| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*++ |
| 6 | |
| 7 | |
| 8 | |
| 9 | Module Name: |
| 10 | |
| 11 | synchmanager.cpp |
| 12 | |
| 13 | Abstract: |
| 14 | Implementation of Synchronization Manager and related objects |
| 15 | |
| 16 | |
| 17 | |
| 18 | --*/ |
| 19 | |
| 20 | #include "pal/dbgmsg.h" |
| 21 | |
| 22 | SET_DEFAULT_DEBUG_CHANNEL(SYNC); // some headers have code with asserts, so do this first |
| 23 | |
| 24 | #include "synchmanager.hpp" |
| 25 | #include "pal/file.hpp" |
| 26 | |
| 27 | #include <sys/types.h> |
| 28 | #include <sys/time.h> |
| 29 | #include <sys/stat.h> |
| 30 | #include <sys/wait.h> |
| 31 | #include <unistd.h> |
| 32 | #include <limits.h> |
| 33 | #include <sched.h> |
| 34 | #include <signal.h> |
| 35 | #include <errno.h> |
| 36 | #if HAVE_POLL |
| 37 | #include <poll.h> |
| 38 | #else |
| 39 | #include "pal/fakepoll.h" |
| 40 | #endif // HAVE_POLL |
| 41 | |
| 42 | #include <algorithm> |
| 43 | |
| 44 | const int CorUnix::CThreadSynchronizationInfo::PendingSignalingsArraySize; |
| 45 | |
| 46 | // We use the synchronization manager's worker thread to handle |
| 47 | // process termination requests. It does so by calling the |
| 48 | // registered handler function. |
| 49 | PTERMINATION_REQUEST_HANDLER g_terminationRequestHandler = NULL; |
| 50 | |
| 51 | // Set the handler for process termination requests. |
| 52 | VOID PALAPI PAL_SetTerminationRequestHandler( |
| 53 | IN PTERMINATION_REQUEST_HANDLER terminationHandler) |
| 54 | { |
| 55 | g_terminationRequestHandler = terminationHandler; |
| 56 | } |
| 57 | |
| 58 | namespace CorUnix |
| 59 | { |
| 60 | ///////////////////////////////// |
| 61 | // // |
| 62 | // WaitingThreadsListNode // |
| 63 | // // |
| 64 | ///////////////////////////////// |
| 65 | #ifdef SYNCH_OBJECT_VALIDATION |
| 66 | _WaitingThreadsListNode::_WaitingThreadsListNode() |
| 67 | { |
| 68 | ValidateEmptyObject(); |
| 69 | dwDebugHeadSignature = HeadSignature; |
| 70 | dwDebugTailSignature = TailSignature; |
| 71 | } |
| 72 | _WaitingThreadsListNode::~_WaitingThreadsListNode() |
| 73 | { |
| 74 | ValidateObject(); |
| 75 | InvalidateObject(); |
| 76 | } |
| 77 | void _WaitingThreadsListNode::ValidateObject() |
| 78 | { |
| 79 | TRACE("Verifying WaitingThreadsListNode @ %p\n" , this); |
| 80 | _ASSERT_MSG(HeadSignature == dwDebugHeadSignature, |
| 81 | "WaitingThreadsListNode header signature corruption [p=%p]" , |
| 82 | this); |
| 83 | _ASSERT_MSG(TailSignature == dwDebugTailSignature, |
| 84 | "WaitingThreadsListNode trailer signature corruption [p=%p]" , |
| 85 | this); |
| 86 | } |
| 87 | void _WaitingThreadsListNode::ValidateEmptyObject() |
| 88 | { |
| 89 | _ASSERT_MSG(HeadSignature != dwDebugHeadSignature, |
| 90 | "WaitingThreadsListNode header previously signed [p=%p]" , |
| 91 | this); |
| 92 | _ASSERT_MSG(TailSignature != dwDebugTailSignature, |
| 93 | "WaitingThreadsListNode trailer previously signed [p=%p]" , |
| 94 | this); |
| 95 | } |
| 96 | void _WaitingThreadsListNode::InvalidateObject() |
| 97 | { |
| 98 | TRACE("Invalidating WaitingThreadsListNode @ %p\n" , this); |
| 99 | dwDebugHeadSignature = EmptySignature; |
| 100 | dwDebugTailSignature = EmptySignature; |
| 101 | } |
| 102 | #endif // SYNCH_OBJECT_VALIDATION |
| 103 | |
| 104 | ////////////////////////////// |
| 105 | // // |
| 106 | // CPalSynchMgrController // |
| 107 | // // |
| 108 | ////////////////////////////// |
| 109 | |
| 110 | /*++ |
| 111 | Method: |
| 112 | CPalSynchMgrController::CreatePalSynchronizationManager |
| 113 | |
| 114 | Creates the Synchronization Manager. It must be called once per process. |
| 115 | --*/ |
| 116 | IPalSynchronizationManager * CPalSynchMgrController::CreatePalSynchronizationManager() |
| 117 | { |
| 118 | return CPalSynchronizationManager::CreatePalSynchronizationManager(); |
| 119 | }; |
| 120 | |
| 121 | /*++ |
| 122 | Method: |
| 123 | CPalSynchMgrController::StartWorker |
| 124 | |
| 125 | Starts the Synchronization Manager's Worker Thread |
| 126 | --*/ |
| 127 | PAL_ERROR CPalSynchMgrController::StartWorker( |
| 128 | CPalThread * pthrCurrent) |
| 129 | { |
| 130 | return CPalSynchronizationManager::StartWorker(pthrCurrent); |
| 131 | } |
| 132 | |
| 133 | /*++ |
| 134 | Method: |
| 135 | CPalSynchMgrController::PrepareForShutdown |
| 136 | |
| 137 | This method performs the part of Synchronization Manager's shutdown that |
| 138 | needs to be carried out when core PAL subsystems are still active |
| 139 | --*/ |
| 140 | PAL_ERROR CPalSynchMgrController::PrepareForShutdown() |
| 141 | { |
| 142 | return CPalSynchronizationManager::PrepareForShutdown(); |
| 143 | } |
| 144 | |
| 145 | ////////////////////////////////// |
| 146 | // // |
| 147 | // CPalSynchronizationManager // |
| 148 | // // |
| 149 | ////////////////////////////////// |
| 150 | |
| 151 | IPalSynchronizationManager * g_pSynchronizationManager = NULL; |
| 152 | |
| 153 | CPalSynchronizationManager * CPalSynchronizationManager::s_pObjSynchMgr = NULL; |
| 154 | Volatile<LONG> CPalSynchronizationManager::s_lInitStatus = SynchMgrStatusIdle; |
| 155 | CRITICAL_SECTION CPalSynchronizationManager::s_csSynchProcessLock; |
| 156 | CRITICAL_SECTION CPalSynchronizationManager::s_csMonitoredProcessesLock; |
| 157 | |
| 158 | CPalSynchronizationManager::CPalSynchronizationManager() |
| 159 | : m_dwWorkerThreadTid(0), |
| 160 | m_pipoThread(NULL), |
| 161 | m_pthrWorker(NULL), |
| 162 | m_iProcessPipeRead(-1), |
| 163 | m_iProcessPipeWrite(-1), |
| 164 | m_pmplnMonitoredProcesses(NULL), |
| 165 | m_lMonitoredProcessesCount(0), |
| 166 | m_pmplnExitedNodes(NULL), |
| 167 | m_cacheWaitCtrlrs(CtrlrsCacheMaxSize), |
| 168 | m_cacheStateCtrlrs(CtrlrsCacheMaxSize), |
| 169 | m_cacheSynchData(SynchDataCacheMaxSize), |
| 170 | m_cacheSHRSynchData(SynchDataCacheMaxSize), |
| 171 | m_cacheWTListNodes(WTListNodeCacheMaxSize), |
| 172 | m_cacheSHRWTListNodes(WTListNodeCacheMaxSize), |
| 173 | m_cacheThreadApcInfoNodes(ApcInfoNodeCacheMaxSize), |
| 174 | m_cacheOwnedObjectsListNodes(OwnedObjectsListCacheMaxSize) |
| 175 | { |
| 176 | #if HAVE_KQUEUE && !HAVE_BROKEN_FIFO_KEVENT |
| 177 | m_iKQueue = -1; |
| 178 | // Initialize data to 0 and flags to EV_EOF |
| 179 | EV_SET(&m_keProcessPipeEvent, 0, 0, EV_EOF, 0, 0, 0); |
| 180 | #endif // HAVE_KQUEUE |
| 181 | } |
| 182 | |
| 183 | CPalSynchronizationManager::~CPalSynchronizationManager() |
| 184 | { |
| 185 | } |
| 186 | |
| 187 | /*++ |
| 188 | Method: |
| 189 | CPalSynchronizationManager::BlockThread |
| 190 | |
| 191 | Called by a thread to go to sleep for a wait or a sleep |
| 192 | |
| 193 | NOTE: This method must must be called without holding any |
| 194 | synchronization lock (as well as other locks) |
| 195 | --*/ |
| 196 | PAL_ERROR CPalSynchronizationManager::BlockThread( |
| 197 | CPalThread *pthrCurrent, |
| 198 | DWORD dwTimeout, |
| 199 | bool fAlertable, |
| 200 | bool fIsSleep, |
| 201 | ThreadWakeupReason *ptwrWakeupReason, |
| 202 | DWORD * pdwSignaledObject) |
| 203 | { |
| 204 | PAL_ERROR palErr = NO_ERROR; |
| 205 | ThreadWakeupReason twrWakeupReason = WaitFailed; |
| 206 | DWORD * pdwWaitState; |
| 207 | DWORD dwWaitState = 0; |
| 208 | DWORD dwSigObjIdx = 0; |
| 209 | bool fRaceAlerted = false; |
| 210 | bool fEarlyDeath = false; |
| 211 | |
| 212 | pdwWaitState = SharedIDToTypePointer(DWORD, |
| 213 | pthrCurrent->synchronizationInfo.m_shridWaitAwakened); |
| 214 | |
| 215 | _ASSERT_MSG(NULL != pdwWaitState, |
| 216 | "Got NULL pdwWaitState from m_shridWaitAwakened=%p\n" , |
| 217 | (VOID *)pthrCurrent->synchronizationInfo.m_shridWaitAwakened); |
| 218 | |
| 219 | if (fIsSleep) |
| 220 | { |
| 221 | // If fIsSleep is true we are being called by Sleep/SleepEx |
| 222 | // and we need to switch the wait state to TWS_WAITING or |
| 223 | // TWS_ALERTABLE (according to fAlertable) |
| 224 | |
| 225 | if (fAlertable) |
| 226 | { |
| 227 | // If we are in alertable mode we need to grab the lock to |
| 228 | // make sure that no APC is queued right before the |
| 229 | // InterlockedCompareExchange. |
| 230 | // If there are APCs queued at this time, no native wakeup |
| 231 | // will be posted, so we need to skip the native wait |
| 232 | |
| 233 | // Lock |
| 234 | AcquireLocalSynchLock(pthrCurrent); |
| 235 | AcquireSharedSynchLock(pthrCurrent); |
| 236 | |
| 237 | if (AreAPCsPending(pthrCurrent)) |
| 238 | { |
| 239 | // APCs have been queued when the thread wait status was |
| 240 | // still TWS_ACTIVE, therefore the queueing thread will not |
| 241 | // post any native wakeup: we need to skip the actual |
| 242 | // native wait |
| 243 | fRaceAlerted = true; |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | if (!fRaceAlerted) |
| 248 | { |
| 249 | // Setting the thread in wait state |
| 250 | dwWaitState = (DWORD)(fAlertable ? TWS_ALERTABLE : TWS_WAITING); |
| 251 | |
| 252 | TRACE("Switching my wait state [%p] from TWS_ACTIVE to %u [current *pdwWaitState=%u]\n" , |
| 253 | pdwWaitState, dwWaitState, *pdwWaitState); |
| 254 | |
| 255 | dwWaitState = InterlockedCompareExchange((LONG *)pdwWaitState, |
| 256 | dwWaitState, |
| 257 | TWS_ACTIVE); |
| 258 | |
| 259 | if ((DWORD)TWS_ACTIVE != dwWaitState) |
| 260 | { |
| 261 | if (fAlertable) |
| 262 | { |
| 263 | // Unlock |
| 264 | ReleaseSharedSynchLock(pthrCurrent); |
| 265 | ReleaseLocalSynchLock(pthrCurrent); |
| 266 | } |
| 267 | |
| 268 | if ((DWORD)TWS_EARLYDEATH == dwWaitState) |
| 269 | { |
| 270 | // Process is terminating, this thread will soon be suspended (by SuspendOtherThreads). |
| 271 | WARN("Thread is about to get suspended by TerminateProcess\n" ); |
| 272 | |
| 273 | fEarlyDeath = true; |
| 274 | palErr = WAIT_FAILED; |
| 275 | } |
| 276 | else |
| 277 | { |
| 278 | ASSERT("Unexpected thread wait state %u\n" , dwWaitState); |
| 279 | palErr = ERROR_INTERNAL_ERROR; |
| 280 | } |
| 281 | |
| 282 | goto BT_exit; |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | if (fAlertable) |
| 287 | { |
| 288 | // Unlock |
| 289 | ReleaseSharedSynchLock(pthrCurrent); |
| 290 | ReleaseLocalSynchLock(pthrCurrent); |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | if (fRaceAlerted) |
| 295 | { |
| 296 | twrWakeupReason = Alerted; |
| 297 | } |
| 298 | else |
| 299 | { |
| 300 | TRACE("Current thread is about to block for waiting\n" ); |
| 301 | |
| 302 | palErr = ThreadNativeWait( |
| 303 | &pthrCurrent->synchronizationInfo.m_tnwdNativeData, |
| 304 | dwTimeout, |
| 305 | &twrWakeupReason, |
| 306 | &dwSigObjIdx); |
| 307 | |
| 308 | if (NO_ERROR != palErr) |
| 309 | { |
| 310 | ERROR("ThreadNativeWait() failed [palErr=%d]\n" , palErr); |
| 311 | twrWakeupReason = WaitFailed; |
| 312 | goto BT_exit; |
| 313 | } |
| 314 | |
| 315 | TRACE("ThreadNativeWait returned {WakeupReason=%u " |
| 316 | "dwSigObjIdx=%u}\n" , twrWakeupReason, dwSigObjIdx); |
| 317 | } |
| 318 | |
| 319 | if (WaitTimeout == twrWakeupReason) |
| 320 | { |
| 321 | // timeout reached. set wait state back to 'active' |
| 322 | dwWaitState = (DWORD)(fAlertable ? TWS_ALERTABLE : TWS_WAITING); |
| 323 | |
| 324 | TRACE("Current thread awakened for timeout: switching wait " |
| 325 | "state [%p] from %u to TWS_ACTIVE [current *pdwWaitState=%u]\n" , |
| 326 | pdwWaitState, dwWaitState, *pdwWaitState); |
| 327 | |
| 328 | DWORD dwOldWaitState = InterlockedCompareExchange( |
| 329 | (LONG *)pdwWaitState, |
| 330 | TWS_ACTIVE, (LONG)dwWaitState); |
| 331 | |
| 332 | switch (dwOldWaitState) |
| 333 | { |
| 334 | case TWS_ACTIVE: |
| 335 | // We were already ACTIVE; someone decided to wake up this |
| 336 | // thread sometime between the moment the native wait |
| 337 | // timed out and here. Since the signaling side succeeded |
| 338 | // its InterlockedCompareExchange, it will signal the |
| 339 | // condition/predicate pair (we just raced overtaking it); |
| 340 | // therefore we need to clear the condition/predicate |
| 341 | // by waiting on it one more time. |
| 342 | // That will also cause this method to report a signal |
| 343 | // rather than a timeout. |
| 344 | // In the remote signaling scenario, this second wait |
| 345 | // also makes sure that the shared id passed over the |
| 346 | // process pipe is valid for the entire duration of time |
| 347 | // in which the worker thread deals with it |
| 348 | TRACE("Current thread already ACTIVE: a signaling raced " |
| 349 | "with the timeout: re-waiting natively to clear the " |
| 350 | "predicate\n" ); |
| 351 | |
| 352 | palErr = ThreadNativeWait( |
| 353 | &pthrCurrent->synchronizationInfo.m_tnwdNativeData, |
| 354 | SecondNativeWaitTimeout, |
| 355 | &twrWakeupReason, |
| 356 | &dwSigObjIdx); |
| 357 | |
| 358 | if (NO_ERROR != palErr) |
| 359 | { |
| 360 | ERROR("ThreadNativeWait() failed [palErr=%d]\n" , |
| 361 | palErr); |
| 362 | twrWakeupReason = WaitFailed; |
| 363 | } |
| 364 | |
| 365 | if (WaitTimeout == twrWakeupReason) |
| 366 | { |
| 367 | ERROR("Second native wait timed out\n" ); |
| 368 | } |
| 369 | |
| 370 | break; |
| 371 | case TWS_EARLYDEATH: |
| 372 | // Thread is about to be suspended by TerminateProcess. |
| 373 | // Anyway, if the wait timed out, we still want to |
| 374 | // (try to) unregister the wait (especially if it |
| 375 | // involves shared objects) |
| 376 | WARN("Thread is about to be suspended by TerminateProcess\n" ); |
| 377 | fEarlyDeath = true; |
| 378 | palErr = WAIT_FAILED; |
| 379 | break; |
| 380 | case TWS_WAITING: |
| 381 | case TWS_ALERTABLE: |
| 382 | default: |
| 383 | _ASSERT_MSG(dwOldWaitState == dwWaitState, |
| 384 | "Unexpected wait status: actual=%u, expected=%u\n" , |
| 385 | dwOldWaitState, dwWaitState); |
| 386 | break; |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | switch (twrWakeupReason) |
| 391 | { |
| 392 | case WaitTimeout: |
| 393 | { |
| 394 | // Awakened for timeout: we need to unregister the wait |
| 395 | ThreadWaitInfo * ptwiWaitInfo; |
| 396 | |
| 397 | TRACE("Current thread awakened for timeout: unregistering the wait\n" ); |
| 398 | |
| 399 | // Local lock |
| 400 | AcquireLocalSynchLock(pthrCurrent); |
| 401 | |
| 402 | ptwiWaitInfo = GetThreadWaitInfo(pthrCurrent); |
| 403 | |
| 404 | // Unregister the wait |
| 405 | // Note: UnRegisterWait will take care of grabbing the shared synch lock, if needed. |
| 406 | UnRegisterWait(pthrCurrent, ptwiWaitInfo, false); |
| 407 | |
| 408 | // Unlock |
| 409 | ReleaseLocalSynchLock(pthrCurrent); |
| 410 | |
| 411 | break; |
| 412 | } |
| 413 | case WaitSucceeded: |
| 414 | case MutexAbondoned: |
| 415 | *pdwSignaledObject = dwSigObjIdx; |
| 416 | break; |
| 417 | default: |
| 418 | // 'Alerted' and 'WaitFailed' go through this case |
| 419 | break; |
| 420 | } |
| 421 | |
| 422 | // Set the returned wakeup reason |
| 423 | *ptwrWakeupReason = twrWakeupReason; |
| 424 | |
| 425 | TRACE("Current thread is now active [WakeupReason=%u SigObjIdx=%u]\n" , |
| 426 | twrWakeupReason, dwSigObjIdx); |
| 427 | |
| 428 | _ASSERT_MSG(TWS_ACTIVE == VolatileLoad(pdwWaitState) || |
| 429 | TWS_EARLYDEATH == VolatileLoad(pdwWaitState), |
| 430 | "Unexpected thread wait state %u\n" , VolatileLoad(pdwWaitState)); |
| 431 | |
| 432 | BT_exit: |
| 433 | if (fEarlyDeath) |
| 434 | { |
| 435 | ThreadPrepareForShutdown(); |
| 436 | } |
| 437 | |
| 438 | return palErr; |
| 439 | } |
| 440 | |
| 441 | PAL_ERROR CPalSynchronizationManager::ThreadNativeWait( |
| 442 | ThreadNativeWaitData * ptnwdNativeWaitData, |
| 443 | DWORD dwTimeout, |
| 444 | ThreadWakeupReason * ptwrWakeupReason, |
| 445 | DWORD * pdwSignaledObject) |
| 446 | { |
| 447 | PAL_ERROR palErr = NO_ERROR; |
| 448 | int iRet, iWaitRet = 0; |
| 449 | struct timespec tsAbsTmo; |
| 450 | |
| 451 | TRACE("ThreadNativeWait(ptnwdNativeWaitData=%p, dwTimeout=%u, ...)\n" , |
| 452 | ptnwdNativeWaitData, dwTimeout); |
| 453 | |
| 454 | if (dwTimeout != INFINITE) |
| 455 | { |
| 456 | // Calculate absolute timeout |
| 457 | palErr = GetAbsoluteTimeout(dwTimeout, &tsAbsTmo, /*fPreferMonotonicClock*/ TRUE); |
| 458 | if (NO_ERROR != palErr) |
| 459 | { |
| 460 | ERROR("Failed to convert timeout to absolute timeout\n" ); |
| 461 | goto TNW_exit; |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | // Lock the mutex |
| 466 | iRet = pthread_mutex_lock(&ptnwdNativeWaitData->mutex); |
| 467 | if (0 != iRet) |
| 468 | { |
| 469 | ERROR("Internal Error: cannot lock mutex\n" ); |
| 470 | palErr = ERROR_INTERNAL_ERROR; |
| 471 | *ptwrWakeupReason = WaitFailed; |
| 472 | goto TNW_exit; |
| 473 | } |
| 474 | |
| 475 | while (FALSE == ptnwdNativeWaitData->iPred) |
| 476 | { |
| 477 | if (INFINITE == dwTimeout) |
| 478 | { |
| 479 | iWaitRet = pthread_cond_wait(&ptnwdNativeWaitData->cond, |
| 480 | &ptnwdNativeWaitData->mutex); |
| 481 | } |
| 482 | else |
| 483 | { |
| 484 | iWaitRet = pthread_cond_timedwait(&ptnwdNativeWaitData->cond, |
| 485 | &ptnwdNativeWaitData->mutex, |
| 486 | &tsAbsTmo); |
| 487 | } |
| 488 | |
| 489 | if (ETIMEDOUT == iWaitRet) |
| 490 | { |
| 491 | _ASSERT_MSG(INFINITE != dwTimeout, |
| 492 | "Got ETIMEDOUT despite timeout being INFINITE\n" ); |
| 493 | break; |
| 494 | } |
| 495 | else if (0 != iWaitRet) |
| 496 | { |
| 497 | ERROR("pthread_cond_%swait returned %d [errno=%d (%s)]\n" , |
| 498 | (INFINITE == dwTimeout) ? "" : "timed" , |
| 499 | iWaitRet, errno, strerror(errno)); |
| 500 | palErr = ERROR_INTERNAL_ERROR; |
| 501 | break; |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | // Reset the predicate |
| 506 | if (0 == iWaitRet) |
| 507 | { |
| 508 | // We don't want to reset the predicate if pthread_cond_timedwait |
| 509 | // timed out racing with a pthread_cond_signal. When |
| 510 | // pthread_cond_timedwait times out, it needs to grab the mutex |
| 511 | // before returning. At timeout time, it may happen that the |
| 512 | // signaling thread just grabbed the mutex, but it hasn't called |
| 513 | // pthread_cond_signal yet. In this scenario pthread_cond_timedwait |
| 514 | // will have to wait for the signaling side to release the mutex. |
| 515 | // As a result it will return with error timeout, but the predicate |
| 516 | // will be set. Since pthread_cond_timedwait timed out, the |
| 517 | // predicate value is intended for the next signal. In case of a |
| 518 | // object signaling racing with a wait timeout this predicate value |
| 519 | // will be picked up by the 'second native wait' (see comments in |
| 520 | // BlockThread). |
| 521 | |
| 522 | ptnwdNativeWaitData->iPred = FALSE; |
| 523 | } |
| 524 | |
| 525 | // Unlock the mutex |
| 526 | iRet = pthread_mutex_unlock(&ptnwdNativeWaitData->mutex); |
| 527 | if (0 != iRet) |
| 528 | { |
| 529 | ERROR("Cannot unlock mutex [err=%d]\n" , iRet); |
| 530 | palErr = ERROR_INTERNAL_ERROR; |
| 531 | goto TNW_exit; |
| 532 | } |
| 533 | |
| 534 | _ASSERT_MSG(ETIMEDOUT != iRet || INFINITE != dwTimeout, "Got timeout return code with INFINITE timeout\n" ); |
| 535 | |
| 536 | if (0 == iWaitRet) |
| 537 | { |
| 538 | *ptwrWakeupReason = ptnwdNativeWaitData->twrWakeupReason; |
| 539 | *pdwSignaledObject = ptnwdNativeWaitData->dwObjectIndex; |
| 540 | } |
| 541 | else if (ETIMEDOUT == iWaitRet) |
| 542 | { |
| 543 | *ptwrWakeupReason = WaitTimeout; |
| 544 | } |
| 545 | |
| 546 | TNW_exit: |
| 547 | TRACE("ThreadNativeWait: returning %u [WakeupReason=%u]\n" , palErr, *ptwrWakeupReason); |
| 548 | return palErr; |
| 549 | } |
| 550 | |
| 551 | /*++ |
| 552 | Method: |
| 553 | CPalSynchronizationManager::AbandonObjectsOwnedByThread |
| 554 | |
| 555 | This method is called by a thread at thread-exit time to abandon |
| 556 | any currently owned waitable object (mutexes). If pthrTarget is |
| 557 | different from pthrCurrent, AbandonObjectsOwnedByThread assumes |
| 558 | to be called whether by TerminateThread or at shutdown time. See |
| 559 | comments below for more details |
| 560 | --*/ |
| 561 | PAL_ERROR CPalSynchronizationManager::AbandonObjectsOwnedByThread( |
| 562 | CPalThread * pthrCurrent, |
| 563 | CPalThread * pthrTarget) |
| 564 | { |
| 565 | PAL_ERROR palErr = NO_ERROR; |
| 566 | OwnedObjectsListNode * poolnItem; |
| 567 | bool fSharedSynchLock = false; |
| 568 | CThreadSynchronizationInfo * pSynchInfo = &pthrTarget->synchronizationInfo; |
| 569 | CPalSynchronizationManager * pSynchManager = GetInstance(); |
| 570 | |
| 571 | // Local lock |
| 572 | AcquireLocalSynchLock(pthrCurrent); |
| 573 | |
| 574 | // Abandon owned objects |
| 575 | while (NULL != (poolnItem = pSynchInfo->RemoveFirstObjectFromOwnedList())) |
| 576 | { |
| 577 | CSynchData * psdSynchData = poolnItem->pPalObjSynchData; |
| 578 | |
