| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | #ifndef _GC_INTERFACE_H_ |
| 6 | #define _GC_INTERFACE_H_ |
| 7 | |
| 8 | // The major version of the GC/EE interface. Breaking changes to this interface |
| 9 | // require bumps in the major version number. |
| 10 | #define GC_INTERFACE_MAJOR_VERSION 2 |
| 11 | |
| 12 | // The minor version of the GC/EE interface. Non-breaking changes are required |
| 13 | // to bump the minor version number. GCs and EEs with minor version number |
| 14 | // mismatches can still interopate correctly, with some care. |
| 15 | #define GC_INTERFACE_MINOR_VERSION 1 |
| 16 | |
| 17 | struct ScanContext; |
| 18 | struct gc_alloc_context; |
| 19 | class CrawlFrame; |
| 20 | |
| 21 | // Callback passed to GcScanRoots. |
| 22 | typedef void promote_func(PTR_PTR_Object, ScanContext*, uint32_t); |
| 23 | |
| 24 | // Callback passed to GcEnumAllocContexts. |
| 25 | typedef void enum_alloc_context_func(gc_alloc_context*, void*); |
| 26 | |
| 27 | // Callback passed to CreateBackgroundThread. |
| 28 | typedef uint32_t (__stdcall *GCBackgroundThreadFunction)(void* param); |
| 29 | |
| 30 | // Struct often used as a parameter to callbacks. |
| 31 | typedef struct |
| 32 | { |
| 33 | promote_func* f; |
| 34 | ScanContext* sc; |
| 35 | CrawlFrame * cf; |
| 36 | } GCCONTEXT; |
| 37 | |
| 38 | // SUSPEND_REASON is the reason why the GC wishes to suspend the EE, |
| 39 | // used as an argument to IGCToCLR::SuspendEE. |
| 40 | typedef enum |
| 41 | { |
| 42 | SUSPEND_FOR_GC = 1, |
| 43 | SUSPEND_FOR_GC_PREP = 6 |
| 44 | } SUSPEND_REASON; |
| 45 | |
| 46 | typedef enum |
| 47 | { |
| 48 | walk_for_gc = 1, |
| 49 | walk_for_bgc = 2, |
| 50 | walk_for_loh = 3 |
| 51 | } walk_surv_type; |
| 52 | |
| 53 | // Different operations that can be done by GCToEEInterface::StompWriteBarrier |
| 54 | enum class WriteBarrierOp |
| 55 | { |
| 56 | StompResize, |
| 57 | StompEphemeral, |
| 58 | Initialize, |
| 59 | SwitchToWriteWatch, |
| 60 | SwitchToNonWriteWatch |
| 61 | }; |
| 62 | |
| 63 | // Arguments to GCToEEInterface::StompWriteBarrier |
| 64 | struct WriteBarrierParameters |
| 65 | { |
| 66 | // The operation that StompWriteBarrier will perform. |
| 67 | WriteBarrierOp operation; |
| 68 | |
| 69 | // Whether or not the runtime is currently suspended. If it is not, |
| 70 | // the EE will need to suspend it before bashing the write barrier. |
| 71 | // Used for all operations. |
| 72 | bool is_runtime_suspended; |
| 73 | |
| 74 | // Whether or not the GC has moved the ephemeral generation to no longer |
| 75 | // be at the top of the heap. When the ephemeral generation is at the top |
| 76 | // of the heap, and the write barrier observes that a pointer is greater than |
| 77 | // g_ephemeral_low, it does not need to check that the pointer is less than |
| 78 | // g_ephemeral_high because there is nothing in the GC heap above the ephemeral |
| 79 | // generation. When this is not the case, however, the GC must inform the EE |
| 80 | // so that the EE can switch to a write barrier that checks that a pointer |
| 81 | // is both greater than g_ephemeral_low and less than g_ephemeral_high. |
| 82 | // Used for WriteBarrierOp::StompResize. |
| 83 | bool requires_upper_bounds_check; |
| 84 | |
| 85 | // The new card table location. May or may not be the same as the previous |
| 86 | // card table. Used for WriteBarrierOp::Initialize and WriteBarrierOp::StompResize. |
| 87 | uint32_t* card_table; |
| 88 | |
| 89 | // The new card bundle table location. May or may not be the same as the previous |
| 90 | // card bundle table. Used for WriteBarrierOp::Initialize and WriteBarrierOp::StompResize. |
| 91 | uint32_t* card_bundle_table; |
| 92 | |
| 93 | // The heap's new low boundary. May or may not be the same as the previous |
| 94 | // value. Used for WriteBarrierOp::Initialize and WriteBarrierOp::StompResize. |
| 95 | uint8_t* lowest_address; |
| 96 | |
| 97 | // The heap's new high boundary. May or may not be the same as the previous |
| 98 | // value. Used for WriteBarrierOp::Initialize and WriteBarrierOp::StompResize. |
| 99 | uint8_t* highest_address; |
| 100 | |
| 101 | // The new start of the ephemeral generation. |
| 102 | // Used for WriteBarrierOp::StompEphemeral. |
| 103 | uint8_t* ephemeral_low; |
| 104 | |
| 105 | // The new end of the ephemeral generation. |
| 106 | // Used for WriteBarrierOp::StompEphemeral. |
| 107 | uint8_t* ephemeral_high; |
| 108 | |
| 109 | // The new write watch table, if we are using our own write watch |
| 110 | // implementation. Used for WriteBarrierOp::SwitchToWriteWatch only. |
| 111 | uint8_t* write_watch_table; |
| 112 | }; |
| 113 | |
| 114 | // Opaque type for tracking object pointers |
| 115 | #ifndef DACCESS_COMPILE |
| 116 | struct OBJECTHANDLE__ |
| 117 | { |
| 118 | void* unused; |
| 119 | }; |
| 120 | typedef struct OBJECTHANDLE__* OBJECTHANDLE; |
| 121 | #else |
| 122 | typedef uintptr_t OBJECTHANDLE; |
| 123 | #endif |
| 124 | |
| 125 | /* |
| 126 | * Scanning callback. |
| 127 | */ |
| 128 | typedef void (CALLBACK *HANDLESCANPROC)(PTR_UNCHECKED_OBJECTREF pref, uintptr_t *, uintptr_t param1, uintptr_t param2); |
| 129 | |
| 130 | #include "gcinterface.ee.h" |
| 131 | |
| 132 | // The allocation context must be known to the VM for use in the allocation |
| 133 | // fast path and known to the GC for performing the allocation. Every Thread |
| 134 | // has its own allocation context that it hands to the GC when allocating. |
| 135 | struct gc_alloc_context |
| 136 | { |
