1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | // A set of integers in the range [0..N], for some given N. |
6 | |
7 | /*****************************************************************************/ |
8 | #ifndef _BITSET_H_ |
9 | #define _BITSET_H_ |
10 | /*****************************************************************************/ |
11 | |
12 | // This class provides some constant declarations and some static utility methods useful |
13 | // for bitset implementations. |
14 | class BitSetSupport |
15 | { |
16 | #ifdef DEBUG |
17 | template <typename BitSetType, unsigned Brand, typename Env, typename BitSetTraits> |
18 | static void RunTests(Env env); |
19 | #endif |
20 | |
21 | public: |
22 | static const unsigned BitsInByte = 8; |
23 | |
24 | // This maps 4-bit ("nibble") values into the number of 1 bits they contain. |
25 | static unsigned BitCountTable[16]; |
26 | |
27 | // Returns the number of 1 bits in the binary representation of "u". |
28 | template <typename T> |
29 | static unsigned CountBitsInIntegral(T u) |
30 | { |
31 | unsigned res = 0; |
32 | // We process "u" in 4-bit nibbles, hence the "*2" below. |
33 | for (int i = 0; i < sizeof(T) * 2; i++) |
34 | { |
35 | res += BitCountTable[u & 0xf]; |
36 | u >>= 4; |
37 | } |
38 | return res; |
39 | } |
40 | |
41 | #ifdef DEBUG |
42 | // This runs the "TestSuite" method for a few important instantiations of BitSet. |
43 | static void TestSuite(CompAllocator env); |
44 | #endif |
45 | |
46 | enum Operation |
47 | { |
48 | #define BSOPNAME(x) x, |
49 | #include "bitsetops.h" |
50 | #undef BSOPNAME |
51 | BSOP_NUMOPS |
52 | }; |
53 | static const char* OpNames[BSOP_NUMOPS]; |
54 | |
55 | class BitSetOpCounter |
56 | { |
57 | unsigned TotalOps; |
58 | unsigned OpCounts[BSOP_NUMOPS]; |
59 | const char* m_fileName; |
60 | FILE* OpOutputFile; |
61 | |
62 | public: |
63 | BitSetOpCounter(const char* fileName) : TotalOps(0), m_fileName(fileName), OpOutputFile(nullptr) |
64 | { |
65 | for (unsigned i = 0; i < BSOP_NUMOPS; i++) |
66 | { |
67 | OpCounts[i] = 0; |
68 | } |
69 | } |
70 | |
71 | void RecordOp(Operation op); |
72 | }; |
73 | }; |
74 | |
75 | template <> |
76 | FORCEINLINE unsigned BitSetSupport::CountBitsInIntegral<unsigned>(unsigned c) |
77 | { |
78 | // Make sure we're 32 bit. |
79 | assert(sizeof(unsigned) == 4); |
80 | c = (c & 0x55555555) + ((c >> 1) & 0x55555555); |
81 | c = (c & 0x33333333) + ((c >> 2) & 0x33333333); |
82 | c = (c & 0x0f0f0f0f) + ((c >> 4) & 0x0f0f0f0f); |
83 | c = (c & 0x00ff00ff) + ((c >> 8) & 0x00ff00ff); |
84 | c = (c & 0x0000ffff) + ((c >> 16) & 0x0000ffff); |
85 | return c; |
86 | } |
87 | |
88 | // A "BitSet" represents a set of integers from a "universe" [0..N-1]. This implementation assumes that "N" |
89 | // (the "Size") is provided by the "Env" template argument type discussed below, and accessed from the Env |
90 | // via a static method of the BitSetTraits type discussed below. The intent of "BitSet" is that the set is |
91 | // represented as a bit array. Various binary operations therefore only make sense if the operands are |
92 | // subsets of the same universe. Further, the integers in the set that the BitSet represents may have |
93 | // different interpretations at a higher level, so even if the range of the universe stays the same, |
94 | // the higher-level meaning of those bits may change. For these reasons, we assume the Env can provide |
95 | // (again, via static methods of the BitSetTraits) the current "epoch" number. The Env must keep the |
96 | // Size the same while the epoch has a given value; a BitSet implementation may legally stamp BitSets |
97 | // with the current epoch, and assert that BitSets from different epochs are not intermixed. |
98 | |
99 | // Some implementations may use a representation that (at least sometimes) is a pointer to a |
100 | // heap-allocated data structure. (The operations of BitSetOps are static methods, rather than |
101 | // declaring a BitSet class type with multiple subtypes, to allow maximally efficient raw |
102 | // primitive type representations.) Therefore, we must be careful about assignment and |
103 | // initialization. We often want to reason about BitSets as immutable values, and just copying |
104 | // the representation would introduce sharing in the indirect case, which is usually not what's |
