| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | |
| 6 | /*++ |
| 7 | |
| 8 | |
| 9 | |
| 10 | Module Name: |
| 11 | |
| 12 | threadsusp.cpp |
| 13 | |
| 14 | Abstract: |
| 15 | |
| 16 | Implementation of functions related to threads. |
| 17 | |
| 18 | Revision History: |
| 19 | |
| 20 | |
| 21 | |
| 22 | --*/ |
| 23 | |
| 24 | #include "pal/corunix.hpp" |
| 25 | #include "pal/thread.hpp" |
| 26 | #include "pal/mutex.hpp" |
| 27 | #include "pal/seh.hpp" |
| 28 | #include "pal/init.h" |
| 29 | #include "pal/dbgmsg.h" |
| 30 | |
| 31 | #include <pthread.h> |
| 32 | #include <unistd.h> |
| 33 | #include <errno.h> |
| 34 | #include <stddef.h> |
| 35 | #include <sys/stat.h> |
| 36 | #include <limits.h> |
| 37 | #include <debugmacrosext.h> |
| 38 | |
| 39 | using namespace CorUnix; |
| 40 | |
| 41 | /* ------------------- Definitions ------------------------------*/ |
| 42 | SET_DEFAULT_DEBUG_CHANNEL(THREAD); |
| 43 | |
| 44 | /* This code is written to the blocking pipe of a thread that was created |
| 45 | in suspended state in order to resume it. */ |
| 46 | CONST BYTE WAKEUPCODE=0x2A; |
| 47 | |
| 48 | // #define USE_GLOBAL_LOCK_FOR_SUSPENSION // Uncomment this define to use the global suspension lock. |
| 49 | /* The global suspension lock can be used in place of each thread having its own |
| 50 | suspension mutex or spinlock. The downside is that it restricts us to only |
| 51 | performing one suspension or resumption in the PAL at a time. */ |
| 52 | #ifdef USE_GLOBAL_LOCK_FOR_SUSPENSION |
| 53 | static LONG g_ssSuspensionLock = 0; |
| 54 | #endif |
| 55 | |
| 56 | /*++ |
| 57 | Function: |
| 58 | InternalSuspendNewThreadFromData |
| 59 | |
| 60 | On platforms where we use pipes for starting threads suspended, this |
| 61 | function sets the blocking pipe for the thread and blocks until the |
| 62 | wakeup code is written to the pipe by ResumeThread. |
| 63 | |
| 64 | --*/ |
| 65 | PAL_ERROR |
| 66 | CThreadSuspensionInfo::InternalSuspendNewThreadFromData( |
| 67 | CPalThread *pThread |
| 68 | ) |
| 69 | { |
| 70 | PAL_ERROR palError = NO_ERROR; |
| 71 | |
| 72 | AcquireSuspensionLock(pThread); |
| 73 | pThread->suspensionInfo.SetSelfSusp(TRUE); |
| 74 | ReleaseSuspensionLock(pThread); |
| 75 | |
| 76 | int pipe_descs[2]; |
| 77 | int pipeRv = |
| 78 | #if HAVE_PIPE2 |
| 79 | pipe2(pipe_descs, O_CLOEXEC); |
| 80 | #else |
| 81 | pipe(pipe_descs); |
| 82 | #endif // HAVE_PIPE2 |
| 83 | if (pipeRv == -1) |
| 84 | { |
| 85 | ERROR("pipe() failed! error is %d (%s)\n" , errno, strerror(errno)); |
| 86 | return ERROR_NOT_ENOUGH_MEMORY; |
| 87 | } |
| 88 | #if !HAVE_PIPE2 |
| 89 | fcntl(pipe_descs[0], F_SETFD, FD_CLOEXEC); // make pipe non-inheritable, if possible |
| 90 | fcntl(pipe_descs[1], F_SETFD, FD_CLOEXEC); |
| 91 | #endif // !HAVE_PIPE2 |
| 92 | |
| 93 | // [0] is the read end of the pipe, and [1] is the write end. |
| 94 | pThread->suspensionInfo.SetBlockingPipe(pipe_descs[1]); |
| 95 | pThread->SetStartStatus(TRUE); |
| 96 | |
| 97 | BYTE resume_code = 0; |
| 98 | ssize_t read_ret; |
| 99 | |
| 100 | // Block until ResumeThread writes something to the pipe |
| 101 | while ((read_ret = read(pipe_descs[0], &resume_code, sizeof(resume_code))) != sizeof(resume_code)) |
| 102 | { |
| 103 | if (read_ret != -1 || EINTR != errno) |
| 104 | { |
| 105 | // read might return 0 (with EAGAIN) if the other end of the pipe gets closed |
| 106 | palError = ERROR_INTERNAL_ERROR; |
| 107 | break; |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | if (palError == NO_ERROR && resume_code != WAKEUPCODE) |
| 112 | { |
| 113 | // If we did read successfully but the byte didn't match WAKEUPCODE, we treat it as a failure. |
| 114 | palError = ERROR_INTERNAL_ERROR; |
| 115 | } |
| 116 | |
| 117 | if (palError == NO_ERROR) |
| 118 | { |
| 119 | AcquireSuspensionLock(pThread); |
| 120 | pThread->suspensionInfo.SetSelfSusp(FALSE); |
| 121 | ReleaseSuspensionLock(pThread); |
| 122 | } |
| 123 | |
| 124 | // Close the pipes regardless of whether we were successful. |
| 125 | close(pipe_descs[0]); |
| 126 | close(pipe_descs[1]); |
| 127 | |
| 128 | return palError; |
| 129 | } |
| 130 | |
| 131 | /*++ |
| 132 | Function: |
| 133 | |
| 134 | ResumeThread |
| 135 | |
| 136 | See MSDN doc. |
| 137 | --*/ |
| 138 | DWORD |
| 139 | PALAPI |
| 140 | ResumeThread( |
| 141 | IN HANDLE hThread |
| 142 | ) |
| 143 | { |
| 144 | PAL_ERROR palError; |
| 145 | CPalThread *pthrResumer; |
| 146 | DWORD dwSuspendCount = (DWORD)-1; |
| 147 | |
| 148 | PERF_ENTRY(ResumeThread); |
| 149 | ENTRY("ResumeThread(hThread=%p)\n" , hThread); |
| 150 | |
| 151 | pthrResumer = InternalGetCurrentThread(); |
| 152 | palError = InternalResumeThread( |
| 153 | pthrResumer, |
| 154 | hThread, |
| 155 | &dwSuspendCount |
| 156 | ); |
| 157 | |
| 158 | if (NO_ERROR != palError) |
| 159 | { |
| 160 | pthrResumer->SetLastError(palError); |
| 161 | dwSuspendCount = (DWORD) -1; |
| 162 | } |
| 163 | else |
| 164 | { |
