| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | //***************************************************************************** |
| 5 | // util.cpp |
| 6 | // |
| 7 | |
| 8 | // |
| 9 | // This contains a bunch of C++ utility classes. |
| 10 | // |
| 11 | //***************************************************************************** |
| 12 | #include "stdafx.h" // Precompiled header key. |
| 13 | #include "utilcode.h" |
| 14 | #include "metadata.h" |
| 15 | #include "ex.h" |
| 16 | #include "pedecoder.h" |
| 17 | #include "loaderheap.h" |
| 18 | #include "sigparser.h" |
| 19 | #include "cor.h" |
| 20 | #include "corinfo.h" |
| 21 | #include "volatile.h" |
| 22 | |
| 23 | #ifndef DACCESS_COMPILE |
| 24 | UINT32 g_nClrInstanceId = 0; |
| 25 | #endif //!DACCESS_COMPILE |
| 26 | |
| 27 | //********** Code. ************************************************************ |
| 28 | |
| 29 | #if defined(FEATURE_COMINTEROP) && !defined(FEATURE_CORESYSTEM) |
| 30 | extern WinRTStatusEnum gWinRTStatus = WINRT_STATUS_UNINITED; |
| 31 | #endif // FEATURE_COMINTEROP && !FEATURE_CORESYSTEM |
| 32 | |
| 33 | #if defined(FEATURE_COMINTEROP) && !defined(FEATURE_CORESYSTEM) |
| 34 | //------------------------------------------------------------------------------ |
| 35 | // |
| 36 | // Attempt to detect the presense of Windows Runtime support on the current OS. |
| 37 | // Our algorithm to do this is to ensure that: |
| 38 | // 1. combase.dll exists |
| 39 | // 2. combase.dll contains a RoInitialize export |
| 40 | // |
| 41 | |
| 42 | void InitWinRTStatus() |
| 43 | { |
| 44 | STATIC_CONTRACT_NOTHROW; |
| 45 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 46 | STATIC_CONTRACT_CANNOT_TAKE_LOCK; |
| 47 | STATIC_CONTRACT_SO_TOLERANT; |
| 48 | |
| 49 | WinRTStatusEnum winRTStatus = WINRT_STATUS_UNSUPPORTED; |
| 50 | |
| 51 | const WCHAR wszComBaseDll[] = W("\\combase.dll" ); |
| 52 | const SIZE_T cchComBaseDll = _countof(wszComBaseDll); |
| 53 | |
| 54 | WCHAR wszComBasePath[MAX_LONGPATH + 1]; |
| 55 | const SIZE_T cchComBasePath = _countof(wszComBasePath); |
| 56 | |
| 57 | ZeroMemory(wszComBasePath, cchComBasePath * sizeof(wszComBasePath[0])); |
| 58 | |
| 59 | UINT cchSystemDirectory = WszGetSystemDirectory(wszComBasePath, MAX_LONGPATH); |
| 60 | |
| 61 | // Make sure that we're only probing in the system directory. If we can't find the system directory, or |
| 62 | // we find it but combase.dll doesn't fit into it, we'll fall back to a safe default of saying that WinRT |
| 63 | // is simply not present. |
| 64 | if (cchSystemDirectory > 0 && cchComBasePath - cchSystemDirectory >= cchComBaseDll) |
| 65 | { |
| 66 | if (wcscat_s(wszComBasePath, wszComBaseDll) == 0) |
| 67 | { |
| 68 | HModuleHolder hComBase(WszLoadLibrary(wszComBasePath)); |
| 69 | if (hComBase != NULL) |
| 70 | { |
| 71 | FARPROC activateInstace = GetProcAddress(hComBase, "RoInitialize" ); |
| 72 | if (activateInstace != NULL) |
| 73 | { |
| 74 | winRTStatus = WINRT_STATUS_SUPPORTED; |
| 75 | } |
| 76 | } |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | gWinRTStatus = winRTStatus; |
| 81 | } |
| 82 | #endif // FEATURE_COMINTEROP && !FEATURE_CORESYSTEM |
| 83 | //***************************************************************************** |
| 84 | // Convert a string of hex digits into a hex value of the specified # of bytes. |
| 85 | //***************************************************************************** |
| 86 | HRESULT GetHex( // Return status. |
| 87 | LPCSTR szStr, // String to convert. |
| 88 | int size, // # of bytes in pResult. |
| 89 | void *pResult) // Buffer for result. |
| 90 | { |
| 91 | CONTRACTL |
| 92 | { |
| 93 | NOTHROW; |
| 94 | } |
| 95 | CONTRACTL_END; |
| 96 | |
| 97 | int count = size * 2; // # of bytes to take from string. |
| 98 | unsigned int Result = 0; // Result value. |
| 99 | char ch; |
| 100 | |
| 101 | _ASSERTE(size == 1 || size == 2 || size == 4); |
| 102 | |
| 103 | while (count-- && (ch = *szStr++) != '\0') |
| 104 | { |
| 105 | switch (ch) |
| 106 | { |
| 107 | case '0': case '1': case '2': case '3': case '4': |
| 108 | case '5': case '6': case '7': case '8': case '9': |
| 109 | Result = 16 * Result + (ch - '0'); |
| 110 | break; |
| 111 | |
| 112 | case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': |
| 113 | Result = 16 * Result + 10 + (ch - 'A'); |
| 114 | break; |
| 115 | |
| 116 | case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': |
| 117 | Result = 16 * Result + 10 + (ch - 'a'); |
| 118 | break; |
| 119 | |
| 120 | default: |
| 121 | return (E_FAIL); |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | // Set the output. |
| 126 | switch (size) |
| 127 | { |
| 128 | case 1: |
| 129 | *((BYTE *) pResult) = (BYTE) Result; |
| 130 | break; |
| 131 | |
| 132 | case 2: |
| 133 | *((WORD *) pResult) = (WORD) Result; |
| 134 | break; |
| 135 | |
| 136 | case 4: |
| 137 | *((DWORD *) pResult) = Result; |
| 138 | break; |
| 139 | |
| 140 | default: |
| 141 | _ASSERTE(0); |
| 142 | break; |
| 143 | } |
| 144 | return (S_OK); |
| 145 | } |
| 146 | |
| 147 | //***************************************************************************** |
| 148 | // Convert a pointer to a string into a GUID. |
| 149 | //***************************************************************************** |
| 150 | HRESULT LPCSTRToGuid( // Return status. |
| 151 | LPCSTR szGuid, // String to convert. |
| 152 | GUID *psGuid) // Buffer for converted GUID. |
| 153 | { |
| 154 | CONTRACTL |
| 155 | { |
| 156 | NOTHROW; |
| 157 | } |
| 158 | CONTRACTL_END; |
| 159 | |
| 160 | int i; |
| 161 | |
| 162 | // Verify the surrounding syntax. |
| 163 | if (strlen(szGuid) != 38 || szGuid[0] != '{' || szGuid[9] != '-' || |
| 164 | szGuid[14] != '-' || szGuid[19] != '-' || szGuid[24] != '-' || szGuid[37] != '}') |
| 165 | { |
| 166 | return (E_FAIL); |
| 167 | } |
| 168 | |
| 169 | // Parse the first 3 fields. |
| 170 | if (FAILED(GetHex(szGuid + 1, 4, &psGuid->Data1))) |
| 171 | return E_FAIL; |
| 172 | if (FAILED(GetHex(szGuid + 10, 2, &psGuid->Data2))) |
| 173 | return E_FAIL; |
| 174 | if (FAILED(GetHex(szGuid + 15, 2, &psGuid->Data3))) |
| 175 | return E_FAIL; |
| 176 | |
| 177 | // Get the last two fields (which are byte arrays). |
| 178 | for (i = 0; i < 2; ++i) |
| 179 | { |
| 180 | if (FAILED(GetHex(szGuid + 20 + (i * 2), 1, &psGuid->Data4[i]))) |
| 181 | { |
| 182 | return E_FAIL; |
| 183 | } |
| 184 | } |
| 185 | for (i=0; i < 6; ++i) |
| 186 | { |
| 187 | if (FAILED(GetHex(szGuid + 25 + (i * 2), 1, &psGuid->Data4[i+2]))) |
| 188 | { |
| 189 | return E_FAIL; |
| 190 | } |
| 191 | } |
| 192 | return S_OK; |
| 193 | } |
| 194 | |
| 195 | // |
| 196 | // |
| 197 | // Global utility functions. |
| 198 | // |
| 199 | // |
| 200 | |
| 201 | |
| 202 | |
| 203 | typedef HRESULT __stdcall DLLGETCLASSOBJECT(REFCLSID rclsid, |
| 204 | REFIID riid, |
| 205 | void **ppv); |
| 206 | |
| 207 | EXTERN_C const IID _IID_IClassFactory = |
| 208 | {0x00000001, 0x0000, 0x0000, {0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46}}; |
| 209 | |
| 210 | // ---------------------------------------------------------------------------- |
| 211 | // FakeCoCreateInstanceEx |
| 212 | // |
| 213 | // Description: |
| 214 | // A private function to do the equivalent of a CoCreateInstance in cases where we |
| 215 | // can't make the real call. Use this when, for instance, you need to create a symbol |
| 216 | // reader in the Runtime but we're not CoInitialized. Obviously, this is only good |
| 217 | // for COM objects for which CoCreateInstance is just a glorified find-and-load-me |
| 218 | // operation. |
| 219 | // |
| 220 | // Arguments: |
| 221 | // * rclsid - [in] CLSID of object to instantiate |
| 222 | // * wszDllPath [in] - Path to profiler DLL. If wszDllPath is NULL, FakeCoCreateInstanceEx |
| 223 | // will look up the registry to find the path of the COM dll associated with rclsid. |
| 224 | // If the path ends in a backslash, FakeCoCreateInstanceEx will treat this as a prefix |
| 225 | // if the InprocServer32 found in the registry is a simple filename (not a full path). |
| 226 | // This allows the caller to specify the directory in which the InprocServer32 should |
| 227 | // be found. Also, if this path is provided and the InprocServer32 is MSCOREE.DLL, then |
| 228 | // the Server value is used instead, if it exists. |
| 229 | // * riid - [in] IID of interface on object to return in ppv |
| 230 | // * ppv - [out] Pointer to implementation of requested interface |
| 231 | // * phmodDll - [out] HMODULE of DLL that was loaded to instantiate the COM object. |
| 232 | // The caller may eventually call FreeLibrary() on this if it can be determined |
| 233 | // that we no longer reference the generated COM object or dependencies. Else, the |
| 234 | // caller may ignore this and the DLL will stay loaded forever. If caller |
| 235 | // specifies phmodDll==NULL, then this parameter is ignored and the HMODULE is not |
