1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | //***************************************************************************** |
5 | // util.cpp |
6 | // |
7 | |
8 | // |
9 | // This contains a bunch of C++ utility classes. |
10 | // |
11 | //***************************************************************************** |
12 | #include "stdafx.h" // Precompiled header key. |
13 | #include "utilcode.h" |
14 | #include "metadata.h" |
15 | #include "ex.h" |
16 | #include "pedecoder.h" |
17 | #include "loaderheap.h" |
18 | #include "sigparser.h" |
19 | #include "cor.h" |
20 | #include "corinfo.h" |
21 | #include "volatile.h" |
22 | |
23 | #ifndef DACCESS_COMPILE |
24 | UINT32 g_nClrInstanceId = 0; |
25 | #endif //!DACCESS_COMPILE |
26 | |
27 | //********** Code. ************************************************************ |
28 | |
29 | #if defined(FEATURE_COMINTEROP) && !defined(FEATURE_CORESYSTEM) |
30 | extern WinRTStatusEnum gWinRTStatus = WINRT_STATUS_UNINITED; |
31 | #endif // FEATURE_COMINTEROP && !FEATURE_CORESYSTEM |
32 | |
33 | #if defined(FEATURE_COMINTEROP) && !defined(FEATURE_CORESYSTEM) |
34 | //------------------------------------------------------------------------------ |
35 | // |
36 | // Attempt to detect the presense of Windows Runtime support on the current OS. |
37 | // Our algorithm to do this is to ensure that: |
38 | // 1. combase.dll exists |
39 | // 2. combase.dll contains a RoInitialize export |
40 | // |
41 | |
42 | void InitWinRTStatus() |
43 | { |
44 | STATIC_CONTRACT_NOTHROW; |
45 | STATIC_CONTRACT_GC_NOTRIGGER; |
46 | STATIC_CONTRACT_CANNOT_TAKE_LOCK; |
47 | STATIC_CONTRACT_SO_TOLERANT; |
48 | |
49 | WinRTStatusEnum winRTStatus = WINRT_STATUS_UNSUPPORTED; |
50 | |
51 | const WCHAR wszComBaseDll[] = W("\\combase.dll" ); |
52 | const SIZE_T cchComBaseDll = _countof(wszComBaseDll); |
53 | |
54 | WCHAR wszComBasePath[MAX_LONGPATH + 1]; |
55 | const SIZE_T cchComBasePath = _countof(wszComBasePath); |
56 | |
57 | ZeroMemory(wszComBasePath, cchComBasePath * sizeof(wszComBasePath[0])); |
58 | |
59 | UINT cchSystemDirectory = WszGetSystemDirectory(wszComBasePath, MAX_LONGPATH); |
60 | |
61 | // Make sure that we're only probing in the system directory. If we can't find the system directory, or |
62 | // we find it but combase.dll doesn't fit into it, we'll fall back to a safe default of saying that WinRT |
63 | // is simply not present. |
64 | if (cchSystemDirectory > 0 && cchComBasePath - cchSystemDirectory >= cchComBaseDll) |
65 | { |
66 | if (wcscat_s(wszComBasePath, wszComBaseDll) == 0) |
67 | { |
68 | HModuleHolder hComBase(WszLoadLibrary(wszComBasePath)); |
69 | if (hComBase != NULL) |
70 | { |
71 | FARPROC activateInstace = GetProcAddress(hComBase, "RoInitialize" ); |
72 | if (activateInstace != NULL) |
73 | { |
74 | winRTStatus = WINRT_STATUS_SUPPORTED; |
75 | } |
76 | } |
77 | } |
78 | } |
79 | |
80 | gWinRTStatus = winRTStatus; |
81 | } |
82 | #endif // FEATURE_COMINTEROP && !FEATURE_CORESYSTEM |
83 | //***************************************************************************** |
84 | // Convert a string of hex digits into a hex value of the specified # of bytes. |
85 | //***************************************************************************** |
86 | HRESULT GetHex( // Return status. |
87 | LPCSTR szStr, // String to convert. |
88 | int size, // # of bytes in pResult. |
89 | void *pResult) // Buffer for result. |
90 | { |
91 | CONTRACTL |
92 | { |
93 | NOTHROW; |
94 | } |
95 | CONTRACTL_END; |
96 | |
97 | int count = size * 2; // # of bytes to take from string. |
98 | unsigned int Result = 0; // Result value. |
99 | char ch; |
100 | |
101 | _ASSERTE(size == 1 || size == 2 || size == 4); |
102 | |
103 | while (count-- && (ch = *szStr++) != '\0') |
104 | { |
105 | switch (ch) |
106 | { |
107 | case '0': case '1': case '2': case '3': case '4': |
108 | case '5': case '6': case '7': case '8': case '9': |
109 | Result = 16 * Result + (ch - '0'); |
110 | break; |
111 | |
112 | case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': |
113 | Result = 16 * Result + 10 + (ch - 'A'); |
114 | break; |
115 | |
116 | case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': |
117 | Result = 16 * Result + 10 + (ch - 'a'); |
118 | break; |
119 | |
120 | default: |
121 | return (E_FAIL); |
122 | } |
123 | } |
124 | |
125 | // Set the output. |
126 | switch (size) |
127 | { |
128 | case 1: |
129 | *((BYTE *) pResult) = (BYTE) Result; |
130 | break; |
131 | |
132 | case 2: |
133 | *((WORD *) pResult) = (WORD) Result; |
134 | break; |
135 | |
136 | case 4: |
137 | *((DWORD *) pResult) = Result; |
138 | break; |
139 | |
140 | default: |
141 | _ASSERTE(0); |
142 | break; |
143 | } |
144 | return (S_OK); |
145 | } |
146 | |
147 | //***************************************************************************** |
148 | // Convert a pointer to a string into a GUID. |
149 | //***************************************************************************** |
150 | HRESULT LPCSTRToGuid( // Return status. |
151 | LPCSTR szGuid, // String to convert. |
152 | GUID *psGuid) // Buffer for converted GUID. |
153 | { |
154 | CONTRACTL |
155 | { |
156 | NOTHROW; |
157 | } |
158 | CONTRACTL_END; |
159 | |
160 | int i; |
161 | |
162 | // Verify the surrounding syntax. |
163 | if (strlen(szGuid) != 38 || szGuid[0] != '{' || szGuid[9] != '-' || |
164 | szGuid[14] != '-' || szGuid[19] != '-' || szGuid[24] != '-' || szGuid[37] != '}') |
165 | { |
166 | return (E_FAIL); |
167 | } |
168 | |
169 | // Parse the first 3 fields. |
170 | if (FAILED(GetHex(szGuid + 1, 4, &psGuid->Data1))) |
171 | return E_FAIL; |
172 | if (FAILED(GetHex(szGuid + 10, 2, &psGuid->Data2))) |
173 | return E_FAIL; |
174 | if (FAILED(GetHex(szGuid + 15, 2, &psGuid->Data3))) |
175 | return E_FAIL; |
176 | |
177 | // Get the last two fields (which are byte arrays). |
178 | for (i = 0; i < 2; ++i) |
179 | { |
180 | if (FAILED(GetHex(szGuid + 20 + (i * 2), 1, &psGuid->Data4[i]))) |
181 | { |
182 | return E_FAIL; |
183 | } |
184 | } |
185 | for (i=0; i < 6; ++i) |
186 | { |
187 | if (FAILED(GetHex(szGuid + 25 + (i * 2), 1, &psGuid->Data4[i+2]))) |
188 | { |
189 | return E_FAIL; |
190 | } |
191 | } |
192 | return S_OK; |
193 | } |
194 | |
195 | // |
196 | // |
197 | // Global utility functions. |
198 | // |
199 | // |
200 | |
201 | |
202 | |
203 | typedef HRESULT __stdcall DLLGETCLASSOBJECT(REFCLSID rclsid, |
204 | REFIID riid, |
205 | void **ppv); |
206 | |
207 | EXTERN_C const IID _IID_IClassFactory = |
208 | {0x00000001, 0x0000, 0x0000, {0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46}}; |
209 | |
210 | // ---------------------------------------------------------------------------- |
211 | // FakeCoCreateInstanceEx |
212 | // |
213 | // Description: |
214 | // A private function to do the equivalent of a CoCreateInstance in cases where we |
215 | // can't make the real call. Use this when, for instance, you need to create a symbol |
216 | // reader in the Runtime but we're not CoInitialized. Obviously, this is only good |
217 | // for COM objects for which CoCreateInstance is just a glorified find-and-load-me |
218 | // operation. |
219 | // |
220 | // Arguments: |
221 | // * rclsid - [in] CLSID of object to instantiate |
222 | // * wszDllPath [in] - Path to profiler DLL. If wszDllPath is NULL, FakeCoCreateInstanceEx |
223 | // will look up the registry to find the path of the COM dll associated with rclsid. |
224 | // If the path ends in a backslash, FakeCoCreateInstanceEx will treat this as a prefix |
225 | // if the InprocServer32 found in the registry is a simple filename (not a full path). |
226 | // This allows the caller to specify the directory in which the InprocServer32 should |
227 | // be found. Also, if this path is provided and the InprocServer32 is MSCOREE.DLL, then |
228 | // the Server value is used instead, if it exists. |
229 | // * riid - [in] IID of interface on object to return in ppv |
230 | // * ppv - [out] Pointer to implementation of requested interface |
231 | // * phmodDll - [out] HMODULE of DLL that was loaded to instantiate the COM object. |
232 | // The caller may eventually call FreeLibrary() on this if it can be determined |
233 | // that we no longer reference the generated COM object or dependencies. Else, the |
234 | // caller may ignore this and the DLL will stay loaded forever. If caller |
235 | // specifies phmodDll==NULL, then this parameter is ignored and the HMODULE is not |
236 | // returned. |
237 | // |
238 | // Return Value: |
239 | // HRESULT indicating success or failure. |
240 | // |
241 | // Notes: |
242 | // * (*phmodDll) on [out] may always be trusted, even if this function returns an |
243 | // error. Therefore, even if creation of the COM object failed, if (*phmodDll != |
244 | // NULL), then the DLL was actually loaded. The caller may wish to call |
245 | // FreeLibrary on (*phmodDll) in such a case. |
246 | HRESULT FakeCoCreateInstanceEx(REFCLSID rclsid, |
247 | LPCWSTR wszDllPath, |
248 | REFIID riid, |
249 | void ** ppv, |
250 | HMODULE * phmodDll) |
251 | { |
252 | CONTRACTL |
253 | { |
254 | THROWS; |
255 | } |
256 | CONTRACTL_END; |
257 | |
258 | HRESULT hr = S_OK; |
259 | |
260 | // Call the function to get a class factory for the rclsid passed in. |
261 | HModuleHolder hDll; |
262 | ReleaseHolder<IClassFactory> classFactory; |
263 | IfFailRet(FakeCoCallDllGetClassObject(rclsid, wszDllPath, _IID_IClassFactory, (void**)&classFactory, &hDll)); |
264 | |
265 | // Ask the class factory to create an instance of the |
266 | // necessary object. |
267 | IfFailRet(classFactory->CreateInstance(NULL, riid, ppv)); |
268 | |
269 | hDll.SuppressRelease(); |
270 | |
271 | if (phmodDll != NULL) |
272 | { |
273 | *phmodDll = hDll.GetValue(); |
274 | } |
275 | |
276 | return hr; |
277 | } |
278 | |
279 | HRESULT FakeCoCallDllGetClassObject(REFCLSID rclsid, |
280 | LPCWSTR wszDllPath, |
281 | REFIID riid, |
282 | void ** ppv, |
283 | HMODULE * phmodDll) |
284 | { |
285 | CONTRACTL |
286 | { |
287 | THROWS; |
288 | } |
289 | CONTRACTL_END; |
290 | |
291 | _ASSERTE(ppv != NULL); |
292 | |
293 | HRESULT hr = S_OK; |
294 | |
295 | if (phmodDll != NULL) |
296 | { // Initialize [out] HMODULE (if it was requested) |
297 | *phmodDll = NULL; |
298 | } |
299 | |
300 | bool fIsDllPathPrefix = (wszDllPath != NULL) && (wszDllPath[wcslen(wszDllPath) - 1] == W('\\')); |
301 | |
302 | // - An empty string will be treated as NULL. |
303 | // - A string ending will a backslash will be treated as a prefix for where to look for the DLL |
304 | // if the InProcServer32 value is just a DLL name and not a full path. |
305 | StackSString ssDllName; |
306 | if ((wszDllPath == NULL) || (wszDllPath[0] == W('\0')) || fIsDllPathPrefix) |
307 | { |
308 | #ifndef FEATURE_PAL |
309 | IfFailRet(Clr::Util::Com::FindInprocServer32UsingCLSID(rclsid, ssDllName)); |
310 | |
311 | EX_TRY |
312 | { |
313 | if (fIsDllPathPrefix) |
314 | { |
315 | if (Clr::Util::Com::IsMscoreeInprocServer32(ssDllName)) |
316 | { // If the InprocServer32 is mscoree.dll, then we skip the shim and look for |
317 | // the corresponding server DLL (if it exists) in the directory provided. |
318 | hr = Clr::Util::Com::FindServerUsingCLSID(rclsid, ssDllName); |
319 | |
320 | if (FAILED(hr)) |
321 | { // We don't fail if there is no server object, because in this case we assume that |
322 | // the clsid is implemented in the runtime itself (clr.dll) and we do not place |
323 | // entries in the registry for this case. |
324 | ssDllName.Set(MAIN_CLR_MODULE_NAME_W); |
325 | } |
326 | } |
327 | |
328 | SString::Iterator i = ssDllName.Begin(); |
329 | if (!ssDllName.Find(i, W('\\'))) |
330 | { // If the InprocServer32 is just a DLL name (not a fully qualified path), then |
331 | // prefix wszFilePath with wszDllPath. |
332 | ssDllName.Insert(i, wszDllPath); |
333 | } |
334 | } |
335 | } |
336 | EX_CATCH_HRESULT(hr); |
337 | IfFailRet(hr); |
338 | |
339 | wszDllPath = ssDllName.GetUnicode(); |
340 | #else // !FEATURE_PAL |
341 | return E_FAIL; |
342 | #endif // !FEATURE_PAL |
343 | } |
344 | _ASSERTE(wszDllPath != NULL); |
345 | |
346 | // We've got the name of the DLL to load, so load it. |
347 | HModuleHolder hDll = WszLoadLibraryEx(wszDllPath, NULL, GetLoadWithAlteredSearchPathFlag()); |
348 | if (hDll == NULL) |
349 | { |
350 | return HRESULT_FROM_GetLastError(); |
351 | } |
352 | |
353 | // We've loaded the DLL, so find the DllGetClassObject function. |
354 | DLLGETCLASSOBJECT *dllGetClassObject = (DLLGETCLASSOBJECT*)GetProcAddress(hDll, "DllGetClassObject" ); |
355 | if (dllGetClassObject == NULL) |
356 | { |
357 | return HRESULT_FROM_GetLastError(); |
358 | } |
359 | |
360 | // Call the function to get a class object for the rclsid and riid passed in. |
361 | IfFailRet(dllGetClassObject(rclsid, riid, ppv)); |
362 | |
363 | hDll.SuppressRelease(); |
364 | |
365 | if (phmodDll != NULL) |
366 | { |
367 | *phmodDll = hDll.GetValue(); |
368 | } |
369 | |
370 | return hr; |
371 | } |
372 | |
373 | #if USE_UPPER_ADDRESS |
374 | static BYTE * s_CodeMinAddr; // Preferred region to allocate the code in. |
375 | static BYTE * s_CodeMaxAddr; |
376 | static BYTE * s_CodeAllocStart; |
377 | static BYTE * s_CodeAllocHint; // Next address to try to allocate for code in the preferred region. |
378 | #endif |
379 | |
380 | // |
381 | // Use this function to initialize the s_CodeAllocHint |
382 | // during startup. base is runtime .dll base address, |
383 | // size is runtime .dll virtual size. |
384 | // |
385 | void InitCodeAllocHint(SIZE_T base, SIZE_T size, int randomPageOffset) |
386 | { |
387 | #if USE_UPPER_ADDRESS |
388 | |
389 | #ifdef _DEBUG |
390 | // If GetForceRelocs is enabled we don't constrain the pMinAddr |
391 | if (PEDecoder::GetForceRelocs()) |
392 | return; |
393 | #endif |
394 | |
395 | // |
396 | // If we are using the UPPER_ADDRESS space (on Win64) |
397 | // then for any code heap that doesn't specify an address |
398 | // range using [pMinAddr..pMaxAddr] we place it in the |
399 | // upper address space |
400 | // This enables us to avoid having to use long JumpStubs |
401 | // to reach the code for our ngen-ed images. |
402 | // Which are also placed in the UPPER_ADDRESS space. |
403 | // |
404 | SIZE_T reach = 0x7FFF0000u; |
405 | |
406 | // We will choose the preferred code region based on the address of clr.dll. The JIT helpers |
407 | // in clr.dll are the most heavily called functions. |
408 | s_CodeMinAddr = (base + size > reach) ? (BYTE *)(base + size - reach) : (BYTE *)0; |
409 | s_CodeMaxAddr = (base + reach > base) ? (BYTE *)(base + reach) : (BYTE *)-1; |
410 | |
411 | BYTE * pStart; |
412 | |
413 | if (s_CodeMinAddr <= (BYTE *)CODEHEAP_START_ADDRESS && |
414 | (BYTE *)CODEHEAP_START_ADDRESS < s_CodeMaxAddr) |
415 | { |
416 | // clr.dll got loaded at its preferred base address? (OS without ASLR - pre-Vista) |
417 | // Use the code head start address that does not cause collisions with NGen images. |
418 | // This logic is coupled with scripts that we use to assign base addresses. |
419 | pStart = (BYTE *)CODEHEAP_START_ADDRESS; |
420 | } |
421 | else |
422 | if (base > UINT32_MAX) |
423 | { |
424 | // clr.dll got address assigned by ASLR? |