| 137 | uint8_t* alloc_ptr; |
| 138 | uint8_t* alloc_limit; |
| 139 | int64_t alloc_bytes; //Number of bytes allocated on SOH by this context |
| 140 | int64_t alloc_bytes_loh; //Number of bytes allocated on LOH by this context |
| 141 | // These two fields are deliberately not exposed past the EE-GC interface. |
| 142 | void* gc_reserved_1; |
| 143 | void* gc_reserved_2; |
| 144 | int alloc_count; |
| 145 | public: |
| 146 | |
| 147 | void init() |
| 148 | { |
| 149 | LIMITED_METHOD_CONTRACT; |
| 150 | |
| 151 | alloc_ptr = 0; |
| 152 | alloc_limit = 0; |
| 153 | alloc_bytes = 0; |
| 154 | alloc_bytes_loh = 0; |
| 155 | gc_reserved_1 = 0; |
| 156 | gc_reserved_2 = 0; |
| 157 | alloc_count = 0; |
| 158 | } |
| 159 | }; |
| 160 | |
| 161 | #include "gcinterface.dac.h" |
| 162 | |
| 163 | // stub type to abstract a heap segment |
| 164 | struct gc_heap_segment_stub; |
| 165 | typedef gc_heap_segment_stub *segment_handle; |
| 166 | |
| 167 | struct segment_info |
| 168 | { |
| 169 | void * pvMem; // base of the allocation, not the first object (must add ibFirstObject) |
| 170 | size_t ibFirstObject; // offset to the base of the first object in the segment |
| 171 | size_t ibAllocated; // limit of allocated memory in the segment (>= firstobject) |
| 172 | size_t ibCommit; // limit of committed memory in the segment (>= allocated) |
| 173 | size_t ibReserved; // limit of reserved memory in the segment (>= commit) |
| 174 | }; |
| 175 | |
| 176 | #ifdef PROFILING_SUPPORTED |
| 177 | #define GC_PROFILING //Turn on profiling |
| 178 | #endif // PROFILING_SUPPORTED |
| 179 | |
| 180 | #define LARGE_OBJECT_SIZE ((size_t)(85000)) |
| 181 | |
| 182 | // The minimum size of an object is three pointers wide: one for the syncblock, |
| 183 | // one for the object header, and one for the first field in the object. |
| 184 | #define min_obj_size ((sizeof(uint8_t*) + sizeof(uintptr_t) + sizeof(size_t))) |
| 185 | |
| 186 | // The bit shift used to convert a memory address into an index into the |
| 187 | // Software Write Watch table. |
| 188 | #define SOFTWARE_WRITE_WATCH_AddressToTableByteIndexShift 0xc |
| 189 | |
| 190 | class Object; |
| 191 | class IGCHeap; |
| 192 | class IGCHandleManager; |
| 193 | |
| 194 | #ifdef WRITE_BARRIER_CHECK |
| 195 | //always defined, but should be 0 in Server GC |
| 196 | extern uint8_t* g_GCShadow; |
| 197 | extern uint8_t* g_GCShadowEnd; |
| 198 | // saves the g_lowest_address in between GCs to verify the consistency of the shadow segment |
| 199 | extern uint8_t* g_shadow_lowest_address; |
| 200 | #endif |
| 201 | |
| 202 | // Event levels corresponding to events that can be fired by the GC. |
| 203 | enum GCEventLevel |
| 204 | { |
| 205 | GCEventLevel_None = 0, |
| 206 | GCEventLevel_Fatal = 1, |
| 207 | GCEventLevel_Error = 2, |
| 208 | GCEventLevel_Warning = 3, |
| 209 | GCEventLevel_Information = 4, |
| 210 | GCEventLevel_Verbose = 5, |
| 211 | GCEventLevel_Max = 6, |
| 212 | GCEventLevel_LogAlways = 255 |
| 213 | }; |
| 214 | |
| 215 | // Event keywords corresponding to events that can be fired by the GC. These |
| 216 | // numbers come from the ETW manifest itself - please make changes to this enum |
| 217 | // if you add, remove, or change keyword sets that are used by the GC! |
| 218 | enum GCEventKeyword |
| 219 | { |
| 220 | GCEventKeyword_None = 0x0, |
| 221 | GCEventKeyword_GC = 0x1, |
| 222 | // Duplicate on purpose, GCPrivate is the same keyword as GC, |
| 223 | // with a different provider |
| 224 | GCEventKeyword_GCPrivate = 0x1, |
| 225 | GCEventKeyword_GCHandle = 0x2, |
| 226 | GCEventKeyword_GCHandlePrivate = 0x4000, |
| 227 | GCEventKeyword_GCHeapDump = 0x100000, |
| 228 | GCEventKeyword_GCSampledObjectAllocationHigh = 0x200000, |
| 229 | GCEventKeyword_GCHeapSurvivalAndMovement = 0x400000, |
| 230 | GCEventKeyword_GCHeapCollect = 0x800000, |
| 231 | GCEventKeyword_GCHeapAndTypeNames = 0x1000000, |
| 232 | GCEventKeyword_GCSampledObjectAllocationLow = 0x2000000, |
| 233 | GCEventKeyword_All = GCEventKeyword_GC |
| 234 | | GCEventKeyword_GCPrivate |
| 235 | | GCEventKeyword_GCHandle |
| 236 | | GCEventKeyword_GCHandlePrivate |
| 237 | | GCEventKeyword_GCHeapDump |
| 238 | | GCEventKeyword_GCSampledObjectAllocationHigh |
| 239 | | GCEventKeyword_GCHeapDump |
| 240 | | GCEventKeyword_GCSampledObjectAllocationHigh |
| 241 | | GCEventKeyword_GCHeapSurvivalAndMovement |
| 242 | | GCEventKeyword_GCHeapCollect |
| 243 | | GCEventKeyword_GCHeapAndTypeNames |
| 244 | | GCEventKeyword_GCSampledObjectAllocationLow |
| 245 | }; |
| 246 | |
| 247 | // !!!!!!!!!!!!!!!!!!!!!!! |
| 248 | // make sure you change the def in bcl\system\gc.cs |
| 249 | // if you change this! |
| 250 | enum collection_mode |
| 251 | { |
| 252 | collection_non_blocking = 0x00000001, |
| 253 | collection_blocking = 0x00000002, |
| 254 | collection_optimized = 0x00000004, |
| 255 | collection_compacting = 0x00000008 |
| 256 | #ifdef STRESS_HEAP |
| 257 | , collection_gcstress = 0x80000000 |
| 258 | #endif // STRESS_HEAP |
| 259 | }; |
| 260 | |
| 261 | // !!!!!!!!!!!!!!!!!!!!!!! |
| 262 | // make sure you change the def in bcl\system\gc.cs |
| 263 | // if you change this! |
| 264 | enum wait_full_gc_status |
| 265 | { |
| 266 | wait_full_gc_success = 0, |
| 267 | wait_full_gc_failed = 1, |
| 268 | wait_full_gc_cancelled = 2, |
| 269 | wait_full_gc_timeout = 3, |
| 270 | wait_full_gc_na = 4 |
| 271 | }; |
| 272 | |
| 273 | // !!!!!!!!!!!!!!!!!!!!!!! |
| 274 | // make sure you change the def in bcl\system\gc.cs |
| 275 | // if you change this! |
