| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | #pragma once |
| 6 | |
| 7 | // JitHashTable implements a mapping from a Key type to a Value type, |
| 8 | // via a hash table. |
| 9 | |
| 10 | // JitHashTable takes four template parameters: |
| 11 | // Key, KeyFuncs, Value, Allocator and Behavior. |
| 12 | // We don't assume that Key has hash or equality functions specific names; |
| 13 | // rather, we assume that KeyFuncs has the following static methods |
| 14 | // int GetHashCode(Key) |
| 15 | // bool Equals(Key, Key) |
| 16 | // and use those. An instantiator can thus make a small "adaptor class" |
| 17 | // to invoke existing instance method hash and/or equality functions. |
| 18 | // If the implementor of a candidate Key class K understands this convention, |
| 19 | // these static methods can be implemented by K, so that K can be used |
| 20 | // as the actual arguments for the both Key and KeyFuncs template parameters. |
| 21 | // |
| 22 | // The "Behavior" parameter must provide the following static members: |
| 23 | // |
| 24 | // s_growth_factor_numerator |
| 25 | // s_growth_factor_denominator Factor to grow allocation (numerator/denominator). |
| 26 | // Typically inherited from default traits (3/2) |
| 27 | // |
| 28 | // s_density_factor_numerator |
| 29 | // s_density_factor_denominator Maxium occupied density of table before growth |
| 30 | // occurs (num/denom). Typically inherited (3/4). |
| 31 | // |
| 32 | // s_minimum_allocation Minimum table allocation count (size on first growth.) It is |
| 33 | // probably preferable to call Reallocate on initialization rather |
| 34 | // than override this from the default traits. |
| 35 | // |
| 36 | // NoMemory() Called when the hash table is unable to grow due to potential |
| 37 | // overflow or the lack of a sufficiently large prime. |
| 38 | |
| 39 | class JitHashTableBehavior |
| 40 | { |
| 41 | public: |
| 42 | static const unsigned s_growth_factor_numerator = 3; |
| 43 | static const unsigned s_growth_factor_denominator = 2; |
| 44 | |
| 45 | static const unsigned s_density_factor_numerator = 3; |
| 46 | static const unsigned s_density_factor_denominator = 4; |
| 47 | |
| 48 | static const unsigned s_minimum_allocation = 7; |
| 49 | |
| 50 | inline static void DECLSPEC_NORETURN NoMemory() |
| 51 | { |
| 52 | NOMEM(); |
| 53 | } |
| 54 | }; |
| 55 | |
| 56 | // Stores info about primes, including the magic number and shift amount needed |
| 57 | // to implement a divide without using the divide instruction |
| 58 | class JitPrimeInfo |
| 59 | { |
| 60 | public: |
| 61 | JitPrimeInfo() : prime(0), magic(0), shift(0) |
| 62 | { |
| 63 | } |
| 64 | JitPrimeInfo(unsigned p, unsigned m, unsigned s) : prime(p), magic(m), shift(s) |
| 65 | { |
| 66 | } |
| 67 | unsigned prime; |
| 68 | unsigned magic; |
| 69 | unsigned shift; |
| 70 | |
| 71 | // Compute `numerator` / `prime` using magic division |
| 72 | unsigned magicNumberDivide(unsigned numerator) const |
| 73 | { |
| 74 | unsigned __int64 num = numerator; |
| 75 | unsigned __int64 mag = magic; |
| 76 | unsigned __int64 product = (num * mag) >> (32 + shift); |
| 77 | return (unsigned)product; |
| 78 | } |
| 79 | |
| 80 | // Compute `numerator` % `prime` using magic division |
| 81 | unsigned magicNumberRem(unsigned numerator) const |
| 82 | { |
| 83 | unsigned div = magicNumberDivide(numerator); |
| 84 | unsigned result = numerator - (div * prime); |
| 85 | assert(result == numerator % prime); |
| 86 | return result; |
| 87 | } |
| 88 | }; |
| 89 | |
| 90 | // Table of primes and their magic-number-divide constant. |
| 91 | // For more info see the book "Hacker's Delight" chapter 10.9 "Unsigned Division by Divisors >= 1" |
