| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*++ |
| 6 | |
| 7 | |
| 8 | |
| 9 | Module Name: |
| 10 | |
| 11 | virtual.cpp |
| 12 | |
| 13 | Abstract: |
| 14 | |
| 15 | Implementation of virtual memory management functions. |
| 16 | |
| 17 | |
| 18 | |
| 19 | --*/ |
| 20 | |
| 21 | #include "pal/dbgmsg.h" |
| 22 | |
| 23 | SET_DEFAULT_DEBUG_CHANNEL(VIRTUAL); // some headers have code with asserts, so do this first |
| 24 | |
| 25 | #include "pal/thread.hpp" |
| 26 | #include "pal/cs.hpp" |
| 27 | #include "pal/malloc.hpp" |
| 28 | #include "pal/file.hpp" |
| 29 | #include "pal/seh.hpp" |
| 30 | #include "pal/virtual.h" |
| 31 | #include "pal/map.h" |
| 32 | #include "pal/init.h" |
| 33 | #include "pal/utils.h" |
| 34 | #include "common.h" |
| 35 | |
| 36 | #include <sys/types.h> |
| 37 | #include <sys/mman.h> |
| 38 | #include <errno.h> |
| 39 | #include <string.h> |
| 40 | #include <unistd.h> |
| 41 | #include <limits.h> |
| 42 | |
| 43 | #if HAVE_VM_ALLOCATE |
| 44 | #include <mach/vm_map.h> |
| 45 | #include <mach/mach_init.h> |
| 46 | #endif // HAVE_VM_ALLOCATE |
| 47 | |
| 48 | using namespace CorUnix; |
| 49 | |
| 50 | CRITICAL_SECTION virtual_critsec; |
| 51 | |
| 52 | // The first node in our list of allocated blocks. |
| 53 | static PCMI pVirtualMemory; |
| 54 | |
| 55 | static size_t s_virtualPageSize = 0; |
| 56 | |
| 57 | /* We need MAP_ANON. However on some platforms like HP-UX, it is defined as MAP_ANONYMOUS */ |
| 58 | #if !defined(MAP_ANON) && defined(MAP_ANONYMOUS) |
| 59 | #define MAP_ANON MAP_ANONYMOUS |
| 60 | #endif |
| 61 | |
| 62 | /*++ |
| 63 | Function: |
| 64 | ReserveVirtualMemory() |
| 65 | |
| 66 | Helper function that is used by Virtual* APIs and ExecutableMemoryAllocator |
| 67 | to reserve virtual memory from the OS. |
| 68 | |
| 69 | --*/ |
| 70 | static LPVOID ReserveVirtualMemory( |
| 71 | IN CPalThread *pthrCurrent, /* Currently executing thread */ |
| 72 | IN LPVOID lpAddress, /* Region to reserve or commit */ |
| 73 | IN SIZE_T dwSize); /* Size of Region */ |
| 74 | |
| 75 | |
| 76 | // A memory allocator that allocates memory from a pre-reserved region |
| 77 | // of virtual memory that is located near the CoreCLR library. |
| 78 | static ExecutableMemoryAllocator g_executableMemoryAllocator; |
| 79 | |
| 80 | // |
| 81 | // |
| 82 | // Virtual Memory Logging |
| 83 | // |
| 84 | // We maintain a lightweight in-memory circular buffer recording virtual |
| 85 | // memory operations so that we can better diagnose failures and crashes |
| 86 | // caused by one of these operations mishandling memory in some way. |
| 87 | // |
| 88 | // |
| 89 | namespace VirtualMemoryLogging |
| 90 | { |
| 91 | // Specifies the operation being logged |
| 92 | enum class VirtualOperation |
| 93 | { |
| 94 | Allocate = 0x10, |
| 95 | Reserve = 0x20, |
| 96 | Commit = 0x30, |
| 97 | Decommit = 0x40, |
| 98 | Release = 0x50, |
| 99 | Reset = 0x60, |
| 100 | ReserveFromExecutableMemoryAllocatorWithinRange = 0x70 |
| 101 | }; |
| 102 | |
| 103 | // Indicates that the attempted operation has failed |
| 104 | const DWORD FailedOperationMarker = 0x80000000; |
| 105 | |
| 106 | // An entry in the in-memory log |
| 107 | struct LogRecord |
| 108 | { |
| 109 | LONG RecordId; |
| 110 | DWORD Operation; |
| 111 | LPVOID CurrentThread; |
| 112 | LPVOID RequestedAddress; |
| 113 | LPVOID ReturnedAddress; |
| 114 | SIZE_T Size; |
| 115 | DWORD AllocationType; |
| 116 | DWORD Protect; |
| 117 | }; |
| 118 | |
| 119 | // Maximum number of records in the in-memory log |
| 120 | const LONG MaxRecords = 128; |
| 121 | |
| 122 | // Buffer used to store the logged data |
| 123 | volatile LogRecord logRecords[MaxRecords]; |
| 124 | |
| 125 | // Current record number. Use (recordNumber % MaxRecords) to determine |
| 126 | // the current position in the circular buffer. |
| 127 | volatile LONG recordNumber = 0; |
| 128 | |
| 129 | // Record an entry in the in-memory log |
| 130 | void LogVaOperation( |
| 131 | IN VirtualOperation operation, |
| 132 | IN LPVOID requestedAddress, |
| 133 | IN SIZE_T size, |
| 134 | IN DWORD flAllocationType, |
| 135 | IN DWORD flProtect, |
| 136 | IN LPVOID returnedAddress, |
| 137 | IN BOOL result) |
| 138 | { |
| 139 | LONG i = InterlockedIncrement(&recordNumber) - 1; |
| 140 | LogRecord* curRec = (LogRecord*)&logRecords[i % MaxRecords]; |
| 141 | |
| 142 | curRec->RecordId = i; |
| 143 | curRec->CurrentThread = (LPVOID)pthread_self(); |
| 144 | curRec->RequestedAddress = requestedAddress; |
| 145 | curRec->ReturnedAddress = returnedAddress; |
| 146 | curRec->Size = size; |
| 147 | curRec->AllocationType = flAllocationType; |
| 148 | curRec->Protect = flProtect; |
| 149 | curRec->Operation = static_cast<DWORD>(operation) | (result ? 0 : FailedOperationMarker); |
| 150 | } |
| 151 | } |
| 152 | |
| 153 | /*++ |
| 154 | Function: |
| 155 | VIRTUALInitialize() |
| 156 | |
| 157 | Initializes this section's critical section. |
| 158 | |
| 159 | Return value: |
| 160 | TRUE if initialization succeeded |
| 161 | FALSE otherwise. |
| 162 | |
| 163 | --*/ |
| 164 | extern "C" |
| 165 | BOOL |
| 166 | VIRTUALInitialize(bool initializeExecutableMemoryAllocator) |
| 167 | { |
| 168 | s_virtualPageSize = getpagesize(); |
| 169 | |
| 170 | TRACE("Initializing the Virtual Critical Sections. \n" ); |
| 171 | |
| 172 | InternalInitializeCriticalSection(&virtual_critsec); |
| 173 | |
| 174 | pVirtualMemory = NULL; |
| 175 | |
| 176 | if (initializeExecutableMemoryAllocator) |
| 177 | { |
| 178 | g_executableMemoryAllocator.Initialize(); |
| 179 | } |
| 180 | |
| 181 | return TRUE; |
| 182 | } |
| 183 | |
| 184 | /*** |
| 185 | * |
| 186 | * VIRTUALCleanup() |
| 187 | * Deletes this section's critical section. |
| 188 | * |
| 189 | */ |
| 190 | extern "C" |
| 191 | void VIRTUALCleanup() |
| 192 | { |
| 193 | PCMI pEntry; |
| 194 | PCMI pTempEntry; |
| 195 | CPalThread * pthrCurrent = InternalGetCurrentThread(); |
| 196 | |
| 197 | InternalEnterCriticalSection(pthrCurrent, &virtual_critsec); |
| 198 | |
| 199 | // Clean up the allocated memory. |
| 200 | pEntry = pVirtualMemory; |
| 201 | while ( pEntry ) |
| 202 | { |
| 203 | WARN( "The memory at %d was not freed through a call to VirtualFree.\n" , |
| 204 | pEntry->startBoundary ); |
| 205 | free(pEntry->pAllocState); |
| 206 | free(pEntry->pProtectionState ); |
| 207 | pTempEntry = pEntry; |
| 208 | pEntry = pEntry->pNext; |
| 209 | free(pTempEntry ); |
| 210 | } |
| 211 | pVirtualMemory = NULL; |
| 212 | |
| 213 | InternalLeaveCriticalSection(pthrCurrent, &virtual_critsec); |
| 214 | |
| 215 | TRACE( "Deleting the Virtual Critical Sections. \n" ); |
| 216 | DeleteCriticalSection( &virtual_critsec ); |
| 217 | } |
| 218 | |
| 219 | /*** |
| 220 | * |
| 221 | * VIRTUALContainsInvalidProtectionFlags() |
| 222 | * Returns TRUE if an invalid flag is specified. FALSE otherwise. |
| 223 | */ |
| 224 | static BOOL VIRTUALContainsInvalidProtectionFlags( IN DWORD flProtect ) |
| 225 | { |
| 226 | if ( ( flProtect & ~( PAGE_NOACCESS | PAGE_READONLY | |
| 227 | PAGE_READWRITE | PAGE_EXECUTE | PAGE_EXECUTE_READ | |
| 228 | PAGE_EXECUTE_READWRITE ) ) != 0 ) |
| 229 | { |
| 230 | return TRUE; |
| 231 | } |
| 232 | else |
| 233 | { |
| 234 | return FALSE; |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | |
| 239 | /**** |
| 240 | * |
| 241 | * VIRTUALIsPageCommitted |
| 242 | * |
| 243 | * SIZE_T nBitToRetrieve - Which page to check. |
| 244 | * |
| 245 | * Returns TRUE if committed, FALSE otherwise. |
| 246 | * |
| 247 | */ |
| 248 | static BOOL VIRTUALIsPageCommitted( SIZE_T nBitToRetrieve, CONST PCMI pInformation ) |
| 249 | { |
| 250 | SIZE_T nByteOffset = 0; |
| 251 | UINT nBitOffset = 0; |
| 252 | UINT byteMask = 0; |
| 253 | |
| 254 | if ( !pInformation ) |
| 255 | { |
| 256 | ERROR( "pInformation was NULL!\n" ); |
| 257 | return FALSE; |
| 258 | } |
| 259 | |
| 260 | nByteOffset = nBitToRetrieve / CHAR_BIT; |
| 261 | nBitOffset = nBitToRetrieve % CHAR_BIT; |
| 262 | |
| 263 | byteMask = 1 << nBitOffset; |
| 264 | |
| 265 | if ( pInformation->pAllocState[ nByteOffset ] & byteMask ) |
| 266 | { |
| 267 | return TRUE; |
| 268 | } |
| 269 | else |
| 270 | { |
| 271 | return FALSE; |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | /********* |
| 276 | * |
| 277 | * VIRTUALGetAllocationType |
| 278 | * |
| 279 | * IN SIZE_T Index - The page within the range to retrieve |
| 280 | * the state for. |
| 281 | * |
| 282 | * IN pInformation - The virtual memory object. |
| 283 | * |
| 284 | */ |
| 285 | static INT VIRTUALGetAllocationType( SIZE_T Index, CONST PCMI pInformation ) |
| 286 | { |
| 287 | if ( VIRTUALIsPageCommitted( Index, pInformation ) ) |
| 288 | { |
| 289 | return MEM_COMMIT; |
| 290 | } |
| 291 | else |
| 292 | { |
| 293 | return MEM_RESERVE; |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | /**** |
| 298 | * |
| 299 | * VIRTUALSetPageBits |
| 300 | * |
| 301 | * IN UINT nStatus - Bit set / reset [0: reset, any other value: set]. |
| 302 | * IN SIZE_T nStartingBit - The bit to set. |
| 303 | * |
| 304 | * IN SIZE_T nNumberOfBits - The range of bits to set. |
| 305 | * IN BYTE* pBitArray - A pointer the array to be manipulated. |
| 306 | * |
| 307 | * Returns TRUE on success, FALSE otherwise. |
| 308 | * Turn on/off memory status bits. |
| 309 | * |
| 310 | */ |
| 311 | static BOOL VIRTUALSetPageBits ( UINT nStatus, SIZE_T nStartingBit, |
| 312 | SIZE_T nNumberOfBits, BYTE * pBitArray ) |
| 313 | { |
| 314 | /* byte masks for optimized modification of partial bytes (changing less |
| 315 | than 8 bits in a single byte). note that bits are treated in little |
| 316 | endian order : value 1 is bit 0; value 128 is bit 7. in the binary |
| 317 | representations below, bit 0 is on the right */ |
| 318 | |
| 319 | /* start masks : for modifying bits >= n while preserving bits < n. |
| 320 | example : if nStartignBit%8 is 3, then bits 0, 1, 2 remain unchanged |
| 321 | while bits 3..7 are changed; startmasks[3] can be used for this. */ |
| 322 | static const BYTE startmasks[8] = { |
| 323 | 0xff, /* start at 0 : 1111 1111 */ |
| 324 | 0xfe, /* start at 1 : 1111 1110 */ |
| 325 | 0xfc, /* start at 2 : 1111 1100 */ |
| 326 | 0xf8, /* start at 3 : 1111 1000 */ |
| 327 | 0xf0, /* start at 4 : 1111 0000 */ |
| 328 | 0xe0, /* start at 5 : 1110 0000 */ |
| 329 | 0xc0, /* start at 6 : 1100 0000 */ |
| 330 | 0x80 /* start at 7 : 1000 0000 */ |