| 236 | // returned. |
| 237 | // |
| 238 | // Return Value: |
| 239 | // HRESULT indicating success or failure. |
| 240 | // |
| 241 | // Notes: |
| 242 | // * (*phmodDll) on [out] may always be trusted, even if this function returns an |
| 243 | // error. Therefore, even if creation of the COM object failed, if (*phmodDll != |
| 244 | // NULL), then the DLL was actually loaded. The caller may wish to call |
| 245 | // FreeLibrary on (*phmodDll) in such a case. |
| 246 | HRESULT FakeCoCreateInstanceEx(REFCLSID rclsid, |
| 247 | LPCWSTR wszDllPath, |
| 248 | REFIID riid, |
| 249 | void ** ppv, |
| 250 | HMODULE * phmodDll) |
| 251 | { |
| 252 | CONTRACTL |
| 253 | { |
| 254 | THROWS; |
| 255 | } |
| 256 | CONTRACTL_END; |
| 257 | |
| 258 | HRESULT hr = S_OK; |
| 259 | |
| 260 | // Call the function to get a class factory for the rclsid passed in. |
| 261 | HModuleHolder hDll; |
| 262 | ReleaseHolder<IClassFactory> classFactory; |
| 263 | IfFailRet(FakeCoCallDllGetClassObject(rclsid, wszDllPath, _IID_IClassFactory, (void**)&classFactory, &hDll)); |
| 264 | |
| 265 | // Ask the class factory to create an instance of the |
| 266 | // necessary object. |
| 267 | IfFailRet(classFactory->CreateInstance(NULL, riid, ppv)); |
| 268 | |
| 269 | hDll.SuppressRelease(); |
| 270 | |
| 271 | if (phmodDll != NULL) |
| 272 | { |
| 273 | *phmodDll = hDll.GetValue(); |
| 274 | } |
| 275 | |
| 276 | return hr; |
| 277 | } |
| 278 | |
| 279 | HRESULT FakeCoCallDllGetClassObject(REFCLSID rclsid, |
| 280 | LPCWSTR wszDllPath, |
| 281 | REFIID riid, |
| 282 | void ** ppv, |
| 283 | HMODULE * phmodDll) |
| 284 | { |
| 285 | CONTRACTL |
| 286 | { |
| 287 | THROWS; |
| 288 | } |
| 289 | CONTRACTL_END; |
| 290 | |
| 291 | _ASSERTE(ppv != NULL); |
| 292 | |
| 293 | HRESULT hr = S_OK; |
| 294 | |
| 295 | if (phmodDll != NULL) |
| 296 | { // Initialize [out] HMODULE (if it was requested) |
| 297 | *phmodDll = NULL; |
| 298 | } |
| 299 | |
| 300 | bool fIsDllPathPrefix = (wszDllPath != NULL) && (wszDllPath[wcslen(wszDllPath) - 1] == W('\\')); |
| 301 | |
| 302 | // - An empty string will be treated as NULL. |
| 303 | // - A string ending will a backslash will be treated as a prefix for where to look for the DLL |
| 304 | // if the InProcServer32 value is just a DLL name and not a full path. |
| 305 | StackSString ssDllName; |
| 306 | if ((wszDllPath == NULL) || (wszDllPath[0] == W('\0')) || fIsDllPathPrefix) |
| 307 | { |
| 308 | #ifndef FEATURE_PAL |
| 309 | IfFailRet(Clr::Util::Com::FindInprocServer32UsingCLSID(rclsid, ssDllName)); |
| 310 | |
| 311 | EX_TRY |
| 312 | { |
| 313 | if (fIsDllPathPrefix) |
| 314 | { |
| 315 | if (Clr::Util::Com::IsMscoreeInprocServer32(ssDllName)) |
| 316 | { // If the InprocServer32 is mscoree.dll, then we skip the shim and look for |
| 317 | // the corresponding server DLL (if it exists) in the directory provided. |
| 318 | hr = Clr::Util::Com::FindServerUsingCLSID(rclsid, ssDllName); |
| 319 | |
| 320 | if (FAILED(hr)) |
| 321 | { // We don't fail if there is no server object, because in this case we assume that |
| 322 | // the clsid is implemented in the runtime itself (clr.dll) and we do not place |
| 323 | // entries in the registry for this case. |
| 324 | ssDllName.Set(MAIN_CLR_MODULE_NAME_W); |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | SString::Iterator i = ssDllName.Begin(); |
| 329 | if (!ssDllName.Find(i, W('\\'))) |
| 330 | { // If the InprocServer32 is just a DLL name (not a fully qualified path), then |
| 331 | // prefix wszFilePath with wszDllPath. |
| 332 | ssDllName.Insert(i, wszDllPath); |
| 333 | } |
| 334 | } |
| 335 | } |
| 336 | EX_CATCH_HRESULT(hr); |
| 337 | IfFailRet(hr); |
| 338 | |
| 339 | wszDllPath = ssDllName.GetUnicode(); |
| 340 | #else // !FEATURE_PAL |
| 341 | return E_FAIL; |
| 342 | #endif // !FEATURE_PAL |
| 343 | } |
| 344 | _ASSERTE(wszDllPath != NULL); |
| 345 | |
| 346 | // We've got the name of the DLL to load, so load it. |
| 347 | HModuleHolder hDll = WszLoadLibraryEx(wszDllPath, NULL, GetLoadWithAlteredSearchPathFlag()); |
| 348 | if (hDll == NULL) |
| 349 | { |
| 350 | return HRESULT_FROM_GetLastError(); |
| 351 | } |
| 352 | |
| 353 | // We've loaded the DLL, so find the DllGetClassObject function. |
| 354 | DLLGETCLASSOBJECT *dllGetClassObject = (DLLGETCLASSOBJECT*)GetProcAddress(hDll, "DllGetClassObject" ); |
| 355 | if (dllGetClassObject == NULL) |
| 356 | { |
| 357 | return HRESULT_FROM_GetLastError(); |
| 358 | } |
| 359 | |
| 360 | // Call the function to get a class object for the rclsid and riid passed in. |
| 361 | IfFailRet(dllGetClassObject(rclsid, riid, ppv)); |
| 362 | |
| 363 | hDll.SuppressRelease(); |
| 364 | |
| 365 | if (phmodDll != NULL) |
| 366 | { |
| 367 | *phmodDll = hDll.GetValue(); |
| 368 | } |
| 369 | |
| 370 | return hr; |
| 371 | } |
| 372 | |
| 373 | #if USE_UPPER_ADDRESS |
| 374 | static BYTE * s_CodeMinAddr; // Preferred region to allocate the code in. |
| 375 | static BYTE * s_CodeMaxAddr; |
| 376 | static BYTE * s_CodeAllocStart; |
| 377 | static BYTE * s_CodeAllocHint; // Next address to try to allocate for code in the preferred region. |
| 378 | #endif |
| 379 | |
| 380 | // |
| 381 | // Use this function to initialize the s_CodeAllocHint |
| 382 | // during startup. base is runtime .dll base address, |
| 383 | // size is runtime .dll virtual size. |
| 384 | // |
| 385 | void InitCodeAllocHint(SIZE_T base, SIZE_T size, int randomPageOffset) |
| 386 | { |
| 387 | #if USE_UPPER_ADDRESS |
| 388 | |
| 389 | #ifdef _DEBUG |
| 390 | // If GetForceRelocs is enabled we don't constrain the pMinAddr |
| 391 | if (PEDecoder::GetForceRelocs()) |
| 392 | return; |
| 393 | #endif |
| 394 | |
| 395 | // |
| 396 | // If we are using the UPPER_ADDRESS space (on Win64) |
| 397 | // then for any code heap that doesn't specify an address |
| 398 | // range using [pMinAddr..pMaxAddr] we place it in the |
| 399 | // upper address space |
| 400 | // This enables us to avoid having to use long JumpStubs |
| 401 | // to reach the code for our ngen-ed images. |
| 402 | // Which are also placed in the UPPER_ADDRESS space. |
| 403 | // |
| 404 | SIZE_T reach = 0x7FFF0000u; |
| 405 | |
| 406 | // We will choose the preferred code region based on the address of clr.dll. The JIT helpers |
| 407 | // in clr.dll are the most heavily called functions. |
| 408 | s_CodeMinAddr = (base + size > reach) ? (BYTE *)(base + size - reach) : (BYTE *)0; |
| 409 | s_CodeMaxAddr = (base + reach > base) ? (BYTE *)(base + reach) : (BYTE *)-1; |
| 410 | |
| 411 | BYTE * pStart; |
| 412 | |
| 413 | if (s_CodeMinAddr <= (BYTE *)CODEHEAP_START_ADDRESS && |
| 414 | (BYTE *)CODEHEAP_START_ADDRESS < s_CodeMaxAddr) |
| 415 | { |
| 416 | // clr.dll got loaded at its preferred base address? (OS without ASLR - pre-Vista) |
| 417 | // Use the code head start address that does not cause collisions with NGen images. |
| 418 | // This logic is coupled with scripts that we use to assign base addresses. |
| 419 | pStart = (BYTE *)CODEHEAP_START_ADDRESS; |
| 420 | } |
| 421 | else |
| 422 | if (base > UINT32_MAX) |
| 423 | { |
| 424 | // clr.dll got address assigned by ASLR? |
| 425 | // Try to occupy the space as far as possible to minimize collisions with other ASLR assigned |
| 426 | // addresses. Do not start at s_CodeMinAddr exactly so that we can also reach common native images |
| 427 | // that can be placed at higher addresses than clr.dll. |
| 428 | pStart = s_CodeMinAddr + (s_CodeMaxAddr - s_CodeMinAddr) / 8; |
| 429 | } |
| 430 | else |
| 431 | { |
| 432 | // clr.dll missed the base address? |
| 433 | // Try to occupy the space right after it. |
| 434 | pStart = (BYTE *)(base + size); |
| 435 | } |
| 436 | |
| 437 | // Randomize the adddress space |
| 438 | pStart += GetOsPageSize() * randomPageOffset; |
| 439 | |
| 440 | s_CodeAllocStart = pStart; |
| 441 | s_CodeAllocHint = pStart; |
| 442 | #endif |
| 443 | } |
| 444 | |
| 445 | // |
| 446 | // Use this function to reset the s_CodeAllocHint |
| 447 | // after unloading an AppDomain |
| 448 | // |
| 449 | void ResetCodeAllocHint() |
| 450 | { |
| 451 | LIMITED_METHOD_CONTRACT; |
| 452 | #if USE_UPPER_ADDRESS |
| 453 | s_CodeAllocHint = s_CodeAllocStart; |
| 454 | #endif |
| 455 | } |
| 456 | |
| 457 | // |
| 458 | // Returns TRUE if p is located in near clr.dll that allows us |
| 459 | // to use rel32 IP-relative addressing modes. |
| 460 | // |
| 461 | BOOL IsPreferredExecutableRange(void * p) |
| 462 | { |
| 463 | LIMITED_METHOD_CONTRACT; |
| 464 | #if USE_UPPER_ADDRESS |
| 465 | if (s_CodeMinAddr <= (BYTE *)p && (BYTE *)p < s_CodeMaxAddr) |
| 466 | return TRUE; |
| 467 | #endif |
| 468 | return FALSE; |
| 469 | } |
| 470 | |
| 471 | // |
| 472 | // Allocate free memory that will be used for executable code |
| 473 | // Handles the special requirements that we have on 64-bit platforms |
| 474 | // where we want the executable memory to be located near clr.dll |
