1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | #ifndef _GC_INTERFACE_H_ |
6 | #define _GC_INTERFACE_H_ |
7 | |
8 | // The major version of the GC/EE interface. Breaking changes to this interface |
9 | // require bumps in the major version number. |
10 | #define GC_INTERFACE_MAJOR_VERSION 2 |
11 | |
12 | // The minor version of the GC/EE interface. Non-breaking changes are required |
13 | // to bump the minor version number. GCs and EEs with minor version number |
14 | // mismatches can still interopate correctly, with some care. |
15 | #define GC_INTERFACE_MINOR_VERSION 1 |
16 | |
17 | struct ScanContext; |
18 | struct gc_alloc_context; |
19 | class CrawlFrame; |
20 | |
21 | // Callback passed to GcScanRoots. |
22 | typedef void promote_func(PTR_PTR_Object, ScanContext*, uint32_t); |
23 | |
24 | // Callback passed to GcEnumAllocContexts. |
25 | typedef void enum_alloc_context_func(gc_alloc_context*, void*); |
26 | |
27 | // Callback passed to CreateBackgroundThread. |
28 | typedef uint32_t (__stdcall *GCBackgroundThreadFunction)(void* param); |
29 | |
30 | // Struct often used as a parameter to callbacks. |
31 | typedef struct |
32 | { |
33 | promote_func* f; |
34 | ScanContext* sc; |
35 | CrawlFrame * cf; |
36 | } GCCONTEXT; |
37 | |
38 | // SUSPEND_REASON is the reason why the GC wishes to suspend the EE, |
39 | // used as an argument to IGCToCLR::SuspendEE. |
40 | typedef enum |
41 | { |
42 | SUSPEND_FOR_GC = 1, |
43 | SUSPEND_FOR_GC_PREP = 6 |
44 | } SUSPEND_REASON; |
45 | |
46 | typedef enum |
47 | { |
48 | walk_for_gc = 1, |
49 | walk_for_bgc = 2, |
50 | walk_for_loh = 3 |
51 | } walk_surv_type; |
52 | |
53 | // Different operations that can be done by GCToEEInterface::StompWriteBarrier |
54 | enum class WriteBarrierOp |
55 | { |
56 | StompResize, |
57 | StompEphemeral, |
58 | Initialize, |
59 | SwitchToWriteWatch, |
60 | SwitchToNonWriteWatch |
61 | }; |
62 | |
63 | // Arguments to GCToEEInterface::StompWriteBarrier |
64 | struct WriteBarrierParameters |
65 | { |
66 | // The operation that StompWriteBarrier will perform. |
67 | WriteBarrierOp operation; |
68 | |
69 | // Whether or not the runtime is currently suspended. If it is not, |
70 | // the EE will need to suspend it before bashing the write barrier. |
71 | // Used for all operations. |
72 | bool is_runtime_suspended; |
73 | |
74 | // Whether or not the GC has moved the ephemeral generation to no longer |
75 | // be at the top of the heap. When the ephemeral generation is at the top |
76 | // of the heap, and the write barrier observes that a pointer is greater than |
77 | // g_ephemeral_low, it does not need to check that the pointer is less than |
78 | // g_ephemeral_high because there is nothing in the GC heap above the ephemeral |
79 | // generation. When this is not the case, however, the GC must inform the EE |
80 | // so that the EE can switch to a write barrier that checks that a pointer |
81 | // is both greater than g_ephemeral_low and less than g_ephemeral_high. |
82 | // Used for WriteBarrierOp::StompResize. |
83 | bool requires_upper_bounds_check; |
84 | |
85 | // The new card table location. May or may not be the same as the previous |
86 | // card table. Used for WriteBarrierOp::Initialize and WriteBarrierOp::StompResize. |
87 | uint32_t* card_table; |
88 | |
89 | // The new card bundle table location. May or may not be the same as the previous |
90 | // card bundle table. Used for WriteBarrierOp::Initialize and WriteBarrierOp::StompResize. |
91 | uint32_t* card_bundle_table; |
92 | |
93 | // The heap's new low boundary. May or may not be the same as the previous |
94 | // value. Used for WriteBarrierOp::Initialize and WriteBarrierOp::StompResize. |
95 | uint8_t* lowest_address; |
96 | |
97 | // The heap's new high boundary. May or may not be the same as the previous |
98 | // value. Used for WriteBarrierOp::Initialize and WriteBarrierOp::StompResize. |
99 | uint8_t* highest_address; |
100 | |
101 | // The new start of the ephemeral generation. |
102 | // Used for WriteBarrierOp::StompEphemeral. |
103 | uint8_t* ephemeral_low; |
104 | |
105 | // The new end of the ephemeral generation. |
106 | // Used for WriteBarrierOp::StompEphemeral. |
107 | uint8_t* ephemeral_high; |
108 | |
109 | // The new write watch table, if we are using our own write watch |
110 | // implementation. Used for WriteBarrierOp::SwitchToWriteWatch only. |
111 | uint8_t* write_watch_table; |
112 | }; |
113 | |
114 | // Opaque type for tracking object pointers |
115 | #ifndef DACCESS_COMPILE |
116 | struct OBJECTHANDLE__ |
117 | { |
118 | void* unused; |
119 | }; |
120 | typedef struct OBJECTHANDLE__* OBJECTHANDLE; |
121 | #else |
122 | typedef uintptr_t OBJECTHANDLE; |
123 | #endif |
124 | |
125 | /* |
126 | * Scanning callback. |
127 | */ |
128 | typedef void (CALLBACK *HANDLESCANPROC)(PTR_UNCHECKED_OBJECTREF pref, uintptr_t *, uintptr_t param1, uintptr_t param2); |
129 | |
130 | #include "gcinterface.ee.h" |
131 | |
132 | // The allocation context must be known to the VM for use in the allocation |
133 | // fast path and known to the GC for performing the allocation. Every Thread |
134 | // has its own allocation context that it hands to the GC when allocating. |
135 | struct gc_alloc_context |
136 | { |
137 | uint8_t* alloc_ptr; |
