1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | /*****************************************************************************\ |
6 | * * |
7 | * CorJit.h - EE / JIT interface * |
8 | * * |
9 | * Version 1.0 * |
10 | ******************************************************************************* |
11 | * * |
12 | * * |
13 | * * |
14 | \*****************************************************************************/ |
15 | |
16 | ////////////////////////////////////////////////////////////////////////////////////////////////////////// |
17 | // |
18 | // NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE |
19 | // |
20 | // The JIT/EE interface is versioned. By "interface", we mean mean any and all communication between the |
21 | // JIT and the EE. Any time a change is made to the interface, the JIT/EE interface version identifier |
22 | // must be updated. See code:JITEEVersionIdentifier for more information. |
23 | // |
24 | // NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE |
25 | // |
26 | ////////////////////////////////////////////////////////////////////////////////////////////////////////// |
27 | |
28 | #ifndef _COR_JIT_H_ |
29 | #define _COR_JIT_H_ |
30 | |
31 | #include <corinfo.h> |
32 | |
33 | #include <stdarg.h> |
34 | |
35 | #include <corjitflags.h> |
36 | |
37 | #define CORINFO_STACKPROBE_DEPTH 256*sizeof(UINT_PTR) // Guaranteed stack until an fcall/unmanaged |
38 | // code can set up a frame. Please make sure |
39 | // this is less than a page. This is due to |
40 | // 2 reasons: |
41 | // |
42 | // If we need to probe more than a page |
43 | // size, we need one instruction per page |
44 | // (7 bytes per instruction) |
45 | // |
46 | // The JIT wants some safe space so it doesn't |
47 | // have to put a probe on every call site. It achieves |
48 | // this by probing n bytes more than CORINFO_STACKPROBE_DEPTH |
49 | // If it hasn't used more than n for its own stuff, it |
50 | // can do a call without doing any other probe |
51 | // |
52 | // In any case, we do really expect this define to be |
53 | // small, as setting up a frame should be only pushing |
54 | // a couple of bytes on the stack |
55 | // |
56 | // There is a compile time assert |
57 | // in the x86 jit to protect you from this |
58 | // |
59 | |
60 | |
61 | |
62 | |
63 | /*****************************************************************************/ |
64 | // These are error codes returned by CompileMethod |
65 | enum CorJitResult |
66 | { |
67 | // Note that I dont use FACILITY_NULL for the facility number, |
68 | // we may want to get a 'real' facility number |
69 | CORJIT_OK = NO_ERROR, |
70 | CORJIT_BADCODE = MAKE_HRESULT(SEVERITY_ERROR,FACILITY_NULL, 1), |
71 | CORJIT_OUTOFMEM = MAKE_HRESULT(SEVERITY_ERROR,FACILITY_NULL, 2), |
72 | CORJIT_INTERNALERROR = MAKE_HRESULT(SEVERITY_ERROR,FACILITY_NULL, 3), |
73 | CORJIT_SKIPPED = MAKE_HRESULT(SEVERITY_ERROR,FACILITY_NULL, 4), |
74 | CORJIT_RECOVERABLEERROR = MAKE_HRESULT(SEVERITY_ERROR,FACILITY_NULL, 5), |
75 | }; |
76 | |
77 | /***************************************************************************** |
78 | Here is how CORJIT_FLAG_SKIP_VERIFICATION should be interepreted. |
79 | Note that even if any method is inlined, it need not be verified. |
80 | |
81 | if (CORJIT_FLAG_SKIP_VERIFICATION is passed in to ICorJitCompiler::compileMethod()) |
82 | { |
83 | No verification needs to be done. |
84 | Just compile the method, generating unverifiable code if necessary |
85 | } |
86 | else |
87 | { |
88 | switch(ICorMethodInfo::isInstantiationOfVerifiedGeneric()) |