425 | // Try to occupy the space as far as possible to minimize collisions with other ASLR assigned |
426 | // addresses. Do not start at s_CodeMinAddr exactly so that we can also reach common native images |
427 | // that can be placed at higher addresses than clr.dll. |
428 | pStart = s_CodeMinAddr + (s_CodeMaxAddr - s_CodeMinAddr) / 8; |
429 | } |
430 | else |
431 | { |
432 | // clr.dll missed the base address? |
433 | // Try to occupy the space right after it. |
434 | pStart = (BYTE *)(base + size); |
435 | } |
436 | |
437 | // Randomize the adddress space |
438 | pStart += GetOsPageSize() * randomPageOffset; |
439 | |
440 | s_CodeAllocStart = pStart; |
441 | s_CodeAllocHint = pStart; |
442 | #endif |
443 | } |
444 | |
445 | // |
446 | // Use this function to reset the s_CodeAllocHint |
447 | // after unloading an AppDomain |
448 | // |
449 | void ResetCodeAllocHint() |
450 | { |
451 | LIMITED_METHOD_CONTRACT; |
452 | #if USE_UPPER_ADDRESS |
453 | s_CodeAllocHint = s_CodeAllocStart; |
454 | #endif |
455 | } |
456 | |
457 | // |
458 | // Returns TRUE if p is located in near clr.dll that allows us |
459 | // to use rel32 IP-relative addressing modes. |
460 | // |
461 | BOOL IsPreferredExecutableRange(void * p) |
462 | { |
463 | LIMITED_METHOD_CONTRACT; |
464 | #if USE_UPPER_ADDRESS |
465 | if (s_CodeMinAddr <= (BYTE *)p && (BYTE *)p < s_CodeMaxAddr) |
466 | return TRUE; |
467 | #endif |
468 | return FALSE; |
469 | } |
470 | |
471 | // |
472 | // Allocate free memory that will be used for executable code |
473 | // Handles the special requirements that we have on 64-bit platforms |
474 | // where we want the executable memory to be located near clr.dll |
475 | // |
476 | BYTE * ClrVirtualAllocExecutable(SIZE_T dwSize, |
477 | DWORD flAllocationType, |
478 | DWORD flProtect) |
479 | { |
480 | CONTRACTL |
481 | { |
482 | NOTHROW; |
483 | } |
484 | CONTRACTL_END; |
485 | |
486 | #if USE_UPPER_ADDRESS |
487 | // |
488 | // If we are using the UPPER_ADDRESS space (on Win64) |
489 | // then for any heap that will contain executable code |
490 | // we will place it in the upper address space |
491 | // |
492 | // This enables us to avoid having to use JumpStubs |
493 | // to reach the code for our ngen-ed images on x64, |
494 | // since they are also placed in the UPPER_ADDRESS space. |
495 | // |
496 | BYTE * pHint = s_CodeAllocHint; |
497 | |
498 | if (dwSize <= (SIZE_T)(s_CodeMaxAddr - s_CodeMinAddr) && pHint != NULL) |
499 | { |
500 | // Try to allocate in the preferred region after the hint |
501 | BYTE * pResult = ClrVirtualAllocWithinRange(pHint, s_CodeMaxAddr, dwSize, flAllocationType, flProtect); |
502 | |
503 | if (pResult != NULL) |
504 | { |
505 | s_CodeAllocHint = pResult + dwSize; |
506 | return pResult; |
507 | } |
508 | |
509 | // Try to allocate in the preferred region before the hint |
510 | pResult = ClrVirtualAllocWithinRange(s_CodeMinAddr, pHint + dwSize, dwSize, flAllocationType, flProtect); |
511 | |
512 | if (pResult != NULL) |
513 | { |
514 | s_CodeAllocHint = pResult + dwSize; |
515 | return pResult; |
516 | } |
517 | |
518 | s_CodeAllocHint = NULL; |
519 | } |
520 | |
521 | // Fall through to |
522 | #endif // USE_UPPER_ADDRESS |
523 | |
524 | #ifdef FEATURE_PAL |
525 | // Tell PAL to use the executable memory allocator to satisfy this request for virtual memory. |
526 | // This will allow us to place JIT'ed code close to the coreclr library |
527 | // and thus improve performance by avoiding jump stubs in managed code. |
528 | flAllocationType |= MEM_RESERVE_EXECUTABLE; |
529 | #endif // FEATURE_PAL |
530 | |
531 | return (BYTE *) ClrVirtualAlloc (NULL, dwSize, flAllocationType, flProtect); |
532 | |
533 | } |
534 | |
535 | // |
536 | // Allocate free memory with specific alignment. |
537 | // |
538 | LPVOID ClrVirtualAllocAligned(LPVOID lpAddress, SIZE_T dwSize, DWORD flAllocationType, DWORD flProtect, SIZE_T alignment) |
539 | { |
540 | // Verify that the alignment is a power of 2 |
541 | _ASSERTE(alignment != 0); |
542 | _ASSERTE((alignment & (alignment - 1)) == 0); |
543 | |
544 | #ifndef FEATURE_PAL |
545 | |
546 | // The VirtualAlloc on Windows ensures 64kB alignment |
547 | _ASSERTE(alignment <= 0x10000); |
548 | return ClrVirtualAlloc(lpAddress, dwSize, flAllocationType, flProtect); |
549 | |
550 | #else // !FEATURE_PAL |
551 | |
552 | if(alignment < GetOsPageSize()) alignment = GetOsPageSize(); |
553 | |
554 | // UNIXTODO: Add a specialized function to PAL so that we don't have to waste memory |
555 | dwSize += alignment; |
556 | SIZE_T addr = (SIZE_T)ClrVirtualAlloc(lpAddress, dwSize, flAllocationType, flProtect); |
557 | return (LPVOID)((addr + (alignment - 1)) & ~(alignment - 1)); |
558 | |
559 | #endif // !FEATURE_PAL |
560 | } |
561 | |
562 | #ifdef _DEBUG |
563 | static DWORD ShouldInjectFaultInRange() |
564 | { |
565 | static DWORD fInjectFaultInRange = 99; |
566 | |
567 | if (fInjectFaultInRange == 99) |
568 | fInjectFaultInRange = (CLRConfig::GetConfigValue(CLRConfig::INTERNAL_InjectFault) & 0x40); |
569 | return fInjectFaultInRange; |
570 | } |
571 | #endif |
572 | |
573 | // Reserves free memory within the range [pMinAddr..pMaxAddr] using |
574 | // ClrVirtualQuery to find free memory and ClrVirtualAlloc to reserve it. |
575 | // |
576 | // This method only supports the flAllocationType of MEM_RESERVE, and expects that the memory |
577 | // is being reserved for the purpose of eventually storing executable code. |
578 | // |
579 | // Callers also should set dwSize to a multiple of sysInfo.dwAllocationGranularity (64k). |
580 | // That way they can reserve a large region and commit smaller sized pages |
581 | // from that region until it fills up. |
582 | // |
583 | // This functions returns the reserved memory block upon success |
584 | // |
585 | // It returns NULL when it fails to find any memory that satisfies |
586 | // the range. |
587 | // |
588 | |
589 | BYTE * ClrVirtualAllocWithinRange(const BYTE *pMinAddr, |
590 | const BYTE *pMaxAddr, |
591 | SIZE_T dwSize, |
592 | DWORD flAllocationType, |
593 | DWORD flProtect) |
594 | { |
595 | CONTRACTL |
596 | { |
597 | NOTHROW; |
598 | PRECONDITION(dwSize != 0); |
599 | PRECONDITION(flAllocationType == MEM_RESERVE); |
600 | } |
601 | CONTRACTL_END; |
602 | |
603 | BYTE *pResult = nullptr; // our return value; |
604 | |
605 | static unsigned countOfCalls = 0; // We log the number of tims we call this method |
606 | countOfCalls++; // increment the call counter |
607 | |
608 | if (dwSize == 0) |
609 | { |
610 | return nullptr; |
611 | } |
612 | |
613 | // |
614 | // First lets normalize the pMinAddr and pMaxAddr values |
615 | // |
616 | // If pMinAddr is NULL then set it to BOT_MEMORY |
617 | if ((pMinAddr == 0) || (pMinAddr < (BYTE *) BOT_MEMORY)) |
618 | { |
619 | pMinAddr = (BYTE *) BOT_MEMORY; |
620 | } |
621 | |
622 | // If pMaxAddr is NULL then set it to TOP_MEMORY |
623 | if ((pMaxAddr == 0) || (pMaxAddr > (BYTE *) TOP_MEMORY)) |
624 | { |
625 | pMaxAddr = (BYTE *) TOP_MEMORY; |
626 | } |
627 | |
628 | // If pMaxAddr is not greater than pMinAddr we can not make an allocation |
629 | if (pMaxAddr <= pMinAddr) |
630 | { |
631 | return nullptr; |
632 | } |
633 | |
634 | // If pMinAddr is BOT_MEMORY and pMaxAddr is TOP_MEMORY |
635 | // then we can call ClrVirtualAlloc instead |
636 | if ((pMinAddr == (BYTE *) BOT_MEMORY) && (pMaxAddr == (BYTE *) TOP_MEMORY)) |
637 | { |
638 | return (BYTE*) ClrVirtualAlloc(nullptr, dwSize, flAllocationType, flProtect); |
639 | } |
640 | |
641 | #ifdef FEATURE_PAL |
642 | pResult = (BYTE *)PAL_VirtualReserveFromExecutableMemoryAllocatorWithinRange(pMinAddr, pMaxAddr, dwSize); |
643 | if (pResult != nullptr) |
644 | { |
645 | return pResult; |
646 | } |
647 | #endif // FEATURE_PAL |
648 | |
649 | // We will do one scan from [pMinAddr .. pMaxAddr] |
650 | // First align the tryAddr up to next 64k base address. |
651 | // See docs for VirtualAllocEx and lpAddress and 64k alignment for reasons. |
652 | // |
653 | BYTE * tryAddr = (BYTE *)ALIGN_UP((BYTE *)pMinAddr, VIRTUAL_ALLOC_RESERVE_GRANULARITY); |
654 | bool virtualQueryFailed = false; |
655 | bool faultInjected = false; |
656 | unsigned virtualQueryCount = 0; |
657 | |
658 | // Now scan memory and try to find a free block of the size requested. |
659 | while ((tryAddr + dwSize) <= (BYTE *) pMaxAddr) |
660 | { |
661 | MEMORY_BASIC_INFORMATION mbInfo; |
662 | |
663 | // Use VirtualQuery to find out if this address is MEM_FREE |
664 | // |
665 | virtualQueryCount++; |
666 | if (!ClrVirtualQuery((LPCVOID)tryAddr, &mbInfo, sizeof(mbInfo))) |
667 | { |
668 | // Exit and return nullptr if the VirtualQuery call fails. |
669 | virtualQueryFailed = true; |
670 | break; |
671 | } |
672 | |
673 | // Is there enough memory free from this start location? |
674 | // Note that for most versions of UNIX the mbInfo.RegionSize returned will always be 0 |
675 | if ((mbInfo.State == MEM_FREE) && |
676 | (mbInfo.RegionSize >= (SIZE_T) dwSize || mbInfo.RegionSize == 0)) |
677 | { |
678 | // Try reserving the memory using VirtualAlloc now |
679 | pResult = (BYTE*)ClrVirtualAlloc(tryAddr, dwSize, MEM_RESERVE, flProtect); |
680 | |
681 | // Normally this will be successful |
682 | // |
683 | if (pResult != nullptr) |
684 | { |
685 | // return pResult |
686 | break; |
687 | } |
688 | |
689 | #ifdef _DEBUG |
690 | if (ShouldInjectFaultInRange()) |
691 | { |
692 | // return nullptr (failure) |
693 | faultInjected = true; |
694 | break; |
695 | } |
696 | #endif // _DEBUG |
697 | |
698 | // On UNIX we can also fail if our request size 'dwSize' is larger than 64K and |
699 | // and our tryAddr is pointing at a small MEM_FREE region (smaller than 'dwSize') |
700 | // However we can't distinguish between this and the race case. |
701 | |
702 | // We might fail in a race. So just move on to next region and continue trying |
703 | tryAddr = tryAddr + VIRTUAL_ALLOC_RESERVE_GRANULARITY; |
704 | } |
705 | else |
706 | { |
707 | // Try another section of memory |
708 | tryAddr = max(tryAddr + VIRTUAL_ALLOC_RESERVE_GRANULARITY, |
709 | (BYTE*) mbInfo.BaseAddress + mbInfo.RegionSize); |
710 | } |
711 | } |
712 | |
713 | STRESS_LOG7(LF_JIT, LL_INFO100, |
714 | "ClrVirtualAllocWithinRange request #%u for %08x bytes in [ %p .. %p ], query count was %u - returned %s: %p\n" , |
715 | countOfCalls, (DWORD)dwSize, pMinAddr, pMaxAddr, |
716 | virtualQueryCount, (pResult != nullptr) ? "success" : "failure" , pResult); |
717 | |
718 | // If we failed this call the process will typically be terminated |
719 | // so we log any additional reason for failing this call. |
720 | // |
721 | if (pResult == nullptr) |
722 | { |
723 | if ((tryAddr + dwSize) > (BYTE *)pMaxAddr) |
724 | { |
725 | // Our tryAddr reached pMaxAddr |
726 | STRESS_LOG0(LF_JIT, LL_INFO100, "Additional reason: Address space exhausted.\n" ); |
727 | } |
728 | |
729 | if (virtualQueryFailed) |
730 | { |
731 | STRESS_LOG0(LF_JIT, LL_INFO100, "Additional reason: VirtualQuery operation failed.\n" ); |
732 | } |
733 | |
734 | if (faultInjected) |
735 | { |
736 | STRESS_LOG0(LF_JIT, LL_INFO100, "Additional reason: fault injected.\n" ); |
737 | } |
738 | } |
739 | |
740 | return pResult; |
741 | } |
742 | |
743 | //****************************************************************************** |
744 | // NumaNodeInfo |
745 | //****************************************************************************** |
746 | #if !defined(FEATURE_REDHAWK) |
747 | /*static*/ NumaNodeInfo::PGNHNN NumaNodeInfo::m_pGetNumaHighestNodeNumber = NULL; |
748 | /*static*/ NumaNodeInfo::PVAExN NumaNodeInfo::m_pVirtualAllocExNuma = NULL; |
749 | |
750 | /*static*/ LPVOID NumaNodeInfo::VirtualAllocExNuma(HANDLE hProc, LPVOID lpAddr, SIZE_T dwSize, |
751 | DWORD allocType, DWORD prot, DWORD node) |
752 | { |
753 | return (*m_pVirtualAllocExNuma)(hProc, lpAddr, dwSize, allocType, prot, node); |
754 | } |
755 | /*static*/ NumaNodeInfo::PGNPNEx NumaNodeInfo::m_pGetNumaProcessorNodeEx = NULL; |
756 | |
757 | /*static*/ BOOL NumaNodeInfo::GetNumaProcessorNodeEx(PPROCESSOR_NUMBER proc_no, PUSHORT node_no) |
758 | { |
759 | return (*m_pGetNumaProcessorNodeEx)(proc_no, node_no); |
760 | } |
761 | #endif |
762 | |
763 | /*static*/ BOOL NumaNodeInfo::m_enableGCNumaAware = FALSE; |
764 | /*static*/ BOOL NumaNodeInfo::InitNumaNodeInfoAPI() |
765 | { |
766 | #if !defined(FEATURE_REDHAWK) |
767 | //check for numa support if multiple heaps are used |
768 | ULONG highest = 0; |
769 | |
770 | if (CLRConfig::GetConfigValue(CLRConfig::UNSUPPORTED_GCNumaAware) == 0) |
771 | return FALSE; |
772 | |
773 | #ifndef FEATURE_PAL |
774 | // check if required APIs are supported |
775 | HMODULE hMod = GetModuleHandleW(WINDOWS_KERNEL32_DLLNAME_W); |
776 | #else |
777 | HMODULE hMod = GetCLRModule(); |
778 | #endif |
779 | if (hMod == NULL) |
780 | return FALSE; |
781 | |
782 | m_pGetNumaHighestNodeNumber = (PGNHNN) GetProcAddress(hMod, "GetNumaHighestNodeNumber" ); |
783 | if (m_pGetNumaHighestNodeNumber == NULL) |
784 | return FALSE; |
785 | |
786 | // fail to get the highest numa node number |
787 | if (!m_pGetNumaHighestNodeNumber(&highest) || (highest == 0)) |
788 | return FALSE; |
789 | |
790 | m_pGetNumaProcessorNodeEx = (PGNPNEx) GetProcAddress(hMod, "GetNumaProcessorNodeEx" ); |
791 | if (m_pGetNumaProcessorNodeEx == NULL) |
792 | return FALSE; |
793 | |
794 | m_pVirtualAllocExNuma = (PVAExN) GetProcAddress(hMod, "VirtualAllocExNuma" ); |
795 | if (m_pVirtualAllocExNuma == NULL) |
796 | return FALSE; |
797 | |
798 | return TRUE; |
799 | #else |
800 | return FALSE; |
801 | #endif |
802 | } |
803 | |
804 | /*static*/ BOOL NumaNodeInfo::CanEnableGCNumaAware() |
805 | { |
806 | return m_enableGCNumaAware; |
807 | } |
808 | |
809 | /*static*/ void NumaNodeInfo::InitNumaNodeInfo() |
810 | { |
811 | m_enableGCNumaAware = InitNumaNodeInfoAPI(); |
812 | } |
813 | |
814 | //****************************************************************************** |
815 | // NumaNodeInfo |
816 | //****************************************************************************** |
817 | #if !defined(FEATURE_REDHAWK) |
818 | /*static*/ CPUGroupInfo::PGLPIEx CPUGroupInfo::m_pGetLogicalProcessorInformationEx = NULL; |
819 | /*static*/ CPUGroupInfo::PSTGA CPUGroupInfo::m_pSetThreadGroupAffinity = NULL; |
820 | /*static*/ CPUGroupInfo::PGTGA CPUGroupInfo::m_pGetThreadGroupAffinity = NULL; |
821 | /*static*/ CPUGroupInfo::PGCPNEx CPUGroupInfo::m_pGetCurrentProcessorNumberEx = NULL; |
822 | /*static*/ CPUGroupInfo::PGST CPUGroupInfo::m_pGetSystemTimes = NULL; |
823 | /*static*/ //CPUGroupInfo::PNTQSIEx CPUGroupInfo::m_pNtQuerySystemInformationEx = NULL; |
824 | |
825 | /*static*/ BOOL CPUGroupInfo::GetLogicalProcessorInformationEx(DWORD relationship, |
826 | SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *slpiex, PDWORD count) |
827 | { |
828 | LIMITED_METHOD_CONTRACT; |
829 | return (*m_pGetLogicalProcessorInformationEx)(relationship, slpiex, count); |
830 | } |
831 | |
832 | /*static*/ BOOL CPUGroupInfo::SetThreadGroupAffinity(HANDLE h, |
833 | GROUP_AFFINITY *groupAffinity, GROUP_AFFINITY *previousGroupAffinity) |
834 | { |
835 | LIMITED_METHOD_CONTRACT; |