138 | uint8_t* alloc_limit; |
139 | int64_t alloc_bytes; //Number of bytes allocated on SOH by this context |
140 | int64_t alloc_bytes_loh; //Number of bytes allocated on LOH by this context |
141 | // These two fields are deliberately not exposed past the EE-GC interface. |
142 | void* gc_reserved_1; |
143 | void* gc_reserved_2; |
144 | int alloc_count; |
145 | public: |
146 | |
147 | void init() |
148 | { |
149 | LIMITED_METHOD_CONTRACT; |
150 | |
151 | alloc_ptr = 0; |
152 | alloc_limit = 0; |
153 | alloc_bytes = 0; |
154 | alloc_bytes_loh = 0; |
155 | gc_reserved_1 = 0; |
156 | gc_reserved_2 = 0; |
157 | alloc_count = 0; |
158 | } |
159 | }; |
160 | |
161 | #include "gcinterface.dac.h" |
162 | |
163 | // stub type to abstract a heap segment |
164 | struct gc_heap_segment_stub; |
165 | typedef gc_heap_segment_stub *segment_handle; |
166 | |
167 | struct segment_info |
168 | { |
169 | void * pvMem; // base of the allocation, not the first object (must add ibFirstObject) |
170 | size_t ibFirstObject; // offset to the base of the first object in the segment |
171 | size_t ibAllocated; // limit of allocated memory in the segment (>= firstobject) |
172 | size_t ibCommit; // limit of committed memory in the segment (>= allocated) |
173 | size_t ibReserved; // limit of reserved memory in the segment (>= commit) |
174 | }; |
175 | |
176 | #ifdef PROFILING_SUPPORTED |
177 | #define GC_PROFILING //Turn on profiling |
178 | #endif // PROFILING_SUPPORTED |
179 | |
180 | #define LARGE_OBJECT_SIZE ((size_t)(85000)) |
181 | |
182 | // The minimum size of an object is three pointers wide: one for the syncblock, |
183 | // one for the object header, and one for the first field in the object. |
184 | #define min_obj_size ((sizeof(uint8_t*) + sizeof(uintptr_t) + sizeof(size_t))) |
185 | |
186 | // The bit shift used to convert a memory address into an index into the |
187 | // Software Write Watch table. |
188 | #define SOFTWARE_WRITE_WATCH_AddressToTableByteIndexShift 0xc |
189 | |
190 | class Object; |
191 | class IGCHeap; |
192 | class IGCHandleManager; |
193 | |
194 | #ifdef WRITE_BARRIER_CHECK |
195 | //always defined, but should be 0 in Server GC |
196 | extern uint8_t* g_GCShadow; |
197 | extern uint8_t* g_GCShadowEnd; |
198 | // saves the g_lowest_address in between GCs to verify the consistency of the shadow segment |
199 | extern uint8_t* g_shadow_lowest_address; |
200 | #endif |
201 | |
202 | // Event levels corresponding to events that can be fired by the GC. |
203 | enum GCEventLevel |
204 | { |
205 | GCEventLevel_None = 0, |
206 | GCEventLevel_Fatal = 1, |
207 | GCEventLevel_Error = 2, |
208 | GCEventLevel_Warning = 3, |
209 | GCEventLevel_Information = 4, |
210 | GCEventLevel_Verbose = 5, |
211 | GCEventLevel_Max = 6, |
212 | GCEventLevel_LogAlways = 255 |
213 | }; |
214 | |
215 | // Event keywords corresponding to events that can be fired by the GC. These |
216 | // numbers come from the ETW manifest itself - please make changes to this enum |
217 | // if you add, remove, or change keyword sets that are used by the GC! |
218 | enum GCEventKeyword |
219 | { |
220 | GCEventKeyword_None = 0x0, |
221 | GCEventKeyword_GC = 0x1, |
222 | // Duplicate on purpose, GCPrivate is the same keyword as GC, |
223 | // with a different provider |
224 | GCEventKeyword_GCPrivate = 0x1, |
225 | GCEventKeyword_GCHandle = 0x2, |
226 | GCEventKeyword_GCHandlePrivate = 0x4000, |
227 | GCEventKeyword_GCHeapDump = 0x100000, |
228 | GCEventKeyword_GCSampledObjectAllocationHigh = 0x200000, |
229 | GCEventKeyword_GCHeapSurvivalAndMovement = 0x400000, |
230 | GCEventKeyword_GCHeapCollect = 0x800000, |
231 | GCEventKeyword_GCHeapAndTypeNames = 0x1000000, |
232 | GCEventKeyword_GCSampledObjectAllocationLow = 0x2000000, |
233 | GCEventKeyword_All = GCEventKeyword_GC |
234 | | GCEventKeyword_GCPrivate |
235 | | GCEventKeyword_GCHandle |
236 | | GCEventKeyword_GCHandlePrivate |
237 | | GCEventKeyword_GCHeapDump |
238 | | GCEventKeyword_GCSampledObjectAllocationHigh |
239 | | GCEventKeyword_GCHeapDump |
240 | | GCEventKeyword_GCSampledObjectAllocationHigh |
241 | | GCEventKeyword_GCHeapSurvivalAndMovement |
242 | | GCEventKeyword_GCHeapCollect |
243 | | GCEventKeyword_GCHeapAndTypeNames |
244 | | GCEventKeyword_GCSampledObjectAllocationLow |
245 | }; |
246 | |
247 | // !!!!!!!!!!!!!!!!!!!!!!! |
248 | // make sure you change the def in bcl\system\gc.cs |
249 | // if you change this! |
250 | enum collection_mode |
251 | { |
252 | collection_non_blocking = 0x00000001, |
253 | collection_blocking = 0x00000002, |
254 | collection_optimized = 0x00000004, |
255 | collection_compacting = 0x00000008 |
256 | #ifdef STRESS_HEAP |
257 | , collection_gcstress = 0x80000000 |
258 | #endif // STRESS_HEAP |
259 | }; |
260 | |
261 | // !!!!!!!!!!!!!!!!!!!!!!! |
262 | // make sure you change the def in bcl\system\gc.cs |
263 | // if you change this! |
264 | enum wait_full_gc_status |
265 | { |
266 | wait_full_gc_success = 0, |
267 | wait_full_gc_failed = 1, |
268 | wait_full_gc_cancelled = 2, |
269 | wait_full_gc_timeout = 3, |
270 | wait_full_gc_na = 4 |
271 | }; |
272 | |
273 | // !!!!!!!!!!!!!!!!!!!!!!! |
274 | // make sure you change the def in bcl\system\gc.cs |
275 | // if you change this! |
276 | enum start_no_gc_region_status |
277 | { |