105 | // desired. On the other hand, there are many cases in which the RHS value has just been |
106 | // created functionally, and the intialization/assignment is obviously its last use. In these |
107 | // cases, allocating a new indirect representation for the lhs (if it does not already have one) |
108 | // would be unnecessary and wasteful. Thus, for assignment, we have a "normal" assignment |
109 | // function, which makes a copy of the referent data structure in the indirect case, and an |
110 | // "AssignNoCopy" version, which does not, and instead introduces sharing in the indirect case. |
111 | // Obviously, the latter should be used with care. |
112 | // |
113 | // (Orthogonally, there are also further versions of assignment that differ in whether the "rhs" |
114 | // argument may be uninitialized. The normal assignment operation requires the "rhs" argument not be |
115 | // uninitialized; "AssignNoCopy" has the same requirement. The "AssignAllowUninitRhs" version allows |
116 | // the "rhs" to be the uninit value, and sets the "lhs" to be uninitialized in that case.) |
117 | |
118 | // This class has static methods that provide the operations on BitSets. |
119 | // |
120 | // An instantiation requires: |
121 | // typename BitSetType: the representation type of this kind of BitSet. |
122 | // |
123 | // unsigned Brand: an integer constant. This is unused by the implementation; it exists |
124 | // *only* to ensure that we can have, if desired, multiple distinct BitSetOps |
125 | // implementations for the same BitSetType, by instantiating these with different |
126 | // values for Brand (thus "branding" them so that they are distinct from one another.) |
127 | // |
128 | // typename Env: a type that determines the (current) size of the given BitSet type, as well |
129 | // as an allocation function, and the current epoch (integer that changes when |
130 | // "universe" of the BitSet changes) -- all via static methods of the "BitSetTraits" |
131 | // type. |
132 | // |
133 | // typename BitSetTraits: |
134 | // An "adapter" class that provides methods that retrieves things from the Env: |
135 | // static void* Alloc(Env, size_t byteSize): Allocates memory the BitSet implementation can use. |
136 | // static unsigned GetSize(Env): the current size (= # of bits) of this bitset type. |
137 | // static unsigned GetArrSize(Env, unsigned elemSize): The number of "elemSize" chunks sufficient to hold |
138 | // "GetSize". A given BitSet implementation must call |
139 | // this with only one constant value. Thus, and "Env" |
140 | // may compute this result when GetSize changes. |
141 | // |
142 | // static unsigned GetEpoch(Env): the current epoch. |
143 | // |
144 | // (For many instantiations, BitSetValueArgType and BitSetValueRetType will be the same as BitSetType; in cases where |
145 | // BitSetType is a class, type, BitSetValueArgType may need to be "const BitSetType&", for example.) |
146 | // |
147 | // In addition to implementing the method signatures here, an instantiation of BitSetOps must also export a |
148 | // BitSetOps::Iter type, which supports the following operations: |
149 | // Iter(BitSetValueArgType): a constructor |
150 | // bool NextElem(unsigned* pElem): returns true if the iteration is not complete, and sets *pElem to the next |
151 | // yielded member. |
152 | // |
153 | // Finally, it should export two further types: |
154 | // |
155 | // ValArgType: the type used to pass a BitSet as a by-value argument. |
156 | // RetValType: the type that should be used to return a BitSet. |
157 | // |
158 | // For many instantiations, these can be identical to BitSetTypes. When the representation type is a class, |
159 | // however, ValArgType may need to be "const BitSetType&", and RetValArg may need to be a helper class, if the |
160 | // class hides default copy constructors and assignment operators to detect erroneous usage. |
161 | // |
162 | template <typename BitSetType, unsigned Brand, typename Env, typename BitSetTraits> |
163 | class BitSetOps |
164 | { |
165 | #if 0 |
166 | // Below are the set of methods that an instantiation of BitSetOps should provide. This is |
167 | // #if'd out because it doesn't make any difference; C++ has no mechanism for checking that |