| 331 | }; |
| 332 | |
| 333 | /* end masks : for modifying bits <= n while preserving bits > n. |
| 334 | example : if the last bit to change is 5, then bits 6 & 7 stay unchanged |
| 335 | while bits 1..5 are changed; endmasks[5] can be used for this. */ |
| 336 | static const BYTE endmasks[8] = { |
| 337 | 0x01, /* end at 0 : 0000 0001 */ |
| 338 | 0x03, /* end at 1 : 0000 0011 */ |
| 339 | 0x07, /* end at 2 : 0000 0111 */ |
| 340 | 0x0f, /* end at 3 : 0000 1111 */ |
| 341 | 0x1f, /* end at 4 : 0001 1111 */ |
| 342 | 0x3f, /* end at 5 : 0011 1111 */ |
| 343 | 0x7f, /* end at 6 : 0111 1111 */ |
| 344 | 0xff /* end at 7 : 1111 1111 */ |
| 345 | }; |
| 346 | /* last example : if only the middle of a byte must be changed, both start |
| 347 | and end masks can be combined (bitwise AND) to obtain the correct mask. |
| 348 | if we want to change bits 2 to 4 : |
| 349 | startmasks[2] : 0xfc 1111 1100 (change 2,3,4,5,6,7) |
| 350 | endmasks[4]: 0x1f 0001 1111 (change 0,1,2,3,4) |
| 351 | bitwise AND : 0x1c 0001 1100 (change 2,3,4) |
| 352 | */ |
| 353 | |
| 354 | BYTE byte_mask; |
| 355 | SIZE_T nLastBit; |
| 356 | SIZE_T nFirstByte; |
| 357 | SIZE_T nLastByte; |
| 358 | SIZE_T nFullBytes; |
| 359 | |
| 360 | TRACE( "VIRTUALSetPageBits( nStatus = %d, nStartingBit = %d, " |
| 361 | "nNumberOfBits = %d, pBitArray = 0x%p )\n" , |
| 362 | nStatus, nStartingBit, nNumberOfBits, pBitArray ); |
| 363 | |
| 364 | if ( 0 == nNumberOfBits ) |
| 365 | { |
| 366 | ERROR( "nNumberOfBits was 0!\n" ); |
| 367 | return FALSE; |
| 368 | } |
| 369 | |
| 370 | nLastBit = nStartingBit+nNumberOfBits-1; |
| 371 | nFirstByte = nStartingBit / 8; |
| 372 | nLastByte = nLastBit / 8; |
| 373 | |
| 374 | /* handle partial first byte (if any) */ |
| 375 | if(0 != (nStartingBit % 8)) |
| 376 | { |
| 377 | byte_mask = startmasks[nStartingBit % 8]; |
| 378 | |
| 379 | /* if 1st byte is the only changing byte, combine endmask to preserve |
| 380 | trailing bits (see 3rd example above) */ |
| 381 | if( nLastByte == nFirstByte) |
| 382 | { |
| 383 | byte_mask &= endmasks[nLastBit % 8]; |
| 384 | } |
| 385 | |
| 386 | /* byte_mask contains 1 for bits to change, 0 for bits to leave alone */ |
| 387 | if(0 == nStatus) |
| 388 | { |
| 389 | /* bits to change must be set to 0 : invert byte_mask (giving 0 for |
| 390 | bits to change), use bitwise AND */ |
| 391 | pBitArray[nFirstByte] &= ~byte_mask; |
| 392 | } |
| 393 | else |
| 394 | { |
| 395 | /* bits to change must be set to 1 : use bitwise OR */ |
| 396 | pBitArray[nFirstByte] |= byte_mask; |
| 397 | } |
| 398 | |
| 399 | /* stop right away if only 1 byte is being modified */ |
| 400 | if(nLastByte == nFirstByte) |
| 401 | { |
| 402 | return TRUE; |
| 403 | } |
| 404 | |
| 405 | /* we're done with the 1st byte; skip over it */ |
| 406 | nFirstByte++; |
| 407 | } |
| 408 | |
| 409 | /* number of bytes to change, excluding the last byte (handled separately)*/ |
| 410 | nFullBytes = nLastByte - nFirstByte; |
| 411 | |
| 412 | if(0 != nFullBytes) |
| 413 | { |
| 414 | // Turn off/on dirty bits |
| 415 | memset( &(pBitArray[nFirstByte]), (0 == nStatus) ? 0 : 0xFF, nFullBytes ); |
| 416 | } |
| 417 | |
| 418 | /* handle last (possibly partial) byte */ |
| 419 | byte_mask = endmasks[nLastBit % 8]; |
| 420 | |
| 421 | /* byte_mask contains 1 for bits to change, 0 for bits to leave alone */ |
| 422 | if(0 == nStatus) |
| 423 | { |
| 424 | /* bits to change must be set to 0 : invert byte_mask (giving 0 for |
| 425 | bits to change), use bitwise AND */ |
| 426 | pBitArray[nLastByte] &= ~byte_mask; |
| 427 | } |
| 428 | else |
| 429 | { |
| 430 | /* bits to change must be set to 1 : use bitwise OR */ |
| 431 | pBitArray[nLastByte] |= byte_mask; |
| 432 | } |
| 433 | |
| 434 | return TRUE; |
| 435 | } |
| 436 | |
| 437 | /**** |
| 438 | * |
| 439 | * VIRTUALSetAllocState |
| 440 | * |
| 441 | * IN UINT nAction - Which action to perform. |
| 442 | * IN SIZE_T nStartingBit - The bit to set. |
| 443 | * |
| 444 | * IN SIZE_T nNumberOfBits - The range of bits to set. |
| 445 | * IN PCMI pStateArray - A pointer the array to be manipulated. |
| 446 | * |
| 447 | * Returns TRUE on success, FALSE otherwise. |
| 448 | * Turn bit on to indicate committed, turn bit off to indicate reserved. |
| 449 | * |
| 450 | */ |
| 451 | static BOOL VIRTUALSetAllocState( UINT nAction, SIZE_T nStartingBit, |
| 452 | SIZE_T nNumberOfBits, CONST PCMI pInformation ) |
| 453 | { |
| 454 | TRACE( "VIRTUALSetAllocState( nAction = %d, nStartingBit = %d, " |
| 455 | "nNumberOfBits = %d, pStateArray = 0x%p )\n" , |
| 456 | nAction, nStartingBit, nNumberOfBits, pInformation ); |
| 457 | |
| 458 | if ( !pInformation ) |
| 459 | { |
| 460 | ERROR( "pInformation was invalid!\n" ); |
| 461 | return FALSE; |
| 462 | } |
| 463 | |
| 464 | return VIRTUALSetPageBits((MEM_COMMIT == nAction) ? 1 : 0, nStartingBit, |
| 465 | nNumberOfBits, pInformation->pAllocState); |
| 466 | } |
| 467 | |
| 468 | /**** |
| 469 | * |
| 470 | * VIRTUALFindRegionInformation( ) |
| 471 | * |
| 472 | * IN UINT_PTR address - The address to look for. |
| 473 | * |
| 474 | * Returns the PCMI if found, NULL otherwise. |
| 475 | */ |
| 476 | static PCMI VIRTUALFindRegionInformation( IN UINT_PTR address ) |
| 477 | { |
| 478 | PCMI pEntry = NULL; |
| 479 | |
| 480 | TRACE( "VIRTUALFindRegionInformation( %#x )\n" , address ); |
| 481 | |
| 482 | pEntry = pVirtualMemory; |
| 483 | |
| 484 | while( pEntry ) |
| 485 | { |
| 486 | if ( pEntry->startBoundary > address ) |
| 487 | { |
| 488 | /* Gone past the possible location in the list. */ |
| 489 | pEntry = NULL; |
| 490 | break; |
| 491 | } |
| 492 | if ( pEntry->startBoundary + pEntry->memSize > address ) |
| 493 | { |
| 494 | break; |
| 495 | } |
| 496 | |
| 497 | pEntry = pEntry->pNext; |
| 498 | } |
| 499 | return pEntry; |
| 500 | } |
| 501 | |
| 502 | /*++ |
| 503 | Function : |
| 504 | |
| 505 | VIRTUALReleaseMemory |
| 506 | |
| 507 | Removes a PCMI entry from the list. |
| 508 | |
| 509 | Returns true on success. FALSE otherwise. |
| 510 | --*/ |
| 511 | static BOOL VIRTUALReleaseMemory( PCMI pMemoryToBeReleased ) |
| 512 | { |
| 513 | BOOL bRetVal = TRUE; |
| 514 | |
| 515 | if ( !pMemoryToBeReleased ) |
| 516 | { |
| 517 | ASSERT( "Invalid pointer.\n" ); |
| 518 | return FALSE; |
| 519 | } |
| 520 | |
| 521 | if ( pMemoryToBeReleased == pVirtualMemory ) |
| 522 | { |
| 523 | /* This is either the first entry, or the only entry. */ |
| 524 | pVirtualMemory = pMemoryToBeReleased->pNext; |
| 525 | if ( pMemoryToBeReleased->pNext ) |
| 526 | { |
| 527 | pMemoryToBeReleased->pNext->pPrevious = NULL; |
| 528 | } |
| 529 | } |
| 530 | else /* Could be anywhere in the list. */ |
| 531 | { |
| 532 | /* Delete the entry from the linked list. */ |
| 533 | if ( pMemoryToBeReleased->pPrevious ) |
| 534 | { |
| 535 | pMemoryToBeReleased->pPrevious->pNext = pMemoryToBeReleased->pNext; |
| 536 | } |
| 537 | |
| 538 | if ( pMemoryToBeReleased->pNext ) |
| 539 | { |
| 540 | pMemoryToBeReleased->pNext->pPrevious = pMemoryToBeReleased->pPrevious; |
| 541 | } |
| 542 | } |
| 543 | |
| 544 | free( pMemoryToBeReleased->pAllocState ); |
| 545 | pMemoryToBeReleased->pAllocState = NULL; |
| 546 | |
| 547 | free( pMemoryToBeReleased->pProtectionState ); |
| 548 | pMemoryToBeReleased->pProtectionState = NULL; |
| 549 | |
| 550 | free( pMemoryToBeReleased ); |
| 551 | pMemoryToBeReleased = NULL; |
| 552 | |
| 553 | return bRetVal; |
| 554 | } |
| 555 | |
| 556 | /**** |
| 557 | * VIRTUALConvertWinFlags() - |
| 558 | * Converts win32 protection flags to |
| 559 | * internal VIRTUAL flags. |
| 560 | * |
| 561 | */ |
| 562 | static BYTE VIRTUALConvertWinFlags( IN DWORD flProtect ) |
| 563 | { |
| 564 | BYTE MemAccessControl = 0; |
| 565 | |
| 566 | switch ( flProtect & 0xff ) |
| 567 | { |
| 568 | case PAGE_NOACCESS : |
| 569 | MemAccessControl = VIRTUAL_NOACCESS; |
| 570 | break; |
| 571 | case PAGE_READONLY : |
| 572 | MemAccessControl = VIRTUAL_READONLY; |
| 573 | break; |
| 574 | case PAGE_READWRITE : |
| 575 | MemAccessControl = VIRTUAL_READWRITE; |
| 576 | break; |
| 577 | case PAGE_EXECUTE : |
| 578 | MemAccessControl = VIRTUAL_EXECUTE; |
| 579 | break; |
| 580 | case PAGE_EXECUTE_READ : |
| 581 | MemAccessControl = VIRTUAL_EXECUTE_READ; |
| 582 | break; |
| 583 | case PAGE_EXECUTE_READWRITE: |
| 584 | MemAccessControl = VIRTUAL_EXECUTE_READWRITE; |
| 585 | break; |
| 586 | |
| 587 | default : |
| 588 | MemAccessControl = 0; |
| 589 | ERROR( "Incorrect or no protection flags specified.\n" ); |
| 590 | break; |
| 591 | } |
| 592 | return MemAccessControl; |
| 593 | } |
| 594 | |
| 595 | /**** |
| 596 | * VIRTUALConvertVirtualFlags() - |
| 597 | * Converts internal virtual protection |
| 598 | * flags to their win32 counterparts. |
| 599 | */ |
| 600 | static DWORD VIRTUALConvertVirtualFlags( IN BYTE VirtualProtect ) |
| 601 | { |
| 602 | DWORD MemAccessControl = 0; |
| 603 | |
| 604 | if ( VirtualProtect == VIRTUAL_READONLY ) |
| 605 | { |
| 606 | MemAccessControl = PAGE_READONLY; |
| 607 | } |
| 608 | else if ( VirtualProtect == VIRTUAL_READWRITE ) |
| 609 | { |
| 610 | MemAccessControl = PAGE_READWRITE; |
| 611 | } |
| 612 | else if ( VirtualProtect == VIRTUAL_EXECUTE_READWRITE ) |
| 613 | { |
| 614 | MemAccessControl = PAGE_EXECUTE_READWRITE; |
| 615 | } |
| 616 | else if ( VirtualProtect == VIRTUAL_EXECUTE_READ ) |
| 617 | { |
| 618 | MemAccessControl = PAGE_EXECUTE_READ; |
| 619 | } |
| 620 | else if ( VirtualProtect == VIRTUAL_EXECUTE ) |
| 621 | { |
| 622 | MemAccessControl = PAGE_EXECUTE; |
| 623 | } |
| 624 | else if ( VirtualProtect == VIRTUAL_NOACCESS ) |
| 625 | { |
| 626 | MemAccessControl = PAGE_NOACCESS; |
| 627 | } |
| 628 | |
| 629 | else |
| 630 | { |
| 631 | MemAccessControl = 0; |
| 632 | ERROR( "Incorrect or no protection flags specified.\n" ); |
| 633 | } |
| 634 | return MemAccessControl; |
| 635 | } |
| 636 | |
| 637 | /*** |
| 638 | * Displays the linked list. |
| 639 | * |
| 640 | */ |
| 641 | #if defined _DEBUG |
| 642 | static void VIRTUALDisplayList( void ) |
| 643 | { |
| 644 | if (!DBG_ENABLED(DLI_TRACE, defdbgchan)) |
| 645 | return; |
| 646 | |
| 647 | PCMI p; |
| 648 | SIZE_T count; |
| 649 | SIZE_T index; |
| 650 | CPalThread * pthrCurrent = InternalGetCurrentThread(); |
| 651 | |
| 652 | InternalEnterCriticalSection(pthrCurrent, &virtual_critsec); |
| 653 | |
| 654 | p = pVirtualMemory; |