| 165 | _ASSERT_MSG(dwSuspendCount != static_cast<DWORD>(-1), "InternalResumeThread returned success but dwSuspendCount did not change.\n" ); |
| 166 | } |
| 167 | |
| 168 | LOGEXIT("ResumeThread returns DWORD %u\n" , dwSuspendCount); |
| 169 | PERF_EXIT(ResumeThread); |
| 170 | return dwSuspendCount; |
| 171 | } |
| 172 | |
| 173 | /*++ |
| 174 | Function: |
| 175 | InternalResumeThread |
| 176 | |
| 177 | InternalResumeThread converts the handle of the target thread to a |
| 178 | CPalThread, and passes both the resumer and target thread references |
| 179 | to InternalResumeThreadFromData. A reference to the suspend count from |
| 180 | the resumption attempt is passed back to the caller of this function. |
| 181 | --*/ |
| 182 | PAL_ERROR |
| 183 | CorUnix::InternalResumeThread( |
| 184 | CPalThread *pthrResumer, |
| 185 | HANDLE hTargetThread, |
| 186 | DWORD *pdwSuspendCount |
| 187 | ) |
| 188 | { |
| 189 | PAL_ERROR palError = NO_ERROR; |
| 190 | CPalThread *pthrTarget = NULL; |
| 191 | IPalObject *pobjThread = NULL; |
| 192 | |
| 193 | palError = InternalGetThreadDataFromHandle( |
| 194 | pthrResumer, |
| 195 | hTargetThread, |
| 196 | 0, // THREAD_SUSPEND_RESUME |
| 197 | &pthrTarget, |
| 198 | &pobjThread |
| 199 | ); |
| 200 | |
| 201 | if (NO_ERROR == palError) |
| 202 | { |
| 203 | palError = pthrResumer->suspensionInfo.InternalResumeThreadFromData( |
| 204 | pthrResumer, |
| 205 | pthrTarget, |
| 206 | pdwSuspendCount |
| 207 | ); |
| 208 | } |
| 209 | |
| 210 | if (NULL != pobjThread) |
| 211 | { |
| 212 | pobjThread->ReleaseReference(pthrResumer); |
| 213 | } |
| 214 | |
| 215 | return palError; |
| 216 | } |
| 217 | |
| 218 | /*++ |
| 219 | Function: |
| 220 | InternalResumeThreadFromData |
| 221 | |
| 222 | InternalResumeThreadFromData resumes the target thread. First, the suspension |
| 223 | mutexes of the threads are acquired. Next, there's a check to ensure that the |
| 224 | target thread was actually suspended. Finally, the resume attempt is made |
| 225 | and the suspension mutexes are released. The suspend count of the |
| 226 | target thread is passed back to the caller of this function. |
| 227 | |
| 228 | Note that ReleaseSuspensionLock(s) is called before hitting ASSERTs in error |
| 229 | paths. Currently, this seems unnecessary since asserting within |
| 230 | InternalResumeThreadFromData will not cause cleanup to occur. However, |
| 231 | this may change since it would be preferable to perform cleanup. Thus, calls |
| 232 | to release suspension locks remain in the error paths. |
| 233 | --*/ |
| 234 | PAL_ERROR |
| 235 | CThreadSuspensionInfo::InternalResumeThreadFromData( |
| 236 | CPalThread *pthrResumer, |
| 237 | CPalThread *pthrTarget, |
| 238 | DWORD *pdwSuspendCount |
| 239 | ) |
| 240 | { |
| 241 | PAL_ERROR palError = NO_ERROR; |
| 242 | |
| 243 | int nWrittenBytes = -1; |
| 244 | |
| 245 | if (SignalHandlerThread == pthrTarget->GetThreadType()) |
| 246 | { |
| 247 | ASSERT("Attempting to resume the signal handling thread, which can never be suspended.\n" ); |
| 248 | palError = ERROR_INVALID_HANDLE; |
| 249 | goto InternalResumeThreadFromDataExit; |
| 250 | } |
| 251 | |
| 252 | // Acquire suspension mutex |
| 253 | AcquireSuspensionLocks(pthrResumer, pthrTarget); |
| 254 | |
| 255 | // Check target thread's state to ensure it hasn't died. |
| 256 | // Setting a thread's state to TS_DONE is protected by the |
| 257 | // target's suspension mutex. |
| 258 | if (pthrTarget->synchronizationInfo.GetThreadState() == TS_DONE) |
| 259 | { |
| 260 | palError = ERROR_INVALID_HANDLE; |
| 261 | ReleaseSuspensionLocks(pthrResumer, pthrTarget); |
| 262 | goto InternalResumeThreadFromDataExit; |
| 263 | } |
| 264 | |
| 265 | // If this is a dummy thread, then it represents a process that was created with CREATE_SUSPENDED |
| 266 | // and it should have a blocking pipe set. If GetBlockingPipe returns -1 for a dummy thread, then |
| 267 | // something is wrong - either CREATE_SUSPENDED wasn't used or the process was already resumed. |
| 268 | if (pthrTarget->IsDummy() && -1 == pthrTarget->suspensionInfo.GetBlockingPipe()) |
| 269 | { |
| 270 | palError = ERROR_INVALID_HANDLE; |
| 271 | ERROR("Tried to wake up dummy thread without a blocking pipe.\n" ); |
| 272 | ReleaseSuspensionLocks(pthrResumer, pthrTarget); |
| 273 | goto InternalResumeThreadFromDataExit; |
| 274 | } |
| 275 | |
| 276 | // If there is a blocking pipe on this thread, resume it by writing the wake up code to that pipe. |
| 277 | if (-1 != pthrTarget->suspensionInfo.GetBlockingPipe()) |
| 278 | { |
| 279 | // If write() is interrupted by a signal before writing data, |
| 280 | // it returns -1 and sets errno to EINTR. In this case, we |
| 281 | // attempt the write() again. |
| 282 | writeAgain: |
| 283 | nWrittenBytes = write(pthrTarget->suspensionInfo.GetBlockingPipe(), &WAKEUPCODE, sizeof(WAKEUPCODE)); |
| 284 | |
| 285 | // The size of WAKEUPCODE is 1 byte. If write returns 0, we'll treat it as an error. |
| 286 | if (sizeof(WAKEUPCODE) != nWrittenBytes) |
| 287 | { |