| 475 | // |
| 476 | BYTE * ClrVirtualAllocExecutable(SIZE_T dwSize, |
| 477 | DWORD flAllocationType, |
| 478 | DWORD flProtect) |
| 479 | { |
| 480 | CONTRACTL |
| 481 | { |
| 482 | NOTHROW; |
| 483 | } |
| 484 | CONTRACTL_END; |
| 485 | |
| 486 | #if USE_UPPER_ADDRESS |
| 487 | // |
| 488 | // If we are using the UPPER_ADDRESS space (on Win64) |
| 489 | // then for any heap that will contain executable code |
| 490 | // we will place it in the upper address space |
| 491 | // |
| 492 | // This enables us to avoid having to use JumpStubs |
| 493 | // to reach the code for our ngen-ed images on x64, |
| 494 | // since they are also placed in the UPPER_ADDRESS space. |
| 495 | // |
| 496 | BYTE * pHint = s_CodeAllocHint; |
| 497 | |
| 498 | if (dwSize <= (SIZE_T)(s_CodeMaxAddr - s_CodeMinAddr) && pHint != NULL) |
| 499 | { |
| 500 | // Try to allocate in the preferred region after the hint |
| 501 | BYTE * pResult = ClrVirtualAllocWithinRange(pHint, s_CodeMaxAddr, dwSize, flAllocationType, flProtect); |
| 502 | |
| 503 | if (pResult != NULL) |
| 504 | { |
| 505 | s_CodeAllocHint = pResult + dwSize; |
| 506 | return pResult; |
| 507 | } |
| 508 | |
| 509 | // Try to allocate in the preferred region before the hint |
| 510 | pResult = ClrVirtualAllocWithinRange(s_CodeMinAddr, pHint + dwSize, dwSize, flAllocationType, flProtect); |
| 511 | |
| 512 | if (pResult != NULL) |
| 513 | { |
| 514 | s_CodeAllocHint = pResult + dwSize; |
| 515 | return pResult; |
| 516 | } |
| 517 | |
| 518 | s_CodeAllocHint = NULL; |
| 519 | } |
| 520 | |
| 521 | // Fall through to |
| 522 | #endif // USE_UPPER_ADDRESS |
| 523 | |
| 524 | #ifdef FEATURE_PAL |
| 525 | // Tell PAL to use the executable memory allocator to satisfy this request for virtual memory. |
| 526 | // This will allow us to place JIT'ed code close to the coreclr library |
| 527 | // and thus improve performance by avoiding jump stubs in managed code. |
| 528 | flAllocationType |= MEM_RESERVE_EXECUTABLE; |
| 529 | #endif // FEATURE_PAL |
| 530 | |
| 531 | return (BYTE *) ClrVirtualAlloc (NULL, dwSize, flAllocationType, flProtect); |
| 532 | |
| 533 | } |
| 534 | |
| 535 | // |
| 536 | // Allocate free memory with specific alignment. |
| 537 | // |
| 538 | LPVOID ClrVirtualAllocAligned(LPVOID lpAddress, SIZE_T dwSize, DWORD flAllocationType, DWORD flProtect, SIZE_T alignment) |
| 539 | { |
| 540 | // Verify that the alignment is a power of 2 |
| 541 | _ASSERTE(alignment != 0); |
| 542 | _ASSERTE((alignment & (alignment - 1)) == 0); |
| 543 | |
| 544 | #ifndef FEATURE_PAL |
| 545 | |
| 546 | // The VirtualAlloc on Windows ensures 64kB alignment |
| 547 | _ASSERTE(alignment <= 0x10000); |
| 548 | return ClrVirtualAlloc(lpAddress, dwSize, flAllocationType, flProtect); |
| 549 | |
| 550 | #else // !FEATURE_PAL |
| 551 | |
| 552 | if(alignment < GetOsPageSize()) alignment = GetOsPageSize(); |
| 553 | |
| 554 | // UNIXTODO: Add a specialized function to PAL so that we don't have to waste memory |
| 555 | dwSize += alignment; |
| 556 | SIZE_T addr = (SIZE_T)ClrVirtualAlloc(lpAddress, dwSize, flAllocationType, flProtect); |
| 557 | return (LPVOID)((addr + (alignment - 1)) & ~(alignment - 1)); |
| 558 | |
| 559 | #endif // !FEATURE_PAL |
| 560 | } |
| 561 | |
| 562 | #ifdef _DEBUG |
| 563 | static DWORD ShouldInjectFaultInRange() |
| 564 | { |
| 565 | static DWORD fInjectFaultInRange = 99; |
| 566 | |
| 567 | if (fInjectFaultInRange == 99) |
| 568 | fInjectFaultInRange = (CLRConfig::GetConfigValue(CLRConfig::INTERNAL_InjectFault) & 0x40); |
| 569 | return fInjectFaultInRange; |
| 570 | } |
| 571 | #endif |
| 572 | |
| 573 | // Reserves free memory within the range [pMinAddr..pMaxAddr] using |
| 574 | // ClrVirtualQuery to find free memory and ClrVirtualAlloc to reserve it. |
| 575 | // |
| 576 | // This method only supports the flAllocationType of MEM_RESERVE, and expects that the memory |
| 577 | // is being reserved for the purpose of eventually storing executable code. |
| 578 | // |
| 579 | // Callers also should set dwSize to a multiple of sysInfo.dwAllocationGranularity (64k). |
| 580 | // That way they can reserve a large region and commit smaller sized pages |
| 581 | // from that region until it fills up. |
| 582 | // |
| 583 | // This functions returns the reserved memory block upon success |
| 584 | // |
| 585 | // It returns NULL when it fails to find any memory that satisfies |
| 586 | // the range. |
| 587 | // |
| 588 | |
| 589 | BYTE * ClrVirtualAllocWithinRange(const BYTE *pMinAddr, |
| 590 | const BYTE *pMaxAddr, |
| 591 | SIZE_T dwSize, |
| 592 | DWORD flAllocationType, |
| 593 | DWORD flProtect) |
| 594 | { |
| 595 | CONTRACTL |
| 596 | { |
| 597 | NOTHROW; |
| 598 | PRECONDITION(dwSize != 0); |
| 599 | PRECONDITION(flAllocationType == MEM_RESERVE); |
| 600 | } |
| 601 | CONTRACTL_END; |
| 602 | |
| 603 | BYTE *pResult = nullptr; // our return value; |
| 604 | |
| 605 | static unsigned countOfCalls = 0; // We log the number of tims we call this method |
| 606 | countOfCalls++; // increment the call counter |
| 607 | |
| 608 | if (dwSize == 0) |
| 609 | { |
| 610 | return nullptr; |
| 611 | } |
| 612 | |
| 613 | // |
| 614 | // First lets normalize the pMinAddr and pMaxAddr values |
| 615 | // |
| 616 | // If pMinAddr is NULL then set it to BOT_MEMORY |
| 617 | if ((pMinAddr == 0) || (pMinAddr < (BYTE *) BOT_MEMORY)) |
| 618 | { |
| 619 | pMinAddr = (BYTE *) BOT_MEMORY; |
| 620 | } |
| 621 | |
| 622 | // If pMaxAddr is NULL then set it to TOP_MEMORY |
| 623 | if ((pMaxAddr == 0) || (pMaxAddr > (BYTE *) TOP_MEMORY)) |
| 624 | { |
| 625 | pMaxAddr = (BYTE *) TOP_MEMORY; |
| 626 | } |
| 627 | |
| 628 | // If pMaxAddr is not greater than pMinAddr we can not make an allocation |
| 629 | if (pMaxAddr <= pMinAddr) |
| 630 | { |
| 631 | return nullptr; |
| 632 | } |
| 633 | |
| 634 | // If pMinAddr is BOT_MEMORY and pMaxAddr is TOP_MEMORY |
| 635 | // then we can call ClrVirtualAlloc instead |
| 636 | if ((pMinAddr == (BYTE *) BOT_MEMORY) && (pMaxAddr == (BYTE *) TOP_MEMORY)) |
| 637 | { |
| 638 | return (BYTE*) ClrVirtualAlloc(nullptr, dwSize, flAllocationType, flProtect); |
| 639 | } |
| 640 | |
| 641 | #ifdef FEATURE_PAL |
| 642 | pResult = (BYTE *)PAL_VirtualReserveFromExecutableMemoryAllocatorWithinRange(pMinAddr, pMaxAddr, dwSize); |
| 643 | if (pResult != nullptr) |
| 644 | { |
| 645 | return pResult; |
| 646 | } |
| 647 | #endif // FEATURE_PAL |
| 648 | |
| 649 | // We will do one scan from [pMinAddr .. pMaxAddr] |
| 650 | // First align the tryAddr up to next 64k base address. |
| 651 | // See docs for VirtualAllocEx and lpAddress and 64k alignment for reasons. |
| 652 | // |
| 653 | BYTE * tryAddr = (BYTE *)ALIGN_UP((BYTE *)pMinAddr, VIRTUAL_ALLOC_RESERVE_GRANULARITY); |
| 654 | bool virtualQueryFailed = false; |
| 655 | bool faultInjected = false; |
| 656 | unsigned virtualQueryCount = 0; |
| 657 | |
| 658 | // Now scan memory and try to find a free block of the size requested. |
| 659 | while ((tryAddr + dwSize) <= (BYTE *) pMaxAddr) |
| 660 | { |
| 661 | MEMORY_BASIC_INFORMATION mbInfo; |
| 662 | |
| 663 | // Use VirtualQuery to find out if this address is MEM_FREE |
| 664 | // |
| 665 | virtualQueryCount++; |
| 666 | if (!ClrVirtualQuery((LPCVOID)tryAddr, &mbInfo, sizeof(mbInfo))) |
| 667 | { |
| 668 | // Exit and return nullptr if the VirtualQuery call fails. |
| 669 | virtualQueryFailed = true; |
| 670 | break; |
| 671 | } |
| 672 | |
| 673 | // Is there enough memory free from this start location? |
| 674 | // Note that for most versions of UNIX the mbInfo.RegionSize returned will always be 0 |
| 675 | if ((mbInfo.State == MEM_FREE) && |
| 676 | (mbInfo.RegionSize >= (SIZE_T) dwSize || mbInfo.RegionSize == 0)) |
| 677 | { |
| 678 | // Try reserving the memory using VirtualAlloc now |
| 679 | pResult = (BYTE*)ClrVirtualAlloc(tryAddr, dwSize, MEM_RESERVE, flProtect); |
| 680 | |
| 681 | // Normally this will be successful |
| 682 | // |
| 683 | if (pResult != nullptr) |
| 684 | { |
| 685 | // return pResult |
| 686 | break; |
| 687 | } |
| 688 | |
| 689 | #ifdef _DEBUG |
| 690 | if (ShouldInjectFaultInRange()) |
| 691 | { |
| 692 | // return nullptr (failure) |
| 693 | faultInjected = true; |
| 694 | break; |
| 695 | } |
| 696 | #endif // _DEBUG |
| 697 | |
| 698 | // On UNIX we can also fail if our request size 'dwSize' is larger than 64K and |
| 699 | // and our tryAddr is pointing at a small MEM_FREE region (smaller than 'dwSize') |
| 700 | // However we can't distinguish between this and the race case. |
| 701 | |
| 702 | // We might fail in a race. So just move on to next region and continue trying |
| 703 | tryAddr = tryAddr + VIRTUAL_ALLOC_RESERVE_GRANULARITY; |
| 704 | } |
| 705 | else |
| 706 | { |
| 707 | // Try another section of memory |
| 708 | tryAddr = max(tryAddr + VIRTUAL_ALLOC_RESERVE_GRANULARITY, |
| 709 | (BYTE*) mbInfo.BaseAddress + mbInfo.RegionSize); |
| 710 | } |
| 711 | } |
| 712 | |
