deallocate it (and the data block associated with it). |
991 | if (pDiscardMsg->m_pOrigMessage != pDiscardMsg) |
992 | { |
993 | if (pDiscardMsg->m_pbDataBlock) |
994 | delete [] pDiscardMsg->m_pbDataBlock; |
995 | delete pDiscardMsg; |
996 | } |
997 | |
998 | continue; |
999 | } |
1000 | } |
1001 | |
1002 | pLastMsg = pMsg; |
1003 | pMsg = pMsg->m_pNext; |
1004 | } |
1005 | } |
1006 | |
1007 | #ifdef RIGHT_SIDE_COMPILE |
1008 | // Perform processing required to complete a request (such as MT_GetDCB) once a reply comes in. This includes |
1009 | // reading data from the connection into the output buffer, removing the original message from the send queue |
1010 | // and signalling the completion event. Returns true if no network error was encountered. |
1011 | bool DbgTransportSession::(MessageHeader *) |
1012 | { |
1013 | // Locate original message on the send queue. |
1014 | Message *pMsg = RemoveMessageFromSendQueue(pHeader->m_dwReplyId); |
1015 | |
1016 | // This can happen if the thread blocked waiting for the replyl message has waken up because the debuggee |
1017 | // process has terminated. See code:DbgTransportSession::SendRequestMessageAndWait() for more info. |
1018 | if (pMsg == NULL) |
1019 | { |
1020 | return true; |
1021 | } |
1022 | |
1023 | // If there is a reply block but the caller hasn't specified a reply buffer. |
1024 | // This combination is not used any more. |
1025 | _ASSERTE(! ((pHeader->m_cbDataBlock != (DWORD)0) && (pMsg->m_pbReplyBlock == (PBYTE)NULL)) ); |
1026 | |
1027 | // If there was an output buffer provided then we copy the data block in the reply into it (perhaps |
1028 | // decrypting it first). If the reply header indicates there is no data block then presumably the request |
1029 | // failed (which should be indicated in the TypeSpecificData of the reply, ala MT_ReadMemory). |
1030 | if (pMsg->m_pbReplyBlock && pHeader->m_cbDataBlock) |
1031 | { |
1032 | _ASSERTE(pHeader->m_cbDataBlock == pMsg->m_cbReplyBlock); |
1033 | if (!ReceiveBlock(pMsg->m_pbReplyBlock, pMsg->m_cbReplyBlock)) |
1034 | { |
1035 | // Whoops. We hit an error trying to read the reply data. We need to push the original message |
1036 | // back on the queue and await a retry. Since this message must have been seen by the other side |
1037 | // we don't need to put it on the queue in order (it will never be resent). Easiest just to put it |
1038 | // on the head. |
1039 | { |
1040 | TransportLockHolder sLockHolder(&m_sStateLock); |
1041 | pMsg->m_pNext = m_pSendQueueFirst; |
1042 | m_pSendQueueFirst = pMsg; |
1043 | if (m_pSendQueueLast == NULL) |
1044 | m_pSendQueueLast = pMsg; |
1045 | return false; |
1046 | } // Leave m_sStateLock |
1047 | } |
1048 | } |
1049 | |
1050 | // Copy TypeSpecificData from the reply back into the original message (it can contain additional status). |
1051 | // Be careful to update the real original message (the version on the queue will be a copy if we're using |
1052 | // a secure session). |
1053 | pMsg->m_pOrigMessage->m_sHeader.TypeSpecificData = pHeader->TypeSpecificData; |
1054 | |
1055 | // **** IMPORTANT NOTE **** |
1056 | // We're about to cause a side-effect visible to our client. From here on out (until we update the |
1057 | // session's idea of the last incoming message we processed back in the transport thread's main loop) we |
1058 | // must avoid any failures. If we fail before the update the other side will re-send the message which is |
1059 | // bad if we've already processed it. See the comment near the start of the SS_Open message dispatch logic |
1060 | // for more details. |
1061 | // **** IMPORTANT NOTE **** |
1062 | |
1063 | // Signal the completion event. |
1064 | SignalReplyEvent(pMsg); |
1065 | |
1066 | return true; |
1067 | } |
1068 | |
1069 | //--------------------------------------------------------------------------------------- |
1070 | // |
1071 | // Upon receiving a reply message, signal the event on the message to wake up the thread waiting for |
1072 | // the reply message and close the handle to the event. |
1073 | // |
1074 | // Arguments: |
1075 | // pMessage - the reply message to be processed |
1076 | // |
1077 | |
1078 | void DbgTransportSession::SignalReplyEvent(Message * pMessage) |
1079 | { |
1080 | // Make a local copy of the event handle. As soon as we signal the event, the thread blocked waiting on |
1081 | // the reply may wake up and trash the message. See code:DbgTransportSession::SendRequestMessageAndWait() |
1082 | // for more info. |
1083 | HANDLE hReplyEvent = pMessage->m_hReplyEvent; |
1084 | _ASSERTE(hReplyEvent != NULL); |
1085 | |
1086 | SetEvent(hReplyEvent); |
1087 | CloseHandle(hReplyEvent); |
1088 | } |
1089 | |
1090 | //--------------------------------------------------------------------------------------- |
1091 | // |
1092 | // Given a message ID, find the matching message in the send queue. If there is no match, return NULL. |
1093 | // If there is a match, remove the message from the send queue and return it. |
1094 | // |
1095 | // Arguments: |
1096 | // dwMessageId - the ID of the message to retrieve |
1097 | // |
1098 | // Return Value: |
1099 | // NULL if the specified message cannot be found. |
1100 | // Otherwise return the specified message with the side effect that it's also removed from the send queue. |
1101 | // |
1102 | // Notes: |
1103 | // The caller is NOT responsible for taking the state lock. This function will do that. |
1104 | // |
1105 | |
1106 | DbgTransportSession::Message * DbgTransportSession::RemoveMessageFromSendQueue(DWORD dwMessageId) |
1107 | { |
1108 | // Locate original message on the send queue. |
1109 | Message *pMsg = NULL; |
1110 | { |
1111 | TransportLockHolder sLockHolder(&m_sStateLock); |
1112 | |
1113 | pMsg = m_pSendQueueFirst; |
1114 | Message *pLastMsg = NULL; |
1115 | |
1116 | while (pMsg) |
1117 | { |
1118 | if (dwMessageId == pMsg->m_sHeader.m_dwId) |
1119 | { |
1120 | // Found the original message that this is a reply to. Unlink it. |
1121 | if (pLastMsg == NULL) |
1122 | m_pSendQueueFirst = pMsg->m_pNext; |
1123 | else |
1124 | pLastMsg->m_pNext = pMsg->m_pNext; |
1125 | |
1126 | if (m_pSendQueueLast == pMsg) |
1127 | m_pSendQueueLast = pLastMsg; |
1128 | break; |
1129 | } |
1130 | |
1131 | pLastMsg = pMsg; |
1132 | pMsg = pMsg->m_pNext; |
1133 | } |
1134 | } // Leave m_sStateLock |
1135 | |
1136 | // could be NULL |
1137 | return pMsg; |
1138 | } |
1139 | #endif |
1140 | |
1141 | #ifndef RIGHT_SIDE_COMPILE |
1142 | |
1143 | // Check read and optionally write memory access to the specified range of bytes. Used to check |
1144 | // ReadProcessMemory and WriteProcessMemory requests. |
1145 | HRESULT DbgTransportSession::CheckBufferAccess(__in_ecount(cbBuffer) PBYTE pbBuffer, DWORD cbBuffer, bool fWriteAccess) |
1146 | { |
1147 | // check for integer overflow |
1148 | if ((pbBuffer + cbBuffer) < pbBuffer) |
1149 | { |
1150 | return HRESULT_FROM_WIN32(ERROR_ARITHMETIC_OVERFLOW); |
1151 | } |
1152 | |
1153 | // VirtualQuery doesn't know much about memory allocated outside of PAL's VirtualAlloc |
1154 | // that's why on Unix we can't rely on in to detect invalid memory reads |
1155 | #ifndef FEATURE_PAL |
1156 | do |
1157 | { |
1158 | // Find the attributes of the largest set of pages with common attributes starting from our base address. |
1159 | MEMORY_BASIC_INFORMATION sMemInfo; |
1160 | VirtualQuery(pbBuffer, &sMemInfo, sizeof(sMemInfo)); |
1161 | |
1162 | DbgTransportLog(LC_Proxy, "CBA(%08X,%08X): State:%08X Protect:%08X BA:%08X RS:%08X" , |
1163 | pbBuffer, cbBuffer, sMemInfo.State, sMemInfo.Protect, sMemInfo.BaseAddress, sMemInfo.RegionSize); |
1164 | |
1165 | // The memory must be committed (i.e. have physical pages or backing store). |
1166 | if (sMemInfo.State != MEM_COMMIT) |
1167 | return HRESULT_FROM_WIN32(ERROR_INVALID_ADDRESS); |
1168 | |
1169 | // Check for compatible page protections. Lower byte of Protect has these (upper bytes have options we're |
1170 | // not interested in, cache modes and the like. |
1171 | DWORD dwProtect = sMemInfo.Protect & 0xff; |
1172 | |
1173 | if (fWriteAccess && |
1174 | ((dwProtect & (PAGE_EXECUTE_READWRITE | PAGE_EXECUTE_WRITECOPY | PAGE_READWRITE | PAGE_WRITECOPY)) == 0)) |
1175 | return HRESULT_FROM_WIN32(ERROR_NOACCESS); |
1176 | else if (!fWriteAccess && |
1177 | ((dwProtect & (PAGE_EXECUTE_READ | PAGE_EXECUTE_READWRITE | PAGE_EXECUTE_WRITECOPY | PAGE_READONLY | PAGE_READWRITE | PAGE_WRITECOPY)) == 0)) |
1178 | return HRESULT_FROM_WIN32(ERROR_NOACCESS); |
1179 | |
1180 | // If the requested range is bigger than the region we have queried, |
1181 | // we need to continue on to check the next region. |
1182 | if ((pbBuffer + cbBuffer) > ((PBYTE)sMemInfo.BaseAddress + sMemInfo.RegionSize)) |
1183 | { |
1184 | PBYTE pbRegionEnd = reinterpret_cast<PBYTE>(sMemInfo.BaseAddress) + sMemInfo.RegionSize; |
1185 | cbBuffer = (DWORD)((pbBuffer + cbBuffer) - pbRegionEnd); |
1186 | pbBuffer = pbRegionEnd; |
1187 | } |
1188 | else |
1189 | { |
1190 | // We are done. Set cbBuffer to 0 to exit this loop. |
1191 | cbBuffer = 0; |