| 288 | // If we are here during process creation, this is most likely caused by the target |
| 289 | // process dying before reaching this point and thus breaking the pipe. |
| 290 | if (nWrittenBytes == -1 && EPIPE == errno) |
| 291 | { |
| 292 | palError = ERROR_INVALID_HANDLE; |
| 293 | ReleaseSuspensionLocks(pthrResumer, pthrTarget); |
| 294 | ERROR("Write failed with EPIPE\n" ); |
| 295 | goto InternalResumeThreadFromDataExit; |
| 296 | } |
| 297 | else if (nWrittenBytes == 0 || (nWrittenBytes == -1 && EINTR == errno)) |
| 298 | { |
| 299 | TRACE("write() failed with EINTR; re-attempting write\n" ); |
| 300 | goto writeAgain; |
| 301 | } |
| 302 | else |
| 303 | { |
| 304 | // Some other error occurred; need to release suspension mutexes before leaving ResumeThread. |
| 305 | palError = ERROR_INTERNAL_ERROR; |
| 306 | ReleaseSuspensionLocks(pthrResumer, pthrTarget); |
| 307 | ASSERT("Write() failed; error is %d (%s)\n" , errno, strerror(errno)); |
| 308 | goto InternalResumeThreadFromDataExit; |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | // Reset blocking pipe to -1 since we're done using it. |
| 313 | pthrTarget->suspensionInfo.SetBlockingPipe(-1); |
| 314 | |
| 315 | ReleaseSuspensionLocks(pthrResumer, pthrTarget); |
| 316 | goto InternalResumeThreadFromDataExit; |
| 317 | } |
| 318 | else |
| 319 | { |
| 320 | *pdwSuspendCount = 0; |
| 321 | palError = ERROR_BAD_COMMAND; |
| 322 | } |
| 323 | |
| 324 | InternalResumeThreadFromDataExit: |
| 325 | |
| 326 | if (NO_ERROR == palError) |
| 327 | { |
| 328 | *pdwSuspendCount = 1; |
| 329 | } |
| 330 | |
| 331 | return palError; |
| 332 | } |
| 333 | |
| 334 | /*++ |
| 335 | Function: |
| 336 | TryAcquireSuspensionLock |
| 337 | |
| 338 | TryAcquireSuspensionLock is a utility function that tries to acquire a thread's |
| 339 | suspension mutex or spinlock. If it succeeds, the function returns TRUE. |
| 340 | Otherwise, it returns FALSE. This function is used in AcquireSuspensionLocks. |
| 341 | Note that the global lock cannot be acquired in this function since it makes |
| 342 | no sense to do so. A thread holding the global lock is the only thread that |
| 343 | can perform suspend or resume operations so it doesn't need to acquire |
| 344 | a second lock. |
| 345 | --*/ |
| 346 | BOOL |
| 347 | CThreadSuspensionInfo::TryAcquireSuspensionLock( |
| 348 | CPalThread* pthrTarget |
| 349 | ) |
| 350 | { |
| 351 | int iPthreadRet = 0; |
| 352 | #if DEADLOCK_WHEN_THREAD_IS_SUSPENDED_WHILE_BLOCKED_ON_MUTEX |
| 353 | { |
| 354 | iPthreadRet = SPINLOCKTryAcquire(pthrTarget->suspensionInfo.GetSuspensionSpinlock()); |
| 355 | } |
| 356 | #else // DEADLOCK_WHEN_THREAD_IS_SUSPENDED_WHILE_BLOCKED_ON_MUTEX |
| 357 | { |
| 358 | iPthreadRet = pthread_mutex_trylock(pthrTarget->suspensionInfo.GetSuspensionMutex()); |
| 359 | _ASSERT_MSG(iPthreadRet == 0 || iPthreadRet == EBUSY, "pthread_mutex_trylock returned %d\n" , iPthreadRet); |
| 360 | } |
| 361 | #endif // DEADLOCK_WHEN_THREAD_IS_SUSPENDED_WHILE_BLOCKED_ON_MUTEX |
| 362 | |
| 363 | // If iPthreadRet is 0, lock acquisition was successful. Otherwise, it failed. |
| 364 | return (iPthreadRet == 0); |
| 365 | } |
| 366 | |
| 367 | /*++ |
| 368 | Function: |
| 369 | AcquireSuspensionLock |
| 370 | |
| 371 | AcquireSuspensionLock acquires a thread's suspension mutex or spinlock. |
| 372 | If USE_GLOBAL_LOCK_FOR_SUSPENSION is defined, it will acquire the global lock. |
| 373 | A thread in this function blocks until it acquires |
| 374 | its lock, unlike in TryAcquireSuspensionLock. |
| 375 | --*/ |
| 376 | void |
| 377 | CThreadSuspensionInfo::AcquireSuspensionLock( |
| 378 | CPalThread* pthrCurrent |
| 379 | ) |
| 380 | { |
| 381 | #ifdef USE_GLOBAL_LOCK_FOR_SUSPENSION |
| 382 | { |
| 383 | SPINLOCKAcquire(&g_ssSuspensionLock, 0); |
| 384 | } |
| 385 | #else // USE_GLOBAL_LOCK_FOR_SUSPENSION |
| 386 | { |
| 387 | #if DEADLOCK_WHEN_THREAD_IS_SUSPENDED_WHILE_BLOCKED_ON_MUTEX |
| 388 | { |
| 389 | SPINLOCKAcquire(&pthrCurrent->suspensionInfo.m_nSpinlock, 0); |
| 390 | } |
| 391 | #else // DEADLOCK_WHEN_THREAD_IS_SUSPENDED_WHILE_BLOCKED_ON_MUTEX |
| 392 | { |
| 393 | INDEBUG(int iPthreadError = ) |
| 394 | pthread_mutex_lock(&pthrCurrent->suspensionInfo.m_ptmSuspmutex); |
| 395 | _ASSERT_MSG(iPthreadError == 0, "pthread_mutex_lock returned %d\n" , iPthreadError); |
| 396 | } |
| 397 | #endif // DEADLOCK_WHEN_THREAD_IS_SUSPENDED_WHILE_BLOCKED_ON_MUTEX |
| 398 | } |
| 399 | #endif // USE_GLOBAL_LOCK_FOR_SUSPENSION |
| 400 | } |
| 401 | |
| 402 | /*++ |
| 403 | Function: |
| 404 | ReleaseSuspensionLock |
| 405 | |
| 406 | ReleaseSuspensionLock is a function that releases a thread's suspension mutex |
| 407 | or spinlock. If USE_GLOBAL_LOCK_FOR_SUSPENSION is defined, |
| 408 | it will release the global lock. |
| 409 | --*/ |
| 410 | void |
| 411 | CThreadSuspensionInfo::ReleaseSuspensionLock( |
| 412 | CPalThread* pthrCurrent |
| 413 | ) |
| 414 | { |
| 415 | #ifdef USE_GLOBAL_LOCK_FOR_SUSPENSION |
| 416 | { |
| 417 | SPINLOCKRelease(&g_ssSuspensionLock); |
| 418 | } |