89 | { |
90 | case INSTVER_NOT_INSTANTIATION: |
91 | |
92 | // |
93 | // Non-generic case, or open generic instantiation |
94 | // |
95 | |
96 | switch(canSkipMethodVerification()) |
97 | { |
98 | case CORINFO_VERIFICATION_CANNOT_SKIP: |
99 | { |
100 | ICorMethodInfo::initConstraintsForVerification(&circularConstraints) |
101 | if (circularConstraints) |
102 | { |
103 | Just emit code to call CORINFO_HELP_VERIFICATION |
104 | The IL will not be compiled |
105 | } |
106 | else |
107 | { |
108 | Verify the method. |
109 | if (unverifiable code is detected) |
110 | { |
111 | In place of branches with unverifiable code, emit code to call CORINFO_HELP_VERIFICATION |
112 | Mark the method (and any of its instantiations) as unverifiable |
113 | } |
114 | Compile the rest of the verifiable code |
115 | } |
116 | } |
117 | |
118 | case CORINFO_VERIFICATION_CAN_SKIP: |
119 | { |
120 | No verification needs to be done. |
121 | Just compile the method, generating unverifiable code if necessary |
122 | } |
123 | |
124 | case CORINFO_VERIFICATION_RUNTIME_CHECK: |
125 | { |
126 | ICorMethodInfo::initConstraintsForVerification(&circularConstraints) |
127 | if (circularConstraints) |
128 | { |
129 | Just emit code to call CORINFO_HELP_VERIFICATION |
130 | The IL will not be compiled |
131 | |
132 | TODO: This could be changed to call CORINFO_HELP_VERIFICATION_RUNTIME_CHECK |
133 | } |
134 | else |
135 | { |
136 | Verify the method. |
137 | if (unverifiable code is detected) |
138 | { |
139 | In the prolog, emit code to call CORINFO_HELP_VERIFICATION_RUNTIME_CHECK |
140 | Mark the method (and any of its instantiations) as unverifiable |
141 | } |
142 | Compile the method, generating unverifiable code if necessary |
143 | } |
144 | } |
145 | case CORINFO_VERIFICATION_DONT_JIT: |
146 | { |
147 | ICorMethodInfo::initConstraintsForVerification(&circularConstraints) |
148 | if (circularConstraints) |
149 | { |
150 | Just emit code to call CORINFO_HELP_VERIFICATION |
151 | The IL will not be compiled |
152 | } |
153 | else |
154 | { |
155 | Verify the method. |
156 | if (unverifiable code is detected) |
157 | { |
158 | Fail the jit |
159 | } |
160 | } |
161 | } |
162 | } |
163 | |
164 | case INSTVER_GENERIC_PASSED_VERIFICATION: |
165 | { |
166 | This cannot ever happen because the VM would pass in CORJIT_FLAG_SKIP_VERIFICATION. |
167 | } |
168 | |
169 | case INSTVER_GENERIC_FAILED_VERIFICATION: |
170 | |
171 | switch(canSkipMethodVerification()) |
172 | { |
173 | case CORINFO_VERIFICATION_CANNOT_SKIP: |
174 | { |
175 | This cannot be supported because the compiler does not know which branches should call CORINFO_HELP_VERIFICATION. |
176 | The CLR will throw a VerificationException instead of trying to compile this method |
177 | } |
178 | |
179 | case CORINFO_VERIFICATION_CAN_SKIP: |
180 | { |
181 | This cannot ever happen because the CLR would pass in CORJIT_FLAG_SKIP_VERIFICATION. |
182 | } |
183 | |
184 | case CORINFO_VERIFICATION_RUNTIME_CHECK: |
185 | { |
186 | No verification needs to be done. |
187 | In the prolog, emit code to call CORINFO_HELP_VERIFICATION_RUNTIME_CHECK |
188 | Compile the method, generating unverifiable code if necessary |
189 | } |
190 | case CORINFO_VERIFICATION_DONT_JIT: |
191 | { |
192 | Fail the jit |
193 | } |
194 | } |
195 | } |
196 | } |
197 | |
198 | */ |
199 | |
200 | /*****************************************************************************/ |
201 | // These are flags passed to ICorJitInfo::allocMem |