1192 | } |
1193 | } |
1194 | while (cbBuffer > 0); |
1195 | #else |
1196 | if (!PAL_ProbeMemory(pbBuffer, cbBuffer, fWriteAccess)) |
1197 | { |
1198 | return HRESULT_FROM_WIN32(ERROR_INVALID_ADDRESS); |
1199 | } |
1200 | #endif |
1201 | |
1202 | // The specified region has passed all of our checks. |
1203 | return S_OK; |
1204 | } |
1205 | |
1206 | #endif // !RIGHT_SIDE_COMPILE |
1207 | |
1208 | // Initialize all session state to correct starting values. Used during Init() and on the LS when we |
1209 | // gracefully close one session and prepare for another. |
1210 | void DbgTransportSession::InitSessionState() |
1211 | { |
1212 | DBG_TRANSPORT_INC_STAT(Sessions); |
1213 | |
1214 | m_dwMajorVersion = kCurrentMajorVersion; |
1215 | m_dwMinorVersion = kCurrentMinorVersion; |
1216 | |
1217 | memset(&m_sSessionID, 0, sizeof(m_sSessionID)); |
1218 | |
1219 | m_pSendQueueFirst = NULL; |
1220 | m_pSendQueueLast = NULL; |
1221 | |
1222 | m_dwNextMessageId = 1; |
1223 | m_dwLastMessageIdSeen = 0; |
1224 | |
1225 | m_eState = SS_Opening_NC; |
1226 | |
1227 | m_cValidEventBuffers = 0; |
1228 | m_idxEventBufferHead = 0; |
1229 | m_idxEventBufferTail = 0; |
1230 | } |
1231 | |
1232 | // The entry point of the transport worker thread. This one's static, so we immediately dispatch to an |
1233 | // instance method version defined below for convenience in the implementation. |
1234 | DWORD WINAPI DbgTransportSession::TransportWorkerStatic(LPVOID pvContext) |
1235 | { |
1236 | ((DbgTransportSession*)pvContext)->TransportWorker(); |
1237 | |
1238 | // Nobody looks at this result, the choice of 0 is arbitrary. |
1239 | return 0; |
1240 | } |
1241 | |
1242 | // Macros used to simplify error and state transition handling within the transport worker loop. Errors are |
1243 | // classified as either transient or critical. Transient errors (typically those from network operations) |
1244 | // result in the connection being closed and rebuilt: we should eventually recover from them. Critical errors |
1245 | // are those that cause a transition to the SS_Closed state, which the session never recovers from. These are |
1246 | // normally due to protocol errors where we want to shut the transport down in case they are of malicious |
1247 | // origin. |
1248 | #define HANDLE_TRANSIENT_ERROR() do { \ |
1249 | HandleNetworkError(false); \ |
1250 | m_pipe.Disconnect(); \ |
1251 | goto ResetConnection; \ |
1252 | } while (false) |
1253 | |
1254 | #define HANDLE_CRITICAL_ERROR() do { \ |
1255 | m_eState = SS_Closed; \ |
1256 | goto Shutdown; \ |
1257 | } while (false) |
1258 | |
1259 | #ifdef _PREFAST_ |
1260 | #pragma warning(push) |
1261 | #pragma warning(disable:21000) // Suppress PREFast warning about overly large function |
1262 | #endif |
1263 | void DbgTransportSession::TransportWorker() |
1264 | { |
1265 | _ASSERTE(m_eState == SS_Opening_NC); |
1266 | |
1267 | // Loop until shutdown. Each loop iteration involves forming a connection (or waiting for one to form) |
1268 | // followed by processing incoming messages on that connection until there's a failure (either here of |
1269 | // from a send on another thread) or the session shuts down. The connection is then closed and discarded |
1270 | // and we either go round the loop again (to recover our previous session state) or exit the method as |
1271 | // part of shutdown. |
1272 | ResetConnection: |
1273 | while (m_eState != SS_Closed) |
1274 | { |
1275 | _ASSERTE(m_eState == SS_Opening_NC || m_eState == SS_Resync_NC || m_eState == SS_Closed); |
1276 | |
1277 | DbgTransportLog(LC_Proxy, "Forming new connection" ); |
1278 | |
1279 | #ifdef RIGHT_SIDE_COMPILE |
1280 | // The session is definitely not open at this point. |
1281 | ResetEvent(m_hSessionOpenEvent); |
1282 | |
1283 | // On the right side we initiate the connection via Connect(). A failure is dealt with by waiting a |
1284 | // little while and retrying (the LS may take a little while to set up). If there's nobody listening |
1285 | // the debugger will eventually get bored waiting for us and shutdown the session, which will |
1286 | // terminate this loop. |
1287 | ConnStatus eStatus; |
1288 | if (DBG_TRANSPORT_SHOULD_INJECT_FAULT(Connect)) |
1289 | eStatus = SCS_NetworkFailure; |
1290 | else |
1291 | { |
1292 | if (m_pipe.Connect(m_pd)) |
1293 | { |
1294 | eStatus = SCS_Success; |
1295 | } |
1296 | else |
1297 | { |
1298 | //not really sure that this is the real failure |
1299 | //TODO: we probably need to analyse GetErrorCode() here |
1300 | eStatus = SCS_NoListener; |
1301 | } |
1302 | } |
1303 | |
1304 | if (eStatus != SCS_Success) |
1305 | { |
1306 | DbgTransportLog(LC_Proxy, "AllocateConnection() failed with %u\n" , eStatus); |
1307 | DBG_TRANSPORT_INC_STAT(MiscErrors); |
1308 | _ASSERTE(m_pipe.GetState() != TwoWayPipe::ClientConnected); |
1309 | Sleep(1000); |
1310 | continue; |
1311 | } |
1312 | #else // RIGHT_SIDE_COMPILE |
1313 | ConnStatus eStatus; |
1314 | if (DBG_TRANSPORT_SHOULD_INJECT_FAULT(Accept)) |
1315 | eStatus = SCS_NetworkFailure; |
1316 | else |
1317 | { |
1318 | ProcessDescriptor pd = ProcessDescriptor::FromCurrentProcess(); |
1319 | if ((m_pipe.GetState() == TwoWayPipe::Created || m_pipe.CreateServer(pd)) && |
1320 | m_pipe.WaitForConnection()) |
1321 | { |
1322 | eStatus = SCS_Success; |
1323 | } |
1324 | else |
1325 | { |
1326 | //not really sure that this is the real failure |
1327 | //TODO: we probably need to analyse GetErrorCode() here |
1328 | eStatus = SCS_NoListener; |
1329 | } |
1330 | } |
1331 | |
1332 | if (eStatus != SCS_Success) |
1333 | { |
1334 | DbgTransportLog(LC_Proxy, "Accept() failed with %u\n" , eStatus); |
1335 | DBG_TRANSPORT_INC_STAT(MiscErrors); |
1336 | _ASSERTE(m_pipe.GetState() != TwoWayPipe::ServerConnected); |
1337 | Sleep(1000); |
1338 | continue; |
1339 | } |
1340 | |
1341 | // Note that when resynching a session we may let in a connection from a different debugger. That's |
1342 | // OK, we'll reject his SessionRequest message in due course and drop the connection. |
1343 | #endif // RIGHT_SIDE_COMPILE |
1344 | |
1345 | DBG_TRANSPORT_INC_STAT(Connections); |
1346 | |
1347 | // We now have a connection. Transition to the next state (either SS_Opening or SS_Resync). The |
1348 | // primary purpose of this state transition is to let other threads know that this thread might now be |
1349 | // blocked on a Receive() on the newly formed connection (important if they want to transition the state |
1350 | // to SS_Closed). |
1351 | { |
1352 | TransportLockHolder sLockHolder(&m_sStateLock); |
1353 | |
1354 | if (m_eState == SS_Closed) |
1355 | break; |
1356 | else if (m_eState == SS_Opening_NC) |
1357 | m_eState = SS_Opening; |
1358 | else if (m_eState == SS_Resync_NC) |
1359 | m_eState = SS_Resync; |
1360 | else |
1361 | _ASSERTE(!"Bad session state" ); |
1362 | } // Leave m_sStateLock |
1363 | |
1364 | |
1365 | // Now we have a connection in place. Start reading messages and processing them. Which messages are |
1366 | // valid depends on whether we're in SS_Opening or SS_Resync (the state can change at any time |
1367 | // asynchronously to us to either SS_Closed or SS_Resync_NC but we're guaranteed the connection stays |
1368 | // valid (though not necessarily useful) until we notice this state change and Destroy() it ourself). |
1369 | // We check the state after each network operation. |
1370 | |
1371 | // During the SS_Opening and SS_Resync states we're guarantee to be the only thread posting sends, so |
1372 | // we can break the rules and use SendBlock without acquiring the state lock. (We use SendBlock a lot |
1373 | // during these phases because we're using simple Session* messages which don't require the extra |
1374 | // processing SendMessage gives us such as encryption or placement on the send queue). |
1375 | |
1376 | MessageHeader ; |
1377 | MessageHeader ; |
1378 | |
1379 | memset(&sSendHeader, 0, sizeof(MessageHeader)); |
1380 | |
1381 | if (m_eState == SS_Opening) |
1382 | { |
1383 | #ifdef RIGHT_SIDE_COMPILE |
1384 | // The right side actually starts things off by sending a SessionRequest message. |
1385 | |
1386 | SessionRequestData sDataBlock; |
1387 | |
1388 | sSendHeader.m_eType = MT_SessionRequest; |
1389 | sSendHeader.TypeSpecificData.VersionInfo.m_dwMajorVersion = kCurrentMajorVersion; |
1390 | sSendHeader.TypeSpecificData.VersionInfo.m_dwMinorVersion = kCurrentMinorVersion; |
1391 | |
1392 | // The start of the data block always contains a session ID. This is a GUID randomly generated at |
1393 | // Init() time. |
1394 | sSendHeader.m_cbDataBlock = sizeof(SessionRequestData); |
1395 | memcpy(&sDataBlock.m_sSessionID, &m_sSessionID, sizeof(m_sSessionID)); |
1396 | |
1397 | // Send the header block followed by the data block. For failures during SS_Opening we just close |
1398 | // the connection and retry from the beginning (the failing send will already have caused a |
1399 | // transition into SS_Opening_NC. No need to use the same resend logic that SS_Resync does, since |
1400 | // no user messages have been sent and we can simply recreate the SessionRequest. |