| 419 | #else // USE_GLOBAL_LOCK_FOR_SUSPENSION |
| 420 | { |
| 421 | #if DEADLOCK_WHEN_THREAD_IS_SUSPENDED_WHILE_BLOCKED_ON_MUTEX |
| 422 | { |
| 423 | SPINLOCKRelease(&pthrCurrent->suspensionInfo.m_nSpinlock); |
| 424 | } |
| 425 | #else // DEADLOCK_WHEN_THREAD_IS_SUSPENDED_WHILE_BLOCKED_ON_MUTEX |
| 426 | { |
| 427 | INDEBUG(int iPthreadError = ) |
| 428 | pthread_mutex_unlock(&pthrCurrent->suspensionInfo.m_ptmSuspmutex); |
| 429 | _ASSERT_MSG(iPthreadError == 0, "pthread_mutex_unlock returned %d\n" , iPthreadError); |
| 430 | } |
| 431 | #endif // DEADLOCK_WHEN_THREAD_IS_SUSPENDED_WHILE_BLOCKED_ON_MUTEX |
| 432 | } |
| 433 | #endif // USE_GLOBAL_LOCK_FOR_SUSPENSION |
| 434 | } |
| 435 | |
| 436 | /*++ |
| 437 | Function: |
| 438 | AcquireSuspensionLocks |
| 439 | |
| 440 | AcquireSuspensionLocks is used to acquire the suspension locks |
| 441 | of a suspender (or resumer) and target thread. The thread will |
| 442 | perform a blocking call to acquire its own suspension lock |
| 443 | and will then try to acquire the target thread's lock without blocking. |
| 444 | If it fails to acquire the target's lock, it releases its own lock |
| 445 | and the thread will try to acquire both locks again. The key |
| 446 | is that both locks must be acquired together. |
| 447 | |
| 448 | Originally, only blocking calls were used to acquire the suspender |
| 449 | and the target lock. However, this was problematic since a thread |
| 450 | could acquire its own lock and then block on acquiring the target |
| 451 | lock. In the meantime, the target could have already acquired its |
| 452 | own lock and be attempting to suspend the suspender thread. This |
| 453 | clearly causes deadlock. A second approach used locking hierarchies, |
| 454 | where locks were acquired use thread id ordering. This was better but |
| 455 | suffered from the scenario where thread A acquires thread B's |
| 456 | suspension mutex first. In the meantime, thread C acquires thread A's |
| 457 | suspension mutex and its own. Thus, thread A is suspended while |
| 458 | holding thread B's mutex. This is problematic if thread C now wants |
| 459 | to suspend thread B. The issue here is that a thread can be |
| 460 | suspended while holding someone else's mutex but not holding its own. |
| 461 | In the end, the correct approach is to always acquire your suspension |
| 462 | mutex first. This prevents you from being suspended while holding the |
| 463 | target's mutex. Then, attempt to acquire the target's mutex. If the mutex |
| 464 | cannot be acquired, release your own and try again. This all or nothing |
| 465 | approach is the safest and avoids nasty race conditions. |
| 466 | |
| 467 | If USE_GLOBAL_LOCK_FOR_SUSPENSION is defined, the calling thread |
| 468 | will acquire the global lock when possible. |
| 469 | --*/ |
| 470 | VOID |
| 471 | CThreadSuspensionInfo::AcquireSuspensionLocks( |
| 472 | CPalThread *pthrSuspender, |
| 473 | CPalThread *pthrTarget |
| 474 | ) |
| 475 | { |
| 476 | BOOL fReacquire = FALSE; |
| 477 | |
| 478 | #ifdef USE_GLOBAL_LOCK_FOR_SUSPENSION |
| 479 | AcquireSuspensionLock(pthrSuspender); |
| 480 | #else // USE_GLOBAL_LOCK_FOR_SUSPENSION |
| 481 | do |
| 482 | { |
| 483 | fReacquire = FALSE; |
| 484 | AcquireSuspensionLock(pthrSuspender); |
| 485 | if (!TryAcquireSuspensionLock(pthrTarget)) |
| 486 | { |
| 487 | // pthread_mutex_trylock returned EBUSY so release the first lock and try again. |
| 488 | ReleaseSuspensionLock(pthrSuspender); |
| 489 | fReacquire = TRUE; |
| 490 | sched_yield(); |
| 491 | } |
| 492 | } while (fReacquire); |
| 493 | #endif // USE_GLOBAL_LOCK_FOR_SUSPENSION |
| 494 | |
| 495 | // Whenever the native implementation for the wait subsystem's thread |
| 496 | // blocking requires a lock as protection (as pthread conditions do with |
| 497 | // the associated mutex), we need to grab that lock to prevent the target |
| 498 | // thread from being suspended while holding the lock. |
| 499 | // Failing to do so can lead to a multiple threads deadlocking such as the |
| 500 | // one described in VSW 363793. |
| 501 | // In general, in similar scenarios, we need to grab the protecting lock |
| 502 | // every time suspension safety/unsafety is unbalanced on the two sides |
| 503 | // using the same condition (or any other native blocking support which |
| 504 | // needs an associated native lock), i.e. when either the signaling |
| 505 | // thread(s) is(are) signaling from an unsafe area and the waiting |
| 506 | // thread(s) is(are) waiting from a safe one, or vice versa (the scenario |
| 507 | // described in VSW 363793 is a good example of the first type of |
| 508 | // unbalanced suspension safety/unsafety). |
| 509 | // Instead, whenever signaling and waiting sides are both marked safe or |
| 510 | // unsafe, the deadlock cannot take place since either the suspending |
| 511 | // thread will suspend them anyway (regardless of the native lock), or it |
| 512 | // won't suspend any of them, since they are both marked unsafe. |
