| 1 | // Licensed to the .NET Foundation under one or more agreements. | 
| 2 | // The .NET Foundation licenses this file to you under the MIT license. | 
| 3 | // See the LICENSE file in the project root for more information. | 
| 4 |  | 
| 5 | #ifndef _GC_INTERFACE_H_ | 
| 6 | #define _GC_INTERFACE_H_ | 
| 7 |  | 
| 8 | // The major version of the GC/EE interface. Breaking changes to this interface | 
| 9 | // require bumps in the major version number. | 
| 10 | #define GC_INTERFACE_MAJOR_VERSION 2 | 
| 11 |  | 
| 12 | // The minor version of the GC/EE interface. Non-breaking changes are required | 
| 13 | // to bump the minor version number. GCs and EEs with minor version number | 
| 14 | // mismatches can still interopate correctly, with some care. | 
| 15 | #define GC_INTERFACE_MINOR_VERSION 1 | 
| 16 |  | 
| 17 | struct ScanContext; | 
| 18 | struct gc_alloc_context; | 
| 19 | class CrawlFrame; | 
| 20 |  | 
| 21 | // Callback passed to GcScanRoots. | 
| 22 | typedef void promote_func(PTR_PTR_Object, ScanContext*, uint32_t); | 
| 23 |  | 
| 24 | // Callback passed to GcEnumAllocContexts. | 
| 25 | typedef void enum_alloc_context_func(gc_alloc_context*, void*); | 
| 26 |  | 
| 27 | // Callback passed to CreateBackgroundThread. | 
| 28 | typedef uint32_t (__stdcall *GCBackgroundThreadFunction)(void* param); | 
| 29 |  | 
| 30 | // Struct often used as a parameter to callbacks. | 
| 31 | typedef struct | 
| 32 | { | 
| 33 |     promote_func*  f; | 
| 34 |     ScanContext*   sc; | 
| 35 |     CrawlFrame *   cf; | 
| 36 | } GCCONTEXT; | 
| 37 |  | 
| 38 | // SUSPEND_REASON is the reason why the GC wishes to suspend the EE, | 
| 39 | // used as an argument to IGCToCLR::SuspendEE. | 
| 40 | typedef enum | 
| 41 | { | 
| 42 |     SUSPEND_FOR_GC = 1, | 
| 43 |     SUSPEND_FOR_GC_PREP = 6 | 
| 44 | } SUSPEND_REASON; | 
| 45 |  | 
| 46 | typedef enum | 
| 47 | { | 
| 48 |     walk_for_gc = 1, | 
| 49 |     walk_for_bgc = 2, | 
| 50 |     walk_for_loh = 3 | 
| 51 | } walk_surv_type; | 
| 52 |  | 
| 53 | // Different operations that can be done by GCToEEInterface::StompWriteBarrier | 
| 54 | enum class WriteBarrierOp | 
| 55 | { | 
| 56 |     StompResize, | 
| 57 |     StompEphemeral, | 
| 58 |     Initialize, | 
| 59 |     SwitchToWriteWatch, | 
| 60 |     SwitchToNonWriteWatch | 
| 61 | }; | 
| 62 |  | 
| 63 | // Arguments to GCToEEInterface::StompWriteBarrier | 
| 64 | struct WriteBarrierParameters | 
| 65 | { | 
| 66 |     // The operation that StompWriteBarrier will perform. | 
| 67 |     WriteBarrierOp operation; | 
| 68 |  | 
| 69 |     // Whether or not the runtime is currently suspended. If it is not, | 
| 70 |     // the EE will need to suspend it before bashing the write barrier. | 
| 71 |     // Used for all operations. | 
| 72 |     bool is_runtime_suspended; | 
| 73 |  | 
| 74 |     // Whether or not the GC has moved the ephemeral generation to no longer | 
| 75 |     // be at the top of the heap. When the ephemeral generation is at the top | 
| 76 |     // of the heap, and the write barrier observes that a pointer is greater than | 
| 77 |     // g_ephemeral_low, it does not need to check that the pointer is less than | 
| 78 |     // g_ephemeral_high because there is nothing in the GC heap above the ephemeral | 
| 79 |     // generation. When this is not the case, however, the GC must inform the EE | 
| 80 |     // so that the EE can switch to a write barrier that checks that a pointer | 
| 81 |     // is both greater than g_ephemeral_low and less than g_ephemeral_high. | 
| 82 |     // Used for WriteBarrierOp::StompResize. | 
| 83 |     bool requires_upper_bounds_check; | 
| 84 |  | 
| 85 |     // The new card table location. May or may not be the same as the previous | 
| 86 |     // card table. Used for WriteBarrierOp::Initialize and WriteBarrierOp::StompResize. | 
| 87 |     uint32_t* card_table; | 
| 88 |  | 
| 89 |     // The new card bundle table location. May or may not be the same as the previous | 
| 90 |     // card bundle table. Used for WriteBarrierOp::Initialize and WriteBarrierOp::StompResize. | 
| 91 |     uint32_t* card_bundle_table; | 
| 92 |  | 
| 93 |     // The heap's new low boundary. May or may not be the same as the previous | 
| 94 |     // value. Used for WriteBarrierOp::Initialize and WriteBarrierOp::StompResize. | 
| 95 |     uint8_t* lowest_address; | 
| 96 |  | 
| 97 |     // The heap's new high boundary. May or may not be the same as the previous | 
| 98 |     // value. Used for WriteBarrierOp::Initialize and WriteBarrierOp::StompResize. | 
| 99 |     uint8_t* highest_address; | 
| 100 |  | 
| 101 |     // The new start of the ephemeral generation.  | 
| 102 |     // Used for WriteBarrierOp::StompEphemeral. | 
| 103 |     uint8_t* ephemeral_low; | 
| 104 |  | 
| 105 |     // The new end of the ephemeral generation. | 
| 106 |     // Used for WriteBarrierOp::StompEphemeral. | 
| 107 |     uint8_t* ephemeral_high; | 
| 108 |  | 
| 109 |     // The new write watch table, if we are using our own write watch | 
| 110 |     // implementation. Used for WriteBarrierOp::SwitchToWriteWatch only. | 
| 111 |     uint8_t* write_watch_table; | 
| 112 | }; | 
| 113 |  | 
| 114 | // Opaque type for tracking object pointers | 
| 115 | #ifndef DACCESS_COMPILE | 
| 116 | struct OBJECTHANDLE__ | 
| 117 | { | 
| 118 |     void* unused; | 
| 119 | }; | 
| 120 | typedef struct OBJECTHANDLE__* OBJECTHANDLE; | 
| 121 | #else | 
| 122 | typedef uintptr_t OBJECTHANDLE; | 
| 123 | #endif | 
| 124 |  | 
| 125 |  /* | 
| 126 |   * Scanning callback. | 
| 127 |   */ | 
| 128 | typedef void (CALLBACK *HANDLESCANPROC)(PTR_UNCHECKED_OBJECTREF pref, uintptr_t *, uintptr_t param1, uintptr_t param2); | 
| 129 |  | 
| 130 | #include "gcinterface.ee.h" | 
| 131 |  | 
| 132 | // The allocation context must be known to the VM for use in the allocation | 
| 133 | // fast path and known to the GC for performing the allocation. Every Thread | 
| 134 | // has its own allocation context that it hands to the GC when allocating. | 
| 135 | struct gc_alloc_context | 
| 136 | { | 