| 276 | enum start_no_gc_region_status |
| 277 | { |
| 278 | start_no_gc_success = 0, |
| 279 | start_no_gc_no_memory = 1, |
| 280 | start_no_gc_too_large = 2, |
| 281 | start_no_gc_in_progress = 3 |
| 282 | }; |
| 283 | |
| 284 | enum end_no_gc_region_status |
| 285 | { |
| 286 | end_no_gc_success = 0, |
| 287 | end_no_gc_not_in_progress = 1, |
| 288 | end_no_gc_induced = 2, |
| 289 | end_no_gc_alloc_exceeded = 3 |
| 290 | }; |
| 291 | |
| 292 | typedef enum |
| 293 | { |
| 294 | /* |
| 295 | * WEAK HANDLES |
| 296 | * |
| 297 | * Weak handles are handles that track an object as long as it is alive, |
| 298 | * but do not keep the object alive if there are no strong references to it. |
| 299 | * |
| 300 | */ |
| 301 | |
| 302 | /* |
| 303 | * SHORT-LIVED WEAK HANDLES |
| 304 | * |
| 305 | * Short-lived weak handles are weak handles that track an object until the |
| 306 | * first time it is detected to be unreachable. At this point, the handle is |
| 307 | * severed, even if the object will be visible from a pending finalization |
| 308 | * graph. This further implies that short weak handles do not track |
| 309 | * across object resurrections. |
| 310 | * |
| 311 | */ |
| 312 | HNDTYPE_WEAK_SHORT = 0, |
| 313 | |
| 314 | /* |
| 315 | * LONG-LIVED WEAK HANDLES |
| 316 | * |
| 317 | * Long-lived weak handles are weak handles that track an object until the |
| 318 | * object is actually reclaimed. Unlike short weak handles, long weak handles |
| 319 | * continue to track their referents through finalization and across any |
| 320 | * resurrections that may occur. |
| 321 | * |
| 322 | */ |
| 323 | HNDTYPE_WEAK_LONG = 1, |
| 324 | HNDTYPE_WEAK_DEFAULT = 1, |
| 325 | |
| 326 | /* |
| 327 | * STRONG HANDLES |
| 328 | * |
| 329 | * Strong handles are handles which function like a normal object reference. |
| 330 | * The existence of a strong handle for an object will cause the object to |
| 331 | * be promoted (remain alive) through a garbage collection cycle. |
| 332 | * |
| 333 | */ |
| 334 | HNDTYPE_STRONG = 2, |
| 335 | HNDTYPE_DEFAULT = 2, |
| 336 | |
| 337 | /* |
| 338 | * PINNED HANDLES |
| 339 | * |
| 340 | * Pinned handles are strong handles which have the added property that they |
| 341 | * prevent an object from moving during a garbage collection cycle. This is |
| 342 | * useful when passing a pointer to object innards out of the runtime while GC |
| 343 | * may be enabled. |
| 344 | * |
| 345 | * NOTE: PINNING AN OBJECT IS EXPENSIVE AS IT PREVENTS THE GC FROM ACHIEVING |
| 346 | * OPTIMAL PACKING OF OBJECTS DURING EPHEMERAL COLLECTIONS. THIS TYPE |
| 347 | * OF HANDLE SHOULD BE USED SPARINGLY! |
| 348 | */ |
| 349 | HNDTYPE_PINNED = 3, |
| 350 | |
| 351 | /* |
| 352 | * VARIABLE HANDLES |
| 353 | * |
| 354 | * Variable handles are handles whose type can be changed dynamically. They |
| 355 | * are larger than other types of handles, and are scanned a little more often, |
| 356 | * but are useful when the handle owner needs an efficient way to change the |
| 357 | * strength of a handle on the fly. |
| 358 | * |
| 359 | */ |
| 360 | HNDTYPE_VARIABLE = 4, |
| 361 | |
| 362 | /* |
| 363 | * REFCOUNTED HANDLES |
| 364 | * |
| 365 | * Refcounted handles are handles that behave as strong handles while the |
| 366 | * refcount on them is greater than 0 and behave as weak handles otherwise. |
| 367 | * |
| 368 | * N.B. These are currently NOT general purpose. |
| 369 | * The implementation is tied to COM Interop. |
| 370 | * |
| 371 | */ |
| 372 | HNDTYPE_REFCOUNTED = 5, |
| 373 | |
| 374 | /* |
| 375 | * DEPENDENT HANDLES |
| 376 | * |
| 377 | * Dependent handles are two handles that need to have the same lifetime. One handle refers to a secondary object |
| 378 | * that needs to have the same lifetime as the primary object. The secondary object should not cause the primary |
| 379 | * object to be referenced, but as long as the primary object is alive, so must be the secondary |
| 380 | * |
| 381 | * They are currently used for EnC for adding new field members to existing instantiations under EnC modes where |
| 382 | * the primary object is the original instantiation and the secondary represents the added field. |
| 383 | * |
| 384 | * They are also used to implement the ConditionalWeakTable class in mscorlib.dll. If you want to use |
| 385 | * these from managed code, they are exposed to BCL through the managed DependentHandle class. |
| 386 | * |
| 387 | * |
| 388 | */ |
| 389 | HNDTYPE_DEPENDENT = 6, |
| 390 | |
| 391 | /* |
| 392 | * PINNED HANDLES for asynchronous operation |
| 393 | * |
| 394 | * Pinned handles are strong handles which have the added property that they |
| 395 | * prevent an object from moving during a garbage collection cycle. This is |
| 396 | * useful when passing a pointer to object innards out of the runtime while GC |
| 397 | * may be enabled. |
| 398 | * |
| 399 | * NOTE: PINNING AN OBJECT IS EXPENSIVE AS IT PREVENTS THE GC FROM ACHIEVING |
| 400 | * OPTIMAL PACKING OF OBJECTS DURING EPHEMERAL COLLECTIONS. THIS TYPE |
| 401 | * OF HANDLE SHOULD BE USED SPARINGLY! |
| 402 | */ |
| 403 | HNDTYPE_ASYNCPINNED = 7, |
| 404 | |
| 405 | /* |
| 406 | * SIZEDREF HANDLES |
| 407 | * |
| 408 | * SizedRef handles are strong handles. Each handle has a piece of user data associated |
| 409 | * with it that stores the size of the object this handle refers to. These handles |
| 410 | * are scanned as strong roots during each GC but only during full GCs would the size |
| 411 | * be calculated. |