| 713 | STRESS_LOG7(LF_JIT, LL_INFO100, |
| 714 | "ClrVirtualAllocWithinRange request #%u for %08x bytes in [ %p .. %p ], query count was %u - returned %s: %p\n" , |
| 715 | countOfCalls, (DWORD)dwSize, pMinAddr, pMaxAddr, |
| 716 | virtualQueryCount, (pResult != nullptr) ? "success" : "failure" , pResult); |
| 717 | |
| 718 | // If we failed this call the process will typically be terminated |
| 719 | // so we log any additional reason for failing this call. |
| 720 | // |
| 721 | if (pResult == nullptr) |
| 722 | { |
| 723 | if ((tryAddr + dwSize) > (BYTE *)pMaxAddr) |
| 724 | { |
| 725 | // Our tryAddr reached pMaxAddr |
| 726 | STRESS_LOG0(LF_JIT, LL_INFO100, "Additional reason: Address space exhausted.\n" ); |
| 727 | } |
| 728 | |
| 729 | if (virtualQueryFailed) |
| 730 | { |
| 731 | STRESS_LOG0(LF_JIT, LL_INFO100, "Additional reason: VirtualQuery operation failed.\n" ); |
| 732 | } |
| 733 | |
| 734 | if (faultInjected) |
| 735 | { |
| 736 | STRESS_LOG0(LF_JIT, LL_INFO100, "Additional reason: fault injected.\n" ); |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | return pResult; |
| 741 | } |
| 742 | |
| 743 | //****************************************************************************** |
| 744 | // NumaNodeInfo |
| 745 | //****************************************************************************** |
| 746 | #if !defined(FEATURE_REDHAWK) |
| 747 | /*static*/ NumaNodeInfo::PGNHNN NumaNodeInfo::m_pGetNumaHighestNodeNumber = NULL; |
| 748 | /*static*/ NumaNodeInfo::PVAExN NumaNodeInfo::m_pVirtualAllocExNuma = NULL; |
| 749 | |
| 750 | /*static*/ LPVOID NumaNodeInfo::VirtualAllocExNuma(HANDLE hProc, LPVOID lpAddr, SIZE_T dwSize, |
| 751 | DWORD allocType, DWORD prot, DWORD node) |
| 752 | { |
| 753 | return (*m_pVirtualAllocExNuma)(hProc, lpAddr, dwSize, allocType, prot, node); |
| 754 | } |
| 755 | /*static*/ NumaNodeInfo::PGNPNEx NumaNodeInfo::m_pGetNumaProcessorNodeEx = NULL; |
| 756 | |
| 757 | /*static*/ BOOL NumaNodeInfo::GetNumaProcessorNodeEx(PPROCESSOR_NUMBER proc_no, PUSHORT node_no) |
| 758 | { |
| 759 | return (*m_pGetNumaProcessorNodeEx)(proc_no, node_no); |
| 760 | } |
| 761 | #endif |
| 762 | |
| 763 | /*static*/ BOOL NumaNodeInfo::m_enableGCNumaAware = FALSE; |
| 764 | /*static*/ BOOL NumaNodeInfo::InitNumaNodeInfoAPI() |
| 765 | { |
| 766 | #if !defined(FEATURE_REDHAWK) |
| 767 | //check for numa support if multiple heaps are used |
| 768 | ULONG highest = 0; |
| 769 | |
| 770 | if (CLRConfig::GetConfigValue(CLRConfig::UNSUPPORTED_GCNumaAware) == 0) |
| 771 | return FALSE; |
| 772 | |
| 773 | #ifndef FEATURE_PAL |
| 774 | // check if required APIs are supported |
| 775 | HMODULE hMod = GetModuleHandleW(WINDOWS_KERNEL32_DLLNAME_W); |
| 776 | #else |
| 777 | HMODULE hMod = GetCLRModule(); |
| 778 | #endif |
| 779 | if (hMod == NULL) |
| 780 | return FALSE; |
| 781 | |
| 782 | m_pGetNumaHighestNodeNumber = (PGNHNN) GetProcAddress(hMod, "GetNumaHighestNodeNumber" ); |
| 783 | if (m_pGetNumaHighestNodeNumber == NULL) |
| 784 | return FALSE; |
| 785 | |
| 786 | // fail to get the highest numa node number |
| 787 | if (!m_pGetNumaHighestNodeNumber(&highest) || (highest == 0)) |
| 788 | return FALSE; |
| 789 | |
| 790 | m_pGetNumaProcessorNodeEx = (PGNPNEx) GetProcAddress(hMod, "GetNumaProcessorNodeEx" ); |
| 791 | if (m_pGetNumaProcessorNodeEx == NULL) |
| 792 | return FALSE; |
| 793 | |
| 794 | m_pVirtualAllocExNuma = (PVAExN) GetProcAddress(hMod, "VirtualAllocExNuma" ); |
| 795 | if (m_pVirtualAllocExNuma == NULL) |
| 796 | return FALSE; |
| 797 | |
| 798 | return TRUE; |
| 799 | #else |
| 800 | return FALSE; |
| 801 | #endif |
| 802 | } |
| 803 | |
| 804 | /*static*/ BOOL NumaNodeInfo::CanEnableGCNumaAware() |
| 805 | { |
| 806 | return m_enableGCNumaAware; |
| 807 | } |
| 808 | |
| 809 | /*static*/ void NumaNodeInfo::InitNumaNodeInfo() |
| 810 | { |
| 811 | m_enableGCNumaAware = InitNumaNodeInfoAPI(); |
| 812 | } |
| 813 | |
| 814 | //****************************************************************************** |
| 815 | // NumaNodeInfo |
| 816 | //****************************************************************************** |
| 817 | #if !defined(FEATURE_REDHAWK) |
| 818 | /*static*/ CPUGroupInfo::PGLPIEx CPUGroupInfo::m_pGetLogicalProcessorInformationEx = NULL; |
| 819 | /*static*/ CPUGroupInfo::PSTGA CPUGroupInfo::m_pSetThreadGroupAffinity = NULL; |
| 820 | /*static*/ CPUGroupInfo::PGTGA CPUGroupInfo::m_pGetThreadGroupAffinity = NULL; |
| 821 | /*static*/ CPUGroupInfo::PGCPNEx CPUGroupInfo::m_pGetCurrentProcessorNumberEx = NULL; |
| 822 | /*static*/ CPUGroupInfo::PGST CPUGroupInfo::m_pGetSystemTimes = NULL; |
| 823 | /*static*/ //CPUGroupInfo::PNTQSIEx CPUGroupInfo::m_pNtQuerySystemInformationEx = NULL; |
| 824 | |
| 825 | /*static*/ BOOL CPUGroupInfo::GetLogicalProcessorInformationEx(DWORD relationship, |
| 826 | SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *slpiex, PDWORD count) |
| 827 | { |
| 828 | LIMITED_METHOD_CONTRACT; |
| 829 | return (*m_pGetLogicalProcessorInformationEx)(relationship, slpiex, count); |
| 830 | } |
| 831 | |
| 832 | /*static*/ BOOL CPUGroupInfo::SetThreadGroupAffinity(HANDLE h, |
| 833 | GROUP_AFFINITY *groupAffinity, GROUP_AFFINITY *previousGroupAffinity) |
| 834 | { |
| 835 | LIMITED_METHOD_CONTRACT; |
| 836 | return (*m_pSetThreadGroupAffinity)(h, groupAffinity, previousGroupAffinity); |
| 837 | } |
| 838 | |
| 839 | /*static*/ BOOL CPUGroupInfo::GetThreadGroupAffinity(HANDLE h, GROUP_AFFINITY *groupAffinity) |
| 840 | { |
| 841 | LIMITED_METHOD_CONTRACT; |
| 842 | return (*m_pGetThreadGroupAffinity)(h, groupAffinity); |
| 843 | } |
| 844 | |
| 845 | /*static*/ BOOL CPUGroupInfo::GetSystemTimes(FILETIME *idleTime, FILETIME *kernelTime, FILETIME *userTime) |
| 846 | { |
| 847 | LIMITED_METHOD_CONTRACT; |
| 848 | return (*m_pGetSystemTimes)(idleTime, kernelTime, userTime); |
| 849 | } |
| 850 | #endif |
| 851 | |
| 852 | /*static*/ BOOL CPUGroupInfo::m_enableGCCPUGroups = FALSE; |
| 853 | /*static*/ BOOL CPUGroupInfo::m_threadUseAllCpuGroups = FALSE; |
| 854 | /*static*/ WORD CPUGroupInfo::m_nGroups = 0; |
| 855 | /*static*/ WORD CPUGroupInfo::m_nProcessors = 0; |
| 856 | /*static*/ WORD CPUGroupInfo::m_initialGroup = 0; |
| 857 | /*static*/ CPU_Group_Info *CPUGroupInfo::m_CPUGroupInfoArray = NULL; |
| 858 | /*static*/ LONG CPUGroupInfo::m_initialization = 0; |
| 859 | /*static*/ bool CPUGroupInfo::s_hadSingleProcessorAtStartup = false; |
| 860 | |
| 861 | // Check and setup function pointers for >64 LP Support |
| 862 | /*static*/ BOOL CPUGroupInfo::InitCPUGroupInfoAPI() |
| 863 | { |
| 864 | CONTRACTL |
| 865 | { |
| 866 | NOTHROW; |
| 867 | GC_NOTRIGGER; |
| 868 | } |
| 869 | CONTRACTL_END; |
| 870 | |
| 871 | #if !defined(FEATURE_REDHAWK) && (defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)) |
| 872 | #ifndef FEATURE_PAL |
| 873 | HMODULE hMod = GetModuleHandleW(WINDOWS_KERNEL32_DLLNAME_W); |
| 874 | #else |
| 875 | HMODULE hMod = GetCLRModule(); |
| 876 | #endif |
| 877 | if (hMod == NULL) |
| 878 | return FALSE; |
| 879 | |
| 880 | m_pGetLogicalProcessorInformationEx = (PGLPIEx)GetProcAddress(hMod, "GetLogicalProcessorInformationEx" ); |
| 881 | if (m_pGetLogicalProcessorInformationEx == NULL) |
| 882 | return FALSE; |
| 883 | |
| 884 | m_pSetThreadGroupAffinity = (PSTGA)GetProcAddress(hMod, "SetThreadGroupAffinity" ); |
| 885 | if (m_pSetThreadGroupAffinity == NULL) |
| 886 | return FALSE; |
| 887 | |
| 888 | m_pGetThreadGroupAffinity = (PGTGA)GetProcAddress(hMod, "GetThreadGroupAffinity" ); |
| 889 | if (m_pGetThreadGroupAffinity == NULL) |
| 890 | return FALSE; |
| 891 | |
| 892 | m_pGetCurrentProcessorNumberEx = (PGCPNEx)GetProcAddress(hMod, "GetCurrentProcessorNumberEx" ); |
| 893 | if (m_pGetCurrentProcessorNumberEx == NULL) |
| 894 | return FALSE; |
| 895 | |
| 896 | #ifndef FEATURE_PAL |
| 897 | m_pGetSystemTimes = (PGST)GetProcAddress(hMod, "GetSystemTimes" ); |
| 898 | if (m_pGetSystemTimes == NULL) |
| 899 | return FALSE; |
| 900 | #endif |
| 901 | |
| 902 | return TRUE; |
| 903 | #else |
| 904 | return FALSE; |
| 905 | #endif |
| 906 | } |
| 907 | |
| 908 | #if !defined(FEATURE_REDHAWK) && (defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)) |
| 909 | // Calculate greatest common divisor |
| 910 | DWORD GCD(DWORD u, DWORD v) |
| 911 | { |
| 912 | while (v != 0) |
| 913 | { |
| 914 | DWORD dwTemp = v; |
| 915 | v = u % v; |
| 916 | u = dwTemp; |
| 917 | } |
| 918 | |
| 919 | return u; |
| 920 | } |
| 921 | |
| 922 | // Calculate least common multiple |
| 923 | DWORD LCM(DWORD u, DWORD v) |
| 924 | { |
| 925 | return u / GCD(u, v) * v; |
| 926 | } |
| 927 | #endif |
| 928 | |
| 929 | /*static*/ BOOL CPUGroupInfo::InitCPUGroupInfoArray() |
| 930 | { |
| 931 | CONTRACTL |
| 932 | { |
| 933 | NOTHROW; |
| 934 | SO_TOLERANT; |
| 935 | GC_NOTRIGGER; |
| 936 | } |
| 937 | CONTRACTL_END; |
| 938 | |
| 939 | #if !defined(FEATURE_REDHAWK) && (defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)) |