278 | start_no_gc_success = 0, |
279 | start_no_gc_no_memory = 1, |
280 | start_no_gc_too_large = 2, |
281 | start_no_gc_in_progress = 3 |
282 | }; |
283 | |
284 | enum end_no_gc_region_status |
285 | { |
286 | end_no_gc_success = 0, |
287 | end_no_gc_not_in_progress = 1, |
288 | end_no_gc_induced = 2, |
289 | end_no_gc_alloc_exceeded = 3 |
290 | }; |
291 | |
292 | typedef enum |
293 | { |
294 | /* |
295 | * WEAK HANDLES |
296 | * |
297 | * Weak handles are handles that track an object as long as it is alive, |
298 | * but do not keep the object alive if there are no strong references to it. |
299 | * |
300 | */ |
301 | |
302 | /* |
303 | * SHORT-LIVED WEAK HANDLES |
304 | * |
305 | * Short-lived weak handles are weak handles that track an object until the |
306 | * first time it is detected to be unreachable. At this point, the handle is |
307 | * severed, even if the object will be visible from a pending finalization |
308 | * graph. This further implies that short weak handles do not track |
309 | * across object resurrections. |
310 | * |
311 | */ |
312 | HNDTYPE_WEAK_SHORT = 0, |
313 | |
314 | /* |
315 | * LONG-LIVED WEAK HANDLES |
316 | * |
317 | * Long-lived weak handles are weak handles that track an object until the |
318 | * object is actually reclaimed. Unlike short weak handles, long weak handles |
319 | * continue to track their referents through finalization and across any |
320 | * resurrections that may occur. |
321 | * |
322 | */ |
323 | HNDTYPE_WEAK_LONG = 1, |
324 | HNDTYPE_WEAK_DEFAULT = 1, |
325 | |
326 | /* |
327 | * STRONG HANDLES |
328 | * |
329 | * Strong handles are handles which function like a normal object reference. |
330 | * The existence of a strong handle for an object will cause the object to |
331 | * be promoted (remain alive) through a garbage collection cycle. |
332 | * |
333 | */ |
334 | HNDTYPE_STRONG = 2, |
335 | HNDTYPE_DEFAULT = 2, |
336 | |
337 | /* |
338 | * PINNED HANDLES |
339 | * |
340 | * Pinned handles are strong handles which have the added property that they |
341 | * prevent an object from moving during a garbage collection cycle. This is |
342 | * useful when passing a pointer to object innards out of the runtime while GC |
343 | * may be enabled. |
344 | * |
345 | * NOTE: PINNING AN OBJECT IS EXPENSIVE AS IT PREVENTS THE GC FROM ACHIEVING |
346 | * OPTIMAL PACKING OF OBJECTS DURING EPHEMERAL COLLECTIONS. THIS TYPE |
347 | * OF HANDLE SHOULD BE USED SPARINGLY! |
348 | */ |
349 | HNDTYPE_PINNED = 3, |
350 | |
351 | /* |
352 | * VARIABLE HANDLES |
353 | * |
354 | * Variable handles are handles whose type can be changed dynamically. They |
355 | * are larger than other types of handles, and are scanned a little more often, |
356 | * but are useful when the handle owner needs an efficient way to change the |
357 | * strength of a handle on the fly. |
358 | * |
359 | */ |
360 | HNDTYPE_VARIABLE = 4, |
361 | |
362 | /* |
363 | * REFCOUNTED HANDLES |
364 | * |
365 | * Refcounted handles are handles that behave as strong handles while the |
366 | * refcount on them is greater than 0 and behave as weak handles otherwise. |
367 | * |
368 | * N.B. These are currently NOT general purpose. |
369 | * The implementation is tied to COM Interop. |
370 | * |
371 | */ |
372 | HNDTYPE_REFCOUNTED = 5, |
373 | |
374 | /* |
375 | * DEPENDENT HANDLES |
376 | * |
377 | * Dependent handles are two handles that need to have the same lifetime. One handle refers to a secondary object |
378 | * that needs to have the same lifetime as the primary object. The secondary object should not cause the primary |
379 | * object to be referenced, but as long as the primary object is alive, so must be the secondary |
380 | * |
381 | * They are currently used for EnC for adding new field members to existing instantiations under EnC modes where |
382 | * the primary object is the original instantiation and the secondary represents the added field. |
383 | * |
384 | * They are also used to implement the ConditionalWeakTable class in mscorlib.dll. If you want to use |
385 | * these from managed code, they are exposed to BCL through the managed DependentHandle class. |
386 | * |
387 | * |
388 | */ |
389 | HNDTYPE_DEPENDENT = 6, |
390 | |
391 | /* |
392 | * PINNED HANDLES for asynchronous operation |
393 | * |
394 | * Pinned handles are strong handles which have the added property that they |
395 | * prevent an object from moving during a garbage collection cycle. This is |
396 | * useful when passing a pointer to object innards out of the runtime while GC |
397 | * may be enabled. |
398 | * |
399 | * NOTE: PINNING AN OBJECT IS EXPENSIVE AS IT PREVENTS THE GC FROM ACHIEVING |
400 | * OPTIMAL PACKING OF OBJECTS DURING EPHEMERAL COLLECTIONS. THIS TYPE |
401 | * OF HANDLE SHOULD BE USED SPARINGLY! |
402 | */ |
403 | HNDTYPE_ASYNCPINNED = 7, |
404 | |
405 | /* |
406 | * SIZEDREF HANDLES |
407 | * |
408 | * SizedRef handles are strong handles. Each handle has a piece of user data associated |
409 | * with it that stores the size of the object this handle refers to. These handles |
410 | * are scanned as strong roots during each GC but only during full GCs would the size |
411 | * be calculated. |
412 | * |
413 | */ |
414 | HNDTYPE_SIZEDREF = 8, |
415 | |
416 | /* |
417 | * WINRT WEAK HANDLES |