| 579 | _ASSERT_MSG(NULL != psdSynchData, |
| 580 | "NULL psdSynchData pointer in ownership list node\n" ); |
| 581 | |
| 582 | VALIDATEOBJECT(psdSynchData); |
| 583 | |
| 584 | TRACE("Abandoning object with SynchData at %p\n" , psdSynchData); |
| 585 | |
| 586 | if (!fSharedSynchLock && |
| 587 | (SharedObject == psdSynchData->GetObjectDomain())) |
| 588 | { |
| 589 | AcquireSharedSynchLock(pthrCurrent); |
| 590 | fSharedSynchLock = true; |
| 591 | } |
| 592 | |
| 593 | // Reset ownership data |
| 594 | psdSynchData->ResetOwnership(); |
| 595 | |
| 596 | // Set abandoned status; in case there is a thread to be released: |
| 597 | // - if the thread is local, ReleaseFirstWaiter will reset the |
| 598 | // abandoned status |
| 599 | // - if the thread is remote, the remote worker thread will use |
| 600 | // the value and reset it |
| 601 | psdSynchData->SetAbandoned(true); |
| 602 | |
| 603 | // Signal the object and trigger thread awakening |
| 604 | psdSynchData->Signal(pthrCurrent, 1, false); |
| 605 | |
| 606 | // Release reference to to SynchData |
| 607 | psdSynchData->Release(pthrCurrent); |
| 608 | |
| 609 | // Return node to the cache |
| 610 | pSynchManager->m_cacheOwnedObjectsListNodes.Add(pthrCurrent, poolnItem); |
| 611 | } |
| 612 | |
| 613 | // Abandon owned named mutexes |
| 614 | while (true) |
| 615 | { |
| 616 | NamedMutexProcessData *processData = pSynchInfo->RemoveFirstOwnedNamedMutex(); |
| 617 | if (processData == nullptr) |
| 618 | { |
| 619 | break; |
| 620 | } |
| 621 | processData->Abandon(); |
| 622 | } |
| 623 | |
| 624 | if (pthrTarget != pthrCurrent) |
| 625 | { |
| 626 | // If the target thead is not the current one, we are being called |
| 627 | // at shutdown time, right before the target thread is suspended, |
| 628 | // or anyway the target thread is being terminated. |
| 629 | // In this case we switch its wait state to TWS_EARLYDEATH so that, |
| 630 | // if the thread is currently waiting/sleeping and it wakes up |
| 631 | // before shutdown code manage to suspend it, it will be rerouted |
| 632 | // to ThreadPrepareForShutdown (that will be done without holding |
| 633 | // any internal lock, in a way to accomodate shutdown time thread |
| 634 | // suspension). |
| 635 | // At this time we also unregister the wait, so no dummy nodes are |
| 636 | // left around on waiting objects. |
| 637 | // The TWS_EARLYDEATH wait-state will also prevent the thread from |
| 638 | // successfully registering for a possible new wait in the same |
| 639 | // time window. |
| 640 | LONG lTWState; |
| 641 | DWORD * pdwWaitState; |
| 642 | |
| 643 | pdwWaitState = SharedIDToTypePointer(DWORD, pthrTarget->synchronizationInfo.m_shridWaitAwakened); |
| 644 | lTWState = InterlockedExchange((LONG *)pdwWaitState, TWS_EARLYDEATH); |
| 645 | |
| 646 | if (( ((LONG)TWS_WAITING == lTWState) || ((LONG)TWS_ALERTABLE == lTWState) ) && |
| 647 | (0 < pSynchInfo->m_twiWaitInfo.lObjCount)) |
| 648 | { |
| 649 | // Unregister the wait |
| 650 | // Note: UnRegisterWait will take care of grabbing the shared synch lock, if needed. |
| 651 | UnRegisterWait(pthrCurrent, &pSynchInfo->m_twiWaitInfo, fSharedSynchLock); |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | // Unlock |
| 656 | if (fSharedSynchLock) |
| 657 | { |
| 658 | ReleaseSharedSynchLock(pthrCurrent); |
| 659 | fSharedSynchLock = false; |
| 660 | } |
| 661 | |
| 662 | ReleaseLocalSynchLock(pthrCurrent); |
| 663 | DiscardAllPendingAPCs(pthrCurrent, pthrTarget); |
| 664 | |
| 665 | return palErr; |
| 666 | } |
| 667 | |
| 668 | /*++ |
| 669 | Method: |
| 670 | CPalSynchronizationManager::GetSynchWaitControllersForObjects |
| 671 | |
| 672 | Returns an array of wait controllers, one for each of the objects |
| 673 | in rgObjects |
| 674 | --*/ |
| 675 | PAL_ERROR CPalSynchronizationManager::GetSynchWaitControllersForObjects( |
| 676 | CPalThread *pthrCurrent, |
| 677 | IPalObject *rgObjects[], |
| 678 | DWORD dwObjectCount, |
| 679 | ISynchWaitController * rgControllers[]) |
| 680 | { |
| 681 | return GetSynchControllersForObjects(pthrCurrent, |
| 682 | rgObjects, |
| 683 | dwObjectCount, |
| 684 | (void **)rgControllers, |
| 685 | CSynchControllerBase::WaitController); |
| 686 | } |
| 687 | |
| 688 | /*++ |
| 689 | Method: |
| 690 | CPalSynchronizationManager::GetSynchStateControllersForObjects |
| 691 | |
| 692 | Returns an array of state controllers, one for each of the objects |
| 693 | in rgObjects |
| 694 | --*/ |
| 695 | PAL_ERROR CPalSynchronizationManager::GetSynchStateControllersForObjects( |
| 696 | CPalThread *pthrCurrent, |
| 697 | IPalObject *rgObjects[], |
| 698 | DWORD dwObjectCount, |
| 699 | ISynchStateController *rgControllers[]) |
| 700 | { |
| 701 | return GetSynchControllersForObjects(pthrCurrent, |
| 702 | rgObjects, |
| 703 | dwObjectCount, |
| 704 | (void **)rgControllers, |
| 705 | CSynchControllerBase::StateController); |
| 706 | } |
| 707 | |
| 708 | /*++ |
| 709 | Method: |
| 710 | CPalSynchronizationManager::GetSynchControllersForObjects |
| 711 | |
| 712 | Internal common implementation for GetSynchWaitControllersForObjects and |
| 713 | GetSynchStateControllersForObjects |
| 714 | --*/ |
| 715 | PAL_ERROR CPalSynchronizationManager::GetSynchControllersForObjects( |
| 716 | CPalThread *pthrCurrent, |
| 717 | IPalObject *rgObjects[], |
| 718 | DWORD dwObjectCount, |
| 719 | void ** ppvControllers, |
| 720 | CSynchControllerBase::ControllerType ctCtrlrType) |
| 721 | { |
| 722 | PAL_ERROR palErr = NO_ERROR; |
| 723 | unsigned int uIdx, uCount = 0, uSharedObjectCount = 0; |
| 724 | WaitDomain wdWaitDomain = LocalWait; |
| 725 | CObjectType * potObjectType = NULL; |
| 726 | unsigned int uErrCleanupIdxFirstNotInitializedCtrlr = 0; |
| 727 | unsigned int uErrCleanupIdxLastCtrlr = 0; |
| 728 | bool fLocalSynchLock = false; |
| 729 | |
| 730 | union |
| 731 | { |
| 732 | CSynchWaitController * pWaitCtrlrs[MAXIMUM_WAIT_OBJECTS]; |
| 733 | CSynchStateController * pStateCtrlrs[MAXIMUM_WAIT_OBJECTS]; |
| 734 | } Ctrlrs; |
| 735 | |
| 736 | if ((dwObjectCount <= 0) || (dwObjectCount > MAXIMUM_WAIT_OBJECTS)) |
| 737 | { |
| 738 | palErr = ERROR_INVALID_PARAMETER; |
| 739 | goto GSCFO_exit; |
| 740 | } |
| 741 | |
| 742 | if (CSynchControllerBase::WaitController == ctCtrlrType) |
| 743 | { |
| 744 | uCount = (unsigned int)m_cacheWaitCtrlrs.Get(pthrCurrent, |
| 745 | dwObjectCount, |
| 746 | Ctrlrs.pWaitCtrlrs); |
| 747 | } |
| 748 | else |
| 749 | { |
| 750 | uCount = (unsigned int)m_cacheStateCtrlrs.Get(pthrCurrent, |
| 751 | dwObjectCount, |
| 752 | Ctrlrs.pStateCtrlrs); |
| 753 | } |
| 754 | |
| 755 | if (uCount < dwObjectCount) |
| 756 | { |
| 757 | // We got less controllers (uCount) than we asked for (dwObjectCount), |
| 758 | // probably because of low memory. |
| 759 | // None of these controllers is initialized, so they must be all |
| 760 | // returned directly to the cache |
| 761 | uErrCleanupIdxLastCtrlr = uCount; |
| 762 | |
| 763 | palErr = ERROR_NOT_ENOUGH_MEMORY; |
| 764 | goto GSCFO_error_cleanup; |
| 765 | } |
| 766 | |
| 767 | // |
| 768 | // We need to acquire the local synch lock before evaluating object domains |
| 769 | // |
| 770 | AcquireLocalSynchLock(pthrCurrent); |
| 771 | fLocalSynchLock = true; |
| 772 | |
| 773 | for (uIdx=0; uIdx<dwObjectCount; uIdx++) |
| 774 | { |
| 775 | if (SharedObject == rgObjects[uIdx]->GetObjectDomain()) |
| 776 | { |
| 777 | ++uSharedObjectCount; |
| 778 | } |
| 779 | |
| 780 | if (uSharedObjectCount > 0 && uSharedObjectCount <= uIdx) |
| 781 | { |
| 782 | wdWaitDomain = MixedWait; |
| 783 | break; |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | if (dwObjectCount == uSharedObjectCount) |
| 788 | { |
| 789 | wdWaitDomain = SharedWait; |
| 790 | } |
| 791 | |
| 792 | for (uIdx=0;uIdx<dwObjectCount;uIdx++) |
| 793 | { |
| 794 | void * pvSData; |
| 795 | CSynchData * psdSynchData; |
| 796 | ObjectDomain odObjectDomain = rgObjects[uIdx]->GetObjectDomain(); |
| 797 | |
| 798 | palErr = rgObjects[uIdx]->GetObjectSynchData((void **)&pvSData); |
| 799 | if (NO_ERROR != palErr) |
| 800 | { |
| 801 | break; |
| 802 | } |
| 803 | |
| 804 | psdSynchData = (SharedObject == odObjectDomain) ? SharedIDToTypePointer( |
| 805 | CSynchData, reinterpret_cast<SharedID>(pvSData)) : |
| 806 | static_cast<CSynchData *>(pvSData); |
| 807 | |
| 808 | VALIDATEOBJECT(psdSynchData); |
| 809 | |
| 810 | potObjectType = rgObjects[uIdx]->GetObjectType(); |
| 811 | |
| 812 | if (CSynchControllerBase::WaitController == ctCtrlrType) |
| 813 | { |
| 814 | Ctrlrs.pWaitCtrlrs[uIdx]->Init(pthrCurrent, |
| 815 | ctCtrlrType, |
| 816 | odObjectDomain, |
| 817 | potObjectType, |
| 818 | psdSynchData, |
| 819 | wdWaitDomain); |
| 820 | } |
| 821 | else |
| 822 | { |
| 823 | Ctrlrs.pStateCtrlrs[uIdx]->Init(pthrCurrent, |
| 824 | ctCtrlrType, |
| 825 | odObjectDomain, |
| 826 | potObjectType, |
| 827 | psdSynchData, |
| 828 | wdWaitDomain); |
| 829 | } |
| 830 | |
| 831 | if (CSynchControllerBase::WaitController == ctCtrlrType && |
| 832 | otiProcess == potObjectType->GetId()) |
| 833 | { |
| 834 | CProcProcessLocalData * pProcLocData; |
| 835 | IDataLock * pDataLock; |
| 836 | |
| 837 | palErr = rgObjects[uIdx]->GetProcessLocalData( |
| 838 | pthrCurrent, |
| 839 | ReadLock, |
| 840 | &pDataLock, |
| 841 | (void **)&pProcLocData); |
| 842 | |
| 843 | if (NO_ERROR != palErr) |
| 844 | { |
| 845 | // In case of failure here, bail out of the loop, but |
| 846 | // keep track (by incrementing the counter 'uIdx') of the |
| 847 | // fact that this controller has already being initialized |
| 848 | // and therefore need to be Release'd rather than just |
| 849 | // returned to the cache |
| 850 | uIdx++; |
| 851 | break; |
| 852 | } |
| 853 | |
| 854 | Ctrlrs.pWaitCtrlrs[uIdx]->SetProcessData(rgObjects[uIdx], pProcLocData); |
| 855 | pDataLock->ReleaseLock(pthrCurrent, false); |
| 856 | } |
| 857 | } |
| 858 | if (NO_ERROR != palErr) |
| 859 | { |
| 860 | // An error occurred while initializing the (uIdx+1)-th controller, |
| 861 | // i.e. the one at index uIdx; therefore the first uIdx controllers |
| 862 | // must be Release'd, while the remaining uCount-uIdx must be returned |
| 863 | // directly to the cache. |
| 864 | uErrCleanupIdxFirstNotInitializedCtrlr = uIdx; |
| 865 | uErrCleanupIdxLastCtrlr = dwObjectCount; |
| 866 | |
| 867 | goto GSCFO_error_cleanup; |
| 868 | } |
| 869 | |
| 870 | // Succeeded |
| 871 | if (CSynchControllerBase::WaitController == ctCtrlrType) |
| 872 | { |
| 873 | for (uIdx=0;uIdx<dwObjectCount;uIdx++) |
| 874 | { |
| 875 | // The multiple cast is NEEDED, though currently it does not |
| 876 | // change the value ot the pointer. Anyway, if in the future |
| 877 | // a virtual method should be added to the base class |
| 878 | // CSynchControllerBase, both derived classes would have two |
| 879 | // virtual tables, therefore a static cast from, for instance, |
| 880 | // a CSynchWaitController* to a ISynchWaitController* would |
| 881 | // return the given pointer incremented by the size of a |
| 882 | // generic pointer on the specific platform |
| 883 | ppvControllers[uIdx] = reinterpret_cast<void *>( |
| 884 | static_cast<ISynchWaitController *>(Ctrlrs.pWaitCtrlrs[uIdx])); |
| 885 | } |
| 886 | } |
| 887 | else |
| 888 | { |
| 889 | for (uIdx=0;uIdx<dwObjectCount;uIdx++) |
| 890 | { |
| 891 | // See comment above |
| 892 | ppvControllers[uIdx] = reinterpret_cast<void *>( |
| 893 | static_cast<ISynchStateController *>(Ctrlrs.pStateCtrlrs[uIdx])); |
| 894 | } |
| 895 | } |
| 896 | |
| 897 | // Succeeded: skip error cleanup |
| 898 | goto GSCFO_exit; |
| 899 | |
| 900 | GSCFO_error_cleanup: |
| 901 | if (CSynchControllerBase::WaitController == ctCtrlrType) |
| 902 | { |
| 903 | // Release already initialized wait controllers |
| 904 | for (uIdx=0; uIdx<uErrCleanupIdxFirstNotInitializedCtrlr; uIdx++) |
| 905 | { |
| 906 | Ctrlrs.pWaitCtrlrs[uIdx]->Release(); |
| 907 | } |
| 908 | |
| 909 | // Return to the cache not yet initialized wait controllers |
| 910 | for (uIdx=uErrCleanupIdxFirstNotInitializedCtrlr; uIdx<uErrCleanupIdxLastCtrlr; uIdx++) |
| 911 | { |
| 912 | m_cacheWaitCtrlrs.Add(pthrCurrent, Ctrlrs.pWaitCtrlrs[uIdx]); |
| 913 | } |
| 914 | } |
| 915 | else |
| 916 | { |
| 917 | // Release already initialized state controllers |
| 918 | for (uIdx=0; uIdx<uErrCleanupIdxFirstNotInitializedCtrlr; uIdx++) |
| 919 | { |
| 920 | Ctrlrs.pStateCtrlrs[uIdx]->Release(); |
| 921 | } |
| 922 | |
| 923 | // Return to the cache not yet initialized state controllers |
| 924 | for (uIdx=uErrCleanupIdxFirstNotInitializedCtrlr; uIdx<uErrCleanupIdxLastCtrlr; uIdx++) |
| 925 | { |
| 926 | m_cacheStateCtrlrs.Add(pthrCurrent, Ctrlrs.pStateCtrlrs[uIdx]); |
| 927 | } |
| 928 | } |
| 929 | |
| 930 | GSCFO_exit: |
| 931 | if (fLocalSynchLock) |
| 932 | { |
| 933 | ReleaseLocalSynchLock(pthrCurrent); |
| 934 | } |
| 935 | return palErr; |
| 936 | } |
| 937 | |
| 938 | /*++ |
| 939 | Method: |
| 940 | CPalSynchronizationManager::AllocateObjectSynchData |
| 941 | |
| 942 | Returns a new SynchData for an object of given type and domain |
| 943 | --*/ |
| 944 | PAL_ERROR CPalSynchronizationManager::AllocateObjectSynchData( |
| 945 | CObjectType *potObjectType, |
| 946 | ObjectDomain odObjectDomain, |
| 947 | VOID **ppvSynchData) |
| 948 | { |
| 949 | PAL_ERROR palErr = NO_ERROR; |
| 950 | CSynchData * psdSynchData = NULL; |
| 951 | CPalThread * pthrCurrent = InternalGetCurrentThread(); |
| 952 | |
| 953 | if (SharedObject == odObjectDomain) |
| 954 | { |
| 955 | SharedID shridSynchData = m_cacheSHRSynchData.Get(pthrCurrent); |
| 956 | if (NULL == shridSynchData) |
| 957 | { |
| 958 | ERROR("Unable to allocate shared memory\n" ); |
| 959 | return ERROR_NOT_ENOUGH_MEMORY; |
| 960 | } |
| 961 | |
| 962 | psdSynchData = SharedIDToTypePointer(CSynchData, shridSynchData); |
| 963 | |
| 964 | VALIDATEOBJECT(psdSynchData); |
| 965 | |
| 966 | _ASSERT_MSG(NULL != psdSynchData, "Bad shared memory pointer\n" ); |
| 967 | |
| 968 | // Initialize waiting list pointers |
| 969 | psdSynchData->SetWTLHeadShrPtr(NULL); |
| 970 | psdSynchData->SetWTLTailShrPtr(NULL); |
| 971 | |
| 972 | // Store shared pointer to this object |
| 973 | psdSynchData->SetSharedThis(shridSynchData); |
| 974 | |
| 975 | *ppvSynchData = reinterpret_cast<void *>(shridSynchData); |
| 976 | } |
| 977 | else |
| 978 | { |
| 979 | psdSynchData = m_cacheSynchData.Get(pthrCurrent); |
| 980 | if (NULL == psdSynchData) |
| 981 | { |
| 982 | ERROR("Unable to allocate memory\n" ); |
| 983 | return ERROR_NOT_ENOUGH_MEMORY; |
| 984 | } |
| 985 | |
| 986 | // Initialize waiting list pointers |
| 987 | psdSynchData->SetWTLHeadPtr(NULL); |
| 988 | psdSynchData->SetWTLTailPtr(NULL); |
| 989 | |
| 990 | // Set shared this pointer to NULL |
| 991 | psdSynchData->SetSharedThis(NULL); |
| 992 | |
| 993 | *ppvSynchData = static_cast<void *>(psdSynchData); |
| 994 | } |
| 995 | |
| 996 | // Initialize object domain and object type; |
| 997 | psdSynchData->SetObjectDomain(odObjectDomain); |
| 998 | psdSynchData->SetObjectType(potObjectType); |
| 999 | |
| 1000 | return palErr; |
| 1001 | } |
| 1002 | |
| 1003 | /*++ |
| 1004 | Method: |
| 1005 | CPalSynchronizationManager::FreeObjectSynchData |
| 1006 | |
| 1007 | Called to return a no longer used SynchData to the Synchronization Manager. |
| 1008 | The SynchData may actually survive this call, since it is a ref-counted |
| 1009 | object and at FreeObjectSynchData time it may still be used from within |
| 1010 | the Synchronization Manager itself (e.g. the worker thread). |
| 1011 | --*/ |
| 1012 | void CPalSynchronizationManager::FreeObjectSynchData( |
| 1013 | CObjectType *potObjectType, |
| 1014 | ObjectDomain odObjectDomain, |
| 1015 | VOID *pvSynchData) |
| 1016 | { |
| 1017 | CSynchData * psdSynchData; |
| 1018 | CPalThread * pthrCurrent = InternalGetCurrentThread(); |
| 1019 | |
| 1020 | if (odObjectDomain == SharedObject) |
| 1021 | { |
| 1022 | psdSynchData = SharedIDToTypePointer(CSynchData, |
| 1023 | reinterpret_cast<SharedID>(pvSynchData)); |
| 1024 | |
| 1025 | if (NULL == psdSynchData) |
| 1026 | { |
| 1027 | ASSERT("Bad shared memory pointer\n" ); |
| 1028 | return; |
| 1029 | } |
| 1030 | } |
| 1031 | else |
| 1032 | { |
| 1033 | psdSynchData = static_cast<CSynchData *>(pvSynchData); |
| 1034 | } |
| 1035 | |
| 1036 | psdSynchData->Release(pthrCurrent); |
| 1037 | } |
| 1038 | |
| 1039 | /*++ |
| 1040 | Method: |
| 1041 | CPalSynchronizationManager::CreateSynchStateController |
| 1042 | |
| 1043 | Creates a state controller for the given object |
| 1044 | --*/ |
| 1045 | PAL_ERROR CPalSynchronizationManager::CreateSynchStateController( |
| 1046 | CPalThread *pthrCurrent, |
| 1047 | CObjectType *potObjectType, |
| 1048 | VOID *pvSynchData, |
| 1049 | ObjectDomain odObjectDomain, |
| 1050 | ISynchStateController **ppStateController) |
| 1051 | { |
| 1052 | PAL_ERROR palErr = NO_ERROR; |
| 1053 | CSynchStateController * pCtrlr = NULL; |
| 1054 | WaitDomain wdWaitDomain = (SharedObject == odObjectDomain) ? SharedWait : LocalWait; |
| 1055 | CSynchData * psdSynchData; |
| 1056 | |
| 1057 | psdSynchData = (SharedObject == odObjectDomain) ? SharedIDToTypePointer(CSynchData, reinterpret_cast<SharedID>(pvSynchData)) |
| 1058 | : static_cast<CSynchData *>(pvSynchData); |
| 1059 | |
| 1060 | VALIDATEOBJECT(psdSynchData); |
| 1061 | |
| 1062 | pCtrlr = m_cacheStateCtrlrs.Get(pthrCurrent); |
| 1063 | if (NULL == pCtrlr) |
| 1064 | { |
| 1065 | return ERROR_NOT_ENOUGH_MEMORY; |
| 1066 | } |
| 1067 | |
| 1068 | pCtrlr->Init(pthrCurrent, |
| 1069 | CSynchControllerBase::StateController, |
| 1070 | odObjectDomain, |
| 1071 | potObjectType, |
| 1072 | psdSynchData, |
| 1073 | wdWaitDomain); |
| 1074 | |
| 1075 | // Succeeded |
| 1076 | *ppStateController = (ISynchStateController *)pCtrlr; |
| 1077 | |
| 1078 | if (NO_ERROR != palErr) |
| 1079 | { |
| 1080 | m_cacheStateCtrlrs.Add(pthrCurrent, pCtrlr); |
| 1081 | } |
| 1082 | |
| 1083 | return palErr; |
| 1084 | } |
| 1085 | |
| 1086 | /*++ |
| 1087 | Method: |
| 1088 | CPalSynchronizationManager::CreateSynchWaitController |
| 1089 | |
| 1090 | Creates a wait controller for the given object |
| 1091 | --*/ |
| 1092 | PAL_ERROR CPalSynchronizationManager::CreateSynchWaitController( |
| 1093 | CPalThread *pthrCurrent, |
| 1094 | CObjectType *potObjectType, |
| 1095 | VOID *pvSynchData, |
| 1096 | ObjectDomain odObjectDomain, |
| 1097 | ISynchWaitController **ppWaitController) |
| 1098 | { |
| 1099 | CSynchWaitController * pCtrlr = NULL; |
| 1100 | WaitDomain wdWaitDomain = (SharedObject == odObjectDomain) ? SharedWait : LocalWait; |
| 1101 | CSynchData * psdSynchData; |
| 1102 | |
| 1103 | psdSynchData = (SharedObject == odObjectDomain) ? SharedIDToTypePointer( |
| 1104 | CSynchData, reinterpret_cast<SharedID>(pvSynchData)) : |
| 1105 | static_cast<CSynchData *>(pvSynchData); |
| 1106 | |
| 1107 | VALIDATEOBJECT(psdSynchData); |
| 1108 | |
| 1109 | pCtrlr = m_cacheWaitCtrlrs.Get(pthrCurrent); |
| 1110 | if (NULL == pCtrlr) |
| 1111 | { |
| 1112 | return ERROR_NOT_ENOUGH_MEMORY; |
| 1113 | } |
| 1114 | |
| 1115 | pCtrlr->Init(pthrCurrent, |
| 1116 | CSynchControllerBase::WaitController, |
| 1117 | odObjectDomain, |
| 1118 | potObjectType, |
| 1119 | psdSynchData, |
| 1120 | wdWaitDomain); |
| 1121 | |
| 1122 | // Succeeded |
| 1123 | *ppWaitController = (ISynchWaitController *)pCtrlr; |
| 1124 | |
| 1125 | return NO_ERROR; |
| 1126 | } |
| 1127 | |
| 1128 | /*++ |
| 1129 | Method: |
| 1130 | CPalSynchronizationManager::QueueUserAPC |
| 1131 | |
| 1132 | Internal implementation of QueueUserAPC |
| 1133 | --*/ |
| 1134 | PAL_ERROR CPalSynchronizationManager::QueueUserAPC(CPalThread * pthrCurrent, |
| 1135 | CPalThread * pthrTarget, |
| 1136 | PAPCFUNC pfnAPC, |
| 1137 | ULONG_PTR uptrData) |
| 1138 | { |
| 1139 | PAL_ERROR palErr = NO_ERROR; |
| 1140 | ThreadApcInfoNode * ptainNode = NULL; |
| 1141 | DWORD dwWaitState; |
| 1142 | DWORD * pdwWaitState; |
| 1143 | ThreadWaitInfo * pTargetTWInfo = GetThreadWaitInfo(pthrTarget); |
| 1144 | bool fLocalSynchLock = false; |
| 1145 | bool fSharedSynchLock = false; |
| 1146 | bool fThreadLock = false; |
| 1147 | |
| 1148 | ptainNode = m_cacheThreadApcInfoNodes.Get(pthrCurrent); |
| 1149 | if (NULL == ptainNode) |
| 1150 | { |
| 1151 | ERROR("No memory for new APCs linked list entry\n" ); |
| 1152 | palErr = ERROR_NOT_ENOUGH_MEMORY; |
| 1153 | goto QUAPC_exit; |
| 1154 | } |
| 1155 | |
| 1156 | ptainNode->pfnAPC = pfnAPC; |
| 1157 | ptainNode->pAPCData = uptrData; |
| 1158 | ptainNode->pNext = NULL; |