| 940 | BYTE *bBuffer = NULL; |
| 941 | SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *pSLPIEx = NULL; |
| 942 | SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *pRecord = NULL; |
| 943 | DWORD cbSLPIEx = 0; |
| 944 | DWORD byteOffset = 0; |
| 945 | DWORD dwNumElements = 0; |
| 946 | DWORD dwWeight = 1; |
| 947 | |
| 948 | if (CPUGroupInfo::GetLogicalProcessorInformationEx(RelationGroup, pSLPIEx, &cbSLPIEx) && |
| 949 | GetLastError() != ERROR_INSUFFICIENT_BUFFER) |
| 950 | return FALSE; |
| 951 | |
| 952 | _ASSERTE(cbSLPIEx); |
| 953 | |
| 954 | // Fail to allocate buffer |
| 955 | bBuffer = new (nothrow) BYTE[ cbSLPIEx ]; |
| 956 | if (bBuffer == NULL) |
| 957 | return FALSE; |
| 958 | |
| 959 | pSLPIEx = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)bBuffer; |
| 960 | if (!m_pGetLogicalProcessorInformationEx(RelationGroup, pSLPIEx, &cbSLPIEx)) |
| 961 | { |
| 962 | delete[] bBuffer; |
| 963 | return FALSE; |
| 964 | } |
| 965 | |
| 966 | pRecord = pSLPIEx; |
| 967 | while (byteOffset < cbSLPIEx) |
| 968 | { |
| 969 | if (pRecord->Relationship == RelationGroup) |
| 970 | { |
| 971 | m_nGroups = pRecord->Group.ActiveGroupCount; |
| 972 | break; |
| 973 | } |
| 974 | byteOffset += pRecord->Size; |
| 975 | pRecord = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)(bBuffer + byteOffset); |
| 976 | } |
| 977 | |
| 978 | m_CPUGroupInfoArray = new (nothrow) CPU_Group_Info[m_nGroups]; |
| 979 | if (m_CPUGroupInfoArray == NULL) |
| 980 | { |
| 981 | delete[] bBuffer; |
| 982 | return FALSE; |
| 983 | } |
| 984 | |
| 985 | for (DWORD i = 0; i < m_nGroups; i++) |
| 986 | { |
| 987 | m_CPUGroupInfoArray[i].nr_active = (WORD)pRecord->Group.GroupInfo[i].ActiveProcessorCount; |
| 988 | m_CPUGroupInfoArray[i].active_mask = pRecord->Group.GroupInfo[i].ActiveProcessorMask; |
| 989 | m_nProcessors += m_CPUGroupInfoArray[i].nr_active; |
| 990 | dwWeight = LCM(dwWeight, (DWORD)m_CPUGroupInfoArray[i].nr_active); |
| 991 | } |
| 992 | |
| 993 | // The number of threads per group that can be supported will depend on the number of CPU groups |
| 994 | // and the number of LPs within each processor group. For example, when the number of LPs in |
| 995 | // CPU groups is the same and is 64, the number of threads per group before weight overflow |
| 996 | // would be 2^32/2^6 = 2^26 (64M threads) |
| 997 | for (DWORD i = 0; i < m_nGroups; i++) |
| 998 | { |
| 999 | m_CPUGroupInfoArray[i].groupWeight = dwWeight / (DWORD)m_CPUGroupInfoArray[i].nr_active; |
| 1000 | m_CPUGroupInfoArray[i].activeThreadWeight = 0; |
| 1001 | } |
| 1002 | |
| 1003 | delete[] bBuffer; // done with it; free it |
| 1004 | return TRUE; |
| 1005 | #else |
| 1006 | return FALSE; |
| 1007 | #endif |
| 1008 | } |
| 1009 | |
| 1010 | /*static*/ BOOL CPUGroupInfo::InitCPUGroupInfoRange() |
| 1011 | { |
| 1012 | LIMITED_METHOD_CONTRACT; |
| 1013 | |
| 1014 | #if !defined(FEATURE_REDHAWK) && (defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)) |
| 1015 | WORD begin = 0; |
| 1016 | WORD nr_proc = 0; |
| 1017 | |
| 1018 | for (WORD i = 0; i < m_nGroups; i++) |
| 1019 | { |
| 1020 | nr_proc += m_CPUGroupInfoArray[i].nr_active; |
| 1021 | m_CPUGroupInfoArray[i].begin = begin; |
| 1022 | m_CPUGroupInfoArray[i].end = nr_proc - 1; |
| 1023 | begin = nr_proc; |
| 1024 | } |
| 1025 | return TRUE; |
| 1026 | #else |
| 1027 | return FALSE; |
| 1028 | #endif |
| 1029 | } |
| 1030 | |
| 1031 | /*static*/ void CPUGroupInfo::InitCPUGroupInfo() |
| 1032 | { |
| 1033 | CONTRACTL |
| 1034 | { |
| 1035 | NOTHROW; |
| 1036 | SO_TOLERANT; |
| 1037 | GC_NOTRIGGER; |
| 1038 | } |
| 1039 | CONTRACTL_END; |
| 1040 | |
| 1041 | #if !defined(FEATURE_REDHAWK) && (defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)) |
| 1042 | BOOL enableGCCPUGroups = CLRConfig::GetConfigValue(CLRConfig::EXTERNAL_GCCpuGroup) != 0; |
| 1043 | BOOL threadUseAllCpuGroups = CLRConfig::GetConfigValue(CLRConfig::EXTERNAL_Thread_UseAllCpuGroups) != 0; |
| 1044 | |
| 1045 | if (!enableGCCPUGroups) |
| 1046 | return; |
| 1047 | |
| 1048 | if (!InitCPUGroupInfoAPI()) |
| 1049 | return; |
| 1050 | |
| 1051 | if (!InitCPUGroupInfoArray()) |
| 1052 | return; |
| 1053 | |
| 1054 | if (!InitCPUGroupInfoRange()) |
| 1055 | return; |
| 1056 | |
| 1057 | // initalGroup is whatever the CPU group that the main thread is running on |
| 1058 | GROUP_AFFINITY groupAffinity; |
| 1059 | CPUGroupInfo::GetThreadGroupAffinity(GetCurrentThread(), &groupAffinity); |
| 1060 | m_initialGroup = groupAffinity.Group; |
| 1061 | |
| 1062 | // only enable CPU groups if more than one group exists |
| 1063 | BOOL hasMultipleGroups = m_nGroups > 1; |
| 1064 | m_enableGCCPUGroups = enableGCCPUGroups && hasMultipleGroups; |
| 1065 | m_threadUseAllCpuGroups = threadUseAllCpuGroups && hasMultipleGroups; |
| 1066 | #endif // _TARGET_AMD64_ || _TARGET_ARM64_ |
| 1067 | |
| 1068 | // Determine if the process is affinitized to a single processor (or if the system has a single processor) |
| 1069 | DWORD_PTR processAffinityMask, systemAffinityMask; |
| 1070 | if (GetProcessAffinityMask(GetCurrentProcess(), &processAffinityMask, &systemAffinityMask)) |
| 1071 | { |
| 1072 | processAffinityMask &= systemAffinityMask; |
| 1073 | if (processAffinityMask != 0 && // only one CPU group is involved |
| 1074 | (processAffinityMask & (processAffinityMask - 1)) == 0) // only one bit is set |
| 1075 | { |
| 1076 | s_hadSingleProcessorAtStartup = true; |
| 1077 | } |
| 1078 | } |
| 1079 | } |
| 1080 | |
| 1081 | /*static*/ BOOL CPUGroupInfo::IsInitialized() |
| 1082 | { |
| 1083 | LIMITED_METHOD_CONTRACT; |
| 1084 | return (m_initialization == -1); |
| 1085 | } |
| 1086 | |
| 1087 | /*static*/ void CPUGroupInfo::EnsureInitialized() |
| 1088 | { |
| 1089 | CONTRACTL |
| 1090 | { |
| 1091 | NOTHROW; |
| 1092 | SO_TOLERANT; |
| 1093 | GC_NOTRIGGER; |
| 1094 | } |
| 1095 | CONTRACTL_END; |
| 1096 | |
| 1097 | // CPUGroupInfo needs to be initialized only once. This could happen in three cases |
| 1098 | // 1. CLR initialization at begining of EEStartup, or |
| 1099 | // 2. Sometimes, when hosted by ASP.NET, the hosting process may initialize ThreadPool |
| 1100 | // before initializing CLR, thus require CPUGroupInfo to be initialized to determine |
| 1101 | // if CPU group support should/could be enabled. |
| 1102 | // 3. Call into Threadpool functions before Threadpool _and_ CLR is initialized. |
| 1103 | // Vast majority of time, CPUGroupInfo is initialized in case 1. or 2. |
| 1104 | // The chance of contention will be extremely small, so the following code should be fine |
| 1105 | // |
| 1106 | retry: |
| 1107 | if (IsInitialized()) |
| 1108 | return; |
| 1109 | |
| 1110 | if (InterlockedCompareExchange(&m_initialization, 1, 0) == 0) |
| 1111 | { |
| 1112 | InitCPUGroupInfo(); |
| 1113 | m_initialization = -1; |
| 1114 | } |
| 1115 | else //some other thread started initialization, just wait until complete; |
| 1116 | { |
| 1117 | while (m_initialization != -1) |
| 1118 | { |
| 1119 | SwitchToThread(); |
| 1120 | } |
| 1121 | goto retry; |
| 1122 | } |
| 1123 | } |
| 1124 | |
| 1125 | /*static*/ WORD CPUGroupInfo::GetNumActiveProcessors() |
| 1126 | { |
| 1127 | LIMITED_METHOD_CONTRACT; |
| 1128 | return (WORD)m_nProcessors; |
| 1129 | } |
| 1130 | |
| 1131 | /*static*/ void CPUGroupInfo::GetGroupForProcessor(WORD processor_number, |
| 1132 | WORD* group_number, WORD* group_processor_number) |
| 1133 | { |
| 1134 | LIMITED_METHOD_CONTRACT; |
| 1135 | |
| 1136 | #if !defined(FEATURE_REDHAWK) && (defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)) |
| 1137 | WORD bTemp = 0; |
| 1138 | WORD bDiff = processor_number - bTemp; |
| 1139 | |
| 1140 | for (WORD i=0; i < m_nGroups; i++) |
| 1141 | { |
| 1142 | bTemp += m_CPUGroupInfoArray[i].nr_active; |
| 1143 | if (bTemp > processor_number) |
| 1144 | { |
| 1145 | *group_number = i; |
| 1146 | *group_processor_number = bDiff; |
| 1147 | break; |
| 1148 | } |
| 1149 | bDiff = processor_number - bTemp; |
| 1150 | } |
| 1151 | #else |
| 1152 | *group_number = 0; |
| 1153 | *group_processor_number = 0; |
| 1154 | #endif |
| 1155 | } |
| 1156 | |
| 1157 | /*static*/ DWORD CPUGroupInfo::CalculateCurrentProcessorNumber() |
| 1158 | { |
| 1159 | CONTRACTL |
| 1160 | { |
| 1161 | NOTHROW; |
| 1162 | SO_TOLERANT; |
| 1163 | GC_NOTRIGGER; |
| 1164 | } |
| 1165 | CONTRACTL_END; |
| 1166 | |
| 1167 | #if !defined(FEATURE_REDHAWK) && (defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)) |
| 1168 | // m_enableGCCPUGroups and m_threadUseAllCpuGroups must be TRUE |
| 1169 | _ASSERTE(m_enableGCCPUGroups && m_threadUseAllCpuGroups); |
| 1170 | |
| 1171 | PROCESSOR_NUMBER proc_no; |
| 1172 | proc_no.Group=0; |
| 1173 | proc_no.Number=0; |
| 1174 | proc_no.Reserved=0; |
| 1175 | (*m_pGetCurrentProcessorNumberEx)(&proc_no); |
| 1176 | |
| 1177 | DWORD fullNumber = 0; |
| 1178 | for (WORD i = 0; i < proc_no.Group; i++) |