418 | * |
419 | * WinRT weak reference handles hold two different types of weak handles to any |
420 | * RCW with an underlying COM object that implements IWeakReferenceSource. The |
421 | * object reference itself is a short weak handle to the RCW. In addition an |
422 | * IWeakReference* to the underlying COM object is stored, allowing the handle |
423 | * to create a new RCW if the existing RCW is collected. This ensures that any |
424 | * code holding onto a WinRT weak reference can always access an RCW to the |
425 | * underlying COM object as long as it has not been released by all of its strong |
426 | * references. |
427 | */ |
428 | HNDTYPE_WEAK_WINRT = 9 |
429 | } HandleType; |
430 | |
431 | typedef enum |
432 | { |
433 | GC_HEAP_INVALID = 0, |
434 | GC_HEAP_WKS = 1, |
435 | GC_HEAP_SVR = 2 |
436 | } GCHeapType; |
437 | |
438 | typedef bool (* walk_fn)(Object*, void*); |
439 | typedef void (* gen_walk_fn)(void* context, int generation, uint8_t* range_start, uint8_t* range_end, uint8_t* range_reserved); |
440 | typedef void (* record_surv_fn)(uint8_t* begin, uint8_t* end, ptrdiff_t reloc, void* context, bool compacting_p, bool bgc_p); |
441 | typedef void (* fq_walk_fn)(bool, void*); |
442 | typedef void (* fq_scan_fn)(Object** ppObject, ScanContext *pSC, uint32_t dwFlags); |
443 | typedef void (* handle_scan_fn)(Object** pRef, Object* pSec, uint32_t flags, ScanContext* context, bool isDependent); |
444 | typedef bool (* async_pin_enum_fn)(Object* object, void* context); |
445 | |
446 | |
447 | |
448 | class IGCHandleStore { |
449 | public: |
450 | |
451 | virtual void Uproot() = 0; |
452 | |
453 | virtual bool ContainsHandle(OBJECTHANDLE handle) = 0; |
454 | |
455 | virtual OBJECTHANDLE CreateHandleOfType(Object* object, HandleType type) = 0; |
456 | |
457 | virtual OBJECTHANDLE CreateHandleOfType(Object* object, HandleType type, int heapToAffinitizeTo) = 0; |
458 | |
459 | virtual OBJECTHANDLE CreateHandleWithExtraInfo(Object* object, HandleType type, void* ) = 0; |
460 | |
461 | virtual OBJECTHANDLE CreateDependentHandle(Object* primary, Object* secondary) = 0; |
462 | |
463 | // Relocates async pinned handles from a condemned handle store to the default domain's handle store. |
464 | // |
465 | // The two callbacks are called when: |
466 | // 1. clearIfComplete is called whenever the handle table observes an async pin that is still live. |
467 | // The callback gives a chance for the EE to unpin the referents if the overlapped operation is complete. |
468 | // 2. setHandle is called whenever the GC has relocated the async pin to a new handle table. The passed-in |
469 | // handle is the newly-allocated handle in the default domain that should be assigned to the overlapped object. |
470 | virtual void RelocateAsyncPinnedHandles(IGCHandleStore* pTarget, void (*clearIfComplete)(Object*), void (*setHandle)(Object*, OBJECTHANDLE)) = 0; |
471 | |
472 | virtual bool EnumerateAsyncPinnedHandles(async_pin_enum_fn callback, void* context) = 0; |
473 | |
474 | virtual ~IGCHandleStore() {}; |
475 | }; |
476 | |
477 | class IGCHandleManager { |
478 | public: |
479 | |
480 | virtual bool Initialize() = 0; |
481 | |
482 | virtual void Shutdown() = 0; |
483 | |
484 | virtual void* GetHandleContext(OBJECTHANDLE handle) = 0; |
485 | |
486 | virtual IGCHandleStore* GetGlobalHandleStore() = 0; |
487 | |
488 | virtual IGCHandleStore* CreateHandleStore(void* context) = 0; |
489 | |
490 | virtual void DestroyHandleStore(IGCHandleStore* store) = 0; |
491 | |
492 | virtual OBJECTHANDLE CreateGlobalHandleOfType(Object* object, HandleType type) = 0; |
493 | |
494 | virtual OBJECTHANDLE CreateDuplicateHandle(OBJECTHANDLE handle) = 0; |
495 | |
496 | virtual void DestroyHandleOfType(OBJECTHANDLE handle, HandleType type) = 0; |
497 | |
498 | virtual void DestroyHandleOfUnknownType(OBJECTHANDLE handle) = 0; |
499 | |
500 | virtual void SetExtraInfoForHandle(OBJECTHANDLE handle, HandleType type, void* ) = 0; |
501 | |
502 | virtual void* GetExtraInfoFromHandle(OBJECTHANDLE handle) = 0; |
503 | |
504 | virtual void StoreObjectInHandle(OBJECTHANDLE handle, Object* object) = 0; |
505 | |
506 | virtual bool StoreObjectInHandleIfNull(OBJECTHANDLE handle, Object* object) = 0; |
507 | |
508 | virtual void SetDependentHandleSecondary(OBJECTHANDLE handle, Object* object) = 0; |
509 | |
510 | virtual Object* GetDependentHandleSecondary(OBJECTHANDLE handle) = 0; |
511 | |
512 | virtual Object* InterlockedCompareExchangeObjectInHandle(OBJECTHANDLE handle, Object* object, Object* comparandObject) = 0; |
513 | |
514 | virtual HandleType HandleFetchType(OBJECTHANDLE handle) = 0; |
515 | |
516 | virtual void TraceRefCountedHandles(HANDLESCANPROC callback, uintptr_t param1, uintptr_t param2) = 0; |
517 | }; |
518 | |
519 | // IGCHeap is the interface that the VM will use when interacting with the GC. |
520 | class IGCHeap { |
521 | public: |
522 | /* |
523 | =========================================================================== |
524 | Hosting APIs. These are used by GC hosting. The code that |
525 | calls these methods may possibly be moved behind the interface - |
526 | today, the VM handles the setting of segment size and max gen 0 size. |
527 | (See src/vm/corehost.cpp) |