836 | return (*m_pSetThreadGroupAffinity)(h, groupAffinity, previousGroupAffinity); |
837 | } |
838 | |
839 | /*static*/ BOOL CPUGroupInfo::GetThreadGroupAffinity(HANDLE h, GROUP_AFFINITY *groupAffinity) |
840 | { |
841 | LIMITED_METHOD_CONTRACT; |
842 | return (*m_pGetThreadGroupAffinity)(h, groupAffinity); |
843 | } |
844 | |
845 | /*static*/ BOOL CPUGroupInfo::GetSystemTimes(FILETIME *idleTime, FILETIME *kernelTime, FILETIME *userTime) |
846 | { |
847 | LIMITED_METHOD_CONTRACT; |
848 | return (*m_pGetSystemTimes)(idleTime, kernelTime, userTime); |
849 | } |
850 | #endif |
851 | |
852 | /*static*/ BOOL CPUGroupInfo::m_enableGCCPUGroups = FALSE; |
853 | /*static*/ BOOL CPUGroupInfo::m_threadUseAllCpuGroups = FALSE; |
854 | /*static*/ WORD CPUGroupInfo::m_nGroups = 0; |
855 | /*static*/ WORD CPUGroupInfo::m_nProcessors = 0; |
856 | /*static*/ WORD CPUGroupInfo::m_initialGroup = 0; |
857 | /*static*/ CPU_Group_Info *CPUGroupInfo::m_CPUGroupInfoArray = NULL; |
858 | /*static*/ LONG CPUGroupInfo::m_initialization = 0; |
859 | /*static*/ bool CPUGroupInfo::s_hadSingleProcessorAtStartup = false; |
860 | |
861 | // Check and setup function pointers for >64 LP Support |
862 | /*static*/ BOOL CPUGroupInfo::InitCPUGroupInfoAPI() |
863 | { |
864 | CONTRACTL |
865 | { |
866 | NOTHROW; |
867 | GC_NOTRIGGER; |
868 | } |
869 | CONTRACTL_END; |
870 | |
871 | #if !defined(FEATURE_REDHAWK) && (defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)) |
872 | #ifndef FEATURE_PAL |
873 | HMODULE hMod = GetModuleHandleW(WINDOWS_KERNEL32_DLLNAME_W); |
874 | #else |
875 | HMODULE hMod = GetCLRModule(); |
876 | #endif |
877 | if (hMod == NULL) |
878 | return FALSE; |
879 | |
880 | m_pGetLogicalProcessorInformationEx = (PGLPIEx)GetProcAddress(hMod, "GetLogicalProcessorInformationEx" ); |
881 | if (m_pGetLogicalProcessorInformationEx == NULL) |
882 | return FALSE; |
883 | |
884 | m_pSetThreadGroupAffinity = (PSTGA)GetProcAddress(hMod, "SetThreadGroupAffinity" ); |
885 | if (m_pSetThreadGroupAffinity == NULL) |
886 | return FALSE; |
887 | |
888 | m_pGetThreadGroupAffinity = (PGTGA)GetProcAddress(hMod, "GetThreadGroupAffinity" ); |
889 | if (m_pGetThreadGroupAffinity == NULL) |
890 | return FALSE; |
891 | |
892 | m_pGetCurrentProcessorNumberEx = (PGCPNEx)GetProcAddress(hMod, "GetCurrentProcessorNumberEx" ); |
893 | if (m_pGetCurrentProcessorNumberEx == NULL) |
894 | return FALSE; |
895 | |
896 | #ifndef FEATURE_PAL |
897 | m_pGetSystemTimes = (PGST)GetProcAddress(hMod, "GetSystemTimes" ); |
898 | if (m_pGetSystemTimes == NULL) |
899 | return FALSE; |
900 | #endif |
901 | |
902 | return TRUE; |
903 | #else |
904 | return FALSE; |
905 | #endif |
906 | } |
907 | |
908 | #if !defined(FEATURE_REDHAWK) && (defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)) |
909 | // Calculate greatest common divisor |
910 | DWORD GCD(DWORD u, DWORD v) |
911 | { |
912 | while (v != 0) |
913 | { |
914 | DWORD dwTemp = v; |
915 | v = u % v; |
916 | u = dwTemp; |
917 | } |
918 | |
919 | return u; |
920 | } |
921 | |
922 | // Calculate least common multiple |
923 | DWORD LCM(DWORD u, DWORD v) |
924 | { |
925 | return u / GCD(u, v) * v; |
926 | } |
927 | #endif |
928 | |
929 | /*static*/ BOOL CPUGroupInfo::InitCPUGroupInfoArray() |
930 | { |
931 | CONTRACTL |
932 | { |
933 | NOTHROW; |
934 | SO_TOLERANT; |
935 | GC_NOTRIGGER; |
936 | } |
937 | CONTRACTL_END; |
938 | |
939 | #if !defined(FEATURE_REDHAWK) && (defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)) |
940 | BYTE *bBuffer = NULL; |
941 | SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *pSLPIEx = NULL; |
942 | SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *pRecord = NULL; |
943 | DWORD cbSLPIEx = 0; |
944 | DWORD byteOffset = 0; |
945 | DWORD dwNumElements = 0; |
946 | DWORD dwWeight = 1; |
947 | |
948 | if (CPUGroupInfo::GetLogicalProcessorInformationEx(RelationGroup, pSLPIEx, &cbSLPIEx) && |
949 | GetLastError() != ERROR_INSUFFICIENT_BUFFER) |
950 | return FALSE; |
951 | |
952 | _ASSERTE(cbSLPIEx); |
953 | |
954 | // Fail to allocate buffer |
955 | bBuffer = new (nothrow) BYTE[ cbSLPIEx ]; |
956 | if (bBuffer == NULL) |
957 | return FALSE; |
958 | |
959 | pSLPIEx = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)bBuffer; |
960 | if (!m_pGetLogicalProcessorInformationEx(RelationGroup, pSLPIEx, &cbSLPIEx)) |
961 | { |
962 | delete[] bBuffer; |
963 | return FALSE; |
964 | } |
965 | |
966 | pRecord = pSLPIEx; |
967 | while (byteOffset < cbSLPIEx) |
968 | { |
969 | if (pRecord->Relationship == RelationGroup) |
970 | { |
971 | m_nGroups = pRecord->Group.ActiveGroupCount; |
972 | break; |
973 | } |
974 | byteOffset += pRecord->Size; |
975 | pRecord = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)(bBuffer + byteOffset); |
976 | } |
977 | |
978 | m_CPUGroupInfoArray = new (nothrow) CPU_Group_Info[m_nGroups]; |
979 | if (m_CPUGroupInfoArray == NULL) |
980 | { |
981 | delete[] bBuffer; |
982 | return FALSE; |
983 | } |
984 | |
985 | for (DWORD i = 0; i < m_nGroups; i++) |
986 | { |
987 | m_CPUGroupInfoArray[i].nr_active = (WORD)pRecord->Group.GroupInfo[i].ActiveProcessorCount; |
988 | m_CPUGroupInfoArray[i].active_mask = pRecord->Group.GroupInfo[i].ActiveProcessorMask; |
989 | m_nProcessors += m_CPUGroupInfoArray[i].nr_active; |
990 | dwWeight = LCM(dwWeight, (DWORD)m_CPUGroupInfoArray[i].nr_active); |
991 | } |
992 | |
993 | // The number of threads per group that can be supported will depend on the number of CPU groups |
994 | // and the number of LPs within each processor group. For example, when the number of LPs in |
995 | // CPU groups is the same and is 64, the number of threads per group before weight overflow |
996 | // would be 2^32/2^6 = 2^26 (64M threads) |
997 | for (DWORD i = 0; i < m_nGroups; i++) |
998 | { |
999 | m_CPUGroupInfoArray[i].groupWeight = dwWeight / (DWORD)m_CPUGroupInfoArray[i].nr_active; |
1000 | m_CPUGroupInfoArray[i].activeThreadWeight = 0; |
1001 | } |
1002 | |
1003 | delete[] bBuffer; // done with it; free it |
1004 | return TRUE; |
1005 | #else |
1006 | return FALSE; |
1007 | #endif |
1008 | } |
1009 | |
1010 | /*static*/ BOOL CPUGroupInfo::InitCPUGroupInfoRange() |
1011 | { |
1012 | LIMITED_METHOD_CONTRACT; |
1013 | |
1014 | #if !defined(FEATURE_REDHAWK) && (defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)) |
1015 | WORD begin = 0; |
1016 | WORD nr_proc = 0; |
1017 | |
1018 | for (WORD i = 0; i < m_nGroups; i++) |
1019 | { |
1020 | nr_proc += m_CPUGroupInfoArray[i].nr_active; |
1021 | m_CPUGroupInfoArray[i].begin = begin; |
1022 | m_CPUGroupInfoArray[i].end = nr_proc - 1; |
1023 | begin = nr_proc; |
1024 | } |
1025 | return TRUE; |
1026 | #else |
1027 | return FALSE; |
1028 | #endif |
1029 | } |
1030 | |
1031 | /*static*/ void CPUGroupInfo::InitCPUGroupInfo() |
1032 | { |
1033 | CONTRACTL |
1034 | { |
1035 | NOTHROW; |
1036 | SO_TOLERANT; |
1037 | GC_NOTRIGGER; |
1038 | } |
1039 | CONTRACTL_END; |
1040 | |
1041 | #if !defined(FEATURE_REDHAWK) && (defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)) |
1042 | BOOL enableGCCPUGroups = CLRConfig::GetConfigValue(CLRConfig::EXTERNAL_GCCpuGroup) != 0; |
1043 | BOOL threadUseAllCpuGroups = CLRConfig::GetConfigValue(CLRConfig::EXTERNAL_Thread_UseAllCpuGroups) != 0; |
1044 | |
1045 | if (!enableGCCPUGroups) |
1046 | return; |
1047 | |
1048 | if (!InitCPUGroupInfoAPI()) |
1049 | return; |
1050 | |
1051 | if (!InitCPUGroupInfoArray()) |
1052 | return; |
1053 | |
1054 | if (!InitCPUGroupInfoRange()) |
1055 | return; |
1056 | |
1057 | // initalGroup is whatever the CPU group that the main thread is running on |
1058 | GROUP_AFFINITY groupAffinity; |
1059 | CPUGroupInfo::GetThreadGroupAffinity(GetCurrentThread(), &groupAffinity); |
1060 | m_initialGroup = groupAffinity.Group; |
1061 | |
1062 | // only enable CPU groups if more than one group exists |
1063 | BOOL hasMultipleGroups = m_nGroups > 1; |
1064 | m_enableGCCPUGroups = enableGCCPUGroups && hasMultipleGroups; |
1065 | m_threadUseAllCpuGroups = threadUseAllCpuGroups && hasMultipleGroups; |
1066 | #endif // _TARGET_AMD64_ || _TARGET_ARM64_ |
1067 | |
1068 | // Determine if the process is affinitized to a single processor (or if the system has a single processor) |
1069 | DWORD_PTR processAffinityMask, systemAffinityMask; |
1070 | if (GetProcessAffinityMask(GetCurrentProcess(), &processAffinityMask, &systemAffinityMask)) |
1071 | { |
1072 | processAffinityMask &= systemAffinityMask; |
1073 | if (processAffinityMask != 0 && // only one CPU group is involved |
1074 | (processAffinityMask & (processAffinityMask - 1)) == 0) // only one bit is set |
1075 | { |
1076 | s_hadSingleProcessorAtStartup = true; |
1077 | } |
1078 | } |
1079 | } |
1080 | |
1081 | /*static*/ BOOL CPUGroupInfo::IsInitialized() |
1082 | { |
1083 | LIMITED_METHOD_CONTRACT; |
1084 | return (m_initialization == -1); |
1085 | } |
1086 | |
1087 | /*static*/ void CPUGroupInfo::EnsureInitialized() |
1088 | { |
1089 | CONTRACTL |
1090 | { |
1091 | NOTHROW; |
1092 | SO_TOLERANT; |
1093 | GC_NOTRIGGER; |
1094 | } |
1095 | CONTRACTL_END; |
1096 | |
1097 | // CPUGroupInfo needs to be initialized only once. This could happen in three cases |
1098 | // 1. CLR initialization at begining of EEStartup, or |
1099 | // 2. Sometimes, when hosted by ASP.NET, the hosting process may initialize ThreadPool |
1100 | // before initializing CLR, thus require CPUGroupInfo to be initialized to determine |
1101 | // if CPU group support should/could be enabled. |
1102 | // 3. Call into Threadpool functions before Threadpool _and_ CLR is initialized. |
1103 | // Vast majority of time, CPUGroupInfo is initialized in case 1. or 2. |
1104 | // The chance of contention will be extremely small, so the following code should be fine |
1105 | // |
1106 | retry: |
1107 | if (IsInitialized()) |
1108 | return; |
1109 | |
1110 | if (InterlockedCompareExchange(&m_initialization, 1, 0) == 0) |
1111 | { |
1112 | InitCPUGroupInfo(); |
1113 | m_initialization = -1; |
1114 | } |
1115 | else //some other thread started initialization, just wait until complete; |
1116 | { |
1117 | while (m_initialization != -1) |
1118 | { |
1119 | SwitchToThread(); |
1120 | } |
1121 | goto retry; |
1122 | } |
1123 | } |
1124 | |
1125 | /*static*/ WORD CPUGroupInfo::GetNumActiveProcessors() |
1126 | { |
1127 | LIMITED_METHOD_CONTRACT; |
1128 | return (WORD)m_nProcessors; |
1129 | } |
1130 | |
1131 | /*static*/ void CPUGroupInfo::GetGroupForProcessor(WORD processor_number, |
1132 | WORD* group_number, WORD* group_processor_number) |
1133 | { |
1134 | LIMITED_METHOD_CONTRACT; |
1135 | |
1136 | #if !defined(FEATURE_REDHAWK) && (defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)) |
1137 | WORD bTemp = 0; |
1138 | WORD bDiff = processor_number - bTemp; |
1139 | |
1140 | for (WORD i=0; i < m_nGroups; i++) |
1141 | { |
1142 | bTemp += m_CPUGroupInfoArray[i].nr_active; |
1143 | if (bTemp > processor_number) |
1144 | { |
1145 | *group_number = i; |
1146 | *group_processor_number = bDiff; |
1147 | break; |
1148 | } |
1149 | bDiff = processor_number - bTemp; |
1150 | } |
1151 | #else |
1152 | *group_number = 0; |
1153 | *group_processor_number = 0; |
1154 | #endif |
1155 | } |
1156 | |
1157 | /*static*/ DWORD CPUGroupInfo::CalculateCurrentProcessorNumber() |
1158 | { |
1159 | CONTRACTL |
1160 | { |
1161 | NOTHROW; |
1162 | SO_TOLERANT; |
1163 | GC_NOTRIGGER; |
1164 | } |
1165 | CONTRACTL_END; |
1166 | |
1167 | #if !defined(FEATURE_REDHAWK) && (defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)) |
1168 | // m_enableGCCPUGroups and m_threadUseAllCpuGroups must be TRUE |
1169 | _ASSERTE(m_enableGCCPUGroups && m_threadUseAllCpuGroups); |
1170 | |
1171 | PROCESSOR_NUMBER proc_no; |
1172 | proc_no.Group=0; |
1173 | proc_no.Number=0; |
1174 | proc_no.Reserved=0; |
1175 | (*m_pGetCurrentProcessorNumberEx)(&proc_no); |
1176 | |
1177 | DWORD fullNumber = 0; |
1178 | for (WORD i = 0; i < proc_no.Group; i++) |
1179 | fullNumber += (DWORD)m_CPUGroupInfoArray[i].nr_active; |
1180 | fullNumber += (DWORD)(proc_no.Number); |
1181 | |
1182 | return fullNumber; |
1183 | #else |
1184 | return 0; |
1185 | #endif |
1186 | } |
1187 | |
1188 | #if !defined(FEATURE_REDHAWK) |
1189 | //Lock ThreadStore before calling this function, so that updates of weights/counts are consistent |
1190 | /*static*/ void CPUGroupInfo::ChooseCPUGroupAffinity(GROUP_AFFINITY *gf) |
1191 | { |
1192 | CONTRACTL |
1193 | { |
1194 | NOTHROW; |
1195 | GC_NOTRIGGER; |
1196 | } |
1197 | CONTRACTL_END; |
1198 | |
1199 | #if (defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)) |
1200 | WORD i, minGroup = 0; |
1201 | DWORD minWeight = 0; |
1202 | |
1203 | // m_enableGCCPUGroups and m_threadUseAllCpuGroups must be TRUE |
1204 | _ASSERTE(m_enableGCCPUGroups && m_threadUseAllCpuGroups); |
1205 | |
1206 | for (i = 0; i < m_nGroups; i++) |
1207 | { |
1208 | minGroup = (m_initialGroup + i) % m_nGroups; |
1209 | |
1210 | // the group is not filled up, use it |
1211 | if (m_CPUGroupInfoArray[minGroup].activeThreadWeight / m_CPUGroupInfoArray[minGroup].groupWeight |
1212 | < (DWORD)m_CPUGroupInfoArray[minGroup].nr_active) |
1213 | goto found; |
1214 | } |
1215 | |
1216 | // all groups filled up, distribute proportionally |
1217 | minGroup = m_initialGroup; |
1218 | minWeight = m_CPUGroupInfoArray[m_initialGroup].activeThreadWeight; |
1219 | for (i = 0; i < m_nGroups; i++) |
1220 | { |
1221 | if (m_CPUGroupInfoArray[i].activeThreadWeight < minWeight) |
1222 | { |
1223 | minGroup = i; |
1224 | minWeight = m_CPUGroupInfoArray[i].activeThreadWeight; |
1225 | } |
1226 | } |
1227 | |
1228 | found: |
1229 | gf->Group = minGroup; |
1230 | gf->Mask = m_CPUGroupInfoArray[minGroup].active_mask; |
1231 | gf->Reserved[0] = 0; |
1232 | gf->Reserved[1] = 0; |
1233 | gf->Reserved[2] = 0; |
1234 | m_CPUGroupInfoArray[minGroup].activeThreadWeight += m_CPUGroupInfoArray[minGroup].groupWeight; |
1235 | #endif |
1236 | } |
1237 | |
1238 | //Lock ThreadStore before calling this function, so that updates of weights/counts are consistent |
1239 | /*static*/ void CPUGroupInfo::ClearCPUGroupAffinity(GROUP_AFFINITY *gf) |
1240 | { |
1241 | LIMITED_METHOD_CONTRACT; |
1242 | #if (defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)) |
1243 | // m_enableGCCPUGroups and m_threadUseAllCpuGroups must be TRUE |
1244 | _ASSERTE(m_enableGCCPUGroups && m_threadUseAllCpuGroups); |
1245 | |
1246 | WORD group = gf->Group; |
1247 | m_CPUGroupInfoArray[group].activeThreadWeight -= m_CPUGroupInfoArray[group].groupWeight; |
1248 | #endif |
1249 | } |
1250 | #endif |
1251 | |
1252 | /*static*/ BOOL CPUGroupInfo::CanEnableGCCPUGroups() |
1253 | { |
1254 | LIMITED_METHOD_CONTRACT; |
1255 | return m_enableGCCPUGroups; |
1256 | } |
1257 | |
1258 | /*static*/ BOOL CPUGroupInfo::CanEnableThreadUseAllCpuGroups() |
1259 | { |
1260 | LIMITED_METHOD_CONTRACT; |
1261 | return m_threadUseAllCpuGroups; |
1262 | } |
1263 | |
1264 | //****************************************************************************** |
1265 | // Returns the number of processors that a process has been configured to run on |
1266 | //****************************************************************************** |
1267 | int GetCurrentProcessCpuCount() |
1268 | { |
1269 | CONTRACTL |
1270 | { |