| 513 | // Such a balanced scenario applies, for instance, to critical sections |
| 514 | // where depending on whether the target CS is internal or not, both the |
| 515 | // signaling and the waiting side will access the mutex/condition from |
| 516 | // respectively an unsafe or safe region. |
| 517 | |
| 518 | pthrTarget->AcquireNativeWaitLock(); |
| 519 | } |
| 520 | |
| 521 | /*++ |
| 522 | Function: |
| 523 | ReleaseSuspensionLocks |
| 524 | |
| 525 | ReleaseSuspensionLocks releases both thread's suspension mutexes. |
| 526 | Note that the locks are released in the opposite order they're acquired. |
| 527 | This prevents a suspending or resuming thread from being suspended |
| 528 | while holding the target's lock. |
| 529 | If USE_GLOBAL_LOCK_FOR_SUSPENSION is defined, it simply releases the global lock. |
| 530 | --*/ |
| 531 | VOID |
| 532 | CThreadSuspensionInfo::ReleaseSuspensionLocks( |
| 533 | CPalThread *pthrSuspender, |
| 534 | CPalThread *pthrTarget |
| 535 | ) |
| 536 | { |
| 537 | // See comment in AcquireSuspensionLocks |
| 538 | pthrTarget->ReleaseNativeWaitLock(); |
| 539 | |
| 540 | #ifdef USE_GLOBAL_LOCK_FOR_SUSPENSION |
| 541 | ReleaseSuspensionLock(pthrSuspender); |
| 542 | #else // USE_GLOBAL_LOCK_FOR_SUSPENSION |
| 543 | ReleaseSuspensionLock(pthrTarget); |
| 544 | ReleaseSuspensionLock(pthrSuspender); |
| 545 | #endif // USE_GLOBAL_LOCK_FOR_SUSPENSION |
| 546 | } |
| 547 | |
| 548 | /*++ |
| 549 | Function: |
| 550 | PostOnSuspendSemaphore |
| 551 | |
| 552 | PostOnSuspendSemaphore is a utility function for a thread |
| 553 | to post on its POSIX or SysV suspension semaphore. |
| 554 | --*/ |
| 555 | void |
| 556 | CThreadSuspensionInfo::PostOnSuspendSemaphore() |
| 557 | { |
| 558 | #if USE_POSIX_SEMAPHORES |
| 559 | if (sem_post(&m_semSusp) == -1) |
| 560 | { |
| 561 | ASSERT("sem_post returned -1 and set errno to %d (%s)\n" , errno, strerror(errno)); |
| 562 | } |
| 563 | #elif USE_SYSV_SEMAPHORES |
| 564 | if (semop(m_nSemsuspid, &m_sbSempost, 1) == -1) |
| 565 | { |
| 566 | ASSERT("semop - post returned -1 and set errno to %d (%s)\n" , errno, strerror(errno)); |
| 567 | } |
| 568 | #elif USE_PTHREAD_CONDVARS |
| 569 | int status; |
| 570 | |
| 571 | // The suspending thread may not have entered the wait yet, in which case the cond var |
| 572 | // signal below will be a no-op. To prevent the race condition we set m_fSuspended to |
| 573 | // TRUE first (which the suspender will take as an indication that no wait is required). |
| 574 | // But the setting of the flag and the signal must appear atomic to the suspender (as |
| 575 | // reading the flag and potentially waiting must appear to us) to avoid the race |
| 576 | // condition where the suspender reads the flag as FALSE, we set it and signal and the |
| 577 | // suspender then waits. |
| 578 | |
| 579 | // Acquire the suspend mutex. Once we enter the critical section the suspender has |
| 580 | // either gotten there before us (and is waiting for our signal) or is yet to even |
| 581 | // check the flag (so we can set it here to stop them attempting a wait). |
| 582 | status = pthread_mutex_lock(&m_mutexSusp); |
| 583 | if (status != 0) |
| 584 | { |
| 585 | ASSERT("pthread_mutex_lock returned %d (%s)\n" , status, strerror(status)); |
| 586 | } |
| 587 | |
| 588 | m_fSuspended = TRUE; |
| 589 | |
| 590 | status = pthread_cond_signal(&m_condSusp); |
| 591 | if (status != 0) |
| 592 | { |
| 593 | ASSERT("pthread_cond_signal returned %d (%s)\n" , status, strerror(status)); |
| 594 | } |
| 595 | |
| 596 | status = pthread_mutex_unlock(&m_mutexSusp); |
| 597 | if (status != 0) |
| 598 | { |
| 599 | ASSERT("pthread_mutex_unlock returned %d (%s)\n" , status, strerror(status)); |
| 600 | } |
| 601 | #endif // USE_POSIX_SEMAPHORES |
| 602 | } |
| 603 | |
| 604 | /*++ |
| 605 | Function: |
| 606 | WaitOnSuspendSemaphore |
| 607 | |
| 608 | WaitOnSuspendSemaphore is a utility function for a thread |
| 609 | to wait on its POSIX or SysV suspension semaphore. |
| 610 | --*/ |
| 611 | void |
| 612 | CThreadSuspensionInfo::WaitOnSuspendSemaphore() |
| 613 | { |
| 614 | #if USE_POSIX_SEMAPHORES |
| 615 | while (sem_wait(&m_semSusp) == -1) |
| 616 | { |
| 617 | ASSERT("sem_wait returned -1 and set errno to %d (%s)\n" , errno, strerror(errno)); |
| 618 | } |
| 619 | #elif USE_SYSV_SEMAPHORES |
| 620 | while (semop(m_nSemsuspid, &m_sbSemwait, 1) == -1) |
| 621 | { |
| 622 | ASSERT("semop wait returned -1 and set errno to %d (%s)\n" , errno, strerror(errno)); |
| 623 | } |
| 624 | #elif USE_PTHREAD_CONDVARS |
| 625 | int status; |
| 626 | |
| 627 | // By the time we wait the target thread may have already signalled its suspension (in |
| 628 | // which case m_fSuspended will be TRUE and we shouldn't wait on the cond var). But we |
| 629 | // must check the flag and potentially wait atomically to avoid the race where we read |
| 630 | // the flag and the target thread sets it and signals before we have a chance to wait. |
| 631 | |
| 632 | status = pthread_mutex_lock(&m_mutexSusp); |
