| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*===================================================================== |
| 6 | ** |
| 7 | ** Source: test1.c |
| 8 | ** |
| 9 | ** Purpose: Tests that fma returns correct values for a subset of values. |
| 10 | ** Tests with positive and negative values of x, y, and z to ensure |
| 11 | ** fmaf is returning correct results. |
| 12 | ** |
| 13 | **===================================================================*/ |
| 14 | |
| 15 | #include <palsuite.h> |
| 16 | |
| 17 | // binary64 (double) has a machine epsilon of 2^-52 (approx. 2.22e-16). However, this |
| 18 | // is slightly too accurate when writing tests meant to run against libm implementations |
| 19 | // for various platforms. 2^-50 (approx. 8.88e-16) seems to be as accurate as we can get. |
| 20 | // |
| 21 | // The tests themselves will take PAL_EPSILON and adjust it according to the expected result |
| 22 | // so that the delta used for comparison will compare the most significant digits and ignore |
| 23 | // any digits that are outside the double precision range (15-17 digits). |
| 24 | |
| 25 | // For example, a test with an expect result in the format of 0.xxxxxxxxxxxxxxxxx will use |
| 26 | // PAL_EPSILON for the variance, while an expected result in the format of 0.0xxxxxxxxxxxxxxxxx |
| 27 | // will use PAL_EPSILON / 10 and and expected result in the format of x.xxxxxxxxxxxxxxxx will |
| 28 | // use PAL_EPSILON * 10. |
| 29 | #define PAL_EPSILON 8.8817841970012523e-16 |
| 30 | |
| 31 | #define PAL_NAN sqrt(-1.0) |
| 32 | #define PAL_POSINF -log(0.0) |
| 33 | #define PAL_NEGINF log(0.0) |
| 34 | |
| 35 | /** |
| 36 | * Helper test structure |
| 37 | */ |
| 38 | struct test |
| 39 | { |
| 40 | double x; /* first component of the value to test the function with */ |
| 41 | double y; /* second component of the value to test the function with */ |
| 42 | double z; /* third component of the value to test the function with */ |
| 43 | double expected; /* expected result */ |
| 44 | double variance; /* maximum delta between the expected and actual result */ |
| 45 | }; |
| 46 | |
| 47 | /** |
| 48 | * validate |
| 49 | * |
| 50 | * test validation function |
| 51 | */ |
| 52 | void __cdecl validate(double x, double y, double z, double expected, double variance) |
| 53 | { |
| 54 | double result = fma(x, y, z); |
| 55 | |
| 56 | /* |
| 57 | * The test is valid when the difference between result |
| 58 | * and expected is less than or equal to variance |
| 59 | */ |
| 60 | double delta = fabs(result - expected); |
| 61 | |
| 62 | if (delta > variance) |
| 63 | { |
| 64 | Fail("fma(%g, %g, %g) returned %20.17g when it should have returned %20.17g" , |
| 65 | x, y, z, result, expected); |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | /** |
| 70 | * validate |
| 71 | * |
| 72 | * test validation function for values returning NaN |
| 73 | */ |
| 74 | void __cdecl validate_isnan(double x, double y, double z) |
| 75 | { |
| 76 | double result = fma(x, y, z); |
| 77 | |
| 78 | if (!_isnan(result)) |
| 79 | { |
| 80 | Fail("fma(%g, %g, %g) returned %20.17g when it should have returned %20.17g" , |
| 81 | x, y, z, result, PAL_NAN); |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | /** |
| 86 | * main |
| 87 | * |
| 88 | * executable entry point |
| 89 | */ |
| 90 | int __cdecl main(int argc, char **argv) |
| 91 | { |
| 92 | struct test tests[] = |
| 93 | { |
| 94 | /* x y z expected variance */ |
| 95 | { PAL_NEGINF, PAL_NEGINF, PAL_NEGINF, PAL_NEGINF, 0 }, |
| 96 | { -1e308, 2, 1e308, -1e308, 0 }, |
| 97 | { 1e308, 2, -1e308, 1e308, 0 }, |
| 98 | { PAL_POSINF, PAL_POSINF, PAL_POSINF, PAL_POSINF, 0 }, |
| 99 | }; |
| 100 | |
| 101 | if (PAL_Initialize(argc, argv) != 0) |
| 102 | { |
| 103 | return FAIL; |
| 104 | } |
| 105 | |
| 106 | for (int i = 0; i < (sizeof(tests) / sizeof(struct test)); i++) |
| 107 | { |
| 108 | validate(tests[i].x, tests[i].y, tests[i].z, tests[i].expected, tests[i].variance); |
| 109 | } |
| 110 | |
| 111 | // Returns NaN if x or y is infinite, the other is zero, and z is NaN |
| 112 | validate_isnan(PAL_NEGINF, 0, PAL_NAN); |
| 113 | validate_isnan(PAL_POSINF, 0, PAL_NAN); |
| 114 | validate_isnan(0, PAL_NEGINF, PAL_NAN); |
| 115 | validate_isnan(0, PAL_POSINF, PAL_NAN); |
| 116 | |
| 117 | // Returns NaN if x or y is infinite, the other is zero, and z is not-NaN |
| 118 | validate_isnan(PAL_POSINF, 0, PAL_NEGINF); |
| 119 | validate_isnan(PAL_NEGINF, 0, PAL_NEGINF); |
| 120 | validate_isnan(0, PAL_POSINF, PAL_NEGINF); |
| 121 | validate_isnan(0, PAL_NEGINF, PAL_NEGINF); |
| 122 | |
| 123 | validate_isnan(PAL_POSINF, 0, 0); |
| 124 | validate_isnan(PAL_NEGINF, 0, 0); |
| 125 | validate_isnan(0, PAL_POSINF, 0); |
| 126 | validate_isnan(0, PAL_NEGINF, 0); |
| 127 | |
| 128 | validate_isnan(PAL_POSINF, 0, PAL_POSINF); |
| 129 | validate_isnan(PAL_NEGINF, 0, PAL_POSINF); |
| 130 | validate_isnan(0, PAL_POSINF, PAL_POSINF); |
| 131 | validate_isnan(0, PAL_NEGINF, PAL_POSINF); |
| 132 | |
| 133 | // Returns NaN if (x * y) is infinite, and z is an infinite of the opposite sign |
| 134 | validate_isnan(PAL_POSINF, PAL_POSINF, PAL_NEGINF); |
| 135 | validate_isnan(PAL_NEGINF, PAL_NEGINF, PAL_NEGINF); |
| 136 | validate_isnan(PAL_POSINF, PAL_NEGINF, PAL_POSINF); |
| 137 | validate_isnan(PAL_NEGINF, PAL_POSINF, PAL_POSINF); |
| 138 | |
| 139 | validate_isnan(PAL_POSINF, 1, PAL_NEGINF); |
| 140 | validate_isnan(PAL_NEGINF, 1, PAL_POSINF); |
| 141 | validate_isnan(1, PAL_POSINF, PAL_NEGINF); |
| 142 | validate_isnan(1, PAL_NEGINF, PAL_POSINF); |
| 143 | |
| 144 | PAL_Terminate(); |
| 145 | return PASS; |
| 146 | } |
| 147 | |