| 92 | // These were selected by looking for primes, each roughly twice as big as the next, having |
| 93 | // 32-bit magic numbers, (because the algorithm for using 33-bit magic numbers is slightly slower). |
| 94 | |
| 95 | // clang-format off |
| 96 | SELECTANY const JitPrimeInfo jitPrimeInfo[] |
| 97 | { |
| 98 | JitPrimeInfo(9, 0x38e38e39, 1), |
| 99 | JitPrimeInfo(23, 0xb21642c9, 4), |
| 100 | JitPrimeInfo(59, 0x22b63cbf, 3), |
| 101 | JitPrimeInfo(131, 0xfa232cf3, 7), |
| 102 | JitPrimeInfo(239, 0x891ac73b, 7), |
| 103 | JitPrimeInfo(433, 0x975a751, 4), |
| 104 | JitPrimeInfo(761, 0x561e46a5, 8), |
| 105 | JitPrimeInfo(1399, 0xbb612aa3, 10), |
| 106 | JitPrimeInfo(2473, 0x6a009f01, 10), |
| 107 | JitPrimeInfo(4327, 0xf2555049, 12), |
| 108 | JitPrimeInfo(7499, 0x45ea155f, 11), |
| 109 | JitPrimeInfo(12973, 0x1434f6d3, 10), |
| 110 | JitPrimeInfo(22433, 0x2ebe18db, 12), |
| 111 | JitPrimeInfo(46559, 0xb42bebd5, 15), |
| 112 | JitPrimeInfo(96581, 0xadb61b1b, 16), |
| 113 | JitPrimeInfo(200341, 0x29df2461, 15), |
| 114 | JitPrimeInfo(415517, 0xa181c46d, 18), |
| 115 | JitPrimeInfo(861719, 0x4de0bde5, 18), |
| 116 | JitPrimeInfo(1787021, 0x9636c46f, 20), |
| 117 | JitPrimeInfo(3705617, 0x4870adc1, 20), |
| 118 | JitPrimeInfo(7684087, 0x8bbc5b83, 22), |
| 119 | JitPrimeInfo(15933877, 0x86c65361, 23), |
| 120 | JitPrimeInfo(33040633, 0x40fec79b, 23), |
| 121 | JitPrimeInfo(68513161, 0x7d605cd1, 25), |
| 122 | JitPrimeInfo(142069021, 0xf1da390b, 27), |
| 123 | JitPrimeInfo(294594427, 0x74a2507d, 27), |
| 124 | JitPrimeInfo(733045421, 0x5dbec447, 28), |
| 125 | }; |
| 126 | // clang-format on |
| 127 | |
| 128 | // Hash table class definition |
| 129 | |
| 130 | template <typename Key, |
| 131 | typename KeyFuncs, |
| 132 | typename Value, |
| 133 | typename Allocator = CompAllocator, |
| 134 | typename Behavior = JitHashTableBehavior> |
| 135 | class JitHashTable |
| 136 | { |
| 137 | public: |
| 138 | class KeyIterator; |
| 139 | |
| 140 | //------------------------------------------------------------------------ |
| 141 | // JitHashTable: Construct an empty JitHashTable object. |
| 142 | // |
| 143 | // Arguments: |
| 144 | // alloc - the allocator to be used by the new JitHashTable object |
| 145 | // |
| 146 | // Notes: |
| 147 | // JitHashTable always starts out empty, with no allocation overhead. |
| 148 | // Call Reallocate to prime with an initial size if desired. |
| 149 | // |
| 150 | JitHashTable(Allocator alloc) : m_alloc(alloc), m_table(nullptr), m_tableSizeInfo(), m_tableCount(0), m_tableMax(0) |
| 151 | { |
| 152 | #ifndef __GNUC__ // these crash GCC |
| 153 | static_assert_no_msg(Behavior::s_growth_factor_numerator > Behavior::s_growth_factor_denominator); |
| 154 | static_assert_no_msg(Behavior::s_density_factor_numerator < Behavior::s_density_factor_denominator); |
| 155 | #endif |
| 156 | } |
| 157 | |
| 158 | //------------------------------------------------------------------------ |
| 159 | // ~JitHashTable: Destruct the JitHashTable object. |
| 160 | // |
| 161 | // Notes: |
| 162 | // Destructs all keys and values stored in the table and frees all |
| 163 | // owned memory. |
| 164 | // |
| 165 | ~JitHashTable() |
| 166 | { |
| 167 | RemoveAll(); |
| 168 | } |
| 169 | |
| 170 | //------------------------------------------------------------------------ |
| 171 | // Lookup: Get the value associated to the specified key, if any. |
| 172 | // |
| 173 | // Arguments: |
| 174 | // k - the key |
| 175 | // pVal - pointer to a location used to store the associated value |
| 176 | // |
| 177 | // Return Value: |