168 | // the methods of an instantiation are consistent with these signatures, other than the expectations |
169 | // embodied in the program that uses the instantiation(s). But it's useful documentation, and |
170 | // we should try to keep it up to date. |
171 | |
172 | public: |
173 | |
174 | // The uninitialized value -- not a real bitset (if possible). |
175 | static BitSetValueRetType UninitVal(); |
176 | |
177 | // Returns "true" iff "bs" may be the uninit value. |
178 | static bool MayBeUninit(BitSetValueArgType bs); |
179 | |
180 | // Returns the a new BitSet that is empty. Uses the Allocator of "env" to allocate memory for |
181 | // the representation, if necessary. |
182 | static BitSetValueRetType MakeEmpty(Env env); |
183 | |
184 | // Returns the a new BitSet that is "full" -- represents all the integers in the current range. |
185 | // Uses the Allocator of "env" to allocate memory for the representation, if necessary. |
186 | static BitSetValueRetType MakeFull(Env env); |
187 | |
188 | // Returns the set containing the single element "bitNum" (which is required to be within the |
189 | // BitSet's current range). Uses the Allocator of "env" to allocate memory for the representation, |
190 | // if necessary. |
191 | static BitSetValueRetType MakeSingleton(Env env, unsigned bitNum); |
192 | |
193 | // Assign "rhs" to "lhs". "rhs" must not be the uninitialized value. "lhs" may be, in which case |
194 | // "rhs" will be copied if necessary. |
195 | static void Assign(Env env, BitSetType& lhs, BitSetValueArgType rhs); |
196 | |
197 | // Assign "rhs" to "lhs"...*even* if "rhs" is the uninitialized value. |
198 | static void AssignAllowUninitRhs(Env env, BitSetType& lhs, BitSetValueArgType rhs); |
199 | |
200 | // This is a "destructive" assignment -- it should only be used if the rhs is "dead" after the assignment. |
201 | // In particular, if the rhs has a level of indirection to a heap-allocated data structure, that pointer will |
202 | // be copied into the lhs. |
203 | static void AssignNoCopy(Env env, BitSetType& lhs, BitSetValueArgType rhs); |
204 | |
205 | // Destructively set "bs" to be the empty set. |
206 | static void ClearD(Env env, BitSetType& bs); |
207 | |
208 | // Returns a copy of "bs". If the representation of "bs" involves a level of indirection, the data |
209 | // structure is copied and a pointer to the copy is returned. |
210 | static BitSetValueRetType MakeCopy(Env env, BitSetValueArgType bs); |
211 | |
212 | // Returns "true" iff ""bs" represents the empty set. |
213 | static bool IsEmpty(Env env, BitSetValueArgType bs); |
214 | |
215 | // Returns the number of members in "bs". |
216 | static unsigned Count(Env env, BitSetValueArgType bs); |
217 | |
218 | // Return true if the union of bs1 and bs2 is empty. |
219 | static bool IsEmptyUnion(Env env, BitSetValueArgType bs1, BitSetValueArgType bs2); |
220 | |
221 | // Returns "true" iff "i" is a member of "bs". |
222 | static bool IsMember(Env env, const BitSetValueArgType bs, unsigned i); |
223 | |
224 | // Destructively modify "bs" to ensure that "i" is a member. |
225 | static void AddElemD(Env env, BitSetType& bs, unsigned i); |
226 | // Returns a BitSet that is a copy of "bs" with "i" added. |
227 | static BitSetValueRetType AddElem(Env env, BitSetValueArgType bs, unsigned i); |
228 | |
229 | // Destructively modify "bs" to ensure that "i" is not a member. |
230 | static void RemoveElemD(Env env, BitSetType& bs, unsigned i); |
231 | // Returns a BitSet that is a copy of "bs" with "i" removed. |
232 | static BitSetValueRetType RemoveElem(Env env, BitSetValueArgType bs1, unsigned i); |
233 | |
234 | // Destructively modify "bs1" to be the union of "bs1" and "bs2". |
235 | static void UnionD(Env env, BitSetType& bs1, BitSetValueArgType bs2); |
236 | // Returns a new BitSet that is the union of "bs1" and "bs2". |
237 | static BitSetValueRetType Union(Env env, BitSetValueArgType bs1, BitSetValueArgType bs2); |
238 | |
239 | // Destructively modify "bs1" to be the intersection of "bs1" and "bs2". |
240 | static void IntersectionD(Env env, BitSetType& bs1, BitSetValueArgType bs2); |
241 | // Returns a new BitSet that is the intersection of "bs1" and "bs2". |
242 | static BitSetValueRetType Intersection(Env env, BitSetValueArgType bs1, BitSetValueArgType bs2); |
