1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | #include <cstdint> |
6 | #include <cstddef> |
7 | #include <cassert> |
8 | #include <memory> |
9 | #include <mutex> |
10 | #include <pthread.h> |
11 | #include <errno.h> |
12 | #include "config.h" |
13 | #include "common.h" |
14 | |
15 | #include "gcenv.structs.h" |
16 | #include "gcenv.base.h" |
17 | #include "gcenv.os.h" |
18 | #include "globals.h" |
19 | |
20 | #if HAVE_MACH_ABSOLUTE_TIME |
21 | mach_timebase_info_data_t g_TimebaseInfo; |
22 | #endif // MACH_ABSOLUTE_TIME |
23 | |
24 | namespace |
25 | { |
26 | |
27 | #if HAVE_PTHREAD_CONDATTR_SETCLOCK |
28 | void TimeSpecAdd(timespec* time, uint32_t milliseconds) |
29 | { |
30 | uint64_t nsec = time->tv_nsec + (uint64_t)milliseconds * tccMilliSecondsToNanoSeconds; |
31 | if (nsec >= tccSecondsToNanoSeconds) |
32 | { |
33 | time->tv_sec += nsec / tccSecondsToNanoSeconds; |
34 | nsec %= tccSecondsToNanoSeconds; |
35 | } |
36 | |
37 | time->tv_nsec = nsec; |
38 | } |
39 | #endif // HAVE_PTHREAD_CONDATTR_SETCLOCK |
40 | |
41 | #if HAVE_MACH_ABSOLUTE_TIME |
42 | // Convert nanoseconds to the timespec structure |
43 | // Parameters: |
44 | // nanoseconds - time in nanoseconds to convert |
45 | // t - the target timespec structure |
46 | void NanosecondsToTimeSpec(uint64_t nanoseconds, timespec* t) |
47 | { |
48 | t->tv_sec = nanoseconds / tccSecondsToNanoSeconds; |
49 | t->tv_nsec = nanoseconds % tccSecondsToNanoSeconds; |
50 | } |
51 | #endif // HAVE_PTHREAD_CONDATTR_SETCLOCK |
52 | |
53 | } // anonymous namespace |
54 | |
55 | class GCEvent::Impl |
56 | { |
57 | pthread_cond_t m_condition; |
58 | pthread_mutex_t m_mutex; |
59 | bool m_manualReset; |
60 | bool m_state; |
61 | bool m_isValid; |
62 | |
63 | public: |
64 | |
65 | Impl(bool manualReset, bool initialState) |
66 | : m_manualReset(manualReset), |
67 | m_state(initialState), |
68 | m_isValid(false) |
69 | { |
70 | } |
71 | |
72 | bool Initialize() |
73 | { |
74 | pthread_condattr_t attrs; |
75 | int st = pthread_condattr_init(&attrs); |
76 | if (st != 0) |
77 | { |
78 | assert(!"Failed to initialize UnixEvent condition attribute" ); |
79 | return false; |
80 | } |
81 | |
82 | // TODO(segilles) implement this for CoreCLR |
83 | //PthreadCondAttrHolder attrsHolder(&attrs); |
84 | |
85 | #if HAVE_PTHREAD_CONDATTR_SETCLOCK && !HAVE_MACH_ABSOLUTE_TIME |
86 | // Ensure that the pthread_cond_timedwait will use CLOCK_MONOTONIC |
87 | st = pthread_condattr_setclock(&attrs, CLOCK_MONOTONIC); |
88 | if (st != 0) |
89 | { |
90 | assert(!"Failed to set UnixEvent condition variable wait clock" ); |
91 | return false; |
92 | } |
93 | #endif // HAVE_PTHREAD_CONDATTR_SETCLOCK && !HAVE_MACH_ABSOLUTE_TIME |
94 | |
95 | st = pthread_mutex_init(&m_mutex, NULL); |
96 | if (st != 0) |
97 | { |
98 | assert(!"Failed to initialize UnixEvent mutex" ); |
99 | return false; |
100 | } |
101 | |
102 | st = pthread_cond_init(&m_condition, &attrs); |
103 | if (st != 0) |
104 | { |
105 | assert(!"Failed to initialize UnixEvent condition variable" ); |
106 | |