| 137 |     uint8_t*       alloc_ptr; | 
| 138 |     uint8_t*       alloc_limit; | 
| 139 |     int64_t        alloc_bytes; //Number of bytes allocated on SOH by this context | 
| 140 |     int64_t        alloc_bytes_loh; //Number of bytes allocated on LOH by this context | 
| 141 |     // These two fields are deliberately not exposed past the EE-GC interface. | 
| 142 |     void*          gc_reserved_1; | 
| 143 |     void*          gc_reserved_2; | 
| 144 |     int            alloc_count; | 
| 145 | public: | 
| 146 |  | 
| 147 |     void init() | 
| 148 |     { | 
| 149 |         LIMITED_METHOD_CONTRACT; | 
| 150 |  | 
| 151 |         alloc_ptr = 0; | 
| 152 |         alloc_limit = 0; | 
| 153 |         alloc_bytes = 0; | 
| 154 |         alloc_bytes_loh = 0; | 
| 155 |         gc_reserved_1 = 0; | 
| 156 |         gc_reserved_2 = 0; | 
| 157 |         alloc_count = 0; | 
| 158 |     } | 
| 159 | }; | 
| 160 |  | 
| 161 | #include "gcinterface.dac.h" | 
| 162 |  | 
| 163 | // stub type to abstract a heap segment | 
| 164 | struct gc_heap_segment_stub; | 
| 165 | typedef gc_heap_segment_stub *segment_handle; | 
| 166 |  | 
| 167 | struct segment_info | 
| 168 | { | 
| 169 |     void * pvMem; // base of the allocation, not the first object (must add ibFirstObject) | 
| 170 |     size_t ibFirstObject;   // offset to the base of the first object in the segment | 
| 171 |     size_t ibAllocated; // limit of allocated memory in the segment (>= firstobject) | 
| 172 |     size_t ibCommit; // limit of committed memory in the segment (>= allocated) | 
| 173 |     size_t ibReserved; // limit of reserved memory in the segment (>= commit) | 
| 174 | }; | 
| 175 |  | 
| 176 | #ifdef PROFILING_SUPPORTED | 
| 177 | #define GC_PROFILING       //Turn on profiling | 
| 178 | #endif // PROFILING_SUPPORTED | 
| 179 |  | 
| 180 | #define LARGE_OBJECT_SIZE ((size_t)(85000)) | 
| 181 |  | 
| 182 | // The minimum size of an object is three pointers wide: one for the syncblock, | 
| 183 | // one for the object header, and one for the first field in the object. | 
| 184 | #define min_obj_size ((sizeof(uint8_t*) + sizeof(uintptr_t) + sizeof(size_t))) | 
| 185 |  | 
| 186 | // The bit shift used to convert a memory address into an index into the | 
| 187 | // Software Write Watch table. | 
| 188 | #define SOFTWARE_WRITE_WATCH_AddressToTableByteIndexShift 0xc | 
| 189 |  | 
| 190 | class Object; | 
| 191 | class IGCHeap; | 
| 192 | class IGCHandleManager; | 
| 193 |  | 
| 194 | #ifdef WRITE_BARRIER_CHECK | 
| 195 | //always defined, but should be 0 in Server GC | 
| 196 | extern uint8_t* g_GCShadow; | 
| 197 | extern uint8_t* g_GCShadowEnd; | 
| 198 | // saves the g_lowest_address in between GCs to verify the consistency of the shadow segment | 
| 199 | extern uint8_t* g_shadow_lowest_address; | 
| 200 | #endif | 
| 201 |  | 
| 202 | // Event levels corresponding to events that can be fired by the GC. | 
| 203 | enum GCEventLevel | 
| 204 | { | 
| 205 |     GCEventLevel_None = 0, | 
| 206 |     GCEventLevel_Fatal = 1, | 
| 207 |     GCEventLevel_Error = 2, | 
| 208 |     GCEventLevel_Warning = 3, | 
| 209 |     GCEventLevel_Information = 4, | 
| 210 |     GCEventLevel_Verbose = 5, | 
| 211 |     GCEventLevel_Max = 6, | 
| 212 |     GCEventLevel_LogAlways = 255 | 
| 213 | }; | 
| 214 |  | 
| 215 | // Event keywords corresponding to events that can be fired by the GC. These | 
| 216 | // numbers come from the ETW manifest itself - please make changes to this enum | 
| 217 | // if you add, remove, or change keyword sets that are used by the GC! | 
| 218 | enum GCEventKeyword | 
| 219 | { | 
| 220 |     GCEventKeyword_None                          =       0x0, | 
| 221 |     GCEventKeyword_GC                            =       0x1, | 
| 222 |     // Duplicate on purpose, GCPrivate is the same keyword as GC,  | 
| 223 |     // with a different provider | 
| 224 |     GCEventKeyword_GCPrivate                     =       0x1, | 
| 225 |     GCEventKeyword_GCHandle                      =       0x2, | 
| 226 |     GCEventKeyword_GCHandlePrivate               =    0x4000, | 
| 227 |     GCEventKeyword_GCHeapDump                    =  0x100000, | 
| 228 |     GCEventKeyword_GCSampledObjectAllocationHigh =  0x200000, | 
| 229 |     GCEventKeyword_GCHeapSurvivalAndMovement     =  0x400000, | 
| 230 |     GCEventKeyword_GCHeapCollect                 =  0x800000, | 
| 231 |     GCEventKeyword_GCHeapAndTypeNames            = 0x1000000, | 
| 232 |     GCEventKeyword_GCSampledObjectAllocationLow  = 0x2000000, | 
| 233 |     GCEventKeyword_All = GCEventKeyword_GC | 
| 234 |       | GCEventKeyword_GCPrivate | 
| 235 |       | GCEventKeyword_GCHandle | 
| 236 |       | GCEventKeyword_GCHandlePrivate | 
| 237 |       | GCEventKeyword_GCHeapDump | 
| 238 |       | GCEventKeyword_GCSampledObjectAllocationHigh | 
| 239 |       | GCEventKeyword_GCHeapDump | 
| 240 |       | GCEventKeyword_GCSampledObjectAllocationHigh | 
| 241 |       | GCEventKeyword_GCHeapSurvivalAndMovement | 
| 242 |       | GCEventKeyword_GCHeapCollect | 
| 243 |       | GCEventKeyword_GCHeapAndTypeNames | 
| 244 |       | GCEventKeyword_GCSampledObjectAllocationLow | 
| 245 | }; | 
| 246 |  | 
| 247 | // !!!!!!!!!!!!!!!!!!!!!!! | 
| 248 | // make sure you change the def in bcl\system\gc.cs  | 
| 249 | // if you change this! | 
| 250 | enum collection_mode | 
| 251 | { | 
| 252 |     collection_non_blocking = 0x00000001, | 
| 253 |     collection_blocking = 0x00000002, | 
| 254 |     collection_optimized = 0x00000004, | 
| 255 |     collection_compacting = 0x00000008 | 
| 256 | #ifdef STRESS_HEAP | 
| 257 |     , collection_gcstress = 0x80000000 | 
| 258 | #endif // STRESS_HEAP | 
| 259 | }; | 
| 260 |  | 
| 261 | // !!!!!!!!!!!!!!!!!!!!!!! | 
| 262 | // make sure you change the def in bcl\system\gc.cs  | 
| 263 | // if you change this! | 
| 264 | enum wait_full_gc_status | 
| 265 | { | 
| 266 |     wait_full_gc_success = 0, | 
| 267 |     wait_full_gc_failed = 1, | 
| 268 |     wait_full_gc_cancelled = 2, | 
| 269 |     wait_full_gc_timeout = 3, | 
