| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*===================================================================== |
| 6 | ** |
| 7 | ** Source: test1.c |
| 8 | ** |
| 9 | ** Purpose: Tests that atan2f returns correct values for a subset of values. |
| 10 | ** Tests with positive and negative values of x and y to ensure |
| 11 | ** atan2f is returning results from the correct quadrant. |
| 12 | ** |
| 13 | **===================================================================*/ |
| 14 | |
| 15 | #include <palsuite.h> |
| 16 | |
| 17 | // binary32 (float) has a machine epsilon of 2^-23 (approx. 1.19e-07). However, this |
| 18 | // is slightly too accurate when writing tests meant to run against libm implementations |
| 19 | // for various platforms. 2^-21 (approx. 4.76e-07) seems to be as accurate as we can get. |
| 20 | // |
| 21 | // The tests themselves will take PAL_EPSILON and adjust it according to the expected result |
| 22 | // so that the delta used for comparison will compare the most significant digits and ignore |
| 23 | // any digits that are outside the double precision range (6-9 digits). |
| 24 | |
| 25 | // For example, a test with an expect result in the format of 0.xxxxxxxxx will use PAL_EPSILON |
| 26 | // for the variance, while an expected result in the format of 0.0xxxxxxxxx will use |
| 27 | // PAL_EPSILON / 10 and and expected result in the format of x.xxxxxx will use PAL_EPSILON * 10. |
| 28 | #define PAL_EPSILON 4.76837158e-07 |
| 29 | |
| 30 | #define PAL_NAN sqrtf(-1.0f) |
| 31 | #define PAL_POSINF -logf(0.0f) |
| 32 | #define PAL_NEGINF logf(0.0f) |
| 33 | |
| 34 | /** |
| 35 | * Helper test structure |
| 36 | */ |
| 37 | struct test |
| 38 | { |
| 39 | float x; /* first component of the value to test the function with */ |
| 40 | float y; /* second component of the value to test the function with */ |
| 41 | float expected; /* expected result */ |
| 42 | float variance; /* maximum delta between the expected and actual result */ |
| 43 | }; |
| 44 | |
| 45 | /** |
| 46 | * validate |
| 47 | * |
| 48 | * test validation function |
| 49 | */ |
| 50 | void __cdecl validate(float x, float y, float expected, float variance) |
| 51 | { |
| 52 | float result = powf(x, y); |
| 53 | |
| 54 | /* |
| 55 | * The test is valid when the difference between result |
| 56 | * and expected is less than or equal to variance |
| 57 | */ |
| 58 | float delta = fabsf(result - expected); |
| 59 | |
| 60 | if (delta > variance) |
| 61 | { |
| 62 | Fail("powf(%g, %g) returned %10.9g when it should have returned %10.9g" , |
| 63 | x, y, result, expected); |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | /** |
| 68 | * validate |
| 69 | * |
| 70 | * test validation function for values returning NaN |
| 71 | */ |