| 178 | // `true` if the key exists, `false` otherwise |
| 179 | // |
| 180 | // Notes: |
| 181 | // If the key does not exist *pVal is not updated. pVal may be nullptr |
| 182 | // so this function can be used to simply check if the key exists. |
| 183 | // |
| 184 | bool Lookup(Key k, Value* pVal = nullptr) const |
| 185 | { |
| 186 | Node* pN = FindNode(k); |
| 187 | |
| 188 | if (pN != nullptr) |
| 189 | { |
| 190 | if (pVal != nullptr) |
| 191 | { |
| 192 | *pVal = pN->m_val; |
| 193 | } |
| 194 | return true; |
| 195 | } |
| 196 | else |
| 197 | { |
| 198 | return false; |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | //------------------------------------------------------------------------ |
| 203 | // Lookup: Get a pointer to the value associated to the specified key. |
| 204 | // if any. |
| 205 | // |
| 206 | // Arguments: |
| 207 | // k - the key |
| 208 | // |
| 209 | // Return Value: |
| 210 | // A pointer to the value associated with the specified key or nullptr |
| 211 | // if the key is not found |
| 212 | // |
| 213 | // Notes: |
| 214 | // This is similar to `Lookup` but avoids copying the value and allows |
| 215 | // updating the value without using `Set`. |
| 216 | // |
| 217 | Value* LookupPointer(Key k) const |
| 218 | { |
| 219 | Node* pN = FindNode(k); |
| 220 | |
| 221 | if (pN != nullptr) |
| 222 | { |
| 223 | return &(pN->m_val); |
| 224 | } |
| 225 | else |
| 226 | { |
| 227 | return nullptr; |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | //------------------------------------------------------------------------ |
| 232 | // Set: Associate the specified value with the specified key. |
| 233 | // |
| 234 | // Arguments: |
| 235 | // k - the key |
| 236 | // v - the value |
| 237 | // |
| 238 | // Return Value: |
| 239 | // `true` if the key already exists, `false` otherwise. |
| 240 | // |
| 241 | // Notes: |
| 242 | // If the key already exists then its associated value is updated to |
| 243 | // the new value. |
| 244 | // |
| 245 | bool Set(Key k, Value v) |
| 246 | { |
| 247 | CheckGrowth(); |
| 248 | |
| 249 | assert(m_tableSizeInfo.prime != 0); |
| 250 | |
| 251 | unsigned index = GetIndexForKey(k); |
| 252 | |
| 253 | Node* pN = m_table[index]; |
| 254 | while ((pN != nullptr) && !KeyFuncs::Equals(k, pN->m_key)) |
| 255 | { |
| 256 | pN = pN->m_next; |
| 257 | } |
| 258 | if (pN != nullptr) |
| 259 | { |
| 260 | pN->m_val = v; |
| 261 | return true; |
| 262 | } |
| 263 | else |
| 264 | { |
| 265 | Node* pNewNode = new (m_alloc) Node(m_table[index], k, v); |
| 266 | m_table[index] = pNewNode; |
| 267 | m_tableCount++; |
| 268 | return false; |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | //------------------------------------------------------------------------ |
| 273 | // Emplace: Associates the specified key with a value constructed in-place |
| 274 | // using the supplied args if the key is not already present. |
| 275 | // |
| 276 | // Arguments: |
| 277 | // k - the key |
| 278 | // args - the args used to construct the value |
| 279 | // |
| 280 | // Return Value: |
| 281 | // A pointer to the existing or newly constructed value. |
| 282 | // |
| 283 | template <class... Args> |
| 284 | Value* Emplace(Key k, Args&&... args) |
| 285 | { |
| 286 | CheckGrowth(); |
| 287 | |
| 288 | assert(m_tableSizeInfo.prime != 0); |
| 289 | |
| 290 | unsigned index = GetIndexForKey(k); |
| 291 | |
| 292 | Node* n = m_table[index]; |
| 293 | while ((n != nullptr) && !KeyFuncs::Equals(k, n->m_key)) |
| 294 | { |
| 295 | n = n->m_next; |
| 296 | } |
| 297 | |
| 298 | if (n == nullptr) |
| 299 | { |
| 300 | n = new (m_alloc) Node(m_table[index], k, jitstd::forward<Args>(args)...); |