107 | st = pthread_mutex_destroy(&m_mutex); |
108 | assert(st == 0 && "Failed to destroy UnixEvent mutex" ); |
109 | return false; |
110 | } |
111 | |
112 | m_isValid = true; |
113 | |
114 | return true; |
115 | } |
116 | |
117 | void CloseEvent() |
118 | { |
119 | if (m_isValid) |
120 | { |
121 | int st = pthread_mutex_destroy(&m_mutex); |
122 | assert(st == 0 && "Failed to destroy UnixEvent mutex" ); |
123 | |
124 | st = pthread_cond_destroy(&m_condition); |
125 | assert(st == 0 && "Failed to destroy UnixEvent condition variable" ); |
126 | } |
127 | } |
128 | |
129 | uint32_t Wait(uint32_t milliseconds, bool alertable) |
130 | { |
131 | UNREFERENCED_PARAMETER(alertable); |
132 | |
133 | timespec endTime; |
134 | #if HAVE_MACH_ABSOLUTE_TIME |
135 | uint64_t endMachTime; |
136 | if (milliseconds != INFINITE) |
137 | { |
138 | uint64_t nanoseconds = (uint64_t)milliseconds * tccMilliSecondsToNanoSeconds; |
139 | NanosecondsToTimeSpec(nanoseconds, &endTime); |
140 | endMachTime = mach_absolute_time() + nanoseconds * g_TimebaseInfo.denom / g_TimebaseInfo.numer; |
141 | } |
142 | #elif HAVE_PTHREAD_CONDATTR_SETCLOCK |
143 | if (milliseconds != INFINITE) |
144 | { |
145 | clock_gettime(CLOCK_MONOTONIC, &endTime); |
146 | TimeSpecAdd(&endTime, milliseconds); |
147 | } |
148 | #else |
149 | #error Don't know how to perfom timed wait on this platform |
150 | #endif |
151 | |
152 | int st = 0; |
153 | |
154 | pthread_mutex_lock(&m_mutex); |
155 | while (!m_state) |
156 | { |
157 | if (milliseconds == INFINITE) |
158 | { |
159 | st = pthread_cond_wait(&m_condition, &m_mutex); |
160 | } |
161 | else |
162 | { |
163 | #if HAVE_MACH_ABSOLUTE_TIME |
164 | // Since OSX doesn't support CLOCK_MONOTONIC, we use relative variant of the |
165 | // timed wait and we need to handle spurious wakeups properly. |
166 | st = pthread_cond_timedwait_relative_np(&m_condition, &m_mutex, &endTime); |
167 | if ((st == 0) && !m_state) |
168 | { |
169 | uint64_t machTime = mach_absolute_time(); |
170 | if (machTime < endMachTime) |
171 | { |
172 | // The wake up was spurious, recalculate the relative endTime |
173 | uint64_t remainingNanoseconds = (endMachTime - machTime) * g_TimebaseInfo.numer / g_TimebaseInfo.denom; |
174 | NanosecondsToTimeSpec(remainingNanoseconds, &endTime); |
175 | } |
176 | else |
177 | { |
178 | // Although the timed wait didn't report a timeout, time calculated from the |
179 | // mach time shows we have already reached the end time. It can happen if |
180 | // the wait was spuriously woken up right before the timeout. |
181 | st = ETIMEDOUT; |
182 | } |
183 | } |
184 | #else // HAVE_MACH_ABSOLUTE_TIME |
185 | st = pthread_cond_timedwait(&m_condition, &m_mutex, &endTime); |
186 | #endif // HAVE_MACH_ABSOLUTE_TIME |
187 | // Verify that if the wait timed out, the event was not set |
188 | assert((st != ETIMEDOUT) || !m_state); |
189 | } |
190 | |
191 | if (st != 0) |
192 | { |
193 | // wait failed or timed out |
194 | break; |
195 | } |
196 | } |
197 | |
198 | if ((st == 0) && !m_manualReset) |