| 1179 | fullNumber += (DWORD)m_CPUGroupInfoArray[i].nr_active; |
| 1180 | fullNumber += (DWORD)(proc_no.Number); |
| 1181 | |
| 1182 | return fullNumber; |
| 1183 | #else |
| 1184 | return 0; |
| 1185 | #endif |
| 1186 | } |
| 1187 | |
| 1188 | #if !defined(FEATURE_REDHAWK) |
| 1189 | //Lock ThreadStore before calling this function, so that updates of weights/counts are consistent |
| 1190 | /*static*/ void CPUGroupInfo::ChooseCPUGroupAffinity(GROUP_AFFINITY *gf) |
| 1191 | { |
| 1192 | CONTRACTL |
| 1193 | { |
| 1194 | NOTHROW; |
| 1195 | GC_NOTRIGGER; |
| 1196 | } |
| 1197 | CONTRACTL_END; |
| 1198 | |
| 1199 | #if (defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)) |
| 1200 | WORD i, minGroup = 0; |
| 1201 | DWORD minWeight = 0; |
| 1202 | |
| 1203 | // m_enableGCCPUGroups and m_threadUseAllCpuGroups must be TRUE |
| 1204 | _ASSERTE(m_enableGCCPUGroups && m_threadUseAllCpuGroups); |
| 1205 | |
| 1206 | for (i = 0; i < m_nGroups; i++) |
| 1207 | { |
| 1208 | minGroup = (m_initialGroup + i) % m_nGroups; |
| 1209 | |
| 1210 | // the group is not filled up, use it |
| 1211 | if (m_CPUGroupInfoArray[minGroup].activeThreadWeight / m_CPUGroupInfoArray[minGroup].groupWeight |
| 1212 | < (DWORD)m_CPUGroupInfoArray[minGroup].nr_active) |
| 1213 | goto found; |
| 1214 | } |
| 1215 | |
| 1216 | // all groups filled up, distribute proportionally |
| 1217 | minGroup = m_initialGroup; |
| 1218 | minWeight = m_CPUGroupInfoArray[m_initialGroup].activeThreadWeight; |
| 1219 | for (i = 0; i < m_nGroups; i++) |
| 1220 | { |
| 1221 | if (m_CPUGroupInfoArray[i].activeThreadWeight < minWeight) |
| 1222 | { |
| 1223 | minGroup = i; |
| 1224 | minWeight = m_CPUGroupInfoArray[i].activeThreadWeight; |
| 1225 | } |
| 1226 | } |
| 1227 | |
| 1228 | found: |
| 1229 | gf->Group = minGroup; |
| 1230 | gf->Mask = m_CPUGroupInfoArray[minGroup].active_mask; |
| 1231 | gf->Reserved[0] = 0; |
| 1232 | gf->Reserved[1] = 0; |
| 1233 | gf->Reserved[2] = 0; |
| 1234 | m_CPUGroupInfoArray[minGroup].activeThreadWeight += m_CPUGroupInfoArray[minGroup].groupWeight; |
| 1235 | #endif |
| 1236 | } |
| 1237 | |
| 1238 | //Lock ThreadStore before calling this function, so that updates of weights/counts are consistent |
| 1239 | /*static*/ void CPUGroupInfo::ClearCPUGroupAffinity(GROUP_AFFINITY *gf) |
| 1240 | { |
| 1241 | LIMITED_METHOD_CONTRACT; |
| 1242 | #if (defined(_TARGET_AMD64_) || defined(_TARGET_ARM64_)) |
| 1243 | // m_enableGCCPUGroups and m_threadUseAllCpuGroups must be TRUE |
| 1244 | _ASSERTE(m_enableGCCPUGroups && m_threadUseAllCpuGroups); |
| 1245 | |
| 1246 | WORD group = gf->Group; |
| 1247 | m_CPUGroupInfoArray[group].activeThreadWeight -= m_CPUGroupInfoArray[group].groupWeight; |
| 1248 | #endif |
| 1249 | } |
| 1250 | #endif |
| 1251 | |
| 1252 | /*static*/ BOOL CPUGroupInfo::CanEnableGCCPUGroups() |
| 1253 | { |
| 1254 | LIMITED_METHOD_CONTRACT; |
| 1255 | return m_enableGCCPUGroups; |
| 1256 | } |
| 1257 | |
| 1258 | /*static*/ BOOL CPUGroupInfo::CanEnableThreadUseAllCpuGroups() |
| 1259 | { |
| 1260 | LIMITED_METHOD_CONTRACT; |
| 1261 | return m_threadUseAllCpuGroups; |
| 1262 | } |
| 1263 | |
| 1264 | //****************************************************************************** |
| 1265 | // Returns the number of processors that a process has been configured to run on |
| 1266 | //****************************************************************************** |
| 1267 | int GetCurrentProcessCpuCount() |
| 1268 | { |
| 1269 | CONTRACTL |
| 1270 | { |
| 1271 | NOTHROW; |
| 1272 | SO_TOLERANT; |
| 1273 | CANNOT_TAKE_LOCK; |
| 1274 | } |
| 1275 | CONTRACTL_END; |
| 1276 | |
| 1277 | static int cCPUs = 0; |
| 1278 | |
| 1279 | if (cCPUs != 0) |
| 1280 | return cCPUs; |
| 1281 | |
| 1282 | int count = 0; |
| 1283 | DWORD_PTR pmask, smask; |
| 1284 | |
| 1285 | if (!GetProcessAffinityMask(GetCurrentProcess(), &pmask, &smask)) |
| 1286 | { |
| 1287 | count = 1; |
| 1288 | } |
| 1289 | else |
| 1290 | { |
| 1291 | pmask &= smask; |
| 1292 | |
| 1293 | while (pmask) |
| 1294 | { |
| 1295 | pmask &= (pmask - 1); |
| 1296 | count++; |
| 1297 | } |
| 1298 | |
| 1299 | // GetProcessAffinityMask can return pmask=0 and smask=0 on systems with more |
| 1300 | // than 64 processors, which would leave us with a count of 0. Since the GC |
| 1301 | // expects there to be at least one processor to run on (and thus at least one |
| 1302 | // heap), we'll return 64 here if count is 0, since there are likely a ton of |
| 1303 | // processors available in that case. The GC also cannot (currently) handle |
| 1304 | // the case where there are more than 64 processors, so we will return a |
| 1305 | // maximum of 64 here. |
| 1306 | if (count == 0 || count > 64) |
| 1307 | count = 64; |
| 1308 | } |
| 1309 | |
| 1310 | #ifdef FEATURE_PAL |
| 1311 | uint32_t cpuLimit; |
| 1312 | |
| 1313 | if (PAL_GetCpuLimit(&cpuLimit) && cpuLimit < count) |
| 1314 | count = cpuLimit; |
| 1315 | #endif |
| 1316 | |
| 1317 | cCPUs = count; |
| 1318 | |
| 1319 | return count; |
| 1320 | } |
| 1321 | |
| 1322 | DWORD_PTR GetCurrentProcessCpuMask() |
| 1323 | { |
| 1324 | CONTRACTL |
| 1325 | { |
| 1326 | NOTHROW; |
| 1327 | SO_TOLERANT; |
| 1328 | CANNOT_TAKE_LOCK; |
| 1329 | } |
| 1330 | CONTRACTL_END; |
| 1331 | |
| 1332 | #ifndef FEATURE_PAL |
| 1333 | DWORD_PTR pmask, smask; |
| 1334 | |
| 1335 | if (!GetProcessAffinityMask(GetCurrentProcess(), &pmask, &smask)) |
| 1336 | return 1; |
| 1337 | |
| 1338 | pmask &= smask; |
| 1339 | return pmask; |
| 1340 | #else |
| 1341 | return 0; |
| 1342 | #endif |
| 1343 | } |
| 1344 | |
| 1345 | uint32_t GetOsPageSizeUncached() |
| 1346 | { |
| 1347 | SYSTEM_INFO sysInfo; |
| 1348 | ::GetSystemInfo(&sysInfo); |
| 1349 | return sysInfo.dwAllocationGranularity ? sysInfo.dwAllocationGranularity : 0x1000; |
| 1350 | } |
| 1351 | |
| 1352 | namespace |
| 1353 | { |
| 1354 | Volatile<uint32_t> g_pageSize = 0; |
| 1355 | } |
| 1356 | |
| 1357 | uint32_t GetOsPageSize() |
| 1358 | { |
| 1359 | #ifdef FEATURE_PAL |
| 1360 | size_t result = g_pageSize.LoadWithoutBarrier(); |
| 1361 | |
| 1362 | if(!result) |
| 1363 | { |
| 1364 | result = GetOsPageSizeUncached(); |
| 1365 | |
| 1366 | g_pageSize.StoreWithoutBarrier(result); |
| 1367 | } |
| 1368 | |
| 1369 | return result; |
| 1370 | #else |
| 1371 | return 0x1000; |
| 1372 | #endif |
| 1373 | } |
| 1374 | |
| 1375 | /**************************************************************************/ |
| 1376 | |
| 1377 | /**************************************************************************/ |
| 1378 | void ConfigMethodSet::init(const CLRConfig::ConfigStringInfo & info) |
| 1379 | { |
| 1380 | CONTRACTL |
| 1381 | { |
| 1382 | THROWS; |
| 1383 | } |
| 1384 | CONTRACTL_END; |
| 1385 | |
| 1386 | // make sure that the memory was zero initialized |
| 1387 | _ASSERTE(m_inited == 0 || m_inited == 1); |
| 1388 | |
| 1389 | LPWSTR str = CLRConfig::GetConfigValue(info); |
| 1390 | if (str) |
| 1391 | { |
| 1392 | m_list.Insert(str); |
| 1393 | delete[] str; |
| 1394 | } |
| 1395 | m_inited = 1; |
| 1396 | } |
| 1397 | |
| 1398 | /**************************************************************************/ |
| 1399 | bool ConfigMethodSet::contains(LPCUTF8 methodName, LPCUTF8 className, PCCOR_SIGNATURE sig) |
| 1400 | { |
| 1401 | CONTRACTL |
| 1402 | { |
| 1403 | NOTHROW; |
| 1404 | } |
| 1405 | CONTRACTL_END; |
| 1406 | |
| 1407 | _ASSERTE(m_inited == 1); |
| 1408 | |
| 1409 | if (m_list.IsEmpty()) |
| 1410 | return false; |
| 1411 | return(m_list.IsInList(methodName, className, sig)); |
| 1412 | } |
| 1413 | |
| 1414 | /**************************************************************************/ |
| 1415 | bool ConfigMethodSet::contains(LPCUTF8 methodName, LPCUTF8 className, CORINFO_SIG_INFO* pSigInfo) |
| 1416 | { |
| 1417 | CONTRACTL |
| 1418 | { |
| 1419 | NOTHROW; |
| 1420 | } |
| 1421 | CONTRACTL_END; |
| 1422 | |
| 1423 | _ASSERTE(m_inited == 1); |
| 1424 | |
| 1425 | if (m_list.IsEmpty()) |
| 1426 | return false; |
| 1427 | return(m_list.IsInList(methodName, className, pSigInfo)); |
| 1428 | } |
| 1429 | |
| 1430 | /**************************************************************************/ |
| 1431 | void ConfigDWORD::init_DontUse_(__in_z LPCWSTR keyName, DWORD defaultVal) |
| 1432 | { |
| 1433 | CONTRACTL |
| 1434 | { |
| 1435 | NOTHROW; |
| 1436 | } |
| 1437 | CONTRACTL_END; |
| 1438 | |
| 1439 | // make sure that the memory was zero initialized |
| 1440 | _ASSERTE(m_inited == 0 || m_inited == 1); |
| 1441 | |
| 1442 | m_value = REGUTIL::GetConfigDWORD_DontUse_(keyName, defaultVal); |
| 1443 | m_inited = 1; |
| 1444 | } |
| 1445 | |
| 1446 | /**************************************************************************/ |
| 1447 | void ConfigString::init(const CLRConfig::ConfigStringInfo & info) |
| 1448 | { |
| 1449 | CONTRACTL |
| 1450 | { |
| 1451 | NOTHROW; |
| 1452 | } |
| 1453 | CONTRACTL_END; |
| 1454 | |
| 1455 | // make sure that the memory was zero initialized |