1401 | DbgTransportLog(LC_Session, "Sending 'SessionRequest'" ); |
1402 | DBG_TRANSPORT_INC_STAT(SentSessionRequest); |
1403 | if (!SendBlock((PBYTE)&sSendHeader, sizeof(MessageHeader)) || |
1404 | !SendBlock((PBYTE)&sDataBlock, sSendHeader.m_cbDataBlock)) |
1405 | HANDLE_TRANSIENT_ERROR(); |
1406 | |
1407 | // Wait for a reply. |
1408 | if (!ReceiveBlock((PBYTE)&sReceiveHeader, sizeof(MessageHeader))) |
1409 | HANDLE_TRANSIENT_ERROR(); |
1410 | |
1411 | DbgTransportLogMessageReceived(&sReceiveHeader); |
1412 | |
1413 | // This should be either a SessionAccept or SessionReject. Any other message type will be treated |
1414 | // as a SessionReject (i.e. an unrecoverable failure that will leave the session in SS_Closed |
1415 | // permanently). |
1416 | if (sReceiveHeader.m_eType != MT_SessionAccept) |
1417 | { |
1418 | _ASSERTE(!"Unexpected response to SessionRequest" ); |
1419 | HANDLE_CRITICAL_ERROR(); |
1420 | } |
1421 | |
1422 | // Validate the SessionAccept. |
1423 | if (sReceiveHeader.TypeSpecificData.VersionInfo.m_dwMajorVersion != kCurrentMajorVersion || |
1424 | sReceiveHeader.m_cbDataBlock != (DWORD)0) |
1425 | { |
1426 | _ASSERTE(!"Malformed SessionAccept received" ); |
1427 | HANDLE_CRITICAL_ERROR(); |
1428 | } |
1429 | |
1430 | // The LS might have negotiated the minor protocol version down. |
1431 | m_dwMinorVersion = sReceiveHeader.TypeSpecificData.VersionInfo.m_dwMinorVersion; |
1432 | #else // RIGHT_SIDE_COMPILE |
1433 | |
1434 | // On the left side we wait for a SessionRequest first. |
1435 | if (!ReceiveBlock((PBYTE)&sReceiveHeader, sizeof(MessageHeader))) |
1436 | HANDLE_TRANSIENT_ERROR(); |
1437 | |
1438 | DbgTransportLogMessageReceived(&sReceiveHeader); |
1439 | |
1440 | if (sReceiveHeader.m_eType != MT_SessionRequest) |
1441 | { |
1442 | _ASSERTE(!"Unexpected message type" ); |
1443 | HANDLE_CRITICAL_ERROR(); |
1444 | } |
1445 | |
1446 | // Validate the SessionRequest. |
1447 | if (sReceiveHeader.TypeSpecificData.VersionInfo.m_dwMajorVersion != kCurrentMajorVersion || |
1448 | sReceiveHeader.m_cbDataBlock != (DWORD)sizeof(SessionRequestData)) |
1449 | { |
1450 | // Send a SessionReject message with the reason for rejection. |
1451 | sSendHeader.m_eType = MT_SessionReject; |
1452 | sSendHeader.TypeSpecificData.SessionReject.m_eReason = RR_IncompatibleVersion; |
1453 | sSendHeader.TypeSpecificData.SessionReject.m_dwMajorVersion = kCurrentMajorVersion; |
1454 | sSendHeader.TypeSpecificData.SessionReject.m_dwMinorVersion = kCurrentMinorVersion; |
1455 | |
1456 | DbgTransportLog(LC_Session, "Sending 'SessionReject(RR_IncompatibleVersion)'" ); |
1457 | DBG_TRANSPORT_INC_STAT(SentSessionReject); |
1458 | |
1459 | SendBlock((PBYTE)&sSendHeader, sizeof(MessageHeader)); |
1460 | |
1461 | // Go back into the opening state rather than closed because we want to give the RS a chance |
1462 | // to correct the problem and try again. |
1463 | HANDLE_TRANSIENT_ERROR(); |
1464 | } |
1465 | |
1466 | // Read the data block. |
1467 | SessionRequestData sDataBlock; |
1468 | if (!ReceiveBlock((PBYTE)&sDataBlock, sizeof(SessionRequestData))) |
1469 | HANDLE_TRANSIENT_ERROR(); |
1470 | |
1471 | // If the RS only understands a lower minor protocol version than us then remember that fact. |
1472 | if (sReceiveHeader.TypeSpecificData.VersionInfo.m_dwMinorVersion < m_dwMinorVersion) |
1473 | m_dwMinorVersion = sReceiveHeader.TypeSpecificData.VersionInfo.m_dwMinorVersion; |
1474 | |
1475 | // Send a SessionAccept message back. |
1476 | sSendHeader.m_eType = MT_SessionAccept; |
1477 | sSendHeader.m_cbDataBlock = 0; |
1478 | sSendHeader.TypeSpecificData.VersionInfo.m_dwMajorVersion = kCurrentMajorVersion; |
1479 | sSendHeader.TypeSpecificData.VersionInfo.m_dwMinorVersion = m_dwMinorVersion; |
1480 | |
1481 | DbgTransportLog(LC_Session, "Sending 'SessionAccept'" ); |
1482 | DBG_TRANSPORT_INC_STAT(SentSessionAccept); |
1483 | |
1484 | if (!SendBlock((PBYTE)&sSendHeader, sizeof(MessageHeader))) |
1485 | HANDLE_TRANSIENT_ERROR(); |
1486 | #endif // RIGHT_SIDE_COMPILE |
1487 | |
1488 | // Everything pans out, we have a session formed. But we must send messages that queued up |
1489 | // before transitioning the state to open (otherwise a racing send could sneak in ahead). |
1490 | |
1491 | // Must access the send queue under the state lock. |
1492 | { |
1493 | TransportLockHolder sLockHolder(&m_sStateLock); |
1494 | Message *pMsg = m_pSendQueueFirst; |
1495 | while (pMsg) |
1496 | { |
1497 | if (SendBlock((PBYTE)&pMsg->m_sHeader, sizeof(MessageHeader)) && pMsg->m_pbDataBlock) |
1498 | SendBlock(pMsg->m_pbDataBlock, pMsg->m_cbDataBlock); |
1499 | pMsg = pMsg->m_pNext; |
1500 | } |
1501 | |
1502 | // Check none of the sends failed. |
1503 | if (m_eState != SS_Opening) |
1504 | { |
1505 | m_pipe.Disconnect(); |
1506 | continue; |
1507 | } |
1508 | } // Leave m_sStateLock |
1509 | |
1510 | // Finally we can transition to SS_Open. |
1511 | { |
1512 | TransportLockHolder sLockHolder(&m_sStateLock); |
1513 | if (m_eState == SS_Closed) |
1514 | break; |
1515 | else if (m_eState == SS_Opening) |
1516 | m_eState = SS_Open; |
1517 | else |
1518 | _ASSERTE(!"Bad session state" ); |
1519 | } // Leave m_sStateLock |
1520 | |
1521 | #ifdef RIGHT_SIDE_COMPILE |
1522 | // Signal any WaitForSessionToOpen() waiters that we've gotten to SS_Open. |
1523 | SetEvent(m_hSessionOpenEvent); |
1524 | #endif // RIGHT_SIDE_COMPILE |
1525 | |
1526 | // We're ready to begin receiving normal incoming messages now. |
1527 | } |
1528 | else |
1529 | { |
1530 | // The SS_Resync case. Send a message indicating the last message we saw from the other side and |
1531 | // wait for a similar message to arrive for us. |
1532 | |
1533 | sSendHeader.m_eType = MT_SessionResync; |
1534 | sSendHeader.m_dwLastSeenId = m_dwLastMessageIdSeen; |
1535 | |
1536 | DbgTransportLog(LC_Session, "Sending 'SessionResync'" ); |
1537 | DBG_TRANSPORT_INC_STAT(SentSessionResync); |
1538 | |
1539 | if (!SendBlock((PBYTE)&sSendHeader, sizeof(MessageHeader))) |
1540 | HANDLE_TRANSIENT_ERROR(); |
1541 | |
1542 | if (!ReceiveBlock((PBYTE)&sReceiveHeader, sizeof(MessageHeader))) |
1543 | HANDLE_TRANSIENT_ERROR(); |
1544 | |
1545 | #ifndef RIGHT_SIDE_COMPILE |
1546 | if (sReceiveHeader.m_eType == MT_SessionRequest) |
1547 | { |
1548 | DbgTransportLogMessageReceived(&sReceiveHeader); |
1549 | |
1550 | // This SessionRequest could be from a different debugger. In this case we should send a |
1551 | // SessionReject to let them know we're not available and close the connection so we can |
1552 | // re-listen for the original debugger. |
1553 | // Or it could be the original debugger re-sending the SessionRequest because the connection |
1554 | // died as we sent the SessionAccept. |
1555 | // We distinguish the two cases by looking at the session ID in the request. |
1556 | bool fRequestResend = false; |
1557 | |
1558 | // Only read the data block if it matches our expectations of its size. |
1559 | if (sReceiveHeader.m_cbDataBlock == (DWORD)sizeof(SessionRequestData)) |
1560 | { |
1561 | SessionRequestData sDataBlock; |
1562 | if (!ReceiveBlock((PBYTE)&sDataBlock, sizeof(SessionRequestData))) |
1563 | HANDLE_TRANSIENT_ERROR(); |
1564 | |
1565 | // Check the session ID for a match. |
1566 | if (memcmp(&sDataBlock.m_sSessionID, &m_sSessionID, sizeof(m_sSessionID)) == 0) |
1567 | // OK, everything checks out and this is a valid re-send of a SessionRequest. |
1568 | fRequestResend = true; |
1569 | } |
1570 | |
1571 | if (fRequestResend) |
1572 | { |
1573 | // The RS never got our SessionAccept. We must resend it. |
1574 | memset(&sSendHeader, 0, sizeof(MessageHeader)); |
1575 | sSendHeader.m_eType = MT_SessionAccept; |
1576 | sSendHeader.m_cbDataBlock = 0; |
1577 | sSendHeader.TypeSpecificData.VersionInfo.m_dwMajorVersion = kCurrentMajorVersion; |
1578 | sSendHeader.TypeSpecificData.VersionInfo.m_dwMinorVersion = m_dwMinorVersion; |
1579 | |
1580 | DbgTransportLog(LC_Session, "Sending 'SessionAccept'" ); |
1581 | DBG_TRANSPORT_INC_STAT(SentSessionAccept); |
1582 | |
1583 | if (!SendBlock((PBYTE)&sSendHeader, sizeof(MessageHeader))) |
1584 | HANDLE_TRANSIENT_ERROR(); |
1585 | |
1586 | // Now simply reset the connection. The RS should get the SessionAccept and transition to |
1587 | // SS_Open then detect the connection loss and transition to SS_Resync_NC, which will |
1588 | // finally sync the two sides. |
1589 | HANDLE_TRANSIENT_ERROR(); |
1590 | } |
1591 | else |
1592 | { |
1593 | // This is the case where we must reject the request. |
1594 | memset(&sSendHeader, 0, sizeof(MessageHeader)); |
1595 | sSendHeader.m_eType = MT_SessionReject; |
1596 | sSendHeader.TypeSpecificData.SessionReject.m_eReason = RR_AlreadyAttached; |
1597 | sSendHeader.TypeSpecificData.SessionReject.m_dwMajorVersion = kCurrentMajorVersion; |
1598 | sSendHeader.TypeSpecificData.SessionReject.m_dwMinorVersion = kCurrentMinorVersion; |
1599 | |
1600 | DbgTransportLog(LC_Session, "Sending 'SessionReject(RR_AlreadyAttached)'" ); |
1601 | DBG_TRANSPORT_INC_STAT(SentSessionReject); |
1602 | |