| 412 | * |
| 413 | */ |
| 414 | HNDTYPE_SIZEDREF = 8, |
| 415 | |
| 416 | /* |
| 417 | * WINRT WEAK HANDLES |
| 418 | * |
| 419 | * WinRT weak reference handles hold two different types of weak handles to any |
| 420 | * RCW with an underlying COM object that implements IWeakReferenceSource. The |
| 421 | * object reference itself is a short weak handle to the RCW. In addition an |
| 422 | * IWeakReference* to the underlying COM object is stored, allowing the handle |
| 423 | * to create a new RCW if the existing RCW is collected. This ensures that any |
| 424 | * code holding onto a WinRT weak reference can always access an RCW to the |
| 425 | * underlying COM object as long as it has not been released by all of its strong |
| 426 | * references. |
| 427 | */ |
| 428 | HNDTYPE_WEAK_WINRT = 9 |
| 429 | } HandleType; |
| 430 | |
| 431 | typedef enum |
| 432 | { |
| 433 | GC_HEAP_INVALID = 0, |
| 434 | GC_HEAP_WKS = 1, |
| 435 | GC_HEAP_SVR = 2 |
| 436 | } GCHeapType; |
| 437 | |
| 438 | typedef bool (* walk_fn)(Object*, void*); |
| 439 | typedef void (* gen_walk_fn)(void* context, int generation, uint8_t* range_start, uint8_t* range_end, uint8_t* range_reserved); |
| 440 | typedef void (* record_surv_fn)(uint8_t* begin, uint8_t* end, ptrdiff_t reloc, void* context, bool compacting_p, bool bgc_p); |
| 441 | typedef void (* fq_walk_fn)(bool, void*); |
| 442 | typedef void (* fq_scan_fn)(Object** ppObject, ScanContext *pSC, uint32_t dwFlags); |
| 443 | typedef void (* handle_scan_fn)(Object** pRef, Object* pSec, uint32_t flags, ScanContext* context, bool isDependent); |
| 444 | typedef bool (* async_pin_enum_fn)(Object* object, void* context); |
| 445 | |
| 446 | |
| 447 | |
| 448 | class IGCHandleStore { |
| 449 | public: |
| 450 | |
| 451 | virtual void Uproot() = 0; |
| 452 | |
| 453 | virtual bool ContainsHandle(OBJECTHANDLE handle) = 0; |
| 454 | |
| 455 | virtual OBJECTHANDLE CreateHandleOfType(Object* object, HandleType type) = 0; |
| 456 | |
| 457 | virtual OBJECTHANDLE CreateHandleOfType(Object* object, HandleType type, int heapToAffinitizeTo) = 0; |
| 458 | |
| 459 | virtual OBJECTHANDLE CreateHandleWithExtraInfo(Object* object, HandleType type, void* ) = 0; |
| 460 | |
| 461 | virtual OBJECTHANDLE CreateDependentHandle(Object* primary, Object* secondary) = 0; |
| 462 | |
| 463 | // Relocates async pinned handles from a condemned handle store to the default domain's handle store. |
| 464 | // |
| 465 | // The two callbacks are called when: |
| 466 | // 1. clearIfComplete is called whenever the handle table observes an async pin that is still live. |
| 467 | // The callback gives a chance for the EE to unpin the referents if the overlapped operation is complete. |
| 468 | // 2. setHandle is called whenever the GC has relocated the async pin to a new handle table. The passed-in |
| 469 | // handle is the newly-allocated handle in the default domain that should be assigned to the overlapped object. |
| 470 | virtual void RelocateAsyncPinnedHandles(IGCHandleStore* pTarget, void (*clearIfComplete)(Object*), void (*setHandle)(Object*, OBJECTHANDLE)) = 0; |
| 471 | |
| 472 | virtual bool EnumerateAsyncPinnedHandles(async_pin_enum_fn callback, void* context) = 0; |
| 473 | |
| 474 | virtual ~IGCHandleStore() {}; |
| 475 | }; |
| 476 | |
| 477 | class IGCHandleManager { |
| 478 | public: |
| 479 | |
| 480 | virtual bool Initialize() = 0; |
| 481 | |
| 482 | virtual void Shutdown() = 0; |
| 483 | |
| 484 | virtual void* GetHandleContext(OBJECTHANDLE handle) = 0; |
| 485 | |
| 486 | virtual IGCHandleStore* GetGlobalHandleStore() = 0; |
| 487 | |
| 488 | virtual IGCHandleStore* CreateHandleStore(void* context) = 0; |
| 489 | |
| 490 | virtual void DestroyHandleStore(IGCHandleStore* store) = 0; |
| 491 | |
| 492 | virtual OBJECTHANDLE CreateGlobalHandleOfType(Object* object, HandleType type) = 0; |
| 493 | |
| 494 | virtual OBJECTHANDLE CreateDuplicateHandle(OBJECTHANDLE handle) = 0; |
| 495 | |
| 496 | virtual void DestroyHandleOfType(OBJECTHANDLE handle, HandleType type) = 0; |
| 497 | |
| 498 | virtual void DestroyHandleOfUnknownType(OBJECTHANDLE handle) = 0; |
| 499 | |
| 500 | virtual void SetExtraInfoForHandle(OBJECTHANDLE handle, HandleType type, void* ) = 0; |
| 501 | |
| 502 | virtual void* GetExtraInfoFromHandle(OBJECTHANDLE handle) = 0; |
| 503 | |
| 504 | virtual void StoreObjectInHandle(OBJECTHANDLE handle, Object* object) = 0; |
| 505 | |
| 506 | virtual bool StoreObjectInHandleIfNull(OBJECTHANDLE handle, Object* object) = 0; |
| 507 | |
| 508 | virtual void SetDependentHandleSecondary(OBJECTHANDLE handle, Object* object) = 0; |
| 509 | |
| 510 | virtual Object* GetDependentHandleSecondary(OBJECTHANDLE handle) = 0; |
| 511 | |
| 512 | virtual Object* InterlockedCompareExchangeObjectInHandle(OBJECTHANDLE handle, Object* object, Object* comparandObject) = 0; |
| 513 | |
| 514 | virtual HandleType HandleFetchType(OBJECTHANDLE handle) = 0; |
| 515 | |
| 516 | virtual void TraceRefCountedHandles(HANDLESCANPROC callback, uintptr_t param1, uintptr_t param2) = 0; |
| 517 | }; |
| 518 | |
| 519 | // IGCHeap is the interface that the VM will use when interacting with the GC. |
| 520 | class IGCHeap { |
| 521 | public: |
| 522 | /* |
| 523 | =========================================================================== |
| 524 | Hosting APIs. These are used by GC hosting. The code that |
| 525 | calls these methods may possibly be moved behind the interface - |
| 526 | today, the VM handles the setting of segment size and max gen 0 size. |
