| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*****************************************************************************/ |
| 6 | #ifndef _VARTYPE_H_ |
| 7 | #define _VARTYPE_H_ |
| 8 | /*****************************************************************************/ |
| 9 | #include "error.h" |
| 10 | |
| 11 | enum var_types_classification |
| 12 | { |
| 13 | VTF_ANY = 0x0000, |
| 14 | VTF_INT = 0x0001, |
| 15 | VTF_UNS = 0x0002, // type is unsigned |
| 16 | VTF_FLT = 0x0004, |
| 17 | VTF_GCR = 0x0008, // type is GC ref |
| 18 | VTF_BYR = 0x0010, // type is Byref |
| 19 | VTF_I = 0x0020, // is machine sized |
| 20 | VTF_S = 0x0040, // is a struct type |
| 21 | }; |
| 22 | |
| 23 | enum var_types : BYTE |
| 24 | { |
| 25 | #define DEF_TP(tn, nm, jitType, verType, sz, sze, asze, st, al, tf, howUsed) TYP_##tn, |
| 26 | #include "typelist.h" |
| 27 | #undef DEF_TP |
| 28 | |
| 29 | TYP_COUNT, |
| 30 | |
| 31 | TYP_lastIntrins = TYP_DOUBLE |
| 32 | }; |
| 33 | |
| 34 | /***************************************************************************** |
| 35 | * C-style pointers are implemented as TYP_INT or TYP_LONG depending on the |
| 36 | * platform |
| 37 | */ |
| 38 | |
| 39 | #ifdef _TARGET_64BIT_ |
| 40 | #define TYP_I_IMPL TYP_LONG |
| 41 | #define TYP_U_IMPL TYP_ULONG |
| 42 | #define TYPE_REF_IIM TYPE_REF_LNG |
| 43 | #else |
| 44 | #define TYP_I_IMPL TYP_INT |
| 45 | #define TYP_U_IMPL TYP_UINT |
| 46 | #define TYPE_REF_IIM TYPE_REF_INT |
| 47 | #ifdef _PREFAST_ |
| 48 | // We silence this in the 32-bit build because for portability, we like to have asserts like this: |
| 49 | // assert(op2->gtType == TYP_INT || op2->gtType == TYP_I_IMPL); |
| 50 | // This is obviously redundant for 32-bit builds, but we don't want to have ifdefs and different |
| 51 | // asserts just for 64-bit builds, so for now just silence the assert |
| 52 | #pragma warning(disable : 6287) // warning 6287: the left and right sub-expressions are identical |
| 53 | #endif //_PREFAST_ |
| 54 | #endif |
| 55 | |
| 56 | /*****************************************************************************/ |
| 57 | |
| 58 | const extern BYTE varTypeClassification[TYP_COUNT]; |
| 59 | |
| 60 | // make any class with a TypeGet member also have a function TypeGet() that does the same thing |
| 61 | template <class T> |
| 62 | inline var_types TypeGet(T* t) |
| 63 | { |
| 64 | return t->TypeGet(); |
| 65 | } |
| 66 | |
| 67 | // make a TypeGet function which is the identity function for var_types |
| 68 | // the point of this and the preceding template is now you can make template functions |
| 69 | // that work on var_types as well as any object that exposes a TypeGet method. |
| 70 | // such as all of these varTypeIs* functions |
| 71 | inline var_types TypeGet(var_types v) |
| 72 | { |
| 73 | return v; |
| 74 | } |
| 75 | |
| 76 | #ifdef FEATURE_SIMD |
| 77 | template <class T> |
| 78 | inline bool varTypeIsSIMD(T vt) |
| 79 | { |
| 80 | switch (TypeGet(vt)) |
| 81 | { |