1603 | SendBlock((PBYTE)&sSendHeader, sizeof(MessageHeader)); |
1604 | |
1605 | HANDLE_TRANSIENT_ERROR(); |
1606 | } |
1607 | } |
1608 | #endif // !RIGHT_SIDE_COMPILE |
1609 | |
1610 | DbgTransportLogMessageReceived(&sReceiveHeader); |
1611 | |
1612 | // Handle all other invalid message types by shutting down (it may be an attempt to subvert the |
1613 | // protocol). |
1614 | if (sReceiveHeader.m_eType != MT_SessionResync) |
1615 | { |
1616 | _ASSERTE(!"Unexpected message type during SS_Resync" ); |
1617 | HANDLE_CRITICAL_ERROR(); |
1618 | } |
1619 | |
1620 | // We've got our resync message. Go through the send queue and resend any messages that haven't |
1621 | // been processed by the other side. Those that have been processed can be discarded (unless |
1622 | // they're waiting for another form of higher level acknowledgement, such as a reply message). |
1623 | |
1624 | // Discard unneeded messages first. |
1625 | FlushSendQueue(sReceiveHeader.m_dwLastSeenId); |
1626 | |
1627 | // Must access the send queue under the state lock. |
1628 | { |
1629 | TransportLockHolder sLockHolder(&m_sStateLock); |
1630 | |
1631 | Message *pMsg = m_pSendQueueFirst; |
1632 | while (pMsg) |
1633 | { |
1634 | if (pMsg->m_sHeader.m_dwId > sReceiveHeader.m_dwLastSeenId) |
1635 | { |
1636 | // The other side never saw this message, re-send it. |
1637 | DBG_TRANSPORT_INC_STAT(Resends); |
1638 | if (SendBlock((PBYTE)&pMsg->m_sHeader, sizeof(MessageHeader)) && pMsg->m_pbDataBlock) |
1639 | SendBlock(pMsg->m_pbDataBlock, pMsg->m_cbDataBlock); |
1640 | } |
1641 | pMsg = pMsg->m_pNext; |
1642 | } |
1643 | |
1644 | // Finished processing queued sends. We can transition to the SS_Open state now as long as there |
1645 | // wasn't a send failure or an asynchronous Shutdown(). |
1646 | if (m_eState == SS_Resync) |
1647 | m_eState = SS_Open; |
1648 | else if (m_eState == SS_Closed) |
1649 | break; |
1650 | else if (m_eState == SS_Resync_NC) |
1651 | { |
1652 | m_pipe.Disconnect(); |
1653 | continue; |
1654 | } |
1655 | else |
1656 | _ASSERTE(!"Bad session state" ); |
1657 | } // Leave m_sStateLock |
1658 | } |
1659 | |
1660 | // Once we get here we should be in SS_Open (can't assert this because Shutdown() can throw the state |
1661 | // into SS_Closed and we've just released SendMessage() calls on other threads that can transition us |
1662 | // into SS_Resync). |
1663 | |
1664 | // We now loop receiving messages and processing them until the state changes. |
1665 | while (m_eState == SS_Open) |
1666 | { |
1667 | // temporary data block used in DCB messages |
1668 | DebuggerIPCControlBlockTransport dcbt; |
1669 | |
1670 | // temporary virtual stack unwind context buffer |
1671 | CONTEXT frameContext; |
1672 | |
1673 | // Read a message header block. |
1674 | if (!ReceiveBlock((PBYTE)&sReceiveHeader, sizeof(MessageHeader))) |
1675 | HANDLE_TRANSIENT_ERROR(); |
1676 | |
1677 | // Since we care about security here, perform some additional validation checks that make it |
1678 | // harder for a malicious sender to attack with random message data. |
1679 | if (sReceiveHeader.m_eType > MT_GetAppDomainCB || |
1680 | (sReceiveHeader.m_dwId <= m_dwLastMessageIdSeen && |
1681 | sReceiveHeader.m_dwId != (DWORD)0) || |
1682 | (sReceiveHeader.m_dwReplyId >= m_dwNextMessageId && |
1683 | sReceiveHeader.m_dwReplyId != (DWORD)0) || |
1684 | (sReceiveHeader.m_dwLastSeenId >= m_dwNextMessageId && |
1685 | sReceiveHeader.m_dwLastSeenId != (DWORD)0)) |
1686 | { |
1687 | _ASSERTE(!"Incoming message header looks bogus" ); |
1688 | HANDLE_CRITICAL_ERROR(); |
1689 | } |
1690 | |
1691 | DbgTransportLogMessageReceived(&sReceiveHeader); |
1692 | |
1693 | // Flush any entries in our send queue for messages that the other side has just confirmed |
1694 | // processed with this message. |
1695 | FlushSendQueue(sReceiveHeader.m_dwLastSeenId); |
1696 | |
1697 | #ifndef RIGHT_SIDE_COMPILE |
1698 | // State variables to track whether this message needs a reply and if so whether it consists of a |
1699 | // header only or a header and an optional data block. |
1700 | bool fReplyRequired = false; |
1701 | PBYTE pbOptReplyData = NULL; |
1702 | DWORD cbOptReplyData = 0; |
1703 | HRESULT hr = E_FAIL; |
1704 | |
1705 | // if you change the lifetime of resultBuffer, make sure you change pbOptReplyData to match. |
1706 | // In some cases pbOptReplyData will point at the memory held alive in resultBuffer |
1707 | WriteBuffer resultBuffer; |
1708 | ReadBuffer receiveBuffer; |
1709 | |
1710 | #endif // RIGHT_SIDE_COMPILE |
1711 | |
1712 | // Dispatch based on message type. |
1713 | // |
1714 | // **** IMPORTANT NOTE **** |
1715 | // |
1716 | // We must be very careful wrt to updating m_dwLastMessageIdSeen here. If we update it too soon |
1717 | // (we haven't finished receiving the entire message, for instance) then the other side won't |
1718 | // re-send the message on failure and we'll lose it. If we update it too late we might have |
1719 | // reported the message to our caller or produced any other side-effect we can't take back such as |
1720 | // sending a reply and then hit an error and reset the connection before we had a chance to record |
1721 | // the message as seen. In this case the other side will re-send the original message and we'll |
1722 | // repeat our actions, which is also very bad. |
1723 | // |
1724 | // So we must be very disciplined here. |
1725 | // |
1726 | // First we must read the message in its entirety (i.e. receive the data block if there is one) |
1727 | // without causing any side-effects. This ensures that any failure at this point will be handled |
1728 | // correctly (by the other side re-sending us the same message). |
1729 | // |
1730 | // Then we process the message. At this point we are committed. The processing must always |
1731 | // succeed, or have no side-effect (that we care about) or we must have an additional scheme to |
1732 | // handle resynchronization in the event of failure. This ensures that we don't have the tricky |
1733 | // situation where we can't cope with a re-send of the message (because we've started processing |
1734 | // it) but can't report a failure to the other side (because we don't know how). |
1735 | // |
1736 | // Finally we must ensure that there is no error path between the completion of processing and |
1737 | // updating the m_dwLastMessageIdSeen field. This ensures we don't accidently get re-sent a |
1738 | // message we've processed completely (it's really just a sub-case of the rule above, but it's |
1739 | // worth pointing out explicitly since it can be a subtle problem). |
1740 | // |
1741 | // Request messages (such as MT_GetDCB) are an interesting case in point here. They all require a |
1742 | // reply and we can fail on the reply because we run out of system resources. This breaks the |
1743 | // second rule above (we fail halfway through processing). We should really preallocate enough |
1744 | // resources to send the reply before we begin processing of it but for now we don't since (a) the |
1745 | // SendMessage system isn't currently set up to make this easy and (b) we happen to know that all |
1746 | // the request types are effectively idempotent (even ReadMemory and WriteMemory since the RS is |
1747 | // holding the LS still while it does these). So instead we must carefully distinguish the case |
1748 | // where SendMessage fails without possibility of message transmission (e.g. out of memory) and |
1749 | // those where it fails for a transient network failure (where it will re-send the reply on |
1750 | // resync). This is easy enough to do since SendMessage returns a failure hresult for the first |
1751 | // case and success (and a state transition) for the second. In the first case we don't update |
1752 | // m_dwLastMessageIdSeen and instead wait for the request to be resent. In the second we make the |
1753 | // update because we know the reply will get through eventually. |
1754 | // |
1755 | // **** IMPORTANT NOTE **** |
1756 | switch (sReceiveHeader.m_eType) |
1757 | { |
1758 | case MT_SessionRequest: |
1759 | case MT_SessionAccept: |
1760 | case MT_SessionReject: |
1761 | case MT_SessionResync: |
1762 | // Illegal messages at this time, fail the transport entirely. |
1763 | m_eState = SS_Closed; |
1764 | break; |
1765 | |
1766 | case MT_SessionClose: |
1767 | // Close is legal on the LS and transitions to the SS_Opening_NC state. It's illegal on the RS |
1768 | // and should shutdown the transport. |
1769 | #ifdef RIGHT_SIDE_COMPILE |
1770 | m_eState = SS_Closed; |
1771 | break; |
1772 | #else // RIGHT_SIDE_COMPILE |
1773 | // We need to do some state cleanup here, since when we reform a connection (if ever, it will |
1774 | // be with a new session). |
1775 | { |
1776 | TransportLockHolder sLockHolder(&m_sStateLock); |
1777 | |
1778 | // Check we're still in a good state before a clean restart. |
1779 | if (m_eState != SS_Open) |
1780 | { |
1781 | m_eState = SS_Closed; |
1782 | break; |
1783 | } |
1784 | |
1785 | m_pipe.Disconnect(); |
1786 | |