| 72 | void __cdecl validate_isnan(float x, float y) |
| 73 | { |
| 74 | float result = powf(x, y); |
| 75 | |
| 76 | if (!_isnanf(result)) |
| 77 | { |
| 78 | Fail("powf(%g, %g) returned %10.9g when it should have returned %10.9g" , |
| 79 | x, y, result, PAL_NAN); |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | /** |
| 84 | * main |
| 85 | * |
| 86 | * executable entry point |
| 87 | */ |
| 88 | int __cdecl main(int argc, char **argv) |
| 89 | { |
| 90 | struct test tests[] = |
| 91 | { |
| 92 | /* x y expected variance */ |
| 93 | { PAL_NEGINF, PAL_NEGINF, 0, PAL_EPSILON }, |
| 94 | { PAL_NEGINF, PAL_POSINF, PAL_POSINF, 0 }, |
| 95 | |
| 96 | { -10, PAL_NEGINF, 0, PAL_EPSILON }, |
| 97 | { -10, -1, -0.1f, PAL_EPSILON }, |
| 98 | { -10, 0, 1, PAL_EPSILON * 10 }, |
| 99 | { -10, 1, -10, PAL_EPSILON * 100 }, |
| 100 | { -10, PAL_POSINF, PAL_POSINF, 0 }, |
| 101 | |
| 102 | { -2.71828183f, PAL_NEGINF, 0, PAL_EPSILON }, // x: -(e) |
| 103 | { -2.71828183f, -1, -0.367879441f, PAL_EPSILON }, // x: -(e) |
| 104 | { -2.71828183f, 0, 1, PAL_EPSILON * 10 }, // x: -(e) |
| 105 | { -2.71828183f, 1, -2.71828183f, PAL_EPSILON * 10 }, // x: -(e) expected: e |
| 106 | { -2.71828183f, PAL_POSINF, PAL_POSINF, 0 }, // x: -(e) |
| 107 | |
| 108 | { -1.0, PAL_NEGINF, 1.0, PAL_EPSILON * 10 }, |
| 109 | { -1.0, PAL_POSINF, 1.0, PAL_EPSILON * 10 }, |
| 110 | |
| 111 | { -0.0, PAL_NEGINF, PAL_POSINF, 0 }, |
| 112 | { -0.0, -1, PAL_NEGINF, 0 }, |
| 113 | { -0.0f, -0.0f, 1, PAL_EPSILON * 10 }, |
| 114 | { -0.0f, 0, 1, PAL_EPSILON * 10 }, |
| 115 | { -0.0, 1, -0.0, PAL_EPSILON }, |
| 116 | { -0.0, PAL_POSINF, 0, PAL_EPSILON }, |
| 117 | |
| 118 | { PAL_NAN, -0.0, 1.0, PAL_EPSILON * 10 }, |
| 119 | { PAL_NAN, 0, 1.0, PAL_EPSILON * 10 }, |
| 120 | |
| 121 | { 0.0, PAL_NEGINF, PAL_POSINF, 0 }, |
| 122 | { 0.0, -1, PAL_POSINF, 0 }, |
| 123 | { 0, -0.0f, 1, PAL_EPSILON * 10 }, |
| 124 | { 0, 0, 1, PAL_EPSILON * 10 }, |
| 125 | { 0.0, 1, 0, PAL_EPSILON }, |
| 126 | { 0.0, PAL_POSINF, 0, PAL_EPSILON }, |
| 127 | |
| 128 | { 1, PAL_NEGINF, 1, PAL_EPSILON * 10 }, |
| 129 | { 1, PAL_POSINF, 1, PAL_EPSILON * 10 }, |
| 130 | |
| 131 | { 2.71828183f, PAL_NEGINF, 0, PAL_EPSILON }, |
| 132 | { 2.71828183f, -3.14159265f, 0.0432139183f, PAL_EPSILON / 10 }, // x: e y: -(pi) |
| 133 | { 2.71828183f, -2.71828183f, 0.0659880358f, PAL_EPSILON / 10 }, // x: e y: -(e) |
| 134 | { 2.71828183f, -2.30258509f, 0.1f, PAL_EPSILON }, // x: e y: -(ln(10)) |
| 135 | { 2.71828183f, -1.57079633f, 0.207879576f, PAL_EPSILON }, // x: e y: -(pi / 2) |
| 136 | { 2.71828183f, -1.44269504f, 0.236290088f, PAL_EPSILON }, // x: e y: -(logf2(e)) |
| 137 | { 2.71828183f, -1.41421356f, 0.243116734f, PAL_EPSILON }, // x: e y: -(sqrtf(2)) |
| 138 | { 2.71828183f, -1.12837917f, 0.323557264f, PAL_EPSILON }, // x: e y: -(2 / sqrtf(pi)) |