| 655 | count = 0; |
| 656 | while ( p ) { |
| 657 | |
| 658 | DBGOUT( "Entry %d : \n" , count ); |
| 659 | DBGOUT( "\t startBoundary %#x \n" , p->startBoundary ); |
| 660 | DBGOUT( "\t memSize %d \n" , p->memSize ); |
| 661 | |
| 662 | DBGOUT( "\t pAllocState " ); |
| 663 | for ( index = 0; index < p->memSize / GetVirtualPageSize(); index++) |
| 664 | { |
| 665 | DBGOUT( "[%d] " , VIRTUALGetAllocationType( index, p ) ); |
| 666 | } |
| 667 | DBGOUT( "\t pProtectionState " ); |
| 668 | for ( index = 0; index < p->memSize / GetVirtualPageSize(); index++ ) |
| 669 | { |
| 670 | DBGOUT( "[%d] " , (UINT)p->pProtectionState[ index ] ); |
| 671 | } |
| 672 | DBGOUT( "\n" ); |
| 673 | DBGOUT( "\t accessProtection %d \n" , p->accessProtection ); |
| 674 | DBGOUT( "\t allocationType %d \n" , p->allocationType ); |
| 675 | DBGOUT( "\t pNext %p \n" , p->pNext ); |
| 676 | DBGOUT( "\t pLast %p \n" , p->pPrevious ); |
| 677 | |
| 678 | count++; |
| 679 | p = p->pNext; |
| 680 | } |
| 681 | |
| 682 | InternalLeaveCriticalSection(pthrCurrent, &virtual_critsec); |
| 683 | } |
| 684 | #endif |
| 685 | |
| 686 | #ifdef DEBUG |
| 687 | void VerifyRightEntry(PCMI pEntry) |
| 688 | { |
| 689 | volatile PCMI pRight = pEntry->pNext; |
| 690 | SIZE_T endAddress; |
| 691 | if (pRight != nullptr) |
| 692 | { |
| 693 | endAddress = ((SIZE_T)pEntry->startBoundary) + pEntry->memSize; |
| 694 | _ASSERTE(endAddress <= (SIZE_T)pRight->startBoundary); |
| 695 | } |
| 696 | } |
| 697 | |
| 698 | void VerifyLeftEntry(PCMI pEntry) |
| 699 | { |
| 700 | volatile PCMI pLeft = pEntry->pPrevious; |
| 701 | SIZE_T endAddress; |
| 702 | if (pLeft != NULL) |
| 703 | { |
| 704 | endAddress = ((SIZE_T)pLeft->startBoundary) + pLeft->memSize; |
| 705 | _ASSERTE(endAddress <= (SIZE_T)pEntry->startBoundary); |
| 706 | } |
| 707 | } |
| 708 | #endif // DEBUG |
| 709 | |
| 710 | /**** |
| 711 | * VIRTUALStoreAllocationInfo() |
| 712 | * |
| 713 | * Stores the allocation information in the linked list. |
| 714 | * NOTE: The caller must own the critical section. |
| 715 | */ |
| 716 | static BOOL VIRTUALStoreAllocationInfo( |
| 717 | IN UINT_PTR startBoundary, /* Start of the region. */ |
| 718 | IN SIZE_T memSize, /* Size of the region. */ |
| 719 | IN DWORD flAllocationType, /* Allocation Types. */ |
| 720 | IN DWORD flProtection ) /* Protections flags on the memory. */ |
| 721 | { |
| 722 | PCMI pNewEntry = nullptr; |
| 723 | PCMI pMemInfo = nullptr; |
| 724 | SIZE_T nBufferSize = 0; |
| 725 | |
| 726 | if (!IS_ALIGNED(memSize, GetVirtualPageSize())) |
| 727 | { |
| 728 | ERROR("The memory size was not a multiple of the page size. \n" ); |
| 729 | return FALSE; |
| 730 | } |
| 731 | |
| 732 | if (!(pNewEntry = (PCMI)InternalMalloc(sizeof(*pNewEntry)))) |
| 733 | { |
| 734 | ERROR( "Unable to allocate memory for the structure.\n" ); |
| 735 | return FALSE; |
| 736 | } |
| 737 | |
| 738 | pNewEntry->startBoundary = startBoundary; |
| 739 | pNewEntry->memSize = memSize; |
| 740 | pNewEntry->allocationType = flAllocationType; |
| 741 | pNewEntry->accessProtection = flProtection; |
| 742 | |
| 743 | nBufferSize = memSize / GetVirtualPageSize() / CHAR_BIT; |
| 744 | if ((memSize / GetVirtualPageSize()) % CHAR_BIT != 0) |
| 745 | { |
| 746 | nBufferSize++; |
| 747 | } |
| 748 | |
| 749 | pNewEntry->pAllocState = (BYTE*)InternalMalloc(nBufferSize); |
| 750 | pNewEntry->pProtectionState = (BYTE*)InternalMalloc((memSize / GetVirtualPageSize())); |
| 751 | |
| 752 | if (pNewEntry->pAllocState && pNewEntry->pProtectionState) |
| 753 | { |
| 754 | /* Set the intial allocation state, and initial allocation protection. */ |
| 755 | VIRTUALSetAllocState(MEM_RESERVE, 0, nBufferSize * CHAR_BIT, pNewEntry); |
| 756 | memset(pNewEntry->pProtectionState, |
| 757 | VIRTUALConvertWinFlags(flProtection), |
| 758 | memSize / GetVirtualPageSize()); |
| 759 | } |
| 760 | else |
| 761 | { |
| 762 | ERROR( "Unable to allocate memory for the structure.\n" ); |
| 763 | |
| 764 | if (pNewEntry->pProtectionState) free(pNewEntry->pProtectionState); |
| 765 | pNewEntry->pProtectionState = nullptr; |
| 766 | |
| 767 | if (pNewEntry->pAllocState) free(pNewEntry->pAllocState); |
| 768 | pNewEntry->pAllocState = nullptr; |
| 769 | |
| 770 | free(pNewEntry); |
| 771 | pNewEntry = nullptr; |
| 772 | |
| 773 | return FALSE; |
| 774 | } |
| 775 | |
| 776 | pMemInfo = pVirtualMemory; |
| 777 | |
| 778 | if (pMemInfo && pMemInfo->startBoundary < startBoundary) |
| 779 | { |
| 780 | /* Look for the correct insert point */ |
| 781 | TRACE("Looking for the correct insert location.\n" ); |
| 782 | while (pMemInfo->pNext && (pMemInfo->pNext->startBoundary < startBoundary)) |
| 783 | { |
| 784 | pMemInfo = pMemInfo->pNext; |
| 785 | } |
| 786 | |
| 787 | pNewEntry->pNext = pMemInfo->pNext; |
| 788 | pNewEntry->pPrevious = pMemInfo; |
| 789 | |
| 790 | if (pNewEntry->pNext) |
| 791 | { |
| 792 | pNewEntry->pNext->pPrevious = pNewEntry; |
| 793 | } |
| 794 | |
| 795 | pMemInfo->pNext = pNewEntry; |
| 796 | } |
| 797 | else |
| 798 | { |
| 799 | /* This is the first entry in the list. */ |
| 800 | pNewEntry->pNext = pMemInfo; |
| 801 | pNewEntry->pPrevious = nullptr; |
| 802 | |
| 803 | if (pNewEntry->pNext) |
| 804 | { |
| 805 | pNewEntry->pNext->pPrevious = pNewEntry; |
| 806 | } |
| 807 | |
| 808 | pVirtualMemory = pNewEntry ; |
| 809 | } |
| 810 | |
| 811 | #ifdef DEBUG |
| 812 | VerifyRightEntry(pNewEntry); |
| 813 | VerifyLeftEntry(pNewEntry); |
| 814 | #endif // DEBUG |
| 815 | |
| 816 | return TRUE; |
| 817 | } |
| 818 | |
| 819 | /****** |
| 820 | * |
| 821 | * VIRTUALResetMemory() - Helper function that resets the memory |
| 822 | * |
| 823 | * |
| 824 | */ |
| 825 | static LPVOID VIRTUALResetMemory( |
| 826 | IN CPalThread *pthrCurrent, /* Currently executing thread */ |
| 827 | IN LPVOID lpAddress, /* Region to reserve or commit */ |
| 828 | IN SIZE_T dwSize) /* Size of Region */ |
| 829 | { |
| 830 | LPVOID pRetVal = NULL; |
| 831 | UINT_PTR StartBoundary; |
| 832 | SIZE_T MemSize; |
| 833 | |
| 834 | TRACE( "Resetting the memory now..\n" ); |
| 835 | |
| 836 | StartBoundary = (UINT_PTR) ALIGN_DOWN(lpAddress, GetVirtualPageSize()); |
| 837 | MemSize = ALIGN_UP((UINT_PTR)lpAddress + dwSize, GetVirtualPageSize()) - StartBoundary; |
| 838 | |
| 839 | int st; |
| 840 | #if HAVE_MADV_FREE |
| 841 | // Try to use MADV_FREE if supported. It tells the kernel that the application doesn't |
| 842 | // need the pages in the range. Freeing the pages can be delayed until a memory pressure |
| 843 | // occurs. |
| 844 | st = madvise((LPVOID)StartBoundary, MemSize, MADV_FREE); |
| 845 | if (st != 0) |
| 846 | #endif |
| 847 | { |
| 848 | // In case the MADV_FREE is not supported, use MADV_DONTNEED |
| 849 | st = madvise((LPVOID)StartBoundary, MemSize, MADV_DONTNEED); |
| 850 | } |
| 851 | |
| 852 | if (st == 0) |
| 853 | { |
| 854 | pRetVal = lpAddress; |
| 855 | } |
| 856 | |
| 857 | LogVaOperation( |
| 858 | VirtualMemoryLogging::VirtualOperation::Reset, |
| 859 | lpAddress, |
| 860 | dwSize, |
| 861 | 0, |
| 862 | 0, |
| 863 | pRetVal, |
| 864 | pRetVal != NULL); |
| 865 | |
| 866 | return pRetVal; |
| 867 | } |
| 868 | |
| 869 | /****** |
| 870 | * |
| 871 | * VIRTUALReserveMemory() - Helper function that actually reserves the memory. |
| 872 | * |
| 873 | * NOTE: I call SetLastError in here, because many different error states |
| 874 | * exists, and that would be very complicated to work around. |
| 875 | * |
| 876 | */ |
| 877 | static LPVOID VIRTUALReserveMemory( |
| 878 | IN CPalThread *pthrCurrent, /* Currently executing thread */ |
| 879 | IN LPVOID lpAddress, /* Region to reserve or commit */ |
| 880 | IN SIZE_T dwSize, /* Size of Region */ |
| 881 | IN DWORD flAllocationType, /* Type of allocation */ |
| 882 | IN DWORD flProtect) /* Type of access protection */ |
| 883 | { |
| 884 | LPVOID pRetVal = NULL; |
| 885 | UINT_PTR StartBoundary; |
| 886 | SIZE_T MemSize; |
| 887 | |
| 888 | TRACE( "Reserving the memory now..\n" ); |
| 889 | |
| 890 | // First, figure out where we're trying to reserve the memory and |
| 891 | // how much we need. On most systems, requests to mmap must be |
| 892 | // page-aligned and at multiples of the page size. Unlike on Windows, on |
| 893 | // Unix, the allocation granularity is the page size, so the memory size to |
| 894 | // reserve is not aligned to 64 KB. Nor should the start boundary need to |
| 895 | // to be aligned down to 64 KB, but it is expected that there are other |
| 896 | // components that rely on this alignment when providing a specific address |
| 897 | // (note that mmap itself does not make any such guarantees). |
| 898 | StartBoundary = (UINT_PTR)ALIGN_DOWN(lpAddress, VIRTUAL_64KB); |
| 899 | MemSize = ALIGN_UP((UINT_PTR)lpAddress + dwSize, GetVirtualPageSize()) - StartBoundary; |
| 900 | |
| 901 | // If this is a request for special executable (JIT'ed) memory then, first of all, |
| 902 | // try to get memory from the executable memory allocator to satisfy the request. |
| 903 | if (((flAllocationType & MEM_RESERVE_EXECUTABLE) != 0) && (lpAddress == NULL)) |
| 904 | { |
| 905 | // Alignment to a 64 KB granularity should not be necessary (alignment to page size should be sufficient), but see |
| 906 | // ExecutableMemoryAllocator::AllocateMemory() for the reason why it is done |
| 907 | SIZE_T reservationSize = ALIGN_UP(MemSize, VIRTUAL_64KB); |
| 908 | pRetVal = g_executableMemoryAllocator.AllocateMemory(reservationSize); |
| 909 | if (pRetVal != nullptr) |
| 910 | { |
| 911 | MemSize = reservationSize; |
| 912 | } |
| 913 | } |
| 914 | |
| 915 | if (pRetVal == NULL) |
| 916 | { |
| 917 | // Try to reserve memory from the OS |
| 918 | pRetVal = ReserveVirtualMemory(pthrCurrent, (LPVOID)StartBoundary, MemSize); |
| 919 | } |
| 920 | |
| 921 | if (pRetVal != NULL) |
| 922 | { |
| 923 | if ( !lpAddress ) |
| 924 | { |
| 925 | /* Compute the real values instead of the null values. */ |
| 926 | StartBoundary = (UINT_PTR) ALIGN_DOWN(pRetVal, GetVirtualPageSize()); |
| 927 | MemSize = ALIGN_UP((UINT_PTR)pRetVal + dwSize, GetVirtualPageSize()) - StartBoundary; |
| 928 | } |
| 929 | |
| 930 | if ( !VIRTUALStoreAllocationInfo( StartBoundary, MemSize, |
| 931 | flAllocationType, flProtect ) ) |
| 932 | { |
| 933 | ASSERT( "Unable to store the structure in the list.\n" ); |
| 934 | pthrCurrent->SetLastError( ERROR_INTERNAL_ERROR ); |
| 935 | munmap( pRetVal, MemSize ); |