1787 | // We could add code to drain the send queue here (like we have for SS_Closed at the end of |
1788 | // this method) but I'm pretty sure we can only get a graceful session close with no |
1789 | // outstanding sends. So just assert the queue is empty instead. If the assert fires and it's |
1790 | // not due to an issue we can add the logic here). |
1791 | _ASSERTE(m_pSendQueueFirst == NULL); |
1792 | _ASSERTE(m_pSendQueueLast == NULL); |
1793 | |
1794 | // This will reset all session specific state and transition us to SS_Opening_NC. |
1795 | InitSessionState(); |
1796 | } // Leave m_sStateLock |
1797 | |
1798 | goto ResetConnection; |
1799 | #endif // RIGHT_SIDE_COMPILE |
1800 | |
1801 | case MT_Event: |
1802 | { |
1803 | // Incoming debugger event. |
1804 | |
1805 | if (sReceiveHeader.m_cbDataBlock > CorDBIPC_BUFFER_SIZE) |
1806 | { |
1807 | _ASSERTE(!"Oversized Event" ); |
1808 | HANDLE_CRITICAL_ERROR(); |
1809 | } |
1810 | |
1811 | // See if our array of buffered events has filled up. If so we'll need to re-allocate the |
1812 | // array to expand it. |
1813 | if (m_cValidEventBuffers == m_cEventBuffers) |
1814 | { |
1815 | // Allocate a larger array. |
1816 | DWORD cNewEntries = m_cEventBuffers + 4; |
1817 | DbgEventBufferEntry * pNewBuffers = (DbgEventBufferEntry *)new (nothrow) BYTE[cNewEntries * sizeof(DbgEventBufferEntry)]; |
1818 | if (pNewBuffers == NULL) |
1819 | HANDLE_TRANSIENT_ERROR(); |
1820 | |
1821 | // We must take the lock to swap the new array in. Although this thread is the only one |
1822 | // that can expand the array, a client thread may be in GetNextEvent() reading from the |
1823 | // old version. |
1824 | { |
1825 | TransportLockHolder sLockHolder(&m_sStateLock); |
1826 | |
1827 | // When we copy old array contents over we place the head of the list at the start of |
1828 | // the new array for simplicity. If the head happened to be at the start of the old |
1829 | // array anyway, this is even simpler. |
1830 | if (m_idxEventBufferHead == 0) |
1831 | memcpy(pNewBuffers, m_pEventBuffers, m_cEventBuffers * sizeof(DbgEventBufferEntry)); |
1832 | else |
1833 | { |
1834 | // Otherwise we need to perform the copy in two segments: first we copy the head |
1835 | // of the list (starts at a non-zero index and runs to the end of the old array) |
1836 | // into the start of the new array. |
1837 | DWORD cHeadEntries = m_cEventBuffers - m_idxEventBufferHead; |
1838 | |
1839 | memcpy(pNewBuffers, |
1840 | &m_pEventBuffers[m_idxEventBufferHead], |
1841 | cHeadEntries * sizeof(DbgEventBufferEntry)); |
1842 | |
1843 | // Then we copy the remaining portion from the beginning of the old array upto to |
1844 | // the index of the head. |
1845 | memcpy(&pNewBuffers[cHeadEntries], |
1846 | m_pEventBuffers, |
1847 | m_idxEventBufferHead * sizeof(DbgEventBufferEntry)); |
1848 | } |
1849 | |
1850 | // Delete the old array. |
1851 | delete [] m_pEventBuffers; |
1852 | |
1853 | // Swap the new array in. |
1854 | m_pEventBuffers = pNewBuffers; |
1855 | m_cEventBuffers = cNewEntries; |
1856 | |
1857 | // The new array now has the head at index zero and the tail at the start of the |
1858 | // new entries. |
1859 | m_idxEventBufferHead = 0; |
1860 | m_idxEventBufferTail = m_cValidEventBuffers; |
1861 | } |
1862 | } |
1863 | |
1864 | // We have at least one free buffer at this point (no threading issues, the only thread that |
1865 | // can add entries is this one). |
1866 | |
1867 | // Receive event data into the tail buffer (we want to do this without holding the state lock |
1868 | // and can do so safely since this is the only thread that can receive data and clients can do |
1869 | // nothing that impacts the location of the tail of the buffer list). |
1870 | if (!ReceiveBlock((PBYTE)&m_pEventBuffers[m_idxEventBufferTail].m_event, sReceiveHeader.m_cbDataBlock)) |
1871 | HANDLE_TRANSIENT_ERROR(); |
1872 | |
1873 | { |
1874 | m_pEventBuffers[m_idxEventBufferTail].m_type = sReceiveHeader.TypeSpecificData.Event.m_eIPCEventType; |
1875 | |
1876 | // We must take the lock to update the count of valid entries though, since clients can |
1877 | // touch this field as well. |
1878 | TransportLockHolder sLockHolder(&m_sStateLock); |
1879 | |
1880 | m_cValidEventBuffers++; |
1881 | DWORD idxCurrentEvent = m_idxEventBufferTail; |
1882 | |
1883 | // Update tail of the list (strictly speaking this needn't be done under the lock, but the |
1884 | // code in GetNextEvent() does read it for an assert. |
1885 | m_idxEventBufferTail = (m_idxEventBufferTail + 1) % m_cEventBuffers; |
1886 | |
1887 | // If we just added the first valid event then wake up the client so they can call |
1888 | // GetNextEvent(). |
1889 | if (m_cValidEventBuffers == 1) |
1890 | SetEvent(m_rghEventReadyEvent[m_pEventBuffers[idxCurrentEvent].m_type]); |
1891 | } |
1892 | } |
1893 | break; |
1894 | |
1895 | case MT_ReadMemory: |
1896 | #ifdef RIGHT_SIDE_COMPILE |
1897 | if (!ProcessReply(&sReceiveHeader)) |
1898 | HANDLE_TRANSIENT_ERROR(); |
1899 | #else // RIGHT_SIDE_COMPILE |
1900 | // The RS wants to read our memory. First check the range requested is both committed and |
1901 | // readable. If that succeeds we simply set the optional reply block to match the request region |
1902 | // (i.e. we send the memory directly). |
1903 | fReplyRequired = true; |
1904 | |
1905 | hr = CheckBufferAccess(sReceiveHeader.TypeSpecificData.MemoryAccess.m_pbLeftSideBuffer, |
1906 | sReceiveHeader.TypeSpecificData.MemoryAccess.m_cbLeftSideBuffer, |
1907 | false); |
1908 | sReceiveHeader.TypeSpecificData.MemoryAccess.m_hrResult = hr; |
1909 | if (SUCCEEDED(hr)) |
1910 | { |
1911 | pbOptReplyData = sReceiveHeader.TypeSpecificData.MemoryAccess.m_pbLeftSideBuffer; |
1912 | cbOptReplyData = sReceiveHeader.TypeSpecificData.MemoryAccess.m_cbLeftSideBuffer; |
1913 | } |
1914 | #endif // RIGHT_SIDE_COMPILE |
1915 | break; |
1916 | |
1917 | case MT_WriteMemory: |
1918 | #ifdef RIGHT_SIDE_COMPILE |
1919 | if (!ProcessReply(&sReceiveHeader)) |
1920 | HANDLE_TRANSIENT_ERROR(); |
1921 | #else // RIGHT_SIDE_COMPILE |
1922 | // The RS wants to write our memory. |
1923 | if (sReceiveHeader.m_cbDataBlock != sReceiveHeader.TypeSpecificData.MemoryAccess.m_cbLeftSideBuffer) |
1924 | { |
1925 | _ASSERTE(!"Inconsistent WriteMemory request" ); |
1926 | HANDLE_CRITICAL_ERROR(); |
1927 | } |
1928 | |
1929 | fReplyRequired = true; |
1930 | |
1931 | // Check the range requested is both committed and writeable. If that succeeds we simply read |
1932 | // the next incoming block into the destination buffer. |
1933 | hr = CheckBufferAccess(sReceiveHeader.TypeSpecificData.MemoryAccess.m_pbLeftSideBuffer, |
1934 | sReceiveHeader.TypeSpecificData.MemoryAccess.m_cbLeftSideBuffer, |
1935 | true); |
1936 | if (SUCCEEDED(hr)) |
1937 | { |
1938 | if (!ReceiveBlock(sReceiveHeader.TypeSpecificData.MemoryAccess.m_pbLeftSideBuffer, |
1939 | sReceiveHeader.TypeSpecificData.MemoryAccess.m_cbLeftSideBuffer)) |
1940 | HANDLE_TRANSIENT_ERROR(); |
1941 | } |
1942 | else |
1943 | { |
1944 | sReceiveHeader.TypeSpecificData.MemoryAccess.m_hrResult = hr; |
1945 | |
1946 | // We might be failing the write attempt but we still need to read the update data to |
1947 | // drain it from the connection or we'll become unsynchronized (i.e. we'll treat the start |
1948 | // of the write data as the next message header). So read and discard the data into a |
1949 | // dummy buffer. |
1950 | BYTE rgDummy[256]; |
1951 | DWORD cbBytesToRead = sReceiveHeader.TypeSpecificData.MemoryAccess.m_cbLeftSideBuffer; |
1952 | while (cbBytesToRead) |
1953 | { |
1954 | DWORD cbTransfer = min(cbBytesToRead, sizeof(rgDummy)); |
1955 | if (!ReceiveBlock(rgDummy, cbTransfer)) |
1956 | HANDLE_TRANSIENT_ERROR(); |
1957 | cbBytesToRead -= cbTransfer; |
1958 | } |
1959 | } |
1960 | #endif // RIGHT_SIDE_COMPILE |
1961 | break; |
1962 | |
1963 | case MT_VirtualUnwind: |
1964 | #ifdef RIGHT_SIDE_COMPILE |
1965 | if (!ProcessReply(&sReceiveHeader)) |
1966 | HANDLE_TRANSIENT_ERROR(); |
1967 | #else // RIGHT_SIDE_COMPILE |
1968 | if (sReceiveHeader.m_cbDataBlock != (DWORD)sizeof(frameContext)) |
1969 | { |
1970 | _ASSERTE(!"Inconsistent VirtualUnwind request" ); |
1971 | HANDLE_CRITICAL_ERROR(); |
1972 | } |
1973 | |
1974 | if (!ReceiveBlock((PBYTE)&frameContext, sizeof(frameContext))) |
1975 | { |
1976 | HANDLE_TRANSIENT_ERROR(); |
1977 | } |
1978 | |
1979 | if (!PAL_VirtualUnwind(&frameContext, NULL)) |
1980 | { |
1981 | HANDLE_TRANSIENT_ERROR(); |
1982 | } |
1983 | |
1984 | fReplyRequired = true; |
1985 | pbOptReplyData = (PBYTE)&frameContext; |
1986 | cbOptReplyData = sizeof(frameContext); |
1987 | #endif // RIGHT_SIDE_COMPILE |
1988 | break; |
1989 | |
1990 | case MT_GetDCB: |
1991 | #ifdef RIGHT_SIDE_COMPILE |
1992 | if (!ProcessReply(&sReceiveHeader)) |
1993 | HANDLE_TRANSIENT_ERROR(); |
1994 | #else // RIGHT_SIDE_COMPILE |
1995 | fReplyRequired = true; |
1996 | MarshalDCBToDCBTransport(m_pDCB, &dcbt); |
1997 | pbOptReplyData = (PBYTE)&dcbt; |
1998 | cbOptReplyData = sizeof(DebuggerIPCControlBlockTransport); |
1999 | #endif // RIGHT_SIDE_COMPILE |
2000 | break; |