528 | =========================================================================== |
529 | */ |
530 | |
531 | // Returns whether or not the given size is a valid segment size. |
532 | virtual bool IsValidSegmentSize(size_t size) = 0; |
533 | |
534 | // Returns whether or not the given size is a valid gen 0 max size. |
535 | virtual bool IsValidGen0MaxSize(size_t size) = 0; |
536 | |
537 | // Gets a valid segment size. |
538 | virtual size_t GetValidSegmentSize(bool large_seg = false) = 0; |
539 | |
540 | // Sets the limit for reserved virtual memory. |
541 | virtual void SetReservedVMLimit(size_t vmlimit) = 0; |
542 | |
543 | /* |
544 | =========================================================================== |
545 | Concurrent GC routines. These are used in various places in the VM |
546 | to synchronize with the GC, when the VM wants to update something that |
547 | the GC is potentially using, if it's doing a background GC. |
548 | |
549 | Concrete examples of this are moving async pinned handles across appdomains |
550 | and profiling/ETW scenarios. |
551 | =========================================================================== |
552 | */ |
553 | |
554 | // Blocks until any running concurrent GCs complete. |
555 | virtual void WaitUntilConcurrentGCComplete() = 0; |
556 | |
557 | // Returns true if a concurrent GC is in progress, false otherwise. |
558 | virtual bool IsConcurrentGCInProgress() = 0; |
559 | |
560 | // Temporarily enables concurrent GC, used during profiling. |
561 | virtual void TemporaryEnableConcurrentGC() = 0; |
562 | |
563 | // Temporarily disables concurrent GC, used during profiling. |
564 | virtual void TemporaryDisableConcurrentGC() = 0; |
565 | |
566 | // Returns whether or not Concurrent GC is enabled. |
567 | virtual bool IsConcurrentGCEnabled() = 0; |
568 | |
569 | // Wait for a concurrent GC to complete if one is in progress, with the given timeout. |
570 | virtual HRESULT WaitUntilConcurrentGCCompleteAsync(int millisecondsTimeout) = 0; // Use in native threads. TRUE if succeed. FALSE if failed or timeout |
571 | |
572 | |
573 | /* |
574 | =========================================================================== |
575 | Finalization routines. These are used by the finalizer thread to communicate |
576 | with the GC. |
577 | =========================================================================== |
578 | */ |
579 | |
580 | // Finalizes an app domain by finalizing objects within that app domain. |
581 | virtual bool FinalizeAppDomain(void* pDomain, bool fRunFinalizers) = 0; |
582 | |
583 | // Finalizes all registered objects for shutdown, even if they are still reachable. |
584 | virtual void SetFinalizeQueueForShutdown(bool fHasLock) = 0; |
585 | |
586 | // Gets the number of finalizable objects. |
587 | virtual size_t GetNumberOfFinalizable() = 0; |
588 | |
589 | // Traditionally used by the finalizer thread on shutdown to determine |
590 | // whether or not to time out. Returns true if the GC lock has not been taken. |
591 | virtual bool ShouldRestartFinalizerWatchDog() = 0; |
592 | |
593 | // Gets the next finalizable object. |
594 | virtual Object* GetNextFinalizable() = 0; |
595 | |
596 | // Sets whether or not the GC should report all finalizable objects as |
597 | // ready to be finalized, instead of only collectable objects. |
598 | virtual void SetFinalizeRunOnShutdown(bool value) = 0; |
599 | |
600 | /* |
601 | =========================================================================== |
602 | BCL routines. These are routines that are directly exposed by mscorlib |
603 | as a part of the `System.GC` class. These routines behave in the same |
604 | manner as the functions on `System.GC`. |
605 | =========================================================================== |
606 | */ |
607 | |
608 | // Gets memory related information - |
609 | // highMemLoadThreshold - physical memory load (in percentage) when GC will start to |
610 | // react aggressively to reclaim memory. |
611 | // totalPhysicalMem - the total amount of phyiscal memory available on the machine and the memory |
612 | // limit set on the container if running in a container. |
613 | // lastRecordedMemLoad - physical memory load in percentage recorded in the last GC |
614 | // lastRecordedHeapSize - total managed heap size recorded in the last GC |
615 | // lastRecordedFragmentation - total fragmentation in the managed heap recorded in the last GC |
616 | virtual void GetMemoryInfo(uint32_t* highMemLoadThreshold, |
617 | uint64_t* totalPhysicalMem, |
618 | uint32_t* lastRecordedMemLoad, |
619 | size_t* lastRecordedHeapSize, |
620 | size_t* lastRecordedFragmentation) = 0; |
621 | |
622 | // Gets the current GC latency mode. |
623 | virtual int GetGcLatencyMode() = 0; |
624 | |
625 | // Sets the current GC latency mode. newLatencyMode has already been |
626 | // verified by mscorlib to be valid. |
627 | virtual int SetGcLatencyMode(int newLatencyMode) = 0; |
628 | |
629 | // Gets the current LOH compaction mode. |
630 | virtual int GetLOHCompactionMode() = 0; |
631 | |
632 | // Sets the current LOH compaction mode. newLOHCompactionMode has |
633 | // already been verified by mscorlib to be valid. |
634 | virtual void SetLOHCompactionMode(int newLOHCompactionMode) = 0; |
635 | |