| 936 | pRetVal = NULL; |
| 937 | } |
| 938 | } |
| 939 | |
| 940 | LogVaOperation( |
| 941 | VirtualMemoryLogging::VirtualOperation::Reserve, |
| 942 | lpAddress, |
| 943 | dwSize, |
| 944 | flAllocationType, |
| 945 | flProtect, |
| 946 | pRetVal, |
| 947 | pRetVal != NULL); |
| 948 | |
| 949 | return pRetVal; |
| 950 | } |
| 951 | |
| 952 | /****** |
| 953 | * |
| 954 | * ReserveVirtualMemory() - Helper function that is used by Virtual* APIs |
| 955 | * and ExecutableMemoryAllocator to reserve virtual memory from the OS. |
| 956 | * |
| 957 | */ |
| 958 | static LPVOID ReserveVirtualMemory( |
| 959 | IN CPalThread *pthrCurrent, /* Currently executing thread */ |
| 960 | IN LPVOID lpAddress, /* Region to reserve or commit */ |
| 961 | IN SIZE_T dwSize) /* Size of Region */ |
| 962 | { |
| 963 | UINT_PTR StartBoundary = (UINT_PTR)lpAddress; |
| 964 | SIZE_T MemSize = dwSize; |
| 965 | |
| 966 | TRACE( "Reserving the memory now.\n" ); |
| 967 | |
| 968 | // Most platforms will only commit memory if it is dirtied, |
| 969 | // so this should not consume too much swap space. |
| 970 | int mmapFlags = 0; |
| 971 | |
| 972 | #if HAVE_VM_ALLOCATE |
| 973 | // Allocate with vm_allocate first, then map at the fixed address. |
| 974 | int result = vm_allocate(mach_task_self(), |
| 975 | &StartBoundary, |
| 976 | MemSize, |
| 977 | ((LPVOID) StartBoundary != nullptr) ? FALSE : TRUE); |
| 978 | |
| 979 | if (result != KERN_SUCCESS) |
| 980 | { |
| 981 | ERROR("vm_allocate failed to allocated the requested region!\n" ); |
| 982 | pthrCurrent->SetLastError(ERROR_INVALID_ADDRESS); |
| 983 | return nullptr; |
| 984 | } |
| 985 | |
| 986 | mmapFlags |= MAP_FIXED; |
| 987 | #endif // HAVE_VM_ALLOCATE |
| 988 | |
| 989 | mmapFlags |= MAP_ANON | MAP_PRIVATE; |
| 990 | |
| 991 | LPVOID pRetVal = mmap((LPVOID) StartBoundary, |
| 992 | MemSize, |
| 993 | PROT_NONE, |
| 994 | mmapFlags, |
| 995 | -1 /* fd */, |
| 996 | 0 /* offset */); |
| 997 | |
| 998 | if (pRetVal == MAP_FAILED) |
| 999 | { |
| 1000 | ERROR( "Failed due to insufficient memory.\n" ); |
| 1001 | |
| 1002 | #if HAVE_VM_ALLOCATE |
| 1003 | vm_deallocate(mach_task_self(), StartBoundary, MemSize); |
| 1004 | #endif // HAVE_VM_ALLOCATE |
| 1005 | |
| 1006 | pthrCurrent->SetLastError(ERROR_NOT_ENOUGH_MEMORY); |
| 1007 | return nullptr; |
| 1008 | } |
| 1009 | |
| 1010 | /* Check to see if the region is what we asked for. */ |
| 1011 | if (lpAddress != nullptr && StartBoundary != (UINT_PTR)pRetVal) |
| 1012 | { |
| 1013 | ERROR("We did not get the region we asked for from mmap!\n" ); |
| 1014 | pthrCurrent->SetLastError(ERROR_INVALID_ADDRESS); |
| 1015 | munmap(pRetVal, MemSize); |
| 1016 | return nullptr; |
| 1017 | } |
| 1018 | |
| 1019 | #if MMAP_ANON_IGNORES_PROTECTION |
| 1020 | if (mprotect(pRetVal, MemSize, PROT_NONE) != 0) |
| 1021 | { |
| 1022 | ERROR("mprotect failed to protect the region!\n" ); |
| 1023 | pthrCurrent->SetLastError(ERROR_INVALID_ADDRESS); |
| 1024 | munmap(pRetVal, MemSize); |
| 1025 | return nullptr; |
| 1026 | } |
| 1027 | #endif // MMAP_ANON_IGNORES_PROTECTION |
| 1028 | |
| 1029 | return pRetVal; |
| 1030 | } |
| 1031 | |
| 1032 | /****** |
| 1033 | * |
| 1034 | * VIRTUALCommitMemory() - Helper function that actually commits the memory. |
| 1035 | * |
| 1036 | * NOTE: I call SetLastError in here, because many different error states |
| 1037 | * exists, and that would be very complicated to work around. |
| 1038 | * |
| 1039 | */ |
| 1040 | static LPVOID |
| 1041 | VIRTUALCommitMemory( |
| 1042 | IN CPalThread *pthrCurrent, /* Currently executing thread */ |
| 1043 | IN LPVOID lpAddress, /* Region to reserve or commit */ |
| 1044 | IN SIZE_T dwSize, /* Size of Region */ |
| 1045 | IN DWORD flAllocationType, /* Type of allocation */ |
| 1046 | IN DWORD flProtect) /* Type of access protection */ |
| 1047 | { |
| 1048 | UINT_PTR StartBoundary = 0; |
| 1049 | SIZE_T MemSize = 0; |
| 1050 | PCMI pInformation = 0; |
| 1051 | LPVOID pRetVal = NULL; |
| 1052 | BOOL IsLocallyReserved = FALSE; |
| 1053 | SIZE_T totalPages; |
| 1054 | INT allocationType, curAllocationType; |
| 1055 | INT protectionState, curProtectionState; |
| 1056 | SIZE_T initialRunStart; |
| 1057 | SIZE_T runStart; |
| 1058 | SIZE_T runLength; |
| 1059 | SIZE_T index; |
| 1060 | INT nProtect; |
| 1061 | INT vProtect; |
| 1062 | |
| 1063 | if ( lpAddress ) |
| 1064 | { |
| 1065 | StartBoundary = (UINT_PTR) ALIGN_DOWN(lpAddress, GetVirtualPageSize()); |
| 1066 | MemSize = ALIGN_UP((UINT_PTR)lpAddress + dwSize, GetVirtualPageSize()) - StartBoundary; |
| 1067 | } |
| 1068 | else |
| 1069 | { |
| 1070 | MemSize = ALIGN_UP(dwSize, GetVirtualPageSize()); |
| 1071 | } |
| 1072 | |
| 1073 | /* See if we have already reserved this memory. */ |
| 1074 | pInformation = VIRTUALFindRegionInformation( StartBoundary ); |
| 1075 | |
| 1076 | if ( !pInformation ) |
| 1077 | { |
| 1078 | /* According to the new MSDN docs, if MEM_COMMIT is specified, |
| 1079 | and the memory is not reserved, you reserve and then commit. |
| 1080 | */ |
| 1081 | LPVOID pReservedMemory = |
| 1082 | VIRTUALReserveMemory( pthrCurrent, lpAddress, dwSize, |
| 1083 | flAllocationType, flProtect ); |
| 1084 | |
| 1085 | TRACE( "Reserve and commit the memory!\n " ); |
| 1086 | |
| 1087 | if ( pReservedMemory ) |
| 1088 | { |
| 1089 | /* Re-align the addresses and try again to find the memory. */ |
| 1090 | StartBoundary = (UINT_PTR) ALIGN_DOWN(pReservedMemory, GetVirtualPageSize()); |
| 1091 | MemSize = ALIGN_UP((UINT_PTR)pReservedMemory + dwSize, GetVirtualPageSize()) - StartBoundary; |
| 1092 | |
| 1093 | pInformation = VIRTUALFindRegionInformation( StartBoundary ); |
| 1094 | |
| 1095 | if ( !pInformation ) |
| 1096 | { |
| 1097 | ASSERT( "Unable to locate the region information.\n" ); |
| 1098 | pthrCurrent->SetLastError( ERROR_INTERNAL_ERROR ); |
| 1099 | pRetVal = NULL; |
| 1100 | goto done; |
| 1101 | } |
| 1102 | IsLocallyReserved = TRUE; |
| 1103 | } |
| 1104 | else |
| 1105 | { |
| 1106 | ERROR( "Unable to reserve the memory.\n" ); |
| 1107 | /* Don't set last error here, it will already be set. */ |
| 1108 | pRetVal = NULL; |
| 1109 | goto done; |
| 1110 | } |
| 1111 | } |
| 1112 | |
| 1113 | TRACE( "Committing the memory now..\n" ); |
| 1114 | |
| 1115 | // Pages that aren't already committed need to be committed. Pages that |
| 1116 | // are committed don't need to be committed, but they might need to have |
| 1117 | // their permissions changed. |
| 1118 | // To get this right, we find runs of pages with similar states and |
| 1119 | // permissions. If a run is not committed, we commit it and then set |
| 1120 | // its permissions. If a run is committed but has different permissions |
| 1121 | // from what we're trying to set, we set its permissions. Finally, |
| 1122 | // if a run is already committed and has the right permissions, |
| 1123 | // we don't need to do anything to it. |
| 1124 | |
| 1125 | totalPages = MemSize / GetVirtualPageSize(); |
| 1126 | runStart = (StartBoundary - pInformation->startBoundary) / |
| 1127 | GetVirtualPageSize(); // Page index |
| 1128 | initialRunStart = runStart; |
| 1129 | allocationType = VIRTUALGetAllocationType(runStart, pInformation); |
| 1130 | protectionState = pInformation->pProtectionState[runStart]; |
| 1131 | curAllocationType = allocationType; |
| 1132 | curProtectionState = protectionState; |
| 1133 | runLength = 1; |
| 1134 | nProtect = W32toUnixAccessControl(flProtect); |
| 1135 | vProtect = VIRTUALConvertWinFlags(flProtect); |
| 1136 | |
| 1137 | if (totalPages > pInformation->memSize / GetVirtualPageSize() - runStart) |
| 1138 | { |
| 1139 | ERROR("Trying to commit beyond the end of the region!\n" ); |
| 1140 | goto error; |
| 1141 | } |
| 1142 | |
| 1143 | while(runStart < initialRunStart + totalPages) |
| 1144 | { |
| 1145 | // Find the next run of pages |
| 1146 | for(index = runStart + 1; index < initialRunStart + totalPages; |
| 1147 | index++) |
| 1148 | { |
| 1149 | curAllocationType = VIRTUALGetAllocationType(index, pInformation); |
| 1150 | curProtectionState = pInformation->pProtectionState[index]; |
| 1151 | if (curAllocationType != allocationType || |
| 1152 | curProtectionState != protectionState) |
| 1153 | { |
| 1154 | break; |
| 1155 | } |
| 1156 | runLength++; |
| 1157 | } |
| 1158 | |
| 1159 | StartBoundary = pInformation->startBoundary + runStart * GetVirtualPageSize(); |
| 1160 | pRetVal = (void *)StartBoundary; |
| 1161 | MemSize = runLength * GetVirtualPageSize(); |
| 1162 | |
| 1163 | if (allocationType != MEM_COMMIT) |
| 1164 | { |
| 1165 | // Commit the pages |
| 1166 | if (mprotect((void *) StartBoundary, MemSize, PROT_WRITE | PROT_READ) != 0) |
| 1167 | { |
| 1168 | ERROR("mprotect() failed! Error(%d)=%s\n" , errno, strerror(errno)); |
| 1169 | goto error; |
| 1170 | } |
| 1171 | |
| 1172 | VIRTUALSetAllocState(MEM_COMMIT, runStart, runLength, pInformation); |
| 1173 | |
| 1174 | if (nProtect == (PROT_WRITE | PROT_READ)) |
| 1175 | { |
| 1176 | // Handle this case specially so we don't bother |
| 1177 | // mprotect'ing the region. |
| 1178 | memset(pInformation->pProtectionState + runStart, |
| 1179 | vProtect, runLength); |
| 1180 | } |
| 1181 | |
| 1182 | protectionState = VIRTUAL_READWRITE; |
| 1183 | } |
| 1184 | |
| 1185 | if (protectionState != vProtect) |
| 1186 | { |
| 1187 | // Change permissions. |
| 1188 | if (mprotect((void *) StartBoundary, MemSize, nProtect) != -1) |
| 1189 | { |
| 1190 | memset(pInformation->pProtectionState + runStart, |
| 1191 | vProtect, runLength); |
| 1192 | } |
| 1193 | else |
| 1194 | { |
| 1195 | ERROR("mprotect() failed! Error(%d)=%s\n" , |
| 1196 | errno, strerror(errno)); |
| 1197 | goto error; |
| 1198 | } |
| 1199 | } |
| 1200 | |
| 1201 | runStart = index; |
| 1202 | runLength = 1; |
| 1203 | allocationType = curAllocationType; |
| 1204 | protectionState = curProtectionState; |
| 1205 | } |
| 1206 | |
| 1207 | pRetVal = (void *) (pInformation->startBoundary + initialRunStart * GetVirtualPageSize()); |
| 1208 | goto done; |
| 1209 | |
| 1210 | error: |
| 1211 | if ( flAllocationType & MEM_RESERVE || IsLocallyReserved ) |
| 1212 | { |
| 1213 | munmap( pRetVal, MemSize ); |
| 1214 | if ( VIRTUALReleaseMemory( pInformation ) == FALSE ) |
| 1215 | { |
| 1216 | ASSERT( "Unable to remove the PCMI entry from the list.\n" ); |
| 1217 | pthrCurrent->SetLastError( ERROR_INTERNAL_ERROR ); |