2001 | |
2002 | case MT_SetDCB: |
2003 | #ifdef RIGHT_SIDE_COMPILE |
2004 | if (!ProcessReply(&sReceiveHeader)) |
2005 | HANDLE_TRANSIENT_ERROR(); |
2006 | #else // RIGHT_SIDE_COMPILE |
2007 | if (sReceiveHeader.m_cbDataBlock != (DWORD)sizeof(DebuggerIPCControlBlockTransport)) |
2008 | { |
2009 | _ASSERTE(!"Inconsistent SetDCB request" ); |
2010 | HANDLE_CRITICAL_ERROR(); |
2011 | } |
2012 | |
2013 | fReplyRequired = true; |
2014 | |
2015 | if (!ReceiveBlock((PBYTE)&dcbt, sizeof(DebuggerIPCControlBlockTransport))) |
2016 | HANDLE_TRANSIENT_ERROR(); |
2017 | |
2018 | MarshalDCBTransportToDCB(&dcbt, m_pDCB); |
2019 | #endif // RIGHT_SIDE_COMPILE |
2020 | break; |
2021 | |
2022 | case MT_GetAppDomainCB: |
2023 | #ifdef RIGHT_SIDE_COMPILE |
2024 | if (!ProcessReply(&sReceiveHeader)) |
2025 | HANDLE_TRANSIENT_ERROR(); |
2026 | #else // RIGHT_SIDE_COMPILE |
2027 | fReplyRequired = true; |
2028 | pbOptReplyData = (PBYTE)m_pADB; |
2029 | cbOptReplyData = sizeof(AppDomainEnumerationIPCBlock); |
2030 | #endif // RIGHT_SIDE_COMPILE |
2031 | break; |
2032 | |
2033 | default: |
2034 | _ASSERTE(!"Unknown message type" ); |
2035 | HANDLE_CRITICAL_ERROR(); |
2036 | } |
2037 | |
2038 | #ifndef RIGHT_SIDE_COMPILE |
2039 | // On the left side we may need to send a reply back. |
2040 | if (fReplyRequired) |
2041 | { |
2042 | Message sReply; |
2043 | sReply.Init(sReceiveHeader.m_eType, pbOptReplyData, cbOptReplyData); |
2044 | sReply.m_sHeader.m_dwReplyId = sReceiveHeader.m_dwId; |
2045 | sReply.m_sHeader.TypeSpecificData = sReceiveHeader.TypeSpecificData; |
2046 | |
2047 | #ifdef _DEBUG |
2048 | DbgTransportLog(LC_Requests, "Sending '%s' reply" , MessageName(sReceiveHeader.m_eType)); |
2049 | #endif // _DEBUG |
2050 | |
2051 | // We must be careful with the failure mode of SendMessage here to avoid the same request |
2052 | // being processed too many or too few times. See the comment above starting with 'IMPORTANT |
2053 | // NOTE' for more details. The upshot is that on SendMessage hresult failures (which indicate |
2054 | // the message will never be sent), we don't update m_dwLastMessageIdSeen and simply wait for |
2055 | // the request to be made again. When we get success, however, we must be careful to ensure |
2056 | // that m_dwLastMessageIdSeen gets updated even if a network error is reported. Otherwise on |
2057 | // the resync we'll both reprocess the request and re-send the original reply which is very |
2058 | // very bad. |
2059 | hr = SendMessage(&sReply, false); |
2060 | |
2061 | if (FAILED(hr)) |
2062 | HANDLE_TRANSIENT_ERROR(); // Message will never be sent, other side will retry |
2063 | |
2064 | // SendMessage doesn't report network errors (it simply queues the send and changes the |
2065 | // session state). So check for a network error here specifically so we can get started on the |
2066 | // resync. We must update m_dwLastMessageIdSeen first though, or the other side will retry the |
2067 | // request. |
2068 | if (m_eState != SS_Open) |
2069 | { |
2070 | _ASSERTE(sReceiveHeader.m_dwId > m_dwLastMessageIdSeen); |
2071 | m_dwLastMessageIdSeen = sReceiveHeader.m_dwId; |
2072 | HANDLE_TRANSIENT_ERROR(); |
2073 | } |
2074 | } |
2075 | #endif // !RIGHT_SIDE_COMPILE |
2076 | |
2077 | if (sReceiveHeader.m_dwId != (DWORD)0) |
2078 | { |
2079 | // We've now completed processing on the incoming message. Remember we've processed up to this |
2080 | // message ID so that on a resync the other side doesn't send it to us again. |
2081 | _ASSERTE(sReceiveHeader.m_dwId > m_dwLastMessageIdSeen); |
2082 | m_dwLastMessageIdSeen = sReceiveHeader.m_dwId; |
2083 | } |
2084 | } |
2085 | } |
2086 | |
2087 | Shutdown: |
2088 | |
2089 | _ASSERTE(m_eState == SS_Closed); |
2090 | |
2091 | #ifdef RIGHT_SIDE_COMPILE |
2092 | // The session is definitely not open at this point. |
2093 | ResetEvent(m_hSessionOpenEvent); |
2094 | #endif // RIGHT_SIDE_COMPILE |
2095 | |
2096 | // Close the connection if we haven't done so already. |
2097 | m_pipe.Disconnect(); |
2098 | |
2099 | // Drain any remaining entries in the send queue (aborting them when they need completions). |
2100 | { |
2101 | TransportLockHolder sLockHolder(&m_sStateLock); |
2102 | |
2103 | Message *pMsg; |
2104 | while ((pMsg = m_pSendQueueFirst) != NULL) |
2105 | { |
2106 | // Remove message from the queue. |
2107 | m_pSendQueueFirst = pMsg->m_pNext; |
2108 | |
2109 | // Determine whether the message needs to be deleted by us before we signal any completion (because |
2110 | // once we signal the completion pMsg might become invalid immediately if it's not a copy). |
2111 | bool fMustDelete = pMsg->m_pOrigMessage != pMsg; |
2112 | |
2113 | // If there's a waiter (i.e. we don't own the message) it know that the operation didn't really |
2114 | // complete, it was aborted. |
2115 | if (!fMustDelete) |
2116 | pMsg->m_pOrigMessage->m_fAborted = true; |
2117 | |
2118 | // Determine how to complete the message. |
2119 | switch (pMsg->m_sHeader.m_eType) |
2120 | { |
2121 | case MT_SessionRequest: |
2122 | case MT_SessionAccept: |
2123 | case MT_SessionReject: |
2124 | case MT_SessionResync: |
2125 | case MT_SessionClose: |
2126 | _ASSERTE(!"Session management messages should not be on send queue" ); |
2127 | break; |
2128 | |
2129 | case MT_Event: |
2130 | break; |
2131 | |
2132 | #ifdef RIGHT_SIDE_COMPILE |
2133 | case MT_ReadMemory: |
2134 | case MT_WriteMemory: |
2135 | case MT_VirtualUnwind: |
2136 | case MT_GetDCB: |
2137 | case MT_SetDCB: |
2138 | case MT_GetAppDomainCB: |
2139 | // On the RS these are the original requests. Signal the completion event. |
2140 | SignalReplyEvent(pMsg); |
2141 | break; |
2142 | #else // RIGHT_SIDE_COMPILE |
2143 | case MT_ReadMemory: |
2144 | case MT_WriteMemory: |
2145 | case MT_VirtualUnwind: |
2146 | case MT_GetDCB: |
2147 | case MT_SetDCB: |
2148 | case MT_GetAppDomainCB: |
2149 | // On the LS these are replies to the original request. Nobody's waiting on these. |
2150 | break; |
2151 | #endif // RIGHT_SIDE_COMPILE |
2152 | |
2153 | default: |
2154 | _ASSERTE(!"Unknown message type" ); |
2155 | } |
2156 | |
2157 | // If the message was a copy, deallocate the resources now. |
2158 | if (fMustDelete) |
2159 | { |
2160 | if (pMsg->m_pbDataBlock) |
2161 | delete [] pMsg->m_pbDataBlock; |
2162 | delete pMsg; |
2163 | } |
2164 | } |
2165 | } // Leave m_sStateLock |
2166 | |
2167 | // Now release all the resources allocated for the transport now that the |
2168 | // worker thread isn't using them anymore. |
2169 | Release(); |
2170 | } |
2171 | |
2172 | // Given a fully initialized debugger event structure, return the size of the structure in bytes (this is not |
2173 | // trivial since DebuggerIPCEvent contains a large union member which can cause the portion containing |
2174 | // significant data to vary wildy from event to event). |
2175 | DWORD DbgTransportSession::GetEventSize(DebuggerIPCEvent *pEvent) |
2176 | { |
2177 | DWORD cbBaseSize = offsetof(DebuggerIPCEvent, LeftSideStartupData); |
2178 | DWORD cbAdditionalSize = 0; |
2179 | |
2180 | switch (pEvent->type & DB_IPCE_TYPE_MASK) |
2181 | { |
2182 | case DB_IPCE_SYNC_COMPLETE: |
2183 | case DB_IPCE_THREAD_ATTACH: |
2184 | case DB_IPCE_THREAD_DETACH: |
2185 | case DB_IPCE_USER_BREAKPOINT: |
2186 | case DB_IPCE_EXIT_APP_DOMAIN: |
2187 | case DB_IPCE_SET_DEBUG_STATE_RESULT: |
2188 | case DB_IPCE_FUNC_EVAL_ABORT_RESULT: |
2189 | case DB_IPCE_CONTROL_C_EVENT: |
2190 | case DB_IPCE_FUNC_EVAL_CLEANUP_RESULT: |
2191 | case DB_IPCE_SET_METHOD_JMC_STATUS_RESULT: |
2192 | case DB_IPCE_SET_MODULE_JMC_STATUS_RESULT: |
2193 | case DB_IPCE_FUNC_EVAL_RUDE_ABORT_RESULT: |
2194 | case DB_IPCE_INTERCEPT_EXCEPTION_RESULT: |
2195 | case DB_IPCE_INTERCEPT_EXCEPTION_COMPLETE: |
2196 | case DB_IPCE_CREATE_PROCESS: |
2197 | case DB_IPCE_SET_NGEN_COMPILER_FLAGS_RESULT: |
2198 | case DB_IPCE_LEFTSIDE_STARTUP: |
2199 | case DB_IPCE_ASYNC_BREAK: |
2200 | case DB_IPCE_CONTINUE: |
2201 | case DB_IPCE_ATTACHING: |
2202 | case DB_IPCE_GET_NGEN_COMPILER_FLAGS: |
2203 | case DB_IPCE_DETACH_FROM_PROCESS: |
2204 | case DB_IPCE_CONTROL_C_EVENT_RESULT: |
2205 | case DB_IPCE_BEFORE_GARBAGE_COLLECTION: |
2206 | case DB_IPCE_AFTER_GARBAGE_COLLECTION: |
2207 | cbAdditionalSize = 0; |
2208 | break; |
2209 | case DB_IPCE_DATA_BREAKPOINT: |
2210 | cbAdditionalSize = sizeof(pEvent->DataBreakpointData); |
2211 | break; |
2212 | |
2213 | case DB_IPCE_BREAKPOINT: |
2214 | cbAdditionalSize = sizeof(pEvent->BreakpointData); |
2215 | break; |
2216 | |
2217 | case DB_IPCE_LOAD_MODULE: |
2218 | cbAdditionalSize = sizeof(pEvent->LoadModuleData); |
2219 | break; |
2220 | |
2221 | case DB_IPCE_UNLOAD_MODULE: |
2222 | cbAdditionalSize = sizeof(pEvent->UnloadModuleData); |
2223 | break; |
2224 | |
2225 | case DB_IPCE_LOAD_CLASS: |
2226 | cbAdditionalSize = sizeof(pEvent->LoadClass); |
2227 | break; |
2228 | |
2229 | case DB_IPCE_UNLOAD_CLASS: |
2230 | cbAdditionalSize = sizeof(pEvent->UnloadClass); |
2231 | break; |
2232 | |
2233 | case DB_IPCE_EXCEPTION: |
2234 | cbAdditionalSize = sizeof(pEvent->Exception); |
2235 | break; |