202 | // to guide the memory allocation for the code, readonly data, and read-write data |
203 | enum CorJitAllocMemFlag |
204 | { |
205 | CORJIT_ALLOCMEM_DEFAULT_CODE_ALIGN = 0x00000000, // The code will be use the normal alignment |
206 | CORJIT_ALLOCMEM_FLG_16BYTE_ALIGN = 0x00000001, // The code will be 16-byte aligned |
207 | CORJIT_ALLOCMEM_FLG_RODATA_16BYTE_ALIGN = 0x00000002, // The read-only data will be 16-byte aligned |
208 | }; |
209 | |
210 | inline CorJitAllocMemFlag operator |(CorJitAllocMemFlag a, CorJitAllocMemFlag b) |
211 | { |
212 | return static_cast<CorJitAllocMemFlag>(static_cast<int>(a) | static_cast<int>(b)); |
213 | } |
214 | |
215 | enum CorJitFuncKind |
216 | { |
217 | CORJIT_FUNC_ROOT, // The main/root function (always id==0) |
218 | CORJIT_FUNC_HANDLER, // a funclet associated with an EH handler (finally, fault, catch, filter handler) |
219 | CORJIT_FUNC_FILTER // a funclet associated with an EH filter |
220 | }; |
221 | |
222 | // We have a performance-investigation mode (defined by the FEATURE_USE_ASM_GC_WRITE_BARRIERS and |
223 | // FEATURE_COUNT_GC_WRITE_BARRIER preprocessor symbols) in which the JIT adds an argument of this |
224 | // enumeration to checked write barrier calls in order to classify them. |
225 | enum CheckedWriteBarrierKinds { |
226 | CWBKind_Unclassified, // Not one of the ones below. |
227 | CWBKind_RetBuf, // Store through a return buffer pointer argument. |
228 | CWBKind_ByRefArg, // Store through a by-ref argument (not an implicit return buffer). |
229 | CWBKind_OtherByRefLocal, // Store through a by-ref local variable. |
230 | CWBKind_AddrOfLocal, // Store through the address of a local (arguably a bug that this happens at all). |
231 | }; |
232 | |
233 | #include "corjithost.h" |
234 | |
235 | extern "C" void __stdcall jitStartup(ICorJitHost* host); |
236 | |
237 | class ICorJitCompiler; |
238 | class ICorJitInfo; |
239 | struct IEEMemoryManager; |
240 | |
241 | extern "C" ICorJitCompiler* __stdcall getJit(); |
242 | |
243 | // #EEToJitInterface |
244 | // ICorJitCompiler is the interface that the EE uses to get IL bytecode converted to native code. Note that |
245 | // to accomplish this the JIT has to call back to the EE to get symbolic information. The code:ICorJitInfo |
246 | // type passed as 'comp' to compileMethod is the mechanism to get this information. This is often the more |
247 | // interesting interface. |
248 | // |
249 | // |
250 | class ICorJitCompiler |
251 | { |
252 | public: |
253 | // compileMethod is the main routine to ask the JIT Compiler to create native code for a method. The |
254 | // method to be compiled is passed in the 'info' parameter, and the code:ICorJitInfo is used to allow the |
255 | // JIT to resolve tokens, and make any other callbacks needed to create the code. nativeEntry, and |
256 | // nativeSizeOfCode are just for convenience because the JIT asks the EE for the memory to emit code into |
257 | // (see code:ICorJitInfo.allocMem), so really the EE already knows where the method starts and how big |
258 | // it is (in fact, it could be in more than one chunk). |
259 | // |
260 | // * In the 32 bit jit this is implemented by code:CILJit.compileMethod |
261 | // * For the 64 bit jit this is implemented by code:PreJit.compileMethod |
262 | // |
263 | // Note: Obfuscators that are hacking the JIT depend on this method having __stdcall calling convention |
264 | virtual CorJitResult __stdcall compileMethod ( |
265 | ICorJitInfo *comp, /* IN */ |
266 | struct CORINFO_METHOD_INFO *info, /* IN */ |
267 | unsigned /* code:CorJitFlag */ flags, /* IN */ |