| 1218 | pRetVal = NULL; |
| 1219 | goto done; |
| 1220 | } |
| 1221 | } |
| 1222 | |
| 1223 | pInformation = NULL; |
| 1224 | pRetVal = NULL; |
| 1225 | done: |
| 1226 | |
| 1227 | LogVaOperation( |
| 1228 | VirtualMemoryLogging::VirtualOperation::Commit, |
| 1229 | lpAddress, |
| 1230 | dwSize, |
| 1231 | flAllocationType, |
| 1232 | flProtect, |
| 1233 | pRetVal, |
| 1234 | pRetVal != NULL); |
| 1235 | |
| 1236 | return pRetVal; |
| 1237 | } |
| 1238 | |
| 1239 | /*++ |
| 1240 | Function: |
| 1241 | PAL_VirtualReserveFromExecutableMemoryAllocatorWithinRange |
| 1242 | |
| 1243 | This function attempts to allocate the requested amount of memory in the specified address range, from the executable memory |
| 1244 | allocator. If unable to do so, the function returns nullptr and does not set the last error. |
| 1245 | |
| 1246 | lpBeginAddress - Inclusive beginning of range |
| 1247 | lpEndAddress - Exclusive end of range |
| 1248 | dwSize - Number of bytes to allocate |
| 1249 | --*/ |
| 1250 | LPVOID |
| 1251 | PALAPI |
| 1252 | PAL_VirtualReserveFromExecutableMemoryAllocatorWithinRange( |
| 1253 | IN LPCVOID lpBeginAddress, |
| 1254 | IN LPCVOID lpEndAddress, |
| 1255 | IN SIZE_T dwSize) |
| 1256 | { |
| 1257 | #ifdef BIT64 |
| 1258 | PERF_ENTRY(PAL_VirtualReserveFromExecutableMemoryAllocatorWithinRange); |
| 1259 | ENTRY( |
| 1260 | "PAL_VirtualReserveFromExecutableMemoryAllocatorWithinRange(lpBeginAddress = %p, lpEndAddress = %p, dwSize = %Iu)\n" , |
| 1261 | lpBeginAddress, |
| 1262 | lpEndAddress, |
| 1263 | dwSize); |
| 1264 | |
| 1265 | _ASSERTE(lpBeginAddress <= lpEndAddress); |
| 1266 | |
| 1267 | // Alignment to a 64 KB granularity should not be necessary (alignment to page size should be sufficient), but see |
| 1268 | // ExecutableMemoryAllocator::AllocateMemory() for the reason why it is done |
| 1269 | SIZE_T reservationSize = ALIGN_UP(dwSize, VIRTUAL_64KB); |
| 1270 | |
| 1271 | CPalThread *currentThread = InternalGetCurrentThread(); |
| 1272 | InternalEnterCriticalSection(currentThread, &virtual_critsec); |
| 1273 | |
| 1274 | void *address = g_executableMemoryAllocator.AllocateMemoryWithinRange(lpBeginAddress, lpEndAddress, reservationSize); |
| 1275 | if (address != nullptr) |
| 1276 | { |
| 1277 | _ASSERTE(IS_ALIGNED(address, GetVirtualPageSize())); |
| 1278 | if (!VIRTUALStoreAllocationInfo((UINT_PTR)address, reservationSize, MEM_RESERVE | MEM_RESERVE_EXECUTABLE, PAGE_NOACCESS)) |
| 1279 | { |
| 1280 | ASSERT("Unable to store the structure in the list.\n" ); |
| 1281 | munmap(address, reservationSize); |
| 1282 | address = nullptr; |
| 1283 | } |
| 1284 | } |
| 1285 | |
| 1286 | LogVaOperation( |
| 1287 | VirtualMemoryLogging::VirtualOperation::ReserveFromExecutableMemoryAllocatorWithinRange, |
| 1288 | nullptr, |
| 1289 | dwSize, |
| 1290 | MEM_RESERVE | MEM_RESERVE_EXECUTABLE, |
| 1291 | PAGE_NOACCESS, |
| 1292 | address, |
| 1293 | TRUE); |
| 1294 | |
| 1295 | InternalLeaveCriticalSection(currentThread, &virtual_critsec); |
| 1296 | |
| 1297 | LOGEXIT("PAL_VirtualReserveFromExecutableMemoryAllocatorWithinRange returning %p\n" , address); |
| 1298 | PERF_EXIT(PAL_VirtualReserveFromExecutableMemoryAllocatorWithinRange); |
| 1299 | return address; |
| 1300 | #else // !BIT64 |
| 1301 | return nullptr; |
| 1302 | #endif // BIT64 |
| 1303 | } |
| 1304 | |
| 1305 | /*++ |
| 1306 | Function: |
| 1307 | VirtualAlloc |
| 1308 | |
| 1309 | Note: |
| 1310 | MEM_TOP_DOWN, MEM_PHYSICAL, MEM_WRITE_WATCH are not supported. |
| 1311 | Unsupported flags are ignored. |
| 1312 | |
| 1313 | Page size on i386 is set to 4k. |
| 1314 | |
| 1315 | See MSDN doc. |
| 1316 | --*/ |
| 1317 | LPVOID |
| 1318 | PALAPI |
| 1319 | VirtualAlloc( |
| 1320 | IN LPVOID lpAddress, /* Region to reserve or commit */ |
| 1321 | IN SIZE_T dwSize, /* Size of Region */ |
| 1322 | IN DWORD flAllocationType, /* Type of allocation */ |
| 1323 | IN DWORD flProtect) /* Type of access protection */ |
| 1324 | { |
| 1325 | LPVOID pRetVal = NULL; |
| 1326 | CPalThread *pthrCurrent; |
| 1327 | |
| 1328 | PERF_ENTRY(VirtualAlloc); |
| 1329 | ENTRY("VirtualAlloc(lpAddress=%p, dwSize=%u, flAllocationType=%#x, \ |
| 1330 | flProtect=%#x)\n" , lpAddress, dwSize, flAllocationType, flProtect); |
| 1331 | |
| 1332 | pthrCurrent = InternalGetCurrentThread(); |
| 1333 | |
| 1334 | if ( ( flAllocationType & MEM_WRITE_WATCH ) != 0 ) |
| 1335 | { |
| 1336 | pthrCurrent->SetLastError( ERROR_INVALID_PARAMETER ); |
| 1337 | goto done; |
| 1338 | } |
| 1339 | |
| 1340 | /* Test for un-supported flags. */ |
| 1341 | if ( ( flAllocationType & ~( MEM_COMMIT | MEM_RESERVE | MEM_RESET | MEM_TOP_DOWN | MEM_RESERVE_EXECUTABLE ) ) != 0 ) |
| 1342 | { |
| 1343 | ASSERT( "flAllocationType can be one, or any combination of MEM_COMMIT, \ |
| 1344 | MEM_RESERVE, MEM_TOP_DOWN, or MEM_RESERVE_EXECUTABLE.\n" ); |
| 1345 | pthrCurrent->SetLastError( ERROR_INVALID_PARAMETER ); |
| 1346 | goto done; |
| 1347 | } |
| 1348 | if ( VIRTUALContainsInvalidProtectionFlags( flProtect ) ) |
| 1349 | { |
| 1350 | ASSERT( "flProtect can be one of PAGE_READONLY, PAGE_READWRITE, or \ |
| 1351 | PAGE_EXECUTE_READWRITE || PAGE_NOACCESS. \n" ); |
| 1352 | |
| 1353 | pthrCurrent->SetLastError( ERROR_INVALID_PARAMETER ); |
| 1354 | goto done; |
| 1355 | } |
| 1356 | if ( flAllocationType & MEM_TOP_DOWN ) |
| 1357 | { |
| 1358 | WARN( "Ignoring the allocation flag MEM_TOP_DOWN.\n" ); |
| 1359 | } |
| 1360 | |
| 1361 | LogVaOperation( |
| 1362 | VirtualMemoryLogging::VirtualOperation::Allocate, |
| 1363 | lpAddress, |
| 1364 | dwSize, |
| 1365 | flAllocationType, |
| 1366 | flProtect, |
| 1367 | NULL, |
| 1368 | TRUE); |
| 1369 | |
| 1370 | if ( flAllocationType & MEM_RESET ) |
| 1371 | { |
| 1372 | if ( flAllocationType != MEM_RESET ) |
| 1373 | { |
| 1374 | ASSERT( "MEM_RESET cannot be used with any other allocation flags in flAllocationType.\n" ); |
| 1375 | pthrCurrent->SetLastError( ERROR_INVALID_PARAMETER ); |
| 1376 | goto done; |
| 1377 | } |
| 1378 | |
| 1379 | InternalEnterCriticalSection(pthrCurrent, &virtual_critsec); |
| 1380 | pRetVal = VIRTUALResetMemory( pthrCurrent, lpAddress, dwSize ); |
| 1381 | InternalLeaveCriticalSection(pthrCurrent, &virtual_critsec); |
| 1382 | |
| 1383 | if ( !pRetVal ) |
| 1384 | { |
| 1385 | /* Error messages are already displayed, just leave. */ |
| 1386 | goto done; |
| 1387 | } |
| 1388 | } |
| 1389 | |
| 1390 | if ( flAllocationType & MEM_RESERVE ) |
| 1391 | { |
| 1392 | InternalEnterCriticalSection(pthrCurrent, &virtual_critsec); |
| 1393 | pRetVal = VIRTUALReserveMemory( pthrCurrent, lpAddress, dwSize, flAllocationType, flProtect ); |
| 1394 | InternalLeaveCriticalSection(pthrCurrent, &virtual_critsec); |
| 1395 | |
| 1396 | if ( !pRetVal ) |
| 1397 | { |
| 1398 | /* Error messages are already displayed, just leave. */ |
| 1399 | goto done; |
| 1400 | } |
| 1401 | } |
| 1402 | |
| 1403 | if ( flAllocationType & MEM_COMMIT ) |
| 1404 | { |
| 1405 | InternalEnterCriticalSection(pthrCurrent, &virtual_critsec); |
| 1406 | if ( pRetVal != NULL ) |
| 1407 | { |
| 1408 | /* We are reserving and committing. */ |
| 1409 | pRetVal = VIRTUALCommitMemory( pthrCurrent, pRetVal, dwSize, |
| 1410 | flAllocationType, flProtect ); |
| 1411 | } |
| 1412 | else |
| 1413 | { |
| 1414 | /* Just a commit. */ |
| 1415 | pRetVal = VIRTUALCommitMemory( pthrCurrent, lpAddress, dwSize, |
| 1416 | flAllocationType, flProtect ); |
| 1417 | } |
| 1418 | InternalLeaveCriticalSection(pthrCurrent, &virtual_critsec); |
| 1419 | } |
| 1420 | |
| 1421 | done: |
| 1422 | #if defined _DEBUG |
| 1423 | VIRTUALDisplayList(); |
| 1424 | #endif |
| 1425 | LOGEXIT("VirtualAlloc returning %p\n " , pRetVal ); |
| 1426 | PERF_EXIT(VirtualAlloc); |
| 1427 | return pRetVal; |
| 1428 | } |
| 1429 | |
| 1430 | /*++ |
| 1431 | Function: |
| 1432 | VirtualFree |
| 1433 | |
| 1434 | See MSDN doc. |
| 1435 | --*/ |
| 1436 | BOOL |
| 1437 | PALAPI |
| 1438 | VirtualFree( |
| 1439 | IN LPVOID lpAddress, /* Address of region. */ |
| 1440 | IN SIZE_T dwSize, /* Size of region. */ |
| 1441 | IN DWORD dwFreeType ) /* Operation type. */ |
| 1442 | { |
| 1443 | BOOL bRetVal = TRUE; |
| 1444 | CPalThread *pthrCurrent; |
| 1445 | |
| 1446 | PERF_ENTRY(VirtualFree); |
| 1447 | ENTRY("VirtualFree(lpAddress=%p, dwSize=%u, dwFreeType=%#x)\n" , |
| 1448 | lpAddress, dwSize, dwFreeType); |
| 1449 | |
| 1450 | pthrCurrent = InternalGetCurrentThread(); |
| 1451 | InternalEnterCriticalSection(pthrCurrent, &virtual_critsec); |
| 1452 | |
| 1453 | /* Sanity Checks. */ |
| 1454 | if ( !lpAddress ) |
| 1455 | { |
| 1456 | ERROR( "lpAddress cannot be NULL. You must specify the base address of\ |
| 1457 | regions to be de-committed. \n" ); |
| 1458 | pthrCurrent->SetLastError( ERROR_INVALID_ADDRESS ); |
| 1459 | bRetVal = FALSE; |
| 1460 | goto VirtualFreeExit; |
| 1461 | } |
| 1462 | |
| 1463 | if ( !( dwFreeType & MEM_RELEASE ) && !(dwFreeType & MEM_DECOMMIT ) ) |
| 1464 | { |
| 1465 | ERROR( "dwFreeType must contain one of the following: \ |
| 1466 | MEM_RELEASE or MEM_DECOMMIT\n" ); |
| 1467 | pthrCurrent->SetLastError( ERROR_INVALID_PARAMETER ); |
| 1468 | bRetVal = FALSE; |
| 1469 | goto VirtualFreeExit; |
| 1470 | } |
| 1471 | /* You cannot release and decommit in one call.*/ |
| 1472 | if ( dwFreeType & MEM_RELEASE && dwFreeType & MEM_DECOMMIT ) |
| 1473 | { |
| 1474 | ERROR( "MEM_RELEASE cannot be combined with MEM_DECOMMIT.\n" ); |
| 1475 | bRetVal = FALSE; |
| 1476 | goto VirtualFreeExit; |
| 1477 | } |
| 1478 | |
| 1479 | if ( dwFreeType & MEM_DECOMMIT ) |
| 1480 | { |
| 1481 | UINT_PTR StartBoundary = 0; |
| 1482 | SIZE_T MemSize = 0; |
| 1483 | |
| 1484 | if ( dwSize == 0 ) |
| 1485 | { |
| 1486 | ERROR( "dwSize cannot be 0. \n" ); |
| 1487 | pthrCurrent->SetLastError( ERROR_INVALID_PARAMETER ); |
| 1488 | bRetVal = FALSE; |
| 1489 | goto VirtualFreeExit; |
| 1490 | } |
| 1491 | /* |
| 1492 | * A two byte range straddling 2 pages caues both pages to be either |
| 1493 | * released or decommitted. So round the dwSize up to the next page |
| 1494 | * boundary and round the lpAddress down to the next page boundary. |
| 1495 | */ |
| 1496 | StartBoundary = (UINT_PTR) ALIGN_DOWN(lpAddress, GetVirtualPageSize()); |
| 1497 | MemSize = ALIGN_UP((UINT_PTR)lpAddress + dwSize, GetVirtualPageSize()) - StartBoundary; |
| 1498 | |
| 1499 | PCMI pUnCommittedMem; |
| 1500 | pUnCommittedMem = VIRTUALFindRegionInformation( StartBoundary ); |