| 527 | (See src/vm/corehost.cpp) |
| 528 | =========================================================================== |
| 529 | */ |
| 530 | |
| 531 | // Returns whether or not the given size is a valid segment size. |
| 532 | virtual bool IsValidSegmentSize(size_t size) = 0; |
| 533 | |
| 534 | // Returns whether or not the given size is a valid gen 0 max size. |
| 535 | virtual bool IsValidGen0MaxSize(size_t size) = 0; |
| 536 | |
| 537 | // Gets a valid segment size. |
| 538 | virtual size_t GetValidSegmentSize(bool large_seg = false) = 0; |
| 539 | |
| 540 | // Sets the limit for reserved virtual memory. |
| 541 | virtual void SetReservedVMLimit(size_t vmlimit) = 0; |
| 542 | |
| 543 | /* |
| 544 | =========================================================================== |
| 545 | Concurrent GC routines. These are used in various places in the VM |
| 546 | to synchronize with the GC, when the VM wants to update something that |
| 547 | the GC is potentially using, if it's doing a background GC. |
| 548 | |
| 549 | Concrete examples of this are moving async pinned handles across appdomains |
| 550 | and profiling/ETW scenarios. |
| 551 | =========================================================================== |
| 552 | */ |
| 553 | |
| 554 | // Blocks until any running concurrent GCs complete. |
| 555 | virtual void WaitUntilConcurrentGCComplete() = 0; |
| 556 | |
| 557 | // Returns true if a concurrent GC is in progress, false otherwise. |
| 558 | virtual bool IsConcurrentGCInProgress() = 0; |
| 559 | |
| 560 | // Temporarily enables concurrent GC, used during profiling. |
| 561 | virtual void TemporaryEnableConcurrentGC() = 0; |
| 562 | |
| 563 | // Temporarily disables concurrent GC, used during profiling. |
| 564 | virtual void TemporaryDisableConcurrentGC() = 0; |
| 565 | |
| 566 | // Returns whether or not Concurrent GC is enabled. |
| 567 | virtual bool IsConcurrentGCEnabled() = 0; |
| 568 | |
| 569 | // Wait for a concurrent GC to complete if one is in progress, with the given timeout. |
| 570 | virtual HRESULT WaitUntilConcurrentGCCompleteAsync(int millisecondsTimeout) = 0; // Use in native threads. TRUE if succeed. FALSE if failed or timeout |
| 571 | |
| 572 | |
| 573 | /* |
| 574 | =========================================================================== |
| 575 | Finalization routines. These are used by the finalizer thread to communicate |
| 576 | with the GC. |
| 577 | =========================================================================== |
| 578 | */ |
| 579 | |
| 580 | // Finalizes an app domain by finalizing objects within that app domain. |
| 581 | virtual bool FinalizeAppDomain(void* pDomain, bool fRunFinalizers) = 0; |
| 582 | |
| 583 | // Finalizes all registered objects for shutdown, even if they are still reachable. |
| 584 | virtual void SetFinalizeQueueForShutdown(bool fHasLock) = 0; |
| 585 | |
| 586 | // Gets the number of finalizable objects. |
| 587 | virtual size_t GetNumberOfFinalizable() = 0; |
| 588 | |
| 589 | // Traditionally used by the finalizer thread on shutdown to determine |
| 590 | // whether or not to time out. Returns true if the GC lock has not been taken. |
| 591 | virtual bool ShouldRestartFinalizerWatchDog() = 0; |
| 592 | |
| 593 | // Gets the next finalizable object. |
| 594 | virtual Object* GetNextFinalizable() = 0; |
| 595 | |
| 596 | // Sets whether or not the GC should report all finalizable objects as |
| 597 | // ready to be finalized, instead of only collectable objects. |
| 598 | virtual void SetFinalizeRunOnShutdown(bool value) = 0; |
| 599 | |
| 600 | /* |
| 601 | =========================================================================== |
| 602 | BCL routines. These are routines that are directly exposed by mscorlib |
| 603 | as a part of the `System.GC` class. These routines behave in the same |
| 604 | manner as the functions on `System.GC`. |
| 605 | =========================================================================== |
| 606 | */ |
| 607 | |
| 608 | // Gets memory related information - |
| 609 | // highMemLoadThreshold - physical memory load (in percentage) when GC will start to |
| 610 | // react aggressively to reclaim memory. |
| 611 | // totalPhysicalMem - the total amount of phyiscal memory available on the machine and the memory |
| 612 | // limit set on the container if running in a container. |
| 613 | // lastRecordedMemLoad - physical memory load in percentage recorded in the last GC |
| 614 | // lastRecordedHeapSize - total managed heap size recorded in the last GC |
| 615 | // lastRecordedFragmentation - total fragmentation in the managed heap recorded in the last GC |
| 616 | virtual void GetMemoryInfo(uint32_t* highMemLoadThreshold, |
| 617 | uint64_t* totalPhysicalMem, |
| 618 | uint32_t* lastRecordedMemLoad, |
| 619 | size_t* lastRecordedHeapSize, |
| 620 | size_t* lastRecordedFragmentation) = 0; |
| 621 | |
| 622 | // Gets the current GC latency mode. |
| 623 | virtual int GetGcLatencyMode() = 0; |
| 624 | |
| 625 | // Sets the current GC latency mode. newLatencyMode has already been |
| 626 | // verified by mscorlib to be valid. |
| 627 | virtual int SetGcLatencyMode(int newLatencyMode) = 0; |
| 628 | |
| 629 | // Gets the current LOH compaction mode. |
| 630 | virtual int GetLOHCompactionMode() = 0; |
| 631 | |
| 632 | // Sets the current LOH compaction mode. newLOHCompactionMode has |
| 633 | // already been verified by mscorlib to be valid. |
| 634 | virtual void SetLOHCompactionMode(int newLOHCompactionMode) = 0; |