243 | |
244 | // Returns true iff "bs1" and "bs2" have an empty intersection. |
245 | static bool IsEmptyIntersection(Env env, BitSetValueArgType bs1, BitSetValueArgType bs2); |
246 | |
247 | // Destructively modify "bs1" to be the set difference of "bs1" and "bs2". |
248 | static void DiffD(Env env, BitSetType& bs1, BitSetValueArgType bs2); |
249 | |
250 | // Returns a new BitSet that is the set difference of "bs1" and "bs2". |
251 | static BitSetValueRetType Diff(Env env, BitSetValueArgType bs1, BitSetValueArgType bs2); |
252 | |
253 | // Compute the live_in set. Variable is alive if there is use or it is out set, but not in def. |
254 | // in = use | (out & ~def) |
255 | static void LivenessD(Env env, BitSetType& in, BitSetValueArgType def, BitSetValueArgType use, BitSetValueArgType out); |
256 | |
257 | // Returns true iff "bs2" is a subset of "bs1." |
258 | static bool IsSubset(Env env, BitSetValueArgType bs1, BitSetValueArgType bs2); |
259 | |
260 | // Returns true iff "bs1" and "bs2" are equal. |
261 | static bool Equal(Env env, BitSetValueArgType bs1, BitSetValueArgType bs2); |
262 | |
263 | #ifdef DEBUG |
264 | // Returns a string representing the contents of "bs". Allocates memory for the representation |
265 | // using the Allocator of "env". |
266 | static const char* ToString(Env env, BitSetValueArgType bs); |
267 | #endif |
268 | |
269 | // Declare this as a type -- will be a real class in real instantiations. |
270 | class Iter { |
271 | public: |
272 | Iter(Env env, BitSetValueArgType bs) {} |
273 | bool NextElem(unsigned* pElem) { return false; } |
274 | }; |
275 | |
276 | typename ValArgType; |
277 | typename RetValType; |
278 | #endif // 0 -- the above is #if'd out, since it's really just an extended comment on what an instantiation |
279 | // should provide. |
280 | }; |
281 | |
282 | template <typename BitSetType, |
283 | unsigned Brand, |
284 | typename Env, |
285 | typename BitSetTraits, |
286 | typename BitSetValueArgType, |
287 | typename BitSetValueRetType, |
288 | typename BaseIter> |
289 | class BitSetOpsWithCounter |
290 | { |
291 | typedef BitSetOps<BitSetType, Brand, Env, BitSetTraits> BSO; |
292 | |
293 | public: |
294 | static BitSetValueRetType UninitVal() |
295 | { |
296 | return BSO::UninitVal(); |
297 | } |
298 | static bool MayBeUninit(BitSetValueArgType bs) |
299 | { |
300 | return BSO::MayBeUninit(bs); |
301 | } |
302 | static BitSetValueRetType MakeEmpty(Env env) |
303 | { |
304 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_MakeEmpty); |
305 | return BSO::MakeEmpty(env); |
306 | } |
307 | static BitSetValueRetType MakeFull(Env env) |
308 | { |
309 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_MakeFull); |
310 | return BSO::MakeFull(env); |
311 | } |
312 | static BitSetValueRetType MakeSingleton(Env env, unsigned bitNum) |
313 | { |
314 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_MakeSingleton); |
315 | return BSO::MakeSingleton(env, bitNum); |
316 | } |
317 | static void Assign(Env env, BitSetType& lhs, BitSetValueArgType rhs) |
318 | { |
319 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_Assign); |
320 | BSO::Assign(env, lhs, rhs); |
321 | } |
322 | static void AssignAllowUninitRhs(Env env, BitSetType& lhs, BitSetValueArgType rhs) |
323 | { |
324 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_AssignAllowUninitRhs); |
325 | BSO::AssignAllowUninitRhs(env, lhs, rhs); |
326 | } |
327 | static void AssignNoCopy(Env env, BitSetType& lhs, BitSetValueArgType rhs) |
328 | { |
329 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_AssignNocopy); |
330 | BSO::AssignNoCopy(env, lhs, rhs); |
331 | } |
332 | static void ClearD(Env env, BitSetType& bs) |
333 | { |
334 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_ClearD); |
335 | BSO::ClearD(env, bs); |
336 | } |
337 | static BitSetValueRetType MakeCopy(Env env, BitSetValueArgType bs) |
338 | { |
339 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_MakeCopy); |
340 | return BSO::MakeCopy(env, bs); |
341 | } |
342 | static bool IsEmpty(Env env, BitSetValueArgType bs) |
343 | { |
344 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_IsEmpty); |
345 | return BSO::IsEmpty(env, bs); |
346 | } |
347 | static unsigned Count(Env env, BitSetValueArgType bs) |