| 1501 | if (!pUnCommittedMem) |
| 1502 | { |
| 1503 | ASSERT( "Unable to locate the region information.\n" ); |
| 1504 | pthrCurrent->SetLastError( ERROR_INTERNAL_ERROR ); |
| 1505 | bRetVal = FALSE; |
| 1506 | goto VirtualFreeExit; |
| 1507 | } |
| 1508 | |
| 1509 | TRACE( "Un-committing the following page(s) %d to %d.\n" , |
| 1510 | StartBoundary, MemSize ); |
| 1511 | |
| 1512 | // Explicitly calling mmap instead of mprotect here makes it |
| 1513 | // that much more clear to the operating system that we no |
| 1514 | // longer need these pages. |
| 1515 | if ( mmap( (LPVOID)StartBoundary, MemSize, PROT_NONE, |
| 1516 | MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0 ) != MAP_FAILED ) |
| 1517 | { |
| 1518 | #if (MMAP_ANON_IGNORES_PROTECTION) |
| 1519 | if (mprotect((LPVOID) StartBoundary, MemSize, PROT_NONE) != 0) |
| 1520 | { |
| 1521 | ASSERT("mprotect failed to protect the region!\n" ); |
| 1522 | pthrCurrent->SetLastError(ERROR_INTERNAL_ERROR); |
| 1523 | munmap((LPVOID) StartBoundary, MemSize); |
| 1524 | bRetVal = FALSE; |
| 1525 | goto VirtualFreeExit; |
| 1526 | } |
| 1527 | #endif // MMAP_ANON_IGNORES_PROTECTION |
| 1528 | |
| 1529 | SIZE_T index = 0; |
| 1530 | SIZE_T nNumOfPagesToChange = 0; |
| 1531 | |
| 1532 | /* We can now commit this memory by calling VirtualAlloc().*/ |
| 1533 | index = (StartBoundary - pUnCommittedMem->startBoundary) / GetVirtualPageSize(); |
| 1534 | |
| 1535 | nNumOfPagesToChange = MemSize / GetVirtualPageSize(); |
| 1536 | VIRTUALSetAllocState( MEM_RESERVE, index, |
| 1537 | nNumOfPagesToChange, pUnCommittedMem ); |
| 1538 | |
| 1539 | goto VirtualFreeExit; |
| 1540 | } |
| 1541 | else |
| 1542 | { |
| 1543 | ASSERT( "mmap() returned an abnormal value.\n" ); |
| 1544 | bRetVal = FALSE; |
| 1545 | pthrCurrent->SetLastError( ERROR_INTERNAL_ERROR ); |
| 1546 | goto VirtualFreeExit; |
| 1547 | } |
| 1548 | } |
| 1549 | |
| 1550 | if ( dwFreeType & MEM_RELEASE ) |
| 1551 | { |
| 1552 | PCMI pMemoryToBeReleased = |
| 1553 | VIRTUALFindRegionInformation( (UINT_PTR)lpAddress ); |
| 1554 | |
| 1555 | if ( !pMemoryToBeReleased ) |
| 1556 | { |
| 1557 | ERROR( "lpAddress must be the base address returned by VirtualAlloc.\n" ); |
| 1558 | pthrCurrent->SetLastError( ERROR_INVALID_ADDRESS ); |
| 1559 | bRetVal = FALSE; |
| 1560 | goto VirtualFreeExit; |
| 1561 | } |
| 1562 | if ( dwSize != 0 ) |
| 1563 | { |
| 1564 | ERROR( "dwSize must be 0 if you are releasing the memory.\n" ); |
| 1565 | pthrCurrent->SetLastError( ERROR_INVALID_PARAMETER ); |
| 1566 | bRetVal = FALSE; |
| 1567 | goto VirtualFreeExit; |
| 1568 | } |
| 1569 | |
| 1570 | TRACE( "Releasing the following memory %d to %d.\n" , |
| 1571 | pMemoryToBeReleased->startBoundary, pMemoryToBeReleased->memSize ); |
| 1572 | |
| 1573 | if ( munmap( (LPVOID)pMemoryToBeReleased->startBoundary, |
| 1574 | pMemoryToBeReleased->memSize ) == 0 ) |
| 1575 | { |
| 1576 | if ( VIRTUALReleaseMemory( pMemoryToBeReleased ) == FALSE ) |
| 1577 | { |
| 1578 | ASSERT( "Unable to remove the PCMI entry from the list.\n" ); |
| 1579 | pthrCurrent->SetLastError( ERROR_INTERNAL_ERROR ); |
| 1580 | bRetVal = FALSE; |
| 1581 | goto VirtualFreeExit; |
| 1582 | } |
| 1583 | pMemoryToBeReleased = NULL; |
| 1584 | } |
| 1585 | else |
| 1586 | { |
| 1587 | ASSERT( "Unable to unmap the memory, munmap() returned an abnormal value.\n" ); |
| 1588 | pthrCurrent->SetLastError( ERROR_INTERNAL_ERROR ); |
| 1589 | bRetVal = FALSE; |
| 1590 | goto VirtualFreeExit; |
| 1591 | } |
| 1592 | } |
| 1593 | |
| 1594 | VirtualFreeExit: |
| 1595 | |
| 1596 | LogVaOperation( |
| 1597 | (dwFreeType & MEM_DECOMMIT) ? VirtualMemoryLogging::VirtualOperation::Decommit |
| 1598 | : VirtualMemoryLogging::VirtualOperation::Release, |
| 1599 | lpAddress, |
| 1600 | dwSize, |
| 1601 | dwFreeType, |
| 1602 | 0, |
| 1603 | NULL, |
| 1604 | bRetVal); |
| 1605 | |
| 1606 | InternalLeaveCriticalSection(pthrCurrent, &virtual_critsec); |
| 1607 | LOGEXIT( "VirtualFree returning %s.\n" , bRetVal == TRUE ? "TRUE" : "FALSE" ); |
| 1608 | PERF_EXIT(VirtualFree); |
| 1609 | return bRetVal; |
| 1610 | } |
| 1611 | |
| 1612 | |
| 1613 | /*++ |
| 1614 | Function: |
| 1615 | VirtualProtect |
| 1616 | |
| 1617 | See MSDN doc. |
| 1618 | --*/ |
| 1619 | BOOL |
| 1620 | PALAPI |
| 1621 | VirtualProtect( |
| 1622 | IN LPVOID lpAddress, |
| 1623 | IN SIZE_T dwSize, |
| 1624 | IN DWORD flNewProtect, |
| 1625 | OUT PDWORD lpflOldProtect) |
| 1626 | { |
| 1627 | BOOL bRetVal = FALSE; |
| 1628 | PCMI pEntry = NULL; |
| 1629 | SIZE_T MemSize = 0; |
| 1630 | UINT_PTR StartBoundary = 0; |
| 1631 | SIZE_T Index = 0; |
| 1632 | SIZE_T NumberOfPagesToChange = 0; |
| 1633 | SIZE_T OffSet = 0; |
| 1634 | CPalThread * pthrCurrent; |
| 1635 | |
| 1636 | PERF_ENTRY(VirtualProtect); |
| 1637 | ENTRY("VirtualProtect(lpAddress=%p, dwSize=%u, flNewProtect=%#x, " |
| 1638 | "flOldProtect=%p)\n" , |
| 1639 | lpAddress, dwSize, flNewProtect, lpflOldProtect); |
| 1640 | |
| 1641 | pthrCurrent = InternalGetCurrentThread(); |
| 1642 | InternalEnterCriticalSection(pthrCurrent, &virtual_critsec); |
| 1643 | |
| 1644 | StartBoundary = (UINT_PTR) ALIGN_DOWN(lpAddress, GetVirtualPageSize()); |
| 1645 | MemSize = ALIGN_UP((UINT_PTR)lpAddress + dwSize, GetVirtualPageSize()) - StartBoundary; |
| 1646 | |
| 1647 | if ( VIRTUALContainsInvalidProtectionFlags( flNewProtect ) ) |
| 1648 | { |
| 1649 | ASSERT( "flProtect can be one of PAGE_NOACCESS, PAGE_READONLY, " |
| 1650 | "PAGE_READWRITE, PAGE_EXECUTE, PAGE_EXECUTE_READ " |
| 1651 | ", or PAGE_EXECUTE_READWRITE. \n" ); |
| 1652 | SetLastError( ERROR_INVALID_PARAMETER ); |
| 1653 | goto ExitVirtualProtect; |
| 1654 | } |
| 1655 | |
| 1656 | if ( !lpflOldProtect) |
| 1657 | { |
| 1658 | ERROR( "lpflOldProtect was invalid.\n" ); |
| 1659 | SetLastError( ERROR_NOACCESS ); |
| 1660 | goto ExitVirtualProtect; |
| 1661 | } |
| 1662 | |
| 1663 | pEntry = VIRTUALFindRegionInformation( StartBoundary ); |
| 1664 | if ( NULL != pEntry ) |
| 1665 | { |
| 1666 | /* See if the pages are committed. */ |
| 1667 | Index = OffSet = StartBoundary - pEntry->startBoundary == 0 ? |
| 1668 | 0 : ( StartBoundary - pEntry->startBoundary ) / GetVirtualPageSize(); |
| 1669 | NumberOfPagesToChange = MemSize / GetVirtualPageSize(); |
| 1670 | |
| 1671 | TRACE( "Number of pages to check %d, starting page %d \n" , NumberOfPagesToChange, Index ); |
| 1672 | |
| 1673 | for ( ; Index < NumberOfPagesToChange; Index++ ) |
| 1674 | { |
| 1675 | if ( !VIRTUALIsPageCommitted( Index, pEntry ) ) |
| 1676 | { |
| 1677 | ERROR( "You can only change the protection attributes" |
| 1678 | " on committed memory.\n" ) |
| 1679 | SetLastError( ERROR_INVALID_ADDRESS ); |
| 1680 | goto ExitVirtualProtect; |
| 1681 | } |
| 1682 | } |
| 1683 | } |
| 1684 | |
| 1685 | if ( 0 == mprotect( (LPVOID)StartBoundary, MemSize, |
| 1686 | W32toUnixAccessControl( flNewProtect ) ) ) |
| 1687 | { |
| 1688 | /* Reset the access protection. */ |
| 1689 | TRACE( "Number of pages to change %d, starting page %d \n" , |
| 1690 | NumberOfPagesToChange, OffSet ); |
| 1691 | /* |
| 1692 | * Set the old protection flags. We only use the first flag, so |
| 1693 | * if there were several regions with each with different flags only the |
| 1694 | * first region's protection flag will be returned. |
| 1695 | */ |
| 1696 | if ( pEntry ) |
| 1697 | { |
| 1698 | *lpflOldProtect = |
| 1699 | VIRTUALConvertVirtualFlags( pEntry->pProtectionState[ OffSet ] ); |
| 1700 | |
| 1701 | memset( pEntry->pProtectionState + OffSet, |
| 1702 | VIRTUALConvertWinFlags( flNewProtect ), |
| 1703 | NumberOfPagesToChange ); |
| 1704 | } |
| 1705 | else |
| 1706 | { |
| 1707 | *lpflOldProtect = PAGE_EXECUTE_READWRITE; |
| 1708 | } |
| 1709 | bRetVal = TRUE; |
| 1710 | } |
| 1711 | else |
| 1712 | { |
| 1713 | ERROR( "%s\n" , strerror( errno ) ); |
| 1714 | if ( errno == EINVAL ) |
| 1715 | { |
| 1716 | SetLastError( ERROR_INVALID_ADDRESS ); |
| 1717 | } |
| 1718 | else if ( errno == EACCES ) |
| 1719 | { |
| 1720 | SetLastError( ERROR_INVALID_ACCESS ); |
| 1721 | } |
| 1722 | } |
| 1723 | ExitVirtualProtect: |
| 1724 | InternalLeaveCriticalSection(pthrCurrent, &virtual_critsec); |
| 1725 | |
| 1726 | #if defined _DEBUG |
| 1727 | VIRTUALDisplayList(); |
| 1728 | #endif |
| 1729 | LOGEXIT( "VirtualProtect returning %s.\n" , bRetVal == TRUE ? "TRUE" : "FALSE" ); |
| 1730 | PERF_EXIT(VirtualProtect); |
| 1731 | return bRetVal; |
| 1732 | } |
| 1733 | |
| 1734 | #if HAVE_VM_ALLOCATE |
| 1735 | //--------------------------------------------------------------------------------------- |
| 1736 | // |
| 1737 | // Convert a vm_prot_t flag on the Mach kernel to the corresponding memory protection on Windows. |
| 1738 | // |
| 1739 | // Arguments: |
| 1740 | // protection - Mach protection to be converted |
| 1741 | // |
| 1742 | // Return Value: |
| 1743 | // Return the corresponding memory protection on Windows (e.g. PAGE_READ_WRITE, etc.) |
| 1744 | // |
| 1745 | |
| 1746 | static DWORD VirtualMapMachProtectToWinProtect(vm_prot_t protection) |
| 1747 | { |
| 1748 | if (protection & VM_PROT_READ) |
| 1749 | { |
| 1750 | if (protection & VM_PROT_WRITE) |
| 1751 | { |
| 1752 | if (protection & VM_PROT_EXECUTE) |
| 1753 | { |
| 1754 | return PAGE_EXECUTE_READWRITE; |
| 1755 | } |
| 1756 | else |
| 1757 | { |
| 1758 | return PAGE_READWRITE; |
| 1759 | } |
| 1760 | } |
| 1761 | else |
| 1762 | { |
| 1763 | if (protection & VM_PROT_EXECUTE) |
| 1764 | { |
| 1765 | return PAGE_EXECUTE_READ; |
| 1766 | } |
| 1767 | else |
| 1768 | { |
| 1769 | return PAGE_READONLY; |
| 1770 | } |
| 1771 | } |
| 1772 | } |
| 1773 | else |
| 1774 | { |
| 1775 | if (protection & VM_PROT_WRITE) |
| 1776 | { |
| 1777 | if (protection & VM_PROT_EXECUTE) |
| 1778 | { |
| 1779 | return PAGE_EXECUTE_WRITECOPY; |
| 1780 | } |
| 1781 | else |
| 1782 | { |
| 1783 | return PAGE_WRITECOPY; |
| 1784 | } |
| 1785 | } |
| 1786 | else |
| 1787 | { |
| 1788 | if (protection & VM_PROT_EXECUTE) |
| 1789 | { |
| 1790 | return PAGE_EXECUTE; |
| 1791 | } |
| 1792 | else |
| 1793 | { |
| 1794 | return PAGE_NOACCESS; |
| 1795 | } |
| 1796 | } |
| 1797 | } |
| 1798 | } |
| 1799 | |
| 1800 | static void VM_ALLOCATE_VirtualQuery(LPCVOID lpAddress, PMEMORY_BASIC_INFORMATION lpBuffer) |
| 1801 | { |
| 1802 | kern_return_t MachRet; |
| 1803 | vm_address_t vm_address; |
| 1804 | vm_size_t vm_size; |