| 633 | if (status != 0) |
| 634 | { |
| 635 | ASSERT("pthread_mutex_lock returned %d (%s)\n" , status, strerror(status)); |
| 636 | } |
| 637 | |
| 638 | // If the target has already acknowledged the suspend we shouldn't wait. |
| 639 | while (!m_fSuspended) |
| 640 | { |
| 641 | // We got here before the target could signal. Wait on them (which atomically releases |
| 642 | // the mutex during the wait). |
| 643 | status = pthread_cond_wait(&m_condSusp, &m_mutexSusp); |
| 644 | if (status != 0) |
| 645 | { |
| 646 | ASSERT("pthread_cond_wait returned %d (%s)\n" , status, strerror(status)); |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | status = pthread_mutex_unlock(&m_mutexSusp); |
| 651 | if (status != 0) |
| 652 | { |
| 653 | ASSERT("pthread_mutex_unlock returned %d (%s)\n" , status, strerror(status)); |
| 654 | } |
| 655 | #endif // USE_POSIX_SEMAPHORES |
| 656 | } |
| 657 | |
| 658 | /*++ |
| 659 | Function: |
| 660 | PostOnResumeSemaphore |
| 661 | |
| 662 | PostOnResumeSemaphore is a utility function for a thread |
| 663 | to post on its POSIX or SysV resume semaphore. |
| 664 | --*/ |
| 665 | void |
| 666 | CThreadSuspensionInfo::PostOnResumeSemaphore() |
| 667 | { |
| 668 | #if USE_POSIX_SEMAPHORES |
| 669 | if (sem_post(&m_semResume) == -1) |
| 670 | { |
| 671 | ASSERT("sem_post returned -1 and set errno to %d (%s)\n" , errno, strerror(errno)); |
| 672 | } |
| 673 | #elif USE_SYSV_SEMAPHORES |
| 674 | if (semop(m_nSemrespid, &m_sbSempost, 1) == -1) |
| 675 | { |
| 676 | ASSERT("semop - post returned -1 and set errno to %d (%s)\n" , errno, strerror(errno)); |
| 677 | } |
| 678 | #elif USE_PTHREAD_CONDVARS |
| 679 | int status; |
| 680 | |
| 681 | // The resuming thread may not have entered the wait yet, in which case the cond var |
| 682 | // signal below will be a no-op. To prevent the race condition we set m_fResumed to |
| 683 | // TRUE first (which the resumer will take as an indication that no wait is required). |
| 684 | // But the setting of the flag and the signal must appear atomic to the resumer (as |
| 685 | // reading the flag and potentially waiting must appear to us) to avoid the race |
| 686 | // condition where the resumer reads the flag as FALSE, we set it and signal and the |
| 687 | // resumer then waits. |
| 688 | |
| 689 | // Acquire the resume mutex. Once we enter the critical section the resumer has |
| 690 | // either gotten there before us (and is waiting for our signal) or is yet to even |
| 691 | // check the flag (so we can set it here to stop them attempting a wait). |
| 692 | status = pthread_mutex_lock(&m_mutexResume); |
| 693 | if (status != 0) |
| 694 | { |
| 695 | ASSERT("pthread_mutex_lock returned %d (%s)\n" , status, strerror(status)); |
| 696 | } |
| 697 | |
| 698 | m_fResumed = TRUE; |
| 699 | |
| 700 | status = pthread_cond_signal(&m_condResume); |
| 701 | if (status != 0) |
| 702 | { |
| 703 | ASSERT("pthread_cond_signal returned %d (%s)\n" , status, strerror(status)); |
| 704 | } |
| 705 | |
| 706 | status = pthread_mutex_unlock(&m_mutexResume); |
| 707 | if (status != 0) |
| 708 | { |
| 709 | ASSERT("pthread_mutex_unlock returned %d (%s)\n" , status, strerror(status)); |
| 710 | } |
| 711 | #endif // USE_POSIX_SEMAPHORES |
| 712 | } |
| 713 | |
| 714 | /*++ |
| 715 | Function: |
| 716 | WaitOnResumeSemaphore |
| 717 | |
| 718 | WaitOnResumeSemaphore is a utility function for a thread |
| 719 | to wait on its POSIX or SysV resume semaphore. |
| 720 | --*/ |
| 721 | void |
| 722 | CThreadSuspensionInfo::WaitOnResumeSemaphore() |
| 723 | { |
| 724 | #if USE_POSIX_SEMAPHORES |
| 725 | while (sem_wait(&m_semResume) == -1) |
| 726 | { |
| 727 | ASSERT("sem_wait returned -1 and set errno to %d (%s)\n" , errno, strerror(errno)); |
| 728 | } |
| 729 | #elif USE_SYSV_SEMAPHORES |
| 730 | while (semop(m_nSemrespid, &m_sbSemwait, 1) == -1) |
| 731 | { |
| 732 | ASSERT("semop wait returned -1 and set errno to %d (%s)\n" , errno, strerror(errno)); |
| 733 | } |
| 734 | #elif USE_PTHREAD_CONDVARS |
| 735 | int status; |
| 736 | |
| 737 | // By the time we wait the target thread may have already signalled its resumption (in |
| 738 | // which case m_fResumed will be TRUE and we shouldn't wait on the cond var). But we |
| 739 | // must check the flag and potentially wait atomically to avoid the race where we read |
| 740 | // the flag and the target thread sets it and signals before we have a chance to wait. |
| 741 | |
| 742 | status = pthread_mutex_lock(&m_mutexResume); |
| 743 | if (status != 0) |
| 744 | { |
| 745 | ASSERT("pthread_mutex_lock returned %d (%s)\n" , status, strerror(status)); |
| 746 | } |
| 747 | |
| 748 | // If the target has already acknowledged the resume we shouldn't wait. |
| 749 | while (!m_fResumed) |
| 750 | { |
| 751 | // We got here before the target could signal. Wait on them (which atomically releases |
| 752 | // the mutex during the wait). |
| 753 | status = pthread_cond_wait(&m_condResume, &m_mutexResume); |
| 754 | if (status != 0) |