636 | // Registers for a full GC notification, raising a notification if the gen 2 or |
637 | // LOH object heap thresholds are exceeded. |
638 | virtual bool RegisterForFullGCNotification(uint32_t gen2Percentage, uint32_t lohPercentage) = 0; |
639 | |
640 | // Cancels a full GC notification that was requested by `RegisterForFullGCNotification`. |
641 | virtual bool CancelFullGCNotification() = 0; |
642 | |
643 | // Returns the status of a registered notification for determining whether a blocking |
644 | // Gen 2 collection is about to be initiated, with the given timeout. |
645 | virtual int WaitForFullGCApproach(int millisecondsTimeout) = 0; |
646 | |
647 | // Returns the status of a registered notification for determining whether a blocking |
648 | // Gen 2 collection has completed, with the given timeout. |
649 | virtual int WaitForFullGCComplete(int millisecondsTimeout) = 0; |
650 | |
651 | // Returns the generation in which obj is found. Also used by the VM |
652 | // in some places, in particular syncblk code. |
653 | virtual unsigned WhichGeneration(Object* obj) = 0; |
654 | |
655 | // Returns the number of GCs that have transpired in the given generation |
656 | // since the beginning of the life of the process. Also used by the VM |
657 | // for debug code and app domains. |
658 | virtual int CollectionCount(int generation, int get_bgc_fgc_coutn = 0) = 0; |
659 | |
660 | // Begins a no-GC region, returning a code indicating whether entering the no-GC |
661 | // region was successful. |
662 | virtual int StartNoGCRegion(uint64_t totalSize, bool lohSizeKnown, uint64_t lohSize, bool disallowFullBlockingGC) = 0; |
663 | |
664 | // Exits a no-GC region. |
665 | virtual int EndNoGCRegion() = 0; |
666 | |
667 | // Gets the total number of bytes in use. |
668 | virtual size_t GetTotalBytesInUse() = 0; |
669 | |
670 | // Forces a garbage collection of the given generation. Also used extensively |
671 | // throughout the VM. |
672 | virtual HRESULT GarbageCollect(int generation = -1, bool low_memory_p = false, int mode = collection_blocking) = 0; |
673 | |
674 | // Gets the largest GC generation. Also used extensively throughout the VM. |
675 | virtual unsigned GetMaxGeneration() = 0; |
676 | |
677 | // Indicates that an object's finalizer should not be run upon the object's collection. |
678 | virtual void SetFinalizationRun(Object* obj) = 0; |
679 | |
680 | // Indicates that an object's finalizer should be run upon the object's collection. |
681 | virtual bool RegisterForFinalization(int gen, Object* obj) = 0; |
682 | |
683 | /* |
684 | =========================================================================== |
685 | Miscellaneous routines used by the VM. |
686 | =========================================================================== |
687 | */ |
688 | |
689 | // Initializes the GC heap, returning whether or not the initialization |
690 | // was successful. |
691 | virtual HRESULT Initialize() = 0; |
692 | |
693 | // Returns whether nor this GC was promoted by the last GC. |
694 | virtual bool IsPromoted(Object* object) = 0; |
695 | |
696 | // Returns true if this pointer points into a GC heap, false otherwise. |
697 | virtual bool IsHeapPointer(void* object, bool small_heap_only = false) = 0; |
698 | |
699 | // Return the generation that has been condemned by the current GC. |
700 | virtual unsigned GetCondemnedGeneration() = 0; |
701 | |
702 | // Returns whether or not a GC is in progress. |
703 | virtual bool IsGCInProgressHelper(bool bConsiderGCStart = false) = 0; |
704 | |
705 | // Returns the number of GCs that have occured. Mainly used for |
706 | // sanity checks asserting that a GC has not occured. |
707 | virtual unsigned GetGcCount() = 0; |
708 | |
709 | // Gets whether or not the home heap of this alloc context matches the heap |
710 | // associated with this thread. |
711 | virtual bool IsThreadUsingAllocationContextHeap(gc_alloc_context* acontext, int thread_number) = 0; |
712 | |
713 | // Returns whether or not this object resides in an ephemeral generation. |
714 | virtual bool IsEphemeral(Object* object) = 0; |
715 | |
716 | // Blocks until a GC is complete, returning a code indicating the wait was successful. |
717 | virtual uint32_t WaitUntilGCComplete(bool bConsiderGCStart = false) = 0; |
718 | |
719 | // "Fixes" an allocation context by binding its allocation pointer to a |
720 | // location on the heap. |
721 | virtual void FixAllocContext(gc_alloc_context* acontext, void* arg, void* heap) = 0; |
722 | |
723 | // Gets the total survived size plus the total allocated bytes on the heap. |
724 | virtual size_t GetCurrentObjSize() = 0; |
725 | |
726 | // Sets whether or not a GC is in progress. |
727 | virtual void SetGCInProgress(bool fInProgress) = 0; |
728 | |
729 | // Gets whether or not the GC runtime structures are in a valid state for heap traversal. |
730 | virtual bool RuntimeStructuresValid() = 0; |
731 | |
732 | // Tells the GC when the VM is suspending threads. |
733 | virtual void SetSuspensionPending(bool fSuspensionPending) = 0; |
734 | |
735 | // Tells the GC how many YieldProcessor calls are equal to one scaled yield processor call. |
736 | virtual void SetYieldProcessorScalingFactor(float yieldProcessorScalingFactor) = 0; |
737 | |
738 | /* |
739 | ============================================================================ |