| 1805 | vm_region_flavor_t vm_flavor; |
| 1806 | mach_msg_type_number_t infoCnt; |
| 1807 | mach_port_t object_name; |
| 1808 | #ifdef BIT64 |
| 1809 | vm_region_basic_info_data_64_t info; |
| 1810 | infoCnt = VM_REGION_BASIC_INFO_COUNT_64; |
| 1811 | vm_flavor = VM_REGION_BASIC_INFO_64; |
| 1812 | #else |
| 1813 | vm_region_basic_info_data_t info; |
| 1814 | infoCnt = VM_REGION_BASIC_INFO_COUNT; |
| 1815 | vm_flavor = VM_REGION_BASIC_INFO; |
| 1816 | #endif |
| 1817 | |
| 1818 | vm_address = (vm_address_t)lpAddress; |
| 1819 | #ifdef BIT64 |
| 1820 | MachRet = vm_region_64( |
| 1821 | #else |
| 1822 | MachRet = vm_region( |
| 1823 | #endif |
| 1824 | mach_task_self(), |
| 1825 | &vm_address, |
| 1826 | &vm_size, |
| 1827 | vm_flavor, |
| 1828 | (vm_region_info_t)&info, |
| 1829 | &infoCnt, |
| 1830 | &object_name); |
| 1831 | if (MachRet != KERN_SUCCESS) { |
| 1832 | return; |
| 1833 | } |
| 1834 | |
| 1835 | if (vm_address > (vm_address_t)lpAddress) { |
| 1836 | /* lpAddress was pointing into a free region */ |
| 1837 | lpBuffer->State = MEM_FREE; |
| 1838 | return; |
| 1839 | } |
| 1840 | |
| 1841 | lpBuffer->BaseAddress = (PVOID)vm_address; |
| 1842 | |
| 1843 | // We don't actually have any information on the Mach kernel which maps to AllocationProtect. |
| 1844 | lpBuffer->AllocationProtect = VM_PROT_NONE; |
| 1845 | |
| 1846 | lpBuffer->RegionSize = (SIZE_T)vm_size; |
| 1847 | |
| 1848 | if (info.reserved) |
| 1849 | { |
| 1850 | lpBuffer->State = MEM_RESERVE; |
| 1851 | } |
| 1852 | else |
| 1853 | { |
| 1854 | lpBuffer->State = MEM_COMMIT; |
| 1855 | } |
| 1856 | |
| 1857 | lpBuffer->Protect = VirtualMapMachProtectToWinProtect(info.protection); |
| 1858 | |
| 1859 | /* Note that if a mapped region and a private region are adjacent, this |
| 1860 | will return MEM_PRIVATE but the region size will span |
| 1861 | both the mapped and private regions. */ |
| 1862 | if (!info.shared) |
| 1863 | { |
| 1864 | lpBuffer->Type = MEM_PRIVATE; |
| 1865 | } |
| 1866 | else |
| 1867 | { |
| 1868 | // What should this be? It's either MEM_MAPPED or MEM_IMAGE, but without an image list, |
| 1869 | // we can't determine which one it is. |
| 1870 | lpBuffer->Type = MEM_MAPPED; |
| 1871 | } |
| 1872 | } |
| 1873 | #endif // HAVE_VM_ALLOCATE |
| 1874 | |
| 1875 | /*++ |
| 1876 | Function: |
| 1877 | VirtualQuery |
| 1878 | |
| 1879 | See MSDN doc. |
| 1880 | --*/ |
| 1881 | SIZE_T |
| 1882 | PALAPI |
| 1883 | VirtualQuery( |
| 1884 | IN LPCVOID lpAddress, |
| 1885 | OUT PMEMORY_BASIC_INFORMATION lpBuffer, |
| 1886 | IN SIZE_T dwLength) |
| 1887 | { |
| 1888 | PCMI pEntry = NULL; |
| 1889 | UINT_PTR StartBoundary = 0; |
| 1890 | CPalThread * pthrCurrent; |
| 1891 | |
| 1892 | PERF_ENTRY(VirtualQuery); |
| 1893 | ENTRY("VirtualQuery(lpAddress=%p, lpBuffer=%p, dwLength=%u)\n" , |
| 1894 | lpAddress, lpBuffer, dwLength); |
| 1895 | |
| 1896 | pthrCurrent = InternalGetCurrentThread(); |
| 1897 | InternalEnterCriticalSection(pthrCurrent, &virtual_critsec); |
| 1898 | |
| 1899 | if ( !lpBuffer) |
| 1900 | { |
| 1901 | ERROR( "lpBuffer has to be a valid pointer.\n" ); |
| 1902 | pthrCurrent->SetLastError( ERROR_NOACCESS ); |
| 1903 | goto ExitVirtualQuery; |
| 1904 | } |
| 1905 | if ( dwLength < sizeof( *lpBuffer ) ) |
| 1906 | { |
| 1907 | ERROR( "dwLength cannot be smaller then the size of *lpBuffer.\n" ); |
| 1908 | pthrCurrent->SetLastError( ERROR_BAD_LENGTH ); |
| 1909 | goto ExitVirtualQuery; |
| 1910 | } |
| 1911 | |
| 1912 | StartBoundary = ALIGN_DOWN((SIZE_T)lpAddress, GetVirtualPageSize()); |
| 1913 | |
| 1914 | #if MMAP_IGNORES_HINT |
| 1915 | // Make sure we have memory to map before we try to query it. |
| 1916 | VIRTUALGetBackingFile(pthrCurrent); |
| 1917 | |
| 1918 | // If we're suballocating, claim that any memory that isn't in our |
| 1919 | // suballocated block is already allocated. This keeps callers from |
| 1920 | // using these results to try to allocate those blocks and failing. |
| 1921 | if (StartBoundary < (UINT_PTR) gBackingBaseAddress || |
| 1922 | StartBoundary >= (UINT_PTR) gBackingBaseAddress + BACKING_FILE_SIZE) |
| 1923 | { |
| 1924 | if (StartBoundary < (UINT_PTR) gBackingBaseAddress) |
| 1925 | { |
| 1926 | lpBuffer->RegionSize = (UINT_PTR) gBackingBaseAddress - StartBoundary; |
| 1927 | } |
| 1928 | else |
| 1929 | { |
| 1930 | lpBuffer->RegionSize = -StartBoundary; |
| 1931 | } |
| 1932 | lpBuffer->BaseAddress = (void *) StartBoundary; |
| 1933 | lpBuffer->State = MEM_COMMIT; |
| 1934 | lpBuffer->Type = MEM_MAPPED; |
| 1935 | lpBuffer->AllocationProtect = 0; |
| 1936 | lpBuffer->Protect = 0; |
| 1937 | goto ExitVirtualQuery; |
| 1938 | } |
| 1939 | #endif // MMAP_IGNORES_HINT |
| 1940 | |
| 1941 | /* Find the entry. */ |
| 1942 | pEntry = VIRTUALFindRegionInformation( StartBoundary ); |
| 1943 | |
| 1944 | if ( !pEntry ) |
| 1945 | { |
| 1946 | /* Can't find a match, or no list present. */ |
| 1947 | /* Next, looking for this region in file maps */ |
| 1948 | if (!MAPGetRegionInfo((LPVOID)StartBoundary, lpBuffer)) |
| 1949 | { |
| 1950 | // When all else fails, call vm_region() if it's available. |
| 1951 | |
| 1952 | // Initialize the State to be MEM_FREE, in which case AllocationBase, AllocationProtect, |
| 1953 | // Protect, and Type are all undefined. |
| 1954 | lpBuffer->BaseAddress = (LPVOID)StartBoundary; |
| 1955 | lpBuffer->RegionSize = 0; |
| 1956 | lpBuffer->State = MEM_FREE; |
| 1957 | #if HAVE_VM_ALLOCATE |
| 1958 | VM_ALLOCATE_VirtualQuery(lpAddress, lpBuffer); |
| 1959 | #endif |
| 1960 | } |
| 1961 | } |
| 1962 | else |
| 1963 | { |
| 1964 | /* Starting page. */ |
| 1965 | SIZE_T Index = ( StartBoundary - pEntry->startBoundary ) / GetVirtualPageSize(); |
| 1966 | |
| 1967 | /* Attributes to check for. */ |
| 1968 | BYTE AccessProtection = pEntry->pProtectionState[ Index ]; |
| 1969 | INT AllocationType = VIRTUALGetAllocationType( Index, pEntry ); |
| 1970 | SIZE_T RegionSize = 0; |
| 1971 | |
| 1972 | TRACE( "Index = %d, Number of Pages = %d. \n" , |
| 1973 | Index, pEntry->memSize / GetVirtualPageSize() ); |
| 1974 | |
| 1975 | while ( Index < pEntry->memSize / GetVirtualPageSize() && |
| 1976 | VIRTUALGetAllocationType( Index, pEntry ) == AllocationType && |
| 1977 | pEntry->pProtectionState[ Index ] == AccessProtection ) |
| 1978 | { |
| 1979 | RegionSize += GetVirtualPageSize(); |
| 1980 | Index++; |
| 1981 | } |
| 1982 | |
| 1983 | TRACE( "RegionSize = %d.\n" , RegionSize ); |
| 1984 | |
| 1985 | /* Fill the structure.*/ |
| 1986 | lpBuffer->AllocationProtect = pEntry->accessProtection; |
| 1987 | lpBuffer->BaseAddress = (LPVOID)StartBoundary; |
| 1988 | |
| 1989 | lpBuffer->Protect = AllocationType == MEM_COMMIT ? |
| 1990 | VIRTUALConvertVirtualFlags( AccessProtection ) : 0; |
| 1991 | |
| 1992 | lpBuffer->RegionSize = RegionSize; |
| 1993 | lpBuffer->State = |
| 1994 | ( AllocationType == MEM_COMMIT ? MEM_COMMIT : MEM_RESERVE ); |
| 1995 | WARN( "Ignoring lpBuffer->Type. \n" ); |
| 1996 | } |
| 1997 | |
| 1998 | ExitVirtualQuery: |
| 1999 | |
| 2000 | InternalLeaveCriticalSection(pthrCurrent, &virtual_critsec); |
| 2001 | |
| 2002 | LOGEXIT( "VirtualQuery returning %d.\n" , sizeof( *lpBuffer ) ); |
| 2003 | PERF_EXIT(VirtualQuery); |
| 2004 | return sizeof( *lpBuffer ); |
| 2005 | } |
| 2006 | |
| 2007 | size_t GetVirtualPageSize() |
| 2008 | { |
| 2009 | _ASSERTE(s_virtualPageSize); |
| 2010 | return s_virtualPageSize; |
| 2011 | } |
| 2012 | |
| 2013 | /*++ |
| 2014 | Function: |
| 2015 | GetWriteWatch |
| 2016 | |
| 2017 | See MSDN doc. |
| 2018 | --*/ |
| 2019 | UINT |
| 2020 | PALAPI |
| 2021 | GetWriteWatch( |
| 2022 | IN DWORD dwFlags, |
| 2023 | IN PVOID lpBaseAddress, |
| 2024 | IN SIZE_T dwRegionSize, |
| 2025 | OUT PVOID *lpAddresses, |
| 2026 | IN OUT PULONG_PTR lpdwCount, |
| 2027 | OUT PULONG lpdwGranularity |
| 2028 | ) |
| 2029 | { |
| 2030 | // TODO: implement this method |
| 2031 | *lpAddresses = NULL; |
| 2032 | *lpdwCount = 0; |
| 2033 | // Until it is implemented, return non-zero value as an indicator of failure |
| 2034 | return 1; |
| 2035 | } |
| 2036 | |
| 2037 | /*++ |
| 2038 | Function: |
| 2039 | ResetWriteWatch |
| 2040 | |
| 2041 | See MSDN doc. |
| 2042 | --*/ |
| 2043 | UINT |
| 2044 | PALAPI |
| 2045 | ResetWriteWatch( |
| 2046 | IN LPVOID lpBaseAddress, |
| 2047 | IN SIZE_T dwRegionSize |
| 2048 | ) |
| 2049 | { |
| 2050 | // TODO: implement this method |
| 2051 | // Until it is implemented, return non-zero value as an indicator of failure |
| 2052 | return 1; |
| 2053 | } |
| 2054 | |
| 2055 | /*++ |
| 2056 | Function : |
| 2057 | ReserveMemoryFromExecutableAllocator |
| 2058 | |
| 2059 | This function is used to reserve a region of virual memory (not commited) |
| 2060 | that is located close to the coreclr library. The memory comes from the virtual |
| 2061 | address range that is managed by ExecutableMemoryAllocator. |
| 2062 | --*/ |
| 2063 | void* ReserveMemoryFromExecutableAllocator(CPalThread* pThread, SIZE_T allocationSize) |
| 2064 | { |
| 2065 | #ifdef BIT64 |
| 2066 | InternalEnterCriticalSection(pThread, &virtual_critsec); |
| 2067 | void* mem = g_executableMemoryAllocator.AllocateMemory(allocationSize); |
| 2068 | InternalLeaveCriticalSection(pThread, &virtual_critsec); |
| 2069 | |
| 2070 | return mem; |
| 2071 | #else // !BIT64 |
| 2072 | return nullptr; |
| 2073 | #endif // BIT64 |
| 2074 | } |
| 2075 | |
| 2076 | /*++ |
| 2077 | Function: |
| 2078 | ExecutableMemoryAllocator::Initialize() |
| 2079 | |
| 2080 | This function initializes the allocator. It should be called early during process startup |
| 2081 | (when process address space is pretty much empty) in order to have a chance to reserve |
| 2082 | sufficient amount of memory that is close to the coreclr library. |
| 2083 | |
| 2084 | --*/ |
| 2085 | void ExecutableMemoryAllocator::Initialize() |
| 2086 | { |
| 2087 | m_startAddress = NULL; |
| 2088 | m_nextFreeAddress = NULL; |
| 2089 | m_totalSizeOfReservedMemory = 0; |
| 2090 | m_remainingReservedMemory = 0; |
| 2091 | |
| 2092 | // Enable the executable memory allocator on 64-bit platforms only |
| 2093 | // because 32-bit platforms have limited amount of virtual address space. |
| 2094 | #ifdef BIT64 |
| 2095 | TryReserveInitialMemory(); |
| 2096 | #endif // BIT64 |
| 2097 | |
| 2098 | } |
| 2099 | |
| 2100 | /*++ |
| 2101 | Function: |
| 2102 | ExecutableMemoryAllocator::TryReserveInitialMemory() |