2236 | |
2237 | case DB_IPCE_BREAKPOINT_ADD_RESULT: |
2238 | cbAdditionalSize = sizeof(pEvent->BreakpointData); |
2239 | break; |
2240 | |
2241 | case DB_IPCE_STEP_RESULT: |
2242 | cbAdditionalSize = sizeof(pEvent->StepData); |
2243 | if (pEvent->StepData.rangeCount) |
2244 | cbAdditionalSize += (pEvent->StepData.rangeCount - 1) * sizeof(COR_DEBUG_STEP_RANGE); |
2245 | break; |
2246 | |
2247 | case DB_IPCE_STEP_COMPLETE: |
2248 | cbAdditionalSize = sizeof(pEvent->StepData); |
2249 | break; |
2250 | |
2251 | case DB_IPCE_GET_BUFFER_RESULT: |
2252 | cbAdditionalSize = sizeof(pEvent->GetBufferResult); |
2253 | break; |
2254 | |
2255 | case DB_IPCE_RELEASE_BUFFER_RESULT: |
2256 | cbAdditionalSize = sizeof(pEvent->ReleaseBufferResult); |
2257 | break; |
2258 | |
2259 | case DB_IPCE_ENC_ADD_FIELD: |
2260 | cbAdditionalSize = sizeof(pEvent->EnCUpdate); |
2261 | break; |
2262 | |
2263 | case DB_IPCE_APPLY_CHANGES_RESULT: |
2264 | cbAdditionalSize = sizeof(pEvent->ApplyChangesResult); |
2265 | break; |
2266 | |
2267 | case DB_IPCE_FIRST_LOG_MESSAGE: |
2268 | cbAdditionalSize = sizeof(pEvent->FirstLogMessage); |
2269 | break; |
2270 | |
2271 | case DB_IPCE_LOGSWITCH_SET_MESSAGE: |
2272 | cbAdditionalSize = sizeof(pEvent->LogSwitchSettingMessage); |
2273 | break; |
2274 | |
2275 | case DB_IPCE_CREATE_APP_DOMAIN: |
2276 | cbAdditionalSize = sizeof(pEvent->AppDomainData); |
2277 | break; |
2278 | |
2279 | case DB_IPCE_LOAD_ASSEMBLY: |
2280 | cbAdditionalSize = sizeof(pEvent->AssemblyData); |
2281 | break; |
2282 | |
2283 | case DB_IPCE_UNLOAD_ASSEMBLY: |
2284 | cbAdditionalSize = sizeof(pEvent->AssemblyData); |
2285 | break; |
2286 | |
2287 | case DB_IPCE_FUNC_EVAL_SETUP_RESULT: |
2288 | cbAdditionalSize = sizeof(pEvent->FuncEvalSetupComplete); |
2289 | break; |
2290 | |
2291 | case DB_IPCE_FUNC_EVAL_COMPLETE: |
2292 | cbAdditionalSize = sizeof(pEvent->FuncEvalComplete); |
2293 | break; |
2294 | |
2295 | case DB_IPCE_SET_REFERENCE_RESULT: |
2296 | cbAdditionalSize = sizeof(pEvent->SetReference); |
2297 | break; |
2298 | |
2299 | case DB_IPCE_NAME_CHANGE: |
2300 | cbAdditionalSize = sizeof(pEvent->NameChange); |
2301 | break; |
2302 | |
2303 | case DB_IPCE_UPDATE_MODULE_SYMS: |
2304 | cbAdditionalSize = sizeof(pEvent->UpdateModuleSymsData); |
2305 | break; |
2306 | |
2307 | case DB_IPCE_ENC_REMAP: |
2308 | cbAdditionalSize = sizeof(pEvent->EnCRemap); |
2309 | break; |
2310 | |
2311 | case DB_IPCE_SET_VALUE_CLASS_RESULT: |
2312 | cbAdditionalSize = sizeof(pEvent->SetValueClass); |
2313 | break; |
2314 | |
2315 | case DB_IPCE_BREAKPOINT_SET_ERROR: |
2316 | cbAdditionalSize = sizeof(pEvent->BreakpointSetErrorData); |
2317 | break; |
2318 | |
2319 | case DB_IPCE_ENC_UPDATE_FUNCTION: |
2320 | cbAdditionalSize = sizeof(pEvent->EnCUpdate); |
2321 | break; |
2322 | |
2323 | case DB_IPCE_GET_METHOD_JMC_STATUS_RESULT: |
2324 | cbAdditionalSize = sizeof(pEvent->SetJMCFunctionStatus); |
2325 | break; |
2326 | |
2327 | case DB_IPCE_GET_THREAD_FOR_TASKID_RESULT: |
2328 | cbAdditionalSize = sizeof(pEvent->GetThreadForTaskIdResult); |
2329 | break; |
2330 | |
2331 | case DB_IPCE_CREATE_CONNECTION: |
2332 | cbAdditionalSize = sizeof(pEvent->CreateConnection); |
2333 | break; |
2334 | |
2335 | case DB_IPCE_DESTROY_CONNECTION: |
2336 | cbAdditionalSize = sizeof(pEvent->ConnectionChange); |
2337 | break; |
2338 | |
2339 | case DB_IPCE_CHANGE_CONNECTION: |
2340 | cbAdditionalSize = sizeof(pEvent->ConnectionChange); |
2341 | break; |
2342 | |
2343 | case DB_IPCE_EXCEPTION_CALLBACK2: |
2344 | cbAdditionalSize = sizeof(pEvent->ExceptionCallback2); |
2345 | break; |
2346 | |
2347 | case DB_IPCE_EXCEPTION_UNWIND: |
2348 | cbAdditionalSize = sizeof(pEvent->ExceptionUnwind); |
2349 | break; |
2350 | |
2351 | case DB_IPCE_CREATE_HANDLE_RESULT: |
2352 | cbAdditionalSize = sizeof(pEvent->CreateHandleResult); |
2353 | break; |
2354 | |
2355 | case DB_IPCE_ENC_REMAP_COMPLETE: |
2356 | cbAdditionalSize = sizeof(pEvent->EnCRemapComplete); |
2357 | break; |
2358 | |
2359 | case DB_IPCE_ENC_ADD_FUNCTION: |
2360 | cbAdditionalSize = sizeof(pEvent->EnCUpdate); |
2361 | break; |
2362 | |
2363 | case DB_IPCE_GET_NGEN_COMPILER_FLAGS_RESULT: |
2364 | cbAdditionalSize = sizeof(pEvent->JitDebugInfo); |
2365 | break; |
2366 | |
2367 | case DB_IPCE_MDA_NOTIFICATION: |
2368 | cbAdditionalSize = sizeof(pEvent->MDANotification); |
2369 | break; |
2370 | |
2371 | case DB_IPCE_GET_GCHANDLE_INFO_RESULT: |
2372 | cbAdditionalSize = sizeof(pEvent->GetGCHandleInfoResult); |
2373 | break; |
2374 | |
2375 | case DB_IPCE_SET_IP: |
2376 | cbAdditionalSize = sizeof(pEvent->SetIP); |
2377 | break; |
2378 | |
2379 | case DB_IPCE_BREAKPOINT_ADD: |
2380 | cbAdditionalSize = sizeof(pEvent->BreakpointData); |
2381 | break; |
2382 | |
2383 | case DB_IPCE_BREAKPOINT_REMOVE: |
2384 | cbAdditionalSize = sizeof(pEvent->BreakpointData); |
2385 | break; |
2386 | |
2387 | case DB_IPCE_STEP_CANCEL: |
2388 | cbAdditionalSize = sizeof(pEvent->StepData); |
2389 | break; |
2390 | |
2391 | case DB_IPCE_STEP: |
2392 | cbAdditionalSize = sizeof(pEvent->StepData); |
2393 | if (pEvent->StepData.rangeCount) |
2394 | cbAdditionalSize += (pEvent->StepData.rangeCount - 1) * sizeof(COR_DEBUG_STEP_RANGE); |
2395 | break; |
2396 | |
2397 | case DB_IPCE_STEP_OUT: |
2398 | cbAdditionalSize = sizeof(pEvent->StepData); |
2399 | break; |
2400 | |
2401 | case DB_IPCE_GET_BUFFER: |
2402 | cbAdditionalSize = sizeof(pEvent->GetBuffer); |
2403 | break; |
2404 | |
2405 | case DB_IPCE_RELEASE_BUFFER: |
2406 | cbAdditionalSize = sizeof(pEvent->ReleaseBuffer); |
2407 | break; |
2408 | |
2409 | case DB_IPCE_SET_CLASS_LOAD_FLAG: |
2410 | cbAdditionalSize = sizeof(pEvent->SetClassLoad); |
2411 | break; |
2412 | |
2413 | case DB_IPCE_APPLY_CHANGES: |
2414 | cbAdditionalSize = sizeof(pEvent->ApplyChanges); |
2415 | break; |
2416 | |
2417 | case DB_IPCE_SET_NGEN_COMPILER_FLAGS: |
2418 | cbAdditionalSize = sizeof(pEvent->JitDebugInfo); |
2419 | break; |
2420 | |
2421 | case DB_IPCE_IS_TRANSITION_STUB: |
2422 | cbAdditionalSize = sizeof(pEvent->IsTransitionStub); |
2423 | break; |
2424 | |
2425 | case DB_IPCE_IS_TRANSITION_STUB_RESULT: |
2426 | cbAdditionalSize = sizeof(pEvent->IsTransitionStubResult); |
2427 | break; |
2428 | |
2429 | case DB_IPCE_MODIFY_LOGSWITCH: |
2430 | cbAdditionalSize = sizeof(pEvent->LogSwitchSettingMessage); |
2431 | break; |
2432 | |
2433 | case DB_IPCE_ENABLE_LOG_MESSAGES: |
2434 | cbAdditionalSize = sizeof(pEvent->LogSwitchSettingMessage); |
2435 | break; |
2436 | |
2437 | case DB_IPCE_FUNC_EVAL: |
2438 | cbAdditionalSize = sizeof(pEvent->FuncEval); |
2439 | break; |
2440 | |
2441 | case DB_IPCE_SET_REFERENCE: |
2442 | cbAdditionalSize = sizeof(pEvent->SetReference); |
2443 | break; |
2444 | |
2445 | case DB_IPCE_FUNC_EVAL_ABORT: |
2446 | cbAdditionalSize = sizeof(pEvent->FuncEvalAbort); |
2447 | break; |
2448 | |
2449 | case DB_IPCE_FUNC_EVAL_CLEANUP: |
2450 | cbAdditionalSize = sizeof(pEvent->FuncEvalCleanup); |
2451 | break; |
2452 | |
2453 | case DB_IPCE_SET_ALL_DEBUG_STATE: |
2454 | cbAdditionalSize = sizeof(pEvent->SetAllDebugState); |
2455 | break; |
2456 | |
2457 | case DB_IPCE_SET_VALUE_CLASS: |
2458 | cbAdditionalSize = sizeof(pEvent->SetValueClass); |
2459 | break; |
2460 | |
2461 | case DB_IPCE_SET_METHOD_JMC_STATUS: |
2462 | cbAdditionalSize = sizeof(pEvent->SetJMCFunctionStatus); |
2463 | break; |
2464 | |
2465 | case DB_IPCE_GET_METHOD_JMC_STATUS: |
2466 | cbAdditionalSize = sizeof(pEvent->SetJMCFunctionStatus); |
2467 | break; |
2468 | |
2469 | case DB_IPCE_SET_MODULE_JMC_STATUS: |
2470 | cbAdditionalSize = sizeof(pEvent->SetJMCFunctionStatus); |
2471 | break; |
2472 | |
2473 | case DB_IPCE_GET_THREAD_FOR_TASKID: |
2474 | cbAdditionalSize = sizeof(pEvent->GetThreadForTaskId); |
2475 | break; |
2476 | |
2477 | case DB_IPCE_FUNC_EVAL_RUDE_ABORT: |
2478 | cbAdditionalSize = sizeof(pEvent->FuncEvalRudeAbort); |
2479 | break; |
2480 | |
2481 | case DB_IPCE_CREATE_HANDLE: |
2482 | cbAdditionalSize = sizeof(pEvent->CreateHandle); |
2483 | break; |
2484 | |
2485 | case DB_IPCE_DISPOSE_HANDLE: |
2486 | cbAdditionalSize = sizeof(pEvent->DisposeHandle); |
2487 | break; |
2488 | |
2489 | case DB_IPCE_INTERCEPT_EXCEPTION: |
2490 | cbAdditionalSize = sizeof(pEvent->InterceptException); |
2491 | break; |
2492 | |
2493 | case DB_IPCE_GET_GCHANDLE_INFO: |
2494 | cbAdditionalSize = sizeof(pEvent->GetGCHandleInfo); |
2495 | break; |
2496 | |
2497 | case DB_IPCE_CUSTOM_NOTIFICATION: |
2498 | cbAdditionalSize = sizeof(pEvent->CustomNotification); |
2499 | break; |
2500 | |
2501 | default: |
2502 | printf("Unknown debugger event type: 0x%x\n" , (pEvent->type & DB_IPCE_TYPE_MASK)); |
2503 | _ASSERTE(!"Unknown debugger event type" ); |
2504 | } |
2505 | |
2506 | return cbBaseSize + cbAdditionalSize; |
2507 | } |
2508 | #ifdef _PREFAST_ |
2509 | #pragma warning(pop) |
2510 | #endif |
2511 | |
2512 | #ifdef _DEBUG |
2513 | // Debug helper which returns the name associated with a MessageType. |
2514 | const char *DbgTransportSession::MessageName(MessageType eType) |
2515 | { |
2516 | switch (eType) |
2517 | { |