| 755 | { |
| 756 | ASSERT("pthread_cond_wait returned %d (%s)\n" , status, strerror(status)); |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | status = pthread_mutex_unlock(&m_mutexResume); |
| 761 | if (status != 0) |
| 762 | { |
| 763 | ASSERT("pthread_mutex_unlock returned %d (%s)\n" , status, strerror(status)); |
| 764 | } |
| 765 | #endif // USE_POSIX_SEMAPHORES |
| 766 | } |
| 767 | |
| 768 | /*++ |
| 769 | Function: |
| 770 | InitializeSuspensionLock |
| 771 | |
| 772 | InitializeSuspensionLock initializes a thread's suspension spinlock |
| 773 | or suspension mutex. It is called from the CThreadSuspensionInfo |
| 774 | constructor. |
| 775 | --*/ |
| 776 | VOID |
| 777 | CThreadSuspensionInfo::InitializeSuspensionLock() |
| 778 | { |
| 779 | #if DEADLOCK_WHEN_THREAD_IS_SUSPENDED_WHILE_BLOCKED_ON_MUTEX |
| 780 | SPINLOCKInit(&m_nSpinlock); |
| 781 | #else |
| 782 | int iError = pthread_mutex_init(&m_ptmSuspmutex, NULL); |
| 783 | if (0 != iError ) |
| 784 | { |
| 785 | ASSERT("pthread_mutex_init(&suspmutex) returned %d\n" , iError); |
| 786 | return; |
| 787 | } |
| 788 | m_fSuspmutexInitialized = TRUE; |
| 789 | #endif // DEADLOCK_WHEN_THREAD_IS_SUSPENDED_WHILE_BLOCKED_ON_MUTEX |
| 790 | } |
| 791 | |
| 792 | /*++ |
| 793 | Function: |
| 794 | InitializePreCreate |
| 795 | |
| 796 | InitializePreCreate initializes the semaphores and signal masks used |
| 797 | for thread suspension. At the end, it sets the calling thread's |
| 798 | signal mask to the default signal mask. |
| 799 | --*/ |
| 800 | PAL_ERROR |
| 801 | CThreadSuspensionInfo::InitializePreCreate() |
| 802 | { |
| 803 | PAL_ERROR palError = ERROR_INTERNAL_ERROR; |
| 804 | int iError = 0; |
| 805 | #if SEM_INIT_MODIFIES_ERRNO |
| 806 | int nStoredErrno; |
| 807 | #endif // SEM_INIT_MODIFIES_ERRNO |
| 808 | |
| 809 | #if USE_POSIX_SEMAPHORES |
| 810 | |
| 811 | #if SEM_INIT_MODIFIES_ERRNO |
| 812 | nStoredErrno = errno; |
| 813 | #endif // SEM_INIT_MODIFIES_ERRNO |
| 814 | |
| 815 | // initialize suspension semaphore |
| 816 | iError = sem_init(&m_semSusp, 0, 0); |
| 817 | |
| 818 | #if SEM_INIT_MODIFIES_ERRNO |
| 819 | if (iError == 0) |
| 820 | { |
| 821 | // Restore errno if sem_init succeeded. |
| 822 | errno = nStoredErrno; |
| 823 | } |
| 824 | #endif // SEM_INIT_MODIFIES_ERRNO |
| 825 | |
| 826 | if (0 != iError ) |
| 827 | { |
| 828 | ASSERT("sem_init(&suspsem) returned %d\n" , iError); |
| 829 | goto InitializePreCreateExit; |
| 830 | } |
| 831 | |
| 832 | #if SEM_INIT_MODIFIES_ERRNO |
| 833 | nStoredErrno = errno; |
| 834 | #endif // SEM_INIT_MODIFIES_ERRNO |
| 835 | |
| 836 | // initialize resume semaphore |
| 837 | iError = sem_init(&m_semResume, 0, 0); |
| 838 | |
| 839 | #if SEM_INIT_MODIFIES_ERRNO |
| 840 | if (iError == 0) |
| 841 | { |
| 842 | // Restore errno if sem_init succeeded. |
| 843 | errno = nStoredErrno; |
| 844 | } |
| 845 | #endif // SEM_INIT_MODIFIES_ERRNO |
| 846 | |
| 847 | if (0 != iError ) |
| 848 | { |
| 849 | ASSERT("sem_init(&suspsem) returned %d\n" , iError); |
| 850 | sem_destroy(&m_semSusp); |
| 851 | goto InitializePreCreateExit; |
| 852 | } |
| 853 | |
| 854 | m_fSemaphoresInitialized = TRUE; |
| 855 | |
| 856 | #elif USE_SYSV_SEMAPHORES |
| 857 | // preparing to initialize the SysV semaphores. |
| 858 | union semun semunData; |
| 859 | m_nSemsuspid = semget(IPC_PRIVATE, 1, IPC_CREAT | 0666); |
| 860 | if (m_nSemsuspid == -1) |
| 861 | { |
| 862 | ASSERT("semget for suspension sem id returned -1 and set errno to %d (%s)\n" , errno, strerror(errno)); |
| 863 | goto InitializePreCreateExit; |
| 864 | } |
| 865 | |
| 866 | m_nSemrespid = semget(IPC_PRIVATE, 1, IPC_CREAT | 0666); |
| 867 | if (m_nSemrespid == -1) |
| 868 | { |
| 869 | ASSERT("semget for resumption sem id returned -1 and set errno to %d (%s)\n" , errno, strerror(errno)); |
| 870 | goto InitializePreCreateExit; |
| 871 | } |
| 872 | |
| 873 | if (m_nSemsuspid == m_nSemrespid) |
| 874 | { |
| 875 | ASSERT("Suspension and Resumption Semaphores have the same id\n" ); |
| 876 | goto InitializePreCreateExit; |
| 877 | } |
| 878 | |
| 879 | semunData.val = 0; |
| 880 | iError = semctl(m_nSemsuspid, 0, SETVAL, semunData); |
| 881 | if (iError == -1) |
| 882 | { |
| 883 | ASSERT("semctl for suspension sem id returned -1 and set errno to %d (%s)\n" , errno, strerror(errno)); |
| 884 | goto InitializePreCreateExit; |
| 885 | } |
| 886 | |
| 887 | semunData.val = 0; |
| 888 | iError = semctl(m_nSemrespid, 0, SETVAL, semunData); |
| 889 | if (iError == -1) |
| 890 | { |
| 891 | ASSERT("semctl for resumption sem id returned -1 and set errno to %d (%s)\n" , errno, strerror(errno)); |
| 892 | goto InitializePreCreateExit; |
| 893 | } |
| 894 | |
| 895 | // initialize suspend semaphore |
| 896 | m_sbSemwait.sem_num = 0; |
| 897 | m_sbSemwait.sem_op = -1; |
| 898 | m_sbSemwait.sem_flg = 0; |
| 899 | |
| 900 | // initialize resume semaphore |
| 901 | m_sbSempost.sem_num = 0; |
| 902 | m_sbSempost.sem_op = 1; |
| 903 | m_sbSempost.sem_flg = 0; |
| 904 | #elif USE_PTHREAD_CONDVARS |