| 301 | |
| 302 | m_table[index] = n; |
| 303 | m_tableCount++; |
| 304 | } |
| 305 | |
| 306 | return &n->m_val; |
| 307 | } |
| 308 | |
| 309 | //------------------------------------------------------------------------ |
| 310 | // Remove: Remove the specified key and its associated value. |
| 311 | // |
| 312 | // Arguments: |
| 313 | // k - the key |
| 314 | // |
| 315 | // Return Value: |
| 316 | // `true` if the key exists, `false` otherwise. |
| 317 | // |
| 318 | // Notes: |
| 319 | // Removing a inexistent key is not an error. |
| 320 | // |
| 321 | bool Remove(Key k) |
| 322 | { |
| 323 | unsigned index = GetIndexForKey(k); |
| 324 | |
| 325 | Node* pN = m_table[index]; |
| 326 | Node** ppN = &m_table[index]; |
| 327 | while ((pN != nullptr) && !KeyFuncs::Equals(k, pN->m_key)) |
| 328 | { |
| 329 | ppN = &pN->m_next; |
| 330 | pN = pN->m_next; |
| 331 | } |
| 332 | if (pN != nullptr) |
| 333 | { |
| 334 | *ppN = pN->m_next; |
| 335 | m_tableCount--; |
| 336 | Node::operator delete(pN, m_alloc); |
| 337 | return true; |
| 338 | } |
| 339 | else |
| 340 | { |
| 341 | return false; |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | //------------------------------------------------------------------------ |
| 346 | // RemoveAll: Remove all keys and their associated values. |
| 347 | // |
| 348 | // Notes: |
| 349 | // This also frees all the memory owned by the table. |
| 350 | // |
| 351 | void RemoveAll() |
| 352 | { |
| 353 | for (unsigned i = 0; i < m_tableSizeInfo.prime; i++) |
| 354 | { |
| 355 | for (Node* pN = m_table[i]; pN != nullptr;) |
| 356 | { |
| 357 | Node* pNext = pN->m_next; |
| 358 | Node::operator delete(pN, m_alloc); |
| 359 | pN = pNext; |
| 360 | } |
| 361 | } |
| 362 | m_alloc.deallocate(m_table); |
| 363 | |
| 364 | m_table = nullptr; |
| 365 | m_tableSizeInfo = JitPrimeInfo(); |
| 366 | m_tableCount = 0; |
| 367 | m_tableMax = 0; |
| 368 | |
| 369 | return; |
| 370 | } |
| 371 | |
| 372 | // Get an iterator to the first key in the table. |
| 373 | KeyIterator Begin() const |
| 374 | { |
| 375 | KeyIterator i(this, TRUE); |
| 376 | return i; |
| 377 | } |
| 378 | |
| 379 | // Get an iterator following the last key in the table. |
| 380 | KeyIterator End() const |
| 381 | { |
| 382 | return KeyIterator(this, FALSE); |
| 383 | } |
| 384 | |
| 385 | // Get the number of keys currently stored in the table. |
| 386 | unsigned GetCount() const |
| 387 | { |
| 388 | return m_tableCount; |
| 389 | } |
| 390 | |
| 391 | // Get the allocator used by this hash table. |
| 392 | Allocator GetAllocator() |
| 393 | { |
| 394 | return m_alloc; |
| 395 | } |
| 396 | |
| 397 | private: |
| 398 | struct Node; |
| 399 | |
| 400 | //------------------------------------------------------------------------ |
| 401 | // GetIndexForKey: Get the bucket index for the specified key. |
| 402 | // |
| 403 | // Arguments: |
| 404 | // k - the key |
| 405 | // |
| 406 | // Return Value: |
| 407 | // A bucket index |
| 408 | // |
| 409 | unsigned GetIndexForKey(Key k) const |
| 410 | { |
| 411 | unsigned hash = KeyFuncs::GetHashCode(k); |
| 412 | |
| 413 | unsigned index = m_tableSizeInfo.magicNumberRem(hash); |
| 414 | |
| 415 | return index; |
| 416 | } |
| 417 | |
| 418 | //------------------------------------------------------------------------ |
| 419 | // FindNode: Return a pointer to the node having the specified key, if any. |
| 420 | // |
| 421 | // Arguments: |
| 422 | // k - the key |
| 423 | // |
| 424 | // Return Value: |
| 425 | // A pointer to the node or `nullptr` if the key is not found. |
| 426 | // |
| 427 | Node* FindNode(Key k) const |
| 428 | { |