| 635 | |
| 636 | // Registers for a full GC notification, raising a notification if the gen 2 or |
| 637 | // LOH object heap thresholds are exceeded. |
| 638 | virtual bool RegisterForFullGCNotification(uint32_t gen2Percentage, uint32_t lohPercentage) = 0; |
| 639 | |
| 640 | // Cancels a full GC notification that was requested by `RegisterForFullGCNotification`. |
| 641 | virtual bool CancelFullGCNotification() = 0; |
| 642 | |
| 643 | // Returns the status of a registered notification for determining whether a blocking |
| 644 | // Gen 2 collection is about to be initiated, with the given timeout. |
| 645 | virtual int WaitForFullGCApproach(int millisecondsTimeout) = 0; |
| 646 | |
| 647 | // Returns the status of a registered notification for determining whether a blocking |
| 648 | // Gen 2 collection has completed, with the given timeout. |
| 649 | virtual int WaitForFullGCComplete(int millisecondsTimeout) = 0; |
| 650 | |
| 651 | // Returns the generation in which obj is found. Also used by the VM |
| 652 | // in some places, in particular syncblk code. |
| 653 | virtual unsigned WhichGeneration(Object* obj) = 0; |
| 654 | |
| 655 | // Returns the number of GCs that have transpired in the given generation |
| 656 | // since the beginning of the life of the process. Also used by the VM |
| 657 | // for debug code and app domains. |
| 658 | virtual int CollectionCount(int generation, int get_bgc_fgc_coutn = 0) = 0; |
| 659 | |
| 660 | // Begins a no-GC region, returning a code indicating whether entering the no-GC |
| 661 | // region was successful. |
| 662 | virtual int StartNoGCRegion(uint64_t totalSize, bool lohSizeKnown, uint64_t lohSize, bool disallowFullBlockingGC) = 0; |
| 663 | |
| 664 | // Exits a no-GC region. |
| 665 | virtual int EndNoGCRegion() = 0; |
| 666 | |
| 667 | // Gets the total number of bytes in use. |
| 668 | virtual size_t GetTotalBytesInUse() = 0; |
| 669 | |
| 670 | // Forces a garbage collection of the given generation. Also used extensively |
| 671 | // throughout the VM. |
| 672 | virtual HRESULT GarbageCollect(int generation = -1, bool low_memory_p = false, int mode = collection_blocking) = 0; |
| 673 | |
| 674 | // Gets the largest GC generation. Also used extensively throughout the VM. |
| 675 | virtual unsigned GetMaxGeneration() = 0; |
| 676 | |
| 677 | // Indicates that an object's finalizer should not be run upon the object's collection. |
| 678 | virtual void SetFinalizationRun(Object* obj) = 0; |
| 679 | |
| 680 | // Indicates that an object's finalizer should be run upon the object's collection. |
| 681 | virtual bool RegisterForFinalization(int gen, Object* obj) = 0; |
| 682 | |
| 683 | /* |
| 684 | =========================================================================== |
| 685 | Miscellaneous routines used by the VM. |
| 686 | =========================================================================== |
| 687 | */ |
| 688 | |
| 689 | // Initializes the GC heap, returning whether or not the initialization |
| 690 | // was successful. |
| 691 | virtual HRESULT Initialize() = 0; |
| 692 | |
| 693 | // Returns whether nor this GC was promoted by the last GC. |
| 694 | virtual bool IsPromoted(Object* object) = 0; |
| 695 | |
| 696 | // Returns true if this pointer points into a GC heap, false otherwise. |
| 697 | virtual bool IsHeapPointer(void* object, bool small_heap_only = false) = 0; |
| 698 | |
| 699 | // Return the generation that has been condemned by the current GC. |
| 700 | virtual unsigned GetCondemnedGeneration() = 0; |
| 701 | |
| 702 | // Returns whether or not a GC is in progress. |
| 703 | virtual bool IsGCInProgressHelper(bool bConsiderGCStart = false) = 0; |
| 704 | |
| 705 | // Returns the number of GCs that have occured. Mainly used for |
| 706 | // sanity checks asserting that a GC has not occured. |
| 707 | virtual unsigned GetGcCount() = 0; |
| 708 | |
| 709 | // Gets whether or not the home heap of this alloc context matches the heap |
| 710 | // associated with this thread. |
| 711 | virtual bool IsThreadUsingAllocationContextHeap(gc_alloc_context* acontext, int thread_number) = 0; |
| 712 | |
| 713 | // Returns whether or not this object resides in an ephemeral generation. |
| 714 | virtual bool IsEphemeral(Object* object) = 0; |
| 715 | |
| 716 | // Blocks until a GC is complete, returning a code indicating the wait was successful. |
| 717 | virtual uint32_t WaitUntilGCComplete(bool bConsiderGCStart = false) = 0; |
| 718 | |
| 719 | // "Fixes" an allocation context by binding its allocation pointer to a |
| 720 | // location on the heap. |
| 721 | virtual void FixAllocContext(gc_alloc_context* acontext, void* arg, void* heap) = 0; |
| 722 | |
| 723 | // Gets the total survived size plus the total allocated bytes on the heap. |
| 724 | virtual size_t GetCurrentObjSize() = 0; |
| 725 | |
| 726 | // Sets whether or not a GC is in progress. |
| 727 | virtual void SetGCInProgress(bool fInProgress) = 0; |
| 728 | |
| 729 | // Gets whether or not the GC runtime structures are in a valid state for heap traversal. |
| 730 | virtual bool RuntimeStructuresValid() = 0; |
| 731 | |
| 732 | // Tells the GC when the VM is suspending threads. |
| 733 | virtual void SetSuspensionPending(bool fSuspensionPending) = 0; |
| 734 | |
| 735 | // Tells the GC how many YieldProcessor calls are equal to one scaled yield processor call. |
| 736 | virtual void SetYieldProcessorScalingFactor(float yieldProcessorScalingFactor) = 0; |
| 737 | |
| 738 | /* |