| 82 | case TYP_SIMD8: |
| 83 | case TYP_SIMD12: |
| 84 | case TYP_SIMD16: |
| 85 | case TYP_SIMD32: |
| 86 | return true; |
| 87 | default: |
| 88 | return false; |
| 89 | } |
| 90 | } |
| 91 | #else // FEATURE_SIMD |
| 92 | |
| 93 | // Always return false if FEATURE_SIMD is not enabled |
| 94 | template <class T> |
| 95 | inline bool varTypeIsSIMD(T vt) |
| 96 | { |
| 97 | return false; |
| 98 | } |
| 99 | #endif // !FEATURE_SIMD |
| 100 | |
| 101 | template <class T> |
| 102 | inline bool varTypeIsIntegral(T vt) |
| 103 | { |
| 104 | return ((varTypeClassification[TypeGet(vt)] & (VTF_INT)) != 0); |
| 105 | } |
| 106 | |
| 107 | template <class T> |
| 108 | inline bool varTypeIsIntegralOrI(T vt) |
| 109 | { |
| 110 | return ((varTypeClassification[TypeGet(vt)] & (VTF_INT | VTF_I)) != 0); |
| 111 | } |
| 112 | |
| 113 | template <class T> |
| 114 | inline bool varTypeIsUnsigned(T vt) |
| 115 | { |
| 116 | return ((varTypeClassification[TypeGet(vt)] & (VTF_UNS)) != 0); |
| 117 | } |
| 118 | |
| 119 | // If "vt" is an unsigned integral type, returns the corresponding signed integral type, otherwise |
| 120 | // return "vt". |
| 121 | inline var_types varTypeUnsignedToSigned(var_types vt) |
| 122 | { |
| 123 | if (varTypeIsUnsigned(vt)) |
| 124 | { |
| 125 | switch (vt) |
| 126 | { |
| 127 | case TYP_BOOL: |
| 128 | case TYP_UBYTE: |
| 129 | return TYP_BYTE; |
| 130 | case TYP_USHORT: |
| 131 | return TYP_SHORT; |
| 132 | case TYP_UINT: |
| 133 | return TYP_INT; |
| 134 | case TYP_ULONG: |
| 135 | return TYP_LONG; |
| 136 | default: |
| 137 | unreached(); |
| 138 | } |
| 139 | } |
| 140 | else |
| 141 | { |
| 142 | return vt; |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | template <class T> |
| 147 | inline bool varTypeIsFloating(T vt) |
| 148 | { |
| 149 | return ((varTypeClassification[TypeGet(vt)] & (VTF_FLT)) != 0); |
| 150 | } |
| 151 | |
| 152 | template <class T> |
| 153 | inline bool varTypeIsArithmetic(T vt) |
| 154 | { |
| 155 | return ((varTypeClassification[TypeGet(vt)] & (VTF_INT | VTF_FLT)) != 0); |
| 156 | } |
| 157 | |
| 158 | template <class T> |
| 159 | inline unsigned varTypeGCtype(T vt) |
| 160 | { |
| 161 | return (unsigned)(varTypeClassification[TypeGet(vt)] & (VTF_GCR | VTF_BYR)); |
| 162 | } |
| 163 | |
| 164 | template <class T> |
| 165 | inline bool varTypeIsGC(T vt) |
| 166 | { |
| 167 | return (varTypeGCtype(vt) != 0); |
| 168 | } |
| 169 | |
| 170 | template <class T> |
| 171 | inline bool varTypeIsI(T vt) |
| 172 | { |
| 173 | return ((varTypeClassification[TypeGet(vt)] & VTF_I) != 0); |
| 174 | } |
| 175 | |
| 176 | template <class T> |
| 177 | inline bool varTypeCanReg(T vt) |
| 178 | { |
| 179 | return ((varTypeClassification[TypeGet(vt)] & (VTF_INT | VTF_I | VTF_FLT)) != 0); |
| 180 | } |
| 181 | |
| 182 | template <class T> |
| 183 | inline bool varTypeIsByte(T vt) |
| 184 | { |
| 185 | return (TypeGet(vt) >= TYP_BOOL) && (TypeGet(vt) <= TYP_UBYTE); |
| 186 | } |
| 187 | |
| 188 | template <class T> |