348 | { |
349 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_Count); |
350 | return BSO::Count(env, bs); |
351 | } |
352 | static bool IsMember(Env env, const BitSetValueArgType bs, unsigned i) |
353 | { |
354 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_IsMember); |
355 | return BSO::IsMember(env, bs, i); |
356 | } |
357 | static void AddElemD(Env env, BitSetType& bs, unsigned i) |
358 | { |
359 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_AddElemD); |
360 | BSO::AddElemD(env, bs, i); |
361 | } |
362 | static BitSetValueRetType AddElem(Env env, BitSetValueArgType bs, unsigned i) |
363 | { |
364 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_AddElem); |
365 | return BSO::AddElem(env, bs, i); |
366 | } |
367 | static void RemoveElemD(Env env, BitSetType& bs, unsigned i) |
368 | { |
369 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_RemoveElemD); |
370 | BSO::RemoveElemD(env, bs, i); |
371 | } |
372 | static BitSetValueRetType RemoveElem(Env env, BitSetValueArgType bs1, unsigned i) |
373 | { |
374 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_RemoveElem); |
375 | return BSO::RemoveElem(env, bs1, i); |
376 | } |
377 | static void UnionD(Env env, BitSetType& bs1, BitSetValueArgType bs2) |
378 | { |
379 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_UnionD); |
380 | BSO::UnionD(env, bs1, bs2); |
381 | } |
382 | static BitSetValueRetType Union(Env env, BitSetValueArgType bs1, BitSetValueArgType bs2) |
383 | { |
384 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_Union); |
385 | return BSO::Union(env, bs1, bs2); |
386 | } |
387 | static void IntersectionD(Env env, BitSetType& bs1, BitSetValueArgType bs2) |
388 | { |
389 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_IntersectionD); |
390 | BSO::IntersectionD(env, bs1, bs2); |
391 | } |
392 | static BitSetValueRetType Intersection(Env env, BitSetValueArgType bs1, BitSetValueArgType bs2) |
393 | { |
394 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_Intersection); |
395 | return BSO::Intersection(env, bs1, bs2); |
396 | } |
397 | static bool IsEmptyIntersection(Env env, BitSetValueArgType bs1, BitSetValueArgType bs2) |
398 | { |
399 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_IsEmptyIntersection); |
400 | return BSO::IsEmptyIntersection(env, bs1, bs2); |
401 | } |
402 | static void DiffD(Env env, BitSetType& bs1, BitSetValueArgType bs2) |
403 | { |
404 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_DiffD); |
405 | BSO::DiffD(env, bs1, bs2); |
406 | } |
407 | static BitSetValueRetType Diff(Env env, BitSetValueArgType bs1, BitSetValueArgType bs2) |
408 | { |
409 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_Diff); |
410 | return BSO::Diff(env, bs1, bs2); |
411 | } |
412 | static bool IsSubset(Env env, BitSetValueArgType bs1, BitSetValueArgType bs2) |
413 | { |
414 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_IsSubset); |
415 | return BSO::IsSubset(env, bs1, bs2); |
416 | } |
417 | static bool Equal(Env env, BitSetValueArgType bs1, BitSetValueArgType bs2) |
418 | { |
419 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_Equal); |
420 | return BSO::Equal(env, bs1, bs2); |
421 | } |
422 | #ifdef DEBUG |
423 | static const char* ToString(Env env, BitSetValueArgType bs) |
424 | { |
425 | BitSetTraits::GetOpCounter(env)->RecordOp(BitSetSupport::BSOP_ToString); |
426 | return BSO::ToString(env, bs); |
427 | } |
428 | #endif |
429 | |
430 | class Iter |
431 | { |
432 | BaseIter m_iter; |
433 | Env m_env; |
434 | |
435 | public: |
436 | Iter(Env env, BitSetValueArgType bs) : m_iter(env, bs), m_env(env) |
437 | { |
438 | } |
439 | |
440 | bool NextElem(unsigned* pElem) |
441 | { |
442 | BitSetTraits::GetOpCounter(m_env)->RecordOp(BitSetSupport::BSOP_NextBit); |
443 | return m_iter.NextElem(pElem); |
444 | } |
445 | }; |
446 | }; |
447 | |
448 | // We define symbolic names for the various bitset implementations available, to allow choices between them. |
449 | |
450 | #define BSUInt64 0 |
451 | #define BSShortLong 1 |
452 | #define BSUInt64Class 2 |
453 | |
454 | /*****************************************************************************/ |
455 | #endif // _BITSET_H_ |
456 | /*****************************************************************************/ |
457 | |