| 429 | if (m_tableSizeInfo.prime == 0) |
| 430 | { |
| 431 | return nullptr; |
| 432 | } |
| 433 | |
| 434 | unsigned index = GetIndexForKey(k); |
| 435 | |
| 436 | Node* pN = m_table[index]; |
| 437 | if (pN == nullptr) |
| 438 | { |
| 439 | return nullptr; |
| 440 | } |
| 441 | |
| 442 | // Otherwise... |
| 443 | while ((pN != nullptr) && !KeyFuncs::Equals(k, pN->m_key)) |
| 444 | { |
| 445 | pN = pN->m_next; |
| 446 | } |
| 447 | |
| 448 | assert((pN == nullptr) || KeyFuncs::Equals(k, pN->m_key)); |
| 449 | |
| 450 | // If pN != nullptr, it's the node for the key, else the key isn't mapped. |
| 451 | return pN; |
| 452 | } |
| 453 | |
| 454 | //------------------------------------------------------------------------ |
| 455 | // Grow: Increase the size of the bucket table. |
| 456 | // |
| 457 | // Notes: |
| 458 | // The new size is computed based on the current population, growth factor, |
| 459 | // and maximum density factor. |
| 460 | // |
| 461 | void Grow() |
| 462 | { |
| 463 | unsigned newSize = |
| 464 | (unsigned)(m_tableCount * Behavior::s_growth_factor_numerator / Behavior::s_growth_factor_denominator * |
| 465 | Behavior::s_density_factor_denominator / Behavior::s_density_factor_numerator); |
| 466 | |
| 467 | if (newSize < Behavior::s_minimum_allocation) |
| 468 | { |
| 469 | newSize = Behavior::s_minimum_allocation; |
| 470 | } |
| 471 | |
| 472 | // handle potential overflow |
| 473 | if (newSize < m_tableCount) |
| 474 | { |
| 475 | Behavior::NoMemory(); |
| 476 | } |
| 477 | |
| 478 | Reallocate(newSize); |
| 479 | } |
| 480 | |
| 481 | //------------------------------------------------------------------------ |
| 482 | // CheckGrowth: Check if the maximum hashtable density has been reached |
| 483 | // and increase the size of the bucket table if necessary. |
| 484 | // |
| 485 | void CheckGrowth() |
| 486 | { |
| 487 | if (m_tableCount == m_tableMax) |
| 488 | { |
| 489 | Grow(); |
| 490 | } |
| 491 | } |
| 492 | |
| 493 | public: |
| 494 | //------------------------------------------------------------------------ |
| 495 | // CheckGrowth: Replace the bucket table with a larger one and copy all nodes |
| 496 | // from the existing bucket table. |
| 497 | // |
| 498 | // Notes: |
| 499 | // The new size must be large enough to hold all existing keys in |
| 500 | // the table without exceeding the density. Note that the actual |
| 501 | // table size must always be a prime number; the specified size |
| 502 | // will be increased to the next prime if necessary. |
| 503 | // |
| 504 | void Reallocate(unsigned newTableSize) |
| 505 | { |
| 506 | assert(newTableSize >= |
| 507 | (GetCount() * Behavior::s_density_factor_denominator / Behavior::s_density_factor_numerator)); |
| 508 | |
| 509 | // Allocation size must be a prime number. This is necessary so that hashes uniformly |
| 510 | // distribute to all indices, and so that chaining will visit all indices in the hash table. |
| 511 | JitPrimeInfo newPrime = NextPrime(newTableSize); |
| 512 | newTableSize = newPrime.prime; |
| 513 | |
| 514 | Node** newTable = m_alloc.template allocate<Node*>(newTableSize); |
| 515 | |
| 516 | for (unsigned i = 0; i < newTableSize; i++) |
| 517 | { |
| 518 | newTable[i] = nullptr; |
| 519 | } |
| 520 | |
| 521 | // Move all entries over to new table (re-using the Node structures.) |
| 522 | |
| 523 | for (unsigned i = 0; i < m_tableSizeInfo.prime; i++) |
| 524 | { |
| 525 | Node* pN = m_table[i]; |
| 526 | while (pN != nullptr) |
| 527 | { |
| 528 | Node* pNext = pN->m_next; |
| 529 | |
| 530 | unsigned newIndex = newPrime.magicNumberRem(KeyFuncs::GetHashCode(pN->m_key)); |