| 1159 | |
| 1160 | AcquireLocalSynchLock(pthrCurrent); |
| 1161 | fLocalSynchLock = true; |
| 1162 | |
| 1163 | if (LocalWait != pTargetTWInfo->wdWaitDomain) |
| 1164 | { |
| 1165 | AcquireSharedSynchLock(pthrCurrent); |
| 1166 | fSharedSynchLock = true; |
| 1167 | } |
| 1168 | |
| 1169 | pthrTarget->Lock(pthrCurrent); |
| 1170 | fThreadLock = true; |
| 1171 | |
| 1172 | if (TS_DONE == pthrTarget->synchronizationInfo.GetThreadState()) |
| 1173 | { |
| 1174 | ERROR("Thread %#x has terminated; can't queue an APC on it\n" , |
| 1175 | pthrTarget->GetThreadId()); |
| 1176 | palErr = ERROR_INVALID_PARAMETER; |
| 1177 | goto QUAPC_exit; |
| 1178 | } |
| 1179 | pdwWaitState = SharedIDToTypePointer(DWORD, |
| 1180 | pthrTarget->synchronizationInfo.m_shridWaitAwakened); |
| 1181 | if (TWS_EARLYDEATH == VolatileLoad(pdwWaitState)) |
| 1182 | { |
| 1183 | ERROR("Thread %#x is about to be suspended for process shutdwon, " |
| 1184 | "can't queue an APC on it\n" , pthrTarget->GetThreadId()); |
| 1185 | palErr = ERROR_INVALID_PARAMETER; |
| 1186 | goto QUAPC_exit; |
| 1187 | } |
| 1188 | |
| 1189 | if (NULL == pthrTarget->apcInfo.m_ptainTail) |
| 1190 | { |
| 1191 | _ASSERT_MSG(NULL == pthrTarget->apcInfo.m_ptainHead, "Corrupted APC list\n" ); |
| 1192 | |
| 1193 | pthrTarget->apcInfo.m_ptainHead = ptainNode; |
| 1194 | pthrTarget->apcInfo.m_ptainTail = ptainNode; |
| 1195 | } |
| 1196 | else |
| 1197 | { |
| 1198 | pthrTarget->apcInfo.m_ptainTail->pNext = ptainNode; |
| 1199 | pthrTarget->apcInfo.m_ptainTail = ptainNode; |
| 1200 | } |
| 1201 | |
| 1202 | // Set ptainNode to NULL so it won't be readded to the cache |
| 1203 | ptainNode = NULL; |
| 1204 | |
| 1205 | TRACE("APC %p with parameter %p added to APC queue\n" , pfnAPC, uptrData); |
| 1206 | |
| 1207 | dwWaitState = InterlockedCompareExchange((LONG *)pdwWaitState, |
| 1208 | (LONG)TWS_ACTIVE, |
| 1209 | (LONG)TWS_ALERTABLE); |
| 1210 | |
| 1211 | // Release thread lock |
| 1212 | pthrTarget->Unlock(pthrCurrent); |
| 1213 | fThreadLock = false; |
| 1214 | |
| 1215 | if (TWS_ALERTABLE == dwWaitState) |
| 1216 | { |
| 1217 | // Unregister the wait |
| 1218 | UnRegisterWait(pthrCurrent, pTargetTWInfo, fSharedSynchLock); |
| 1219 | |
| 1220 | // Wake up target thread |
| 1221 | palErr = WakeUpLocalThread( |
| 1222 | pthrCurrent, |
| 1223 | pthrTarget, |
| 1224 | Alerted, |
| 1225 | 0); |
| 1226 | |
| 1227 | if (NO_ERROR != palErr) |
| 1228 | { |
| 1229 | ERROR("Failed to wakeup local thread %#x for dispatching APCs [err=%u]\n" , |
| 1230 | pthrTarget->GetThreadId(), palErr); |
| 1231 | } |
| 1232 | } |
| 1233 | |
| 1234 | QUAPC_exit: |
| 1235 | if (fThreadLock) |
| 1236 | { |
| 1237 | pthrTarget->Unlock(pthrCurrent); |
| 1238 | } |
| 1239 | |
| 1240 | if (fSharedSynchLock) |
| 1241 | { |
| 1242 | ReleaseSharedSynchLock(pthrCurrent); |
| 1243 | } |
| 1244 | |
| 1245 | if (fLocalSynchLock) |
| 1246 | { |
| 1247 | ReleaseLocalSynchLock(pthrCurrent); |
| 1248 | } |
| 1249 | |
| 1250 | if (ptainNode) |
| 1251 | { |
| 1252 | m_cacheThreadApcInfoNodes.Add(pthrCurrent, ptainNode); |
| 1253 | } |
| 1254 | |
| 1255 | return palErr; |
| 1256 | } |
| 1257 | |
| 1258 | /*++ |
| 1259 | Method: |
| 1260 | CPalSynchronizationManager::SendTerminationRequestToWorkerThread |
| 1261 | |
| 1262 | Send a request to the worker thread to initiate process termination. |
| 1263 | --*/ |
| 1264 | PAL_ERROR CPalSynchronizationManager::SendTerminationRequestToWorkerThread() |
| 1265 | { |
| 1266 | PAL_ERROR palErr = GetInstance()->WakeUpLocalWorkerThread(SynchWorkerCmdTerminationRequest); |
| 1267 | if (palErr != NO_ERROR) |
| 1268 | { |
| 1269 | ERROR("Failed to wake up worker thread [errno=%d {%s%}]\n" , |
| 1270 | errno, strerror(errno)); |
| 1271 | palErr = ERROR_INTERNAL_ERROR; |
| 1272 | } |
| 1273 | |
| 1274 | return palErr; |
| 1275 | } |
| 1276 | |
| 1277 | /*++ |
| 1278 | Method: |
| 1279 | CPalSynchronizationManager::AreAPCsPending |
| 1280 | |
| 1281 | Returns 'true' if there are APCs currently pending for the target |
| 1282 | thread (normally the current one) |
| 1283 | --*/ |
| 1284 | bool CPalSynchronizationManager::AreAPCsPending( |
| 1285 | CPalThread * pthrTarget) |
| 1286 | { |
| 1287 | // No need to lock here |
| 1288 | return (NULL != pthrTarget->apcInfo.m_ptainHead); |
| 1289 | } |
| 1290 | |
| 1291 | /*++ |
| 1292 | Method: |
| 1293 | CPalSynchronizationManager::DispatchPendingAPCs |
| 1294 | |
| 1295 | Executes any pending APC for the current thread |
| 1296 | --*/ |
| 1297 | PAL_ERROR CPalSynchronizationManager::DispatchPendingAPCs( |
| 1298 | CPalThread * pthrCurrent) |
| 1299 | { |
| 1300 | ThreadApcInfoNode * ptainNode, * ptainLocalHead; |
| 1301 | int iAPCsCalled = 0; |
| 1302 | |
| 1303 | while (TRUE) |
| 1304 | { |
| 1305 | // Lock |
| 1306 | pthrCurrent->Lock(pthrCurrent); |
| 1307 | ptainLocalHead = pthrCurrent->apcInfo.m_ptainHead; |
| 1308 | if (ptainLocalHead) |
| 1309 | { |
| 1310 | pthrCurrent->apcInfo.m_ptainHead = NULL; |
| 1311 | pthrCurrent->apcInfo.m_ptainTail = NULL; |
| 1312 | } |
| 1313 | |
| 1314 | // Unlock |
| 1315 | pthrCurrent->Unlock(pthrCurrent); |
| 1316 | |
| 1317 | if (NULL == ptainLocalHead) |
| 1318 | { |
| 1319 | break; |
| 1320 | } |
| 1321 | |
| 1322 | while (ptainLocalHead) |
| 1323 | { |
| 1324 | ptainNode = ptainLocalHead; |
| 1325 | ptainLocalHead = ptainNode->pNext; |
| 1326 | |
| 1327 | #if _ENABLE_DEBUG_MESSAGES_ |
| 1328 | // reset ENTRY nesting level back to zero while |
| 1329 | // inside the callback ... |
| 1330 | int iOldLevel = DBG_change_entrylevel(0); |
| 1331 | #endif /* _ENABLE_DEBUG_MESSAGES_ */ |
| 1332 | |
| 1333 | TRACE("Calling APC %p with parameter %#x\n" , |
| 1334 | ptainNode->pfnAPC, ptainNode->pfnAPC); |
| 1335 | |
| 1336 | // Actual APC call |
| 1337 | ptainNode->pfnAPC(ptainNode->pAPCData); |
| 1338 | |
| 1339 | #if _ENABLE_DEBUG_MESSAGES_ |
| 1340 | // ... and set nesting level back to what it was |
| 1341 | DBG_change_entrylevel(iOldLevel); |
| 1342 | #endif /* _ENABLE_DEBUG_MESSAGES_ */ |
| 1343 | |
| 1344 | iAPCsCalled++; |
| 1345 | m_cacheThreadApcInfoNodes.Add(pthrCurrent, ptainNode); |
| 1346 | } |
| 1347 | } |
| 1348 | |
| 1349 | return (iAPCsCalled > 0) ? NO_ERROR : ERROR_NOT_FOUND; |
| 1350 | } |
| 1351 | |
| 1352 | /*++ |
| 1353 | Method: |
| 1354 | CPalSynchronizationManager::DiscardAllPendingAPCs |
| 1355 | |
| 1356 | Discards any pending APC for the target pthrTarget thread |
| 1357 | --*/ |
| 1358 | void CPalSynchronizationManager::DiscardAllPendingAPCs( |
| 1359 | CPalThread * pthrCurrent, |
| 1360 | CPalThread * pthrTarget) |
| 1361 | { |
| 1362 | ThreadApcInfoNode * ptainNode, * ptainLocalHead; |
| 1363 | |
| 1364 | // Lock |
| 1365 | pthrTarget->Lock(pthrCurrent); |
| 1366 | ptainLocalHead = pthrTarget->apcInfo.m_ptainHead; |
| 1367 | if (ptainLocalHead) |
| 1368 | { |
| 1369 | pthrTarget->apcInfo.m_ptainHead = NULL; |
| 1370 | pthrTarget->apcInfo.m_ptainTail = NULL; |
| 1371 | } |
| 1372 | |
| 1373 | // Unlock |
| 1374 | pthrTarget->Unlock(pthrCurrent); |
| 1375 | |
| 1376 | while (ptainLocalHead) |
| 1377 | { |
| 1378 | ptainNode = ptainLocalHead; |
| 1379 | ptainLocalHead = ptainNode->pNext; |
| 1380 | |
| 1381 | m_cacheThreadApcInfoNodes.Add(pthrCurrent, ptainNode); |
| 1382 | } |
| 1383 | } |
| 1384 | |
| 1385 | /*++ |
| 1386 | Method: |
| 1387 | CPalSynchronizationManager::CreatePalSynchronizationManager |
| 1388 | |
| 1389 | Creates the Synchronization Manager. |
| 1390 | Private method, it is called only by CPalSynchMgrController. |
| 1391 | --*/ |
| 1392 | IPalSynchronizationManager * CPalSynchronizationManager::CreatePalSynchronizationManager() |
| 1393 | { |
| 1394 | if (s_pObjSynchMgr != NULL) |
| 1395 | { |
| 1396 | ASSERT("Multiple PAL Synchronization manager initializations\n" ); |
| 1397 | return NULL; |
| 1398 | } |
| 1399 | |
| 1400 | Initialize(); |
| 1401 | return static_cast<IPalSynchronizationManager *>(s_pObjSynchMgr); |
| 1402 | } |
| 1403 | |
| 1404 | /*++ |
| 1405 | Method: |
| 1406 | CPalSynchronizationManager::Initialize |
| 1407 | |
| 1408 | Internal Synchronization Manager initialization |
| 1409 | --*/ |
| 1410 | PAL_ERROR CPalSynchronizationManager::Initialize() |
| 1411 | { |
| 1412 | PAL_ERROR palErr = NO_ERROR; |
| 1413 | LONG lInit; |
| 1414 | CPalSynchronizationManager * pSynchManager = NULL; |
| 1415 | |
| 1416 | lInit = InterlockedCompareExchange(&s_lInitStatus, |
| 1417 | (LONG)SynchMgrStatusInitializing, |
| 1418 | (LONG)SynchMgrStatusIdle); |
| 1419 | |
| 1420 | if ((LONG)SynchMgrStatusIdle != lInit) |
| 1421 | { |
| 1422 | ASSERT("Synchronization Manager already being initialized" ); |
| 1423 | palErr = ERROR_INTERNAL_ERROR; |
| 1424 | goto I_exit; |
| 1425 | } |
| 1426 | |
| 1427 | InternalInitializeCriticalSection(&s_csSynchProcessLock); |
| 1428 | InternalInitializeCriticalSection(&s_csMonitoredProcessesLock); |
| 1429 | |
| 1430 | pSynchManager = InternalNew<CPalSynchronizationManager>(); |
| 1431 | if (NULL == pSynchManager) |
| 1432 | { |
| 1433 | ERROR("Failed to allocate memory for Synchronization Manager" ); |
| 1434 | palErr = ERROR_NOT_ENOUGH_MEMORY; |
| 1435 | goto I_exit; |
| 1436 | } |
| 1437 | |
| 1438 | if (!pSynchManager->CreateProcessPipe()) |
| 1439 | { |
| 1440 | ERROR("Unable to create process pipe \n" ); |
| 1441 | palErr = ERROR_OPEN_FAILED; |
| 1442 | goto I_exit; |
| 1443 | } |
| 1444 | |
| 1445 | s_pObjSynchMgr = pSynchManager; |
| 1446 | |
| 1447 | // Initialization was successful |
| 1448 | g_pSynchronizationManager = |
| 1449 | static_cast<IPalSynchronizationManager *>(pSynchManager); |
| 1450 | s_lInitStatus = (LONG)SynchMgrStatusRunning; |
| 1451 | |
| 1452 | I_exit: |
| 1453 | if (NO_ERROR != palErr) |
| 1454 | { |
| 1455 | s_lInitStatus = (LONG)SynchMgrStatusError; |
| 1456 | if (NULL != pSynchManager) |
| 1457 | { |
| 1458 | pSynchManager->ShutdownProcessPipe(); |
| 1459 | } |
| 1460 | |
| 1461 | s_pObjSynchMgr = NULL; |
| 1462 | g_pSynchronizationManager = NULL; |
| 1463 | InternalDelete(pSynchManager); |
| 1464 | } |
| 1465 | |
| 1466 | return palErr; |
| 1467 | } |
| 1468 | |
| 1469 | /*++ |
| 1470 | Method: |
| 1471 | CPalSynchronizationManager::StartWorker |
| 1472 | |
| 1473 | Starts the Synchronization Manager's Worker Thread. |
| 1474 | Private method, it is called only by CPalSynchMgrController. |
| 1475 | --*/ |
| 1476 | PAL_ERROR CPalSynchronizationManager::StartWorker( |
| 1477 | CPalThread * pthrCurrent) |
| 1478 | { |
| 1479 | PAL_ERROR palErr = NO_ERROR; |
| 1480 | CPalSynchronizationManager * pSynchManager = GetInstance(); |
| 1481 | |
| 1482 | if ((NULL == pSynchManager) || ((LONG)SynchMgrStatusRunning != s_lInitStatus)) |
| 1483 | { |
| 1484 | ERROR("Trying to to create worker thread in invalid state\n" ); |
| 1485 | return ERROR_INTERNAL_ERROR; |
| 1486 | } |
| 1487 | |
| 1488 | HANDLE hWorkerThread = NULL; |
| 1489 | palErr = InternalCreateThread(pthrCurrent, |
| 1490 | NULL, |
| 1491 | 0, |
| 1492 | &WorkerThread, |
| 1493 | (PVOID)pSynchManager, |
| 1494 | 0, |
| 1495 | PalWorkerThread, |
| 1496 | &pSynchManager->m_dwWorkerThreadTid, |
| 1497 | &hWorkerThread); |
| 1498 | |
| 1499 | if (NO_ERROR == palErr) |
| 1500 | { |
| 1501 | palErr = InternalGetThreadDataFromHandle(pthrCurrent, |
| 1502 | hWorkerThread, |
| 1503 | 0, |
| 1504 | &pSynchManager->m_pthrWorker, |
| 1505 | &pSynchManager->m_pipoThread); |
| 1506 | if (NO_ERROR != palErr) |
| 1507 | { |
| 1508 | ERROR("Unable to get worker thread data\n" ); |
| 1509 | } |
| 1510 | } |
| 1511 | else |
| 1512 | { |
| 1513 | ERROR("Unable to create worker thread\n" ); |
| 1514 | } |
| 1515 | |
| 1516 | if (NULL != hWorkerThread) |
| 1517 | { |
| 1518 | CloseHandle(hWorkerThread); |
| 1519 | } |
| 1520 | |
| 1521 | return palErr; |
| 1522 | } |
| 1523 | |
| 1524 | /*++ |
| 1525 | Method: |
| 1526 | CPalSynchronizationManager::PrepareForShutdown |
| 1527 | |
| 1528 | This method performs the part of Synchronization Manager's shutdown that |
| 1529 | needs to be carried out when core PAL subsystems are still active. |
| 1530 | Private method, it is called only by CPalSynchMgrController. |
| 1531 | --*/ |
| 1532 | PAL_ERROR CPalSynchronizationManager::PrepareForShutdown() |
| 1533 | { |
| 1534 | PAL_ERROR palErr = NO_ERROR; |
| 1535 | CPalSynchronizationManager * pSynchManager = GetInstance(); |
| 1536 | CPalThread * pthrCurrent = InternalGetCurrentThread(); |
| 1537 | int iRet; |
| 1538 | ThreadNativeWaitData * ptnwdWorkerThreadNativeData; |
| 1539 | struct timespec tsAbsTmo = { 0, 0 }; |
| 1540 | |
| 1541 | LONG lInit = InterlockedCompareExchange(&s_lInitStatus, |
| 1542 | (LONG)SynchMgrStatusShuttingDown, (LONG)SynchMgrStatusRunning); |
| 1543 | |
| 1544 | if ((LONG)SynchMgrStatusRunning != lInit) |
| 1545 | { |
| 1546 | ASSERT("Unexpected initialization status found " |
| 1547 | "in PrepareForShutdown [expected=%d current=%d]\n" , |
| 1548 | SynchMgrStatusRunning, lInit); |
| 1549 | // We intentionally not set s_lInitStatus to SynchMgrStatusError |
| 1550 | // cause this could interfere with a previous thread already |
| 1551 | // executing shutdown |
| 1552 | palErr = ERROR_INTERNAL_ERROR; |
| 1553 | goto PFS_exit; |
| 1554 | } |
| 1555 | |
| 1556 | // Discard process monitoring for process waits |
| 1557 | pSynchManager->DiscardMonitoredProcesses(pthrCurrent); |
| 1558 | |
| 1559 | if (NULL == pSynchManager->m_pipoThread) |
| 1560 | { |
| 1561 | // If m_pipoThread is NULL here, that means that StartWorker has |
| 1562 | // never been called. That may happen if PAL_Initialize fails |
| 1563 | // sometime after having called CreatePalSynchronizationManager, |
| 1564 | // but before calling StartWorker. Nothing else to do here. |
| 1565 | goto PFS_exit; |
| 1566 | } |
| 1567 | |
| 1568 | palErr = pSynchManager->WakeUpLocalWorkerThread(SynchWorkerCmdShutdown); |
| 1569 | if (NO_ERROR != palErr) |
| 1570 | { |
| 1571 | ERROR("Failed stopping worker thread [palErr=%u]\n" , palErr); |
| 1572 | s_lInitStatus = SynchMgrStatusError; |
| 1573 | goto PFS_exit; |
| 1574 | } |
| 1575 | |
| 1576 | ptnwdWorkerThreadNativeData = |
| 1577 | &pSynchManager->m_pthrWorker->synchronizationInfo.m_tnwdNativeData; |
| 1578 | |
| 1579 | palErr = GetAbsoluteTimeout(WorkerThreadTerminationTimeout, &tsAbsTmo, /*fPreferMonotonicClock*/ TRUE); |
| 1580 | if (NO_ERROR != palErr) |
| 1581 | { |
| 1582 | ERROR("Failed to convert timeout to absolute timeout\n" ); |
| 1583 | s_lInitStatus = SynchMgrStatusError; |
| 1584 | goto PFS_exit; |
| 1585 | } |
| 1586 | |
| 1587 | // Using the worker thread's predicate/condition/mutex |
| 1588 | // to wait for worker thread to be done |
| 1589 | iRet = pthread_mutex_lock(&ptnwdWorkerThreadNativeData->mutex); |
| 1590 | if (0 != iRet) |
| 1591 | { |
| 1592 | // pthread calls might fail if the shutdown is called |
| 1593 | // from a signal handler. In this case just don't wait |
| 1594 | // for the worker thread |
| 1595 | ERROR("Cannot lock mutex [err=%d]\n" , iRet); |
| 1596 | palErr = ERROR_INTERNAL_ERROR; |
| 1597 | s_lInitStatus = SynchMgrStatusError; |
| 1598 | goto PFS_exit; |
| 1599 | } |
| 1600 | |
| 1601 | while (FALSE == ptnwdWorkerThreadNativeData->iPred) |
| 1602 | { |
| 1603 | iRet = pthread_cond_timedwait(&ptnwdWorkerThreadNativeData->cond, |
| 1604 | &ptnwdWorkerThreadNativeData->mutex, |
| 1605 | &tsAbsTmo); |
| 1606 | if (0 != iRet) |
| 1607 | { |
| 1608 | if (ETIMEDOUT == iRet) |
| 1609 | { |
| 1610 | WARN("Timed out waiting for worker thread to exit " |
| 1611 | "(tmo=%u ms)\n" , WorkerThreadTerminationTimeout); |
| 1612 | } |
| 1613 | else |
| 1614 | { |
| 1615 | ERROR("pthread_cond_timedwait returned %d [errno=%d (%s)]\n" , |
| 1616 | iRet, errno, strerror(errno)); |
| 1617 | } |
| 1618 | break; |
| 1619 | } |
| 1620 | } |
| 1621 | if (0 == iRet) |
| 1622 | { |
| 1623 | ptnwdWorkerThreadNativeData->iPred = FALSE; |
| 1624 | } |
| 1625 | iRet = pthread_mutex_unlock(&ptnwdWorkerThreadNativeData->mutex); |
| 1626 | if (0 != iRet) |
| 1627 | { |
| 1628 | ERROR("Cannot unlock mutex [err=%d]\n" , iRet); |
| 1629 | palErr = ERROR_INTERNAL_ERROR; |
| 1630 | s_lInitStatus = SynchMgrStatusError; |
| 1631 | goto PFS_exit; |
| 1632 | } |
| 1633 | |
| 1634 | PFS_exit: |
| 1635 | if (NO_ERROR == palErr) |
| 1636 | { |
| 1637 | if (NULL != pSynchManager->m_pipoThread) |
| 1638 | { |
| 1639 | pSynchManager->m_pipoThread->ReleaseReference(pthrCurrent); |
| 1640 | |
| 1641 | // After this release both m_pipoThread and m_pthrWorker |
| 1642 | // are no longer valid |
| 1643 | pSynchManager->m_pipoThread = NULL; |
| 1644 | pSynchManager->m_pthrWorker = NULL; |
| 1645 | } |
| 1646 | |
| 1647 | // Ready for process shutdown |
| 1648 | s_lInitStatus = SynchMgrStatusReadyForProcessShutDown; |
| 1649 | } |
| 1650 | |
| 1651 | return palErr; |
| 1652 | } |
| 1653 | |
| 1654 | // Entry point routine for the thread that initiates process termination. |
| 1655 | DWORD PALAPI TerminationRequestHandlingRoutine(LPVOID pArg) |
| 1656 | { |
| 1657 | // Call the termination request handler if one is registered. |
| 1658 | if (g_terminationRequestHandler != NULL) |
| 1659 | { |
| 1660 | g_terminationRequestHandler(); |
| 1661 | } |
| 1662 | |
| 1663 | return 0; |
| 1664 | } |
| 1665 | |
| 1666 | /*++ |
| 1667 | Method: |
| 1668 | CPalSynchronizationManager::WorkerThread |
| 1669 | |
| 1670 | Synchronization Manager's Worker Thread |
| 1671 | --*/ |
| 1672 | DWORD PALAPI CPalSynchronizationManager::WorkerThread(LPVOID pArg) |
| 1673 | { |
| 1674 | PAL_ERROR palErr; |
| 1675 | bool fShuttingDown = false; |
| 1676 | bool fWorkerIsDone = false; |
| 1677 | int iPollTimeout = INFTIM; |
| 1678 | SynchWorkerCmd swcCmd; |
| 1679 | ThreadWakeupReason twrWakeUpReason; |
| 1680 | SharedID shridMarshaledData; |
| 1681 | DWORD dwData; |
| 1682 | CPalSynchronizationManager * pSynchManager = |
| 1683 | reinterpret_cast<CPalSynchronizationManager*>(pArg); |
| 1684 | CPalThread * pthrWorker = InternalGetCurrentThread(); |
| 1685 | |
| 1686 | while (!fWorkerIsDone) |
| 1687 | { |
| 1688 | LONG lProcessCount; |
| 1689 | |
| 1690 | palErr = pSynchManager->ReadCmdFromProcessPipe(iPollTimeout, |
| 1691 | &swcCmd, |
| 1692 | &shridMarshaledData, |
| 1693 | &dwData); |
| 1694 | if (NO_ERROR != palErr) |
| 1695 | { |
| 1696 | ERROR("Received error %x from ReadCmdFromProcessPipe()\n" , |
| 1697 | palErr); |
| 1698 | continue; |
| 1699 | } |
| 1700 | switch (swcCmd) |
| 1701 | { |
| 1702 | case SynchWorkerCmdTerminationRequest: |
| 1703 | // This worker thread is being asked to initiate process termination |
| 1704 | |
| 1705 | HANDLE hTerminationRequestHandlingThread; |
| 1706 | palErr = InternalCreateThread(pthrWorker, |
| 1707 | NULL, |
| 1708 | 0, |
| 1709 | &TerminationRequestHandlingRoutine, |
| 1710 | NULL, |
| 1711 | 0, |
| 1712 | PalWorkerThread, |
| 1713 | NULL, |
| 1714 | &hTerminationRequestHandlingThread); |
| 1715 | |
| 1716 | if (NO_ERROR != palErr) |
| 1717 | { |
| 1718 | ERROR("Unable to create worker thread\n" ); |
| 1719 | } |
| 1720 | |
| 1721 | if (hTerminationRequestHandlingThread != NULL) |
| 1722 | { |
| 1723 | CloseHandle(hTerminationRequestHandlingThread); |
| 1724 | } |
| 1725 | |
| 1726 | break; |
| 1727 | case SynchWorkerCmdNop: |
| 1728 | TRACE("Synch Worker: received SynchWorkerCmdNop\n" ); |
| 1729 | if (fShuttingDown) |
| 1730 | { |
| 1731 | TRACE("Synch Worker: received a timeout when " |
| 1732 | "fShuttingDown==true: worker is done, bailing " |
| 1733 | "out from the loop\n" ); |
| 1734 | |
| 1735 | // Whether WorkerThreadShuttingDownTimeout has elapsed |
| 1736 | // or the last process with a descriptor opened for |
| 1737 | // write on our process pipe, has just closed it, |
| 1738 | // causing an EOF on the read fd (that can happen only |
| 1739 | // at shutdown time since during normal run time we |
| 1740 | // hold a fd opened for write within this process). |
| 1741 | // In both the case it is time to go for the worker |
| 1742 | // thread. |
| 1743 | fWorkerIsDone = true; |
| 1744 | } |
| 1745 | else |
| 1746 | { |
| 1747 | lProcessCount = pSynchManager->DoMonitorProcesses(pthrWorker); |
| 1748 | if (lProcessCount > 0) |
| 1749 | { |
| 1750 | iPollTimeout = WorkerThreadProcMonitoringTimeout; |
| 1751 | } |
| 1752 | else |
| 1753 | { |
| 1754 | iPollTimeout = INFTIM; |
| 1755 | } |
| 1756 | } |
| 1757 | break; |
| 1758 | case SynchWorkerCmdRemoteSignal: |
| 1759 | { |
| 1760 | // Note: this cannot be a wait all |
| 1761 | WaitingThreadsListNode * pWLNode; |
| 1762 | ThreadWaitInfo * ptwiWaitInfo; |
| 1763 | DWORD dwObjIndex; |
| 1764 | bool fSharedSynchLock = false; |
| 1765 | |
| 1766 | // Lock |