2518 | case MT_SessionRequest: |
2519 | return "SessionRequest" ; |
2520 | case MT_SessionAccept: |
2521 | return "SessionAccept" ; |
2522 | case MT_SessionReject: |
2523 | return "SessionReject" ; |
2524 | case MT_SessionResync: |
2525 | return "SessionResync" ; |
2526 | case MT_SessionClose: |
2527 | return "SessionClose" ; |
2528 | case MT_Event: |
2529 | return "Event" ; |
2530 | case MT_ReadMemory: |
2531 | return "ReadMemory" ; |
2532 | case MT_WriteMemory: |
2533 | return "WriteMemory" ; |
2534 | case MT_VirtualUnwind: |
2535 | return "VirtualUnwind" ; |
2536 | case MT_GetDCB: |
2537 | return "GetDCB" ; |
2538 | case MT_SetDCB: |
2539 | return "SetDCB" ; |
2540 | case MT_GetAppDomainCB: |
2541 | return "GetAppDomainCB" ; |
2542 | default: |
2543 | _ASSERTE(!"Unknown message type" ); |
2544 | return NULL; |
2545 | } |
2546 | } |
2547 | |
2548 | // Debug logging helper which logs an incoming message of any type (as long as logging for that message |
2549 | // class is currently enabled). |
2550 | void DbgTransportSession::(MessageHeader *) |
2551 | { |
2552 | switch (pHeader->m_eType) |
2553 | { |
2554 | case MT_SessionRequest: |
2555 | DbgTransportLog(LC_Session, "Received 'SessionRequest'" ); |
2556 | DBG_TRANSPORT_INC_STAT(ReceivedSessionRequest); |
2557 | return; |
2558 | case MT_SessionAccept: |
2559 | DbgTransportLog(LC_Session, "Received 'SessionAccept'" ); |
2560 | DBG_TRANSPORT_INC_STAT(ReceivedSessionAccept); |
2561 | return; |
2562 | case MT_SessionReject: |
2563 | DbgTransportLog(LC_Session, "Received 'SessionReject'" ); |
2564 | DBG_TRANSPORT_INC_STAT(ReceivedSessionReject); |
2565 | return; |
2566 | case MT_SessionResync: |
2567 | DbgTransportLog(LC_Session, "Received 'SessionResync'" ); |
2568 | DBG_TRANSPORT_INC_STAT(ReceivedSessionResync); |
2569 | return; |
2570 | case MT_SessionClose: |
2571 | DbgTransportLog(LC_Session, "Received 'SessionClose'" ); |
2572 | DBG_TRANSPORT_INC_STAT(ReceivedSessionClose); |
2573 | return; |
2574 | case MT_Event: |
2575 | DbgTransportLog(LC_Events, "Received '%s'" , |
2576 | IPCENames::GetName((DebuggerIPCEventType)(DWORD)pHeader->TypeSpecificData.Event.m_eType)); |
2577 | DBG_TRANSPORT_INC_STAT(ReceivedEvent); |
2578 | return; |
2579 | #ifdef RIGHT_SIDE_COMPILE |
2580 | case MT_ReadMemory: |
2581 | DbgTransportLog(LC_Requests, "Received 'ReadMemory(0x%08X, %u)' reply" , |
2582 | (PBYTE)pHeader->TypeSpecificData.MemoryAccess.m_pbLeftSideBuffer, |
2583 | (DWORD)pHeader->TypeSpecificData.MemoryAccess.m_cbLeftSideBuffer); |
2584 | DBG_TRANSPORT_INC_STAT(ReceivedReadMemory); |
2585 | return; |
2586 | case MT_WriteMemory: |
2587 | DbgTransportLog(LC_Requests, "Received 'WriteMemory(0x%08X, %u)' reply" , |
2588 | (PBYTE)pHeader->TypeSpecificData.MemoryAccess.m_pbLeftSideBuffer, |
2589 | (DWORD)pHeader->TypeSpecificData.MemoryAccess.m_cbLeftSideBuffer); |
2590 | DBG_TRANSPORT_INC_STAT(ReceivedWriteMemory); |
2591 | return; |
2592 | case MT_VirtualUnwind: |
2593 | DbgTransportLog(LC_Requests, "Received 'VirtualUnwind' reply" ); |
2594 | DBG_TRANSPORT_INC_STAT(ReceivedVirtualUnwind); |
2595 | return; |
2596 | case MT_GetDCB: |
2597 | DbgTransportLog(LC_Requests, "Received 'GetDCB' reply" ); |
2598 | DBG_TRANSPORT_INC_STAT(ReceivedGetDCB); |
2599 | return; |
2600 | case MT_SetDCB: |
2601 | DbgTransportLog(LC_Requests, "Received 'SetDCB' reply" ); |
2602 | DBG_TRANSPORT_INC_STAT(ReceivedSetDCB); |
2603 | return; |
2604 | case MT_GetAppDomainCB: |
2605 | DbgTransportLog(LC_Requests, "Received 'GetAppDomainCB' reply" ); |
2606 | DBG_TRANSPORT_INC_STAT(ReceivedGetAppDomainCB); |
2607 | return; |
2608 | #else // RIGHT_SIDE_COMPILE |
2609 | case MT_ReadMemory: |
2610 | DbgTransportLog(LC_Requests, "Received 'ReadMemory(0x%08X, %u)'" , |
2611 | (PBYTE)pHeader->TypeSpecificData.MemoryAccess.m_pbLeftSideBuffer, |
2612 | (DWORD)pHeader->TypeSpecificData.MemoryAccess.m_cbLeftSideBuffer); |
2613 | DBG_TRANSPORT_INC_STAT(ReceivedReadMemory); |
2614 | return; |
2615 | case MT_WriteMemory: |
2616 | DbgTransportLog(LC_Requests, "Received 'WriteMemory(0x%08X, %u)'" , |
2617 | (PBYTE)pHeader->TypeSpecificData.MemoryAccess.m_pbLeftSideBuffer, |
2618 | (DWORD)pHeader->TypeSpecificData.MemoryAccess.m_cbLeftSideBuffer); |
2619 | DBG_TRANSPORT_INC_STAT(ReceivedWriteMemory); |
2620 | return; |
2621 | case MT_VirtualUnwind: |
2622 | DbgTransportLog(LC_Requests, "Received 'VirtualUnwind'" ); |
2623 | DBG_TRANSPORT_INC_STAT(ReceivedVirtualUnwind); |
2624 | return; |
2625 | case MT_GetDCB: |
2626 | DbgTransportLog(LC_Requests, "Received 'GetDCB'" ); |
2627 | DBG_TRANSPORT_INC_STAT(ReceivedGetDCB); |
2628 | return; |
2629 | case MT_SetDCB: |
2630 | DbgTransportLog(LC_Requests, "Received 'SetDCB'" ); |
2631 | DBG_TRANSPORT_INC_STAT(ReceivedSetDCB); |
2632 | return; |
2633 | case MT_GetAppDomainCB: |
2634 | DbgTransportLog(LC_Requests, "Received 'GetAppDomainCB'" ); |
2635 | DBG_TRANSPORT_INC_STAT(ReceivedGetAppDomainCB); |
2636 | return; |
2637 | #endif // RIGHT_SIDE_COMPILE |
2638 | default: |
2639 | _ASSERTE(!"Unknown message type" ); |
2640 | return; |
2641 | } |
2642 | } |
2643 | |
2644 | static CLRRandom s_faultInjectionRandom; |
2645 | |
2646 | // Helper method used by the DBG_TRANSPORT_SHOULD_INJECT_FAULT macro. |
2647 | bool DbgTransportSession::DbgTransportShouldInjectFault(DbgTransportFaultOp eOp, const char *szOpName) |
2648 | { |
2649 | static DWORD s_dwFaultInjection = 0xffffffff; |
2650 | |
2651 | // Init the fault injection system if that hasn't already happened. |
2652 | if (s_dwFaultInjection == 0xffffffff) |
2653 | { |
2654 | s_dwFaultInjection = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_DbgTransportFaultInject); |
2655 | |
2656 | // Try for repeatable failures here by always initializing the random seed to a fixed value. But use |
2657 | // different seeds for the left and right sides or they'll end up in lock step. The |
2658 | // DBG_TRANSPORT_FAULT_THIS_SIDE macro is a convenient integer value that differs on each side. |
2659 | s_faultInjectionRandom.Init(DBG_TRANSPORT_FAULT_THIS_SIDE); |
2660 | |
2661 | // Clamp failure rate to a permissable value. |
2662 | if ((s_dwFaultInjection & DBG_TRANSPORT_FAULT_RATE_MASK) > 99) |
2663 | s_dwFaultInjection = (s_dwFaultInjection & ~DBG_TRANSPORT_FAULT_RATE_MASK) | 99; |
2664 | } |
2665 | |
2666 | // Map current session state into the bitmask format used for fault injection control. |
2667 | DWORD dwState = 0; |
2668 | switch (m_eState) |
2669 | { |
2670 | case SS_Opening_NC: |
2671 | case SS_Opening: |
2672 | dwState = FS_Opening; |
2673 | break; |
2674 | case SS_Resync_NC: |
2675 | case SS_Resync: |
2676 | dwState = FS_Resync; |
2677 | break; |
2678 | case SS_Open: |
2679 | dwState = FS_Open; |
2680 | break; |
2681 | case SS_Closed: |
2682 | break; |
2683 | default: |
2684 | _ASSERTE(!"Bad session state" ); |
2685 | } |
2686 | |
2687 | if ((s_dwFaultInjection & DBG_TRANSPORT_FAULT_THIS_SIDE) && |
2688 | (s_dwFaultInjection & eOp) && |
2689 | (s_dwFaultInjection & dwState)) |
2690 | { |
2691 | // We're faulting this side, op and state. Roll the dice and see if this particular call should fail. |
2692 | DWORD dwChance = s_faultInjectionRandom.Next(100); |
2693 | if (dwChance < (s_dwFaultInjection & DBG_TRANSPORT_FAULT_RATE_MASK)) |
2694 | { |
2695 | DbgTransportLog(LC_FaultInject, "Injected fault for %s operation" , szOpName); |
2696 | #if defined(FEATURE_CORESYSTEM) |
2697 | // not supported |
2698 | #else |
2699 | WSASetLastError(WSAEFAULT); |
2700 | #endif // defined(FEATURE_CORESYSTEM) |
2701 | return true; |
2702 | } |
2703 | } |
2704 | |
2705 | return false; |
2706 | } |
2707 | #endif // _DEBUG |
2708 | |
2709 | // Lock abstraction code (hides difference in lock implementation between left and right side). |
2710 | #ifdef RIGHT_SIDE_COMPILE |
2711 | |
2712 | // On the right side we use a CRITICAL_SECTION. |
2713 | |
2714 | void DbgTransportLock::Init() |
2715 | { |
2716 | InitializeCriticalSection(&m_sLock); |
2717 | } |
2718 | |
2719 | void DbgTransportLock::Destroy() |
2720 | { |
2721 | DeleteCriticalSection(&m_sLock); |
2722 | } |
2723 | |
2724 | void DbgTransportLock::Enter() |
2725 | { |
2726 | EnterCriticalSection(&m_sLock); |
2727 | } |
2728 | |
2729 | void DbgTransportLock::Leave() |
2730 | { |
2731 | LeaveCriticalSection(&m_sLock); |
2732 | } |
2733 | #else // RIGHT_SIDE_COMPILE |
2734 | |
2735 | // On the left side we use a Crst. |
2736 | |
2737 | void DbgTransportLock::Init() |
2738 | { |
2739 | m_sLock.Init(CrstDbgTransport, (CrstFlags)(CRST_UNSAFE_ANYMODE | CRST_DEBUGGER_THREAD | CRST_TAKEN_DURING_SHUTDOWN)); |
2740 | } |
2741 | |
2742 | void DbgTransportLock::Destroy() |
2743 | { |
2744 | } |
2745 | |
2746 | void DbgTransportLock::Enter() |
2747 | { |
2748 | m_sLock.Enter(); |
2749 | } |
2750 | |
2751 | void DbgTransportLock::Leave() |
2752 | { |
2753 | m_sLock.Leave(); |
2754 | } |
2755 | #endif // RIGHT_SIDE_COMPILE |
2756 | |
2757 | #endif // (!defined(RIGHT_SIDE_COMPILE) && defined(FEATURE_DBGIPC_TRANSPORT_VM)) || (defined(RIGHT_SIDE_COMPILE) && defined(FEATURE_DBGIPC_TRANSPORT_DI)) |
2758 | |