| 139 | { 2.71828183f, -1, 0.367879441f, PAL_EPSILON }, // x: e y: -(1) |
| 140 | { 2.71828183f, -0.785398163f, 0.455938128f, PAL_EPSILON }, // x: e y: -(pi / 4) |
| 141 | { 2.71828183f, -0.707106781f, 0.493068691f, PAL_EPSILON }, // x: e y: -(1 / sqrtf(2)) |
| 142 | { 2.71828183f, -0.693147181f, 0.5f, PAL_EPSILON }, // x: e y: -(ln(2)) |
| 143 | { 2.71828183f, -0.636619772f, 0.529077808f, PAL_EPSILON }, // x: e y: -(2 / pi) |
| 144 | { 2.71828183f, -0.434294482f, 0.647721485f, PAL_EPSILON }, // x: e y: -(log10f(e)) |
| 145 | { 2.71828183f, -0.318309886f, 0.727377349f, PAL_EPSILON }, // x: e y: -(1 / pi) |
| 146 | { 2.71828183f, 0, 1, PAL_EPSILON * 10 }, // x: e |
| 147 | { 2.71828183f, 0.318309886f, 1.37480223f, PAL_EPSILON * 10 }, // x: e y: 1 / pi |
| 148 | { 2.71828183f, 0.434294482f, 1.54387344f, PAL_EPSILON * 10 }, // x: e y: log10f(e) |
| 149 | { 2.71828183f, 0.636619772f, 1.89008116f, PAL_EPSILON * 10 }, // x: e y: 2 / pi |
| 150 | { 2.71828183f, 0.693147181f, 2, PAL_EPSILON * 10 }, // x: e y: ln(2) |
| 151 | { 2.71828183f, 0.707106781f, 2.02811498f, PAL_EPSILON * 10 }, // x: e y: 1 / sqrtf(2) |
| 152 | { 2.71828183f, 0.785398163f, 2.19328005f, PAL_EPSILON * 10 }, // x: e y: pi / 4 |
| 153 | { 2.71828183f, 1, 2.71828183f, PAL_EPSILON * 10 }, // x: e expected: e |
| 154 | { 2.71828183f, 1.12837917f, 3.09064302f, PAL_EPSILON * 10 }, // x: e y: 2 / sqrtf(pi) |
| 155 | { 2.71828183f, 1.41421356f, 4.11325038f, PAL_EPSILON * 10 }, // x: e y: sqrtf(2) |
| 156 | { 2.71828183f, 1.44269504f, 4.23208611f, PAL_EPSILON * 10 }, // x: e y: logf2(e) |
| 157 | { 2.71828183f, 1.57079633f, 4.81047738f, PAL_EPSILON * 10 }, // x: e y: pi / 2 |
| 158 | { 2.71828183f, 2.30258509f, 10, PAL_EPSILON * 100 }, // x: e y: ln(10) |
| 159 | { 2.71828183f, 2.71828183f, 15.1542622f, PAL_EPSILON * 100 }, // x: e y: e |
| 160 | { 2.71828183f, 3.14159265f, 23.1406926f, PAL_EPSILON * 100 }, // x: e y: pi |
| 161 | { 2.71828183f, PAL_POSINF, PAL_POSINF, 0 }, // x: e |
| 162 | |
| 163 | { 10, PAL_NEGINF, 0, 0 }, |
| 164 | { 10, -3.14159265f, 0.000721784159f, PAL_EPSILON / 1000 }, // y: -(pi) |
| 165 | { 10, -2.71828183f, 0.00191301410f, PAL_EPSILON / 100 }, // y: -(e) |
| 166 | { 10, -2.30258509f, 0.00498212830f, PAL_EPSILON / 100 }, // y: -(ln(10)) |
| 167 | { 10, -1.57079633f, 0.0268660410f, PAL_EPSILON / 10 }, // y: -(pi / 2) |
| 168 | { 10, -1.44269504f, 0.0360831928f, PAL_EPSILON / 10 }, // y: -(logf2(e)) |
| 169 | { 10, -1.41421356f, 0.0385288847f, PAL_EPSILON / 10 }, // y: -(sqrtf(2)) |
| 170 | { 10, -1.12837917f, 0.0744082059f, PAL_EPSILON / 10 }, // y: -(2 / sqrtf(pi)) |
| 171 | { 10, -1, 0.1f, PAL_EPSILON }, // y: -(1) |
| 172 | { 10, -0.785398163f, 0.163908636f, PAL_EPSILON }, // y: -(pi / 4) |
| 173 | { 10, -0.707106781f, 0.196287760f, PAL_EPSILON }, // y: -(1 / sqrtf(2)) |