| 1767 | AcquireLocalSynchLock(pthrWorker); |
| 1768 | AcquireSharedSynchLock(pthrWorker); |
| 1769 | fSharedSynchLock = true; |
| 1770 | |
| 1771 | pWLNode = SharedIDToTypePointer(WaitingThreadsListNode, |
| 1772 | shridMarshaledData); |
| 1773 | |
| 1774 | _ASSERT_MSG(NULL != pWLNode, "Received bad Shared ID %p\n" , |
| 1775 | shridMarshaledData); |
| 1776 | _ASSERT_MSG(gPID == pWLNode->dwProcessId, |
| 1777 | "Remote signal apparently sent to the wrong " |
| 1778 | "process [target pid=%u current pid=%u]\n" , |
| 1779 | pWLNode->dwProcessId, gPID); |
| 1780 | _ASSERT_MSG(0 == (WTLN_FLAG_WAIT_ALL & pWLNode->dwFlags), |
| 1781 | "Wait all with remote awakening delegated " |
| 1782 | "through SynchWorkerCmdRemoteSignal rather than " |
| 1783 | "SynchWorkerCmdDelegatedObjectSignaling\n" ); |
| 1784 | |
| 1785 | |
| 1786 | // Get the object index |
| 1787 | dwObjIndex = pWLNode->dwObjIndex; |
| 1788 | |
| 1789 | // Get the WaitInfo |
| 1790 | ptwiWaitInfo = pWLNode->ptwiWaitInfo; |
| 1791 | |
| 1792 | // Initialize the WakeUpReason to WaitSucceeded |
| 1793 | twrWakeUpReason = WaitSucceeded; |
| 1794 | |
| 1795 | CSynchData * psdSynchData = |
| 1796 | SharedIDToTypePointer(CSynchData, |
| 1797 | pWLNode->ptrOwnerObjSynchData.shrid); |
| 1798 | |
| 1799 | TRACE("Synch Worker: received REMOTE SIGNAL cmd " |
| 1800 | "[WInfo=%p {Type=%u Domain=%u ObjCount=%d TgtThread=%x} " |
| 1801 | "SynchData={shriId=%p p=%p} {SigCount=%d IsAbandoned=%d}\n" , |
| 1802 | ptwiWaitInfo, ptwiWaitInfo->wtWaitType, ptwiWaitInfo->wdWaitDomain, |
| 1803 | ptwiWaitInfo->lObjCount, ptwiWaitInfo->pthrOwner->GetThreadId(), |
| 1804 | (VOID *)pWLNode->ptrOwnerObjSynchData.shrid, psdSynchData, |
| 1805 | psdSynchData->GetSignalCount(), psdSynchData->IsAbandoned()); |
| 1806 | |
| 1807 | if (CObjectType::OwnershipTracked == |
| 1808 | psdSynchData->GetObjectType()->GetOwnershipSemantics()) |
| 1809 | { |
| 1810 | // Abandoned status is not propagated through process |
| 1811 | // pipe: need to get it from the object itself before |
| 1812 | // resetting the data by acquiring the object ownership |
| 1813 | if (psdSynchData->IsAbandoned()) |
| 1814 | { |
| 1815 | twrWakeUpReason = MutexAbondoned; |
| 1816 | } |
| 1817 | |
| 1818 | // Acquire ownership |
| 1819 | palErr = psdSynchData->AssignOwnershipToThread( |
| 1820 | pthrWorker, |
| 1821 | ptwiWaitInfo->pthrOwner); |
| 1822 | if (NO_ERROR != palErr) |
| 1823 | { |
| 1824 | ERROR("Synch Worker: AssignOwnershipToThread " |
| 1825 | "failed with error %u; ownership data on " |
| 1826 | "object with SynchData %p may be " |
| 1827 | "corrupted\n" , palErr, psdSynchData); |
| 1828 | } |
| 1829 | } |
| 1830 | |
| 1831 | // Unregister the wait |
| 1832 | pSynchManager->UnRegisterWait(pthrWorker, |
| 1833 | ptwiWaitInfo, |
| 1834 | fSharedSynchLock); |
| 1835 | |
| 1836 | // pWLNode is no longer valid after UnRegisterWait |
| 1837 | pWLNode = NULL; |
| 1838 | |
| 1839 | TRACE("Synch Worker: Waking up local thread %x " |
| 1840 | "{WakeUpReason=%u ObjIndex=%u}\n" , |
| 1841 | ptwiWaitInfo->pthrOwner->GetThreadId(), |
| 1842 | twrWakeUpReason, dwObjIndex); |
| 1843 | |
| 1844 | // Wake up the target thread |
| 1845 | palErr = WakeUpLocalThread( |
| 1846 | pthrWorker, |
| 1847 | ptwiWaitInfo->pthrOwner, |
| 1848 | twrWakeUpReason, |
| 1849 | dwObjIndex); |
| 1850 | if (NO_ERROR != palErr) |
| 1851 | { |
| 1852 | ERROR("Synch Worker: Failed to wake up local thread " |
| 1853 | "%#x while propagating remote signaling: " |
| 1854 | "object signaling may be lost\n" , |
| 1855 | ptwiWaitInfo->pthrOwner->GetThreadId()); |
| 1856 | } |
| 1857 | |
| 1858 | // Unlock |
| 1859 | ReleaseSharedSynchLock(pthrWorker); |
| 1860 | fSharedSynchLock = false; |
| 1861 | ReleaseLocalSynchLock(pthrWorker); |
| 1862 | |
| 1863 | break; |
| 1864 | } |
| 1865 | case SynchWorkerCmdDelegatedObjectSignaling: |
| 1866 | { |
| 1867 | CSynchData * psdSynchData; |
| 1868 | |
| 1869 | TRACE("Synch Worker: received " |
| 1870 | "SynchWorkerCmdDelegatedObjectSignaling\n" ); |
| 1871 | |
| 1872 | psdSynchData = SharedIDToTypePointer(CSynchData, |
| 1873 | shridMarshaledData); |
| 1874 | |
| 1875 | _ASSERT_MSG(NULL != psdSynchData, "Received bad Shared ID %p\n" , |
| 1876 | shridMarshaledData); |
| 1877 | _ASSERT_MSG(0 < dwData && (DWORD)INT_MAX > dwData, |
| 1878 | "Received remote signaling with invalid signal " |
| 1879 | "count\n" ); |
| 1880 | |
| 1881 | // Lock |
| 1882 | AcquireLocalSynchLock(pthrWorker); |
| 1883 | AcquireSharedSynchLock(pthrWorker); |
| 1884 | |
| 1885 | TRACE("Synch Worker: received DELEGATED OBJECT SIGNALING " |
| 1886 | "cmd [SynchData={shriId=%p p=%p} SigCount=%u] [Current obj SigCount=%d " |
| 1887 | "IsAbandoned=%d]\n" , (VOID *)shridMarshaledData, |
| 1888 | psdSynchData, dwData, psdSynchData->GetSignalCount(), |
| 1889 | psdSynchData->IsAbandoned()); |
| 1890 | |
| 1891 | psdSynchData->Signal(pthrWorker, |
| 1892 | psdSynchData->GetSignalCount() + dwData, |
| 1893 | true); |
| 1894 | |
| 1895 | // Current SynchData has been AddRef'd by remote process in |
| 1896 | // order to be marshaled to the current one, therefore at |
| 1897 | // this point we need to release it |
| 1898 | psdSynchData->Release(pthrWorker); |
| 1899 | |
| 1900 | // Unlock |
| 1901 | ReleaseSharedSynchLock(pthrWorker); |
| 1902 | ReleaseLocalSynchLock(pthrWorker); |
| 1903 | |
| 1904 | break; |
| 1905 | } |
| 1906 | case SynchWorkerCmdShutdown: |
| 1907 | TRACE("Synch Worker: received SynchWorkerCmdShutdown\n" ); |
| 1908 | |
| 1909 | // Shutdown the process pipe: this will cause the process |
| 1910 | // pipe to be unlinked and its write-only file descriptor |
| 1911 | // to be closed, so that when the last fd opened for write |
| 1912 | // on the fifo (from another process) will be closed, we |
| 1913 | // will receive an EOF on the read end (i.e. poll in |
| 1914 | // ReadBytesFromProcessPipe will return 1 with no data to |
| 1915 | // be read). That will allow the worker thread to process |
| 1916 | // possible commands already successfully written to the |
| 1917 | // pipe by some other process, before shutting down. |
| 1918 | pSynchManager->ShutdownProcessPipe(); |
| 1919 | |
| 1920 | // Shutting down: this will cause the worker thread to |
| 1921 | // fetch residual cmds from the process pipe until an |
| 1922 | // EOF is converted to a SynchWorkerCmdNop or the |
| 1923 | // WorkerThreadShuttingDownTimeout has elapsed without |
| 1924 | // receiving any cmd. |
| 1925 | fShuttingDown = true; |
| 1926 | |
| 1927 | // Set the timeout to WorkerThreadShuttingDownTimeout |
| 1928 | iPollTimeout = WorkerThreadShuttingDownTimeout; |
| 1929 | break; |
| 1930 | default: |
| 1931 | ASSERT("Synch Worker: Unknown worker cmd [swcWorkerCmd=%d]\n" , |
| 1932 | swcCmd); |
| 1933 | break; |
| 1934 | } |
| 1935 | } |
| 1936 | |
| 1937 | int iRet; |
| 1938 | ThreadNativeWaitData * ptnwdWorkerThreadNativeData = |
| 1939 | &pthrWorker->synchronizationInfo.m_tnwdNativeData; |
| 1940 | |
| 1941 | // Using the worker thread's predicate/condition/mutex |
| 1942 | // (that normally are never used) to signal the shutting |
| 1943 | // down thread that the worker thread is done |
| 1944 | iRet = pthread_mutex_lock(&ptnwdWorkerThreadNativeData->mutex); |
| 1945 | _ASSERT_MSG(0 == iRet, "Cannot lock mutex [err=%d]\n" , iRet); |
| 1946 | |
| 1947 | ptnwdWorkerThreadNativeData->iPred = TRUE; |
| 1948 | |
| 1949 | iRet = pthread_cond_signal(&ptnwdWorkerThreadNativeData->cond); |
| 1950 | if (0 != iRet) |
| 1951 | { |
| 1952 | ERROR ("pthread_cond_signal returned %d [errno=%d (%s)]\n" , |
| 1953 | iRet, errno, strerror(errno)); |
| 1954 | } |
| 1955 | |
| 1956 | iRet = pthread_mutex_unlock(&ptnwdWorkerThreadNativeData->mutex); |
| 1957 | _ASSERT_MSG(0 == iRet, "Cannot lock mutex [err=%d]\n" , iRet); |
| 1958 | |
| 1959 | // Sleep forever |
| 1960 | ThreadPrepareForShutdown(); |
| 1961 | |
| 1962 | return 0; |
| 1963 | } |
| 1964 | |
| 1965 | /*++ |
| 1966 | Method: |
| 1967 | CPalSynchronizationManager::ReadCmdFromProcessPipe |
| 1968 | |
| 1969 | Reads a worker thread cmd from the process pipe. If there is no data |
| 1970 | to be read on the pipe, it blocks until there is data available or the |
| 1971 | timeout expires. |
| 1972 | --*/ |
| 1973 | PAL_ERROR CPalSynchronizationManager::ReadCmdFromProcessPipe( |
| 1974 | int iPollTimeout, |
| 1975 | SynchWorkerCmd * pswcWorkerCmd, |
| 1976 | SharedID * pshridMarshaledData, |
| 1977 | DWORD * pdwData) |
| 1978 | { |
| 1979 | int iRet; |
| 1980 | BYTE byVal; |
| 1981 | SynchWorkerCmd swcWorkerCmd = SynchWorkerCmdNop; |
| 1982 | |
| 1983 | _ASSERTE(NULL != pswcWorkerCmd); |
| 1984 | _ASSERTE(NULL != pshridMarshaledData); |
| 1985 | _ASSERTE(NULL != pdwData); |
| 1986 | |
| 1987 | iRet = ReadBytesFromProcessPipe(iPollTimeout, &byVal, sizeof(BYTE)); |
| 1988 | |
| 1989 | if (0 > iRet) |
| 1990 | { |
| 1991 | ERROR("Failed polling the process pipe [ret=%d errno=%d (%s)]\n" , |
| 1992 | iRet, errno, strerror(errno)); |
| 1993 | |
| 1994 | return ERROR_INTERNAL_ERROR; |
| 1995 | } |
| 1996 | |
| 1997 | if (iRet != 0) |
| 1998 | { |
| 1999 | _ASSERT_MSG(sizeof(BYTE) == iRet, |
| 2000 | "Got %d bytes from process pipe while expecting for %d\n" , |
| 2001 | iRet, sizeof(BYTE)); |
| 2002 | |
| 2003 | swcWorkerCmd = (SynchWorkerCmd)byVal; |
| 2004 | |
| 2005 | if (SynchWorkerCmdLast <= swcWorkerCmd) |
| 2006 | { |
| 2007 | ERROR("Got unknown worker command code %d from the process " |
| 2008 | "pipe!\n" , swcWorkerCmd); |
| 2009 | |
| 2010 | return ERROR_INTERNAL_ERROR; |
| 2011 | } |
| 2012 | |
| 2013 | _ASSERT_MSG(SynchWorkerCmdNop == swcWorkerCmd || |
| 2014 | SynchWorkerCmdRemoteSignal == swcWorkerCmd || |
| 2015 | SynchWorkerCmdDelegatedObjectSignaling == swcWorkerCmd || |
| 2016 | SynchWorkerCmdShutdown == swcWorkerCmd || |
| 2017 | SynchWorkerCmdTerminationRequest == swcWorkerCmd, |
| 2018 | "Unknown worker command code %u\n" , swcWorkerCmd); |
| 2019 | |
| 2020 | TRACE("Got cmd %u from process pipe\n" , swcWorkerCmd); |
| 2021 | } |
| 2022 | |
| 2023 | if (SynchWorkerCmdRemoteSignal == swcWorkerCmd || |
| 2024 | SynchWorkerCmdDelegatedObjectSignaling == swcWorkerCmd) |
| 2025 | { |
| 2026 | SharedID shridMarshaledId = NULL; |
| 2027 | |
| 2028 | TRACE("Received %s cmd\n" , |
| 2029 | (swcWorkerCmd == SynchWorkerCmdRemoteSignal) ? |
| 2030 | "REMOTE SIGNAL" : "DELEGATED OBJECT SIGNALING" ); |
| 2031 | |
| 2032 | iRet = ReadBytesFromProcessPipe(WorkerCmdCompletionTimeout, |
| 2033 | (BYTE *)&shridMarshaledId, |
| 2034 | sizeof(shridMarshaledId)); |
| 2035 | if (sizeof(shridMarshaledId) != iRet) |
| 2036 | { |
| 2037 | ERROR("Unable to read marshaled Shared ID from the " |
| 2038 | "process pipe [pipe=%d ret=%d errno=%d (%s)]\n" , |
| 2039 | m_iProcessPipeRead, iRet, errno, strerror(errno)); |
| 2040 | |
| 2041 | return ERROR_INTERNAL_ERROR; |
| 2042 | } |
| 2043 | |
| 2044 | TRACE("Received marshaled shrid=%p\n" , (VOID *)shridMarshaledId); |
| 2045 | |
| 2046 | *pshridMarshaledData = shridMarshaledId; |
| 2047 | } |
| 2048 | |
| 2049 | if (SynchWorkerCmdDelegatedObjectSignaling == swcWorkerCmd) |
| 2050 | { |
| 2051 | DWORD dwData; |
| 2052 | |
| 2053 | iRet = ReadBytesFromProcessPipe(WorkerCmdCompletionTimeout, |
| 2054 | (BYTE *)&dwData, |
| 2055 | sizeof(dwData)); |
| 2056 | if (sizeof(dwData) != iRet) |
| 2057 | { |
| 2058 | ERROR("Unable to read signal count from the " |
| 2059 | "process pipe [pipe=%d ret=%d errno=%d (%s)]\n" , |
| 2060 | m_iProcessPipeRead, iRet, errno, strerror(errno)); |
| 2061 | |
| 2062 | return ERROR_INTERNAL_ERROR; |
| 2063 | } |
| 2064 | |
| 2065 | TRACE("Received signal count %u\n" , dwData); |
| 2066 | |
| 2067 | *pdwData = dwData; |
| 2068 | } |
| 2069 | |
| 2070 | *pswcWorkerCmd = swcWorkerCmd; |
| 2071 | return NO_ERROR; |
| 2072 | } |
| 2073 | |
| 2074 | /*++ |
| 2075 | Method: |
| 2076 | CPalSynchronizationManager::ReadBytesFromProcessPipe |
| 2077 | |
| 2078 | Reads the specified number of bytes from the process pipe. If there is |
| 2079 | no data to be read on the pipe, it blocks until there is data available |
| 2080 | or the timeout expires. |
| 2081 | --*/ |
| 2082 | int CPalSynchronizationManager::ReadBytesFromProcessPipe( |
| 2083 | int iTimeout, |
| 2084 | BYTE * pRecvBuf, |
| 2085 | LONG iBytes) |
| 2086 | { |
| 2087 | #if !HAVE_KQUEUE |
| 2088 | struct pollfd Poll; |
| 2089 | #endif // !HAVE_KQUEUE |
| 2090 | int iRet = -1; |
| 2091 | int iConsecutiveEintrs = 0; |
| 2092 | LONG iBytesRead = 0; |
| 2093 | BYTE * pPos = pRecvBuf; |
| 2094 | #if HAVE_KQUEUE && !HAVE_BROKEN_FIFO_KEVENT |
| 2095 | struct kevent keChanges; |
| 2096 | struct timespec ts, *pts; |
| 2097 | int iNChanges; |
| 2098 | #endif // HAVE_KQUEUE |
| 2099 | |
| 2100 | _ASSERTE(0 <= iBytes); |
| 2101 | |
| 2102 | do |
| 2103 | { |
| 2104 | while (TRUE) |
| 2105 | { |
| 2106 | int iErrno = 0; |
| 2107 | #if HAVE_KQUEUE |
| 2108 | #if HAVE_BROKEN_FIFO_KEVENT |
| 2109 | #if HAVE_BROKEN_FIFO_SELECT |
| 2110 | #error Found no way to wait on a FIFO. |
| 2111 | #endif |
| 2112 | |
| 2113 | timeval *ptv; |
| 2114 | timeval tv; |
| 2115 | |
| 2116 | if (INFTIM == iTimeout) |
| 2117 | { |
| 2118 | ptv = NULL; |
| 2119 | } |
| 2120 | else |
| 2121 | { |
| 2122 | tv.tv_usec = (iTimeout % tccSecondsToMillieSeconds) * |
| 2123 | tccMillieSecondsToMicroSeconds; |
| 2124 | tv.tv_sec = iTimeout / tccSecondsToMillieSeconds; |
| 2125 | ptv = &tv; |
| 2126 | } |
| 2127 | |
| 2128 | fd_set readfds; |
| 2129 | FD_ZERO(&readfds); |
| 2130 | FD_SET(m_iProcessPipeRead, &readfds); |
| 2131 | iRet = select(m_iProcessPipeRead + 1, &readfds, NULL, NULL, ptv); |
| 2132 | |
| 2133 | #else // HAVE_BROKEN_FIFO_KEVENT |
| 2134 | |
| 2135 | // Note: FreeBSD needs to use kqueue/kevent support here, since on this |
| 2136 | // platform the EOF notification on FIFOs is not surfaced through poll, |
| 2137 | // and process pipe shutdown relies on this feature. |
| 2138 | // If a thread is polling a FIFO or a pipe for POLLIN, when the last |
| 2139 | // write descriptor for that pipe is closed, poll() is supposed to |
| 2140 | // return with a POLLIN event but no data to be read on the FIFO/pipe, |
| 2141 | // which means EOF. |
| 2142 | // On FreeBSD such feature works for pipes but it doesn't for FIFOs. |
| 2143 | // Using kevent the EOF is instead surfaced correctly. |
| 2144 | |
| 2145 | if (iBytes > m_keProcessPipeEvent.data) |
| 2146 | { |
| 2147 | if (INFTIM == iTimeout) |
| 2148 | { |
| 2149 | pts = NULL; |
| 2150 | } |
| 2151 | else |
| 2152 | { |
| 2153 | ts.tv_nsec = (iTimeout % tccSecondsToMillieSeconds) * |
| 2154 | tccMillieSecondsToNanoSeconds; |
| 2155 | ts.tv_sec = iTimeout / tccSecondsToMillieSeconds; |
| 2156 | pts = &ts; |
| 2157 | } |
| 2158 | |
| 2159 | if (0 != (EV_EOF & m_keProcessPipeEvent.flags)) |
| 2160 | { |
| 2161 | TRACE("Refreshing kevent settings\n" ); |
| 2162 | EV_SET(&keChanges, m_iProcessPipeRead, EVFILT_READ, |
| 2163 | EV_ADD | EV_CLEAR, 0, 0, 0); |
| 2164 | iNChanges = 1; |
| 2165 | } |
| 2166 | else |
| 2167 | { |
| 2168 | iNChanges = 0; |
| 2169 | } |
| 2170 | |
| 2171 | iRet = kevent(m_iKQueue, &keChanges, iNChanges, |
| 2172 | &m_keProcessPipeEvent, 1, pts); |
| 2173 | |
| 2174 | if (0 < iRet) |
| 2175 | { |
| 2176 | _ASSERTE(1 == iRet); |
| 2177 | _ASSERTE(EVFILT_READ == m_keProcessPipeEvent.filter); |
| 2178 | |
| 2179 | if (EV_ERROR & m_keProcessPipeEvent.flags) |
| 2180 | { |
| 2181 | ERROR("EV_ERROR from kevent [ident=%d filter=%d flags=%x]\n" , m_keProcessPipeEvent.ident, m_keProcessPipeEvent.filter, m_keProcessPipeEvent.flags); |
| 2182 | iRet = -1; |
| 2183 | iErrno = m_keProcessPipeEvent.data; |
| 2184 | m_keProcessPipeEvent.data = 0; |
| 2185 | } |
| 2186 | } |
| 2187 | else if (0 > iRet) |
| 2188 | { |
| 2189 | iErrno = errno; |
| 2190 | } |
| 2191 | |
| 2192 | TRACE("Woken up from kevent() with ret=%d flags=%#x data=%d " |
| 2193 | "[iTimeout=%d]\n" , iRet, m_keProcessPipeEvent.flags, |
| 2194 | m_keProcessPipeEvent.data, iTimeout); |
| 2195 | } |
| 2196 | else |
| 2197 | { |
| 2198 | // There is enough data already available in the buffer, just use that. |
| 2199 | iRet = 1; |
| 2200 | } |
| 2201 | |
| 2202 | #endif // HAVE_BROKEN_FIFO_KEVENT |
| 2203 | #else // HAVE_KQUEUE |
| 2204 | |
| 2205 | Poll.fd = m_iProcessPipeRead; |
| 2206 | Poll.events = POLLIN; |
| 2207 | Poll.revents = 0; |
| 2208 | |
| 2209 | iRet = poll(&Poll, 1, iTimeout); |
| 2210 | |
| 2211 | TRACE("Woken up from poll() with ret=%d [iTimeout=%d]\n" , |
| 2212 | iRet, iTimeout); |
| 2213 | |
| 2214 | if (1 == iRet && |
| 2215 | ((POLLERR | POLLHUP | POLLNVAL) & Poll.revents)) |
| 2216 | { |
| 2217 | // During PAL shutdown the pipe gets closed and Poll.revents is set to POLLHUP |
| 2218 | // (note: no other flags are set). We will also receive an EOF on from the read call. |
| 2219 | // Please see the comment for SynchWorkerCmdShutdown in CPalSynchronizationManager::WorkerThread. |
| 2220 | if (!PALIsShuttingDown() || (Poll.revents != POLLHUP)) |
| 2221 | { |
| 2222 | ERROR("Unexpected revents=%x while polling pipe %d\n" , |
| 2223 | Poll.revents, Poll.fd); |
| 2224 | iErrno = EINVAL; |
| 2225 | iRet = -1; |
| 2226 | } |
| 2227 | } |
| 2228 | else if (0 > iRet) |
| 2229 | { |
| 2230 | iErrno = errno; |
| 2231 | } |
| 2232 | |
| 2233 | #endif // HAVE_KQUEUE |
| 2234 | |
| 2235 | if (0 == iRet || 1 == iRet) |
| 2236 | { |
| 2237 | // 0 == wait timed out |
| 2238 | // 1 == FIFO has data available |
| 2239 | break; |
| 2240 | } |
| 2241 | else |
| 2242 | { |
| 2243 | if (1 < iRet) |
| 2244 | { |
| 2245 | // Unexpected iRet > 1 |
| 2246 | ASSERT("Unexpected return code %d from blocking poll/kevent call\n" , |
| 2247 | iRet); |
| 2248 | goto RBFPP_exit; |
| 2249 | } |
| 2250 | |
| 2251 | if (EINTR != iErrno) |
| 2252 | { |
| 2253 | // Unexpected error |
| 2254 | ASSERT("Unexpected error from blocking poll/kevent call: %d (%s)\n" , |
| 2255 | iErrno, strerror(iErrno)); |
| 2256 | goto RBFPP_exit; |
| 2257 | } |
| 2258 | |
| 2259 | iConsecutiveEintrs++; |
| 2260 | TRACE("poll() failed with EINTR; re-polling\n" ); |
| 2261 | |
| 2262 | if (iConsecutiveEintrs >= MaxWorkerConsecutiveEintrs) |
| 2263 | { |
| 2264 | if (iTimeout != INFTIM) |
| 2265 | { |
| 2266 | WARN("Receiving too many EINTRs; converting one of them " |
| 2267 | "to a timeout" ); |
| 2268 | iRet = 0; |
| 2269 | break; |
| 2270 | } |
| 2271 | else if (0 == (iConsecutiveEintrs % MaxWorkerConsecutiveEintrs)) |
| 2272 | { |
| 2273 | WARN("Receiving too many EINTRs [%d so far]" , |
| 2274 | iConsecutiveEintrs); |
| 2275 | } |
| 2276 | } |
| 2277 | } |
| 2278 | } |
| 2279 | |
| 2280 | if (0 == iRet) |
| 2281 | { |
| 2282 | // Time out |
| 2283 | break; |
| 2284 | } |
| 2285 | else |
| 2286 | { |
| 2287 | #if HAVE_KQUEUE && !HAVE_BROKEN_FIFO_KEVENT |
| 2288 | if (0 != (EV_EOF & m_keProcessPipeEvent.flags) && 0 == m_keProcessPipeEvent.data) |
| 2289 | { |
| 2290 | // EOF |
| 2291 | TRACE("Received an EOF on process pipe via kevent\n" ); |
| 2292 | goto RBFPP_exit; |
| 2293 | } |
| 2294 | #endif // HAVE_KQUEUE |
| 2295 | |
| 2296 | iRet = read(m_iProcessPipeRead, pPos, iBytes - iBytesRead); |
| 2297 | |
| 2298 | if (0 == iRet) |
| 2299 | { |
| 2300 | // Poll returned 1 and read returned zero: this is an EOF, |
| 2301 | // i.e. no other process has the pipe still open for write |
| 2302 | TRACE("Received an EOF on process pipe via poll\n" ); |
| 2303 | goto RBFPP_exit; |
| 2304 | } |
| 2305 | else if (0 > iRet) |
| 2306 | { |
| 2307 | ERROR("Unable to read %d bytes from the the process pipe " |
| 2308 | "[pipe=%d ret=%d errno=%d (%s)]\n" , iBytes - iBytesRead, |
| 2309 | m_iProcessPipeRead, iRet, errno, strerror(errno)); |
| 2310 | goto RBFPP_exit; |
| 2311 | } |
| 2312 | |
| 2313 | TRACE("Read %d bytes from process pipe\n" , iRet); |
| 2314 | |
| 2315 | iBytesRead += iRet; |
| 2316 | pPos += iRet; |
| 2317 | |
| 2318 | #if HAVE_KQUEUE && !HAVE_BROKEN_FIFO_KEVENT |
| 2319 | // Update available data count |
| 2320 | m_keProcessPipeEvent.data -= iRet; |
| 2321 | _ASSERTE(0 <= m_keProcessPipeEvent.data); |
| 2322 | #endif // HAVE_KQUEUE |
| 2323 | } |
| 2324 | } while(iBytesRead < iBytes); |
| 2325 | |
| 2326 | RBFPP_exit: |
| 2327 | return (iRet < 0) ? iRet : iBytesRead; |
| 2328 | } |
| 2329 | |
| 2330 | /*++ |
| 2331 | Method: |
| 2332 | CPalSynchronizationManager::WakeUpLocalThread |
| 2333 | |
| 2334 | Wakes up a local thead currently sleeping for a wait or a sleep |
| 2335 | --*/ |
| 2336 | PAL_ERROR CPalSynchronizationManager::WakeUpLocalThread( |
| 2337 | CPalThread * pthrCurrent, |
| 2338 | CPalThread * pthrTarget, |