1271 | NOTHROW; |
1272 | SO_TOLERANT; |
1273 | CANNOT_TAKE_LOCK; |
1274 | } |
1275 | CONTRACTL_END; |
1276 | |
1277 | static int cCPUs = 0; |
1278 | |
1279 | if (cCPUs != 0) |
1280 | return cCPUs; |
1281 | |
1282 | int count = 0; |
1283 | DWORD_PTR pmask, smask; |
1284 | |
1285 | if (!GetProcessAffinityMask(GetCurrentProcess(), &pmask, &smask)) |
1286 | { |
1287 | count = 1; |
1288 | } |
1289 | else |
1290 | { |
1291 | pmask &= smask; |
1292 | |
1293 | while (pmask) |
1294 | { |
1295 | pmask &= (pmask - 1); |
1296 | count++; |
1297 | } |
1298 | |
1299 | // GetProcessAffinityMask can return pmask=0 and smask=0 on systems with more |
1300 | // than 64 processors, which would leave us with a count of 0. Since the GC |
1301 | // expects there to be at least one processor to run on (and thus at least one |
1302 | // heap), we'll return 64 here if count is 0, since there are likely a ton of |
1303 | // processors available in that case. The GC also cannot (currently) handle |
1304 | // the case where there are more than 64 processors, so we will return a |
1305 | // maximum of 64 here. |
1306 | if (count == 0 || count > 64) |
1307 | count = 64; |
1308 | } |
1309 | |
1310 | #ifdef FEATURE_PAL |
1311 | uint32_t cpuLimit; |
1312 | |
1313 | if (PAL_GetCpuLimit(&cpuLimit) && cpuLimit < count) |
1314 | count = cpuLimit; |
1315 | #endif |
1316 | |
1317 | cCPUs = count; |
1318 | |
1319 | return count; |
1320 | } |
1321 | |
1322 | DWORD_PTR GetCurrentProcessCpuMask() |
1323 | { |
1324 | CONTRACTL |
1325 | { |
1326 | NOTHROW; |
1327 | SO_TOLERANT; |
1328 | CANNOT_TAKE_LOCK; |
1329 | } |
1330 | CONTRACTL_END; |
1331 | |
1332 | #ifndef FEATURE_PAL |
1333 | DWORD_PTR pmask, smask; |
1334 | |
1335 | if (!GetProcessAffinityMask(GetCurrentProcess(), &pmask, &smask)) |
1336 | return 1; |
1337 | |
1338 | pmask &= smask; |
1339 | return pmask; |
1340 | #else |
1341 | return 0; |
1342 | #endif |
1343 | } |
1344 | |
1345 | uint32_t GetOsPageSizeUncached() |
1346 | { |
1347 | SYSTEM_INFO sysInfo; |
1348 | ::GetSystemInfo(&sysInfo); |
1349 | return sysInfo.dwAllocationGranularity ? sysInfo.dwAllocationGranularity : 0x1000; |
1350 | } |
1351 | |
1352 | namespace |
1353 | { |
1354 | Volatile<uint32_t> g_pageSize = 0; |
1355 | } |
1356 | |
1357 | uint32_t GetOsPageSize() |
1358 | { |
1359 | #ifdef FEATURE_PAL |
1360 | size_t result = g_pageSize.LoadWithoutBarrier(); |
1361 | |
1362 | if(!result) |
1363 | { |
1364 | result = GetOsPageSizeUncached(); |
1365 | |
1366 | g_pageSize.StoreWithoutBarrier(result); |
1367 | } |
1368 | |
1369 | return result; |
1370 | #else |
1371 | return 0x1000; |
1372 | #endif |
1373 | } |
1374 | |
1375 | /**************************************************************************/ |
1376 | |
1377 | /**************************************************************************/ |
1378 | void ConfigMethodSet::init(const CLRConfig::ConfigStringInfo & info) |
1379 | { |
1380 | CONTRACTL |
1381 | { |
1382 | THROWS; |
1383 | } |
1384 | CONTRACTL_END; |
1385 | |
1386 | // make sure that the memory was zero initialized |
1387 | _ASSERTE(m_inited == 0 || m_inited == 1); |
1388 | |
1389 | LPWSTR str = CLRConfig::GetConfigValue(info); |
1390 | if (str) |
1391 | { |
1392 | m_list.Insert(str); |
1393 | delete[] str; |
1394 | } |
1395 | m_inited = 1; |
1396 | } |
1397 | |
1398 | /**************************************************************************/ |
1399 | bool ConfigMethodSet::contains(LPCUTF8 methodName, LPCUTF8 className, PCCOR_SIGNATURE sig) |
1400 | { |
1401 | CONTRACTL |
1402 | { |
1403 | NOTHROW; |
1404 | } |
1405 | CONTRACTL_END; |
1406 | |
1407 | _ASSERTE(m_inited == 1); |
1408 | |
1409 | if (m_list.IsEmpty()) |
1410 | return false; |
1411 | return(m_list.IsInList(methodName, className, sig)); |
1412 | } |
1413 | |
1414 | /**************************************************************************/ |
1415 | bool ConfigMethodSet::contains(LPCUTF8 methodName, LPCUTF8 className, CORINFO_SIG_INFO* pSigInfo) |
1416 | { |
1417 | CONTRACTL |
1418 | { |
1419 | NOTHROW; |
1420 | } |
1421 | CONTRACTL_END; |
1422 | |
1423 | _ASSERTE(m_inited == 1); |
1424 | |
1425 | if (m_list.IsEmpty()) |
1426 | return false; |
1427 | return(m_list.IsInList(methodName, className, pSigInfo)); |
1428 | } |
1429 | |
1430 | /**************************************************************************/ |
1431 | void ConfigDWORD::init_DontUse_(__in_z LPCWSTR keyName, DWORD defaultVal) |
1432 | { |
1433 | CONTRACTL |
1434 | { |
1435 | NOTHROW; |
1436 | } |
1437 | CONTRACTL_END; |
1438 | |
1439 | // make sure that the memory was zero initialized |
1440 | _ASSERTE(m_inited == 0 || m_inited == 1); |
1441 | |
1442 | m_value = REGUTIL::GetConfigDWORD_DontUse_(keyName, defaultVal); |
1443 | m_inited = 1; |
1444 | } |
1445 | |
1446 | /**************************************************************************/ |
1447 | void ConfigString::init(const CLRConfig::ConfigStringInfo & info) |
1448 | { |
1449 | CONTRACTL |
1450 | { |
1451 | NOTHROW; |
1452 | } |
1453 | CONTRACTL_END; |
1454 | |
1455 | // make sure that the memory was zero initialized |
1456 | _ASSERTE(m_inited == 0 || m_inited == 1); |
1457 | |
1458 | // Note: m_value will be leaking |
1459 | m_value = CLRConfig::GetConfigValue(info); |
1460 | m_inited = 1; |
1461 | } |
1462 | |
1463 | //============================================================================= |
1464 | // AssemblyNamesList |
1465 | //============================================================================= |
1466 | // The string should be of the form |
1467 | // MyAssembly |
1468 | // MyAssembly;mscorlib;System |
1469 | // MyAssembly;mscorlib System |
1470 | |
1471 | AssemblyNamesList::AssemblyNamesList(__in LPWSTR list) |
1472 | { |
1473 | CONTRACTL { |
1474 | THROWS; |
1475 | } CONTRACTL_END; |
1476 | |
1477 | WCHAR prevChar = '?'; // dummy |
1478 | LPWSTR nameStart = NULL; // start of the name currently being processed. NULL if no current name |
1479 | AssemblyName ** ppPrevLink = &m_pNames; |
1480 | |
1481 | for (LPWSTR listWalk = list; prevChar != '\0'; prevChar = *listWalk, listWalk++) |
1482 | { |
1483 | WCHAR curChar = *listWalk; |
1484 | |
1485 | if (iswspace(curChar) || curChar == ';' || curChar == '\0' ) |
1486 | { |
1487 | // |
1488 | // Found white-space |
1489 | // |
1490 | |
1491 | if (nameStart) |
1492 | { |
1493 | // Found the end of the current name |
1494 | |
1495 | AssemblyName * newName = new AssemblyName(); |
1496 | size_t nameLen = listWalk - nameStart; |
1497 | |
1498 | MAKE_UTF8PTR_FROMWIDE(temp, nameStart); |
1499 | newName->m_assemblyName = new char[nameLen + 1]; |
1500 | memcpy(newName->m_assemblyName, temp, nameLen * sizeof(newName->m_assemblyName[0])); |
1501 | newName->m_assemblyName[nameLen] = '\0'; |
1502 | |
1503 | *ppPrevLink = newName; |
1504 | ppPrevLink = &newName->m_next; |
1505 | |
1506 | nameStart = NULL; |
1507 | } |
1508 | } |
1509 | else if (!nameStart) |
1510 | { |
1511 | // |
1512 | // Found the start of a new name |
1513 | // |
1514 | |
1515 | nameStart = listWalk; |
1516 | } |
1517 | } |
1518 | |
1519 | _ASSERTE(!nameStart); // cannot be in the middle of a name |
1520 | *ppPrevLink = NULL; |
1521 | } |
1522 | |
1523 | AssemblyNamesList::~AssemblyNamesList() |
1524 | { |
1525 | CONTRACTL |
1526 | { |
1527 | NOTHROW; |
1528 | } |
1529 | CONTRACTL_END; |
1530 | |
1531 | for (AssemblyName * pName = m_pNames; pName; /**/) |
1532 | { |
1533 | AssemblyName * cur = pName; |
1534 | pName = pName->m_next; |
1535 | |
1536 | delete [] cur->m_assemblyName; |
1537 | delete cur; |
1538 | } |
1539 | } |
1540 | |
1541 | bool AssemblyNamesList::IsInList(LPCUTF8 assemblyName) |
1542 | { |
1543 | if (IsEmpty()) |
1544 | return false; |
1545 | |
1546 | for (AssemblyName * pName = m_pNames; pName; pName = pName->m_next) |
1547 | { |
1548 | if (_stricmp(pName->m_assemblyName, assemblyName) == 0) |
1549 | return true; |
1550 | } |
1551 | |
1552 | return false; |
1553 | } |
1554 | |
1555 | //============================================================================= |
1556 | // MethodNamesList |
1557 | //============================================================================= |
1558 | // str should be of the form : |
1559 | // "foo1 MyNamespace.MyClass:foo3 *:foo4 foo5(x,y,z)" |
1560 | // "MyClass:foo2 MyClass:*" will match under _DEBUG |
1561 | // |
1562 | |
1563 | void MethodNamesListBase::Insert(__in_z LPWSTR str) |
1564 | { |
1565 | CONTRACTL { |
1566 | THROWS; |
1567 | } CONTRACTL_END; |
1568 | |
1569 | enum State { NO_NAME, CLS_NAME, FUNC_NAME, ARG_LIST }; // parsing state machine |
1570 | |
1571 | const char SEP_CHAR = ' '; // current character use to separate each entry |
1572 | // const char SEP_CHAR = ';'; // better character use to separate each entry |
1573 | |
1574 | WCHAR lastChar = '?'; // dummy |
1575 | LPWSTR nameStart = NULL; // while walking over the classname or methodname, this points to start |
1576 | MethodName nameBuf; // Buffer used while parsing the current entry |
1577 | MethodName** lastName = &pNames; // last entry inserted into the list |
1578 | bool bQuote = false; |
1579 | |
1580 | nameBuf.methodName = NULL; |
1581 | nameBuf.className = NULL; |
1582 | nameBuf.numArgs = -1; |
1583 | nameBuf.next = NULL; |
1584 | |
1585 | for(State state = NO_NAME; lastChar != '\0'; str++) |
1586 | { |
1587 | lastChar = *str; |
1588 | |
1589 | switch(state) |
1590 | { |
1591 | case NO_NAME: |
1592 | if (*str != SEP_CHAR) |
1593 | { |
1594 | nameStart = str; |
1595 | state = CLS_NAME; // we have found the start of the next entry |
1596 | } |
1597 | break; |
1598 | |
1599 | case CLS_NAME: |
1600 | if (*nameStart == '"') |
1601 | { |
1602 | while (*str && *str!='"') |
1603 | { |
1604 | str++; |
1605 | } |
1606 | nameStart++; |
1607 | bQuote=true; |
1608 | } |
1609 | |
1610 | if (*str == ':') |
1611 | { |
1612 | if (*nameStart == '*' && !bQuote) |
1613 | { |
1614 | // Is the classname string a wildcard. Then set it to NULL |
1615 | nameBuf.className = NULL; |
1616 | } |
1617 | else |
1618 | { |
1619 | int len = (int)(str - nameStart); |
1620 | |
1621 | // Take off the quote |
1622 | if (bQuote) { len--; bQuote=false; } |
1623 | |
1624 | nameBuf.className = new char[len + 1]; |
1625 | MAKE_UTF8PTR_FROMWIDE(temp, nameStart); |
1626 | memcpy(nameBuf.className, temp, len*sizeof(nameBuf.className[0])); |
1627 | nameBuf.className[len] = '\0'; |
1628 | } |
1629 | if (str[1] == ':') // Accept class::name syntax too |
1630 | str++; |
1631 | nameStart = str + 1; |
1632 | state = FUNC_NAME; |
1633 | } |
1634 | else if (*str == '\0' || *str == SEP_CHAR || *str == '(') |
1635 | { |
1636 | /* This was actually a method name without any class */ |
1637 | nameBuf.className = NULL; |
1638 | goto DONE_FUNC_NAME; |
1639 | } |
1640 | break; |
1641 | |
1642 | case FUNC_NAME: |
1643 | if (*nameStart == '"') |
1644 | { |
1645 | while ( (nameStart==str) || // workaround to handle when className!=NULL |
1646 | (*str && *str!='"')) |
1647 | { |
1648 | str++; |
1649 | } |
1650 | |
1651 | nameStart++; |
1652 | bQuote=true; |
1653 | } |
1654 | |
1655 | if (*str == '\0' || *str == SEP_CHAR || *str == '(') |
1656 | { |
1657 | DONE_FUNC_NAME: |
1658 | _ASSERTE(*str == '\0' || *str == SEP_CHAR || *str == '('); |
1659 | |
1660 | if (*nameStart == '*' && !bQuote) |
1661 | { |
1662 | // Is the name string a wildcard. Then set it to NULL |
1663 | nameBuf.methodName = NULL; |
1664 | } |
1665 | else |
1666 | { |
1667 | int len = (int)(str - nameStart); |
1668 | |
1669 | // Take off the quote |
1670 | if (bQuote) { len--; bQuote=false; } |
1671 | |
1672 | nameBuf.methodName = new char[len + 1]; |
1673 | MAKE_UTF8PTR_FROMWIDE(temp, nameStart); |
1674 | memcpy(nameBuf.methodName, temp, len*sizeof(nameBuf.methodName[0])); |
1675 | nameBuf.methodName[len] = '\0'; |
1676 | } |
1677 | |
1678 | if (*str == '\0' || *str == SEP_CHAR) |
1679 | { |
1680 | nameBuf.numArgs = -1; |
1681 | goto DONE_ARG_LIST; |
1682 | } |
1683 | else |
1684 | { |
1685 | _ASSERTE(*str == '('); |
1686 | nameBuf.numArgs = -1; |
1687 | state = ARG_LIST; |
1688 | } |
1689 | } |
1690 | break; |
1691 | |
1692 | case ARG_LIST: |
1693 | if (*str == '\0' || *str == ')') |
1694 | { |
1695 | if (nameBuf.numArgs == -1) |
1696 | nameBuf.numArgs = 0; |
1697 | |
1698 | DONE_ARG_LIST: |
1699 | _ASSERTE(*str == '\0' || *str == SEP_CHAR || *str == ')'); |
1700 | |
1701 | // We have parsed an entire method name. |
1702 | // Create a new entry in the list for it |
1703 | |
1704 | MethodName * newName = new MethodName(); |
1705 | *newName = nameBuf; |
1706 | newName->next = NULL; |
1707 | *lastName = newName; |
1708 | lastName = &newName->next; |
1709 | state = NO_NAME; |
1710 | |
1711 | // Skip anything after the argument list until we find the next |
1712 | // separator character, otherwise if we see "func(a,b):foo" we |
1713 | // create entries for "func(a,b)" as well as ":foo". |
1714 | if (*str == ')') |
1715 | { |
1716 | while (*str && *str != SEP_CHAR) |
1717 | { |
1718 | str++; |
1719 | } |
1720 | lastChar = *str; |
1721 | } |
1722 | } |
1723 | else |
1724 | { |
1725 | if (*str != SEP_CHAR && nameBuf.numArgs == -1) |
1726 | nameBuf.numArgs = 1; |
1727 | if (*str == ',') |
1728 | nameBuf.numArgs++; |
1729 | } |
1730 | break; |
1731 | |
1732 | default: _ASSERTE(!"Bad state" ); break; |
1733 | } |
1734 | } |
1735 | } |
1736 | |
1737 | /**************************************************************/ |
1738 | |
1739 | void MethodNamesListBase::Destroy() |
1740 | { |
1741 | CONTRACTL |
1742 | { |
1743 | NOTHROW; |
1744 | } |
1745 | CONTRACTL_END; |
1746 | |
1747 | for(MethodName * pName = pNames; pName; /**/) |
1748 | { |
1749 | if (pName->className) |
1750 | delete [] pName->className; |
1751 | if (pName->methodName) |
1752 | delete [] pName->methodName; |
1753 | |
1754 | MethodName * curName = pName; |
1755 | pName = pName->next; |
1756 | delete curName; |
1757 | } |
1758 | } |
1759 | |
1760 | /**************************************************************/ |
1761 | bool MethodNamesListBase::IsInList(LPCUTF8 methName, LPCUTF8 clsName, PCCOR_SIGNATURE sig) |
1762 | { |
1763 | CONTRACTL |
1764 | { |
1765 | NOTHROW; |
1766 | } |
1767 | CONTRACTL_END; |
1768 | |
1769 | int numArgs = -1; |
1770 | if (sig != NULL) |
1771 | { |
1772 | sig++; // Skip calling convention |
1773 | numArgs = CorSigUncompressData(sig); |
1774 | } |
1775 | |
1776 | return IsInList(methName, clsName, numArgs); |
1777 | } |
1778 | |
1779 | /**************************************************************/ |
1780 | bool MethodNamesListBase::IsInList(LPCUTF8 methName, LPCUTF8 clsName, CORINFO_SIG_INFO* pSigInfo) |
1781 | { |
1782 | CONTRACTL |
1783 | { |
1784 | NOTHROW; |
1785 | } |
1786 | CONTRACTL_END; |
1787 | |
1788 | int numArgs = -1; |
1789 | if (pSigInfo != NULL) |
1790 | { |
1791 | numArgs = pSigInfo->numArgs; |
1792 | } |
1793 | |
1794 | return IsInList(methName, clsName, numArgs); |
1795 | } |
1796 | |
1797 | /**************************************************************/ |
1798 | bool MethodNamesListBase::IsInList(LPCUTF8 methName, LPCUTF8 clsName, int numArgs) |
1799 | { |
1800 | CONTRACTL |
1801 | { |
1802 | NOTHROW; |
1803 | } |
1804 | CONTRACTL_END; |
1805 | |
1806 | // Try to match all the entries in the list |
