| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | #include <cstdint> |
| 6 | #include <cstddef> |
| 7 | #include <cassert> |
| 8 | #include <memory> |
| 9 | #include <mutex> |
| 10 | #include <pthread.h> |
| 11 | #include <errno.h> |
| 12 | #include "config.h" |
| 13 | #include "common.h" |
| 14 | |
| 15 | #include "gcenv.structs.h" |
| 16 | #include "gcenv.base.h" |
| 17 | #include "gcenv.os.h" |
| 18 | #include "globals.h" |
| 19 | |
| 20 | #if HAVE_MACH_ABSOLUTE_TIME |
| 21 | mach_timebase_info_data_t g_TimebaseInfo; |
| 22 | #endif // MACH_ABSOLUTE_TIME |
| 23 | |
| 24 | namespace |
| 25 | { |
| 26 | |
| 27 | #if HAVE_PTHREAD_CONDATTR_SETCLOCK |
| 28 | void TimeSpecAdd(timespec* time, uint32_t milliseconds) |
| 29 | { |
| 30 | uint64_t nsec = time->tv_nsec + (uint64_t)milliseconds * tccMilliSecondsToNanoSeconds; |
| 31 | if (nsec >= tccSecondsToNanoSeconds) |
| 32 | { |
| 33 | time->tv_sec += nsec / tccSecondsToNanoSeconds; |
| 34 | nsec %= tccSecondsToNanoSeconds; |
| 35 | } |
| 36 | |
| 37 | time->tv_nsec = nsec; |
| 38 | } |
| 39 | #endif // HAVE_PTHREAD_CONDATTR_SETCLOCK |
| 40 | |
| 41 | #if HAVE_MACH_ABSOLUTE_TIME |
| 42 | // Convert nanoseconds to the timespec structure |
| 43 | // Parameters: |
| 44 | // nanoseconds - time in nanoseconds to convert |
| 45 | // t - the target timespec structure |
| 46 | void NanosecondsToTimeSpec(uint64_t nanoseconds, timespec* t) |
| 47 | { |
| 48 | t->tv_sec = nanoseconds / tccSecondsToNanoSeconds; |
| 49 | t->tv_nsec = nanoseconds % tccSecondsToNanoSeconds; |
| 50 | } |
| 51 | #endif // HAVE_PTHREAD_CONDATTR_SETCLOCK |
| 52 | |
| 53 | } // anonymous namespace |
| 54 | |
| 55 | class GCEvent::Impl |
| 56 | { |
| 57 | pthread_cond_t m_condition; |
| 58 | pthread_mutex_t m_mutex; |
| 59 | bool m_manualReset; |
| 60 | bool m_state; |
| 61 | bool m_isValid; |
| 62 | |
| 63 | public: |
| 64 | |
| 65 | Impl(bool manualReset, bool initialState) |
| 66 | : m_manualReset(manualReset), |
| 67 | m_state(initialState), |
| 68 | m_isValid(false) |
| 69 | { |
| 70 | } |
| 71 | |
| 72 | bool Initialize() |
| 73 | { |
| 74 | pthread_condattr_t attrs; |
| 75 | int st = pthread_condattr_init(&attrs); |
| 76 | if (st != 0) |
| 77 | { |
| 78 | assert(!"Failed to initialize UnixEvent condition attribute" ); |
| 79 | return false; |
| 80 | } |
| 81 | |
| 82 | // TODO(segilles) implement this for CoreCLR |
| 83 | //PthreadCondAttrHolder attrsHolder(&attrs); |
| 84 | |
| 85 | #if HAVE_PTHREAD_CONDATTR_SETCLOCK && !HAVE_MACH_ABSOLUTE_TIME |
| 86 | // Ensure that the pthread_cond_timedwait will use CLOCK_MONOTONIC |
| 87 | st = pthread_condattr_setclock(&attrs, CLOCK_MONOTONIC); |
| 88 | if (st != 0) |
| 89 | { |
| 90 | assert(!"Failed to set UnixEvent condition variable wait clock" ); |
| 91 | return false; |
| 92 | } |
| 93 | #endif // HAVE_PTHREAD_CONDATTR_SETCLOCK && !HAVE_MACH_ABSOLUTE_TIME |
| 94 | |
| 95 | st = pthread_mutex_init(&m_mutex, NULL); |
| 96 | if (st != 0) |
| 97 | { |
| 98 | assert(!"Failed to initialize UnixEvent mutex" ); |
| 99 | return false; |
| 100 | } |
| 101 | |
| 102 | st = pthread_cond_init(&m_condition, &attrs); |
| 103 | if (st != 0) |
| 104 | { |
| 105 | assert(!"Failed to initialize UnixEvent condition variable" ); |
| 106 | |