| 739 | ============================================================================ |
| 740 | Add/RemoveMemoryPressure support routines. These are on the interface |
| 741 | for now, but we should move Add/RemoveMemoryPressure from the VM to the GC. |
| 742 | When that occurs, these three routines can be removed from the interface. |
| 743 | ============================================================================ |
| 744 | */ |
| 745 | |
| 746 | // Get the timestamp corresponding to the last GC that occured for the |
| 747 | // given generation. |
| 748 | virtual size_t GetLastGCStartTime(int generation) = 0; |
| 749 | |
| 750 | // Gets the duration of the last GC that occured for the given generation. |
| 751 | virtual size_t GetLastGCDuration(int generation) = 0; |
| 752 | |
| 753 | // Gets a timestamp for the current moment in time. |
| 754 | virtual size_t GetNow() = 0; |
| 755 | |
| 756 | /* |
| 757 | =========================================================================== |
| 758 | Allocation routines. These all call into the GC's allocator and may trigger a garbage |
| 759 | collection. All allocation routines return NULL when the allocation request |
| 760 | couldn't be serviced due to being out of memory. |
| 761 | =========================================================================== |
| 762 | */ |
| 763 | |
| 764 | // Allocates an object on the given allocation context with the given size and flags. |
| 765 | // It is the responsibility of the caller to ensure that the passed-in alloc context is |
| 766 | // owned by the thread that is calling this function. If using per-thread alloc contexts, |
| 767 | // no lock is needed; callers not using per-thread alloc contexts will need to acquire |
| 768 | // a lock to ensure that the calling thread has unique ownership over this alloc context; |
| 769 | virtual Object* Alloc(gc_alloc_context* acontext, size_t size, uint32_t flags) = 0; |
| 770 | |
| 771 | // Allocates an object on the large object heap with the given size and flags. |
| 772 | virtual Object* AllocLHeap(size_t size, uint32_t flags) = 0; |
| 773 | |
| 774 | // Allocates an object on the given allocation context, aligned to 64 bits, |
| 775 | // with the given size and flags. |
| 776 | // It is the responsibility of the caller to ensure that the passed-in alloc context is |
| 777 | // owned by the thread that is calling this function. If using per-thread alloc contexts, |
| 778 | // no lock is needed; callers not using per-thread alloc contexts will need to acquire |
| 779 | // a lock to ensure that the calling thread has unique ownership over this alloc context. |
| 780 | virtual Object* AllocAlign8(gc_alloc_context* acontext, size_t size, uint32_t flags) = 0; |
| 781 | |
| 782 | // This is for the allocator to indicate it's done allocating a large object during a |
| 783 | // background GC as the BGC threads also need to walk LOH. |
| 784 | virtual void PublishObject(uint8_t* obj) = 0; |
| 785 | |
| 786 | // Signals the WaitForGCEvent event, indicating that a GC has completed. |
| 787 | virtual void SetWaitForGCEvent() = 0; |
| 788 | |
| 789 | // Resets the state of the WaitForGCEvent back to an unsignalled state. |
| 790 | virtual void ResetWaitForGCEvent() = 0; |
| 791 | |
| 792 | /* |
| 793 | =========================================================================== |
| 794 | Heap verification routines. These are used during heap verification only. |
| 795 | =========================================================================== |
| 796 | */ |
| 797 | // Returns whether or not this object is in the fixed heap. |
| 798 | virtual bool IsObjectInFixedHeap(Object* pObj) = 0; |
| 799 | |
| 800 | // Walks an object and validates its members. |
| 801 | virtual void ValidateObjectMember(Object* obj) = 0; |
| 802 | |
| 803 | // Retrieves the next object after the given object. When the EE |
| 804 | // is not suspended, the result is not accurate - if the input argument |
| 805 | // is in Gen0, the function could return zeroed out memory as the next object. |
| 806 | virtual Object* NextObj(Object* object) = 0; |
| 807 | |
| 808 | // Given an interior pointer, return a pointer to the object |
| 809 | // containing that pointer. This is safe to call only when the EE is suspended. |
| 810 | // When fCollectedGenOnly is true, it only returns the object if it's found in |
| 811 | // the generation(s) that are being collected. |
| 812 | virtual Object* GetContainingObject(void* pInteriorPtr, bool fCollectedGenOnly) = 0; |
| 813 | |
| 814 | /* |
| 815 | =========================================================================== |
| 816 | Profiling routines. Used for event tracing and profiling to broadcast |
| 817 | information regarding the heap. |
| 818 | =========================================================================== |
| 819 | */ |
| 820 | |
| 821 | // Walks an object, invoking a callback on each member. |
| 822 | virtual void DiagWalkObject(Object* obj, walk_fn fn, void* context) = 0; |
| 823 | |
| 824 | // Walk the heap object by object. |
| 825 | virtual void DiagWalkHeap(walk_fn fn, void* context, int gen_number, bool walk_large_object_heap_p) = 0; |
| 826 | |
| 827 | // Walks the survivors and get the relocation information if objects have moved. |
| 828 | virtual void DiagWalkSurvivorsWithType(void* gc_context, record_surv_fn fn, void* diag_context, walk_surv_type type) = 0; |
| 829 | |
| 830 | // Walks the finalization queue. |
| 831 | virtual void DiagWalkFinalizeQueue(void* gc_context, fq_walk_fn fn) = 0; |