740 | Add/RemoveMemoryPressure support routines. These are on the interface |
741 | for now, but we should move Add/RemoveMemoryPressure from the VM to the GC. |
742 | When that occurs, these three routines can be removed from the interface. |
743 | ============================================================================ |
744 | */ |
745 | |
746 | // Get the timestamp corresponding to the last GC that occured for the |
747 | // given generation. |
748 | virtual size_t GetLastGCStartTime(int generation) = 0; |
749 | |
750 | // Gets the duration of the last GC that occured for the given generation. |
751 | virtual size_t GetLastGCDuration(int generation) = 0; |
752 | |
753 | // Gets a timestamp for the current moment in time. |
754 | virtual size_t GetNow() = 0; |
755 | |
756 | /* |
757 | =========================================================================== |
758 | Allocation routines. These all call into the GC's allocator and may trigger a garbage |
759 | collection. All allocation routines return NULL when the allocation request |
760 | couldn't be serviced due to being out of memory. |
761 | =========================================================================== |
762 | */ |
763 | |
764 | // Allocates an object on the given allocation context with the given size and flags. |
765 | // It is the responsibility of the caller to ensure that the passed-in alloc context is |
766 | // owned by the thread that is calling this function. If using per-thread alloc contexts, |
767 | // no lock is needed; callers not using per-thread alloc contexts will need to acquire |
768 | // a lock to ensure that the calling thread has unique ownership over this alloc context; |
769 | virtual Object* Alloc(gc_alloc_context* acontext, size_t size, uint32_t flags) = 0; |
770 | |
771 | // Allocates an object on the large object heap with the given size and flags. |
772 | virtual Object* AllocLHeap(size_t size, uint32_t flags) = 0; |
773 | |
774 | // Allocates an object on the given allocation context, aligned to 64 bits, |
775 | // with the given size and flags. |
776 | // It is the responsibility of the caller to ensure that the passed-in alloc context is |
777 | // owned by the thread that is calling this function. If using per-thread alloc contexts, |
778 | // no lock is needed; callers not using per-thread alloc contexts will need to acquire |
779 | // a lock to ensure that the calling thread has unique ownership over this alloc context. |
780 | virtual Object* AllocAlign8(gc_alloc_context* acontext, size_t size, uint32_t flags) = 0; |
781 | |
782 | // This is for the allocator to indicate it's done allocating a large object during a |
783 | // background GC as the BGC threads also need to walk LOH. |
784 | virtual void PublishObject(uint8_t* obj) = 0; |
785 | |
786 | // Signals the WaitForGCEvent event, indicating that a GC has completed. |
787 | virtual void SetWaitForGCEvent() = 0; |
788 | |
789 | // Resets the state of the WaitForGCEvent back to an unsignalled state. |
790 | virtual void ResetWaitForGCEvent() = 0; |
791 | |
792 | /* |
793 | =========================================================================== |
794 | Heap verification routines. These are used during heap verification only. |
795 | =========================================================================== |
796 | */ |
797 | // Returns whether or not this object is in the fixed heap. |
798 | virtual bool IsObjectInFixedHeap(Object* pObj) = 0; |
799 | |
800 | // Walks an object and validates its members. |
801 | virtual void ValidateObjectMember(Object* obj) = 0; |
802 | |
803 | // Retrieves the next object after the given object. When the EE |
804 | // is not suspended, the result is not accurate - if the input argument |
805 | // is in Gen0, the function could return zeroed out memory as the next object. |
806 | virtual Object* NextObj(Object* object) = 0; |
807 | |
808 | // Given an interior pointer, return a pointer to the object |
809 | // containing that pointer. This is safe to call only when the EE is suspended. |
810 | // When fCollectedGenOnly is true, it only returns the object if it's found in |
811 | // the generation(s) that are being collected. |
812 | virtual Object* GetContainingObject(void* pInteriorPtr, bool fCollectedGenOnly) = 0; |
813 | |
814 | /* |
815 | =========================================================================== |
816 | Profiling routines. Used for event tracing and profiling to broadcast |
817 | information regarding the heap. |
818 | =========================================================================== |
819 | */ |
820 | |
821 | // Walks an object, invoking a callback on each member. |
822 | virtual void DiagWalkObject(Object* obj, walk_fn fn, void* context) = 0; |
823 | |
824 | // Walk the heap object by object. |
825 | virtual void DiagWalkHeap(walk_fn fn, void* context, int gen_number, bool walk_large_object_heap_p) = 0; |
826 | |
827 | // Walks the survivors and get the relocation information if objects have moved. |
828 | virtual void DiagWalkSurvivorsWithType(void* gc_context, record_surv_fn fn, void* diag_context, walk_surv_type type) = 0; |
829 | |
830 | // Walks the finalization queue. |
831 | virtual void DiagWalkFinalizeQueue(void* gc_context, fq_walk_fn fn) = 0; |