| 107 | st = pthread_mutex_destroy(&m_mutex); |
| 108 | assert(st == 0 && "Failed to destroy UnixEvent mutex" ); |
| 109 | return false; |
| 110 | } |
| 111 | |
| 112 | m_isValid = true; |
| 113 | |
| 114 | return true; |
| 115 | } |
| 116 | |
| 117 | void CloseEvent() |
| 118 | { |
| 119 | if (m_isValid) |
| 120 | { |
| 121 | int st = pthread_mutex_destroy(&m_mutex); |
| 122 | assert(st == 0 && "Failed to destroy UnixEvent mutex" ); |
| 123 | |
| 124 | st = pthread_cond_destroy(&m_condition); |
| 125 | assert(st == 0 && "Failed to destroy UnixEvent condition variable" ); |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | uint32_t Wait(uint32_t milliseconds, bool alertable) |
| 130 | { |
| 131 | UNREFERENCED_PARAMETER(alertable); |
| 132 | |
| 133 | timespec endTime; |
| 134 | #if HAVE_MACH_ABSOLUTE_TIME |
| 135 | uint64_t endMachTime; |
| 136 | if (milliseconds != INFINITE) |
| 137 | { |
| 138 | uint64_t nanoseconds = (uint64_t)milliseconds * tccMilliSecondsToNanoSeconds; |
| 139 | NanosecondsToTimeSpec(nanoseconds, &endTime); |
| 140 | endMachTime = mach_absolute_time() + nanoseconds * g_TimebaseInfo.denom / g_TimebaseInfo.numer; |
| 141 | } |
| 142 | #elif HAVE_PTHREAD_CONDATTR_SETCLOCK |
| 143 | if (milliseconds != INFINITE) |
| 144 | { |
| 145 | clock_gettime(CLOCK_MONOTONIC, &endTime); |
| 146 | TimeSpecAdd(&endTime, milliseconds); |
| 147 | } |
| 148 | #else |
| 149 | #error Don't know how to perfom timed wait on this platform |
| 150 | #endif |
| 151 | |
| 152 | int st = 0; |
| 153 | |
| 154 | pthread_mutex_lock(&m_mutex); |
| 155 | while (!m_state) |
| 156 | { |
| 157 | if (milliseconds == INFINITE) |
| 158 | { |
| 159 | st = pthread_cond_wait(&m_condition, &m_mutex); |
| 160 | } |
| 161 | else |
| 162 | { |
| 163 | #if HAVE_MACH_ABSOLUTE_TIME |
| 164 | // Since OSX doesn't support CLOCK_MONOTONIC, we use relative variant of the |
| 165 | // timed wait and we need to handle spurious wakeups properly. |
| 166 | st = pthread_cond_timedwait_relative_np(&m_condition, &m_mutex, &endTime); |
| 167 | if ((st == 0) && !m_state) |
| 168 | { |
| 169 | uint64_t machTime = mach_absolute_time(); |
| 170 | if (machTime < endMachTime) |
| 171 | { |
| 172 | // The wake up was spurious, recalculate the relative endTime |
| 173 | uint64_t remainingNanoseconds = (endMachTime - machTime) * g_TimebaseInfo.numer / g_TimebaseInfo.denom; |
| 174 | NanosecondsToTimeSpec(remainingNanoseconds, &endTime); |
| 175 | } |
| 176 | else |
| 177 | { |
| 178 | // Although the timed wait didn't report a timeout, time calculated from the |
| 179 | // mach time shows we have already reached the end time. It can happen if |
| 180 | // the wait was spuriously woken up right before the timeout. |
| 181 | st = ETIMEDOUT; |
| 182 | } |
| 183 | } |
| 184 | #else // HAVE_MACH_ABSOLUTE_TIME |
| 185 | st = pthread_cond_timedwait(&m_condition, &m_mutex, &endTime); |
| 186 | #endif // HAVE_MACH_ABSOLUTE_TIME |
| 187 | // Verify that if the wait timed out, the event was not set |
| 188 | assert((st != ETIMEDOUT) || !m_state); |
| 189 | } |
| 190 | |
| 191 | if (st != 0) |
| 192 | { |
| 193 | // wait failed or timed out |
| 194 | break; |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | if ((st == 0) && !m_manualReset) |
| 199 | { |