| 2103 | |
| 2104 | This function is called during PAL initialization. It opportunistically tries to reserve |
| 2105 | a large chunk of virtual memory that can be later used to store JIT'ed code.\ |
| 2106 | |
| 2107 | --*/ |
| 2108 | void ExecutableMemoryAllocator::TryReserveInitialMemory() |
| 2109 | { |
| 2110 | CPalThread* pthrCurrent = InternalGetCurrentThread(); |
| 2111 | int32_t sizeOfAllocation = MaxExecutableMemorySizeNearCoreClr; |
| 2112 | int32_t preferredStartAddressIncrement; |
| 2113 | UINT_PTR preferredStartAddress; |
| 2114 | UINT_PTR coreclrLoadAddress; |
| 2115 | const int32_t MemoryProbingIncrement = 128 * 1024 * 1024; |
| 2116 | |
| 2117 | // Try to find and reserve an available region of virtual memory that is located |
| 2118 | // within 2GB range (defined by the MaxExecutableMemorySizeNearCoreClr constant) from the |
| 2119 | // location of the coreclr library. |
| 2120 | // Potentially, as a possible future improvement, we can get precise information |
| 2121 | // about available memory ranges by parsing data from '/proc/self/maps'. |
| 2122 | // But since this code is called early during process startup, the user address space |
| 2123 | // is pretty much empty so the simple algorithm that is implemented below is sufficient |
| 2124 | // for this purpose. |
| 2125 | |
| 2126 | // First of all, we need to determine the current address of libcoreclr. Please note that depending on |
| 2127 | // the OS implementation, the library is usually loaded either at the end or at the start of the user |
| 2128 | // address space. If the library is loaded at low addresses then try to reserve memory above libcoreclr |
| 2129 | // (thus avoiding reserving memory below 4GB; besides some operating systems do not allow that). |
| 2130 | // If libcoreclr is loaded at high addresses then try to reserve memory below its location. |
| 2131 | coreclrLoadAddress = (UINT_PTR)PAL_GetSymbolModuleBase((void*)VirtualAlloc); |
| 2132 | if ((coreclrLoadAddress < 0xFFFFFFFF) || ((coreclrLoadAddress - MaxExecutableMemorySizeNearCoreClr) < 0xFFFFFFFF)) |
| 2133 | { |
| 2134 | // Try to allocate above the location of libcoreclr |
| 2135 | preferredStartAddress = coreclrLoadAddress + CoreClrLibrarySize; |
| 2136 | preferredStartAddressIncrement = MemoryProbingIncrement; |
| 2137 | } |
| 2138 | else |
| 2139 | { |
| 2140 | // Try to allocate below the location of libcoreclr |
| 2141 | preferredStartAddress = coreclrLoadAddress - MaxExecutableMemorySizeNearCoreClr; |
| 2142 | preferredStartAddressIncrement = 0; |
| 2143 | } |
| 2144 | |
| 2145 | // Do actual memory reservation. |
| 2146 | do |
| 2147 | { |
| 2148 | m_startAddress = ReserveVirtualMemory(pthrCurrent, (void*)preferredStartAddress, sizeOfAllocation); |
| 2149 | if (m_startAddress != nullptr) |
| 2150 | { |
| 2151 | break; |
| 2152 | } |
| 2153 | |
| 2154 | // Try to allocate a smaller region |
| 2155 | sizeOfAllocation -= MemoryProbingIncrement; |
| 2156 | preferredStartAddress += preferredStartAddressIncrement; |
| 2157 | |
| 2158 | } while (sizeOfAllocation >= MemoryProbingIncrement); |
| 2159 | |
| 2160 | if (m_startAddress == nullptr) |
| 2161 | { |
| 2162 | // We were not able to reserve any memory near libcoreclr. Try to reserve approximately 2 GB of address space somewhere |
| 2163 | // anyway: |
| 2164 | // - This sets aside address space that can be used for executable code, such that jumps/calls between such code may |
| 2165 | // continue to use short relative addresses instead of long absolute addresses that would currently require jump |
| 2166 | // stubs. |
| 2167 | // - The inability to allocate memory in a specific range for jump stubs is an unrecoverable problem. This reservation |
| 2168 | // would mitigate such issues that can become prevalent depending on which security features are enabled and to what |
| 2169 | // extent, such as in particular, PaX's RANDMMAP: |
| 2170 | // - https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options |
| 2171 | // - Jump stubs for executable code residing in this region can request memory from this allocator |
| 2172 | // - Native images can be loaded into this address space, including any jump stubs that are required for its helper |
| 2173 | // table. This satisfies the vast majority of practical cases where the total amount of loaded native image memory |
| 2174 | // does not exceed approximately 2 GB. |
| 2175 | // - The code heap allocator for the JIT can allocate from this address space. Beyond this reservation, one can use |
| 2176 | // the COMPlus_CodeHeapReserveForJumpStubs environment variable to reserve space for jump stubs. |
| 2177 | sizeOfAllocation = MaxExecutableMemorySize; |
| 2178 | m_startAddress = ReserveVirtualMemory(pthrCurrent, nullptr, sizeOfAllocation); |
| 2179 | if (m_startAddress == nullptr) |
| 2180 | { |
| 2181 | return; |
| 2182 | } |
| 2183 | } |
| 2184 | |
| 2185 | // Memory has been successfully reserved. |
| 2186 | m_totalSizeOfReservedMemory = sizeOfAllocation; |
| 2187 | |
| 2188 | // Randomize the location at which we start allocating from the reserved memory range. Alignment to a 64 KB granularity |
| 2189 | // should not be necessary, but see AllocateMemory() for the reason why it is done. |
| 2190 | int32_t randomOffset = GenerateRandomStartOffset(); |
| 2191 | m_nextFreeAddress = ALIGN_UP((void*)(((UINT_PTR)m_startAddress) + randomOffset), VIRTUAL_64KB); |
| 2192 | _ASSERTE(sizeOfAllocation >= (UINT_PTR)m_nextFreeAddress - (UINT_PTR)m_startAddress); |
| 2193 | m_remainingReservedMemory = |
| 2194 | ALIGN_DOWN(sizeOfAllocation - ((UINT_PTR)m_nextFreeAddress - (UINT_PTR)m_startAddress), VIRTUAL_64KB); |
| 2195 | } |
| 2196 | |
| 2197 | /*++ |
| 2198 | Function: |
| 2199 | ExecutableMemoryAllocator::AllocateMemory |
| 2200 | |
| 2201 | This function attempts to allocate the requested amount of memory from its reserved virtual |
| 2202 | address space. The function will return null if the allocation request cannot |
| 2203 | be satisfied by the memory that is currently available in the allocator. |
| 2204 | |
| 2205 | Note: This function MUST be called with the virtual_critsec lock held. |
| 2206 | |
| 2207 | --*/ |
| 2208 | void* ExecutableMemoryAllocator::AllocateMemory(SIZE_T allocationSize) |
| 2209 | { |
| 2210 | #ifdef BIT64 |
| 2211 | void* allocatedMemory = nullptr; |
| 2212 | |
| 2213 | // Alignment to a 64 KB granularity should not be necessary (alignment to page size should be sufficient), but |
| 2214 | // VIRTUALReserveMemory() aligns down the specified address to a 64 KB granularity, and as long as that is necessary, the |
| 2215 | // reservation size here must be aligned to a 64 KB granularity to guarantee that all returned addresses are also aligned to |
| 2216 | // a 64 KB granularity. Otherwise, attempting to reserve memory starting from an unaligned address returned by this function |
| 2217 | // would fail in VIRTUALReserveMemory. |
| 2218 | _ASSERTE(IS_ALIGNED(allocationSize, VIRTUAL_64KB)); |
| 2219 | |
| 2220 | // The code below assumes that the caller owns the virtual_critsec lock. |
| 2221 | // So the calculations are not done in thread-safe manner. |
| 2222 | if ((allocationSize > 0) && (allocationSize <= m_remainingReservedMemory)) |
| 2223 | { |
| 2224 | allocatedMemory = m_nextFreeAddress; |
| 2225 | m_nextFreeAddress = (void*)(((UINT_PTR)m_nextFreeAddress) + allocationSize); |
| 2226 | m_remainingReservedMemory -= allocationSize; |
| 2227 | } |
| 2228 | |
| 2229 | return allocatedMemory; |
| 2230 | #else // !BIT64 |
| 2231 | return nullptr; |
| 2232 | #endif // BIT64 |
| 2233 | } |
| 2234 | |
| 2235 | /*++ |
| 2236 | Function: |
| 2237 | AllocateMemory |
| 2238 | |
| 2239 | This function attempts to allocate the requested amount of memory from its reserved virtual |
| 2240 | address space, if memory is available within the specified range. The function will return |
| 2241 | null if the allocation request cannot satisfied by the memory that is currently available in |
| 2242 | the allocator. |
| 2243 | |
| 2244 | Note: This function MUST be called with the virtual_critsec lock held. |
| 2245 | --*/ |
| 2246 | void *ExecutableMemoryAllocator::AllocateMemoryWithinRange(const void *beginAddress, const void *endAddress, SIZE_T allocationSize) |
| 2247 | { |
| 2248 | #ifdef BIT64 |
| 2249 | _ASSERTE(beginAddress <= endAddress); |
| 2250 | |
| 2251 | // Alignment to a 64 KB granularity should not be necessary (alignment to page size should be sufficient), but see |
| 2252 | // AllocateMemory() for the reason why it is necessary |
| 2253 | _ASSERTE(IS_ALIGNED(allocationSize, VIRTUAL_64KB)); |
| 2254 | |
| 2255 | // The code below assumes that the caller owns the virtual_critsec lock. |
| 2256 | // So the calculations are not done in thread-safe manner. |
| 2257 | |
| 2258 | if (allocationSize == 0 || allocationSize > m_remainingReservedMemory) |
| 2259 | { |
| 2260 | return nullptr; |
| 2261 | } |
| 2262 | |
| 2263 | void *address = m_nextFreeAddress; |
| 2264 | if (address < beginAddress) |
| 2265 | { |
| 2266 | return nullptr; |
| 2267 | } |
| 2268 | |
| 2269 | void *nextFreeAddress = (void *)((UINT_PTR)address + allocationSize); |
| 2270 | if (nextFreeAddress > endAddress) |
| 2271 | { |
| 2272 | return nullptr; |
| 2273 | } |
| 2274 | |
| 2275 | m_nextFreeAddress = nextFreeAddress; |
| 2276 | m_remainingReservedMemory -= allocationSize; |
| 2277 | return address; |
| 2278 | #else // !BIT64 |
| 2279 | return nullptr; |
| 2280 | #endif // BIT64 |
| 2281 | } |
| 2282 | |
| 2283 | /*++ |
| 2284 | Function: |
| 2285 | ExecutableMemoryAllocator::GenerateRandomStartOffset() |
| 2286 | |
| 2287 | This function returns a random offset (in multiples of the virtual page size) |
| 2288 | at which the allocator should start allocating memory from its reserved memory range. |
| 2289 | |
| 2290 | --*/ |
| 2291 | int32_t ExecutableMemoryAllocator::GenerateRandomStartOffset() |
| 2292 | { |
| 2293 | int32_t pageCount; |
| 2294 | const int32_t MaxStartPageOffset = 64; |
| 2295 | |
| 2296 | // This code is similar to what coreclr runtime does on Windows. |
| 2297 | // It generates a random number of pages to skip between 0...MaxStartPageOffset. |
| 2298 | srandom(time(NULL)); |
| 2299 | pageCount = (int32_t)(MaxStartPageOffset * (int64_t)random() / RAND_MAX); |
| 2300 | |
| 2301 | return pageCount * GetVirtualPageSize(); |
| 2302 | } |
| 2303 | |