| 2339 | ThreadWakeupReason twrWakeupReason, |
| 2340 | DWORD dwObjectIndex) |
| 2341 | { |
| 2342 | PAL_ERROR palErr = NO_ERROR; |
| 2343 | ThreadNativeWaitData * ptnwdNativeWaitData = |
| 2344 | pthrTarget->synchronizationInfo.GetNativeData(); |
| 2345 | |
| 2346 | TRACE("Waking up a local thread [WakeUpReason=%u ObjectIndex=%u " |
| 2347 | "ptnwdNativeWaitData=%p]\n" , twrWakeupReason, dwObjectIndex, |
| 2348 | ptnwdNativeWaitData); |
| 2349 | |
| 2350 | // Set wakeup reason and signaled object index |
| 2351 | ptnwdNativeWaitData->twrWakeupReason = twrWakeupReason; |
| 2352 | ptnwdNativeWaitData->dwObjectIndex = dwObjectIndex; |
| 2353 | |
| 2354 | #if SYNCHMGR_SUSPENSION_SAFE_CONDITION_SIGNALING |
| 2355 | if (0 < GetLocalSynchLockCount(pthrCurrent)) |
| 2356 | { |
| 2357 | // Defer the actual thread signaling to right after |
| 2358 | // releasing the synch lock(s), so that signaling |
| 2359 | // can happen from a thread-suspension safe area |
| 2360 | palErr = DeferThreadConditionSignaling(pthrCurrent, pthrTarget); |
| 2361 | } |
| 2362 | else |
| 2363 | { |
| 2364 | // Signal the target thread's condition |
| 2365 | palErr = SignalThreadCondition(ptnwdNativeWaitData); |
| 2366 | } |
| 2367 | #else // SYNCHMGR_SUSPENSION_SAFE_CONDITION_SIGNALING |
| 2368 | // Signal the target thread's condition |
| 2369 | palErr = SignalThreadCondition(ptnwdNativeWaitData); |
| 2370 | #endif // SYNCHMGR_SUSPENSION_SAFE_CONDITION_SIGNALING |
| 2371 | |
| 2372 | return palErr; |
| 2373 | } |
| 2374 | |
| 2375 | #if SYNCHMGR_SUSPENSION_SAFE_CONDITION_SIGNALING |
| 2376 | /*++ |
| 2377 | Method: |
| 2378 | CPalSynchronizationManager::DeferThreadConditionSignaling |
| 2379 | |
| 2380 | Defers thread signaling to the final release of synchronization |
| 2381 | lock(s), so that condition signaling can happen when the signaling |
| 2382 | thread is marked as safe for thread suspension. |
| 2383 | --*/ |
| 2384 | PAL_ERROR CPalSynchronizationManager::DeferThreadConditionSignaling( |
| 2385 | CPalThread * pthrCurrent, |
| 2386 | CPalThread * pthrTarget) |
| 2387 | { |
| 2388 | PAL_ERROR palErr = NO_ERROR; |
| 2389 | LONG lCount = pthrCurrent->synchronizationInfo.m_lPendingSignalingCount; |
| 2390 | |
| 2391 | _ASSERTE(pthrTarget != pthrCurrent); |
| 2392 | |
| 2393 | if (CThreadSynchronizationInfo::PendingSignalingsArraySize > lCount) |
| 2394 | { |
| 2395 | // If there is available room, add the target thread object to |
| 2396 | // the array of pending thread signalings. |
| 2397 | pthrCurrent->synchronizationInfo.m_rgpthrPendingSignalings[lCount] = pthrTarget; |
| 2398 | } |
| 2399 | else |
| 2400 | { |
| 2401 | // If the array is full, add the target thread object at the end |
| 2402 | // of the overflow list |
| 2403 | DeferredSignalingListNode * pdsln = |
| 2404 | InternalNew<DeferredSignalingListNode>(); |
| 2405 | |
| 2406 | if (pdsln) |
| 2407 | { |
| 2408 | pdsln->pthrTarget = pthrTarget; |
| 2409 | |
| 2410 | // Add the note to the end of the list. |
| 2411 | // Note: no need to synchronize the access to this list since |
| 2412 | // it is meant to be accessed only by the owner thread. |
| 2413 | InsertTailList(&pthrCurrent->synchronizationInfo.m_lePendingSignalingsOverflowList, |
| 2414 | &pdsln->Link); |
| 2415 | } |
| 2416 | else |
| 2417 | { |
| 2418 | palErr = ERROR_NOT_ENOUGH_MEMORY; |
| 2419 | } |
| 2420 | } |
| 2421 | |
| 2422 | if (NO_ERROR == palErr) |
| 2423 | { |
| 2424 | // Increment the count of pending signalings |
| 2425 | pthrCurrent->synchronizationInfo.m_lPendingSignalingCount += 1; |
| 2426 | |
| 2427 | // Add a reference to the target CPalThread object; this is |
| 2428 | // needed since deferring signaling after releasing the synch |
| 2429 | // locks implies accessing the target thread object without |
| 2430 | // holding the local synch lock. In rare circumstances, the |
| 2431 | // target thread may have already exited while deferred signaling |
| 2432 | // takes place, therefore invalidating the thread object. The |
| 2433 | // reference added here ensures that the thread object is still |
| 2434 | // good, even if the target thread has exited. |
| 2435 | pthrTarget->AddThreadReference(); |
| 2436 | } |
| 2437 | |
| 2438 | return palErr; |
| 2439 | } |
| 2440 | #endif // SYNCHMGR_SUSPENSION_SAFE_CONDITION_SIGNALING |
| 2441 | |
| 2442 | /*++ |
| 2443 | Method: |
| 2444 | CPalSynchronizationManager::SignalThreadCondition |
| 2445 | |
| 2446 | Performs the actual condition signaling in to wake up the target thread |
| 2447 | --*/ |
| 2448 | PAL_ERROR CPalSynchronizationManager::SignalThreadCondition( |
| 2449 | ThreadNativeWaitData * ptnwdNativeWaitData) |
| 2450 | { |
| 2451 | PAL_ERROR palErr = NO_ERROR; |
| 2452 | int iRet; |
| 2453 | |
| 2454 | // Lock the mutex |
| 2455 | iRet = pthread_mutex_lock(&ptnwdNativeWaitData->mutex); |
| 2456 | if (0 != iRet) |
| 2457 | { |
| 2458 | ERROR("Cannot lock mutex [err=%d]\n" , iRet); |
| 2459 | return ERROR_INTERNAL_ERROR; |
| 2460 | } |
| 2461 | |
| 2462 | // Set the predicate |
| 2463 | ptnwdNativeWaitData->iPred = TRUE; |
| 2464 | |
| 2465 | // Signal the condition |
| 2466 | iRet = pthread_cond_signal(&ptnwdNativeWaitData->cond); |
| 2467 | if (0 != iRet) |
| 2468 | { |
| 2469 | ERROR("Failed to signal condition: pthread_cond_signal " |
| 2470 | "returned %d [errno=%d (%s)]\n" , iRet, errno, |
| 2471 | strerror(errno)); |
| 2472 | palErr = ERROR_INTERNAL_ERROR; |
| 2473 | // Continue in order to unlock the mutex anyway |
| 2474 | } |
| 2475 | |
| 2476 | // Unlock the mutex |
| 2477 | iRet = pthread_mutex_unlock(&ptnwdNativeWaitData->mutex); |
| 2478 | if (0 != iRet) |
| 2479 | { |
| 2480 | ERROR("Cannot unlock mutex [err=%d]\n" , iRet); |
| 2481 | return ERROR_INTERNAL_ERROR; |
| 2482 | } |
| 2483 | |
| 2484 | return palErr; |
| 2485 | } |
| 2486 | |
| 2487 | /*++ |
| 2488 | Method: |
| 2489 | CPalSynchronizationManager::ReadBytesFromProcessPipe |
| 2490 | |
| 2491 | Wakes up a remote thead currently sleeping for a wait or a sleep |
| 2492 | by sending the appropriate cmd to the remote process' worker |
| 2493 | thread, which will take care to convert this command into a |
| 2494 | WakeUpLocalThread in the remote process |
| 2495 | --*/ |
| 2496 | PAL_ERROR CPalSynchronizationManager::WakeUpRemoteThread( |
| 2497 | SharedID shridWLNode) |
| 2498 | { |
| 2499 | const int MsgSize = sizeof(BYTE) + sizeof(SharedID); |
| 2500 | PAL_ERROR palErr = NO_ERROR; |
| 2501 | BYTE rgSendBuf[MsgSize]; |
| 2502 | BYTE * pbySrc, * pbyDst = rgSendBuf; |
| 2503 | WaitingThreadsListNode * pWLNode = SharedIDToTypePointer(WaitingThreadsListNode, shridWLNode); |
| 2504 | |
| 2505 | _ASSERT_MSG(gPID != pWLNode->dwProcessId, "WakeUpRemoteThread called on local thread\n" ); |
| 2506 | _ASSERT_MSG(NULL != shridWLNode, "NULL shared identifier\n" ); |
| 2507 | _ASSERT_MSG(NULL != pWLNode, "Bad shared wait list node identifier (%p)\n" , (VOID*)shridWLNode); |
| 2508 | _ASSERT_MSG(MsgSize <= PIPE_BUF, "Message too long [MsgSize=%d PIPE_BUF=%d]\n" , MsgSize, (int)PIPE_BUF); |
| 2509 | |
| 2510 | TRACE("Waking up remote thread {pid=%x, tid=%x} by sending cmd=%u and shridWLNode=%p over process pipe\n" , |
| 2511 | pWLNode->dwProcessId, pWLNode->dwThreadId, SynchWorkerCmdRemoteSignal, (VOID *)shridWLNode); |
| 2512 | |
| 2513 | // Prepare the message |
| 2514 | // Cmd |
| 2515 | *pbyDst++ = (BYTE)(SynchWorkerCmdRemoteSignal & 0xFF); |
| 2516 | |
| 2517 | // WaitingThreadsListNode (not aligned, copy byte by byte) |
| 2518 | pbySrc = (BYTE *)&shridWLNode; |
| 2519 | for (int i = 0; i < (int)sizeof(SharedID); i++) |
| 2520 | { |
| 2521 | *pbyDst++ = *pbySrc++; |
| 2522 | } |
| 2523 | |
| 2524 | _ASSERT_MSG(pbyDst <= rgSendBuf + MsgSize + 1, "Buffer overrun" ); |
| 2525 | |
| 2526 | // Send the message |
| 2527 | palErr = SendMsgToRemoteWorker(pWLNode->dwProcessId, rgSendBuf, MsgSize); |
| 2528 | if (NO_ERROR != palErr) |
| 2529 | { |
| 2530 | ERROR("Failed sending message to remote worker in process %u\n" , pWLNode->dwProcessId); |
| 2531 | } |
| 2532 | |
| 2533 | return palErr; |
| 2534 | } |
| 2535 | |
| 2536 | /*++ |
| 2537 | Method: |
| 2538 | CPalSynchronizationManager::DelegateSignalingToRemoteProcess |
| 2539 | |
| 2540 | This method transfers an object signaling operation to a remote process, |
| 2541 | where it will be performed by the worker thread. Such delegation takes |
| 2542 | place when the currently processed thread (among those waiting on the |
| 2543 | signald object) lives in a different process as the signaling thread, |
| 2544 | and it is performing a wait all. In this case generally is not possible |
| 2545 | to find out whether or not the wait all is satisfied, therefore the |
| 2546 | signaling operation must be continued in the target process. |
| 2547 | --*/ |
| 2548 | PAL_ERROR CPalSynchronizationManager::DelegateSignalingToRemoteProcess( |
| 2549 | CPalThread * pthrCurrent, |
| 2550 | DWORD dwTargetProcessId, |
| 2551 | SharedID shridSynchData) |
| 2552 | { |
| 2553 | const int MsgSize = sizeof(BYTE) + sizeof(SharedID) + sizeof(DWORD); |
| 2554 | int i; |
| 2555 | PAL_ERROR palErr = NO_ERROR; |
| 2556 | BYTE rgSendBuf[MsgSize]; |
| 2557 | BYTE * pbySrc, * pbyDst = rgSendBuf; |
| 2558 | DWORD dwSigCount; |
| 2559 | CSynchData * psdSynchData = |
| 2560 | SharedIDToTypePointer(CSynchData, shridSynchData); |
| 2561 | |
| 2562 | _ASSERT_MSG(gPID != dwTargetProcessId, " called on local thread\n" ); |
| 2563 | _ASSERT_MSG(NULL != shridSynchData, "NULL shared identifier\n" ); |
| 2564 | _ASSERT_MSG(NULL != psdSynchData, "Bad shared SynchData identifier (%p)\n" , (VOID*)shridSynchData); |
| 2565 | _ASSERT_MSG(MsgSize <= PIPE_BUF, "Message too long [MsgSize=%d PIPE_BUF=%d]\n" , MsgSize, (int)PIPE_BUF); |
| 2566 | |
| 2567 | TRACE("Transfering wait all signaling to remote process pid=%x by sending cmd=%u and shridSynchData=%p over process pipe\n" , |
| 2568 | dwTargetProcessId, SynchWorkerCmdDelegatedObjectSignaling, (VOID *)shridSynchData); |
| 2569 | |
| 2570 | dwSigCount = psdSynchData->GetSignalCount(); |
| 2571 | |
| 2572 | // AddRef SynchData to be marshaled to remote process |
| 2573 | psdSynchData->AddRef(); |
| 2574 | |
| 2575 | // |
| 2576 | // Prepare the message |
| 2577 | // |
| 2578 | |
| 2579 | // Cmd |
| 2580 | *pbyDst++ = (BYTE)(SynchWorkerCmdDelegatedObjectSignaling & 0xFF); |
| 2581 | |
| 2582 | // CSynchData (not aligned, copy byte by byte) |
| 2583 | pbySrc = (BYTE *)&shridSynchData; |
| 2584 | for (i=0; i<(int)sizeof(SharedID); i++) |
| 2585 | { |
| 2586 | *pbyDst++ = *pbySrc++; |
| 2587 | } |
| 2588 | |
| 2589 | // Signal Count (not aligned, copy byte by byte) |
| 2590 | pbySrc = (BYTE *)&dwSigCount; |
| 2591 | for (i=0; i<(int)sizeof(DWORD); i++) |
| 2592 | { |
| 2593 | *pbyDst++ = *pbySrc++; |
| 2594 | } |
| 2595 | |
| 2596 | _ASSERT_MSG(pbyDst <= rgSendBuf + MsgSize + 1, "Buffer overrun" ); |
| 2597 | |
| 2598 | // Send the message |
| 2599 | palErr = SendMsgToRemoteWorker(dwTargetProcessId, rgSendBuf, MsgSize); |
| 2600 | if (NO_ERROR != palErr) |
| 2601 | { |
| 2602 | TRACE("Failed sending message to remote worker in process %u\n" , dwTargetProcessId); |
| 2603 | |
| 2604 | // Undo refcounting |
| 2605 | psdSynchData->Release(pthrCurrent); |
| 2606 | } |
| 2607 | |
| 2608 | return palErr; |
| 2609 | } |
| 2610 | |
| 2611 | /*++ |
| 2612 | Method: |
| 2613 | CPalSynchronizationManager::SendMsgToRemoteWorker |
| 2614 | |
| 2615 | Sends a message (command + data) to a remote process's worker thread. |
| 2616 | --*/ |
| 2617 | PAL_ERROR CPalSynchronizationManager::SendMsgToRemoteWorker( |
| 2618 | DWORD dwProcessId, |
| 2619 | BYTE * pMsg, |
| 2620 | int iMsgSize) |
| 2621 | { |
| 2622 | #ifndef CORECLR |
| 2623 | PAL_ERROR palErr = NO_ERROR; |
| 2624 | int iProcessPipe, iBytesToWrite, iRetryCount; |
| 2625 | ssize_t sszRet; |
| 2626 | char strPipeFilename[MAX_PATH]; |
| 2627 | BYTE * pPos = pMsg; |
| 2628 | bool fRet; |
| 2629 | CPalThread *pthrCurrent = InternalGetCurrentThread(); |
| 2630 | |
| 2631 | _ASSERT_MSG(gPID != dwProcessId, "SendMsgToRemoteWorker called with local process as target process\n" ); |
| 2632 | |
| 2633 | fRet = GetProcessPipeName(strPipeFilename, MAX_PATH, dwProcessId); |
| 2634 | |
| 2635 | _ASSERT_MSG(fRet, "Failed to retrieve process pipe's name!\n" ); |
| 2636 | |
| 2637 | iProcessPipe = InternalOpen(strPipeFilename, O_WRONLY); |
| 2638 | if (-1 == iProcessPipe) |
| 2639 | { |
| 2640 | ERROR("Unable to open a process pipe to wake up a remote thread " |
| 2641 | "[pid=%u errno=%d (%s) PipeFilename=%s]\n" , dwProcessId, |
| 2642 | errno, strerror(errno), strPipeFilename); |
| 2643 | palErr = ERROR_INTERNAL_ERROR; |
| 2644 | goto SMTRW_exit; |
| 2645 | } |
| 2646 | |
| 2647 | pPos = pMsg; |
| 2648 | iBytesToWrite = iMsgSize; |
| 2649 | while (0 < iBytesToWrite) |
| 2650 | { |
| 2651 | iRetryCount = 0; |
| 2652 | do |
| 2653 | { |
| 2654 | sszRet = write(iProcessPipe, pPos, iBytesToWrite); |
| 2655 | } while (-1 == sszRet && |
| 2656 | EAGAIN == errno && |
| 2657 | ++iRetryCount < MaxConsecutiveEagains && |
| 2658 | 0 == sched_yield()); |
| 2659 | |
| 2660 | if (0 >= sszRet) |
| 2661 | { |
| 2662 | ERROR("Error writing message to process pipe %d [target_pid=%u " |
| 2663 | "bytes_to_write=%d bytes_written=%d ret=%d errno=%d (%s) " |
| 2664 | "PipeFilename=%s]\n" , iProcessPipe, dwProcessId, iMsgSize, |
| 2665 | iMsgSize - iBytesToWrite, (int)sszRet, errno, strerror(errno), |
| 2666 | strPipeFilename); |
| 2667 | palErr = ERROR_INTERNAL_ERROR; |
| 2668 | break; |
| 2669 | } |
| 2670 | iBytesToWrite -= (int)sszRet; |
| 2671 | pPos += sszRet; |
| 2672 | |
| 2673 | _ASSERT_MSG(0 == iBytesToWrite, |
| 2674 | "Interleaved messages while writing to process pipe %d\n" , |
| 2675 | iProcessPipe); |
| 2676 | } |
| 2677 | |
| 2678 | // Close the opened pipe |
| 2679 | close(iProcessPipe); |
| 2680 | |
| 2681 | SMTRW_exit: |
| 2682 | return palErr; |
| 2683 | #else // !CORECLR |
| 2684 | ASSERT("There should never be a reason to send a message to a remote worker\n" ); |
| 2685 | return ERROR_INTERNAL_ERROR; |
| 2686 | #endif // !CORECLR |
| 2687 | } |
| 2688 | |
| 2689 | /*++ |
| 2690 | Method: |
| 2691 | CPalSynchronizationManager::WakeUpLocalWorkerThread |
| 2692 | |
| 2693 | Wakes up the local worker thread by writing a 'nop' cmd to the |
| 2694 | process pipe. |
| 2695 | --*/ |
| 2696 | PAL_ERROR CPalSynchronizationManager::WakeUpLocalWorkerThread( |
| 2697 | SynchWorkerCmd swcWorkerCmd) |
| 2698 | { |
| 2699 | PAL_ERROR palErr = NO_ERROR; |
| 2700 | |
| 2701 | _ASSERT_MSG((swcWorkerCmd & 0xFF) == swcWorkerCmd, |
| 2702 | "Value too big for swcWorkerCmd\n" ); |
| 2703 | |
| 2704 | _ASSERT_MSG((SynchWorkerCmdNop == swcWorkerCmd) || |
| 2705 | (SynchWorkerCmdShutdown == swcWorkerCmd) || |
| 2706 | (SynchWorkerCmdTerminationRequest == swcWorkerCmd), |
| 2707 | "WakeUpLocalWorkerThread supports only SynchWorkerCmdNop, SynchWorkerCmdShutdown, and SynchWorkerCmdTerminationRequest." |
| 2708 | "[received cmd=%d]\n" , swcWorkerCmd); |
| 2709 | |
| 2710 | BYTE byCmd = (BYTE)(swcWorkerCmd & 0xFF); |
| 2711 | |
| 2712 | TRACE("Waking up Synch Worker Thread for %u [byCmd=%u]\n" , |
| 2713 | swcWorkerCmd, (unsigned int)byCmd); |
| 2714 | |
| 2715 | // As long as we use pipes and we keep the message size |
| 2716 | // within PIPE_BUF, there's no need to lock here, since the |
| 2717 | // write is guaranteed not to be interleaved with/into other |
| 2718 | // writes of PIPE_BUF bytes or less. |
| 2719 | _ASSERT_MSG(sizeof(BYTE) <= PIPE_BUF, "Message too long\n" ); |
| 2720 | |
| 2721 | int iRetryCount = 0; |
| 2722 | ssize_t sszWritten; |
| 2723 | do |
| 2724 | { |
| 2725 | sszWritten = write(m_iProcessPipeWrite, &byCmd, sizeof(BYTE)); |
| 2726 | } while (-1 == sszWritten && |
| 2727 | EAGAIN == errno && |
| 2728 | ++iRetryCount < MaxConsecutiveEagains && |
| 2729 | 0 == sched_yield()); |
| 2730 | |
| 2731 | if (sszWritten != sizeof(BYTE)) |
| 2732 | { |
| 2733 | ERROR("Unable to write to the process pipe to wake up the " |
| 2734 | "worker thread [errno=%d (%s)]\n" , errno, strerror(errno)); |
| 2735 | palErr = ERROR_INTERNAL_ERROR; |
| 2736 | } |
| 2737 | |
| 2738 | return palErr; |
| 2739 | } |
| 2740 | |
| 2741 | /*++ |
| 2742 | Method: |
| 2743 | CPalSynchronizationManager::GetThreadWaitInfo |
| 2744 | |
| 2745 | Returns a pointer to the WaitInfo structure for the passed CPalThread object |
| 2746 | --*/ |
| 2747 | ThreadWaitInfo * CPalSynchronizationManager::GetThreadWaitInfo( |
| 2748 | CPalThread * pthrCurrent) |
| 2749 | { |
| 2750 | return &pthrCurrent->synchronizationInfo.m_twiWaitInfo; |
| 2751 | } |
| 2752 | |
| 2753 | /*++ |
| 2754 | Method: |
| 2755 | CPalSynchronizationManager::UnRegisterWait |
| 2756 | |
| 2757 | Unregister the wait described by ptwiWaitInfo that in general involves |
| 2758 | a thread other than the current one (most of the times the deregistration |
| 2759 | is performed by the signaling thread) |
| 2760 | |
| 2761 | Note: this method must be called while holding the local process |
| 2762 | synchronization lock. |
| 2763 | --*/ |
| 2764 | void CPalSynchronizationManager::UnRegisterWait( |
| 2765 | CPalThread * pthrCurrent, |
| 2766 | ThreadWaitInfo * ptwiWaitInfo, |
| 2767 | bool fHaveSharedLock) |
| 2768 | { |
| 2769 | int i = 0; |
| 2770 | CSynchData * psdSynchData = NULL; |
| 2771 | bool fSharedSynchLock = false; |
| 2772 | |
| 2773 | if (!fHaveSharedLock && LocalWait != ptwiWaitInfo->wdWaitDomain) |
| 2774 | { |
| 2775 | AcquireSharedSynchLock(pthrCurrent); |
| 2776 | fSharedSynchLock = true; |
| 2777 | } |
| 2778 | |
| 2779 | TRACE("Unregistering wait for thread=%u [ObjCount=%d WaitType=%u WaitDomain=%u]\n" , |
| 2780 | ptwiWaitInfo->pthrOwner->GetThreadId(), |
| 2781 | ptwiWaitInfo->lObjCount, ptwiWaitInfo->wtWaitType, |
| 2782 | ptwiWaitInfo->wdWaitDomain); |
| 2783 | |
| 2784 | for (i=0; i < ptwiWaitInfo->lObjCount; i++) |
| 2785 | { |
| 2786 | WaitingThreadsListNode * pwtlnItem = ptwiWaitInfo->rgpWTLNodes[i]; |
| 2787 | |
| 2788 | VALIDATEOBJECT(pwtlnItem); |
| 2789 | |
| 2790 | if (pwtlnItem->dwFlags & WTLN_FLAG_OWNER_OBJECT_IS_SHARED) |
| 2791 | { |
| 2792 | // Shared object |
| 2793 | WaitingThreadsListNode * pwtlnItemNext, * pwtlnItemPrev; |
| 2794 | |
| 2795 | psdSynchData = SharedIDToTypePointer(CSynchData, |
| 2796 | pwtlnItem->ptrOwnerObjSynchData.shrid); |
| 2797 | |
| 2798 | VALIDATEOBJECT(psdSynchData); |
| 2799 | |
| 2800 | pwtlnItemNext = SharedIDToTypePointer(WaitingThreadsListNode, |
| 2801 | pwtlnItem->ptrNext.shrid); |
| 2802 | pwtlnItemPrev = SharedIDToTypePointer(WaitingThreadsListNode, |
| 2803 | pwtlnItem->ptrPrev.shrid); |
| 2804 | if (pwtlnItemPrev) |
| 2805 | { |
| 2806 | VALIDATEOBJECT(pwtlnItemPrev); |
| 2807 | pwtlnItemPrev->ptrNext.shrid = pwtlnItem->ptrNext.shrid; |
| 2808 | } |
| 2809 | else |
| 2810 | { |
| 2811 | psdSynchData->SetWTLHeadShrPtr(pwtlnItem->ptrNext.shrid); |
| 2812 | } |
| 2813 | |
| 2814 | if (pwtlnItemNext) |
| 2815 | { |
| 2816 | VALIDATEOBJECT(pwtlnItemNext); |
| 2817 | pwtlnItemNext->ptrPrev.shrid = pwtlnItem->ptrPrev.shrid; |
| 2818 | } |
| 2819 | else |
| 2820 | { |
| 2821 | psdSynchData->SetWTLTailShrPtr(pwtlnItem->ptrPrev.shrid); |
| 2822 | } |
| 2823 | |
| 2824 | m_cacheSHRWTListNodes.Add(pthrCurrent, pwtlnItem->shridSHRThis); |
| 2825 | } |
| 2826 | else |
| 2827 | { |
| 2828 | // Local object |
| 2829 | psdSynchData = pwtlnItem->ptrOwnerObjSynchData.ptr; |
| 2830 | |
| 2831 | VALIDATEOBJECT(psdSynchData); |
| 2832 | |
| 2833 | if (pwtlnItem->ptrPrev.ptr) |
| 2834 | { |
| 2835 | VALIDATEOBJECT(pwtlnItem); |
| 2836 | pwtlnItem->ptrPrev.ptr->ptrNext.ptr = pwtlnItem->ptrNext.ptr; |
| 2837 | } |
| 2838 | else |
| 2839 | { |
| 2840 | psdSynchData->SetWTLHeadPtr(pwtlnItem->ptrNext.ptr); |
| 2841 | } |
| 2842 | |
| 2843 | if (pwtlnItem->ptrNext.ptr) |
| 2844 | { |
| 2845 | VALIDATEOBJECT(pwtlnItem); |
| 2846 | pwtlnItem->ptrNext.ptr->ptrPrev.ptr = pwtlnItem->ptrPrev.ptr; |
| 2847 | } |
| 2848 | else |
| 2849 | { |
| 2850 | psdSynchData->SetWTLTailPtr(pwtlnItem->ptrPrev.ptr); |
| 2851 | } |
| 2852 | |
| 2853 | m_cacheWTListNodes.Add(pthrCurrent, pwtlnItem); |
| 2854 | } |
| 2855 | |
| 2856 | // Release the node's refcount on the synch data, and decerement |
| 2857 | // waiting thread count |
| 2858 | psdSynchData->DecrementWaitingThreadCount(); |
| 2859 | psdSynchData->Release(pthrCurrent); |
| 2860 | } |
| 2861 | |
| 2862 | // Reset wait data in ThreadWaitInfo structure: it is enough |
| 2863 | // to reset lObjCount, lSharedObjCount and wdWaitDomain. |
| 2864 | ptwiWaitInfo->lObjCount = 0; |