1807 | |
1808 | for(MethodName * pName = pNames; pName; pName = pName->next) |
1809 | { |
1810 | // If numArgs is valid, check for mismatch |
1811 | if (pName->numArgs != -1 && pName->numArgs != numArgs) |
1812 | continue; |
1813 | |
1814 | // If methodName is valid, check for mismatch |
1815 | if (pName->methodName) { |
1816 | if (strcmp(pName->methodName, methName) != 0) { |
1817 | |
1818 | // C++ embeds the class name into the method name, |
1819 | // deal with that here (workaround) |
1820 | const char* ptr = strchr(methName, ':'); |
1821 | if (ptr != 0 && ptr[1] == ':' && strcmp(&ptr[2], pName->methodName) == 0) { |
1822 | unsigned clsLen = (unsigned)(ptr - methName); |
1823 | if (pName->className == 0 || strncmp(pName->className, methName, clsLen) == 0) |
1824 | return true; |
1825 | } |
1826 | continue; |
1827 | } |
1828 | } |
1829 | |
1830 | // check for class Name exact match |
1831 | if (clsName == 0 || pName->className == 0 || strcmp(pName->className, clsName) == 0) |
1832 | return true; |
1833 | |
1834 | // check for suffix wildcard like System.* |
1835 | unsigned len = (unsigned)strlen(pName->className); |
1836 | if (len > 0 && pName->className[len-1] == '*' && strncmp(pName->className, clsName, len-1) == 0) |
1837 | return true; |
1838 | |
1839 | #ifdef _DEBUG |
1840 | // Maybe className doesnt include namespace. Try to match that |
1841 | LPCUTF8 onlyClass = ns::FindSep(clsName); |
1842 | if (onlyClass && strcmp(pName->className, onlyClass+1) == 0) |
1843 | return true; |
1844 | #endif |
1845 | } |
1846 | return(false); |
1847 | } |
1848 | |
1849 | //============================================================================= |
1850 | // Signature Validation Functions (scaled down version from MDValidator |
1851 | //============================================================================= |
1852 | |
1853 | //***************************************************************************** |
1854 | // This function validates one argument given an offset into the signature |
1855 | // where the argument begins. This function assumes that the signature is well |
1856 | // formed as far as the compression scheme is concerned. |
1857 | // <TODO>@todo: Validate tokens embedded.</TODO> |
1858 | //***************************************************************************** |
1859 | HRESULT validateOneArg( |
1860 | mdToken tk, // [IN] Token whose signature needs to be validated. |
1861 | SigParser *pSig, |
1862 | ULONG *pulNSentinels, // [IN/OUT] Number of sentinels |
1863 | IMDInternalImport* pImport, // [IN] Internal MD Import interface ptr |
1864 | BOOL bNoVoidAllowed) // [IN] Flag indicating whether "void" is disallowed for this arg |
1865 | |
1866 | { |
1867 | CONTRACTL |
1868 | { |
1869 | NOTHROW; |
1870 | SO_TOLERANT; |
1871 | } |
1872 | CONTRACTL_END; |
1873 | |
1874 | BYTE elementType; // Current element type being processed. |
1875 | mdToken token; // Embedded token. |
1876 | ULONG ulArgCnt; // Argument count for function pointer. |
1877 | ULONG ulIndex; // Index for type parameters |
1878 | ULONG ulRank; // Rank of the array. |
1879 | ULONG ulSizes; // Count of sized dimensions of the array. |
1880 | ULONG ulLbnds; // Count of lower bounds of the array. |
1881 | ULONG ulCallConv; |
1882 | |
1883 | HRESULT hr = S_OK; // Value returned. |
1884 | BOOL bRepeat = TRUE; // MODOPT and MODREQ belong to the arg after them |
1885 | |
1886 | BEGIN_SO_INTOLERANT_CODE_NO_THROW_CHECK_THREAD(return COR_E_STACKOVERFLOW); |
1887 | while(bRepeat) |
1888 | { |
1889 | bRepeat = FALSE; |
1890 | // Validate that the argument is not missing. |
1891 | |
1892 | // Get the element type. |
1893 | if (FAILED(pSig->GetByte(&elementType))) |
1894 | { |
1895 | IfFailGo(VLDTR_E_SIG_MISSARG); |
1896 | } |
1897 | |
1898 | // Walk past all the modifier types. |
1899 | while (elementType & ELEMENT_TYPE_MODIFIER) |
1900 | { |
1901 | if (elementType == ELEMENT_TYPE_SENTINEL) |
1902 | { |
1903 | if(pulNSentinels) *pulNSentinels+=1; |
1904 | if(TypeFromToken(tk) != mdtMemberRef) IfFailGo(VLDTR_E_SIG_SENTINMETHODDEF); |
1905 | } |
1906 | if (FAILED(pSig->GetByte(&elementType))) |
1907 | { |
1908 | IfFailGo(VLDTR_E_SIG_MISSELTYPE); |
1909 | } |
1910 | } |
1911 | |
1912 | switch (elementType) |
1913 | { |
1914 | case ELEMENT_TYPE_VOID: |
1915 | if(bNoVoidAllowed) IfFailGo(VLDTR_E_SIG_BADVOID); |
1916 | |
1917 | case ELEMENT_TYPE_BOOLEAN: |
1918 | case ELEMENT_TYPE_CHAR: |
1919 | case ELEMENT_TYPE_I1: |
1920 | case ELEMENT_TYPE_U1: |
1921 | case ELEMENT_TYPE_I2: |
1922 | case ELEMENT_TYPE_U2: |
1923 | case ELEMENT_TYPE_I4: |
1924 | case ELEMENT_TYPE_U4: |
1925 | case ELEMENT_TYPE_I8: |
1926 | case ELEMENT_TYPE_U8: |
1927 | case ELEMENT_TYPE_R4: |
1928 | case ELEMENT_TYPE_R8: |
1929 | case ELEMENT_TYPE_STRING: |
1930 | case ELEMENT_TYPE_OBJECT: |
1931 | case ELEMENT_TYPE_TYPEDBYREF: |
1932 | case ELEMENT_TYPE_U: |
1933 | case ELEMENT_TYPE_I: |
1934 | break; |
1935 | case ELEMENT_TYPE_PTR: |
1936 | // Validate the referenced type. |
1937 | if(FAILED(hr = validateOneArg(tk, pSig, pulNSentinels, pImport, FALSE))) IfFailGo(hr); |
1938 | break; |
1939 | case ELEMENT_TYPE_BYREF: //fallthru |
1940 | if(TypeFromToken(tk)==mdtFieldDef) IfFailGo(VLDTR_E_SIG_BYREFINFIELD); |
1941 | case ELEMENT_TYPE_PINNED: |
1942 | case ELEMENT_TYPE_SZARRAY: |
1943 | // Validate the referenced type. |
1944 | if(FAILED(hr = validateOneArg(tk, pSig, pulNSentinels, pImport, TRUE))) IfFailGo(hr); |
1945 | break; |
1946 | case ELEMENT_TYPE_CMOD_OPT: |
1947 | case ELEMENT_TYPE_CMOD_REQD: |
1948 | bRepeat = TRUE; // go on validating, we're not done with this arg |
1949 | case ELEMENT_TYPE_VALUETYPE: //fallthru |
1950 | case ELEMENT_TYPE_CLASS: |
1951 | // See if the token is missing. |
1952 | if (FAILED(pSig->GetToken(&token))) |
1953 | { |
1954 | IfFailGo(VLDTR_E_SIG_MISSTKN); |
1955 | } |
1956 | // Token validation . |
1957 | if(pImport) |
1958 | { |
1959 | ULONG rid = RidFromToken(token); |
1960 | ULONG typ = TypeFromToken(token); |
1961 | ULONG maxrid = pImport->GetCountWithTokenKind(typ); |
1962 | if(typ == mdtTypeDef) maxrid++; |
1963 | if((rid==0)||(rid > maxrid)) IfFailGo(VLDTR_E_SIG_TKNBAD); |
1964 | } |
1965 | break; |
1966 | |
1967 | case ELEMENT_TYPE_FNPTR: |
1968 | // <TODO>@todo: More function pointer validation?</TODO> |
1969 | // Validate that calling convention is present. |
1970 | if (FAILED(pSig->GetCallingConvInfo(&ulCallConv))) |
1971 | { |
1972 | IfFailGo(VLDTR_E_SIG_MISSFPTR); |
1973 | } |
1974 | if(((ulCallConv & IMAGE_CEE_CS_CALLCONV_MASK) >= IMAGE_CEE_CS_CALLCONV_MAX) |
1975 | ||((ulCallConv & IMAGE_CEE_CS_CALLCONV_EXPLICITTHIS) |
1976 | &&(!(ulCallConv & IMAGE_CEE_CS_CALLCONV_HASTHIS)))) IfFailGo(VLDTR_E_MD_BADCALLINGCONV); |
1977 | |
1978 | // Validate that argument count is present. |
1979 | if (FAILED(pSig->GetData(&ulArgCnt))) |
1980 | { |
1981 | IfFailGo(VLDTR_E_SIG_MISSFPTRARGCNT); |
1982 | } |
1983 | |
1984 | // FNPTR signature must follow the rules of MethodDef |
1985 | // Validate and consume return type. |
1986 | IfFailGo(validateOneArg(mdtMethodDef, pSig, NULL, pImport, FALSE)); |
1987 | |
1988 | // Validate and consume the arguments. |
1989 | while(ulArgCnt--) |
1990 | { |
1991 | IfFailGo(validateOneArg(mdtMethodDef, pSig, NULL, pImport, TRUE)); |
1992 | } |
1993 | break; |
1994 | |
1995 | case ELEMENT_TYPE_ARRAY: |
1996 | // Validate and consume the base type. |
1997 | IfFailGo(validateOneArg(tk, pSig, pulNSentinels, pImport, TRUE)); |
1998 | |
1999 | // Validate that the rank is present. |
2000 | if (FAILED(pSig->GetData(&ulRank))) |
2001 | { |
2002 | IfFailGo(VLDTR_E_SIG_MISSRANK); |
2003 | } |
2004 | |
2005 | // Process the sizes. |
2006 | if (ulRank) |
2007 | { |
2008 | // Validate that the count of sized-dimensions is specified. |
2009 | if (FAILED(pSig->GetData(&ulSizes))) |
2010 | { |
2011 | IfFailGo(VLDTR_E_SIG_MISSNSIZE); |
2012 | } |
2013 | |
2014 | // Loop over the sizes. |
2015 | while(ulSizes--) |
2016 | { |
2017 | // Validate the current size. |
2018 | if (FAILED(pSig->GetData(NULL))) |
2019 | { |
2020 | IfFailGo(VLDTR_E_SIG_MISSSIZE); |
2021 | } |
2022 | } |
2023 | |
2024 | // Validate that the count of lower bounds is specified. |
2025 | if (FAILED(pSig->GetData(&ulLbnds))) |
2026 | { |
2027 | IfFailGo(VLDTR_E_SIG_MISSNLBND); |
2028 | } |
2029 | |
2030 | // Loop over the lower bounds. |
2031 | while(ulLbnds--) |
2032 | { |
2033 | // Validate the current lower bound. |
2034 | if (FAILED(pSig->GetData(NULL))) |
2035 | { |
2036 | IfFailGo(VLDTR_E_SIG_MISSLBND); |
2037 | } |
2038 | } |
2039 | } |
2040 | break; |
2041 | case ELEMENT_TYPE_VAR: |
2042 | case ELEMENT_TYPE_MVAR: |
2043 | // Validate that index is present. |
2044 | if (FAILED(pSig->GetData(&ulIndex))) |
2045 | { |
2046 | IfFailGo(VLDTR_E_SIG_MISSFPTRARGCNT); |
2047 | } |
2048 | |
2049 | //@todo GENERICS: check that index is in range |
2050 | break; |
2051 | |
2052 | case ELEMENT_TYPE_GENERICINST: |
2053 | // Validate the generic type. |
2054 | IfFailGo(validateOneArg(tk, pSig, pulNSentinels, pImport, TRUE)); |
2055 | |
2056 | // Validate that parameter count is present. |
2057 | if (FAILED(pSig->GetData(&ulArgCnt))) |
2058 | { |
2059 | IfFailGo(VLDTR_E_SIG_MISSFPTRARGCNT); |
2060 | } |
2061 | |
2062 | //@todo GENERICS: check that number of parameters matches definition? |
2063 | |
2064 | // Validate and consume the parameters. |
2065 | while(ulArgCnt--) |
2066 | { |
2067 | IfFailGo(validateOneArg(tk, pSig, NULL, pImport, TRUE)); |
2068 | } |
2069 | break; |
2070 | |
2071 | case ELEMENT_TYPE_SENTINEL: // this case never works because all modifiers are skipped before switch |
2072 | if(TypeFromToken(tk) == mdtMethodDef) IfFailGo(VLDTR_E_SIG_SENTINMETHODDEF); |
2073 | break; |
2074 | |
2075 | default: |
2076 | IfFailGo(VLDTR_E_SIG_BADELTYPE); |
2077 | break; |
2078 | } // switch (ulElementType) |
2079 | } // end while(bRepeat) |
2080 | ErrExit: |
2081 | |
2082 | END_SO_INTOLERANT_CODE; |
2083 | return hr; |
2084 | } // validateOneArg() |
2085 | |
2086 | //***************************************************************************** |
2087 | // This function validates the given Method/Field/Standalone signature. |
2088 | //@todo GENERICS: MethodInstantiation? |
2089 | //***************************************************************************** |
2090 | HRESULT validateTokenSig( |
2091 | mdToken tk, // [IN] Token whose signature needs to be validated. |
2092 | PCCOR_SIGNATURE pbSig, // [IN] Signature. |
2093 | ULONG cbSig, // [IN] Size in bytes of the signature. |
2094 | DWORD dwFlags, // [IN] Method flags. |
2095 | IMDInternalImport* pImport) // [IN] Internal MD Import interface ptr |
2096 | { |
2097 | CONTRACTL |
2098 | { |
2099 | NOTHROW; |
2100 | } |
2101 | CONTRACTL_END; |
2102 | |
2103 | ULONG ulCallConv; // Calling convention. |
2104 | ULONG ulArgCount = 1; // Count of arguments (1 because of the return type) |
2105 | ULONG ulTyArgCount = 0; // Count of type arguments |
2106 | ULONG ulArgIx = 0; // Starting index of argument (standalone sig: 1) |
2107 | ULONG i; // Looping index. |
2108 | HRESULT hr = S_OK; // Value returned. |
2109 | ULONG ulNSentinels = 0; |
2110 | SigParser sig(pbSig, cbSig); |
2111 | |
2112 | _ASSERTE(TypeFromToken(tk) == mdtMethodDef || |
2113 | TypeFromToken(tk) == mdtMemberRef || |
2114 | TypeFromToken(tk) == mdtSignature || |
2115 | TypeFromToken(tk) == mdtFieldDef); |
2116 | |
2117 | // Check for NULL signature. |
2118 | if (!pbSig || !cbSig) return VLDTR_E_SIGNULL; |
2119 | |
2120 | // Validate the calling convention. |
2121 | |
2122 | // Moves behind calling convention |
2123 | IfFailRet(sig.GetCallingConvInfo(&ulCallConv)); |
2124 | i = ulCallConv & IMAGE_CEE_CS_CALLCONV_MASK; |
2125 | switch(TypeFromToken(tk)) |
2126 | { |
2127 | case mdtMethodDef: // MemberRefs have no flags available |
2128 | // If HASTHIS is set on the calling convention, the method should not be static. |
2129 | if ((ulCallConv & IMAGE_CEE_CS_CALLCONV_HASTHIS) && |
2130 | IsMdStatic(dwFlags)) return VLDTR_E_MD_THISSTATIC; |
2131 | |
2132 | // If HASTHIS is not set on the calling convention, the method should be static. |
2133 | if (!(ulCallConv & IMAGE_CEE_CS_CALLCONV_HASTHIS) && |
2134 | !IsMdStatic(dwFlags)) return VLDTR_E_MD_NOTTHISNOTSTATIC; |
2135 | // fall thru to callconv check; |
2136 | |
2137 | case mdtMemberRef: |
2138 | if(i == IMAGE_CEE_CS_CALLCONV_FIELD) return validateOneArg(tk, &sig, NULL, pImport, TRUE); |
2139 | |
2140 | // EXPLICITTHIS and native call convs are for stand-alone sigs only (for calli) |
2141 | if(((i != IMAGE_CEE_CS_CALLCONV_DEFAULT)&&( i != IMAGE_CEE_CS_CALLCONV_VARARG)) |
2142 | || (ulCallConv & IMAGE_CEE_CS_CALLCONV_EXPLICITTHIS)) return VLDTR_E_MD_BADCALLINGCONV; |
2143 | break; |
2144 | |
2145 | case mdtSignature: |
2146 | if(i != IMAGE_CEE_CS_CALLCONV_LOCAL_SIG) // then it is function sig for calli |
2147 | { |
2148 | if((i >= IMAGE_CEE_CS_CALLCONV_MAX) |
2149 | ||((ulCallConv & IMAGE_CEE_CS_CALLCONV_EXPLICITTHIS) |
2150 | &&(!(ulCallConv & IMAGE_CEE_CS_CALLCONV_HASTHIS)))) return VLDTR_E_MD_BADCALLINGCONV; |
2151 | } |
2152 | else |
2153 | ulArgIx = 1; // Local variable signatures don't have a return type |
2154 | break; |
2155 | |
2156 | case mdtFieldDef: |
2157 | if(i != IMAGE_CEE_CS_CALLCONV_FIELD) return VLDTR_E_MD_BADCALLINGCONV; |
2158 | return validateOneArg(tk, &sig, NULL, pImport, TRUE); |
2159 | } |
2160 | // Is there any sig left for arguments? |
2161 | |
2162 | // Get the type argument count |
2163 | if (ulCallConv & IMAGE_CEE_CS_CALLCONV_GENERIC) |
2164 | { |
2165 | if (FAILED(sig.GetData(&ulTyArgCount))) |
2166 | { |
2167 | return VLDTR_E_MD_NOARGCNT; |
2168 | } |
2169 | } |
2170 | |
2171 | // Get the argument count. |
2172 | if (FAILED(sig.GetData(&ulArgCount))) |
2173 | { |
2174 | return VLDTR_E_MD_NOARGCNT; |
2175 | } |
2176 | |
2177 | // Validate the return type and the arguments. |
2178 | // (at this moment ulArgCount = num.args+1, ulArgIx = (standalone sig. ? 1 :0); ) |
2179 | for(; ulArgIx < ulArgCount; ulArgIx++) |
2180 | { |
2181 | if(FAILED(hr = validateOneArg(tk, &sig, &ulNSentinels, pImport, (ulArgIx!=0)))) return hr; |
2182 | } |
2183 | |
2184 | // <TODO>@todo: we allow junk to be at the end of the signature (we may not consume it all) |
2185 | // do we care?</TODO> |
2186 | |
2187 | if((ulNSentinels != 0) && ((ulCallConv & IMAGE_CEE_CS_CALLCONV_MASK) != IMAGE_CEE_CS_CALLCONV_VARARG )) |
2188 | return VLDTR_E_SIG_SENTMUSTVARARG; |
2189 | if(ulNSentinels > 1) return VLDTR_E_SIG_MULTSENTINELS; |
2190 | return S_OK; |
2191 | } // validateTokenSig() |
2192 | |
2193 | HRESULT GetImageRuntimeVersionString(PVOID pMetaData, LPCSTR* pString) |
2194 | { |
2195 | CONTRACTL |
2196 | { |
2197 | NOTHROW; |
2198 | } |
2199 | CONTRACTL_END; |
2200 | |
2201 | _ASSERTE(pString); |
2202 | STORAGESIGNATURE* pSig = (STORAGESIGNATURE*) pMetaData; |
2203 | |
2204 | // Verify the signature. |
2205 | |
2206 | // If signature didn't match, you shouldn't be here. |
2207 | if (pSig->GetSignature() != STORAGE_MAGIC_SIG) |
2208 | return CLDB_E_FILE_CORRUPT; |
2209 | |
2210 | // The version started in version 1.1 |
2211 | if (pSig->GetMajorVer() < 1) |
2212 | return CLDB_E_FILE_OLDVER; |
2213 | |