| 905 | iError = pthread_cond_init(&m_condSusp, NULL); |
| 906 | if (iError != 0) |
| 907 | { |
| 908 | ASSERT("pthread_cond_init for suspension returned %d (%s)\n" , iError, strerror(iError)); |
| 909 | goto InitializePreCreateExit; |
| 910 | } |
| 911 | |
| 912 | iError = pthread_mutex_init(&m_mutexSusp, NULL); |
| 913 | if (iError != 0) |
| 914 | { |
| 915 | ASSERT("pthread_mutex_init for suspension returned %d (%s)\n" , iError, strerror(iError)); |
| 916 | goto InitializePreCreateExit; |
| 917 | } |
| 918 | |
| 919 | iError = pthread_cond_init(&m_condResume, NULL); |
| 920 | if (iError != 0) |
| 921 | { |
| 922 | ASSERT("pthread_cond_init for resume returned %d (%s)\n" , iError, strerror(iError)); |
| 923 | goto InitializePreCreateExit; |
| 924 | } |
| 925 | |
| 926 | iError = pthread_mutex_init(&m_mutexResume, NULL); |
| 927 | if (iError != 0) |
| 928 | { |
| 929 | ASSERT("pthread_mutex_init for resume returned %d (%s)\n" , iError, strerror(iError)); |
| 930 | goto InitializePreCreateExit; |
| 931 | } |
| 932 | |
| 933 | m_fSemaphoresInitialized = TRUE; |
| 934 | #endif // USE_POSIX_SEMAPHORES |
| 935 | |
| 936 | // Initialization was successful. |
| 937 | palError = NO_ERROR; |
| 938 | |
| 939 | InitializePreCreateExit: |
| 940 | |
| 941 | if (NO_ERROR == palError && 0 != iError) |
| 942 | { |
| 943 | switch (iError) |
| 944 | { |
| 945 | case ENOMEM: |
| 946 | case EAGAIN: |
| 947 | { |
| 948 | palError = ERROR_OUTOFMEMORY; |
| 949 | break; |
| 950 | } |
| 951 | default: |
| 952 | { |
| 953 | ASSERT("A pthrSuspender init call returned %d (%s)\n" , iError, strerror(iError)); |
| 954 | palError = ERROR_INTERNAL_ERROR; |
| 955 | } |
| 956 | } |
| 957 | } |
| 958 | |
| 959 | return palError; |
| 960 | } |
| 961 | |
| 962 | CThreadSuspensionInfo::~CThreadSuspensionInfo() |
| 963 | { |
| 964 | #if !DEADLOCK_WHEN_THREAD_IS_SUSPENDED_WHILE_BLOCKED_ON_MUTEX |
| 965 | if (m_fSuspmutexInitialized) |
| 966 | { |
| 967 | INDEBUG(int iError = ) |
| 968 | pthread_mutex_destroy(&m_ptmSuspmutex); |
| 969 | _ASSERT_MSG(0 == iError, "pthread_mutex_destroy returned %d (%s)\n" , iError, strerror(iError)); |
| 970 | } |
| 971 | #endif |
| 972 | |
| 973 | #if USE_POSIX_SEMAPHORES |
| 974 | if (m_fSemaphoresInitialized) |
| 975 | { |
| 976 | int iError; |
| 977 | |
| 978 | iError = sem_destroy(&m_semSusp); |
| 979 | _ASSERT_MSG(0 == iError, "sem_destroy failed and set errno to %d (%s)\n" , errno, strerror(errno)); |
| 980 | |
| 981 | iError = sem_destroy(&m_semResume); |
| 982 | _ASSERT_MSG(0 == iError, "sem_destroy failed and set errno to %d (%s)\n" , errno, strerror(errno)); |
| 983 | } |
| 984 | #elif USE_SYSV_SEMAPHORES |
| 985 | DestroySemaphoreIds(); |
| 986 | #elif USE_PTHREAD_CONDVARS |
| 987 | if (m_fSemaphoresInitialized) |
| 988 | { |
| 989 | int iError; |
| 990 | |
| 991 | iError = pthread_cond_destroy(&m_condSusp); |
| 992 | _ASSERT_MSG(0 == iError, "pthread_cond_destroy failed with %d (%s)\n" , iError, strerror(iError)); |
| 993 | |
| 994 | iError = pthread_mutex_destroy(&m_mutexSusp); |
| 995 | _ASSERT_MSG(0 == iError, "pthread_mutex_destroy failed with %d (%s)\n" , iError, strerror(iError)); |
| 996 | |
| 997 | iError = pthread_cond_destroy(&m_condResume); |
| 998 | _ASSERT_MSG(0 == iError, "pthread_cond_destroy failed with %d (%s)\n" , iError, strerror(iError)); |
| 999 | |
| 1000 | iError = pthread_mutex_destroy(&m_mutexResume); |
| 1001 | _ASSERT_MSG(0 == iError, "pthread_mutex_destroy failed with %d (%s)\n" , iError, strerror(iError)); |
| 1002 | } |
| 1003 | #endif // USE_POSIX_SEMAPHORES |
| 1004 | } |
| 1005 | |
| 1006 | #if USE_SYSV_SEMAPHORES |
| 1007 | /*++ |
| 1008 | Function: |
| 1009 | DestroySemaphoreIds |
| 1010 | |
| 1011 | DestroySemaphoreIds is called from the CThreadSuspensionInfo destructor and |
| 1012 | from PROCCleanupThreadSemIds. If a thread exits before shutdown or is suspended |
| 1013 | during shutdown, its destructor will be invoked and the semaphore ids destroyed. |
| 1014 | In assert or exceptions situations that are suspension unsafe, |
| 1015 | PROCCleanupThreadSemIds is called, which uses DestroySemaphoreIds. |
| 1016 | --*/ |
| 1017 | void |
| 1018 | CThreadSuspensionInfo::DestroySemaphoreIds() |
| 1019 | { |
| 1020 | union semun semunData; |
| 1021 | if (m_nSemsuspid != 0) |
| 1022 | { |
| 1023 | semunData.val = 0; |
| 1024 | if (0 != semctl(m_nSemsuspid, 0, IPC_RMID, semunData)) |
| 1025 | { |
| 1026 | ERROR("semctl(Semsuspid) failed and set errno to %d (%s)\n" , errno, strerror(errno)); |
| 1027 | } |
| 1028 | else |
| 1029 | { |
| 1030 | m_nSemsuspid = 0; |
| 1031 | } |
| 1032 | } |
| 1033 | if (this->m_nSemrespid) |
| 1034 | { |
| 1035 | semunData.val = 0; |
| 1036 | if (0 != semctl(m_nSemrespid, 0, IPC_RMID, semunData)) |
| 1037 | { |
| 1038 | ERROR("semctl(Semrespid) failed and set errno to %d (%s)\n" , errno, strerror(errno)); |
| 1039 | } |
| 1040 | else |
| 1041 | { |
| 1042 | m_nSemrespid = 0; |
| 1043 | } |
| 1044 | } |
| 1045 | } |
| 1046 | #endif // USE_SYSV_SEMAPHORES |
| 1047 | |