| 189 | inline bool varTypeIsShort(T vt) |
| 190 | { |
| 191 | return (TypeGet(vt) == TYP_SHORT) || (TypeGet(vt) == TYP_USHORT); |
| 192 | } |
| 193 | |
| 194 | template <class T> |
| 195 | inline bool varTypeIsSmall(T vt) |
| 196 | { |
| 197 | return (TypeGet(vt) >= TYP_BOOL) && (TypeGet(vt) <= TYP_USHORT); |
| 198 | } |
| 199 | |
| 200 | template <class T> |
| 201 | inline bool varTypeIsSmallInt(T vt) |
| 202 | { |
| 203 | return (TypeGet(vt) >= TYP_BYTE) && (TypeGet(vt) <= TYP_USHORT); |
| 204 | } |
| 205 | |
| 206 | template <class T> |
| 207 | inline bool varTypeIsIntOrI(T vt) |
| 208 | { |
| 209 | return ((TypeGet(vt) == TYP_INT) |
| 210 | #ifdef _TARGET_64BIT_ |
| 211 | || (TypeGet(vt) == TYP_I_IMPL) |
| 212 | #endif // _TARGET_64BIT_ |
| 213 | ); |
| 214 | } |
| 215 | |
| 216 | template <class T> |
| 217 | inline bool genActualTypeIsIntOrI(T vt) |
| 218 | { |
| 219 | return ((TypeGet(vt) >= TYP_BOOL) && (TypeGet(vt) <= TYP_U_IMPL)); |
| 220 | } |
| 221 | |
| 222 | template <class T> |
| 223 | inline bool varTypeIsLong(T vt) |
| 224 | { |
| 225 | return (TypeGet(vt) >= TYP_LONG) && (TypeGet(vt) <= TYP_ULONG); |
| 226 | } |
| 227 | |
| 228 | template <class T> |
| 229 | inline bool varTypeIsMultiReg(T vt) |
| 230 | { |
| 231 | #ifdef _TARGET_64BIT_ |
| 232 | return false; |
| 233 | #else |
| 234 | return (TypeGet(vt) == TYP_LONG); |
| 235 | #endif |
| 236 | } |
| 237 | |
| 238 | template <class T> |
| 239 | inline bool varTypeIsSingleReg(T vt) |
| 240 | { |
| 241 | return !varTypeIsMultiReg(vt); |
| 242 | } |
| 243 | |
| 244 | template <class T> |
| 245 | inline bool varTypeIsComposite(T vt) |
| 246 | { |
| 247 | return (!varTypeIsArithmetic(TypeGet(vt)) && TypeGet(vt) != TYP_VOID); |
| 248 | } |
| 249 | |
| 250 | // Is this type promotable? |
| 251 | // In general only structs are promotable. |
| 252 | // However, a SIMD type, e.g. TYP_SIMD may be handled as either a struct, OR a |
| 253 | // fully-promoted register type. |
| 254 | // On 32-bit systems longs are split into an upper and lower half, and they are |
| 255 | // handled as if they are structs with two integer fields. |
| 256 | |
| 257 | template <class T> |
| 258 | inline bool varTypeIsPromotable(T vt) |
| 259 | { |
| 260 | return (varTypeIsStruct(vt) || (TypeGet(vt) == TYP_BLK) |
| 261 | #if !defined(_TARGET_64BIT_) |
| 262 | || varTypeIsLong(vt) |
| 263 | #endif // !defined(_TARGET_64BIT_) |
| 264 | ); |
| 265 | } |
| 266 | |
| 267 | template <class T> |
| 268 | inline bool varTypeIsStruct(T vt) |
| 269 | { |
| 270 | return ((varTypeClassification[TypeGet(vt)] & VTF_S) != 0); |
| 271 | } |
| 272 | |
| 273 | template <class T> |
| 274 | inline bool varTypeIsEnregisterableStruct(T vt) |
| 275 | { |
| 276 | return (TypeGet(vt) != TYP_STRUCT); |
| 277 | } |
| 278 | |
| 279 | /*****************************************************************************/ |
| 280 | #endif // _VARTYPE_H_ |
| 281 | /*****************************************************************************/ |
| 282 | |