| 1456 | _ASSERTE(m_inited == 0 || m_inited == 1); |
| 1457 | |
| 1458 | // Note: m_value will be leaking |
| 1459 | m_value = CLRConfig::GetConfigValue(info); |
| 1460 | m_inited = 1; |
| 1461 | } |
| 1462 | |
| 1463 | //============================================================================= |
| 1464 | // AssemblyNamesList |
| 1465 | //============================================================================= |
| 1466 | // The string should be of the form |
| 1467 | // MyAssembly |
| 1468 | // MyAssembly;mscorlib;System |
| 1469 | // MyAssembly;mscorlib System |
| 1470 | |
| 1471 | AssemblyNamesList::AssemblyNamesList(__in LPWSTR list) |
| 1472 | { |
| 1473 | CONTRACTL { |
| 1474 | THROWS; |
| 1475 | } CONTRACTL_END; |
| 1476 | |
| 1477 | WCHAR prevChar = '?'; // dummy |
| 1478 | LPWSTR nameStart = NULL; // start of the name currently being processed. NULL if no current name |
| 1479 | AssemblyName ** ppPrevLink = &m_pNames; |
| 1480 | |
| 1481 | for (LPWSTR listWalk = list; prevChar != '\0'; prevChar = *listWalk, listWalk++) |
| 1482 | { |
| 1483 | WCHAR curChar = *listWalk; |
| 1484 | |
| 1485 | if (iswspace(curChar) || curChar == ';' || curChar == '\0' ) |
| 1486 | { |
| 1487 | // |
| 1488 | // Found white-space |
| 1489 | // |
| 1490 | |
| 1491 | if (nameStart) |
| 1492 | { |
| 1493 | // Found the end of the current name |
| 1494 | |
| 1495 | AssemblyName * newName = new AssemblyName(); |
| 1496 | size_t nameLen = listWalk - nameStart; |
| 1497 | |
| 1498 | MAKE_UTF8PTR_FROMWIDE(temp, nameStart); |
| 1499 | newName->m_assemblyName = new char[nameLen + 1]; |
| 1500 | memcpy(newName->m_assemblyName, temp, nameLen * sizeof(newName->m_assemblyName[0])); |
| 1501 | newName->m_assemblyName[nameLen] = '\0'; |
| 1502 | |
| 1503 | *ppPrevLink = newName; |
| 1504 | ppPrevLink = &newName->m_next; |
| 1505 | |
| 1506 | nameStart = NULL; |
| 1507 | } |
| 1508 | } |
| 1509 | else if (!nameStart) |
| 1510 | { |
| 1511 | // |
| 1512 | // Found the start of a new name |
| 1513 | // |
| 1514 | |
| 1515 | nameStart = listWalk; |
| 1516 | } |
| 1517 | } |
| 1518 | |
| 1519 | _ASSERTE(!nameStart); // cannot be in the middle of a name |
| 1520 | *ppPrevLink = NULL; |
| 1521 | } |
| 1522 | |
| 1523 | AssemblyNamesList::~AssemblyNamesList() |
| 1524 | { |
| 1525 | CONTRACTL |
| 1526 | { |
| 1527 | NOTHROW; |
| 1528 | } |
| 1529 | CONTRACTL_END; |
| 1530 | |
| 1531 | for (AssemblyName * pName = m_pNames; pName; /**/) |
| 1532 | { |
| 1533 | AssemblyName * cur = pName; |
| 1534 | pName = pName->m_next; |
| 1535 | |
| 1536 | delete [] cur->m_assemblyName; |
| 1537 | delete cur; |
| 1538 | } |
| 1539 | } |
| 1540 | |
| 1541 | bool AssemblyNamesList::IsInList(LPCUTF8 assemblyName) |
| 1542 | { |
| 1543 | if (IsEmpty()) |
| 1544 | return false; |
| 1545 | |
| 1546 | for (AssemblyName * pName = m_pNames; pName; pName = pName->m_next) |
| 1547 | { |
| 1548 | if (_stricmp(pName->m_assemblyName, assemblyName) == 0) |
| 1549 | return true; |
| 1550 | } |
| 1551 | |
| 1552 | return false; |
| 1553 | } |
| 1554 | |
| 1555 | //============================================================================= |
| 1556 | // MethodNamesList |
| 1557 | //============================================================================= |
| 1558 | // str should be of the form : |
| 1559 | // "foo1 MyNamespace.MyClass:foo3 *:foo4 foo5(x,y,z)" |
| 1560 | // "MyClass:foo2 MyClass:*" will match under _DEBUG |
| 1561 | // |
| 1562 | |
| 1563 | void MethodNamesListBase::Insert(__in_z LPWSTR str) |
| 1564 | { |
| 1565 | CONTRACTL { |
| 1566 | THROWS; |
| 1567 | } CONTRACTL_END; |
| 1568 | |
| 1569 | enum State { NO_NAME, CLS_NAME, FUNC_NAME, ARG_LIST }; // parsing state machine |
| 1570 | |
| 1571 | const char SEP_CHAR = ' '; // current character use to separate each entry |
| 1572 | // const char SEP_CHAR = ';'; // better character use to separate each entry |
| 1573 | |
| 1574 | WCHAR lastChar = '?'; // dummy |
| 1575 | LPWSTR nameStart = NULL; // while walking over the classname or methodname, this points to start |
| 1576 | MethodName nameBuf; // Buffer used while parsing the current entry |
| 1577 | MethodName** lastName = &pNames; // last entry inserted into the list |
| 1578 | bool bQuote = false; |
| 1579 | |
| 1580 | nameBuf.methodName = NULL; |
| 1581 | nameBuf.className = NULL; |
| 1582 | nameBuf.numArgs = -1; |
| 1583 | nameBuf.next = NULL; |
| 1584 | |
| 1585 | for(State state = NO_NAME; lastChar != '\0'; str++) |
| 1586 | { |
| 1587 | lastChar = *str; |
| 1588 | |
| 1589 | switch(state) |
| 1590 | { |
| 1591 | case NO_NAME: |
| 1592 | if (*str != SEP_CHAR) |
| 1593 | { |
| 1594 | nameStart = str; |
| 1595 | state = CLS_NAME; // we have found the start of the next entry |
| 1596 | } |
| 1597 | break; |
| 1598 | |
| 1599 | case CLS_NAME: |
| 1600 | if (*nameStart == '"') |
| 1601 | { |
| 1602 | while (*str && *str!='"') |
| 1603 | { |
| 1604 | str++; |
| 1605 | } |
| 1606 | nameStart++; |
| 1607 | bQuote=true; |
| 1608 | } |
| 1609 | |
| 1610 | if (*str == ':') |
| 1611 | { |
| 1612 | if (*nameStart == '*' && !bQuote) |
| 1613 | { |
| 1614 | // Is the classname string a wildcard. Then set it to NULL |
| 1615 | nameBuf.className = NULL; |
| 1616 | } |
| 1617 | else |
| 1618 | { |
| 1619 | int len = (int)(str - nameStart); |
| 1620 | |
| 1621 | // Take off the quote |
| 1622 | if (bQuote) { len--; bQuote=false; } |
| 1623 | |
| 1624 | nameBuf.className = new char[len + 1]; |
| 1625 | MAKE_UTF8PTR_FROMWIDE(temp, nameStart); |
| 1626 | memcpy(nameBuf.className, temp, len*sizeof(nameBuf.className[0])); |
| 1627 | nameBuf.className[len] = '\0'; |
| 1628 | } |
| 1629 | if (str[1] == ':') // Accept class::name syntax too |
| 1630 | str++; |
| 1631 | nameStart = str + 1; |
| 1632 | state = FUNC_NAME; |
| 1633 | } |
| 1634 | else if (*str == '\0' || *str == SEP_CHAR || *str == '(') |
| 1635 | { |
| 1636 | /* This was actually a method name without any class */ |
| 1637 | nameBuf.className = NULL; |
| 1638 | goto DONE_FUNC_NAME; |
| 1639 | } |
| 1640 | break; |
| 1641 | |
| 1642 | case FUNC_NAME: |
| 1643 | if (*nameStart == '"') |
| 1644 | { |
| 1645 | while ( (nameStart==str) || // workaround to handle when className!=NULL |
| 1646 | (*str && *str!='"')) |
| 1647 | { |
| 1648 | str++; |
| 1649 | } |
| 1650 | |
| 1651 | nameStart++; |
| 1652 | bQuote=true; |
| 1653 | } |
| 1654 | |
| 1655 | if (*str == '\0' || *str == SEP_CHAR || *str == '(') |
| 1656 | { |
| 1657 | DONE_FUNC_NAME: |
| 1658 | _ASSERTE(*str == '\0' || *str == SEP_CHAR || *str == '('); |
| 1659 | |
| 1660 | if (*nameStart == '*' && !bQuote) |
| 1661 | { |
| 1662 | // Is the name string a wildcard. Then set it to NULL |
| 1663 | nameBuf.methodName = NULL; |
| 1664 | } |
| 1665 | else |
| 1666 | { |
| 1667 | int len = (int)(str - nameStart); |
| 1668 | |
| 1669 | // Take off the quote |
| 1670 | if (bQuote) { len--; bQuote=false; } |
| 1671 | |
| 1672 | nameBuf.methodName = new char[len + 1]; |
| 1673 | MAKE_UTF8PTR_FROMWIDE(temp, nameStart); |
| 1674 | memcpy(nameBuf.methodName, temp, len*sizeof(nameBuf.methodName[0])); |
| 1675 | nameBuf.methodName[len] = '\0'; |
| 1676 | } |
| 1677 | |
| 1678 | if (*str == '\0' || *str == SEP_CHAR) |
| 1679 | { |
| 1680 | nameBuf.numArgs = -1; |
| 1681 | goto DONE_ARG_LIST; |
| 1682 | } |
| 1683 | else |
| 1684 | { |
| 1685 | _ASSERTE(*str == '('); |
| 1686 | nameBuf.numArgs = -1; |
| 1687 | state = ARG_LIST; |
| 1688 | } |
| 1689 | } |
| 1690 | break; |
| 1691 | |
| 1692 | case ARG_LIST: |
| 1693 | if (*str == '\0' || *str == ')') |
| 1694 | { |
| 1695 | if (nameBuf.numArgs == -1) |
| 1696 | nameBuf.numArgs = 0; |
| 1697 | |
| 1698 | DONE_ARG_LIST: |
| 1699 | _ASSERTE(*str == '\0' || *str == SEP_CHAR || *str == ')'); |
| 1700 | |
| 1701 | // We have parsed an entire method name. |
| 1702 | // Create a new entry in the list for it |
| 1703 | |
| 1704 | MethodName * newName = new MethodName(); |
| 1705 | *newName = nameBuf; |
| 1706 | newName->next = NULL; |
| 1707 | *lastName = newName; |
| 1708 | lastName = &newName->next; |
| 1709 | state = NO_NAME; |
| 1710 | |
| 1711 | // Skip anything after the argument list until we find the next |
| 1712 | // separator character, otherwise if we see "func(a,b):foo" we |
| 1713 | // create entries for "func(a,b)" as well as ":foo". |
| 1714 | if (*str == ')') |
| 1715 | { |
| 1716 | while (*str && *str != SEP_CHAR) |
| 1717 | { |
| 1718 | str++; |
| 1719 | } |
| 1720 | lastChar = *str; |
| 1721 | } |
| 1722 | } |
| 1723 | else |
| 1724 | { |
| 1725 | if (*str != SEP_CHAR && nameBuf.numArgs == -1) |
| 1726 | nameBuf.numArgs = 1; |
| 1727 | if (*str == ',') |
| 1728 | nameBuf.numArgs++; |
| 1729 | } |
| 1730 | break; |
| 1731 | |
| 1732 | default: _ASSERTE(!"Bad state" ); break; |
| 1733 | } |
| 1734 | } |
| 1735 | } |
| 1736 | |
| 1737 | /**************************************************************/ |
| 1738 | |
| 1739 | void MethodNamesListBase::Destroy() |
| 1740 | { |
| 1741 | CONTRACTL |