| 531 | pN->m_next = newTable[newIndex]; |
| 532 | newTable[newIndex] = pN; |
| 533 | |
| 534 | pN = pNext; |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | if (m_table != nullptr) |
| 539 | { |
| 540 | m_alloc.deallocate(m_table); |
| 541 | } |
| 542 | |
| 543 | m_table = newTable; |
| 544 | m_tableSizeInfo = newPrime; |
| 545 | m_tableMax = |
| 546 | (unsigned)(newTableSize * Behavior::s_density_factor_numerator / Behavior::s_density_factor_denominator); |
| 547 | } |
| 548 | |
| 549 | // For iteration, we use a pattern similar to the STL "forward |
| 550 | // iterator" pattern. It basically consists of wrapping an |
| 551 | // "iteration variable" in an object, and providing pointer-like |
| 552 | // operators on the iterator. Example usage: |
| 553 | // |
| 554 | // for (JitHashTable::KeyIterator iter = foo->Begin(), end = foo->End(); !iter.Equal(end); iter++) |
| 555 | // { |
| 556 | // // use foo, iter. |
| 557 | // } |
| 558 | // iter.Get() will yield (a reference to) the |
| 559 | // current key. It will assert the equivalent of "iter != end." |
| 560 | class KeyIterator |
| 561 | { |
| 562 | private: |
| 563 | friend class JitHashTable; |
| 564 | |
| 565 | Node** m_table; |
| 566 | Node* m_node; |
| 567 | unsigned m_tableSize; |
| 568 | unsigned m_index; |
| 569 | |
| 570 | public: |
| 571 | //------------------------------------------------------------------------ |
| 572 | // KeyIterator: Construct an iterator for the specified JitHashTable. |
| 573 | // |
| 574 | // Arguments: |
| 575 | // hash - the hashtable |
| 576 | // begin - `true` to construct an "begin" iterator, |
| 577 | // `false` to construct an "end" iterator |
| 578 | // |
| 579 | KeyIterator(const JitHashTable* hash, BOOL begin) |
| 580 | : m_table(hash->m_table) |
| 581 | , m_node(nullptr) |
| 582 | , m_tableSize(hash->m_tableSizeInfo.prime) |
| 583 | , m_index(begin ? 0 : m_tableSize) |
| 584 | { |
| 585 | if (begin && (hash->m_tableCount > 0)) |
| 586 | { |
| 587 | assert(m_table != nullptr); |
| 588 | while ((m_index < m_tableSize) && (m_table[m_index] == nullptr)) |
| 589 | { |
| 590 | m_index++; |
| 591 | } |
| 592 | |
| 593 | if (m_index >= m_tableSize) |
| 594 | { |
| 595 | return; |
| 596 | } |
| 597 | else |
| 598 | { |
| 599 | m_node = m_table[m_index]; |
| 600 | } |
| 601 | assert(m_node != nullptr); |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | //------------------------------------------------------------------------ |
| 606 | // Get: Get a reference to this iterator's key. |
| 607 | // |
| 608 | // Return Value: |
| 609 | // A reference to this iterator's key. |
| 610 | // |
| 611 | // Assumptions: |
| 612 | // This must not be the "end" iterator. |
| 613 | // |
| 614 | const Key& Get() const |
| 615 | { |
| 616 | assert(m_node != nullptr); |
| 617 | |
| 618 | return m_node->m_key; |
| 619 | } |
| 620 | |
| 621 | //------------------------------------------------------------------------ |
| 622 | // GetValue: Get a reference to this iterator's value. |
| 623 | // |
| 624 | // Return Value: |
| 625 | // A reference to this iterator's value. |
| 626 | // |
| 627 | // Assumptions: |
| 628 | // This must not be the "end" iterator. |
| 629 | // |
| 630 | Value& GetValue() const |
| 631 | { |
| 632 | assert(m_node != nullptr); |
| 633 | |
| 634 | return m_node->m_val; |
| 635 | } |
| 636 | |
| 637 | //------------------------------------------------------------------------ |
| 638 | // SetValue: Assign a new value to this iterator's key |
| 639 | // |
| 640 | // Arguments: |
| 641 | // value - the value to assign |
| 642 | // |
| 643 | // Assumptions: |
| 644 | // This must not be the "end" iterator. |