| 2865 | ptwiWaitInfo->lSharedObjCount = 0; |
| 2866 | ptwiWaitInfo->wdWaitDomain = LocalWait; |
| 2867 | |
| 2868 | // Done |
| 2869 | if (fSharedSynchLock) |
| 2870 | { |
| 2871 | ReleaseSharedSynchLock(pthrCurrent); |
| 2872 | } |
| 2873 | |
| 2874 | return; |
| 2875 | } |
| 2876 | |
| 2877 | /*++ |
| 2878 | Method: |
| 2879 | CPalSynchronizationManager::UnsignalRestOfLocalAwakeningWaitAll |
| 2880 | |
| 2881 | Unsignals all the objects involved in a wait all, except the target |
| 2882 | one (i.e. psdTgtObjectSynchData) |
| 2883 | |
| 2884 | Note: this method must be called while holding the synchronization locks |
| 2885 | appropriate to all the objects involved in the wait-all. If any |
| 2886 | of the objects is shared, the caller must own both local and |
| 2887 | shared synch locks; if no shared object is involved in the wait, |
| 2888 | only the local synch lock is needed. |
| 2889 | --*/ |
| 2890 | void CPalSynchronizationManager::UnsignalRestOfLocalAwakeningWaitAll( |
| 2891 | CPalThread * pthrCurrent, |
| 2892 | CPalThread * pthrTarget, |
| 2893 | WaitingThreadsListNode * pwtlnNode, |
| 2894 | CSynchData * psdTgtObjectSynchData) |
| 2895 | { |
| 2896 | PAL_ERROR palErr = NO_ERROR; |
| 2897 | CSynchData * psdSynchDataItem = NULL; |
| 2898 | |
| 2899 | #ifdef _DEBUG |
| 2900 | bool bOriginatingNodeFound = false; |
| 2901 | #endif |
| 2902 | |
| 2903 | VALIDATEOBJECT(psdTgtObjectSynchData); |
| 2904 | VALIDATEOBJECT(pwtlnNode); |
| 2905 | |
| 2906 | _ASSERT_MSG(0 != (WTLN_FLAG_WAIT_ALL & pwtlnNode->dwFlags), |
| 2907 | "UnsignalRestOfLocalAwakeningWaitAll() called on a normal (non wait all) wait" ); |
| 2908 | |
| 2909 | _ASSERT_MSG(gPID == pwtlnNode->dwProcessId, |
| 2910 | "UnsignalRestOfLocalAwakeningWaitAll() called on a wait all with remote awakening" ); |
| 2911 | |
| 2912 | ThreadWaitInfo *ptwiWaitInfo = pwtlnNode->ptwiWaitInfo; |
| 2913 | |
| 2914 | int iObjCount = ptwiWaitInfo->lObjCount; |
| 2915 | for (int i = 0; i < iObjCount; i++) |
| 2916 | { |
| 2917 | WaitingThreadsListNode * pwtlnItem = ptwiWaitInfo->rgpWTLNodes[i]; |
| 2918 | |
| 2919 | VALIDATEOBJECT(pwtlnItem); |
| 2920 | |
| 2921 | if (0 != (WTLN_FLAG_OWNER_OBJECT_IS_SHARED & pwtlnItem->dwFlags)) |
| 2922 | { |
| 2923 | psdSynchDataItem = SharedIDToTypePointer(CSynchData, pwtlnItem->ptrOwnerObjSynchData.shrid); |
| 2924 | } |
| 2925 | else |
| 2926 | { |
| 2927 | psdSynchDataItem = pwtlnItem->ptrOwnerObjSynchData.ptr; |
| 2928 | } |
| 2929 | |
| 2930 | VALIDATEOBJECT(psdSynchDataItem); |
| 2931 | |
| 2932 | // Skip originating node |
| 2933 | if (psdTgtObjectSynchData == psdSynchDataItem) |
| 2934 | { |
| 2935 | #ifdef _DEBUG |
| 2936 | bOriginatingNodeFound = true; |
| 2937 | #endif |
| 2938 | continue; |
| 2939 | } |
| 2940 | |
| 2941 | palErr = psdSynchDataItem->ReleaseWaiterWithoutBlocking(pthrCurrent, pthrTarget); |
| 2942 | if (NO_ERROR != palErr) |
| 2943 | { |
| 2944 | ERROR("ReleaseWaiterWithoutBlocking failed on SynchData @ %p [palErr = %u]\n" , psdSynchDataItem, palErr); |
| 2945 | } |
| 2946 | } |
| 2947 | |
| 2948 | _ASSERT_MSG(bOriginatingNodeFound, "Couldn't find originating node while unsignaling rest of the wait all\n" ); |
| 2949 | } |
| 2950 | |
| 2951 | /*++ |
| 2952 | Method: |
| 2953 | CPalSynchronizationManager::MarkWaitForDelegatedObjectSignalingInProgress |
| 2954 | |
| 2955 | Marks all the thread waiting list nodes involved in the the current wait-all |
| 2956 | for "delegated object signaling in progress", so that this wait cannot be |
| 2957 | involved in another delegated object signaling that may happen while the |
| 2958 | current object singaling is being tranfered to the target process (while |
| 2959 | transfering it, synchronization locks are released in this process and later |
| 2960 | grabbed again in the target process; in this time window another thread |
| 2961 | could signal another object part of the same wait-all. In this case no |
| 2962 | signal delegation must take place. |
| 2963 | |
| 2964 | Note: this method must be called while holding the synchronization locks |
| 2965 | appropriate to the target object described by pwtlnNode (i.e. the |
| 2966 | local process synch lock if the target object is local, both local |
| 2967 | and shared one if the object is shared). |
| 2968 | --*/ |
| 2969 | void CPalSynchronizationManager::MarkWaitForDelegatedObjectSignalingInProgress( |
| 2970 | CPalThread * pthrCurrent, |
| 2971 | WaitingThreadsListNode * pwtlnNode) |
| 2972 | { |
| 2973 | bool fSharedSynchLock = false; |
| 2974 | bool fTargetObjectIsShared = (0 != (WTLN_FLAG_OWNER_OBJECT_IS_SHARED & pwtlnNode->dwFlags)); |
| 2975 | |
| 2976 | VALIDATEOBJECT(pwtlnNode); |
| 2977 | |
| 2978 | _ASSERT_MSG(gPID == pwtlnNode->dwProcessId, |
| 2979 | "MarkWaitForDelegatedObjectSignalingInProgress() called from the wrong process" ); |
| 2980 | |
| 2981 | ThreadWaitInfo *ptwiWaitInfo = pwtlnNode->ptwiWaitInfo; |
| 2982 | |
| 2983 | if (!fSharedSynchLock && !fTargetObjectIsShared && |
| 2984 | LocalWait != ptwiWaitInfo->wdWaitDomain) |
| 2985 | { |
| 2986 | AcquireSharedSynchLock(pthrCurrent); |
| 2987 | fSharedSynchLock = true; |
| 2988 | } |
| 2989 | |
| 2990 | _ASSERT_MSG(MultipleObjectsWaitAll == ptwiWaitInfo->wtWaitType, |
| 2991 | "MarkWaitForDelegatedObjectSignalingInProgress() called on a normal (non wait-all) wait" ); |
| 2992 | |
| 2993 | // Unmark all nodes other than the target one |
| 2994 | int iTgtCount = ptwiWaitInfo->lObjCount; |
| 2995 | for (int i = 0; i < iTgtCount; i++) |
| 2996 | { |
| 2997 | VALIDATEOBJECT(ptwiWaitInfo->rgpWTLNodes[i]); |
| 2998 | ptwiWaitInfo->rgpWTLNodes[i]->dwFlags &= ~WTLN_FLAG_DELEGATED_OBJECT_SIGNALING_IN_PROGRESS; |
| 2999 | } |
| 3000 | |
| 3001 | // Mark the target node |
| 3002 | pwtlnNode->dwFlags |= WTLN_FLAG_DELEGATED_OBJECT_SIGNALING_IN_PROGRESS; |
| 3003 | |
| 3004 | // Done |
| 3005 | if (fSharedSynchLock) |
| 3006 | { |
| 3007 | ReleaseSharedSynchLock(pthrCurrent); |
| 3008 | } |
| 3009 | |
| 3010 | return; |
| 3011 | } |
| 3012 | |
| 3013 | /*++ |
| 3014 | Method: |
| 3015 | CPalSynchronizationManager::UnmarkTWListForDelegatedObjectSignalingInProgress |
| 3016 | |
| 3017 | Resets the "delegated object signaling in progress" flags in all the |
| 3018 | nodes of the thread waitin list for the target waitable objects (represented |
| 3019 | by its SynchData) |
| 3020 | |
| 3021 | Note: this method must be called while holding the appropriate |
| 3022 | synchronization locks (the local process synch lock if the target |
| 3023 | object is local, both local and shared one if the object is shared). |
| 3024 | --*/ |
| 3025 | void CPalSynchronizationManager::UnmarkTWListForDelegatedObjectSignalingInProgress( |
| 3026 | CSynchData * pTgtObjectSynchData) |
| 3027 | { |
| 3028 | bool fSharedObject = (SharedObject == pTgtObjectSynchData->GetObjectDomain()); |
| 3029 | WaitingThreadsListNode * pwtlnNode; |
| 3030 | |
| 3031 | VALIDATEOBJECT(pTgtObjectSynchData); |
| 3032 | |
| 3033 | pwtlnNode = fSharedObject ? SharedIDToTypePointer(WaitingThreadsListNode, pTgtObjectSynchData->GetWTLHeadShmPtr()) |
| 3034 | : pTgtObjectSynchData->GetWTLHeadPtr(); |
| 3035 | |
| 3036 | while (pwtlnNode) |
| 3037 | { |
| 3038 | VALIDATEOBJECT(pwtlnNode); |
| 3039 | |
| 3040 | pwtlnNode->dwFlags &= ~WTLN_FLAG_DELEGATED_OBJECT_SIGNALING_IN_PROGRESS; |
| 3041 | pwtlnNode = fSharedObject ? SharedIDToTypePointer(WaitingThreadsListNode, pwtlnNode->ptrNext.shrid) |
| 3042 | : pwtlnNode->ptrNext.ptr; |
| 3043 | } |
| 3044 | } |
| 3045 | |
| 3046 | /*++ |
| 3047 | Method: |
| 3048 | CPalSynchronizationManager::RegisterProcessForMonitoring |
| 3049 | |
| 3050 | Registers the process object represented by the passed psdSynchData and |
| 3051 | pProcLocalData. The worker thread will monitor the actual process and, |
| 3052 | upon process termination, it will set the exit code in pProcLocalData, |
| 3053 | and it will signal the process object, by signaling its psdSynchData. |
| 3054 | --*/ |
| 3055 | PAL_ERROR CPalSynchronizationManager::RegisterProcessForMonitoring( |
| 3056 | CPalThread * pthrCurrent, |
| 3057 | CSynchData *psdSynchData, |
| 3058 | IPalObject *pProcessObject, |
| 3059 | CProcProcessLocalData * pProcLocalData) |
| 3060 | { |
| 3061 | PAL_ERROR palErr = NO_ERROR; |
| 3062 | MonitoredProcessesListNode * pmpln; |
| 3063 | bool fWakeUpWorker = false; |
| 3064 | bool fMonitoredProcessesLock = false; |
| 3065 | |
| 3066 | VALIDATEOBJECT(psdSynchData); |
| 3067 | |
| 3068 | InternalEnterCriticalSection(pthrCurrent, &s_csMonitoredProcessesLock); |
| 3069 | |
| 3070 | fMonitoredProcessesLock = true; |
| 3071 | |
| 3072 | pmpln = m_pmplnMonitoredProcesses; |
| 3073 | while (pmpln) |
| 3074 | { |
| 3075 | if (psdSynchData == pmpln->psdSynchData) |
| 3076 | { |
| 3077 | _ASSERT_MSG(pmpln->dwPid == pProcLocalData->dwProcessId, "Invalid node in Monitored Processes List\n" ); |
| 3078 | break; |
| 3079 | } |
| 3080 | |
| 3081 | pmpln = pmpln->pNext; |
| 3082 | } |
| 3083 | |
| 3084 | if (pmpln) |
| 3085 | { |
| 3086 | pmpln->lRefCount++; |
| 3087 | } |
| 3088 | else |
| 3089 | { |
| 3090 | pmpln = InternalNew<MonitoredProcessesListNode>(); |
| 3091 | if (NULL == pmpln) |
| 3092 | { |
| 3093 | ERROR("No memory to allocate MonitoredProcessesListNode structure\n" ); |
| 3094 | palErr = ERROR_NOT_ENOUGH_MEMORY; |
| 3095 | goto RPFM_exit; |
| 3096 | } |
| 3097 | |
| 3098 | pmpln->lRefCount = 1; |
| 3099 | pmpln->dwPid = pProcLocalData->dwProcessId; |
| 3100 | pmpln->dwExitCode = 0; |
| 3101 | pmpln->pProcessObject = pProcessObject; |
| 3102 | pmpln->pProcessObject->AddReference(); |
| 3103 | pmpln->pProcLocalData = pProcLocalData; |
| 3104 | |
| 3105 | // Acquire SynchData and AddRef it |
| 3106 | pmpln->psdSynchData = psdSynchData; |
| 3107 | psdSynchData->AddRef(); |
| 3108 | |
| 3109 | pmpln->pNext = m_pmplnMonitoredProcesses; |
| 3110 | m_pmplnMonitoredProcesses = pmpln; |
| 3111 | m_lMonitoredProcessesCount++; |
| 3112 | |
| 3113 | fWakeUpWorker = true; |
| 3114 | } |
| 3115 | |
| 3116 | // Unlock |
| 3117 | InternalLeaveCriticalSection(pthrCurrent, &s_csMonitoredProcessesLock); |
| 3118 | fMonitoredProcessesLock = false; |
| 3119 | |
| 3120 | if (fWakeUpWorker) |
| 3121 | { |
| 3122 | CPalSynchronizationManager * pSynchManager = GetInstance(); |
| 3123 | |
| 3124 | palErr = pSynchManager->WakeUpLocalWorkerThread(SynchWorkerCmdNop); |
| 3125 | if (NO_ERROR != palErr) |
| 3126 | { |
| 3127 | ERROR("Failed waking up worker thread for process " |
| 3128 | "monitoring registration [errno=%d {%s%}]\n" , |
| 3129 | errno, strerror(errno)); |
| 3130 | palErr = ERROR_INTERNAL_ERROR; |
| 3131 | } |
| 3132 | } |
| 3133 | |
| 3134 | RPFM_exit: |
| 3135 | if (fMonitoredProcessesLock) |
| 3136 | { |
| 3137 | InternalLeaveCriticalSection(pthrCurrent, |
| 3138 | &s_csMonitoredProcessesLock); |
| 3139 | } |
| 3140 | |
| 3141 | return palErr; |
| 3142 | } |
| 3143 | |
| 3144 | /*++ |
| 3145 | Method: |
| 3146 | CPalSynchronizationManager::UnRegisterProcessForMonitoring |
| 3147 | |
| 3148 | Unregisters a process object currently monitored by the worker thread |
| 3149 | (typically called if the wait timed out before the process exited, or |
| 3150 | if the wait was a normal (i.e. non wait-all) wait that involved othter |
| 3151 | objects, and another object has been signaled). |
| 3152 | --*/ |
| 3153 | PAL_ERROR CPalSynchronizationManager::UnRegisterProcessForMonitoring( |
| 3154 | CPalThread * pthrCurrent, |
| 3155 | CSynchData *psdSynchData, |
| 3156 | DWORD dwPid) |
| 3157 | { |
| 3158 | PAL_ERROR palErr = NO_ERROR; |
| 3159 | MonitoredProcessesListNode * pmpln, * pmplnPrev = NULL; |
| 3160 | |
| 3161 | VALIDATEOBJECT(psdSynchData); |
| 3162 | |
| 3163 | InternalEnterCriticalSection(pthrCurrent, &s_csMonitoredProcessesLock); |
| 3164 | |
| 3165 | pmpln = m_pmplnMonitoredProcesses; |
| 3166 | while (pmpln) |
| 3167 | { |
| 3168 | if (psdSynchData == pmpln->psdSynchData) |
| 3169 | { |
| 3170 | _ASSERT_MSG(dwPid == pmpln->dwPid, "Invalid node in Monitored Processes List\n" ); |
| 3171 | break; |
| 3172 | } |
| 3173 | |
| 3174 | pmplnPrev = pmpln; |
| 3175 | pmpln = pmpln->pNext; |
| 3176 | } |
| 3177 | |
| 3178 | if (pmpln) |
| 3179 | { |
| 3180 | if (0 == --pmpln->lRefCount) |
| 3181 | { |
| 3182 | if (NULL != pmplnPrev) |
| 3183 | { |
| 3184 | pmplnPrev->pNext = pmpln->pNext; |
| 3185 | } |
| 3186 | else |
| 3187 | { |
| 3188 | m_pmplnMonitoredProcesses = pmpln->pNext; |
| 3189 | } |
| 3190 | |
| 3191 | m_lMonitoredProcessesCount--; |
| 3192 | pmpln->pProcessObject->ReleaseReference(pthrCurrent); |
| 3193 | pmpln->psdSynchData->Release(pthrCurrent); |
| 3194 | InternalDelete(pmpln); |
| 3195 | } |
| 3196 | } |
| 3197 | else |
| 3198 | { |
| 3199 | palErr = ERROR_NOT_FOUND; |
| 3200 | } |
| 3201 | |
| 3202 | InternalLeaveCriticalSection(pthrCurrent, &s_csMonitoredProcessesLock); |
| 3203 | return palErr; |
| 3204 | } |
| 3205 | |
| 3206 | /*++ |
| 3207 | Method: |
| 3208 | CPalSynchronizationManager::ThreadPrepareForShutdown |
| 3209 | |
| 3210 | Used to hijack thread execution from known spots within the |
| 3211 | Synchronization Manager in case a PAL shutdown is initiated |
| 3212 | or the thread is being terminated by another thread. |
| 3213 | --*/ |
| 3214 | void CPalSynchronizationManager::ThreadPrepareForShutdown() |
| 3215 | { |
| 3216 | TRACE("The Synchronization Manager hijacked the current thread " |
| 3217 | "for process shutdown or thread termination\n" ); |
| 3218 | while (true) |
| 3219 | { |
| 3220 | poll(NULL, 0, INFTIM); |
| 3221 | sched_yield(); |
| 3222 | } |
| 3223 | |
| 3224 | ASSERT("This code should never be executed\n" ); |
| 3225 | } |
| 3226 | |
| 3227 | /*++ |
| 3228 | Method: |
| 3229 | CPalSynchronizationManager::DoMonitorProcesses |
| 3230 | |
| 3231 | This method is called by the worker thread to execute one step of |
| 3232 | monitoring for all the process currently registered for monitoring |
| 3233 | --*/ |
| 3234 | LONG CPalSynchronizationManager::DoMonitorProcesses( |
| 3235 | CPalThread * pthrCurrent) |
| 3236 | { |
| 3237 | MonitoredProcessesListNode * pNode, * pPrev = NULL, * pNext; |
| 3238 | LONG lInitialNodeCount; |
| 3239 | LONG lRemovingCount = 0; |
| 3240 | bool fLocalSynchLock = false; |
| 3241 | bool fSharedSynchLock = false; |
| 3242 | bool fMonitoredProcessesLock = false; |
| 3243 | |
| 3244 | // Note: we first need to grab the monitored processes lock to walk |
| 3245 | // the list of monitored processes, and then, if there is any |
| 3246 | // which exited, to grab the synchronization lock(s) to signal |
| 3247 | // the process object. Anyway we cannot grab the synchronization |
| 3248 | // lock(s) while holding the monitored processes lock; that |
| 3249 | // would cause deadlock, since RegisterProcessForMonitoring and |
| 3250 | // UnRegisterProcessForMonitoring call stacks grab the locks |
| 3251 | // in the opposite order. Grabbing the synch lock(s) first (and |
| 3252 | // therefore all the times) would cause unacceptable contention |
| 3253 | // (process monitoring is done in polling mode). |
| 3254 | // Therefore we need to remove list nodes for processes that |
| 3255 | // exited copying them to the exited array, while holding only |
| 3256 | // the monitored processes lock, and then to signal them from that |
| 3257 | // array holding synch lock(s) and monitored processes lock, |
| 3258 | // acquired in this order. Holding again the monitored processes |
| 3259 | // lock is needed in order to support object promotion. |
| 3260 | |
| 3261 | // Grab the monitored processes lock |
| 3262 | InternalEnterCriticalSection(pthrCurrent, &s_csMonitoredProcessesLock); |
| 3263 | fMonitoredProcessesLock = true; |
| 3264 | |
| 3265 | lInitialNodeCount = m_lMonitoredProcessesCount; |
| 3266 | |
| 3267 | pNode = m_pmplnMonitoredProcesses; |
| 3268 | while (pNode) |
| 3269 | { |
| 3270 | pNext = pNode->pNext; |
| 3271 | |
| 3272 | if (HasProcessExited(pNode->dwPid, |
| 3273 | &pNode->dwExitCode, |
| 3274 | &pNode->fIsActualExitCode)) |
| 3275 | { |
| 3276 | TRACE("Process %u exited with return code %u\n" , |
| 3277 | pNode->dwPid, |
| 3278 | pNode->fIsActualExitCode ? "actual" : "guessed" , |
| 3279 | pNode->dwExitCode); |
| 3280 | |
| 3281 | if (NULL != pPrev) |
| 3282 | { |
| 3283 | pPrev->pNext = pNext; |
| 3284 | } |
| 3285 | else |
| 3286 | { |
| 3287 | m_pmplnMonitoredProcesses = pNext; |
| 3288 | } |
| 3289 | |
| 3290 | m_lMonitoredProcessesCount--; |
| 3291 | |
| 3292 | // Insert in the list of nodes for exited processes |
| 3293 | pNode->pNext = m_pmplnExitedNodes; |
| 3294 | m_pmplnExitedNodes = pNode; |
| 3295 | lRemovingCount++; |
| 3296 | } |
| 3297 | else |
| 3298 | { |
| 3299 | pPrev = pNode; |
| 3300 | } |
| 3301 | |
| 3302 | // Go to the next |
| 3303 | pNode = pNext; |
| 3304 | } |
| 3305 | |
| 3306 | // Release the monitored processes lock |
| 3307 | InternalLeaveCriticalSection(pthrCurrent, &s_csMonitoredProcessesLock); |
| 3308 | fMonitoredProcessesLock = false; |
| 3309 | |
| 3310 | if (lRemovingCount > 0) |
| 3311 | { |
| 3312 | // First grab the local synch lock |
| 3313 | AcquireLocalSynchLock(pthrCurrent); |
| 3314 | fLocalSynchLock = true; |
| 3315 | |
| 3316 | // Acquire the monitored processes lock |
| 3317 | InternalEnterCriticalSection(pthrCurrent, &s_csMonitoredProcessesLock); |
| 3318 | fMonitoredProcessesLock = true; |
| 3319 | |
| 3320 | if (!fSharedSynchLock) |
| 3321 | { |
| 3322 | bool fSharedSynchLockIsNeeded = false; |
| 3323 | |
| 3324 | // See if the shared lock is needed |
| 3325 | pNode = m_pmplnExitedNodes; |
| 3326 | while (pNode) |
| 3327 | { |
| 3328 | if (SharedObject == pNode->psdSynchData->GetObjectDomain()) |
| 3329 | { |
| 3330 | fSharedSynchLockIsNeeded = true; |
| 3331 | break; |
| 3332 | } |
| 3333 | |
| 3334 | pNode = pNode->pNext; |
| 3335 | } |
| 3336 | |
| 3337 | if (fSharedSynchLockIsNeeded) |
| 3338 | { |
| 3339 | // Release the monitored processes lock |
| 3340 | InternalLeaveCriticalSection(pthrCurrent, |
| 3341 | &s_csMonitoredProcessesLock); |
| 3342 | fMonitoredProcessesLock = false; |
| 3343 | |
| 3344 | // Acquire the shared synch lock |
| 3345 | AcquireSharedSynchLock(pthrCurrent); |
| 3346 | fSharedSynchLock = true; |
| 3347 | |
| 3348 | // Acquire again the monitored processes lock |
| 3349 | InternalEnterCriticalSection(pthrCurrent, |
| 3350 | &s_csMonitoredProcessesLock); |
| 3351 | fMonitoredProcessesLock = true; |
| 3352 | } |
| 3353 | } |
| 3354 | |
| 3355 | // Start from the beginning of the exited processes list |
| 3356 | pNode = m_pmplnExitedNodes; |
| 3357 | |
| 3358 | // Invalidate the list |
| 3359 | m_pmplnExitedNodes = NULL; |
| 3360 | |
| 3361 | while (pNode) |
| 3362 | { |
| 3363 | pNext = pNode->pNext; |
| 3364 | |
| 3365 | TRACE("Process pid=%u exited with exitcode=%u\n" , |
| 3366 | pNode->dwPid, pNode->dwExitCode); |
| 3367 | |
| 3368 | // Store the exit code in the process local data |
| 3369 | if (pNode->fIsActualExitCode) |
| 3370 | { |
| 3371 | pNode->pProcLocalData->dwExitCode = pNode->dwExitCode; |
| 3372 | } |
| 3373 | |
| 3374 | // Set process status to PS_DONE |
| 3375 | pNode->pProcLocalData->ps = PS_DONE; |
| 3376 | |
| 3377 | // Set signal count |
| 3378 | pNode->psdSynchData->SetSignalCount(1); |
| 3379 | |
| 3380 | // Releasing all local waiters |
| 3381 | // |
| 3382 | // We just called directly in CSynchData::SetSignalCount(), so |
| 3383 | // we need to take care of waking up waiting threads according |
| 3384 | // to the Process object semantics (i.e. every thread must be |
| 3385 | // awakend). Anyway if a process object is shared among two or |
| 3386 | // more processes and threads from different processes are |
| 3387 | // waiting on it, the object will be registered for monitoring |
| 3388 | // in each of the processes. As result its signal count will |
| 3389 | // be set to one more times (which is not a problem, given the |
| 3390 | // process object semantics) and each worker thread will wake |
| 3391 | // up waiting threads. Therefore we need to make sure that each |
| 3392 | // worker wakes up only threads in its own process: we do that |
| 3393 | // by calling ReleaseAllLocalWaiters |
| 3394 | pNode->psdSynchData->ReleaseAllLocalWaiters(pthrCurrent); |
| 3395 | |
| 3396 | // We are done with pProcLocalData, so we can release the process object |
| 3397 | pNode->pProcessObject->ReleaseReference(pthrCurrent); |
| 3398 | |
| 3399 | // Release the reference to the SynchData |
| 3400 | pNode->psdSynchData->Release(pthrCurrent); |
| 3401 | |
| 3402 | // Delete the node |