268 | BYTE **nativeEntry, /* OUT */ |
269 | ULONG *nativeSizeOfCode /* OUT */ |
270 | ) = 0; |
271 | |
272 | // Some JIT compilers (most notably Phoenix), cache information about EE structures from one invocation |
273 | // of the compiler to the next. This can be a problem when appdomains are unloaded, as some of this |
274 | // cached information becomes stale. The code:ICorJitCompiler.isCacheCleanupRequired is called by the EE |
275 | // early first to see if jit needs these notifications, and if so, the EE will call ClearCache is called |
276 | // whenever the compiler should abandon its cache (eg on appdomain unload) |
277 | virtual void clearCache() = 0; |
278 | virtual BOOL isCacheCleanupRequired() = 0; |
279 | |
280 | // Do any appropriate work at process shutdown. Default impl is to do nothing. |
281 | virtual void ProcessShutdownWork(ICorStaticInfo* info) {}; |
282 | |
283 | // The EE asks the JIT for a "version identifier". This represents the version of the JIT/EE interface. |
284 | // If the JIT doesn't implement the same JIT/EE interface expected by the EE (because the JIT doesn't |
285 | // return the version identifier that the EE expects), then the EE fails to load the JIT. |
286 | // |
287 | virtual void getVersionIdentifier( |
288 | GUID* versionIdentifier /* OUT */ |
289 | ) = 0; |
290 | |
291 | // When the EE loads the System.Numerics.Vectors assembly, it asks the JIT what length (in bytes) of |
292 | // SIMD vector it supports as an intrinsic type. Zero means that the JIT does not support SIMD |
293 | // intrinsics, so the EE should use the default size (i.e. the size of the IL implementation). |
294 | virtual unsigned getMaxIntrinsicSIMDVectorLength(CORJIT_FLAGS cpuCompileFlags) { return 0; } |
295 | |
296 | // IL obfuscators sometimes interpose on the EE-JIT interface. This function allows the VM to |
297 | // tell the JIT to use a particular ICorJitCompiler to implement the methods of this interface, |
298 | // and not to implement those methods itself. The JIT must not return this method when getJit() |
299 | // is called. Instead, it must pass along all calls to this interface from within its own |
300 | // ICorJitCompiler implementation. If 'realJitCompiler' is nullptr, then the JIT should resume |
301 | // executing all the functions itself. |
302 | virtual void setRealJit(ICorJitCompiler* realJitCompiler) { } |
303 | |
304 | }; |
305 | |
306 | //------------------------------------------------------------------------------------------ |
307 | // #JitToEEInterface |
308 | // |
309 | // ICorJitInfo is the main interface that the JIT uses to call back to the EE and get information. It is |
310 | // the companion to code:ICorJitCompiler#EEToJitInterface. The concrete implementation of this in the |
311 | // runtime is the code:CEEJitInfo type. There is also a version of this for the NGEN case. |
312 | // |
313 | // See code:ICorMethodInfo#EEJitContractDetails for subtle conventions used by this interface. |
314 | // |
315 | // There is more information on the JIT in the book of the runtime entry |
316 | // http://devdiv/sites/CLR/Product%20Documentation/2.0/BookOfTheRuntime/JIT/JIT%20Design.doc |
317 | // |
318 | class ICorJitInfo : public ICorDynamicInfo |
319 | { |
320 | public: |
321 | // return memory manager that the JIT can use to allocate a regular memory |
322 | virtual IEEMemoryManager* getMemoryManager() = 0; |
323 | |
324 | // get a block of memory for the code, readonly data, and read-write data |
325 | virtual void allocMem ( |