| 174 | { 10, -0.693147181f, 0.202699566f, PAL_EPSILON }, // y: -(ln(2)) |
| 175 | { 10, -0.636619772f, 0.230876765f, PAL_EPSILON }, // y: -(2 / pi) |
| 176 | { 10, -0.434294482f, 0.367879441f, PAL_EPSILON }, // y: -(log10f(e)) |
| 177 | { 10, -0.318309886f, 0.480496373f, PAL_EPSILON }, // y: -(1 / pi) |
| 178 | { 10, 0, 1, PAL_EPSILON * 10 }, |
| 179 | { 10, 0.318309886f, 2.08118116f, PAL_EPSILON * 10 }, // y: 1 / pi |
| 180 | { 10, 0.434294482f, 2.71828183f, PAL_EPSILON * 10 }, // y: log10f(e) expected: e |
| 181 | { 10, 0.636619772f, 4.33131503f, PAL_EPSILON * 10 }, // y: 2 / pi |
| 182 | { 10, 0.693147181f, 4.93340967f, PAL_EPSILON * 10 }, // y: ln(2) |
| 183 | { 10, 0.707106781f, 5.09456117f, PAL_EPSILON * 10 }, // y: 1 / sqrtf(2) |
| 184 | { 10, 0.785398163f, 6.10095980f, PAL_EPSILON * 10 }, // y: pi / 4 |
| 185 | { 10, 1, 10, PAL_EPSILON * 100 }, |
| 186 | { 10, 1.12837917f, 13.4393779f, PAL_EPSILON * 100 }, // y: 2 / sqrtf(pi) |
| 187 | { 10, 1.41421356f, 25.9545535f, PAL_EPSILON * 100 }, // y: sqrtf(2) |
| 188 | { 10, 1.44269504f, 27.7137338f, PAL_EPSILON * 100 }, // y: logf2(e) |
| 189 | { 10, 1.57079633f, 37.2217105f, PAL_EPSILON * 100 }, // y: pi / 2 |
| 190 | { 10, 2.30258509f, 200.717432f, PAL_EPSILON * 1000 }, // y: ln(10) |
| 191 | { 10, 2.71828183f, 522.735300f, PAL_EPSILON * 1000 }, // y: e |
| 192 | { 10, 3.14159265f, 1385.45573f, PAL_EPSILON * 10000 }, // y: pi |
| 193 | { 10, PAL_POSINF, PAL_POSINF, 0 }, |
| 194 | |
| 195 | { PAL_POSINF, PAL_NEGINF, 0, PAL_EPSILON }, |
| 196 | { PAL_POSINF, PAL_POSINF, PAL_POSINF, 0 }, |
| 197 | }; |
| 198 | |
| 199 | if (PAL_Initialize(argc, argv) != 0) |
| 200 | { |
| 201 | return FAIL; |
| 202 | } |
| 203 | |
| 204 | for (int i = 0; i < (sizeof(tests) / sizeof(struct test)); i++) |
| 205 | { |
| 206 | validate(tests[i].x, tests[i].y, tests[i].expected, tests[i].variance); |
| 207 | } |
| 208 | |
| 209 | validate_isnan(-10, -1.57079633f); // y: -(pi / 2) |
| 210 | validate_isnan(-10, -0.785398163f); // y: -(pi / 4) |
| 211 | validate_isnan(-10, 0.785398163f); // y: pi / 4 |
| 212 | validate_isnan(-10, 1.57079633f); // y: pi / 2 |
| 213 | |
| 214 | validate_isnan(-2.71828183f, -1.57079633f); // x: -(e) y: -(pi / 2) |
| 215 | validate_isnan(-2.71828183f, -0.785398163f); // x: -(e) y: -(pi / 4) |
| 216 | validate_isnan(-2.71828183f, 0.785398163f); // x: -(e) y: pi / 4 |
| 217 | validate_isnan(-2.71828183f, 1.57079633f); // x: -(e) y: pi / 2 |
| 218 | |
| 219 | validate_isnan(PAL_NEGINF, PAL_NAN); |
| 220 | validate_isnan(PAL_NAN, PAL_NEGINF); |
| 221 | |
| 222 | validate_isnan(PAL_POSINF, PAL_NAN); |
| 223 | validate_isnan(PAL_NAN, PAL_POSINF); |
| 224 | |
| 225 | validate_isnan(PAL_NAN, PAL_NAN); |
| 226 | |
| 227 | PAL_Terminate(); |
| 228 | return PASS; |
| 229 | } |
| 230 | |