| 3403 | InternalDelete(pNode); |
| 3404 | |
| 3405 | // Go to the next |
| 3406 | pNode = pNext; |
| 3407 | } |
| 3408 | } |
| 3409 | |
| 3410 | if (fMonitoredProcessesLock) |
| 3411 | { |
| 3412 | InternalLeaveCriticalSection(pthrCurrent, &s_csMonitoredProcessesLock); |
| 3413 | } |
| 3414 | |
| 3415 | if (fSharedSynchLock) |
| 3416 | { |
| 3417 | ReleaseSharedSynchLock(pthrCurrent); |
| 3418 | } |
| 3419 | |
| 3420 | if (fLocalSynchLock) |
| 3421 | { |
| 3422 | ReleaseLocalSynchLock(pthrCurrent); |
| 3423 | } |
| 3424 | |
| 3425 | return (lInitialNodeCount - lRemovingCount); |
| 3426 | } |
| 3427 | |
| 3428 | /*++ |
| 3429 | Method: |
| 3430 | CPalSynchronizationManager::DiscardMonitoredProcesses |
| 3431 | |
| 3432 | This method is called at shutdown time to discard all the registration |
| 3433 | for the processes currently monitored by the worker thread. |
| 3434 | This method must be called at shutdown time, otherwise some shared memory |
| 3435 | may be leaked at process shutdown. |
| 3436 | --*/ |
| 3437 | void CPalSynchronizationManager::DiscardMonitoredProcesses( |
| 3438 | CPalThread * pthrCurrent) |
| 3439 | { |
| 3440 | MonitoredProcessesListNode * pNode; |
| 3441 | |
| 3442 | // Grab the monitored processes lock |
| 3443 | InternalEnterCriticalSection(pthrCurrent, &s_csMonitoredProcessesLock); |
| 3444 | |
| 3445 | while (m_pmplnMonitoredProcesses) |
| 3446 | { |
| 3447 | pNode = m_pmplnMonitoredProcesses; |
| 3448 | m_pmplnMonitoredProcesses = pNode->pNext; |
| 3449 | pNode->pProcessObject->ReleaseReference(pthrCurrent); |
| 3450 | pNode->psdSynchData->Release(pthrCurrent); |
| 3451 | InternalDelete(pNode); |
| 3452 | } |
| 3453 | |
| 3454 | // Release the monitored processes lock |
| 3455 | InternalLeaveCriticalSection(pthrCurrent, &s_csMonitoredProcessesLock); |
| 3456 | } |
| 3457 | |
| 3458 | /*++ |
| 3459 | Method: |
| 3460 | CPalSynchronizationManager::CreateProcessPipe |
| 3461 | |
| 3462 | Creates the process pipe for the current process |
| 3463 | --*/ |
| 3464 | bool CPalSynchronizationManager::CreateProcessPipe() |
| 3465 | { |
| 3466 | bool fRet = true; |
| 3467 | #if HAVE_KQUEUE && !HAVE_BROKEN_FIFO_KEVENT |
| 3468 | int iKq = -1; |
| 3469 | #endif // HAVE_KQUEUE && !HAVE_BROKEN_FIFO_KEVENT |
| 3470 | |
| 3471 | #ifndef CORECLR |
| 3472 | int iPipeRd = -1, iPipeWr = -1; |
| 3473 | char szPipeFilename[MAX_PATH]; |
| 3474 | |
| 3475 | /* Create the blocking pipe */ |
| 3476 | if (!GetProcessPipeName(szPipeFilename, MAX_PATH, gPID)) |
| 3477 | { |
| 3478 | ERROR("couldn't get process pipe's name\n" ); |
| 3479 | szPipeFilename[0] = 0; |
| 3480 | fRet = false; |
| 3481 | goto CPP_exit; |
| 3482 | } |
| 3483 | |
| 3484 | /* create the pipe, with full access to the owner only */ |
| 3485 | if (mkfifo(szPipeFilename, S_IRWXU) == -1) |
| 3486 | { |
| 3487 | if (errno == EEXIST) |
| 3488 | { |
| 3489 | /* Some how no one deleted the pipe, perhaps it was left behind |
| 3490 | from a crash?? Delete the pipe and try again. */ |
| 3491 | if (-1 == unlink(szPipeFilename)) |
| 3492 | { |
| 3493 | ERROR( "Unable to delete the process pipe that was left behind.\n" ); |
| 3494 | fRet = false; |
| 3495 | goto CPP_exit; |
| 3496 | } |
| 3497 | else |
| 3498 | { |
| 3499 | if (mkfifo(szPipeFilename, S_IRWXU) == -1) |
| 3500 | { |
| 3501 | ERROR( "Still unable to create the process pipe...giving up!\n" ); |
| 3502 | fRet = false; |
| 3503 | goto CPP_exit; |
| 3504 | } |
| 3505 | } |
| 3506 | } |
| 3507 | else |
| 3508 | { |
| 3509 | ERROR( "Unable to create the process pipe.\n" ); |
| 3510 | fRet = false; |
| 3511 | goto CPP_exit; |
| 3512 | } |
| 3513 | } |
| 3514 | |
| 3515 | iPipeRd = InternalOpen(szPipeFilename, O_RDONLY | O_NONBLOCK); |
| 3516 | if (iPipeRd == -1) |
| 3517 | { |
| 3518 | ERROR("Unable to open the process pipe for read\n" ); |
| 3519 | fRet = false; |
| 3520 | goto CPP_exit; |
| 3521 | } |
| 3522 | |
| 3523 | iPipeWr = InternalOpen(szPipeFilename, O_WRONLY | O_NONBLOCK); |
| 3524 | if (iPipeWr == -1) |
| 3525 | { |
| 3526 | ERROR("Unable to open the process pipe for write\n" ); |
| 3527 | fRet = false; |
| 3528 | goto CPP_exit; |
| 3529 | } |
| 3530 | #else // !CORECLR |
| 3531 | int rgiPipe[] = { -1, -1 }; |
| 3532 | int pipeRv = |
| 3533 | #if HAVE_PIPE2 |
| 3534 | pipe2(rgiPipe, O_CLOEXEC); |
| 3535 | #else |
| 3536 | pipe(rgiPipe); |
| 3537 | #endif // HAVE_PIPE2 |
| 3538 | if (pipeRv == -1) |
| 3539 | { |
| 3540 | ERROR("Unable to create the process pipe\n" ); |
| 3541 | fRet = false; |
| 3542 | goto CPP_exit; |
| 3543 | } |
| 3544 | #if !HAVE_PIPE2 |
| 3545 | fcntl(rgiPipe[0], F_SETFD, FD_CLOEXEC); // make pipe non-inheritable, if possible |
| 3546 | fcntl(rgiPipe[1], F_SETFD, FD_CLOEXEC); |
| 3547 | #endif // !HAVE_PIPE2 |
| 3548 | #endif // !CORECLR |
| 3549 | |
| 3550 | #if HAVE_KQUEUE && !HAVE_BROKEN_FIFO_KEVENT |
| 3551 | iKq = kqueue(); |
| 3552 | if (-1 == iKq) |
| 3553 | { |
| 3554 | ERROR("Failed to create kqueue associated to process pipe\n" ); |
| 3555 | fRet = false; |
| 3556 | goto CPP_exit; |
| 3557 | } |
| 3558 | #endif // HAVE_KQUEUE |
| 3559 | |
| 3560 | CPP_exit: |
| 3561 | if (fRet) |
| 3562 | { |
| 3563 | // Succeeded |
| 3564 | #ifndef CORECLR |
| 3565 | m_iProcessPipeRead = iPipeRd; |
| 3566 | m_iProcessPipeWrite = iPipeWr; |
| 3567 | #else // !CORECLR |
| 3568 | m_iProcessPipeRead = rgiPipe[0]; |
| 3569 | m_iProcessPipeWrite = rgiPipe[1]; |
| 3570 | #endif // !CORECLR |
| 3571 | #if HAVE_KQUEUE && !HAVE_BROKEN_FIFO_KEVENT |
| 3572 | m_iKQueue = iKq; |
| 3573 | #endif // HAVE_KQUEUE |
| 3574 | } |
| 3575 | else |
| 3576 | { |
| 3577 | #ifndef CORECLR |
| 3578 | // Failed |
| 3579 | if (0 != szPipeFilename[0]) |
| 3580 | { |
| 3581 | unlink(szPipeFilename); |
| 3582 | } |
| 3583 | if (-1 != iPipeRd) |
| 3584 | { |
| 3585 | close(iPipeRd); |
| 3586 | } |
| 3587 | if (-1 != iPipeWr) |
| 3588 | { |
| 3589 | close(iPipeWr); |
| 3590 | } |
| 3591 | #else // !CORECLR |
| 3592 | if (-1 != rgiPipe[0]) |
| 3593 | { |
| 3594 | close(rgiPipe[0]); |
| 3595 | close(rgiPipe[1]); |
| 3596 | } |
| 3597 | #endif // !CORECLR |
| 3598 | #if HAVE_KQUEUE && !HAVE_BROKEN_FIFO_KEVENT |
| 3599 | if (-1 != iKq) |
| 3600 | { |
| 3601 | close(iKq); |
| 3602 | } |
| 3603 | #endif // HAVE_KQUEUE |
| 3604 | } |
| 3605 | |
| 3606 | return fRet; |
| 3607 | } |
| 3608 | |
| 3609 | /*++ |
| 3610 | Method: |
| 3611 | CPalSynchronizationManager::ShutdownProcessPipe |
| 3612 | |
| 3613 | Shuts down the process pipe and removes the fifo so that other processes |
| 3614 | can no longer open it. It also closes the local write end of the pipe (see |
| 3615 | comment below). From this moment on the worker thread will process any |
| 3616 | possible data already received in the pipe (but not yet consumed) and any |
| 3617 | data written by processes that still have a opened write end of this pipe; |
| 3618 | it will wait (with timeout) until the last remote process which has a write |
| 3619 | end opened closes it, and then it will yield to process shutdown. |
| 3620 | --*/ |
| 3621 | PAL_ERROR CPalSynchronizationManager::ShutdownProcessPipe() |
| 3622 | { |
| 3623 | PAL_ERROR palErr = NO_ERROR; |
| 3624 | #ifndef CORECLR |
| 3625 | char szPipeFilename[MAX_PATH]; |
| 3626 | |
| 3627 | if (GetProcessPipeName(szPipeFilename, MAX_PATH, gPID)) |
| 3628 | { |
| 3629 | if (unlink(szPipeFilename) == -1) |
| 3630 | { |
| 3631 | ERROR("Unable to unlink the pipe file name errno=%d (%s)\n" , |
| 3632 | errno, strerror(errno)); |
| 3633 | palErr = ERROR_INTERNAL_ERROR; |
| 3634 | // go on anyway |
| 3635 | } |
| 3636 | } |
| 3637 | else |
| 3638 | { |
| 3639 | ERROR("Couldn't get the process pipe's name\n" ); |
| 3640 | palErr = ERROR_INTERNAL_ERROR; |
| 3641 | // go on anyway |
| 3642 | } |
| 3643 | #endif // CORECLR |
| 3644 | |
| 3645 | if (-1 != m_iProcessPipeWrite) |
| 3646 | { |
| 3647 | // Closing the write end of the process pipe. When the last process |
| 3648 | // that still has a open write-fd on this pipe will close it, the |
| 3649 | // worker thread will receive an EOF; the worker thread will wait |
| 3650 | // for this EOF before shutting down, so to ensure to process any |
| 3651 | // possible data already written to the pipe by other processes |
| 3652 | // when the shutdown has been initiated in the current process. |
| 3653 | // Note: no need here to worry about platforms where close(pipe) |
| 3654 | // blocks on outstanding syscalls, since we are the only one using |
| 3655 | // this fd. |
| 3656 | TRACE("Closing the write end of process pipe\n" ); |
| 3657 | if (close(m_iProcessPipeWrite) == -1) |
| 3658 | { |
| 3659 | ERROR("Unable to close the write end of process pipe\n" ); |
| 3660 | palErr = ERROR_INTERNAL_ERROR; |
| 3661 | } |
| 3662 | |
| 3663 | m_iProcessPipeWrite = -1; |
| 3664 | } |
| 3665 | |
| 3666 | return palErr; |
| 3667 | } |
| 3668 | |
| 3669 | #ifndef CORECLR |
| 3670 | /*++ |
| 3671 | Method: |
| 3672 | CPalSynchronizationManager::GetProcessPipeName |
| 3673 | |
| 3674 | Returns the process pipe name for the target process (identified by its PID) |
| 3675 | --*/ |
| 3676 | bool CPalSynchronizationManager::GetProcessPipeName( |
| 3677 | LPSTR pDest, |
| 3678 | int iDestSize, |
| 3679 | DWORD dwPid) |
| 3680 | { |
| 3681 | CHAR config_dir[MAX_PATH]; |
| 3682 | int needed_size; |
| 3683 | |
| 3684 | _ASSERT_MSG(NULL != pDest, "Destination pointer is NULL!\n" ); |
| 3685 | _ASSERT_MSG(0 < iDestSize,"Invalid buffer size %d\n" , iDestSize); |
| 3686 | |
| 3687 | if (!PALGetPalConfigDir(config_dir, MAX_PATH)) |
| 3688 | { |
| 3689 | ASSERT("Unable to determine the PAL config directory.\n" ); |
| 3690 | pDest[0] = '\0'; |
| 3691 | return false; |
| 3692 | } |
| 3693 | needed_size = snprintf(pDest, iDestSize, "%s/%s-%u" , config_dir, |
| 3694 | PROCESS_PIPE_NAME_PREFIX, dwPid); |
| 3695 | pDest[iDestSize-1] = 0; |
| 3696 | if(needed_size >= iDestSize) |
| 3697 | { |
| 3698 | ERROR("threadpipe name needs %d characters, buffer only has room for " |
| 3699 | "%d\n" , needed_size, iDestSize+1); |
| 3700 | return false; |
| 3701 | } |
| 3702 | return true; |
| 3703 | } |
| 3704 | #endif // !CORECLR |
| 3705 | |
| 3706 | /*++ |
| 3707 | Method: |
| 3708 | CPalSynchronizationManager::AcquireProcessLock |
| 3709 | |
| 3710 | Acquires the local Process Lock (which currently is the same as the |
| 3711 | the local Process Synch Lock) |
| 3712 | --*/ |
| 3713 | void CPalSynchronizationManager::AcquireProcessLock(CPalThread * pthrCurrent) |
| 3714 | { |
| 3715 | AcquireLocalSynchLock(pthrCurrent); |
| 3716 | } |
| 3717 | |
| 3718 | /*++ |
| 3719 | Method: |
| 3720 | CPalSynchronizationManager::ReleaseProcessLock |
| 3721 | |
| 3722 | Releases the local Process Lock (which currently is the same as the |
| 3723 | the local Process Synch Lock) |
| 3724 | --*/ |
| 3725 | void CPalSynchronizationManager::ReleaseProcessLock(CPalThread * pthrCurrent) |
| 3726 | { |
| 3727 | ReleaseLocalSynchLock(pthrCurrent); |
| 3728 | } |
| 3729 | |
| 3730 | /*++ |
| 3731 | Method: |
| 3732 | CPalSynchronizationManager::PromoteObjectSynchData |
| 3733 | |
| 3734 | Promotes an object's synchdata from local to shared |
| 3735 | --*/ |
| 3736 | PAL_ERROR CPalSynchronizationManager::PromoteObjectSynchData( |
| 3737 | CPalThread *pthrCurrent, |
| 3738 | VOID *pvLocalSynchData, |
| 3739 | VOID **ppvSharedSynchData) |
| 3740 | { |
| 3741 | PAL_ERROR palError = NO_ERROR; |
| 3742 | CSynchData *psdLocal = reinterpret_cast<CSynchData *>(pvLocalSynchData); |
| 3743 | CSynchData *psdShared = NULL; |
| 3744 | SharedID shridSynchData = NULL; |
| 3745 | SharedID *rgshridWTLNodes = NULL; |
| 3746 | CObjectType *pot = NULL; |
| 3747 | ULONG ulcWaitingThreads; |
| 3748 | |
| 3749 | _ASSERTE(NULL != pthrCurrent); |
| 3750 | _ASSERTE(NULL != pvLocalSynchData); |
| 3751 | _ASSERTE(NULL != ppvSharedSynchData); |
| 3752 | _ASSERTE(ProcessLocalObject == psdLocal->GetObjectDomain()); |
| 3753 | |
| 3754 | #if _DEBUG |
| 3755 | |
| 3756 | // |
| 3757 | // TODO: Verify that the proper locks are held |
| 3758 | // |
| 3759 | #endif |
| 3760 | |
| 3761 | // |
| 3762 | // Allocate shared memory CSynchData and map to local memory |
| 3763 | // |
| 3764 | |
| 3765 | shridSynchData = m_cacheSHRSynchData.Get(pthrCurrent); |
| 3766 | if (NULL == shridSynchData) |
| 3767 | { |
| 3768 | ERROR("Unable to allocate shared memory\n" ); |
| 3769 | palError = ERROR_NOT_ENOUGH_MEMORY; |
| 3770 | goto POSD_exit; |
| 3771 | } |
| 3772 | |
| 3773 | psdShared = SharedIDToTypePointer(CSynchData, shridSynchData); |
| 3774 | _ASSERTE(NULL != psdShared); |
| 3775 | |
| 3776 | // |
| 3777 | // Allocate shared memory WaitingThreadListNodes if there are |
| 3778 | // any threads currently waiting on this object |
| 3779 | // |
| 3780 | |
| 3781 | ulcWaitingThreads = psdLocal->GetWaitingThreadCount(); |
| 3782 | if (0 < ulcWaitingThreads) |
| 3783 | { |
| 3784 | int i; |
| 3785 | |
| 3786 | rgshridWTLNodes = InternalNewArray<SharedID>(ulcWaitingThreads); |
| 3787 | if (NULL == rgshridWTLNodes) |
| 3788 | { |
| 3789 | palError = ERROR_OUTOFMEMORY; |
| 3790 | goto POSD_exit; |
| 3791 | } |
| 3792 | |
| 3793 | i = m_cacheSHRWTListNodes.Get( |
| 3794 | pthrCurrent, |
| 3795 | ulcWaitingThreads, |
| 3796 | rgshridWTLNodes |
| 3797 | ); |
| 3798 | |
| 3799 | if (static_cast<ULONG>(i) != ulcWaitingThreads) |
| 3800 | { |
| 3801 | for (i -= 1; i >= 0; i -= 1) |
| 3802 | { |
| 3803 | m_cacheSHRWTListNodes.Add(pthrCurrent, rgshridWTLNodes[i]); |
| 3804 | } |
| 3805 | |
| 3806 | palError = ERROR_OUTOFMEMORY; |
| 3807 | goto POSD_exit; |
| 3808 | } |
| 3809 | } |
| 3810 | |
| 3811 | // |
| 3812 | // If the synch data is for a process object we need to grab |
| 3813 | // the monitored process list lock here |
| 3814 | // |
| 3815 | |
| 3816 | pot = psdLocal->GetObjectType(); |
| 3817 | _ASSERTE(NULL != pot); |
| 3818 | |
| 3819 | if (otiProcess == pot->GetId()) |
| 3820 | { |
| 3821 | InternalEnterCriticalSection(pthrCurrent, &s_csMonitoredProcessesLock); |
| 3822 | } |
| 3823 | |
| 3824 | // |
| 3825 | // Copy pertinent CSynchData info to the shared memory version (and |
| 3826 | // initialize other members) |
| 3827 | // |
| 3828 | |
| 3829 | psdShared->SetSharedThis(shridSynchData); |
| 3830 | psdShared->SetObjectDomain(SharedObject); |
| 3831 | psdShared->SetObjectType(psdLocal->GetObjectType()); |
| 3832 | psdShared->SetSignalCount(psdLocal->GetSignalCount()); |
| 3833 | |
| 3834 | #ifdef SYNCH_STATISTICS |
| 3835 | psdShared->SetStatContentionCount(psdLocal->GetStatContentionCount()); |
| 3836 | psdShared->SetStatWaitCount(psdLocal->GetStatWaitCount()); |
| 3837 | #endif |
| 3838 | |
| 3839 | // |
| 3840 | // Rebuild the waiting thread list, and update the wait domain |
| 3841 | // for the waiting threads |
| 3842 | // |
| 3843 | |
| 3844 | psdShared->SetWTLHeadShrPtr(NULL); |
| 3845 | psdShared->SetWTLTailShrPtr(NULL); |
| 3846 | |
| 3847 | if (0 < ulcWaitingThreads) |
| 3848 | { |
| 3849 | WaitingThreadsListNode *pwtlnOld; |
| 3850 | WaitingThreadsListNode *pwtlnNew; |
| 3851 | int i = 0; |
| 3852 | |
| 3853 | for (pwtlnOld = psdLocal->GetWTLHeadPtr(); |
| 3854 | pwtlnOld != NULL; |
| 3855 | pwtlnOld = pwtlnOld->ptrNext.ptr, i += 1) |
| 3856 | { |
| 3857 | pwtlnNew = SharedIDToTypePointer( |
| 3858 | WaitingThreadsListNode, |
| 3859 | rgshridWTLNodes[i] |
| 3860 | ); |
| 3861 | |
| 3862 | _ASSERTE(NULL != pwtlnNew); |
| 3863 | |
| 3864 | pwtlnNew->shridSHRThis = rgshridWTLNodes[i]; |
| 3865 | pwtlnNew->ptrOwnerObjSynchData.shrid = shridSynchData; |
| 3866 | |
| 3867 | pwtlnNew->dwThreadId = pwtlnOld->dwThreadId; |
| 3868 | pwtlnNew->dwProcessId = pwtlnOld->dwProcessId; |
| 3869 | pwtlnNew->dwObjIndex = pwtlnOld->dwObjIndex; |
| 3870 | pwtlnNew->dwFlags = pwtlnOld->dwFlags | WTLN_FLAG_OWNER_OBJECT_IS_SHARED; |
| 3871 | pwtlnNew->shridWaitingState = pwtlnOld->shridWaitingState; |
| 3872 | pwtlnNew->ptwiWaitInfo = pwtlnOld->ptwiWaitInfo; |
| 3873 | |
| 3874 | psdShared->SharedWaiterEnqueue(rgshridWTLNodes[i], false); |
| 3875 | psdShared->AddRef(); |
| 3876 | |
| 3877 | _ASSERTE(pwtlnOld = pwtlnOld->ptwiWaitInfo->rgpWTLNodes[pwtlnOld->dwObjIndex]); |
| 3878 | pwtlnNew->ptwiWaitInfo->rgpWTLNodes[pwtlnNew->dwObjIndex] = pwtlnNew; |
| 3879 | |
| 3880 | pwtlnNew->ptwiWaitInfo->lSharedObjCount += 1; |
| 3881 | if (pwtlnNew->ptwiWaitInfo->lSharedObjCount |
| 3882 | == pwtlnNew->ptwiWaitInfo->lObjCount) |
| 3883 | { |
| 3884 | pwtlnNew->ptwiWaitInfo->wdWaitDomain = SharedWait; |
| 3885 | } |
| 3886 | else |
| 3887 | { |
| 3888 | _ASSERTE(pwtlnNew->ptwiWaitInfo->lSharedObjCount |
| 3889 | < pwtlnNew->ptwiWaitInfo->lObjCount); |
| 3890 | |
| 3891 | pwtlnNew->ptwiWaitInfo->wdWaitDomain = MixedWait; |
| 3892 | } |
| 3893 | } |
| 3894 | |
| 3895 | _ASSERTE(psdShared->GetWaitingThreadCount() == ulcWaitingThreads); |
| 3896 | } |
| 3897 | |
| 3898 | // |
| 3899 | // If the object tracks ownership and has a current owner update |
| 3900 | // the OwnedObjectsListNode to point to the shared memory synch |
| 3901 | // data |
| 3902 | // |
| 3903 | |
| 3904 | if (CObjectType::OwnershipTracked == pot->GetOwnershipSemantics()) |
| 3905 | { |
| 3906 | OwnedObjectsListNode *pooln; |
| 3907 | |
| 3908 | pooln = psdLocal->GetOwnershipListNode(); |
| 3909 | if (NULL != pooln) |
| 3910 | { |
| 3911 | pooln->pPalObjSynchData = psdShared; |
| 3912 | psdShared->SetOwnershipListNode(pooln); |
| 3913 | psdShared->AddRef(); |
| 3914 | |
| 3915 | // |
| 3916 | // Copy over other ownership info. |
| 3917 | // |
| 3918 | |
| 3919 | psdShared->SetOwner(psdLocal->GetOwnerThread()); |
| 3920 | psdShared->SetOwnershipCount(psdLocal->GetOwnershipCount()); |
| 3921 | _ASSERTE(!psdShared->IsAbandoned()); |
| 3922 | } |
| 3923 | else |
| 3924 | { |
| 3925 | _ASSERTE(0 == psdLocal->GetOwnershipCount()); |
| 3926 | _ASSERTE(0 == psdShared->GetOwnershipCount()); |
| 3927 | psdShared->SetAbandoned(psdLocal->IsAbandoned()); |
| 3928 | } |
| 3929 | } |
| 3930 | |
| 3931 | // |
| 3932 | // If the synch data is for a process object update the monitored |
| 3933 | // process list nodes to point to the shared memory object data, |
| 3934 | // and release the monitored process list lock |
| 3935 | // |
| 3936 | |
| 3937 | if (otiProcess == pot->GetId()) |
| 3938 | { |
| 3939 | MonitoredProcessesListNode *pmpn; |
| 3940 | |
| 3941 | pmpn = m_pmplnMonitoredProcesses; |
| 3942 | while (NULL != pmpn) |
| 3943 | { |
| 3944 | if (psdLocal == pmpn->psdSynchData) |
| 3945 | { |
| 3946 | pmpn->psdSynchData = psdShared; |
| 3947 | psdShared->AddRef(); |
| 3948 | } |
| 3949 | |
| 3950 | pmpn = pmpn->pNext; |
| 3951 | } |
| 3952 | |
| 3953 | pmpn = m_pmplnExitedNodes; |
| 3954 | while (NULL != pmpn) |
| 3955 | { |
| 3956 | if (psdLocal == pmpn->psdSynchData) |
| 3957 | { |
| 3958 | pmpn->psdSynchData = psdShared; |
| 3959 | psdShared->AddRef(); |
| 3960 | } |
| 3961 | |
| 3962 | pmpn = pmpn->pNext; |
| 3963 | } |
| 3964 | |
| 3965 | InternalLeaveCriticalSection(pthrCurrent, &s_csMonitoredProcessesLock); |
| 3966 | } |
| 3967 | |
| 3968 | *ppvSharedSynchData = reinterpret_cast<VOID*>(shridSynchData); |
| 3969 | |
| 3970 | // |
| 3971 | // Free the local memory items to caches |
| 3972 | // |
| 3973 | |
| 3974 | if (0 < ulcWaitingThreads) |
| 3975 | { |
| 3976 | WaitingThreadsListNode *pwtln; |
| 3977 | |
| 3978 | pwtln = psdLocal->GetWTLHeadPtr(); |
| 3979 | while (NULL != pwtln) |
| 3980 | { |
| 3981 | WaitingThreadsListNode *pwtlnTemp; |
| 3982 | |
| 3983 | pwtlnTemp = pwtln; |
| 3984 | pwtln = pwtln->ptrNext.ptr; |
| 3985 | m_cacheWTListNodes.Add(pthrCurrent, pwtlnTemp); |
| 3986 | } |
| 3987 | } |
| 3988 | |
| 3989 | m_cacheSynchData.Add(pthrCurrent, psdLocal); |
| 3990 | |
| 3991 | POSD_exit: |
| 3992 | |
| 3993 | if (NULL != rgshridWTLNodes) |
| 3994 | { |
| 3995 | InternalDeleteArray(rgshridWTLNodes); |
| 3996 | } |
| 3997 | |
| 3998 | return palError; |
| 3999 | } |
| 4000 | |
| 4001 | |
| 4002 | ///////////////////////////// |
| 4003 | // // |
| 4004 | // _ThreadNativeWaitData // |
| 4005 | // // |
| 4006 | ///////////////////////////// |
| 4007 | |
| 4008 | _ThreadNativeWaitData::~_ThreadNativeWaitData() |
| 4009 | { |
| 4010 | if (fInitialized) |
| 4011 | { |
| 4012 | fInitialized = false; |
| 4013 | pthread_cond_destroy(&cond); |
| 4014 | pthread_mutex_destroy(&mutex); |
| 4015 | } |
| 4016 | } |
| 4017 | |
| 4018 | |
| 4019 | ////////////////////////////////// |
| 4020 | // // |
| 4021 | // CThreadSynchronizationInfo // |
| 4022 | // // |
| 4023 | ////////////////////////////////// |
| 4024 | |
| 4025 | CThreadSynchronizationInfo::CThreadSynchronizationInfo() : |
| 4026 | m_tsThreadState(TS_IDLE), |