832 | |
833 | // Scan roots on finalizer queue. This is a generic function. |
834 | virtual void DiagScanFinalizeQueue(fq_scan_fn fn, ScanContext* context) = 0; |
835 | |
836 | // Scan handles for profiling or ETW. |
837 | virtual void DiagScanHandles(handle_scan_fn fn, int gen_number, ScanContext* context) = 0; |
838 | |
839 | // Scan dependent handles for profiling or ETW. |
840 | virtual void DiagScanDependentHandles(handle_scan_fn fn, int gen_number, ScanContext* context) = 0; |
841 | |
842 | // Describes all generations to the profiler, invoking a callback on each generation. |
843 | virtual void DiagDescrGenerations(gen_walk_fn fn, void* context) = 0; |
844 | |
845 | // Traces all GC segments and fires ETW events with information on them. |
846 | virtual void DiagTraceGCSegments() = 0; |
847 | |
848 | /* |
849 | =========================================================================== |
850 | GC Stress routines. Used only when running under GC Stress. |
851 | =========================================================================== |
852 | */ |
853 | |
854 | // Returns TRUE if GC actually happens, otherwise FALSE. The passed alloc context |
855 | // must not be null. |
856 | virtual bool StressHeap(gc_alloc_context* acontext) = 0; |
857 | |
858 | /* |
859 | =========================================================================== |
860 | Routines to register read only segments for frozen objects. |
861 | Only valid if FEATURE_BASICFREEZE is defined. |
862 | =========================================================================== |
863 | */ |
864 | |
865 | // Registers a frozen segment with the GC. |
866 | virtual segment_handle RegisterFrozenSegment(segment_info *pseginfo) = 0; |
867 | |
868 | // Unregisters a frozen segment. |
869 | virtual void UnregisterFrozenSegment(segment_handle seg) = 0; |
870 | |
871 | /* |
872 | =========================================================================== |
873 | Routines for informing the GC about which events are enabled. |
874 | =========================================================================== |
875 | */ |
876 | |
877 | // Enables or disables the given keyword or level on the default event provider. |
878 | virtual void ControlEvents(GCEventKeyword keyword, GCEventLevel level) = 0; |
879 | |
880 | // Enables or disables the given keyword or level on the private event provider. |
881 | virtual void ControlPrivateEvents(GCEventKeyword keyword, GCEventLevel level) = 0; |
882 | |
883 | IGCHeap() {} |
884 | virtual ~IGCHeap() {} |
885 | }; |
886 | |
887 | #ifdef WRITE_BARRIER_CHECK |
888 | void updateGCShadow(Object** ptr, Object* val); |
889 | #endif |
890 | |
891 | //constants for the flags parameter to the gc call back |
892 | |
893 | #define GC_CALL_INTERIOR 0x1 |
894 | #define GC_CALL_PINNED 0x2 |
895 | #define GC_CALL_CHECK_APP_DOMAIN 0x4 |
896 | |
897 | //flags for IGCHeapAlloc(...) |
898 | #define GC_ALLOC_FINALIZE 0x1 |
899 | #define GC_ALLOC_CONTAINS_REF 0x2 |
900 | #define GC_ALLOC_ALIGN8_BIAS 0x4 |
901 | #define GC_ALLOC_ALIGN8 0x8 |
902 | |
903 | #if defined(USE_CHECKED_OBJECTREFS) && !defined(_NOVM) |
904 | #define OBJECTREF_TO_UNCHECKED_OBJECTREF(objref) (*((_UNCHECKED_OBJECTREF*)&(objref))) |
905 | #define UNCHECKED_OBJECTREF_TO_OBJECTREF(obj) (OBJECTREF(obj)) |
906 | #else |
907 | #define OBJECTREF_TO_UNCHECKED_OBJECTREF(objref) (objref) |
908 | #define UNCHECKED_OBJECTREF_TO_OBJECTREF(obj) (obj) |
909 | #endif |
910 | |
911 | struct ScanContext |
912 | { |
913 | Thread* thread_under_crawl; |
914 | int thread_number; |
915 | uintptr_t stack_limit; // Lowest point on the thread stack that the scanning logic is permitted to read |
916 | bool promotion; //TRUE: Promotion, FALSE: Relocation. |
917 | bool concurrent; //TRUE: concurrent scanning |
918 | #if defined (FEATURE_APPDOMAIN_RESOURCE_MONITORING) || defined (DACCESS_COMPILE) |
919 | AppDomain *pCurrentDomain; |
920 | #else |
921 | void* _unused1; |
922 | #endif //FEATURE_APPDOMAIN_RESOURCE_MONITORING || DACCESS_COMPILE |
923 | void* pMD; |
924 | #if defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE) |
925 | EtwGCRootKind dwEtwRootKind; |
926 | #else |
927 | EtwGCRootKind _unused3; |
928 | #endif // GC_PROFILING || FEATURE_EVENT_TRACE |
929 | |
930 | ScanContext() |
931 | { |
932 | LIMITED_METHOD_CONTRACT; |
933 | |
934 | thread_under_crawl = 0; |
935 | thread_number = -1; |
936 | stack_limit = 0; |
937 | promotion = false; |
938 | concurrent = false; |
939 | pMD = NULL; |
940 | #if defined(GC_PROFILING) || defined(FEATURE_EVENT_TRACE) |
941 | dwEtwRootKind = kEtwGCRootKindOther; |
942 | #endif |
943 | } |
944 | }; |
945 | |
946 | // These types are used as part of the loader protocol between the EE |
947 | // and the GC. |
948 | struct VersionInfo { |
949 | uint32_t MajorVersion; |
950 | uint32_t MinorVersion; |
951 | uint32_t BuildVersion; |
952 | const char* Name; |
953 | }; |
954 | |
955 | typedef void (*GC_VersionInfoFunction)( |
956 | /* Out */ VersionInfo* |
957 | ); |
958 | |
959 | typedef HRESULT (*GC_InitializeFunction)( |
960 | /* In */ IGCToCLR*, |
961 | /* Out */ IGCHeap**, |
962 | /* Out */ IGCHandleManager**, |
963 | /* Out */ GcDacVars* |
964 | ); |
965 | |
966 | #endif // _GC_INTERFACE_H_ |
967 | |