| 270 |     wait_full_gc_na = 4 | 
| 271 | }; | 
| 272 |  | 
| 273 | // !!!!!!!!!!!!!!!!!!!!!!! | 
| 274 | // make sure you change the def in bcl\system\gc.cs  | 
| 275 | // if you change this! | 
| 276 | enum start_no_gc_region_status | 
| 277 | { | 
| 278 |     start_no_gc_success = 0, | 
| 279 |     start_no_gc_no_memory = 1, | 
| 280 |     start_no_gc_too_large = 2, | 
| 281 |     start_no_gc_in_progress = 3 | 
| 282 | }; | 
| 283 |  | 
| 284 | enum end_no_gc_region_status | 
| 285 | { | 
| 286 |     end_no_gc_success = 0, | 
| 287 |     end_no_gc_not_in_progress = 1, | 
| 288 |     end_no_gc_induced = 2, | 
| 289 |     end_no_gc_alloc_exceeded = 3 | 
| 290 | }; | 
| 291 |  | 
| 292 | typedef enum  | 
| 293 | { | 
| 294 |     /* | 
| 295 |      * WEAK HANDLES | 
| 296 |      * | 
| 297 |      * Weak handles are handles that track an object as long as it is alive, | 
| 298 |      * but do not keep the object alive if there are no strong references to it. | 
| 299 |      * | 
| 300 |      */ | 
| 301 |  | 
| 302 |     /* | 
| 303 |      * SHORT-LIVED WEAK HANDLES | 
| 304 |      * | 
| 305 |      * Short-lived weak handles are weak handles that track an object until the | 
| 306 |      * first time it is detected to be unreachable.  At this point, the handle is | 
| 307 |      * severed, even if the object will be visible from a pending finalization | 
| 308 |      * graph.  This further implies that short weak handles do not track | 
| 309 |      * across object resurrections. | 
| 310 |      * | 
| 311 |      */ | 
| 312 |     HNDTYPE_WEAK_SHORT   = 0, | 
| 313 |  | 
| 314 |     /* | 
| 315 |      * LONG-LIVED WEAK HANDLES | 
| 316 |      * | 
| 317 |      * Long-lived weak handles are weak handles that track an object until the | 
| 318 |      * object is actually reclaimed.  Unlike short weak handles, long weak handles | 
| 319 |      * continue to track their referents through finalization and across any | 
| 320 |      * resurrections that may occur. | 
| 321 |      * | 
| 322 |      */ | 
| 323 |     HNDTYPE_WEAK_LONG    = 1, | 
| 324 |     HNDTYPE_WEAK_DEFAULT = 1, | 
| 325 |  | 
| 326 |     /* | 
| 327 |      * STRONG HANDLES | 
| 328 |      * | 
| 329 |      * Strong handles are handles which function like a normal object reference. | 
| 330 |      * The existence of a strong handle for an object will cause the object to | 
| 331 |      * be promoted (remain alive) through a garbage collection cycle. | 
| 332 |      * | 
| 333 |      */ | 
| 334 |     HNDTYPE_STRONG       = 2, | 
| 335 |     HNDTYPE_DEFAULT      = 2, | 
| 336 |  | 
| 337 |     /* | 
| 338 |      * PINNED HANDLES | 
| 339 |      * | 
| 340 |      * Pinned handles are strong handles which have the added property that they | 
| 341 |      * prevent an object from moving during a garbage collection cycle.  This is | 
| 342 |      * useful when passing a pointer to object innards out of the runtime while GC | 
| 343 |      * may be enabled. | 
| 344 |      * | 
| 345 |      * NOTE:  PINNING AN OBJECT IS EXPENSIVE AS IT PREVENTS THE GC FROM ACHIEVING | 
| 346 |      *        OPTIMAL PACKING OF OBJECTS DURING EPHEMERAL COLLECTIONS.  THIS TYPE | 
| 347 |      *        OF HANDLE SHOULD BE USED SPARINGLY! | 
| 348 |      */ | 
| 349 |     HNDTYPE_PINNED       = 3, | 
| 350 |  | 
| 351 |     /* | 
| 352 |      * VARIABLE HANDLES | 
| 353 |      * | 
| 354 |      * Variable handles are handles whose type can be changed dynamically.  They | 
| 355 |      * are larger than other types of handles, and are scanned a little more often, | 
| 356 |      * but are useful when the handle owner needs an efficient way to change the | 
| 357 |      * strength of a handle on the fly. | 
| 358 |      *  | 
| 359 |      */ | 
| 360 |     HNDTYPE_VARIABLE     = 4, | 
| 361 |  | 
| 362 |     /* | 
| 363 |      * REFCOUNTED HANDLES | 
| 364 |      * | 
| 365 |      * Refcounted handles are handles that behave as strong handles while the | 
| 366 |      * refcount on them is greater than 0 and behave as weak handles otherwise. | 
| 367 |      * | 
| 368 |      * N.B. These are currently NOT general purpose. | 
| 369 |      *      The implementation is tied to COM Interop. | 
| 370 |      * | 
| 371 |      */ | 
| 372 |     HNDTYPE_REFCOUNTED   = 5, | 
| 373 |  | 
| 374 |     /* | 
| 375 |      * DEPENDENT HANDLES | 
| 376 |      * | 
| 377 |      * Dependent handles are two handles that need to have the same lifetime.  One handle refers to a secondary object  | 
| 378 |      * that needs to have the same lifetime as the primary object. The secondary object should not cause the primary  | 
| 379 |      * object to be referenced, but as long as the primary object is alive, so must be the secondary | 
| 380 |      * | 
| 381 |      * They are currently used for EnC for adding new field members to existing instantiations under EnC modes where | 
| 382 |      * the primary object is the original instantiation and the secondary represents the added field. | 
| 383 |      * | 
| 384 |      * They are also used to implement the ConditionalWeakTable class in mscorlib.dll. If you want to use | 
| 385 |      * these from managed code, they are exposed to BCL through the managed DependentHandle class. | 
| 386 |      * | 
| 387 |      * | 
| 388 |      */ | 
| 389 |     HNDTYPE_DEPENDENT    = 6, | 
| 390 |  | 
| 391 |     /* | 
| 392 |      * PINNED HANDLES for asynchronous operation | 
| 393 |      * | 
| 394 |      * Pinned handles are strong handles which have the added property that they | 
| 395 |      * prevent an object from moving during a garbage collection cycle.  This is | 
| 396 |      * useful when passing a pointer to object innards out of the runtime while GC | 
| 397 |      * may be enabled. | 
| 398 |      * | 
| 399 |      * NOTE:  PINNING AN OBJECT IS EXPENSIVE AS IT PREVENTS THE GC FROM ACHIEVING | 
| 400 |      *        OPTIMAL PACKING OF OBJECTS DURING EPHEMERAL COLLECTIONS.  THIS TYPE | 
| 401 |      *        OF HANDLE SHOULD BE USED SPARINGLY! | 
| 402 |      */ | 
| 403 |     HNDTYPE_ASYNCPINNED  = 7, | 
| 404 |  | 