199 | { |
200 | // Clear the state for auto-reset events so that only one waiter gets released |
201 | m_state = false; |
202 | } |
203 | |
204 | pthread_mutex_unlock(&m_mutex); |
205 | |
206 | uint32_t waitStatus; |
207 | |
208 | if (st == 0) |
209 | { |
210 | waitStatus = WAIT_OBJECT_0; |
211 | } |
212 | else if (st == ETIMEDOUT) |
213 | { |
214 | waitStatus = WAIT_TIMEOUT; |
215 | } |
216 | else |
217 | { |
218 | waitStatus = WAIT_FAILED; |
219 | } |
220 | |
221 | return waitStatus; |
222 | } |
223 | |
224 | void Set() |
225 | { |
226 | pthread_mutex_lock(&m_mutex); |
227 | m_state = true; |
228 | pthread_mutex_unlock(&m_mutex); |
229 | |
230 | // Unblock all threads waiting for the condition variable |
231 | pthread_cond_broadcast(&m_condition); |
232 | } |
233 | |
234 | void Reset() |
235 | { |
236 | pthread_mutex_lock(&m_mutex); |
237 | m_state = false; |
238 | pthread_mutex_unlock(&m_mutex); |
239 | } |
240 | }; |
241 | |
242 | GCEvent::GCEvent() |
243 | : m_impl(nullptr) |
244 | { |
245 | } |
246 | |
247 | void GCEvent::CloseEvent() |
248 | { |
249 | assert(m_impl != nullptr); |
250 | m_impl->CloseEvent(); |
251 | } |
252 | |
253 | void GCEvent::Set() |
254 | { |
255 | assert(m_impl != nullptr); |
256 | m_impl->Set(); |
257 | } |
258 | |
259 | void GCEvent::Reset() |
260 | { |
261 | assert(m_impl != nullptr); |
262 | m_impl->Reset(); |
263 | } |
264 | |
265 | uint32_t GCEvent::Wait(uint32_t timeout, bool alertable) |
266 | { |
267 | assert(m_impl != nullptr); |
268 | return m_impl->Wait(timeout, alertable); |
269 | } |
270 | |
271 | bool GCEvent::CreateAutoEventNoThrow(bool initialState) |
272 | { |
273 | // This implementation of GCEvent makes no distinction between |
274 | // host-aware and non-host-aware events (since there will be no host). |
275 | return CreateOSAutoEventNoThrow(initialState); |
276 | } |
277 | |
278 | bool GCEvent::CreateManualEventNoThrow(bool initialState) |
279 | { |
280 | // This implementation of GCEvent makes no distinction between |
281 | // host-aware and non-host-aware events (since there will be no host). |
282 | return CreateOSManualEventNoThrow(initialState); |
283 | } |
284 | |
285 | bool GCEvent::CreateOSAutoEventNoThrow(bool initialState) |
286 | { |
287 | assert(m_impl == nullptr); |
288 | std::unique_ptr<GCEvent::Impl> event(new (std::nothrow) GCEvent::Impl(false, initialState)); |
289 | if (!event) |
290 | { |
291 | return false; |
292 | } |
293 | |
294 | if (!event->Initialize()) |
295 | { |
296 | return false; |
297 | } |
298 | |
299 | m_impl = event.release(); |
300 | return true; |
301 | } |
302 | |
303 | bool GCEvent::CreateOSManualEventNoThrow(bool initialState) |
304 | { |
305 | assert(m_impl == nullptr); |
306 | std::unique_ptr<GCEvent::Impl> event(new (std::nothrow) GCEvent::Impl(true, initialState)); |
307 | if (!event) |
308 | { |
309 | return false; |
310 | } |
311 | |
312 | if (!event->Initialize()) |
313 | { |
314 | return false; |
315 | } |
316 | |
317 | m_impl = event.release(); |
318 | return true; |
319 | } |
320 | |
321 | |