2214 | if (pSig->GetMajorVer() == 1 && pSig->GetMinorVer() < 1) |
2215 | return CLDB_E_FILE_OLDVER; |
2216 | |
2217 | // Header data starts after signature. |
2218 | *pString = (LPCSTR) pSig->pVersion; |
2219 | return S_OK; |
2220 | } |
2221 | |
2222 | //***************************************************************************** |
2223 | // Convert a UTF8 string to Unicode, into a CQuickArray<WCHAR>. |
2224 | //***************************************************************************** |
2225 | HRESULT Utf2Quick( |
2226 | LPCUTF8 pStr, // The string to convert. |
2227 | CQuickArray<WCHAR> &rStr, // The QuickArray<WCHAR> to convert it into. |
2228 | int iCurLen) // Inital characters in the array to leave (default 0). |
2229 | { |
2230 | CONTRACTL |
2231 | { |
2232 | NOTHROW; |
2233 | } |
2234 | CONTRACTL_END; |
2235 | |
2236 | HRESULT hr = S_OK; // A result. |
2237 | int iReqLen; // Required additional length. |
2238 | int iActLen; |
2239 | int bAlloc = 0; // If non-zero, allocation was required. |
2240 | |
2241 | if (iCurLen < 0 ) |
2242 | { |
2243 | _ASSERTE_MSG(false, "Invalid current length" ); |
2244 | return E_INVALIDARG; |
2245 | } |
2246 | |
2247 | // Calculate the space available |
2248 | S_SIZE_T cchAvail = S_SIZE_T(rStr.MaxSize()) - S_SIZE_T(iCurLen); |
2249 | if (cchAvail.IsOverflow() || cchAvail.Value() > INT_MAX) |
2250 | { |
2251 | _ASSERTE_MSG(false, "Integer overflow/underflow" ); |
2252 | return HRESULT_FROM_WIN32(ERROR_ARITHMETIC_OVERFLOW); |
2253 | } |
2254 | |
2255 | // Attempt the conversion. |
2256 | LPWSTR rNewStr = rStr.Ptr()+iCurLen; |
2257 | if(rNewStr < rStr.Ptr()) |
2258 | { |
2259 | _ASSERTE_MSG(false, "Integer overflow/underflow" ); |
2260 | return HRESULT_FROM_WIN32(ERROR_ARITHMETIC_OVERFLOW); |
2261 | } |
2262 | iReqLen = WszMultiByteToWideChar(CP_UTF8, 0, pStr, -1, rNewStr, (int)(cchAvail.Value())); |
2263 | |
2264 | // If the buffer was too small, determine what is required. |
2265 | if (iReqLen == 0) |
2266 | bAlloc = iReqLen = WszMultiByteToWideChar(CP_UTF8, 0, pStr, -1, 0, 0); |
2267 | // Resize the buffer. If the buffer was large enough, this just sets the internal |
2268 | // counter, but if it was too small, this will attempt a reallocation. Note that |
2269 | // the length includes the terminating W('/0'). |
2270 | IfFailGo(rStr.ReSizeNoThrow(iCurLen+iReqLen)); |
2271 | // If we had to realloc, then do the conversion again, now that the buffer is |
2272 | // large enough. |
2273 | if (bAlloc) { |
2274 | //recalculating cchAvail since MaxSize could have been changed. |
2275 | cchAvail = S_SIZE_T(rStr.MaxSize()) - S_SIZE_T(iCurLen); |
2276 | if (cchAvail.IsOverflow() || cchAvail.Value() > INT_MAX) |
2277 | { |
2278 | _ASSERTE_MSG(false, "Integer overflow/underflow" ); |
2279 | return HRESULT_FROM_WIN32(ERROR_ARITHMETIC_OVERFLOW); |
2280 | } |
2281 | //reculculating rNewStr |
2282 | rNewStr = rStr.Ptr()+iCurLen; |
2283 | |
2284 | if(rNewStr < rStr.Ptr()) |
2285 | { |
2286 | _ASSERTE_MSG(false, "Integer overflow/underflow" ); |
2287 | return HRESULT_FROM_WIN32(ERROR_ARITHMETIC_OVERFLOW); |
2288 | } |
2289 | iActLen = WszMultiByteToWideChar(CP_UTF8, 0, pStr, -1, rNewStr, (int)(cchAvail.Value())); |
2290 | _ASSERTE(iReqLen == iActLen); |
2291 | } |
2292 | ErrExit: |
2293 | return hr; |
2294 | } // HRESULT Utf2Quick() |
2295 | |
2296 | |
2297 | //***************************************************************************** |
2298 | // Extract the movl 64-bit unsigned immediate from an IA64 bundle |
2299 | // (Format X2) |
2300 | //***************************************************************************** |
2301 | UINT64 GetIA64Imm64(UINT64 * pBundle) |
2302 | { |
2303 | WRAPPER_NO_CONTRACT; |
2304 | |
2305 | UINT64 temp0 = PTR_UINT64(pBundle)[0]; |
2306 | UINT64 temp1 = PTR_UINT64(pBundle)[1]; |
2307 | |
2308 | return GetIA64Imm64(temp0, temp1); |
2309 | } |
2310 | |
2311 | UINT64 GetIA64Imm64(UINT64 qword0, UINT64 qword1) |
2312 | { |
2313 | LIMITED_METHOD_CONTRACT; |
2314 | |
2315 | UINT64 imm64 = 0; |
2316 | |
2317 | #ifdef _DEBUG_IMPL |
2318 | // |
2319 | // make certain we're decoding a movl opcode, with template 4 or 5 |
2320 | // |
2321 | UINT64 templa = (qword0 >> 0) & 0x1f; |
2322 | UINT64 opcode = (qword1 >> 60) & 0xf; |
2323 | |
2324 | _ASSERTE((opcode == 0x6) && ((templa == 0x4) || (templa == 0x5))); |
2325 | #endif |
2326 | |
2327 | imm64 = (qword1 >> 59) << 63; // 1 i |
2328 | imm64 |= (qword1 << 41) >> 1; // 23 high bits of imm41 |
2329 | imm64 |= (qword0 >> 46) << 22; // 18 low bits of imm41 |
2330 | imm64 |= (qword1 >> 23) & 0x200000; // 1 ic |
2331 | imm64 |= (qword1 >> 29) & 0x1F0000; // 5 imm5c |
2332 | imm64 |= (qword1 >> 43) & 0xFF80; // 9 imm9d |
2333 | imm64 |= (qword1 >> 36) & 0x7F; // 7 imm7b |
2334 | |
2335 | return imm64; |
2336 | } |
2337 | |
2338 | //***************************************************************************** |
2339 | // Deposit the movl 64-bit unsigned immediate into an IA64 bundle |
2340 | // (Format X2) |
2341 | //***************************************************************************** |
2342 | void PutIA64Imm64(UINT64 * pBundle, UINT64 imm64) |
2343 | { |
2344 | LIMITED_METHOD_CONTRACT; |
2345 | |
2346 | #ifdef _DEBUG_IMPL |
2347 | // |
2348 | // make certain we're decoding a movl opcode, with template 4 or 5 |
2349 | // |
2350 | UINT64 templa = (pBundle[0] >> 0) & 0x1f; |
2351 | UINT64 opcode = (pBundle[1] >> 60) & 0xf ; |
2352 | |
2353 | _ASSERTE((opcode == 0x6) && ((templa == 0x4) || (templa == 0x5))); |
2354 | #endif |
2355 | |
2356 | const UINT64 mask0 = UI64(0x00003FFFFFFFFFFF); |
2357 | const UINT64 mask1 = UI64(0xF000080FFF800000); |
2358 | |
2359 | /* Clear all bits used as part of the imm64 */ |
2360 | pBundle[0] &= mask0; |
2361 | pBundle[1] &= mask1; |
2362 | |
2363 | UINT64 temp0; |
2364 | UINT64 temp1; |
2365 | |
2366 | temp1 = (imm64 >> 63) << 59; // 1 i |
2367 | temp1 |= (imm64 & 0xFF80) << 43; // 9 imm9d |
2368 | temp1 |= (imm64 & 0x1F0000) << 29; // 5 imm5c |
2369 | temp1 |= (imm64 & 0x200000) << 23; // 1 ic |
2370 | temp1 |= (imm64 & 0x7F) << 36; // 7 imm7b |
2371 | temp1 |= (imm64 << 1) >> 41; // 23 high bits of imm41 |
2372 | temp0 = (imm64 >> 22) << 46; // 18 low bits of imm41 |
2373 | |
2374 | /* Or in the new bits used in the imm64 */ |
2375 | pBundle[0] |= temp0; |
2376 | pBundle[1] |= temp1; |
2377 | FlushInstructionCache(GetCurrentProcess(),pBundle,16); |
2378 | } |
2379 | |
2380 | //***************************************************************************** |
2381 | // Extract the IP-Relative signed 25-bit immediate from an IA64 bundle |
2382 | // (Formats B1, B2 or B3) |
2383 | // Note that due to branch target alignment requirements |
2384 | // the lowest four bits in the result will always be zero. |
2385 | //***************************************************************************** |
2386 | INT32 GetIA64Rel25(UINT64 * pBundle, UINT32 slot) |
2387 | { |
2388 | WRAPPER_NO_CONTRACT; |
2389 | |
2390 | UINT64 temp0 = PTR_UINT64(pBundle)[0]; |
2391 | UINT64 temp1 = PTR_UINT64(pBundle)[1]; |
2392 | |
2393 | return GetIA64Rel25(temp0, temp1, slot); |
2394 | } |
2395 | |
2396 | INT32 GetIA64Rel25(UINT64 qword0, UINT64 qword1, UINT32 slot) |
2397 | { |
2398 | LIMITED_METHOD_CONTRACT; |
2399 | |
2400 | INT32 imm25 = 0; |
2401 | |
2402 | if (slot == 2) |
2403 | { |
2404 | if ((qword1 >> 59) & 1) |
2405 | imm25 = 0xFF000000; |
2406 | imm25 |= (qword1 >> 32) & 0x00FFFFF0; // 20 imm20b |
2407 | } |
2408 | else if (slot == 1) |
2409 | { |
2410 | if ((qword1 >> 18) & 1) |
2411 | imm25 = 0xFF000000; |
2412 | imm25 |= (qword1 << 9) & 0x00FFFE00; // high 15 of imm20b |
2413 | imm25 |= (qword0 >> 55) & 0x000001F0; // low 5 of imm20b |
2414 | } |
2415 | else if (slot == 0) |
2416 | { |
2417 | if ((qword0 >> 41) & 1) |
2418 | imm25 = 0xFF000000; |
2419 | imm25 |= (qword0 >> 14) & 0x00FFFFF0; // 20 imm20b |
2420 | } |
2421 | |
2422 | return imm25; |
2423 | } |
2424 | |
2425 | //***************************************************************************** |
2426 | // Deposit the IP-Relative signed 25-bit immediate into an IA64 bundle |
2427 | // (Formats B1, B2 or B3) |
2428 | // Note that due to branch target alignment requirements |
2429 | // the lowest four bits are required to be zero. |
2430 | //***************************************************************************** |
2431 | void PutIA64Rel25(UINT64 * pBundle, UINT32 slot, INT32 imm25) |
2432 | { |
2433 | LIMITED_METHOD_CONTRACT; |
2434 | |
2435 | _ASSERTE((imm25 & 0xF) == 0); |
2436 | |
2437 | if (slot == 2) |
2438 | { |
2439 | const UINT64 mask1 = UI64(0xF700000FFFFFFFFF); |
2440 | /* Clear all bits used as part of the imm25 */ |
2441 | pBundle[1] &= mask1; |
2442 | |
2443 | UINT64 temp1; |
2444 | |
2445 | temp1 = (UINT64) (imm25 & 0x1000000) << 35; // 1 s |
2446 | temp1 |= (UINT64) (imm25 & 0x0FFFFF0) << 32; // 20 imm20b |
2447 | |
2448 | /* Or in the new bits used in the imm64 */ |
2449 | pBundle[1] |= temp1; |
2450 | } |
2451 | else if (slot == 1) |
2452 | { |
2453 | const UINT64 mask0 = UI64(0x0EFFFFFFFFFFFFFF); |
2454 | const UINT64 mask1 = UI64(0xFFFFFFFFFFFB8000); |
2455 | /* Clear all bits used as part of the imm25 */ |
2456 | pBundle[0] &= mask0; |
2457 | pBundle[1] &= mask1; |
2458 | |
2459 | UINT64 temp0; |
2460 | UINT64 temp1; |
2461 | |
2462 | temp1 = (UINT64) (imm25 & 0x1000000) >> 7; // 1 s |
2463 | temp1 |= (UINT64) (imm25 & 0x0FFFE00) >> 9; // high 15 of imm20b |
2464 | temp0 = (UINT64) (imm25 & 0x00001F0) << 55; // low 5 of imm20b |
2465 | |
2466 | /* Or in the new bits used in the imm64 */ |
2467 | pBundle[0] |= temp0; |
2468 | pBundle[1] |= temp1; |
2469 | } |
2470 | else if (slot == 0) |
2471 | { |
2472 | const UINT64 mask0 = UI64(0xFFFFFDC00003FFFF); |
2473 | /* Clear all bits used as part of the imm25 */ |
2474 | pBundle[0] &= mask0; |
2475 | |
2476 | UINT64 temp0; |
2477 | |
2478 | temp0 = (UINT64) (imm25 & 0x1000000) << 16; // 1 s |
2479 | temp0 |= (UINT64) (imm25 & 0x0FFFFF0) << 14; // 20 imm20b |
2480 | |
2481 | /* Or in the new bits used in the imm64 */ |
2482 | pBundle[0] |= temp0; |
2483 | |
2484 | } |
2485 | FlushInstructionCache(GetCurrentProcess(),pBundle,16); |
2486 | } |
2487 | |
2488 | //***************************************************************************** |
2489 | // Extract the IP-Relative signed 64-bit immediate from an IA64 bundle |
2490 | // (Formats X3 or X4) |
2491 | //***************************************************************************** |
2492 | INT64 GetIA64Rel64(UINT64 * pBundle) |
2493 | { |
2494 | WRAPPER_NO_CONTRACT; |
2495 | |
2496 | UINT64 temp0 = PTR_UINT64(pBundle)[0]; |
2497 | UINT64 temp1 = PTR_UINT64(pBundle)[1]; |
2498 | |
2499 | return GetIA64Rel64(temp0, temp1); |
2500 | } |
2501 | |
2502 | INT64 GetIA64Rel64(UINT64 qword0, UINT64 qword1) |
2503 | { |
2504 | LIMITED_METHOD_CONTRACT; |
2505 | |
2506 | INT64 imm64 = 0; |
2507 | |
2508 | #ifdef _DEBUG_IMPL |
2509 | // |
2510 | // make certain we're decoding a brl opcode, with template 4 or 5 |
2511 | // |
2512 | UINT64 templa = (qword0 >> 0) & 0x1f; |
2513 | UINT64 opcode = (qword1 >> 60) & 0xf; |
2514 | |
2515 | _ASSERTE(((opcode == 0xC) || (opcode == 0xD)) && |
2516 | ((templa == 0x4) || (templa == 0x5))); |
2517 | #endif |
2518 | |
2519 | imm64 = (qword1 >> 59) << 63; // 1 i |
2520 | imm64 |= (qword1 << 41) >> 1; // 23 high bits of imm39 |
2521 | imm64 |= (qword0 >> 48) << 24; // 16 low bits of imm39 |
2522 | imm64 |= (qword1 >> 32) & 0xFFFFF0; // 20 imm20b |
2523 | // 4 bits of zeros |
2524 | return imm64; |
2525 | } |
2526 | |
2527 | //***************************************************************************** |
2528 | // Deposit the IP-Relative signed 64-bit immediate into an IA64 bundle |
2529 | // (Formats X3 or X4) |
2530 | //***************************************************************************** |
2531 | void PutIA64Rel64(UINT64 * pBundle, INT64 imm64) |
2532 | { |
2533 | LIMITED_METHOD_CONTRACT; |
2534 | |
2535 | #ifdef _DEBUG_IMPL |
2536 | // |
2537 | // make certain we're decoding a brl opcode, with template 4 or 5 |
2538 | // |
2539 | UINT64 templa = (pBundle[0] >> 0) & 0x1f; |
2540 | UINT64 opcode = (pBundle[1] >> 60) & 0xf; |
2541 | |
2542 | _ASSERTE(((opcode == 0xC) || (opcode == 0xD)) && |
2543 | ((templa == 0x4) || (templa == 0x5))); |
2544 | _ASSERTE((imm64 & 0xF) == 0); |
2545 | #endif |
2546 | |
2547 | const UINT64 mask0 = UI64(0x00003FFFFFFFFFFF); |
2548 | const UINT64 mask1 = UI64(0xF700000FFF800000); |
2549 | |
2550 | /* Clear all bits used as part of the imm64 */ |
2551 | pBundle[0] &= mask0; |
2552 | pBundle[1] &= mask1; |
2553 | |
2554 | UINT64 temp0 = (imm64 & UI64(0x000000FFFF000000)) << 24; // 16 low bits of imm39 |
2555 | UINT64 temp1 = (imm64 & UI64(0x8000000000000000)) >> 4 // 1 i |
2556 | | (imm64 & UI64(0x7FFFFF0000000000)) >> 40 // 23 high bits of imm39 |
2557 | | (imm64 & UI64(0x0000000000FFFFF0)) << 32; // 20 imm20b |
2558 | |
2559 | /* Or in the new bits used in the imm64 */ |
2560 | pBundle[0] |= temp0; |
2561 | pBundle[1] |= temp1; |
2562 | FlushInstructionCache(GetCurrentProcess(),pBundle,16); |
2563 | } |
2564 | |
2565 | //***************************************************************************** |
2566 | // Extract the 16-bit immediate from ARM Thumb2 Instruction (format T2_N) |
2567 | //***************************************************************************** |
2568 | static FORCEINLINE UINT16 GetThumb2Imm16(UINT16 * p) |
2569 | { |
2570 | LIMITED_METHOD_CONTRACT; |
2571 | |
2572 | return ((p[0] << 12) & 0xf000) | |
2573 | ((p[0] << 1) & 0x0800) | |
2574 | ((p[1] >> 4) & 0x0700) | |
2575 | ((p[1] >> 0) & 0x00ff); |
2576 | } |
2577 | |
2578 | //***************************************************************************** |
2579 | // Extract the 32-bit immediate from movw/movt sequence |
2580 | //***************************************************************************** |
2581 | UINT32 GetThumb2Mov32(UINT16 * p) |
2582 | { |
2583 | LIMITED_METHOD_CONTRACT; |
2584 | |
2585 | // Make sure we are decoding movw/movt sequence |
2586 | _ASSERTE_IMPL((*(p+0) & 0xFBF0) == 0xF240); |
2587 | _ASSERTE_IMPL((*(p+2) & 0xFBF0) == 0xF2C0); |
2588 | |
2589 | return (UINT32)GetThumb2Imm16(p) + ((UINT32)GetThumb2Imm16(p + 2) << 16); |
2590 | } |
2591 | |
2592 | //***************************************************************************** |
2593 | // Deposit the 16-bit immediate into ARM Thumb2 Instruction (format T2_N) |
2594 | //***************************************************************************** |
2595 | static FORCEINLINE void PutThumb2Imm16(UINT16 * p, UINT16 imm16) |
2596 | { |
2597 | LIMITED_METHOD_CONTRACT; |
2598 | |
2599 | USHORT Opcode0 = p[0]; |
2600 | USHORT Opcode1 = p[1]; |
2601 | Opcode0 &= ~((0xf000 >> 12) | (0x0800 >> 1)); |
2602 | Opcode1 &= ~((0x0700 << 4) | (0x00ff << 0)); |
2603 | Opcode0 |= (imm16 & 0xf000) >> 12; |
2604 | Opcode0 |= (imm16 & 0x0800) >> 1; |
2605 | Opcode1 |= (imm16 & 0x0700) << 4; |
2606 | Opcode1 |= (imm16 & 0x00ff) << 0; |
2607 | p[0] = Opcode0; |
2608 | p[1] = Opcode1; |
2609 | } |
2610 | |
2611 | //***************************************************************************** |
2612 | // Deposit the 32-bit immediate into movw/movt Thumb2 sequence |