| 405 |     /* | 
| 406 |      * SIZEDREF HANDLES | 
| 407 |      * | 
| 408 |      * SizedRef handles are strong handles. Each handle has a piece of user data associated | 
| 409 |      * with it that stores the size of the object this handle refers to. These handles | 
| 410 |      * are scanned as strong roots during each GC but only during full GCs would the size | 
| 411 |      * be calculated. | 
| 412 |      * | 
| 413 |      */ | 
| 414 |     HNDTYPE_SIZEDREF     = 8, | 
| 415 |  | 
| 416 |     /* | 
| 417 |      * WINRT WEAK HANDLES | 
| 418 |      * | 
| 419 |      * WinRT weak reference handles hold two different types of weak handles to any | 
| 420 |      * RCW with an underlying COM object that implements IWeakReferenceSource.  The | 
| 421 |      * object reference itself is a short weak handle to the RCW.  In addition an | 
| 422 |      * IWeakReference* to the underlying COM object is stored, allowing the handle | 
| 423 |      * to create a new RCW if the existing RCW is collected.  This ensures that any | 
| 424 |      * code holding onto a WinRT weak reference can always access an RCW to the | 
| 425 |      * underlying COM object as long as it has not been released by all of its strong | 
| 426 |      * references. | 
| 427 |      */ | 
| 428 |     HNDTYPE_WEAK_WINRT   = 9 | 
| 429 | } HandleType; | 
| 430 |  | 
| 431 | typedef enum | 
| 432 | { | 
| 433 |     GC_HEAP_INVALID = 0, | 
| 434 |     GC_HEAP_WKS     = 1, | 
| 435 |     GC_HEAP_SVR     = 2 | 
| 436 | } GCHeapType; | 
| 437 |  | 
| 438 | typedef bool (* walk_fn)(Object*, void*); | 
| 439 | typedef void (* gen_walk_fn)(void* context, int generation, uint8_t* range_start, uint8_t* range_end, uint8_t* range_reserved); | 
| 440 | typedef void (* record_surv_fn)(uint8_t* begin, uint8_t* end, ptrdiff_t reloc, void* context, bool compacting_p, bool bgc_p); | 
| 441 | typedef void (* fq_walk_fn)(bool, void*); | 
| 442 | typedef void (* fq_scan_fn)(Object** ppObject, ScanContext *pSC, uint32_t dwFlags); | 
| 443 | typedef void (* handle_scan_fn)(Object** pRef, Object* pSec, uint32_t flags, ScanContext* context, bool isDependent); | 
| 444 | typedef bool (* async_pin_enum_fn)(Object* object, void* context); | 
| 445 |  | 
| 446 |  | 
| 447 |  | 
| 448 | class IGCHandleStore { | 
| 449 | public: | 
| 450 |  | 
| 451 |     virtual void Uproot() = 0; | 
| 452 |  | 
| 453 |     virtual bool ContainsHandle(OBJECTHANDLE handle) = 0; | 
| 454 |  | 
| 455 |     virtual OBJECTHANDLE CreateHandleOfType(Object* object, HandleType type) = 0; | 
| 456 |  | 
| 457 |     virtual OBJECTHANDLE CreateHandleOfType(Object* object, HandleType type, int heapToAffinitizeTo) = 0; | 
| 458 |  | 
| 459 |     virtual OBJECTHANDLE CreateHandleWithExtraInfo(Object* object, HandleType type, void* ) = 0; | 
| 460 |  | 
| 461 |     virtual OBJECTHANDLE CreateDependentHandle(Object* primary, Object* secondary) = 0; | 
| 462 |  | 
| 463 |     // Relocates async pinned handles from a condemned handle store to the default domain's handle store. | 
| 464 |     // | 
| 465 |     // The two callbacks are called when: | 
| 466 |     //   1. clearIfComplete is called whenever the handle table observes an async pin that is still live. | 
| 467 |     //      The callback gives a chance for the EE to unpin the referents if the overlapped operation is complete. | 
| 468 |     //   2. setHandle is called whenever the GC has relocated the async pin to a new handle table. The passed-in | 
| 469 |     //      handle is the newly-allocated handle in the default domain that should be assigned to the overlapped object. | 
| 470 |     virtual void RelocateAsyncPinnedHandles(IGCHandleStore* pTarget, void (*clearIfComplete)(Object*), void (*setHandle)(Object*, OBJECTHANDLE)) = 0; | 
| 471 |  | 
| 472 |     virtual bool EnumerateAsyncPinnedHandles(async_pin_enum_fn callback, void* context) = 0; | 
| 473 |  | 
| 474 |     virtual ~IGCHandleStore() {}; | 
| 475 | }; | 
| 476 |  | 
| 477 | class IGCHandleManager { | 
| 478 | public: | 
| 479 |  | 
| 480 |     virtual bool Initialize() = 0; | 
| 481 |  | 
| 482 |     virtual void Shutdown() = 0; | 
| 483 |  | 
| 484 |     virtual void* GetHandleContext(OBJECTHANDLE handle) = 0; | 
| 485 |  | 
| 486 |     virtual IGCHandleStore* GetGlobalHandleStore() = 0; | 
| 487 |  | 
| 488 |     virtual IGCHandleStore* CreateHandleStore(void* context) = 0; | 
| 489 |  | 
| 490 |     virtual void DestroyHandleStore(IGCHandleStore* store) = 0; | 
| 491 |  | 
| 492 |     virtual OBJECTHANDLE CreateGlobalHandleOfType(Object* object, HandleType type) = 0; | 
| 493 |  | 
| 494 |     virtual OBJECTHANDLE CreateDuplicateHandle(OBJECTHANDLE handle) = 0; | 
| 495 |  | 
| 496 |     virtual void DestroyHandleOfType(OBJECTHANDLE handle, HandleType type) = 0; | 
| 497 |  | 
| 498 |     virtual void DestroyHandleOfUnknownType(OBJECTHANDLE handle) = 0; | 
| 499 |  | 
| 500 |     virtual void SetExtraInfoForHandle(OBJECTHANDLE handle, HandleType type, void* ) = 0; | 
| 501 |  | 
| 502 |     virtual void* GetExtraInfoFromHandle(OBJECTHANDLE handle) = 0; | 
| 503 |  | 
| 504 |     virtual void StoreObjectInHandle(OBJECTHANDLE handle, Object* object) = 0; | 
| 505 |  | 
| 506 |     virtual bool StoreObjectInHandleIfNull(OBJECTHANDLE handle, Object* object) = 0; | 
| 507 |  | 
| 508 |     virtual void SetDependentHandleSecondary(OBJECTHANDLE handle, Object* object) = 0; | 
| 509 |  | 
| 510 |     virtual Object* GetDependentHandleSecondary(OBJECTHANDLE handle) = 0; | 
| 511 |  | 
| 512 |     virtual Object* InterlockedCompareExchangeObjectInHandle(OBJECTHANDLE handle, Object* object, Object* comparandObject) = 0; | 
| 513 |  | 
| 514 |     virtual HandleType HandleFetchType(OBJECTHANDLE handle) = 0; | 
| 515 |  | 
| 516 |     virtual void TraceRefCountedHandles(HANDLESCANPROC callback, uintptr_t param1, uintptr_t param2) = 0; | 
| 517 | }; | 
| 518 |  | 
| 519 | // IGCHeap is the interface that the VM will use when interacting with the GC. | 
| 520 | class IGCHeap { | 
| 521 | public: | 
| 522 |     /* | 