| 4027 | m_shridWaitAwakened(NULL), |
| 4028 | m_lLocalSynchLockCount(0), |
| 4029 | m_lSharedSynchLockCount(0), |
| 4030 | m_ownedNamedMutexListHead(nullptr) |
| 4031 | { |
| 4032 | InitializeListHead(&m_leOwnedObjsList); |
| 4033 | InitializeCriticalSection(&m_ownedNamedMutexListLock); |
| 4034 | |
| 4035 | #ifdef SYNCHMGR_SUSPENSION_SAFE_CONDITION_SIGNALING |
| 4036 | m_lPendingSignalingCount = 0; |
| 4037 | InitializeListHead(&m_lePendingSignalingsOverflowList); |
| 4038 | #endif // SYNCHMGR_SUSPENSION_SAFE_CONDITION_SIGNALING |
| 4039 | } |
| 4040 | |
| 4041 | CThreadSynchronizationInfo::~CThreadSynchronizationInfo() |
| 4042 | { |
| 4043 | DeleteCriticalSection(&m_ownedNamedMutexListLock); |
| 4044 | if (NULL != m_shridWaitAwakened) |
| 4045 | { |
| 4046 | free(m_shridWaitAwakened); |
| 4047 | } |
| 4048 | } |
| 4049 | |
| 4050 | void CThreadSynchronizationInfo::AcquireNativeWaitLock() |
| 4051 | { |
| 4052 | #if !SYNCHMGR_SUSPENSION_SAFE_CONDITION_SIGNALING |
| 4053 | int iRet; |
| 4054 | iRet = pthread_mutex_lock(&m_tnwdNativeData.mutex); |
| 4055 | _ASSERT_MSG(0 == iRet, "pthread_mutex_lock failed with error=%d\n" , iRet); |
| 4056 | #endif // !SYNCHMGR_SUSPENSION_SAFE_CONDITION_SIGNALING |
| 4057 | } |
| 4058 | |
| 4059 | void CThreadSynchronizationInfo::ReleaseNativeWaitLock() |
| 4060 | { |
| 4061 | #if !SYNCHMGR_SUSPENSION_SAFE_CONDITION_SIGNALING |
| 4062 | int iRet; |
| 4063 | iRet = pthread_mutex_unlock(&m_tnwdNativeData.mutex); |
| 4064 | _ASSERT_MSG(0 == iRet, "pthread_mutex_unlock failed with error=%d\n" , iRet); |
| 4065 | #endif // !SYNCHMGR_SUSPENSION_SAFE_CONDITION_SIGNALING |
| 4066 | } |
| 4067 | |
| 4068 | bool CThreadSynchronizationInfo::TryAcquireNativeWaitLock() |
| 4069 | { |
| 4070 | bool fRet = true; |
| 4071 | #if !SYNCHMGR_SUSPENSION_SAFE_CONDITION_SIGNALING |
| 4072 | int iRet; |
| 4073 | iRet = pthread_mutex_trylock(&m_tnwdNativeData.mutex); |
| 4074 | _ASSERT_MSG(0 == iRet || EBUSY == iRet, |
| 4075 | "pthread_mutex_trylock failed with error=%d\n" , iRet); |
| 4076 | fRet = (0 == iRet); |
| 4077 | #endif // !SYNCHMGR_SUSPENSION_SAFE_CONDITION_SIGNALING |
| 4078 | return fRet; |
| 4079 | } |
| 4080 | |
| 4081 | /*++ |
| 4082 | Method: |
| 4083 | CThreadSynchronizationInfo::InitializePreCreate |
| 4084 | |
| 4085 | Part of CThreadSynchronizationInfo's initialization to be carried out |
| 4086 | before actual thread creation |
| 4087 | --*/ |
| 4088 | PAL_ERROR CThreadSynchronizationInfo::InitializePreCreate(void) |
| 4089 | { |
| 4090 | PAL_ERROR palErr = NO_ERROR; |
| 4091 | DWORD * pdwWaitState = NULL; |
| 4092 | int iRet; |
| 4093 | const int MaxUnavailableResourceRetries = 10; |
| 4094 | int iEagains; |
| 4095 | pthread_condattr_t attrs; |
| 4096 | pthread_condattr_t *attrsPtr = nullptr; |
| 4097 | |
| 4098 | m_shridWaitAwakened = malloc(sizeof(DWORD)); |
| 4099 | if (NULL == m_shridWaitAwakened) |
| 4100 | { |
| 4101 | ERROR("Fail allocating thread wait status shared object\n" ); |
| 4102 | palErr = ERROR_NOT_ENOUGH_MEMORY; |
| 4103 | goto IPrC_exit; |
| 4104 | } |
| 4105 | |
| 4106 | pdwWaitState = SharedIDToTypePointer(DWORD, |
| 4107 | m_shridWaitAwakened); |
| 4108 | |
| 4109 | _ASSERT_MSG(NULL != pdwWaitState, |
| 4110 | "Unable to map shared wait state: bad shared ID [shrid=%p]\n" , (VOID*)m_shridWaitAwakened); |
| 4111 | |
| 4112 | VolatileStore<DWORD>(pdwWaitState, TWS_ACTIVE); |
| 4113 | m_tsThreadState = TS_STARTING; |
| 4114 | |
| 4115 | #if HAVE_CLOCK_MONOTONIC && HAVE_PTHREAD_CONDATTR_SETCLOCK |
| 4116 | attrsPtr = &attrs; |
| 4117 | iRet = pthread_condattr_init(&attrs); |
| 4118 | if (0 != iRet) |
| 4119 | { |
| 4120 | ERROR("Failed to initialize thread synchronization condition attribute " |
| 4121 | "[error=%d (%s)]\n" , iRet, strerror(iRet)); |
| 4122 | if (ENOMEM == iRet) |
| 4123 | { |
| 4124 | palErr = ERROR_NOT_ENOUGH_MEMORY; |
| 4125 | } |
| 4126 | else |
| 4127 | { |
| 4128 | palErr = ERROR_INTERNAL_ERROR; |
| 4129 | } |
| 4130 | goto IPrC_exit; |
| 4131 | } |
| 4132 | |
| 4133 | // Ensure that the pthread_cond_timedwait will use CLOCK_MONOTONIC |
| 4134 | iRet = pthread_condattr_setclock(&attrs, CLOCK_MONOTONIC); |
| 4135 | if (0 != iRet) |
| 4136 | { |
| 4137 | ERROR("Failed set thread synchronization condition timed wait clock " |
| 4138 | "[error=%d (%s)]\n" , iRet, strerror(iRet)); |
| 4139 | palErr = ERROR_INTERNAL_ERROR; |
| 4140 | pthread_condattr_destroy(&attrs); |
| 4141 | goto IPrC_exit; |
| 4142 | } |
| 4143 | #endif // HAVE_CLOCK_MONOTONIC && HAVE_PTHREAD_CONDATTR_SETCLOCK |
| 4144 | |
| 4145 | iEagains = 0; |
| 4146 | Mutex_retry: |
| 4147 | iRet = pthread_mutex_init(&m_tnwdNativeData.mutex, NULL); |
| 4148 | if (0 != iRet) |
| 4149 | { |
| 4150 | ERROR("Failed creating thread synchronization mutex [error=%d (%s)]\n" , iRet, strerror(iRet)); |
| 4151 | if (EAGAIN == iRet && MaxUnavailableResourceRetries >= ++iEagains) |
| 4152 | { |
| 4153 | poll(NULL, 0, std::min(100,10*iEagains)); |
| 4154 | goto Mutex_retry; |
| 4155 | } |
| 4156 | else if (ENOMEM == iRet) |
| 4157 | { |
| 4158 | palErr = ERROR_NOT_ENOUGH_MEMORY; |
| 4159 | } |
| 4160 | else |
| 4161 | { |
| 4162 | palErr = ERROR_INTERNAL_ERROR; |
| 4163 | } |
| 4164 | |
| 4165 | goto IPrC_exit; |
| 4166 | } |
| 4167 | |
| 4168 | iEagains = 0; |
| 4169 | Cond_retry: |
| 4170 | |
| 4171 | iRet = pthread_cond_init(&m_tnwdNativeData.cond, attrsPtr); |
| 4172 | |
| 4173 | if (0 != iRet) |
| 4174 | { |
| 4175 | ERROR("Failed creating thread synchronization condition " |
| 4176 | "[error=%d (%s)]\n" , iRet, strerror(iRet)); |
| 4177 | if (EAGAIN == iRet && MaxUnavailableResourceRetries >= ++iEagains) |
| 4178 | { |
| 4179 | poll(NULL, 0, std::min(100,10*iEagains)); |
| 4180 | goto Cond_retry; |
| 4181 | } |
| 4182 | else if (ENOMEM == iRet) |
| 4183 | { |
| 4184 | palErr = ERROR_NOT_ENOUGH_MEMORY; |
| 4185 | } |
| 4186 | else |
| 4187 | { |
| 4188 | palErr = ERROR_INTERNAL_ERROR; |
| 4189 | } |
| 4190 | pthread_mutex_destroy(&m_tnwdNativeData.mutex); |
| 4191 | goto IPrC_exit; |
| 4192 | } |
| 4193 | |
| 4194 | m_tnwdNativeData.fInitialized = true; |
| 4195 | |
| 4196 | IPrC_exit: |
| 4197 | if (attrsPtr != nullptr) |
| 4198 | { |
| 4199 | pthread_condattr_destroy(attrsPtr); |
| 4200 | } |
| 4201 | if (NO_ERROR != palErr) |
| 4202 | { |
| 4203 | m_tsThreadState = TS_FAILED; |
| 4204 | } |
| 4205 | return palErr; |
| 4206 | } |
| 4207 | |
| 4208 | /*++ |
| 4209 | Method: |
| 4210 | CThreadSynchronizationInfo::InitializePostCreate |
| 4211 | |
| 4212 | Part of CThreadSynchronizationInfo's initialization to be carried out |
| 4213 | after actual thread creation |
| 4214 | --*/ |
| 4215 | PAL_ERROR CThreadSynchronizationInfo::InitializePostCreate( |
| 4216 | CPalThread *pthrCurrent, |
| 4217 | SIZE_T threadId, |
| 4218 | DWORD dwLwpId) |
| 4219 | { |
| 4220 | PAL_ERROR palErr = NO_ERROR; |
| 4221 | |
| 4222 | if (TS_FAILED == m_tsThreadState) |
| 4223 | { |
| 4224 | palErr = ERROR_INTERNAL_ERROR; |
| 4225 | } |
| 4226 | |
| 4227 | m_twiWaitInfo.pthrOwner = pthrCurrent; |
| 4228 | |
| 4229 | return palErr; |
| 4230 | } |
| 4231 | |
| 4232 | |
| 4233 | /*++ |
| 4234 | Method: |
| 4235 | CThreadSynchronizationInfo::AddObjectToOwnedList |
| 4236 | |
| 4237 | Adds an object to the list of currently owned objects. |
| 4238 | --*/ |
| 4239 | void CThreadSynchronizationInfo::AddObjectToOwnedList(POwnedObjectsListNode pooln) |
| 4240 | { |
| 4241 | InsertTailList(&m_leOwnedObjsList, &pooln->Link); |
| 4242 | } |
| 4243 | |
| 4244 | /*++ |
| 4245 | Method: |
| 4246 | CThreadSynchronizationInfo::RemoveObjectFromOwnedList |
| 4247 | |
| 4248 | Removes an object from the list of currently owned objects. |
| 4249 | --*/ |
| 4250 | void CThreadSynchronizationInfo::RemoveObjectFromOwnedList(POwnedObjectsListNode pooln) |
| 4251 | { |
| 4252 | RemoveEntryList(&pooln->Link); |
| 4253 | } |
| 4254 | |
| 4255 | /*++ |
| 4256 | Method: |
| 4257 | CThreadSynchronizationInfo::RemoveFirstObjectFromOwnedList |
| 4258 | |
| 4259 | Removes the first object from the list of currently owned objects. |
| 4260 | --*/ |
| 4261 | POwnedObjectsListNode CThreadSynchronizationInfo::RemoveFirstObjectFromOwnedList() |
| 4262 | { |
| 4263 | OwnedObjectsListNode * poolnItem; |
| 4264 | |
| 4265 | if (IsListEmpty(&m_leOwnedObjsList)) |
| 4266 | { |
| 4267 | poolnItem = NULL; |
| 4268 | } |
| 4269 | else |
| 4270 | { |
| 4271 | PLIST_ENTRY pLink = RemoveHeadList(&m_leOwnedObjsList); |
| 4272 | poolnItem = CONTAINING_RECORD(pLink, OwnedObjectsListNode, Link); |
| 4273 | } |
| 4274 | |
| 4275 | return poolnItem; |
| 4276 | } |
| 4277 | |
| 4278 | void CThreadSynchronizationInfo::AddOwnedNamedMutex(NamedMutexProcessData *processData) |
| 4279 | { |
| 4280 | _ASSERTE(processData != nullptr); |
| 4281 | _ASSERTE(processData->GetNextInThreadOwnedNamedMutexList() == nullptr); |
| 4282 | |
| 4283 | EnterCriticalSection(&m_ownedNamedMutexListLock); |
| 4284 | processData->SetNextInThreadOwnedNamedMutexList(m_ownedNamedMutexListHead); |
| 4285 | m_ownedNamedMutexListHead = processData; |
| 4286 | LeaveCriticalSection(&m_ownedNamedMutexListLock); |
| 4287 | } |
| 4288 | |
| 4289 | void CThreadSynchronizationInfo::RemoveOwnedNamedMutex(NamedMutexProcessData *processData) |
| 4290 | { |
| 4291 | _ASSERTE(processData != nullptr); |
| 4292 | |
| 4293 | EnterCriticalSection(&m_ownedNamedMutexListLock); |
| 4294 | if (m_ownedNamedMutexListHead == processData) |
| 4295 | { |
| 4296 | m_ownedNamedMutexListHead = processData->GetNextInThreadOwnedNamedMutexList(); |
| 4297 | processData->SetNextInThreadOwnedNamedMutexList(nullptr); |
| 4298 | } |
| 4299 | else |
| 4300 | { |
| 4301 | bool found = false; |
| 4302 | for (NamedMutexProcessData |
| 4303 | *previous = m_ownedNamedMutexListHead, |
| 4304 | *current = previous->GetNextInThreadOwnedNamedMutexList(); |
| 4305 | current != nullptr; |
| 4306 | previous = current, current = current->GetNextInThreadOwnedNamedMutexList()) |
| 4307 | { |
| 4308 | if (current == processData) |
| 4309 | { |
| 4310 | found = true; |
| 4311 | previous->SetNextInThreadOwnedNamedMutexList(current->GetNextInThreadOwnedNamedMutexList()); |
| 4312 | current->SetNextInThreadOwnedNamedMutexList(nullptr); |
| 4313 | break; |
| 4314 | } |
| 4315 | } |
| 4316 | _ASSERTE(found); |
| 4317 | } |
| 4318 | LeaveCriticalSection(&m_ownedNamedMutexListLock); |
| 4319 | } |
| 4320 | |
| 4321 | NamedMutexProcessData *CThreadSynchronizationInfo::RemoveFirstOwnedNamedMutex() |
| 4322 | { |
| 4323 | EnterCriticalSection(&m_ownedNamedMutexListLock); |
| 4324 | NamedMutexProcessData *processData = m_ownedNamedMutexListHead; |
| 4325 | if (processData != nullptr) |
| 4326 | { |
| 4327 | m_ownedNamedMutexListHead = processData->GetNextInThreadOwnedNamedMutexList(); |
| 4328 | processData->SetNextInThreadOwnedNamedMutexList(nullptr); |
| 4329 | } |
| 4330 | LeaveCriticalSection(&m_ownedNamedMutexListLock); |
| 4331 | return processData; |
| 4332 | } |
| 4333 | |
| 4334 | bool CThreadSynchronizationInfo::OwnsNamedMutex(NamedMutexProcessData *processData) |
| 4335 | { |
| 4336 | EnterCriticalSection(&m_ownedNamedMutexListLock); |
| 4337 | bool found = false; |
| 4338 | for (NamedMutexProcessData *current = m_ownedNamedMutexListHead; |
| 4339 | current != nullptr; |
| 4340 | current = current->GetNextInThreadOwnedNamedMutexList()) |
| 4341 | { |
| 4342 | if (current == processData) |
| 4343 | { |
| 4344 | found = true; |
| 4345 | break; |
| 4346 | } |
| 4347 | } |
| 4348 | LeaveCriticalSection(&m_ownedNamedMutexListLock); |
| 4349 | return found; |
| 4350 | } |
| 4351 | |
| 4352 | #if SYNCHMGR_SUSPENSION_SAFE_CONDITION_SIGNALING |
| 4353 | |
| 4354 | /*++ |
| 4355 | Method: |
| 4356 | CThreadSynchronizationInfo::RunDeferredThreadConditionSignalings |
| 4357 | |
| 4358 | Carries out all the pending condition signalings for the current thread. |
| 4359 | --*/ |
| 4360 | PAL_ERROR CThreadSynchronizationInfo::RunDeferredThreadConditionSignalings() |
| 4361 | { |
| 4362 | PAL_ERROR palErr = NO_ERROR; |
| 4363 | |
| 4364 | _ASSERTE(0 <= m_lPendingSignalingCount); |
| 4365 | |
| 4366 | if (0 < m_lPendingSignalingCount) |
| 4367 | { |
| 4368 | LONG lArrayPendingSignalingCount = std::min(PendingSignalingsArraySize, m_lPendingSignalingCount); |
| 4369 | LONG lIdx = 0; |
| 4370 | PAL_ERROR palTempErr; |
| 4371 | |
| 4372 | // Signal all the pending signalings from the array |
| 4373 | for (lIdx = 0; lIdx < lArrayPendingSignalingCount; lIdx++) |
| 4374 | { |
| 4375 | // Do the actual signaling |
| 4376 | palTempErr = CPalSynchronizationManager::SignalThreadCondition( |
| 4377 | m_rgpthrPendingSignalings[lIdx]->synchronizationInfo.GetNativeData()); |
| 4378 | if (NO_ERROR != palTempErr) |
| 4379 | { |
| 4380 | palErr = palTempErr; |
| 4381 | } |
| 4382 | |
| 4383 | // Release the thread reference |
| 4384 | m_rgpthrPendingSignalings[lIdx]->ReleaseThreadReference(); |
| 4385 | } |
| 4386 | |
| 4387 | // Signal any pending signalings from the array overflow list |
| 4388 | if (m_lPendingSignalingCount > PendingSignalingsArraySize) |
| 4389 | { |
| 4390 | PLIST_ENTRY pLink; |
| 4391 | DeferredSignalingListNode * pdsln; |
| 4392 | |
| 4393 | while (!IsListEmpty(&m_lePendingSignalingsOverflowList)) |
| 4394 | { |
| 4395 | // Remove a node from the head of the queue |
| 4396 | // Note: no need to synchronize the access to this list since |
| 4397 | // it is meant to be accessed only by the owner thread. |
| 4398 | pLink = RemoveHeadList(&m_lePendingSignalingsOverflowList); |
| 4399 | pdsln = CONTAINING_RECORD(pLink, |
| 4400 | DeferredSignalingListNode, |
| 4401 | Link); |
| 4402 | |
| 4403 | // Do the actual signaling |
| 4404 | palTempErr = CPalSynchronizationManager::SignalThreadCondition( |
| 4405 | pdsln->pthrTarget->synchronizationInfo.GetNativeData()); |
| 4406 | if (NO_ERROR != palTempErr) |
| 4407 | { |
| 4408 | palErr = palTempErr; |
| 4409 | } |
| 4410 | |
| 4411 | // Release the thread reference |
| 4412 | pdsln->pthrTarget->ReleaseThreadReference(); |
| 4413 | |
| 4414 | // Delete the node |
| 4415 | InternalDelete(pdsln); |
| 4416 | |
| 4417 | lIdx += 1; |
| 4418 | } |
| 4419 | |
| 4420 | _ASSERTE(lIdx == m_lPendingSignalingCount); |
| 4421 | } |
| 4422 | |
| 4423 | // Reset the counter of pending signalings for this thread |
| 4424 | m_lPendingSignalingCount = 0; |
| 4425 | } |
| 4426 | |
| 4427 | return palErr; |
| 4428 | } |
| 4429 | |
| 4430 | #endif // SYNCHMGR_SUSPENSION_SAFE_CONDITION_SIGNALING |
| 4431 | |
| 4432 | /*++ |
| 4433 | Method: |
| 4434 | CPalSynchronizationManager::HasProcessExited |
| 4435 | |
| 4436 | Tests whether or not a process has exited |
| 4437 | --*/ |
| 4438 | bool CPalSynchronizationManager::HasProcessExited( |
| 4439 | DWORD dwPid, |
| 4440 | DWORD * pdwExitCode, |
| 4441 | bool * pfIsActualExitCode) |
| 4442 | { |
| 4443 | pid_t pidWaitRetval; |
| 4444 | int iStatus; |
| 4445 | bool fRet = false; |
| 4446 | |
| 4447 | TRACE("Looking for status of process; trying wait()\n" ); |
| 4448 | |
| 4449 | while(1) |
| 4450 | { |
| 4451 | /* try to get state of process, using non-blocking call */ |
| 4452 | pidWaitRetval = waitpid(dwPid, &iStatus, WNOHANG); |
| 4453 | |
| 4454 | if ((DWORD)pidWaitRetval == dwPid) |
| 4455 | { |
| 4456 | /* success; get the exit code */ |
| 4457 | if (WIFEXITED(iStatus)) |
| 4458 | { |
| 4459 | *pdwExitCode = WEXITSTATUS(iStatus); |
| 4460 | *pfIsActualExitCode = true; |
| 4461 | TRACE("Exit code was %d\n" , *pdwExitCode); |
| 4462 | } |
| 4463 | else |
| 4464 | { |
| 4465 | WARN("Process terminated without exiting; can't get exit " |
| 4466 | "code. Assuming EXIT_FAILURE.\n" ); |
| 4467 | *pfIsActualExitCode = true; |
| 4468 | *pdwExitCode = EXIT_FAILURE; |
| 4469 | } |
| 4470 | |
| 4471 | fRet = true; |
| 4472 | } |
| 4473 | else if (0 == pidWaitRetval) |
| 4474 | { |
| 4475 | // The process is still running. |
| 4476 | TRACE("Process %#x is still active.\n" , dwPid); |
| 4477 | } |
| 4478 | else |
| 4479 | { |
| 4480 | // A legitimate cause of failure is EINTR; if this happens we |
| 4481 | // have to try again. A second legitimate cause is ECHILD, which |
| 4482 | // happens if we're trying to retrieve the status of a currently- |
| 4483 | // running process that isn't a child of this process. |
| 4484 | if(EINTR == errno) |
| 4485 | { |
| 4486 | TRACE("waitpid() failed with EINTR; re-waiting\n" ); |
| 4487 | continue; |
| 4488 | } |
| 4489 | else if (ECHILD == errno) |
| 4490 | { |
| 4491 | TRACE("waitpid() failed with ECHILD; calling kill instead\n" ); |
| 4492 | if (kill(dwPid, 0) != 0) |
| 4493 | { |
| 4494 | if (ESRCH == errno) |
| 4495 | { |
| 4496 | WARN("kill() failed with ESRCH, i.e. target " |
| 4497 | "process exited and it wasn't a child, " |
| 4498 | "so can't get the exit code, assuming " |
| 4499 | "it was 0.\n" ); |
| 4500 | *pfIsActualExitCode = false; |
| 4501 | *pdwExitCode = 0; |
| 4502 | } |
| 4503 | else |
| 4504 | { |
| 4505 | ERROR("kill(pid, 0) failed; errno is %d (%s)\n" , |
| 4506 | errno, strerror(errno)); |
| 4507 | *pfIsActualExitCode = false; |
| 4508 | *pdwExitCode = EXIT_FAILURE; |
| 4509 | } |
| 4510 | |
| 4511 | fRet = true; |
| 4512 | } |
| 4513 | } |
| 4514 | else |
| 4515 | { |
| 4516 | // Ignoring unexpected waitpid errno and assuming that |
| 4517 | // the process is still running |
| 4518 | ERROR("waitpid(pid=%u) failed with errno=%d (%s)\n" , |
| 4519 | dwPid, errno, strerror(errno)); |
| 4520 | } |
| 4521 | } |
| 4522 | |
| 4523 | // Break out of the loop in all cases except EINTR. |
| 4524 | break; |
| 4525 | } |
| 4526 | |
| 4527 | return fRet; |
| 4528 | } |
| 4529 | |
| 4530 | /*++ |
| 4531 | Method: |
| 4532 | CPalSynchronizationManager::InterlockedAwaken |
| 4533 | |
| 4534 | Tries to change the target wait status to 'active' in an interlocked fashion |
| 4535 | --*/ |
| 4536 | bool CPalSynchronizationManager::InterlockedAwaken( |
| 4537 | DWORD *pWaitState, |
| 4538 | bool fAlertOnly) |
| 4539 | { |
| 4540 | DWORD dwPrevState; |
| 4541 | |
| 4542 | dwPrevState = InterlockedCompareExchange((LONG *)pWaitState, TWS_ACTIVE, TWS_ALERTABLE); |
| 4543 | if (TWS_ALERTABLE != dwPrevState) |
| 4544 | { |
| 4545 | if (fAlertOnly) |
| 4546 | { |
| 4547 | return false; |
| 4548 | } |
| 4549 | |
| 4550 | dwPrevState = InterlockedCompareExchange((LONG *)pWaitState, TWS_ACTIVE, TWS_WAITING); |
| 4551 | if (TWS_WAITING == dwPrevState) |
| 4552 | { |
| 4553 | return true; |
| 4554 | } |
| 4555 | } |
| 4556 | else |
| 4557 | { |
| 4558 | return true; |
| 4559 | } |
| 4560 | |
| 4561 | return false; |
| 4562 | } |
| 4563 | |
| 4564 | /*++ |
| 4565 | Method: |
| 4566 | CPalSynchronizationManager::GetAbsoluteTimeout |
| 4567 | |
| 4568 | Converts a relative timeout to an absolute one. |
| 4569 | --*/ |
| 4570 | PAL_ERROR CPalSynchronizationManager::GetAbsoluteTimeout(DWORD dwTimeout, struct timespec * ptsAbsTmo, BOOL fPreferMonotonicClock) |
| 4571 | { |
| 4572 | PAL_ERROR palErr = NO_ERROR; |
| 4573 | int iRet; |
| 4574 | |
| 4575 | #if HAVE_CLOCK_MONOTONIC && HAVE_PTHREAD_CONDATTR_SETCLOCK |
| 4576 | if (fPreferMonotonicClock) |
| 4577 | { |
| 4578 | iRet = clock_gettime(CLOCK_MONOTONIC, ptsAbsTmo); |
| 4579 | } |
| 4580 | else |
| 4581 | { |
| 4582 | #endif |
| 4583 | #if HAVE_WORKING_CLOCK_GETTIME |
| 4584 | // Not every platform implements a (working) clock_gettime |
| 4585 | iRet = clock_gettime(CLOCK_REALTIME, ptsAbsTmo); |
| 4586 | #elif HAVE_WORKING_GETTIMEOFDAY |
| 4587 | // Not every platform implements a (working) gettimeofday |
| 4588 | struct timeval tv; |
| 4589 | iRet = gettimeofday(&tv, NULL); |
| 4590 | if (0 == iRet) |
| 4591 | { |
| 4592 | ptsAbsTmo->tv_sec = tv.tv_sec; |
| 4593 | ptsAbsTmo->tv_nsec = tv.tv_usec * tccMicroSecondsToNanoSeconds; |
| 4594 | } |
| 4595 | #else |
| 4596 | #error "Don't know how to get hi-res current time on this platform" |
| 4597 | #endif // HAVE_WORKING_CLOCK_GETTIME, HAVE_WORKING_GETTIMEOFDAY |
| 4598 | #if HAVE_CLOCK_MONOTONIC && HAVE_PTHREAD_CONDATTR_SETCLOCK |
| 4599 | } |
| 4600 | #endif |
| 4601 | if (0 == iRet) |
| 4602 | { |
| 4603 | ptsAbsTmo->tv_sec += dwTimeout / tccSecondsToMillieSeconds; |
| 4604 | ptsAbsTmo->tv_nsec += (dwTimeout % tccSecondsToMillieSeconds) * tccMillieSecondsToNanoSeconds; |
| 4605 | while (ptsAbsTmo->tv_nsec >= tccSecondsToNanoSeconds) |
| 4606 | { |
| 4607 | ptsAbsTmo->tv_sec += 1; |
| 4608 | ptsAbsTmo->tv_nsec -= tccSecondsToNanoSeconds; |
| 4609 | } |
| 4610 | } |
| 4611 | else |
| 4612 | { |
| 4613 | palErr = ERROR_INTERNAL_ERROR; |
| 4614 | } |
| 4615 | |
| 4616 | return palErr; |
| 4617 | } |
| 4618 | } |
| 4619 | |