326 | ULONG hotCodeSize, /* IN */ |
327 | ULONG coldCodeSize, /* IN */ |
328 | ULONG roDataSize, /* IN */ |
329 | ULONG xcptnsCount, /* IN */ |
330 | CorJitAllocMemFlag flag, /* IN */ |
331 | void ** hotCodeBlock, /* OUT */ |
332 | void ** coldCodeBlock, /* OUT */ |
333 | void ** roDataBlock /* OUT */ |
334 | ) = 0; |
335 | |
336 | // Reserve memory for the method/funclet's unwind information. |
337 | // Note that this must be called before allocMem. It should be |
338 | // called once for the main method, once for every funclet, and |
339 | // once for every block of cold code for which allocUnwindInfo |
340 | // will be called. |
341 | // |
342 | // This is necessary because jitted code must allocate all the |
343 | // memory needed for the unwindInfo at the allocMem call. |
344 | // For prejitted code we split up the unwinding information into |
345 | // separate sections .rdata and .pdata. |
346 | // |
347 | virtual void reserveUnwindInfo ( |
348 | BOOL isFunclet, /* IN */ |
349 | BOOL isColdCode, /* IN */ |
350 | ULONG unwindSize /* IN */ |
351 | ) = 0; |
352 | |
353 | // Allocate and initialize the .rdata and .pdata for this method or |
354 | // funclet, and get the block of memory needed for the machine-specific |
355 | // unwind information (the info for crawling the stack frame). |
356 | // Note that allocMem must be called first. |
357 | // |
358 | // Parameters: |
359 | // |
360 | // pHotCode main method code buffer, always filled in |
361 | // pColdCode cold code buffer, only filled in if this is cold code, |
362 | // null otherwise |
363 | // startOffset start of code block, relative to appropriate code buffer |
364 | // (e.g. pColdCode if cold, pHotCode if hot). |
365 | // endOffset end of code block, relative to appropriate code buffer |
366 | // unwindSize size of unwind info pointed to by pUnwindBlock |
367 | // pUnwindBlock pointer to unwind info |
368 | // funcKind type of funclet (main method code, handler, filter) |
369 | // |
370 | virtual void allocUnwindInfo ( |
371 | BYTE * pHotCode, /* IN */ |
372 | BYTE * pColdCode, /* IN */ |
373 | ULONG startOffset, /* IN */ |
374 | ULONG endOffset, /* IN */ |
375 | ULONG unwindSize, /* IN */ |
376 | BYTE * pUnwindBlock, /* IN */ |
377 | CorJitFuncKind funcKind /* IN */ |
378 | ) = 0; |
379 | |
380 | // Get a block of memory needed for the code manager information, |
381 | // (the info for enumerating the GC pointers while crawling the |
382 | // stack frame). |
383 | // Note that allocMem must be called first |
384 | virtual void * allocGCInfo ( |
385 | size_t size /* IN */ |
386 | ) = 0; |
387 | |
388 | virtual void yieldExecution() = 0; |
389 | |
390 | // Indicate how many exception handler blocks are to be returned. |
391 | // This is guaranteed to be called before any 'setEHinfo' call. |
392 | // Note that allocMem must be called before this method can be called. |
393 | virtual void setEHcount ( |
394 | unsigned cEH /* IN */ |
395 | ) = 0; |
396 | |
397 | // Set the values for one particular exception handler block. |
398 | // |
399 | // Handler regions should be lexically contiguous. |
400 | // This is because FinallyIsUnwinding() uses lexicality to |
401 | // determine if a "finally" clause is executing. |
402 | virtual void setEHinfo ( |
403 | unsigned EHnumber, /* IN */ |
404 | const CORINFO_EH_CLAUSE *clause /* IN */ |
405 | ) = 0; |
406 | |
407 | // Level -> fatalError, Level 2 -> Error, Level 3 -> Warning |
408 | // Level 4 means happens 10 times in a run, level 5 means 100, level 6 means 1000 ... |