| 523 |     =========================================================================== | 
| 524 |     Hosting APIs. These are used by GC hosting. The code that | 
| 525 |     calls these methods may possibly be moved behind the interface - | 
| 526 |     today, the VM handles the setting of segment size and max gen 0 size. | 
| 527 |     (See src/vm/corehost.cpp) | 
| 528 |     =========================================================================== | 
| 529 |     */ | 
| 530 |  | 
| 531 |     // Returns whether or not the given size is a valid segment size. | 
| 532 |     virtual bool IsValidSegmentSize(size_t size) = 0; | 
| 533 |  | 
| 534 |     // Returns whether or not the given size is a valid gen 0 max size. | 
| 535 |     virtual bool IsValidGen0MaxSize(size_t size) = 0; | 
| 536 |  | 
| 537 |     // Gets a valid segment size. | 
| 538 |     virtual size_t GetValidSegmentSize(bool large_seg = false) = 0; | 
| 539 |  | 
| 540 |     // Sets the limit for reserved virtual memory. | 
| 541 |     virtual void SetReservedVMLimit(size_t vmlimit) = 0; | 
| 542 |  | 
| 543 |     /* | 
| 544 |     =========================================================================== | 
| 545 |     Concurrent GC routines. These are used in various places in the VM | 
| 546 |     to synchronize with the GC, when the VM wants to update something that | 
| 547 |     the GC is potentially using, if it's doing a background GC. | 
| 548 |  | 
| 549 |     Concrete examples of this are moving async pinned handles across appdomains | 
| 550 |     and profiling/ETW scenarios. | 
| 551 |     =========================================================================== | 
| 552 |     */ | 
| 553 |  | 
| 554 |     // Blocks until any running concurrent GCs complete. | 
| 555 |     virtual void WaitUntilConcurrentGCComplete() = 0; | 
| 556 |  | 
| 557 |     // Returns true if a concurrent GC is in progress, false otherwise. | 
| 558 |     virtual bool IsConcurrentGCInProgress() = 0; | 
| 559 |  | 
| 560 |     // Temporarily enables concurrent GC, used during profiling. | 
| 561 |     virtual void TemporaryEnableConcurrentGC() = 0; | 
| 562 |  | 
| 563 |     // Temporarily disables concurrent GC, used during profiling. | 
| 564 |     virtual void TemporaryDisableConcurrentGC() = 0; | 
| 565 |  | 
| 566 |     // Returns whether or not Concurrent GC is enabled. | 
| 567 |     virtual bool IsConcurrentGCEnabled() = 0; | 
| 568 |  | 
| 569 |     // Wait for a concurrent GC to complete if one is in progress, with the given timeout. | 
| 570 |     virtual HRESULT WaitUntilConcurrentGCCompleteAsync(int millisecondsTimeout) = 0;    // Use in native threads. TRUE if succeed. FALSE if failed or timeout | 
| 571 |  | 
| 572 |  | 
| 573 |     /* | 
| 574 |     =========================================================================== | 
| 575 |     Finalization routines. These are used by the finalizer thread to communicate | 
| 576 |     with the GC. | 
| 577 |     =========================================================================== | 
| 578 |     */ | 
| 579 |  | 
| 580 |     // Finalizes an app domain by finalizing objects within that app domain. | 
| 581 |     virtual bool FinalizeAppDomain(void* pDomain, bool fRunFinalizers) = 0; | 
| 582 |  | 
| 583 |     // Finalizes all registered objects for shutdown, even if they are still reachable. | 
| 584 |     virtual void SetFinalizeQueueForShutdown(bool fHasLock) = 0; | 
| 585 |  | 
| 586 |     // Gets the number of finalizable objects. | 
| 587 |     virtual size_t GetNumberOfFinalizable() = 0; | 
| 588 |  | 
| 589 |     // Traditionally used by the finalizer thread on shutdown to determine | 
| 590 |     // whether or not to time out. Returns true if the GC lock has not been taken. | 
| 591 |     virtual bool ShouldRestartFinalizerWatchDog() = 0; | 
| 592 |  | 
| 593 |     // Gets the next finalizable object. | 
| 594 |     virtual Object* GetNextFinalizable() = 0; | 
| 595 |  | 
| 596 |     // Sets whether or not the GC should report all finalizable objects as | 
| 597 |     // ready to be finalized, instead of only collectable objects. | 
| 598 |     virtual void SetFinalizeRunOnShutdown(bool value) = 0; | 
| 599 |  | 
| 600 |     /* | 
| 601 |     =========================================================================== | 
| 602 |     BCL routines. These are routines that are directly exposed by mscorlib | 
| 603 |     as a part of the `System.GC` class. These routines behave in the same | 
| 604 |     manner as the functions on `System.GC`. | 
| 605 |     =========================================================================== | 
| 606 |     */ | 
| 607 |  | 
| 608 |     // Gets memory related information - | 
| 609 |     // highMemLoadThreshold - physical memory load (in percentage) when GC will start to  | 
| 610 |     // react aggressively to reclaim memory. | 
| 611 |     // totalPhysicalMem - the total amount of phyiscal memory available on the machine and the memory | 
| 612 |     // limit set on the container if running in a container. | 
| 613 |     // lastRecordedMemLoad - physical memory load in percentage recorded in the last GC | 
| 614 |     // lastRecordedHeapSize - total managed heap size recorded in the last GC | 
| 615 |     // lastRecordedFragmentation - total fragmentation in the managed heap recorded in the last GC | 
| 616 |     virtual void GetMemoryInfo(uint32_t* highMemLoadThreshold,  | 
| 617 |                                uint64_t* totalPhysicalMem,  | 
| 618 |                                uint32_t* lastRecordedMemLoad, | 
| 619 |                                size_t* lastRecordedHeapSize, | 
| 620 |                                size_t* lastRecordedFragmentation) = 0; | 
| 621 |  | 
| 622 |     // Gets the current GC latency mode. | 
| 623 |     virtual int GetGcLatencyMode() = 0; | 
| 624 |  | 
| 625 |     // Sets the current GC latency mode. newLatencyMode has already been | 
| 626 |     // verified by mscorlib to be valid. | 
| 627 |     virtual int SetGcLatencyMode(int newLatencyMode) = 0; | 
| 628 |  | 
| 629 |     // Gets the current LOH compaction mode. | 