| 200 | // Clear the state for auto-reset events so that only one waiter gets released |
| 201 | m_state = false; |
| 202 | } |
| 203 | |
| 204 | pthread_mutex_unlock(&m_mutex); |
| 205 | |
| 206 | uint32_t waitStatus; |
| 207 | |
| 208 | if (st == 0) |
| 209 | { |
| 210 | waitStatus = WAIT_OBJECT_0; |
| 211 | } |
| 212 | else if (st == ETIMEDOUT) |
| 213 | { |
| 214 | waitStatus = WAIT_TIMEOUT; |
| 215 | } |
| 216 | else |
| 217 | { |
| 218 | waitStatus = WAIT_FAILED; |
| 219 | } |
| 220 | |
| 221 | return waitStatus; |
| 222 | } |
| 223 | |
| 224 | void Set() |
| 225 | { |
| 226 | pthread_mutex_lock(&m_mutex); |
| 227 | m_state = true; |
| 228 | pthread_mutex_unlock(&m_mutex); |
| 229 | |
| 230 | // Unblock all threads waiting for the condition variable |
| 231 | pthread_cond_broadcast(&m_condition); |
| 232 | } |
| 233 | |
| 234 | void Reset() |
| 235 | { |
| 236 | pthread_mutex_lock(&m_mutex); |
| 237 | m_state = false; |
| 238 | pthread_mutex_unlock(&m_mutex); |
| 239 | } |
| 240 | }; |
| 241 | |
| 242 | GCEvent::GCEvent() |
| 243 | : m_impl(nullptr) |
| 244 | { |
| 245 | } |
| 246 | |
| 247 | void GCEvent::CloseEvent() |
| 248 | { |
| 249 | assert(m_impl != nullptr); |
| 250 | m_impl->CloseEvent(); |
| 251 | } |
| 252 | |
| 253 | void GCEvent::Set() |
| 254 | { |
| 255 | assert(m_impl != nullptr); |
| 256 | m_impl->Set(); |
| 257 | } |
| 258 | |
| 259 | void GCEvent::Reset() |
| 260 | { |
| 261 | assert(m_impl != nullptr); |
| 262 | m_impl->Reset(); |
| 263 | } |
| 264 | |
| 265 | uint32_t GCEvent::Wait(uint32_t timeout, bool alertable) |
| 266 | { |
| 267 | assert(m_impl != nullptr); |
| 268 | return m_impl->Wait(timeout, alertable); |
| 269 | } |
| 270 | |
| 271 | bool GCEvent::CreateAutoEventNoThrow(bool initialState) |
| 272 | { |
| 273 | // This implementation of GCEvent makes no distinction between |
| 274 | // host-aware and non-host-aware events (since there will be no host). |
| 275 | return CreateOSAutoEventNoThrow(initialState); |
| 276 | } |
| 277 | |
| 278 | bool GCEvent::CreateManualEventNoThrow(bool initialState) |
| 279 | { |
| 280 | // This implementation of GCEvent makes no distinction between |
| 281 | // host-aware and non-host-aware events (since there will be no host). |
| 282 | return CreateOSManualEventNoThrow(initialState); |
| 283 | } |
| 284 | |
| 285 | bool GCEvent::CreateOSAutoEventNoThrow(bool initialState) |
| 286 | { |
| 287 | assert(m_impl == nullptr); |
| 288 | std::unique_ptr<GCEvent::Impl> event(new (std::nothrow) GCEvent::Impl(false, initialState)); |
| 289 | if (!event) |
| 290 | { |
| 291 | return false; |
| 292 | } |
| 293 | |
| 294 | if (!event->Initialize()) |
| 295 | { |
| 296 | return false; |
| 297 | } |
| 298 | |
| 299 | m_impl = event.release(); |
| 300 | return true; |
| 301 | } |
| 302 | |
| 303 | bool GCEvent::CreateOSManualEventNoThrow(bool initialState) |
| 304 | { |
| 305 | assert(m_impl == nullptr); |
| 306 | std::unique_ptr<GCEvent::Impl> event(new (std::nothrow) GCEvent::Impl(true, initialState)); |
| 307 | if (!event) |
| 308 | { |
| 309 | return false; |
| 310 | } |
| 311 | |
| 312 | if (!event->Initialize()) |
| 313 | { |
| 314 | return false; |
| 315 | } |
| 316 | |
| 317 | m_impl = event.release(); |
| 318 | return true; |
| 319 | } |
| 320 | |
| 321 | |