409 | // returns non-zero if the logging succeeded |
410 | virtual BOOL logMsg(unsigned level, const char* fmt, va_list args) = 0; |
411 | |
412 | // do an assert. will return true if the code should retry (DebugBreak) |
413 | // returns false, if the assert should be igored. |
414 | virtual int doAssert(const char* szFile, int iLine, const char* szExpr) = 0; |
415 | |
416 | virtual void reportFatalError(CorJitResult result) = 0; |
417 | |
418 | struct ProfileBuffer // Also defined here: code:CORBBTPROF_BLOCK_DATA |
419 | { |
420 | ULONG ILOffset; |
421 | ULONG ExecutionCount; |
422 | }; |
423 | |
424 | // allocate a basic block profile buffer where execution counts will be stored |
425 | // for jitted basic blocks. |
426 | virtual HRESULT allocBBProfileBuffer ( |
427 | ULONG count, // The number of basic blocks that we have |
428 | ProfileBuffer ** profileBuffer |
429 | ) = 0; |
430 | |
431 | // get profile information to be used for optimizing the current method. The format |
432 | // of the buffer is the same as the format the JIT passes to allocBBProfileBuffer. |
433 | virtual HRESULT getBBProfileData( |
434 | CORINFO_METHOD_HANDLE ftnHnd, |
435 | ULONG * count, // The number of basic blocks that we have |
436 | ProfileBuffer ** profileBuffer, |
437 | ULONG * numRuns |
438 | ) = 0; |
439 | |
440 | // Associates a native call site, identified by its offset in the native code stream, with |
441 | // the signature information and method handle the JIT used to lay out the call site. If |
442 | // the call site has no signature information (e.g. a helper call) or has no method handle |
443 | // (e.g. a CALLI P/Invoke), then null should be passed instead. |
444 | virtual void recordCallSite( |
445 | ULONG instrOffset, /* IN */ |
446 | CORINFO_SIG_INFO * callSig, /* IN */ |
447 | CORINFO_METHOD_HANDLE methodHandle /* IN */ |
448 | ) = 0; |
449 | |
450 | // A relocation is recorded if we are pre-jitting. |
451 | // A jump thunk may be inserted if we are jitting |
452 | virtual void recordRelocation( |
453 | void * location, /* IN */ |
454 | void * target, /* IN */ |
455 | WORD fRelocType, /* IN */ |
456 | WORD slotNum = 0, /* IN */ |
457 | INT32 addlDelta = 0 /* IN */ |
458 | ) = 0; |
459 | |
460 | virtual WORD getRelocTypeHint(void * target) = 0; |
461 | |
462 | // A callback to identify the range of address known to point to |
463 | // compiler-generated native entry points that call back into |
464 | // MSIL. |
465 | virtual void getModuleNativeEntryPointRange( |
466 | void ** pStart, /* OUT */ |
467 | void ** pEnd /* OUT */ |
468 | ) = 0; |
469 | |
470 | // For what machine does the VM expect the JIT to generate code? The VM |
471 | // returns one of the IMAGE_FILE_MACHINE_* values. Note that if the VM |
472 | // is cross-compiling (such as the case for crossgen), it will return a |
473 | // different value than if it was compiling for the host architecture. |
474 | // |
475 | virtual DWORD getExpectedTargetArchitecture() = 0; |
476 | |
477 | // Fetches extended flags for a particular compilation instance. Returns |
478 | // the number of bytes written to the provided buffer. |
479 | virtual DWORD getJitFlags( |
480 | CORJIT_FLAGS* flags, /* IN: Points to a buffer that will hold the extended flags. */ |
481 | DWORD sizeInBytes /* IN: The size of the buffer. Note that this is effectively a |
482 | version number for the CORJIT_FLAGS value. */ |
483 | ) = 0; |
484 | }; |
485 | |
486 | /**********************************************************************************/ |
487 | #endif // _COR_CORJIT_H_ |
488 | |