| 630 |     virtual int GetLOHCompactionMode() = 0; | 
| 631 |  | 
| 632 |     // Sets the current LOH compaction mode. newLOHCompactionMode has | 
| 633 |     // already been verified by mscorlib to be valid. | 
| 634 |     virtual void SetLOHCompactionMode(int newLOHCompactionMode) = 0; | 
| 635 |  | 
| 636 |     // Registers for a full GC notification, raising a notification if the gen 2 or | 
| 637 |     // LOH object heap thresholds are exceeded. | 
| 638 |     virtual bool RegisterForFullGCNotification(uint32_t gen2Percentage, uint32_t lohPercentage) = 0; | 
| 639 |  | 
| 640 |     // Cancels a full GC notification that was requested by `RegisterForFullGCNotification`. | 
| 641 |     virtual bool CancelFullGCNotification() = 0; | 
| 642 |  | 
| 643 |     // Returns the status of a registered notification for determining whether a blocking | 
| 644 |     // Gen 2 collection is about to be initiated, with the given timeout. | 
| 645 |     virtual int WaitForFullGCApproach(int millisecondsTimeout) = 0; | 
| 646 |  | 
| 647 |     // Returns the status of a registered notification for determining whether a blocking | 
| 648 |     // Gen 2 collection has completed, with the given timeout. | 
| 649 |     virtual int WaitForFullGCComplete(int millisecondsTimeout) = 0; | 
| 650 |  | 
| 651 |     // Returns the generation in which obj is found. Also used by the VM | 
| 652 |     // in some places, in particular syncblk code. | 
| 653 |     virtual unsigned WhichGeneration(Object* obj) = 0; | 
| 654 |  | 
| 655 |     // Returns the number of GCs that have transpired in the given generation | 
| 656 |     // since the beginning of the life of the process. Also used by the VM | 
| 657 |     // for debug code and app domains. | 
| 658 |     virtual int CollectionCount(int generation, int get_bgc_fgc_coutn = 0) = 0; | 
| 659 |  | 
| 660 |     // Begins a no-GC region, returning a code indicating whether entering the no-GC | 
| 661 |     // region was successful. | 
| 662 |     virtual int StartNoGCRegion(uint64_t totalSize, bool lohSizeKnown, uint64_t lohSize, bool disallowFullBlockingGC) = 0; | 
| 663 |  | 
| 664 |     // Exits a no-GC region. | 
| 665 |     virtual int EndNoGCRegion() = 0; | 
| 666 |  | 
| 667 |     // Gets the total number of bytes in use. | 
| 668 |     virtual size_t GetTotalBytesInUse() = 0; | 
| 669 |  | 
| 670 |     // Forces a garbage collection of the given generation. Also used extensively | 
| 671 |     // throughout the VM. | 
| 672 |     virtual HRESULT GarbageCollect(int generation = -1, bool low_memory_p = false, int mode = collection_blocking) = 0; | 
| 673 |  | 
| 674 |     // Gets the largest GC generation. Also used extensively throughout the VM. | 
| 675 |     virtual unsigned GetMaxGeneration() = 0; | 
| 676 |  | 
| 677 |     // Indicates that an object's finalizer should not be run upon the object's collection. | 
| 678 |     virtual void SetFinalizationRun(Object* obj) = 0; | 
| 679 |  | 
| 680 |     // Indicates that an object's finalizer should be run upon the object's collection. | 
| 681 |     virtual bool RegisterForFinalization(int gen, Object* obj) = 0; | 
| 682 |  | 
| 683 |     /* | 
| 684 |     =========================================================================== | 
| 685 |     Miscellaneous routines used by the VM. | 
| 686 |     =========================================================================== | 
| 687 |     */ | 
| 688 |  | 
| 689 |     // Initializes the GC heap, returning whether or not the initialization | 
| 690 |     // was successful. | 
| 691 |     virtual HRESULT Initialize() = 0; | 
| 692 |  | 
| 693 |     // Returns whether nor this GC was promoted by the last GC. | 
| 694 |     virtual bool IsPromoted(Object* object) = 0; | 
| 695 |  | 
| 696 |     // Returns true if this pointer points into a GC heap, false otherwise. | 
| 697 |     virtual bool IsHeapPointer(void* object, bool small_heap_only = false) = 0; | 
| 698 |  | 
| 699 |     // Return the generation that has been condemned by the current GC. | 
| 700 |     virtual unsigned GetCondemnedGeneration() = 0; | 
| 701 |  | 
| 702 |     // Returns whether or not a GC is in progress. | 
| 703 |     virtual bool IsGCInProgressHelper(bool bConsiderGCStart = false) = 0; | 
| 704 |  | 
| 705 |     // Returns the number of GCs that have occured. Mainly used for | 
| 706 |     // sanity checks asserting that a GC has not occured. | 
| 707 |     virtual unsigned GetGcCount() = 0; | 
| 708 |  | 
| 709 |     // Gets whether or not the home heap of this alloc context matches the heap | 
| 710 |     // associated with this thread. | 
| 711 |     virtual bool IsThreadUsingAllocationContextHeap(gc_alloc_context* acontext, int thread_number) = 0; | 
| 712 |      | 
| 713 |     // Returns whether or not this object resides in an ephemeral generation. | 
| 714 |     virtual bool IsEphemeral(Object* object) = 0; | 
| 715 |  | 
| 716 |     // Blocks until a GC is complete, returning a code indicating the wait was successful. | 
| 717 |     virtual uint32_t WaitUntilGCComplete(bool bConsiderGCStart = false) = 0; | 
| 718 |  | 
| 719 |     // "Fixes" an allocation context by binding its allocation pointer to a | 
| 720 |     // location on the heap. | 
| 721 |     virtual void FixAllocContext(gc_alloc_context* acontext, void* arg, void* heap) = 0; | 
| 722 |  | 
| 723 |     // Gets the total survived size plus the total allocated bytes on the heap. | 
| 724 |     virtual size_t GetCurrentObjSize() = 0; | 
| 725 |  | 
| 726 |     // Sets whether or not a GC is in progress. | 
| 727 |     virtual void SetGCInProgress(bool fInProgress) = 0; | 
| 728 |  | 
| 729 |     // Gets whether or not the GC runtime structures are in a valid state for heap traversal. | 
| 730 |     virtual bool RuntimeStructuresValid() = 0; | 
| 731 |  | 
| 732 |     // Tells the GC when the VM is suspending threads. | 
| 733 |     virtual void SetSuspensionPending(bool fSuspensionPending) = 0; | 
| 734 |  | 
| 735 |     // Tells the GC how many YieldProcessor calls are equal to one scaled yield processor call. | 