| 645 | // |
| 646 | void SetValue(const Value& value) const |
| 647 | { |
| 648 | assert(m_node != nullptr); |
| 649 | |
| 650 | m_node->m_val = value; |
| 651 | } |
| 652 | |
| 653 | //------------------------------------------------------------------------ |
| 654 | // Next: Advance the iterator to the next node. |
| 655 | // |
| 656 | // Notes: |
| 657 | // Advancing the end iterator has no effect. |
| 658 | // |
| 659 | void Next() |
| 660 | { |
| 661 | if (m_node != nullptr) |
| 662 | { |
| 663 | m_node = m_node->m_next; |
| 664 | if (m_node != nullptr) |
| 665 | { |
| 666 | return; |
| 667 | } |
| 668 | |
| 669 | // Otherwise... |
| 670 | m_index++; |
| 671 | } |
| 672 | while ((m_index < m_tableSize) && (m_table[m_index] == nullptr)) |
| 673 | { |
| 674 | m_index++; |
| 675 | } |
| 676 | |
| 677 | if (m_index >= m_tableSize) |
| 678 | { |
| 679 | m_node = nullptr; |
| 680 | return; |
| 681 | } |
| 682 | else |
| 683 | { |
| 684 | m_node = m_table[m_index]; |
| 685 | } |
| 686 | assert(m_node != nullptr); |
| 687 | } |
| 688 | |
| 689 | // Return `true` if the specified iterator has the same position as this iterator |
| 690 | bool Equal(const KeyIterator& i) const |
| 691 | { |
| 692 | return i.m_node == m_node; |
| 693 | } |
| 694 | |
| 695 | // Advance the iterator to the next node |
| 696 | void operator++() |
| 697 | { |
| 698 | Next(); |
| 699 | } |
| 700 | |
| 701 | // Advance the iterator to the next node |
| 702 | void operator++(int) |
| 703 | { |
| 704 | Next(); |
| 705 | } |
| 706 | }; |
| 707 | |
| 708 | //------------------------------------------------------------------------ |
| 709 | // operator[]: Get a reference to the value associated with the specified key. |
| 710 | // |
| 711 | // Arguments: |
| 712 | // k - the key |
| 713 | // |
| 714 | // Return Value: |
| 715 | // A reference to the value associated with the specified key. |
| 716 | // |
| 717 | // Notes: |
| 718 | // The specified key must exist. |
| 719 | // |
| 720 | Value& operator[](Key k) const |
| 721 | { |
| 722 | Value* p = LookupPointer(k); |
| 723 | assert(p); |
| 724 | return *p; |
| 725 | } |
| 726 | |
| 727 | private: |
| 728 | //------------------------------------------------------------------------ |
| 729 | // NextPrime: Get a prime number greater than or equal to the specified number. |
| 730 | // |
| 731 | // Arguments: |
| 732 | // number - the minimum value |
| 733 | // |
| 734 | // Return Value: |
| 735 | // A prime number. |
| 736 | // |
| 737 | static JitPrimeInfo NextPrime(unsigned number) |
| 738 | { |
| 739 | for (int i = 0; i < (int)(_countof(jitPrimeInfo)); i++) |
| 740 | { |
| 741 | if (jitPrimeInfo[i].prime >= number) |
| 742 | { |
| 743 | return jitPrimeInfo[i]; |
| 744 | } |
| 745 | } |
| 746 | |
| 747 | // overflow |
| 748 | Behavior::NoMemory(); |
| 749 | } |
| 750 | |
| 751 | // The node type. |
| 752 | struct Node |
| 753 | { |
| 754 | Node* m_next; // Assume that the alignment requirement of Key and Value are no greater than Node*, |
| 755 | // so put m_next first to avoid unnecessary padding. |
| 756 | Key m_key; |
| 757 | Value m_val; |
| 758 | |
| 759 | template <class... Args> |
| 760 | Node(Node* next, Key k, Args&&... args) : m_next(next), m_key(k), m_val(jitstd::forward<Args>(args)...) |
| 761 | { |
| 762 | } |
| 763 | |
| 764 | void* operator new(size_t sz, Allocator alloc) |
| 765 | { |
| 766 | return alloc.template allocate<unsigned char>(sz); |
| 767 | } |
| 768 | |
| 769 | void operator delete(void* p, Allocator alloc) |
| 770 | { |
| 771 | alloc.deallocate(p); |
| 772 | } |
| 773 | }; |
| 774 | |
| 775 | // Instance members |
| 776 | Allocator m_alloc; // Allocator to use in this table. |