| 832 | |
| 833 | // Scan roots on finalizer queue. This is a generic function. |
| 834 | virtual void DiagScanFinalizeQueue(fq_scan_fn fn, ScanContext* context) = 0; |
| 835 | |
| 836 | // Scan handles for profiling or ETW. |
| 837 | virtual void DiagScanHandles(handle_scan_fn fn, int gen_number, ScanContext* context) = 0; |
| 838 | |
| 839 | // Scan dependent handles for profiling or ETW. |
| 840 | virtual void DiagScanDependentHandles(handle_scan_fn fn, int gen_number, ScanContext* context) = 0; |
| 841 | |
| 842 | // Describes all generations to the profiler, invoking a callback on each generation. |
| 843 | virtual void DiagDescrGenerations(gen_walk_fn fn, void* context) = 0; |
| 844 | |
| 845 | // Traces all GC segments and fires ETW events with information on them. |
| 846 | virtual void DiagTraceGCSegments() = 0; |
| 847 | |
| 848 | /* |
| 849 | =========================================================================== |
| 850 | GC Stress routines. Used only when running under GC Stress. |
| 851 | =========================================================================== |
| 852 | */ |
| 853 | |
| 854 | // Returns TRUE if GC actually happens, otherwise FALSE. The passed alloc context |
| 855 | // must not be null. |
| 856 | virtual bool StressHeap(gc_alloc_context* acontext) = 0; |
| 857 | |
| 858 | /* |
| 859 | =========================================================================== |
| 860 | Routines to register read only segments for frozen objects. |
| 861 | Only valid if FEATURE_BASICFREEZE is defined. |
| 862 | =========================================================================== |
| 863 | */ |
| 864 | |
| 865 | // Registers a frozen segment with the GC. |
| 866 | virtual segment_handle RegisterFrozenSegment(segment_info *pseginfo) = 0; |
| 867 | |
| 868 | // Unregisters a frozen segment. |
| 869 | virtual void UnregisterFrozenSegment(segment_handle seg) = 0; |
| 870 | |
| 871 | /* |
| 872 | =========================================================================== |
| 873 | Routines for informing the GC about which events are enabled. |
| 874 | =========================================================================== |
| 875 | */ |
| 876 | |
| 877 | // Enables or disables the given keyword or level on the default event provider. |
| 878 | virtual void ControlEvents(GCEventKeyword keyword, GCEventLevel level) = 0; |
| 879 | |
| 880 | // Enables or disables the given keyword or level on the private event provider. |
| 881 | virtual void ControlPrivateEvents(GCEventKeyword keyword, GCEventLevel level) = 0; |
| 882 | |
| 883 | IGCHeap() {} |
| 884 | virtual ~IGCHeap() {} |
| 885 | }; |
| 886 | |
| 887 | #ifdef WRITE_BARRIER_CHECK |
| 888 | void updateGCShadow(Object** ptr, Object* val); |
| 889 | #endif |
| 890 | |
| 891 | //constants for the flags parameter to the gc call back |
| 892 | |
| 893 | #define GC_CALL_INTERIOR 0x1 |
| 894 | #define GC_CALL_PINNED 0x2 |
| 895 | #define GC_CALL_CHECK_APP_DOMAIN 0x4 |
| 896 | |
| 897 | //flags for IGCHeapAlloc(...) |
| 898 | #define GC_ALLOC_FINALIZE 0x1 |
| 899 | #define GC_ALLOC_CONTAINS_REF 0x2 |
| 900 | #define GC_ALLOC_ALIGN8_BIAS 0x4 |
| 901 | #define GC_ALLOC_ALIGN8 0x8 |
| 902 | |
| 903 | #if defined(USE_CHECKED_OBJECTREFS) && !defined(_NOVM) |
| 904 | #define OBJECTREF_TO_UNCHECKED_OBJECTREF(objref) (*((_UNCHECKED_OBJECTREF*)&(objref))) |
| 905 | #define UNCHECKED_OBJECTREF_TO_OBJECTREF(obj) (OBJECTREF(obj)) |
| 906 | #else |
| 907 | #define OBJECTREF_TO_UNCHECKED_OBJECTREF(objref) (objref) |
| 908 | #define UNCHECKED_OBJECTREF_TO_OBJECTREF(obj) (obj) |
| 909 | #endif |
| 910 | |
| 911 | struct ScanContext |
| 912 | { |
| 913 | Thread* thread_under_crawl; |
| 914 | int thread_number; |
| 915 | uintptr_t stack_limit; // Lowest point on the thread stack that the scanning logic is permitted to read |
| 916 | bool promotion; //TRUE: Promotion, FALSE: Relocation. |
| 917 | bool concurrent; //TRUE: concurrent scanning |
| 918 | #if defined (FEATURE_APPDOMAIN_RESOURCE_MONITORING) || defined (DACCESS_COMPILE) |
| 919 | AppDomain *pCurrentDomain; |
| 920 | #else |
| 921 | void* _unused1; |
| 922 | #endif //FEATURE_APPDOMAIN_RESOURCE_MONITORING || DACCESS_COMPILE |
| 923 | void* pMD; |
| 924 | #if defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE) |
| 925 | EtwGCRootKind dwEtwRootKind; |
| 926 | #else |
| 927 | EtwGCRootKind _unused3; |
| 928 | #endif // GC_PROFILING || FEATURE_EVENT_TRACE |
| 929 | |
| 930 | ScanContext() |
| 931 | { |
| 932 | LIMITED_METHOD_CONTRACT; |
| 933 | |
| 934 | thread_under_crawl = 0; |
| 935 | thread_number = -1; |
| 936 | stack_limit = 0; |
| 937 | promotion = false; |
| 938 | concurrent = false; |
| 939 | pMD = NULL; |
| 940 | #if defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE) |
| 941 | dwEtwRootKind = kEtwGCRootKindOther; |
| 942 | #endif |
| 943 | } |
| 944 | }; |
| 945 | |
| 946 | // These types are used as part of the loader protocol between the EE |
| 947 | // and the GC. |
| 948 | struct VersionInfo { |
| 949 | uint32_t MajorVersion; |
| 950 | uint32_t MinorVersion; |
| 951 | uint32_t BuildVersion; |
| 952 | const char* Name; |
| 953 | }; |
| 954 | |
| 955 | typedef void (*GC_VersionInfoFunction)( |
| 956 | /* Out */ VersionInfo* |
| 957 | ); |
| 958 | |
| 959 | typedef HRESULT (*GC_InitializeFunction)( |
| 960 | /* In */ IGCToCLR*, |
| 961 | /* Out */ IGCHeap**, |
| 962 | /* Out */ IGCHandleManager**, |
| 963 | /* Out */ GcDacVars* |
| 964 | ); |
| 965 | |
| 966 | #endif // _GC_INTERFACE_H_ |
| 967 | |