| 736 |     virtual void SetYieldProcessorScalingFactor(float yieldProcessorScalingFactor) = 0; | 
| 737 |  | 
| 738 |     /* | 
| 739 |     ============================================================================ | 
| 740 |     Add/RemoveMemoryPressure support routines. These are on the interface | 
| 741 |     for now, but we should move Add/RemoveMemoryPressure from the VM to the GC. | 
| 742 |     When that occurs, these three routines can be removed from the interface. | 
| 743 |     ============================================================================ | 
| 744 |     */ | 
| 745 |  | 
| 746 |     // Get the timestamp corresponding to the last GC that occured for the | 
| 747 |     // given generation. | 
| 748 |     virtual size_t GetLastGCStartTime(int generation) = 0; | 
| 749 |  | 
| 750 |     // Gets the duration of the last GC that occured for the given generation. | 
| 751 |     virtual size_t GetLastGCDuration(int generation) = 0; | 
| 752 |  | 
| 753 |     // Gets a timestamp for the current moment in time. | 
| 754 |     virtual size_t GetNow() = 0; | 
| 755 |  | 
| 756 |     /* | 
| 757 |     =========================================================================== | 
| 758 |     Allocation routines. These all call into the GC's allocator and may trigger a garbage | 
| 759 |     collection. All allocation routines return NULL when the allocation request | 
| 760 |     couldn't be serviced due to being out of memory. | 
| 761 |     =========================================================================== | 
| 762 |     */ | 
| 763 |  | 
| 764 |     // Allocates an object on the given allocation context with the given size and flags. | 
| 765 |     // It is the responsibility of the caller to ensure that the passed-in alloc context is | 
| 766 |     // owned by the thread that is calling this function. If using per-thread alloc contexts, | 
| 767 |     // no lock is needed; callers not using per-thread alloc contexts will need to acquire | 
| 768 |     // a lock to ensure that the calling thread has unique ownership over this alloc context; | 
| 769 |     virtual Object* Alloc(gc_alloc_context* acontext, size_t size, uint32_t flags) = 0; | 
| 770 |  | 
| 771 |     // Allocates an object on the large object heap with the given size and flags. | 
| 772 |     virtual Object* AllocLHeap(size_t size, uint32_t flags) = 0; | 
| 773 |  | 
| 774 |     // Allocates an object on the given allocation context, aligned to 64 bits, | 
| 775 |     // with the given size and flags. | 
| 776 |     // It is the responsibility of the caller to ensure that the passed-in alloc context is | 
| 777 |     // owned by the thread that is calling this function. If using per-thread alloc contexts, | 
| 778 |     // no lock is needed; callers not using per-thread alloc contexts will need to acquire | 
| 779 |     // a lock to ensure that the calling thread has unique ownership over this alloc context. | 
| 780 |     virtual Object* AllocAlign8(gc_alloc_context* acontext, size_t size, uint32_t flags) = 0; | 
| 781 |  | 
| 782 |     // This is for the allocator to indicate it's done allocating a large object during a  | 
| 783 |     // background GC as the BGC threads also need to walk LOH. | 
| 784 |     virtual void PublishObject(uint8_t* obj) = 0; | 
| 785 |  | 
| 786 |     // Signals the WaitForGCEvent event, indicating that a GC has completed. | 
| 787 |     virtual void SetWaitForGCEvent() = 0; | 
| 788 |  | 
| 789 |     // Resets the state of the WaitForGCEvent back to an unsignalled state. | 
| 790 |     virtual void ResetWaitForGCEvent() = 0; | 
| 791 |  | 
| 792 |     /* | 
| 793 |     =========================================================================== | 
| 794 |     Heap verification routines. These are used during heap verification only. | 
| 795 |     =========================================================================== | 
| 796 |     */ | 
| 797 |     // Returns whether or not this object is in the fixed heap. | 
| 798 |     virtual bool IsObjectInFixedHeap(Object* pObj) = 0; | 
| 799 |  | 
| 800 |     // Walks an object and validates its members. | 
| 801 |     virtual void ValidateObjectMember(Object* obj) = 0; | 
| 802 |  | 
| 803 |     // Retrieves the next object after the given object. When the EE | 
| 804 |     // is not suspended, the result is not accurate - if the input argument | 
| 805 |     // is in Gen0, the function could return zeroed out memory as the next object. | 
| 806 |     virtual Object* NextObj(Object* object) = 0; | 
| 807 |  | 
| 808 |     // Given an interior pointer, return a pointer to the object | 
| 809 |     // containing that pointer. This is safe to call only when the EE is suspended. | 
| 810 |     // When fCollectedGenOnly is true, it only returns the object if it's found in  | 
| 811 |     // the generation(s) that are being collected. | 
| 812 |     virtual Object* GetContainingObject(void* pInteriorPtr, bool fCollectedGenOnly) = 0; | 
| 813 |  | 
| 814 |     /* | 
| 815 |     =========================================================================== | 
| 816 |     Profiling routines. Used for event tracing and profiling to broadcast | 
| 817 |     information regarding the heap. | 
| 818 |     =========================================================================== | 
| 819 |     */ | 
| 820 |  | 
| 821 |     // Walks an object, invoking a callback on each member. | 
| 822 |     virtual void DiagWalkObject(Object* obj, walk_fn fn, void* context) = 0; | 
| 823 |  | 
| 824 |     // Walk the heap object by object. | 
| 825 |     virtual void DiagWalkHeap(walk_fn fn, void* context, int gen_number, bool walk_large_object_heap_p) = 0; | 
| 826 |      | 
| 827 |     // Walks the survivors and get the relocation information if objects have moved. | 
| 828 |     virtual void DiagWalkSurvivorsWithType(void* gc_context, record_surv_fn fn, void* diag_context, walk_surv_type type) = 0; | 
| 829 |  | 
| 830 |     // Walks the finalization queue. | 
| 831 |     virtual void DiagWalkFinalizeQueue(void* gc_context, fq_walk_fn fn) = 0; | 