2613 | //***************************************************************************** |
2614 | void PutThumb2Mov32(UINT16 * p, UINT32 imm32) |
2615 | { |
2616 | LIMITED_METHOD_CONTRACT; |
2617 | |
2618 | // Make sure we are decoding movw/movt sequence |
2619 | _ASSERTE_IMPL((*(p+0) & 0xFBF0) == 0xF240); |
2620 | _ASSERTE_IMPL((*(p+2) & 0xFBF0) == 0xF2C0); |
2621 | |
2622 | PutThumb2Imm16(p, (UINT16)imm32); |
2623 | PutThumb2Imm16(p + 2, (UINT16)(imm32 >> 16)); |
2624 | } |
2625 | |
2626 | //***************************************************************************** |
2627 | // Extract the 24-bit rel offset from bl instruction |
2628 | //***************************************************************************** |
2629 | INT32 GetThumb2BlRel24(UINT16 * p) |
2630 | { |
2631 | LIMITED_METHOD_CONTRACT; |
2632 | |
2633 | USHORT Opcode0 = p[0]; |
2634 | USHORT Opcode1 = p[1]; |
2635 | |
2636 | UINT32 S = Opcode0 >> 10; |
2637 | UINT32 J2 = Opcode1 >> 11; |
2638 | UINT32 J1 = Opcode1 >> 13; |
2639 | |
2640 | INT32 ret = |
2641 | ((S << 24) & 0x1000000) | |
2642 | (((J1 ^ S ^ 1) << 23) & 0x0800000) | |
2643 | (((J2 ^ S ^ 1) << 22) & 0x0400000) | |
2644 | ((Opcode0 << 12) & 0x03FF000) | |
2645 | ((Opcode1 << 1) & 0x0000FFE); |
2646 | |
2647 | // Sign-extend and return |
2648 | return (ret << 7) >> 7; |
2649 | } |
2650 | |
2651 | //***************************************************************************** |
2652 | // Extract the 24-bit rel offset from bl instruction |
2653 | //***************************************************************************** |
2654 | void PutThumb2BlRel24(UINT16 * p, INT32 imm24) |
2655 | { |
2656 | LIMITED_METHOD_CONTRACT; |
2657 | |
2658 | // Verify that we got a valid offset |
2659 | _ASSERTE(FitsInThumb2BlRel24(imm24)); |
2660 | |
2661 | #if defined(_TARGET_ARM_) |
2662 | // Ensure that the ThumbBit is not set on the offset |
2663 | // as it cannot be encoded. |
2664 | _ASSERTE(!(imm24 & THUMB_CODE)); |
2665 | #endif // _TARGET_ARM_ |
2666 | |
2667 | USHORT Opcode0 = p[0]; |
2668 | USHORT Opcode1 = p[1]; |
2669 | Opcode0 &= 0xF800; |
2670 | Opcode1 &= 0xD000; |
2671 | |
2672 | UINT32 S = (imm24 & 0x1000000) >> 24; |
2673 | UINT32 J1 = ((imm24 & 0x0800000) >> 23) ^ S ^ 1; |
2674 | UINT32 J2 = ((imm24 & 0x0400000) >> 22) ^ S ^ 1; |
2675 | |
2676 | Opcode0 |= ((imm24 & 0x03FF000) >> 12) | (S << 10); |
2677 | Opcode1 |= ((imm24 & 0x0000FFE) >> 1) | (J1 << 13) | (J2 << 11); |
2678 | |
2679 | p[0] = Opcode0; |
2680 | p[1] = Opcode1; |
2681 | |
2682 | _ASSERTE(GetThumb2BlRel24(p) == imm24); |
2683 | } |
2684 | |
2685 | //***************************************************************************** |
2686 | // Extract the PC-Relative offset from a b or bl instruction |
2687 | //***************************************************************************** |
2688 | INT32 GetArm64Rel28(UINT32 * pCode) |
2689 | { |
2690 | LIMITED_METHOD_CONTRACT; |
2691 | |
2692 | UINT32 branchInstr = *pCode; |
2693 | |
2694 | // first shift 6 bits left to set the sign bit, |
2695 | // then arithmetic shift right by 4 bits |
2696 | INT32 imm28 = (((INT32)(branchInstr & 0x03FFFFFF)) << 6) >> 4; |
2697 | |
2698 | return imm28; |
2699 | } |
2700 | |
2701 | //***************************************************************************** |
2702 | // Extract the PC-Relative offset from an adrp instruction |
2703 | //***************************************************************************** |
2704 | INT32 GetArm64Rel21(UINT32 * pCode) |
2705 | { |
2706 | LIMITED_METHOD_CONTRACT; |
2707 | |
2708 | UINT32 addInstr = *pCode; |
2709 | |
2710 | // 23-5 bits for the high part. Shift it by 5. |
2711 | INT32 immhi = (((INT32)(addInstr & 0xFFFFE0))) >> 5; |
2712 | // 30,29 bits for the lower part. Shift it by 29. |
2713 | INT32 immlo = ((INT32)(addInstr & 0x60000000)) >> 29; |
2714 | |
2715 | // Merge them |
2716 | INT32 imm21 = (immhi << 2) | immlo; |
2717 | |
2718 | return imm21; |
2719 | } |
2720 | |
2721 | //***************************************************************************** |
2722 | // Extract the PC-Relative offset from an add instruction |
2723 | //***************************************************************************** |
2724 | INT32 GetArm64Rel12(UINT32 * pCode) |
2725 | { |
2726 | LIMITED_METHOD_CONTRACT; |
2727 | |
2728 | UINT32 addInstr = *pCode; |
2729 | |
2730 | // 21-10 contains value. Mask 12 bits and shift by 10 bits. |
2731 | INT32 imm12 = (INT32)(addInstr & 0x003FFC00) >> 10; |
2732 | |
2733 | return imm12; |
2734 | } |
2735 | |
2736 | //***************************************************************************** |
2737 | // Deposit the PC-Relative offset 'imm28' into a b or bl instruction |
2738 | //***************************************************************************** |
2739 | void PutArm64Rel28(UINT32 * pCode, INT32 imm28) |
2740 | { |
2741 | LIMITED_METHOD_CONTRACT; |
2742 | |
2743 | // Verify that we got a valid offset |
2744 | _ASSERTE(FitsInRel28(imm28)); |
2745 | _ASSERTE((imm28 & 0x3) == 0); // the low two bits must be zero |
2746 | |
2747 | UINT32 branchInstr = *pCode; |
2748 | |
2749 | branchInstr &= 0xFC000000; // keep bits 31-26 |
2750 | |
2751 | // Assemble the pc-relative delta 'imm28' into the branch instruction |
2752 | branchInstr |= ((imm28 >> 2) & 0x03FFFFFF); |
2753 | |
2754 | *pCode = branchInstr; // write the assembled instruction |
2755 | |
2756 | _ASSERTE(GetArm64Rel28(pCode) == imm28); |
2757 | } |
2758 | |
2759 | //***************************************************************************** |
2760 | // Deposit the PC-Relative offset 'imm21' into an adrp instruction |
2761 | //***************************************************************************** |
2762 | void PutArm64Rel21(UINT32 * pCode, INT32 imm21) |
2763 | { |
2764 | LIMITED_METHOD_CONTRACT; |
2765 | |
2766 | // Verify that we got a valid offset |
2767 | _ASSERTE(FitsInRel21(imm21)); |
2768 | |
2769 | UINT32 adrpInstr = *pCode; |
2770 | // Check adrp opcode 1ii1 0000 ... |
2771 | _ASSERTE((adrpInstr & 0x9F000000) == 0x90000000); |
2772 | |
2773 | adrpInstr &= 0x9F00001F; // keep bits 31, 28-24, 4-0. |
2774 | INT32 immlo = imm21 & 0x03; // Extract low 2 bits which will occupy 30-29 bits. |
2775 | INT32 immhi = (imm21 & 0x1FFFFC) >> 2; // Extract high 19 bits which will occupy 23-5 bits. |
2776 | adrpInstr |= ((immlo << 29) | (immhi << 5)); |
2777 | |
2778 | *pCode = adrpInstr; // write the assembled instruction |
2779 | |
2780 | _ASSERTE(GetArm64Rel21(pCode) == imm21); |
2781 | } |
2782 | |
2783 | //***************************************************************************** |
2784 | // Deposit the PC-Relative offset 'imm12' into an add instruction |
2785 | //***************************************************************************** |
2786 | void PutArm64Rel12(UINT32 * pCode, INT32 imm12) |
2787 | { |
2788 | LIMITED_METHOD_CONTRACT; |
2789 | |
2790 | // Verify that we got a valid offset |
2791 | _ASSERTE(FitsInRel12(imm12)); |
2792 | |
2793 | UINT32 addInstr = *pCode; |
2794 | // Check add opcode 1001 0001 00... |
2795 | _ASSERTE((addInstr & 0xFFC00000) == 0x91000000); |
2796 | |
2797 | addInstr &= 0xFFC003FF; // keep bits 31-22, 9-0 |
2798 | addInstr |= (imm12 << 10); // Occupy 21-10. |
2799 | |
2800 | *pCode = addInstr; // write the assembled instruction |
2801 | |
2802 | _ASSERTE(GetArm64Rel12(pCode) == imm12); |
2803 | } |
2804 | |
2805 | //--------------------------------------------------------------------- |
2806 | // Splits a command line into argc/argv lists, using the VC7 parsing rules. |
2807 | // |
2808 | // This functions interface mimics the CommandLineToArgvW api. |
2809 | // |
2810 | // If function fails, returns NULL. |
2811 | // |
2812 | // If function suceeds, call delete [] on return pointer when done. |
2813 | // |
2814 | //--------------------------------------------------------------------- |
2815 | // NOTE: Implementation-wise, once every few years it would be a good idea to |
2816 | // compare this code with the C runtime library's parse_cmdline method, |
2817 | // which is in vctools\crt\crtw32\startup\stdargv.c. (Note we don't |
2818 | // support wild cards, and we use Unicode characters exclusively.) |
2819 | // We are up to date as of ~6/2005. |
2820 | //--------------------------------------------------------------------- |
2821 | LPWSTR *SegmentCommandLine(LPCWSTR lpCmdLine, DWORD *pNumArgs) |
2822 | { |
2823 | STATIC_CONTRACT_NOTHROW; |
2824 | STATIC_CONTRACT_GC_NOTRIGGER; |
2825 | STATIC_CONTRACT_FAULT; |
2826 | |
2827 | |
2828 | *pNumArgs = 0; |
2829 | |
2830 | int nch = (int)wcslen(lpCmdLine); |
2831 | |
2832 | // Calculate the worstcase storage requirement. (One pointer for |
2833 | // each argument, plus storage for the arguments themselves.) |
2834 | int cbAlloc = (nch+1)*sizeof(LPWSTR) + sizeof(WCHAR)*(nch + 1); |
2835 | LPWSTR pAlloc = new (nothrow) WCHAR[cbAlloc / sizeof(WCHAR)]; |
2836 | if (!pAlloc) |
2837 | return NULL; |
2838 | |
2839 | LPWSTR *argv = (LPWSTR*) pAlloc; // We store the argv pointers in the first halt |
2840 | LPWSTR pdst = (LPWSTR)( ((BYTE*)pAlloc) + sizeof(LPWSTR)*(nch+1) ); // A running pointer to second half to store arguments |
2841 | LPCWSTR psrc = lpCmdLine; |
2842 | WCHAR c; |
2843 | BOOL inquote; |
2844 | BOOL copychar; |
2845 | int numslash; |
2846 | |
2847 | // First, parse the program name (argv[0]). Argv[0] is parsed under |
2848 | // special rules. Anything up to the first whitespace outside a quoted |
2849 | // subtring is accepted. Backslashes are treated as normal characters. |
2850 | argv[ (*pNumArgs)++ ] = pdst; |
2851 | inquote = FALSE; |
2852 | do { |
2853 | if (*psrc == W('"') ) |
2854 | { |
2855 | inquote = !inquote; |
2856 | c = *psrc++; |
2857 | continue; |
2858 | } |
2859 | *pdst++ = *psrc; |
2860 | |
2861 | c = *psrc++; |
2862 | |
2863 | } while ( (c != W('\0') && (inquote || (c != W(' ') && c != W('\t')))) ); |
2864 | |
2865 | if ( c == W('\0') ) { |
2866 | psrc--; |
2867 | } else { |
2868 | *(pdst-1) = W('\0'); |
2869 | } |
2870 | |
2871 | inquote = FALSE; |
2872 | |
2873 | |
2874 | |
2875 | /* loop on each argument */ |
2876 | for(;;) |
2877 | { |
2878 | if ( *psrc ) |
2879 | { |
2880 | while (*psrc == W(' ') || *psrc == W('\t')) |
2881 | { |
2882 | ++psrc; |
2883 | } |
2884 | } |
2885 | |
2886 | if (*psrc == W('\0')) |
2887 | break; /* end of args */ |
2888 | |
2889 | /* scan an argument */ |
2890 | argv[ (*pNumArgs)++ ] = pdst; |
2891 | |
2892 | /* loop through scanning one argument */ |
2893 | for (;;) |
2894 | { |
2895 | copychar = 1; |
2896 | /* Rules: 2N backslashes + " ==> N backslashes and begin/end quote |
2897 | 2N+1 backslashes + " ==> N backslashes + literal " |
2898 | N backslashes ==> N backslashes */ |
2899 | numslash = 0; |
2900 | while (*psrc == W('\\')) |
2901 | { |
2902 | /* count number of backslashes for use below */ |
2903 | ++psrc; |
2904 | ++numslash; |
2905 | } |
2906 | if (*psrc == W('"')) |
2907 | { |
2908 | /* if 2N backslashes before, start/end quote, otherwise |
2909 | copy literally */ |
2910 | if (numslash % 2 == 0) |
2911 | { |
2912 | if (inquote && psrc[1] == W('"')) |
2913 | { |
2914 | psrc++; /* Double quote inside quoted string */ |
2915 | } |
2916 | else |
2917 | { |
2918 | /* skip first quote char and copy second */ |
2919 | copychar = 0; /* don't copy quote */ |
2920 | inquote = !inquote; |
2921 | } |
2922 | } |
2923 | numslash /= 2; /* divide numslash by two */ |
2924 | } |
2925 | |
2926 | /* copy slashes */ |
2927 | while (numslash--) |
2928 | { |
2929 | *pdst++ = W('\\'); |
2930 | } |
2931 | |
2932 | /* if at end of arg, break loop */ |
2933 | if (*psrc == W('\0') || (!inquote && (*psrc == W(' ') || *psrc == W('\t')))) |
2934 | break; |
2935 | |
2936 | /* copy character into argument */ |
2937 | if (copychar) |
2938 | { |
2939 | *pdst++ = *psrc; |
2940 | } |
2941 | ++psrc; |
2942 | } |
2943 | |
2944 | /* null-terminate the argument */ |
2945 | |
2946 | *pdst++ = W('\0'); /* terminate string */ |
2947 | } |
2948 | |
2949 | /* We put one last argument in -- a null ptr */ |
2950 | argv[ (*pNumArgs) ] = NULL; |
2951 | |
2952 | // If we hit this assert, we overwrote our destination buffer. |
2953 | // Since we're supposed to allocate for the worst |
2954 | // case, either the parsing rules have changed or our worse case |
2955 | // formula is wrong. |
2956 | _ASSERTE((BYTE*)pdst <= (BYTE*)pAlloc + cbAlloc); |
2957 | return argv; |
2958 | } |
2959 | |
2960 | Volatile<PVOID> ForbidCallsIntoHostOnThisThread::s_pvOwningFiber = NULL; |
2961 | |
2962 | //====================================================================== |
2963 | // This function returns true, if it can determine that the instruction pointer |
2964 | // refers to a code address that belongs in the range of the given image. |
2965 | // <TODO>@TODO: Merge with IsIPInModule from vm\util.hpp</TODO> |
2966 | |
2967 | BOOL IsIPInModule(HMODULE_TGT hModule, PCODE ip) |
2968 | { |
2969 | STATIC_CONTRACT_LEAF; |
2970 | SUPPORTS_DAC; |
2971 | |
2972 | struct Param |
2973 | { |
2974 | HMODULE_TGT hModule; |
2975 | PCODE ip; |
2976 | BOOL fRet; |
2977 | } param; |
2978 | param.hModule = hModule; |
2979 | param.ip = ip; |
2980 | param.fRet = FALSE; |
2981 | |
2982 | // UNIXTODO: implement a proper version for PAL |
2983 | #ifndef FEATURE_PAL |
2984 | PAL_TRY(Param *, pParam, ¶m) |
2985 | { |
2986 | PTR_BYTE pBase = dac_cast<PTR_BYTE>(pParam->hModule); |
2987 | |
2988 | PTR_IMAGE_DOS_HEADER pDOS = NULL; |
2989 | PTR_IMAGE_NT_HEADERS pNT = NULL; |
2990 | USHORT cbOptHdr; |
2991 | PCODE baseAddr; |
2992 | |
2993 | // |
2994 | // First, must validate the format of the PE headers to make sure that |
2995 | // the fields we're interested in using exist in the image. |
2996 | // |
2997 | |
2998 | // Validate the DOS header. |
2999 | pDOS = PTR_IMAGE_DOS_HEADER(pBase); |
3000 | if (pDOS->e_magic != VAL16(IMAGE_DOS_SIGNATURE) || |
3001 | pDOS->e_lfanew == 0) |
3002 | { |
3003 | goto lDone; |
3004 | } |
3005 | |
3006 | // Validate the NT header |
3007 | pNT = PTR_IMAGE_NT_HEADERS(pBase + VAL32(pDOS->e_lfanew)); |
3008 | |
3009 | if (pNT->Signature != VAL32(IMAGE_NT_SIGNATURE)) |
3010 | { |
3011 | goto lDone; |
3012 | } |
3013 | |
3014 | // Validate that the optional header is large enough to contain the fields |
3015 | // we're interested, namely IMAGE_OPTIONAL_HEADER::SizeOfImage. The reason |
3016 | // we don't just check that SizeOfOptionalHeader == IMAGE_SIZEOF_NT_OPTIONAL_HEADER |
3017 | // is due to VSW443590, which states that the extensibility of this structure |
3018 | // is such that it is possible to include only a portion of the optional header. |
3019 | cbOptHdr = pNT->FileHeader.SizeOfOptionalHeader; |
3020 | |
3021 | // Check that the magic field is contained by the optional header and set to the correct value. |
3022 | if (cbOptHdr < (offsetof(IMAGE_OPTIONAL_HEADER, Magic) + sizeofmember(IMAGE_OPTIONAL_HEADER, Magic)) || |
3023 | pNT->OptionalHeader.Magic != VAL16(IMAGE_NT_OPTIONAL_HDR_MAGIC)) |
3024 | { |
3025 | goto lDone; |
3026 | } |
3027 | |
3028 | // Check that the SizeOfImage is contained by the optional header. |
3029 | if (cbOptHdr < (offsetof(IMAGE_OPTIONAL_HEADER, SizeOfImage) + sizeofmember(IMAGE_OPTIONAL_HEADER, SizeOfImage))) |
