| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*============================================================================ |
| 6 | ** |
| 7 | ** Source: test1.c |
| 8 | ** |
| 9 | ** Purpose: Tests ceil with simple positive and negative values. Also tests |
| 10 | ** extreme cases like extremely small values and positive and |
| 11 | ** negative infinity. Makes sure that calling ceil on NaN returns |
| 12 | ** NaN |
| 13 | ** |
| 14 | **==========================================================================*/ |
| 15 | |
| 16 | #include <palsuite.h> |
| 17 | |
| 18 | // binary64 (double) has a machine epsilon of 2^-52 (approx. 2.22e-16). However, this |
| 19 | // is slightly too accurate when writing tests meant to run against libm implementations |
| 20 | // for various platforms. 2^-50 (approx. 8.88e-16) seems to be as accurate as we can get. |
| 21 | // |
| 22 | // The tests themselves will take PAL_EPSILON and adjust it according to the expected result |
| 23 | // so that the delta used for comparison will compare the most significant digits and ignore |
| 24 | // any digits that are outside the double precision range (15-17 digits). |
| 25 | |
| 26 | // For example, a test with an expect result in the format of 0.xxxxxxxxxxxxxxxxx will use |
| 27 | // PAL_EPSILON for the variance, while an expected result in the format of 0.0xxxxxxxxxxxxxxxxx |
| 28 | // will use PAL_EPSILON / 10 and and expected result in the format of x.xxxxxxxxxxxxxxxx will |
| 29 | // use PAL_EPSILON * 10. |
| 30 | #define PAL_EPSILON 8.8817841970012523e-16 |
| 31 | |
| 32 | #define PAL_NAN sqrt(-1.0) |
| 33 | #define PAL_POSINF -log(0.0) |
| 34 | #define PAL_NEGINF log(0.0) |
| 35 | |
| 36 | /** |
| 37 | * Helper test structure |
| 38 | */ |
| 39 | struct test |
| 40 | { |
| 41 | double value; /* value to test the function with */ |
| 42 | double expected; /* expected result */ |
| 43 | double variance; /* maximum delta between the expected and actual result */ |
| 44 | }; |
| 45 | |
| 46 | /** |
| 47 | * validate |
| 48 | * |
| 49 | * test validation function |
| 50 | */ |
| 51 | void __cdecl validate(double value, double expected, double variance) |
| 52 | { |
| 53 | double result = ceil(value); |
| 54 | |
| 55 | /* |
| 56 | * The test is valid when the difference between result |
| 57 | * and expected is less than or equal to variance |
| 58 | */ |
| 59 | double delta = fabs(result - expected); |
| 60 | |
| 61 | if (delta > variance) |
| 62 | { |
| 63 | Fail("ceil(%g) returned %20.17g when it should have returned %20.17g" , |
| 64 | value, result, expected); |
| 65 | } |
| 66 | } |
| 67 | |
| 68 | /** |
| 69 | * validate |
| 70 | * |
| 71 | * test validation function for values returning NaN |
| 72 | */ |
| 73 | void __cdecl validate_isnan(double value) |
| 74 | { |
| 75 | double result = ceil(value); |
| 76 | |
| 77 | if (!_isnan(result)) |
| 78 | { |
| 79 | Fail("ceil(%g) returned %20.17g when it should have returned %20.17g" , |
| 80 | value, result, PAL_NAN); |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | /** |
| 85 | * main |
| 86 | * |
| 87 | * executable entry point |
| 88 | */ |
| 89 | int __cdecl main(int argc, char *argv[]) |
| 90 | { |
| 91 | struct test tests[] = |
| 92 | { |
| 93 | /* value expected variance */ |
| 94 | { 0.31830988618379067, 1, PAL_EPSILON * 10 }, // value: 1 / pi |
| 95 | { 0.43429448190325183, 1, PAL_EPSILON * 10 }, // value: log10(e) |
| 96 | { 0.63661977236758134, 1, PAL_EPSILON * 10 }, // value: 2 / pi |
| 97 | { 0.69314718055994531, 1, PAL_EPSILON * 10 }, // value: ln(2) |
| 98 | { 0.70710678118654752, 1, PAL_EPSILON * 10 }, // value: 1 / sqrt(2) |
| 99 | { 0.78539816339744831, 1, PAL_EPSILON * 10 }, // value: pi / 4 |
| 100 | { 1.1283791670955126, 2, PAL_EPSILON * 10 }, // value: 2 / sqrt(pi) |
| 101 | { 1.4142135623730950, 2, PAL_EPSILON * 10 }, // value: sqrt(2) |
| 102 | { 1.4426950408889634, 2, PAL_EPSILON * 10 }, // value: log2(e) |
| 103 | { 1.5707963267948966, 2, PAL_EPSILON * 10 }, // value: pi / 2 |
| 104 | { 2.3025850929940457, 3, PAL_EPSILON * 10 }, // value: ln(10) |
| 105 | { 2.7182818284590452, 3, PAL_EPSILON * 10 }, // value: e |
| 106 | { 3.1415926535897932, 4, PAL_EPSILON * 10 }, // value: pi |
| 107 | { PAL_POSINF, PAL_POSINF, 0 } |
| 108 | }; |
| 109 | |
| 110 | /* PAL initialization */ |
| 111 | if (PAL_Initialize(argc, argv) != 0) |
| 112 | { |
| 113 | return FAIL; |
| 114 | } |
| 115 | |
| 116 | validate( 0, 0, PAL_EPSILON); |
| 117 | validate(-0.0, 0, PAL_EPSILON); |
| 118 | |
| 119 | validate( 1, 1, PAL_EPSILON * 10); |
| 120 | validate(-1.0, -1, PAL_EPSILON * 10); |
| 121 | |
| 122 | for (int i = 0; i < (sizeof(tests) / sizeof(struct test)); i++) |
| 123 | { |
| 124 | validate( tests[i].value, tests[i].expected, tests[i].variance); |
| 125 | validate(-tests[i].value, 1 - tests[i].expected, tests[i].variance); |
| 126 | } |
| 127 | |
| 128 | validate_isnan(PAL_NAN); |
| 129 | |
| 130 | PAL_Terminate(); |
| 131 | return PASS; |
| 132 | } |
| 133 | |