| 777 | Node** m_table; // pointer to table |
| 778 | JitPrimeInfo m_tableSizeInfo; // size of table (a prime) and information about it |
| 779 | unsigned m_tableCount; // number of elements in table |
| 780 | unsigned m_tableMax; // maximum occupied count |
| 781 | }; |
| 782 | |
| 783 | // Commonly used KeyFuncs types: |
| 784 | |
| 785 | // Base class for types whose equality function is the same as their "==". |
| 786 | template <typename T> |
| 787 | struct JitKeyFuncsDefEquals |
| 788 | { |
| 789 | static bool Equals(const T& x, const T& y) |
| 790 | { |
| 791 | return x == y; |
| 792 | } |
| 793 | }; |
| 794 | |
| 795 | template <typename T> |
| 796 | struct JitPtrKeyFuncs : public JitKeyFuncsDefEquals<const T*> |
| 797 | { |
| 798 | public: |
| 799 | static unsigned GetHashCode(const T* ptr) |
| 800 | { |
| 801 | // Using the lower 32 bits of a pointer as a hashcode should be good enough. |
| 802 | // In fact, this should result in an unique hash code unless we allocate |
| 803 | // more than 4 gigabytes or if the virtual address space is fragmented. |
| 804 | return static_cast<unsigned>(reinterpret_cast<uintptr_t>(ptr)); |
| 805 | } |
| 806 | }; |
| 807 | |
| 808 | template <typename T> // Must be coercible to "unsigned" with no loss of information. |
| 809 | struct JitSmallPrimitiveKeyFuncs : public JitKeyFuncsDefEquals<T> |
| 810 | { |
| 811 | static unsigned GetHashCode(const T& val) |
| 812 | { |
| 813 | return static_cast<unsigned>(val); |
| 814 | } |
| 815 | }; |
| 816 | |
| 817 | template <typename T> // Assumed to be of size sizeof(UINT64). |
| 818 | struct JitLargePrimitiveKeyFuncs : public JitKeyFuncsDefEquals<T> |
| 819 | { |
| 820 | static unsigned GetHashCode(const T val) |
| 821 | { |
| 822 | // A static cast when T is a float or a double converts the value (i.e. 0.25 converts to 0) |
| 823 | // |
| 824 | // Instead we want to use all of the bits of a float to create the hash value |
| 825 | // So we cast the address of val to a pointer to an equivalent sized unsigned int |
| 826 | // This allows us to read the actual bit representation of a float type |
| 827 | // |
| 828 | // We can't read beyond the end of val, so we use sizeof(T) to determine |
| 829 | // exactly how many bytes to read |
| 830 | // |
| 831 | if (sizeof(T) == 8) |
| 832 | { |
| 833 | // cast &val to (UINT64 *) then deref to get the bits |
| 834 | UINT64 asUINT64 = *(reinterpret_cast<const UINT64*>(&val)); |
| 835 | |
| 836 | // Get the upper and lower 32-bit values from the 64-bit value |
| 837 | UINT32 upper32 = static_cast<UINT32>(asUINT64 >> 32); |
| 838 | UINT32 lower32 = static_cast<UINT32>(asUINT64 & 0xFFFFFFFF); |
| 839 | |
| 840 | // Exclusive-Or the upper32 and the lower32 values |
| 841 | return static_cast<unsigned>(upper32 ^ lower32); |
| 842 | } |
| 843 | else if (sizeof(T) == 4) |
| 844 | { |
| 845 | // cast &val to (UINT32 *) then deref to get the bits |
| 846 | UINT32 asUINT32 = *(reinterpret_cast<const UINT32*>(&val)); |
| 847 | |
| 848 | // Just return the 32-bit value |
| 849 | return static_cast<unsigned>(asUINT32); |
| 850 | } |
| 851 | else if ((sizeof(T) == 2) || (sizeof(T) == 1)) |
| 852 | { |
| 853 | // For small sizes we must have an integer type |
| 854 | // so we can just use the static_cast. |
| 855 | // |
| 856 | return static_cast<unsigned>(val); |
| 857 | } |
| 858 | else |
| 859 | { |
| 860 | // Only support Hashing for types that are 8,4,2 or 1 bytes in size |
| 861 | assert(!"Unsupported size" ); |
| 862 | return static_cast<unsigned>(val); // compile-time error here when we have a illegal size |
| 863 | } |
| 864 | } |
| 865 | }; |
| 866 | |