3030 | { |
3031 | goto lDone; |
3032 | } |
3033 | |
3034 | // |
3035 | // The real check |
3036 | // |
3037 | |
3038 | baseAddr = dac_cast<PCODE>(pBase); |
3039 | if ((pParam->ip < baseAddr) || (pParam->ip >= (baseAddr + VAL32(pNT->OptionalHeader.SizeOfImage)))) |
3040 | { |
3041 | goto lDone; |
3042 | } |
3043 | |
3044 | pParam->fRet = TRUE; |
3045 | |
3046 | lDone: ; |
3047 | } |
3048 | PAL_EXCEPT (EXCEPTION_EXECUTE_HANDLER) |
3049 | { |
3050 | } |
3051 | PAL_ENDTRY |
3052 | #endif // !FEATURE_PAL |
3053 | |
3054 | return param.fRet; |
3055 | } |
3056 | |
3057 | #ifdef FEATURE_CORRUPTING_EXCEPTIONS |
3058 | |
3059 | // To include definition of EXCEPTION_SOFTSO |
3060 | #include "corexcep.h" |
3061 | |
3062 | // These functions provide limited support for corrupting exceptions |
3063 | // outside the VM folder. Its limited since we don't have access to the |
3064 | // throwable. |
3065 | // |
3066 | // These functions are also wrapped by the corresponding CEHelper |
3067 | // methods in excep.cpp. |
3068 | |
3069 | // Given an exception code, this method returns a BOOL to indicate if the |
3070 | // code belongs to a corrupting exception or not. |
3071 | BOOL IsProcessCorruptedStateException(DWORD dwExceptionCode, BOOL fCheckForSO /*=TRUE*/) |
3072 | { |
3073 | LIMITED_METHOD_CONTRACT; |
3074 | |
3075 | // By default, assume its not corrupting |
3076 | BOOL fIsCorruptedStateException = FALSE; |
3077 | |
3078 | if (CLRConfig::GetConfigValue(CLRConfig::UNSUPPORTED_legacyCorruptedStateExceptionsPolicy) == 1) |
3079 | { |
3080 | return fIsCorruptedStateException; |
3081 | } |
3082 | |
3083 | // If we have been asked not to include SO in the CSE check |
3084 | // and the code represent SO, then exit now. |
3085 | if ((fCheckForSO == FALSE) && (dwExceptionCode == STATUS_STACK_OVERFLOW)) |
3086 | { |
3087 | return fIsCorruptedStateException; |
3088 | } |
3089 | |
3090 | switch(dwExceptionCode) |
3091 | { |
3092 | case STATUS_ACCESS_VIOLATION: |
3093 | case STATUS_STACK_OVERFLOW: |
3094 | case EXCEPTION_ILLEGAL_INSTRUCTION: |
3095 | case EXCEPTION_IN_PAGE_ERROR: |
3096 | case EXCEPTION_INVALID_DISPOSITION: |
3097 | case EXCEPTION_NONCONTINUABLE_EXCEPTION: |
3098 | case EXCEPTION_PRIV_INSTRUCTION: |
3099 | case STATUS_UNWIND_CONSOLIDATE: |
3100 | fIsCorruptedStateException = TRUE; |
3101 | break; |
3102 | } |
3103 | |
3104 | return fIsCorruptedStateException; |
3105 | } |
3106 | |
3107 | #endif // FEATURE_CORRUPTING_EXCEPTIONS |
3108 | |
3109 | void EnableTerminationOnHeapCorruption() |
3110 | { |
3111 | HeapSetInformation(NULL, HeapEnableTerminationOnCorruption, NULL, 0); |
3112 | } |
3113 | |
3114 | #ifdef FEATURE_COMINTEROP |
3115 | BOOL IsClrHostedLegacyComObject(REFCLSID rclsid) |
3116 | { |
3117 | // let's simply check for all CLSIDs that are known to be runtime implemented and capped to 2.0 |
3118 | return ( |
3119 | rclsid == CLSID_ComCallUnmarshal || |
3120 | rclsid == CLSID_CorMetaDataDispenser || |
3121 | rclsid == CLSID_CorMetaDataDispenserRuntime || |
3122 | rclsid == CLSID_TypeNameFactory); |
3123 | } |
3124 | #endif // FEATURE_COMINTEROP |
3125 | |
3126 | |
3127 | |
3128 | |
3129 | namespace Clr |
3130 | { |
3131 | namespace Util |
3132 | { |
3133 | static BOOL g_fLocalAppDataDirectoryInitted = FALSE; |
3134 | static WCHAR *g_wszLocalAppDataDirectory = NULL; |
3135 | |
3136 | // This api returns a pointer to a null-terminated string that contains the local appdata directory |
3137 | // or it returns NULL in the case that the directory could not be found. The return value from this function |
3138 | // is not actually checked for existence. |
3139 | HRESULT GetLocalAppDataDirectory(LPCWSTR *ppwzLocalAppDataDirectory) |
3140 | { |
3141 | CONTRACTL { |
3142 | NOTHROW; |
3143 | GC_NOTRIGGER; |
3144 | } CONTRACTL_END; |
3145 | |
3146 | HRESULT hr = S_OK; |
3147 | *ppwzLocalAppDataDirectory = NULL; |
3148 | |
3149 | EX_TRY |
3150 | { |
3151 | if (!g_fLocalAppDataDirectoryInitted) |
3152 | { |
3153 | WCHAR *wszLocalAppData = NULL; |
3154 | |
3155 | DWORD cCharsNeeded; |
3156 | cCharsNeeded = GetEnvironmentVariableW(W("LOCALAPPDATA" ), NULL, 0); |
3157 | |
3158 | if ((cCharsNeeded != 0) && (cCharsNeeded < MAX_LONGPATH)) |
3159 | { |
3160 | wszLocalAppData = new WCHAR[cCharsNeeded]; |
3161 | cCharsNeeded = GetEnvironmentVariableW(W("LOCALAPPDATA" ), wszLocalAppData, cCharsNeeded); |
3162 | if (cCharsNeeded != 0) |
3163 | { |
3164 | // We've collected the appropriate app data directory into a local. Now publish it. |
3165 | if (InterlockedCompareExchangeT(&g_wszLocalAppDataDirectory, wszLocalAppData, NULL) == NULL) |
3166 | { |
3167 | // This variable doesn't need to be freed, as it has been stored in the global |
3168 | wszLocalAppData = NULL; |
3169 | } |
3170 | } |
3171 | } |
3172 | |
3173 | g_fLocalAppDataDirectoryInitted = TRUE; |
3174 | delete[] wszLocalAppData; |
3175 | } |
3176 | } |
3177 | EX_CATCH_HRESULT(hr); |
3178 | |
3179 | if (SUCCEEDED(hr)) |
3180 | *ppwzLocalAppDataDirectory = g_wszLocalAppDataDirectory; |
3181 | |
3182 | return hr; |
3183 | } |
3184 | |
3185 | HRESULT SetLocalAppDataDirectory(LPCWSTR pwzLocalAppDataDirectory) |
3186 | { |
3187 | CONTRACTL { |
3188 | NOTHROW; |
3189 | GC_NOTRIGGER; |
3190 | } CONTRACTL_END; |
3191 | |
3192 | if (pwzLocalAppDataDirectory == NULL || *pwzLocalAppDataDirectory == W('\0')) |
3193 | return E_INVALIDARG; |
3194 | |
3195 | if (g_fLocalAppDataDirectoryInitted) |
3196 | return E_UNEXPECTED; |
3197 | |
3198 | HRESULT hr = S_OK; |
3199 | |
3200 | EX_TRY |
3201 | { |
3202 | size_t size = wcslen(pwzLocalAppDataDirectory) + 1; |
3203 | WCHAR *wszLocalAppData = new WCHAR[size]; |
3204 | wcscpy_s(wszLocalAppData, size, pwzLocalAppDataDirectory); |
3205 | |
3206 | // We've collected the appropriate app data directory into a local. Now publish it. |
3207 | if (InterlockedCompareExchangeT(&g_wszLocalAppDataDirectory, wszLocalAppData, NULL) != NULL) |
3208 | { |
3209 | // Someone else already set LocalAppData. Free our copy and return an error. |
3210 | delete[] wszLocalAppData; |
3211 | hr = E_UNEXPECTED; |
3212 | } |
3213 | |
3214 | g_fLocalAppDataDirectoryInitted = TRUE; |
3215 | } |
3216 | EX_CATCH_HRESULT(hr); |
3217 | |
3218 | return hr; |
3219 | } |
3220 | |
3221 | #ifndef FEATURE_PAL |
3222 | namespace Reg |
3223 | { |
3224 | HRESULT ReadStringValue(HKEY hKey, LPCWSTR wszSubKeyName, LPCWSTR wszValueName, SString & ssValue) |
3225 | { |
3226 | STANDARD_VM_CONTRACT; |
3227 | |
3228 | if (hKey == NULL) |
3229 | { |
3230 | return E_INVALIDARG; |
3231 | } |
3232 | |
3233 | RegKeyHolder hTargetKey; |
3234 | if (wszSubKeyName == NULL || *wszSubKeyName == W('\0')) |
3235 | { // No subkey was requested, use hKey as the resolved key. |
3236 | hTargetKey = hKey; |
3237 | hTargetKey.SuppressRelease(); |
3238 | } |
3239 | else |
3240 | { // Try to open the specified subkey. |
3241 | if (WszRegOpenKeyEx(hKey, wszSubKeyName, 0, KEY_READ, &hTargetKey) != ERROR_SUCCESS) |
3242 | return REGDB_E_CLASSNOTREG; |
3243 | } |
3244 | |
3245 | DWORD type; |
3246 | DWORD size; |
3247 | if ((WszRegQueryValueEx(hTargetKey, wszValueName, 0, &type, 0, &size) == ERROR_SUCCESS) && |
3248 | type == REG_SZ && size > 0) |
3249 | { |
3250 | LPWSTR wszValueBuf = ssValue.OpenUnicodeBuffer(static_cast<COUNT_T>((size / sizeof(WCHAR)) - 1)); |
3251 | LONG lResult = WszRegQueryValueEx( |
3252 | hTargetKey, |
3253 | wszValueName, |
3254 | 0, |
3255 | 0, |
3256 | reinterpret_cast<LPBYTE>(wszValueBuf), |
3257 | &size); |
3258 | |
3259 | _ASSERTE(lResult == ERROR_SUCCESS); |
3260 | if (lResult == ERROR_SUCCESS) |
3261 | { |
3262 | // Can't count on the returned size being accurate - I've seen at least |
3263 | // one string with an extra NULL at the end that will cause the resulting |
3264 | // SString to count the extra NULL as part of the string. An extra |
3265 | // terminating NULL is not a legitimate scenario for REG_SZ - this must |
3266 | // be done using REG_MULTI_SZ - however this was tolerated in the |
3267 | // past and so it would be a breaking change to stop doing so. |
3268 | _ASSERTE(wcslen(wszValueBuf) <= (size / sizeof(WCHAR)) - 1); |
3269 | ssValue.CloseBuffer((COUNT_T)wcsnlen(wszValueBuf, (size_t)size)); |
3270 | } |
3271 | else |
3272 | { |
3273 | ssValue.CloseBuffer(0); |
3274 | return HRESULT_FROM_WIN32(lResult); |
3275 | } |
3276 | |
3277 | return S_OK; |
3278 | } |
3279 | else |
3280 | { |
3281 | return REGDB_E_KEYMISSING; |
3282 | } |
3283 | } |
3284 | |
3285 | HRESULT ReadStringValue(HKEY hKey, LPCWSTR wszSubKey, LPCWSTR wszName, __deref_out __deref_out_z LPWSTR* pwszValue) |
3286 | { |
3287 | CONTRACTL { |
3288 | NOTHROW; |
3289 | GC_NOTRIGGER; |
3290 | } CONTRACTL_END; |
3291 | |
3292 | HRESULT hr = S_OK; |
3293 | EX_TRY |
3294 | { |
3295 | StackSString ssValue; |
3296 | if (SUCCEEDED(hr = ReadStringValue(hKey, wszSubKey, wszName, ssValue))) |
3297 | { |
3298 | *pwszValue = new WCHAR[ssValue.GetCount() + 1]; |
3299 | wcscpy_s(*pwszValue, ssValue.GetCount() + 1, ssValue.GetUnicode()); |
3300 | } |
3301 | } |
3302 | EX_CATCH_HRESULT(hr); |
3303 | return hr; |
3304 | } |
3305 | } // namespace Reg |
3306 | |
3307 | namespace Com |
3308 | { |
3309 | namespace __imp |
3310 | { |
3311 | __success(return == S_OK) |
3312 | static |
3313 | HRESULT FindSubKeyDefaultValueForCLSID(REFCLSID rclsid, LPCWSTR wszSubKeyName, SString & ssValue) |
3314 | { |
3315 | STANDARD_VM_CONTRACT; |
3316 | |
3317 | HRESULT hr = S_OK; |
3318 | |
3319 | WCHAR wszClsid[39]; |
3320 | if (GuidToLPWSTR(rclsid, wszClsid, NumItems(wszClsid)) == 0) |
3321 | return E_UNEXPECTED; |
3322 | |
3323 | StackSString ssKeyName; |
3324 | ssKeyName.Append(SL(W("CLSID\\" ))); |
3325 | ssKeyName.Append(wszClsid); |
3326 | ssKeyName.Append(SL(W("\\" ))); |
3327 | ssKeyName.Append(wszSubKeyName); |
3328 | |
3329 | return Clr::Util::Reg::ReadStringValue(HKEY_CLASSES_ROOT, ssKeyName.GetUnicode(), NULL, ssValue); |
3330 | } |
3331 | |
3332 | __success(return == S_OK) |
3333 | static |
3334 | HRESULT FindSubKeyDefaultValueForCLSID(REFCLSID rclsid, LPCWSTR wszSubKeyName, __deref_out __deref_out_z LPWSTR* pwszValue) |
3335 | { |
3336 | CONTRACTL { |
3337 | NOTHROW; |
3338 | GC_NOTRIGGER; |
3339 | } CONTRACTL_END; |
3340 | |
3341 | HRESULT hr = S_OK; |
3342 | EX_TRY |
3343 | { |
3344 | StackSString ssValue; |
3345 | if (SUCCEEDED(hr = FindSubKeyDefaultValueForCLSID(rclsid, wszSubKeyName, ssValue))) |
3346 | { |
3347 | *pwszValue = new WCHAR[ssValue.GetCount() + 1]; |
3348 | wcscpy_s(*pwszValue, ssValue.GetCount() + 1, ssValue.GetUnicode()); |
3349 | } |
3350 | } |
3351 | EX_CATCH_HRESULT(hr); |
3352 | return hr; |
3353 | } |
3354 | } |
3355 | |
3356 | HRESULT FindServerUsingCLSID(REFCLSID rclsid, __deref_out __deref_out_z LPWSTR* pwszServerName) |
3357 | { |
3358 | WRAPPER_NO_CONTRACT; |
3359 | return __imp::FindSubKeyDefaultValueForCLSID(rclsid, W("Server" ), pwszServerName); |
3360 | } |
3361 | |
3362 | HRESULT FindServerUsingCLSID(REFCLSID rclsid, SString & ssServerName) |
3363 | { |
3364 | WRAPPER_NO_CONTRACT; |
3365 | return __imp::FindSubKeyDefaultValueForCLSID(rclsid, W("Server" ), ssServerName); |
3366 | } |
3367 | |
3368 | HRESULT FindInprocServer32UsingCLSID(REFCLSID rclsid, __deref_out __deref_out_z LPWSTR* pwszInprocServer32Name) |
3369 | { |
3370 | WRAPPER_NO_CONTRACT; |
3371 | return __imp::FindSubKeyDefaultValueForCLSID(rclsid, W("InprocServer32" ), pwszInprocServer32Name); |
3372 | } |
3373 | |
3374 | HRESULT FindInprocServer32UsingCLSID(REFCLSID rclsid, SString & ssInprocServer32Name) |
3375 | { |
3376 | WRAPPER_NO_CONTRACT; |
3377 | return __imp::FindSubKeyDefaultValueForCLSID(rclsid, W("InprocServer32" ), ssInprocServer32Name); |
3378 | } |
3379 | |
3380 | BOOL IsMscoreeInprocServer32(const SString & ssInprocServer32Name) |
3381 | { |
3382 | WRAPPER_NO_CONTRACT; |
3383 | |
3384 | return (ssInprocServer32Name.EqualsCaseInsensitive(SL(MSCOREE_SHIM_W)) || |
3385 | ssInprocServer32Name.EndsWithCaseInsensitive(SL(W("\\" ) MSCOREE_SHIM_W))); |
3386 | } |
3387 | |
3388 | BOOL CLSIDHasMscoreeAsInprocServer32(REFCLSID rclsid) |
3389 | { |
3390 | WRAPPER_NO_CONTRACT; |
3391 | |
3392 | StackSString ssInprocServer32; |
3393 | FindInprocServer32UsingCLSID(rclsid, ssInprocServer32); |
3394 | return IsMscoreeInprocServer32(ssInprocServer32); |
3395 | } |
3396 | |
3397 | } // namespace Com |
3398 | #endif // FEATURE_PAL |
3399 | |
3400 | namespace Win32 |
3401 | { |
3402 | void GetModuleFileName( |
3403 | HMODULE hModule, |
3404 | SString & ssFileName, |
3405 | bool fAllowLongFileNames) |
3406 | { |
3407 | STANDARD_VM_CONTRACT; |
3408 | |
3409 | // Try to use what the SString already has allocated. If it does not have anything allocated |
3410 | // or it has < 20 characters allocated, then bump the size requested to _MAX_PATH. |
3411 | |
3412 | DWORD dwResult = WszGetModuleFileName(hModule, ssFileName); |
3413 | |
3414 | |
3415 | if (dwResult == 0) |
3416 | ThrowHR(HRESULT_FROM_GetLastError()); |
3417 | |
3418 | _ASSERTE(dwResult != 0 ); |
3419 | } |
3420 | |
3421 | // Returns heap-allocated string in *pwszFileName |
3422 | HRESULT GetModuleFileName( |
3423 | HMODULE hModule, |
3424 | __deref_out_z LPWSTR * pwszFileName, |
3425 | bool fAllowLongFileNames) |
3426 | { |
3427 | CONTRACTL { |
3428 | NOTHROW; |
3429 | GC_NOTRIGGER; |
3430 | PRECONDITION(CheckPointer(pwszFileName)); |
3431 | } CONTRACTL_END; |
3432 | |
3433 | HRESULT hr = S_OK; |
3434 | EX_TRY |
3435 | { |
3436 | InlineSString<_MAX_PATH> ssFileName; |
3437 | GetModuleFileName(hModule, ssFileName); |
3438 | *pwszFileName = DuplicateStringThrowing(ssFileName.GetUnicode()); |
3439 | } |
3440 | EX_CATCH_HRESULT(hr); |
3441 | |
3442 | return hr; |
3443 | } |
3444 | |
3445 | void GetFullPathName( |
3446 | SString const & ssFileName, |
3447 | SString & ssPathName, |
3448 | DWORD * pdwFilePartIdx, |
3449 | bool fAllowLongFileNames) |
3450 | { |
3451 | STANDARD_VM_CONTRACT; |
3452 | |
3453 | // Get the required buffer length (including terminating NULL). |
3454 | DWORD dwLengthRequired = WszGetFullPathName(ssFileName.GetUnicode(), 0, NULL, NULL); |
3455 | |
3456 | if (dwLengthRequired == 0) |
3457 | ThrowHR(HRESULT_FROM_GetLastError()); |
3458 | |
3459 | LPWSTR wszPathName = ssPathName.OpenUnicodeBuffer(dwLengthRequired - 1); |
3460 | LPWSTR wszFileName = NULL; |
3461 | DWORD dwLengthWritten = WszGetFullPathName( |
3462 | ssFileName.GetUnicode(), |
3463 | dwLengthRequired, |
3464 | wszPathName, |
3465 | &wszFileName); |
3466 | |
3467 | // Calculate the index while the buffer is open and the string pointer is stable. |
3468 | if (dwLengthWritten != 0 && dwLengthWritten < dwLengthRequired && pdwFilePartIdx != NULL) |
3469 | *pdwFilePartIdx = static_cast<DWORD>(wszFileName - wszPathName); |
3470 | |
3471 | ssPathName.CloseBuffer(dwLengthWritten < dwLengthRequired ? dwLengthWritten : 0); |
3472 | |
3473 | if (dwLengthRequired == 0) |
3474 | ThrowHR(HRESULT_FROM_GetLastError()); |
3475 | |
3476 | // Overly defensive? Perhaps. |
3477 | if (!(dwLengthWritten < dwLengthRequired)) |
3478 | ThrowHR(E_UNEXPECTED); |
3479 | |
3480 | } |
3481 | } // namespace Win32 |
3482 | |
3483 | } // namespace Util |
3484 | } // namespace Clr |
3485 | |