| 832 |  | 
| 833 |     // Scan roots on finalizer queue. This is a generic function. | 
| 834 |     virtual void DiagScanFinalizeQueue(fq_scan_fn fn, ScanContext* context) = 0; | 
| 835 |  | 
| 836 |     // Scan handles for profiling or ETW. | 
| 837 |     virtual void DiagScanHandles(handle_scan_fn fn, int gen_number, ScanContext* context) = 0; | 
| 838 |  | 
| 839 |     // Scan dependent handles for profiling or ETW. | 
| 840 |     virtual void DiagScanDependentHandles(handle_scan_fn fn, int gen_number, ScanContext* context) = 0; | 
| 841 |  | 
| 842 |     // Describes all generations to the profiler, invoking a callback on each generation. | 
| 843 |     virtual void DiagDescrGenerations(gen_walk_fn fn, void* context) = 0; | 
| 844 |  | 
| 845 |     // Traces all GC segments and fires ETW events with information on them. | 
| 846 |     virtual void DiagTraceGCSegments() = 0; | 
| 847 |  | 
| 848 |     /* | 
| 849 |     =========================================================================== | 
| 850 |     GC Stress routines. Used only when running under GC Stress. | 
| 851 |     =========================================================================== | 
| 852 |     */ | 
| 853 |  | 
| 854 |     // Returns TRUE if GC actually happens, otherwise FALSE. The passed alloc context | 
| 855 |     // must not be null. | 
| 856 |     virtual bool StressHeap(gc_alloc_context* acontext) = 0; | 
| 857 |  | 
| 858 |     /* | 
| 859 |     =========================================================================== | 
| 860 |     Routines to register read only segments for frozen objects.  | 
| 861 |     Only valid if FEATURE_BASICFREEZE is defined. | 
| 862 |     =========================================================================== | 
| 863 |     */ | 
| 864 |  | 
| 865 |     // Registers a frozen segment with the GC. | 
| 866 |     virtual segment_handle RegisterFrozenSegment(segment_info *pseginfo) = 0; | 
| 867 |  | 
| 868 |     // Unregisters a frozen segment. | 
| 869 |     virtual void UnregisterFrozenSegment(segment_handle seg) = 0; | 
| 870 |  | 
| 871 |     /* | 
| 872 |     =========================================================================== | 
| 873 |     Routines for informing the GC about which events are enabled. | 
| 874 |     =========================================================================== | 
| 875 |     */ | 
| 876 |  | 
| 877 |     // Enables or disables the given keyword or level on the default event provider. | 
| 878 |     virtual void ControlEvents(GCEventKeyword keyword, GCEventLevel level) = 0; | 
| 879 |  | 
| 880 |     // Enables or disables the given keyword or level on the private event provider. | 
| 881 |     virtual void ControlPrivateEvents(GCEventKeyword keyword, GCEventLevel level) = 0; | 
| 882 |  | 
| 883 |     IGCHeap() {} | 
| 884 |     virtual ~IGCHeap() {} | 
| 885 | }; | 
| 886 |  | 
| 887 | #ifdef WRITE_BARRIER_CHECK | 
| 888 | void updateGCShadow(Object** ptr, Object* val); | 
| 889 | #endif | 
| 890 |  | 
| 891 | //constants for the flags parameter to the gc call back | 
| 892 |  | 
| 893 | #define GC_CALL_INTERIOR            0x1 | 
| 894 | #define GC_CALL_PINNED              0x2 | 
| 895 | #define GC_CALL_CHECK_APP_DOMAIN    0x4 | 
| 896 |  | 
| 897 | //flags for IGCHeapAlloc(...) | 
| 898 | #define GC_ALLOC_FINALIZE 0x1 | 
| 899 | #define GC_ALLOC_CONTAINS_REF 0x2 | 
| 900 | #define GC_ALLOC_ALIGN8_BIAS 0x4 | 
| 901 | #define GC_ALLOC_ALIGN8 0x8 | 
| 902 |  | 
| 903 | #if defined(USE_CHECKED_OBJECTREFS) && !defined(_NOVM) | 
| 904 | #define OBJECTREF_TO_UNCHECKED_OBJECTREF(objref)    (*((_UNCHECKED_OBJECTREF*)&(objref))) | 
| 905 | #define UNCHECKED_OBJECTREF_TO_OBJECTREF(obj)       (OBJECTREF(obj)) | 
| 906 | #else | 
| 907 | #define OBJECTREF_TO_UNCHECKED_OBJECTREF(objref)    (objref) | 
| 908 | #define UNCHECKED_OBJECTREF_TO_OBJECTREF(obj)       (obj) | 
| 909 | #endif | 
| 910 |  | 
| 911 | struct ScanContext | 
| 912 | { | 
| 913 |     Thread* thread_under_crawl; | 
| 914 |     int thread_number; | 
| 915 |     uintptr_t stack_limit; // Lowest point on the thread stack that the scanning logic is permitted to read | 
| 916 |     bool promotion; //TRUE: Promotion, FALSE: Relocation. | 
| 917 |     bool concurrent; //TRUE: concurrent scanning  | 
| 918 | #if defined (FEATURE_APPDOMAIN_RESOURCE_MONITORING) || defined (DACCESS_COMPILE) | 
| 919 |     AppDomain *pCurrentDomain; | 
| 920 | #else | 
| 921 |     void* _unused1; | 
| 922 | #endif //FEATURE_APPDOMAIN_RESOURCE_MONITORING || DACCESS_COMPILE | 
| 923 |     void* pMD; | 
| 924 | #if defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE) | 
| 925 |     EtwGCRootKind dwEtwRootKind; | 
| 926 | #else | 
| 927 |     EtwGCRootKind _unused3; | 
| 928 | #endif // GC_PROFILING || FEATURE_EVENT_TRACE | 
| 929 |      | 
| 930 |     ScanContext() | 
| 931 |     { | 
| 932 |         LIMITED_METHOD_CONTRACT; | 
| 933 |  | 
| 934 |         thread_under_crawl = 0; | 
| 935 |         thread_number = -1; | 
| 936 |         stack_limit = 0; | 
| 937 |         promotion = false; | 
| 938 |         concurrent = false; | 
| 939 |         pMD = NULL; | 
| 940 | #if defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE) | 
| 941 |         dwEtwRootKind = kEtwGCRootKindOther; | 
| 942 | #endif | 
| 943 |     } | 
| 944 | }; | 
| 945 |  | 
| 946 | // These types are used as part of the loader protocol between the EE | 
| 947 | // and the GC. | 
| 948 | struct VersionInfo { | 
| 949 |     uint32_t MajorVersion; | 
| 950 |     uint32_t MinorVersion; | 
| 951 |     uint32_t BuildVersion; | 
| 952 |     const char* Name; | 
| 953 | }; | 
| 954 |  | 
| 955 | typedef void (*GC_VersionInfoFunction)( | 
| 956 |     /* Out */ VersionInfo* | 
| 957 | ); | 
| 958 |  | 
| 959 | typedef HRESULT (*GC_InitializeFunction)( | 
| 960 |     /* In  */ IGCToCLR*, | 
| 961 |     /* Out */ IGCHeap**, | 
| 962 |     /* Out */ IGCHandleManager**, | 
| 963 |     /* Out */ GcDacVars* | 
| 964 | ); | 
| 965 |  | 
| 966 | #endif // _GC_INTERFACE_H_ | 
| 967 |  |