| 1742 | { |
| 1743 | NOTHROW; |
| 1744 | } |
| 1745 | CONTRACTL_END; |
| 1746 | |
| 1747 | for(MethodName * pName = pNames; pName; /**/) |
| 1748 | { |
| 1749 | if (pName->className) |
| 1750 | delete [] pName->className; |
| 1751 | if (pName->methodName) |
| 1752 | delete [] pName->methodName; |
| 1753 | |
| 1754 | MethodName * curName = pName; |
| 1755 | pName = pName->next; |
| 1756 | delete curName; |
| 1757 | } |
| 1758 | } |
| 1759 | |
| 1760 | /**************************************************************/ |
| 1761 | bool MethodNamesListBase::IsInList(LPCUTF8 methName, LPCUTF8 clsName, PCCOR_SIGNATURE sig) |
| 1762 | { |
| 1763 | CONTRACTL |
| 1764 | { |
| 1765 | NOTHROW; |
| 1766 | } |
| 1767 | CONTRACTL_END; |
| 1768 | |
| 1769 | int numArgs = -1; |
| 1770 | if (sig != NULL) |
| 1771 | { |
| 1772 | sig++; // Skip calling convention |
| 1773 | numArgs = CorSigUncompressData(sig); |
| 1774 | } |
| 1775 | |
| 1776 | return IsInList(methName, clsName, numArgs); |
| 1777 | } |
| 1778 | |
| 1779 | /**************************************************************/ |
| 1780 | bool MethodNamesListBase::IsInList(LPCUTF8 methName, LPCUTF8 clsName, CORINFO_SIG_INFO* pSigInfo) |
| 1781 | { |
| 1782 | CONTRACTL |
| 1783 | { |
| 1784 | NOTHROW; |
| 1785 | } |
| 1786 | CONTRACTL_END; |
| 1787 | |
| 1788 | int numArgs = -1; |
| 1789 | if (pSigInfo != NULL) |
| 1790 | { |
| 1791 | numArgs = pSigInfo->numArgs; |
| 1792 | } |
| 1793 | |
| 1794 | return IsInList(methName, clsName, numArgs); |
| 1795 | } |
| 1796 | |
| 1797 | /**************************************************************/ |
| 1798 | bool MethodNamesListBase::IsInList(LPCUTF8 methName, LPCUTF8 clsName, int numArgs) |
| 1799 | { |
| 1800 | CONTRACTL |
| 1801 | { |
| 1802 | NOTHROW; |
| 1803 | } |
| 1804 | CONTRACTL_END; |
| 1805 | |
| 1806 | // Try to match all the entries in the list |
| 1807 | |
| 1808 | for(MethodName * pName = pNames; pName; pName = pName->next) |
| 1809 | { |
| 1810 | // If numArgs is valid, check for mismatch |
| 1811 | if (pName->numArgs != -1 && pName->numArgs != numArgs) |
| 1812 | continue; |
| 1813 | |
| 1814 | // If methodName is valid, check for mismatch |
| 1815 | if (pName->methodName) { |
| 1816 | if (strcmp(pName->methodName, methName) != 0) { |
| 1817 | |
| 1818 | // C++ embeds the class name into the method name, |
| 1819 | // deal with that here (workaround) |
| 1820 | const char* ptr = strchr(methName, ':'); |
| 1821 | if (ptr != 0 && ptr[1] == ':' && strcmp(&ptr[2], pName->methodName) == 0) { |
| 1822 | unsigned clsLen = (unsigned)(ptr - methName); |
| 1823 | if (pName->className == 0 || strncmp(pName->className, methName, clsLen) == 0) |
| 1824 | return true; |
| 1825 | } |
| 1826 | continue; |
| 1827 | } |
| 1828 | } |
| 1829 | |
| 1830 | // check for class Name exact match |
| 1831 | if (clsName == 0 || pName->className == 0 || strcmp(pName->className, clsName) == 0) |
| 1832 | return true; |
| 1833 | |
| 1834 | // check for suffix wildcard like System.* |
| 1835 | unsigned len = (unsigned)strlen(pName->className); |
| 1836 | if (len > 0 && pName->className[len-1] == '*' && strncmp(pName->className, clsName, len-1) == 0) |
| 1837 | return true; |
| 1838 | |
| 1839 | #ifdef _DEBUG |
| 1840 | // Maybe className doesnt include namespace. Try to match that |
| 1841 | LPCUTF8 onlyClass = ns::FindSep(clsName); |
| 1842 | if (onlyClass && strcmp(pName->className, onlyClass+1) == 0) |
| 1843 | return true; |
| 1844 | #endif |
| 1845 | } |
| 1846 | return(false); |
| 1847 | } |
| 1848 | |
| 1849 | //============================================================================= |
| 1850 | // Signature Validation Functions (scaled down version from MDValidator |
| 1851 | //============================================================================= |
| 1852 | |
| 1853 | //***************************************************************************** |
| 1854 | // This function validates one argument given an offset into the signature |
| 1855 | // where the argument begins. This function assumes that the signature is well |
| 1856 | // formed as far as the compression scheme is concerned. |
| 1857 | // <TODO>@todo: Validate tokens embedded.</TODO> |
| 1858 | //***************************************************************************** |
| 1859 | HRESULT validateOneArg( |
| 1860 | mdToken tk, // [IN] Token whose signature needs to be validated. |
| 1861 | SigParser *pSig, |
| 1862 | ULONG *pulNSentinels, // [IN/OUT] Number of sentinels |
| 1863 | IMDInternalImport* pImport, // [IN] Internal MD Import interface ptr |
| 1864 | BOOL bNoVoidAllowed) // [IN] Flag indicating whether "void" is disallowed for this arg |
| 1865 | |
| 1866 | { |
| 1867 | CONTRACTL |
| 1868 | { |
| 1869 | NOTHROW; |
| 1870 | SO_TOLERANT; |
| 1871 | } |
| 1872 | CONTRACTL_END; |
| 1873 | |
| 1874 | BYTE elementType; // Current element type being processed. |
| 1875 | mdToken token; // Embedded token. |
| 1876 | ULONG ulArgCnt; // Argument count for function pointer. |
| 1877 | ULONG ulIndex; // Index for type parameters |
| 1878 | ULONG ulRank; // Rank of the array. |
| 1879 | ULONG ulSizes; // Count of sized dimensions of the array. |
| 1880 | ULONG ulLbnds; // Count of lower bounds of the array. |
| 1881 | ULONG ulCallConv; |
| 1882 | |
| 1883 | HRESULT hr = S_OK; // Value returned. |
| 1884 | BOOL bRepeat = TRUE; // MODOPT and MODREQ belong to the arg after them |
| 1885 | |
| 1886 | BEGIN_SO_INTOLERANT_CODE_NO_THROW_CHECK_THREAD(return COR_E_STACKOVERFLOW); |
| 1887 | while(bRepeat) |
| 1888 | { |
| 1889 | bRepeat = FALSE; |
| 1890 | // Validate that the argument is not missing. |
| 1891 | |
| 1892 | // Get the element type. |
| 1893 | if (FAILED(pSig->GetByte(&elementType))) |
| 1894 | { |
| 1895 | IfFailGo(VLDTR_E_SIG_MISSARG); |
| 1896 | } |
| 1897 | |
| 1898 | // Walk past all the modifier types. |
| 1899 | while (elementType & ELEMENT_TYPE_MODIFIER) |
| 1900 | { |
| 1901 | if (elementType == ELEMENT_TYPE_SENTINEL) |
| 1902 | { |
| 1903 | if(pulNSentinels) *pulNSentinels+=1; |
| 1904 | if(TypeFromToken(tk) != mdtMemberRef) IfFailGo(VLDTR_E_SIG_SENTINMETHODDEF); |
| 1905 | } |
| 1906 | if (FAILED(pSig->GetByte(&elementType))) |
| 1907 | { |
| 1908 | IfFailGo(VLDTR_E_SIG_MISSELTYPE); |
| 1909 | } |
| 1910 | } |
| 1911 | |
| 1912 | switch (elementType) |
| 1913 | { |
| 1914 | case ELEMENT_TYPE_VOID: |
| 1915 | if(bNoVoidAllowed) IfFailGo(VLDTR_E_SIG_BADVOID); |
| 1916 | |
| 1917 | case ELEMENT_TYPE_BOOLEAN: |
| 1918 | case ELEMENT_TYPE_CHAR: |
| 1919 | case ELEMENT_TYPE_I1: |
| 1920 | case ELEMENT_TYPE_U1: |
| 1921 | case ELEMENT_TYPE_I2: |
| 1922 | case ELEMENT_TYPE_U2: |
| 1923 | case ELEMENT_TYPE_I4: |
| 1924 | case ELEMENT_TYPE_U4: |
| 1925 | case ELEMENT_TYPE_I8: |
| 1926 | case ELEMENT_TYPE_U8: |
| 1927 | case ELEMENT_TYPE_R4: |
| 1928 | case ELEMENT_TYPE_R8: |
| 1929 | case ELEMENT_TYPE_STRING: |
| 1930 | case ELEMENT_TYPE_OBJECT: |
| 1931 | case ELEMENT_TYPE_TYPEDBYREF: |
| 1932 | case ELEMENT_TYPE_U: |
| 1933 | case ELEMENT_TYPE_I: |
| 1934 | break; |
| 1935 | case ELEMENT_TYPE_PTR: |
| 1936 | // Validate the referenced type. |
| 1937 | if(FAILED(hr = validateOneArg(tk, pSig, pulNSentinels, pImport, FALSE))) IfFailGo(hr); |
| 1938 | break; |
| 1939 | case ELEMENT_TYPE_BYREF: //fallthru |
| 1940 | if(TypeFromToken(tk)==mdtFieldDef) IfFailGo(VLDTR_E_SIG_BYREFINFIELD); |
| 1941 | case ELEMENT_TYPE_PINNED: |
| 1942 | case ELEMENT_TYPE_SZARRAY: |
| 1943 | // Validate the referenced type. |
| 1944 | if(FAILED(hr = validateOneArg(tk, pSig, pulNSentinels, pImport, TRUE))) IfFailGo(hr); |
| 1945 | break; |
| 1946 | case ELEMENT_TYPE_CMOD_OPT: |
| 1947 | case ELEMENT_TYPE_CMOD_REQD: |
| 1948 | bRepeat = TRUE; // go on validating, we're not done with this arg |
| 1949 | case ELEMENT_TYPE_VALUETYPE: //fallthru |
| 1950 | case ELEMENT_TYPE_CLASS: |
| 1951 | // See if the token is missing. |
| 1952 | if (FAILED(pSig->GetToken(&token))) |
| 1953 | { |
| 1954 | IfFailGo(VLDTR_E_SIG_MISSTKN); |
| 1955 | } |
| 1956 | // Token validation . |
| 1957 | if(pImport) |
| 1958 | { |
| 1959 | ULONG rid = RidFromToken(token); |
| 1960 | ULONG typ = TypeFromToken(token); |
| 1961 | ULONG maxrid = pImport->GetCountWithTokenKind(typ); |
| 1962 | if(typ == mdtTypeDef) maxrid++; |
| 1963 | if((rid==0)||(rid > maxrid)) IfFailGo(VLDTR_E_SIG_TKNBAD); |
| 1964 | } |
| 1965 | break; |
| 1966 | |
| 1967 | case ELEMENT_TYPE_FNPTR: |
| 1968 | // <TODO>@todo: More function pointer validation?</TODO> |
| 1969 | // Validate that calling convention is present. |
| 1970 | if (FAILED(pSig->GetCallingConvInfo(&ulCallConv))) |
| 1971 | { |
| 1972 | IfFailGo(VLDTR_E_SIG_MISSFPTR); |
| 1973 | } |
| 1974 | if(((ulCallConv & IMAGE_CEE_CS_CALLCONV_MASK) >= IMAGE_CEE_CS_CALLCONV_MAX) |
| 1975 | ||((ulCallConv & IMAGE_CEE_CS_CALLCONV_EXPLICITTHIS) |
| 1976 | &&(!(ulCallConv & IMAGE_CEE_CS_CALLCONV_HASTHIS)))) IfFailGo(VLDTR_E_MD_BADCALLINGCONV); |
| 1977 | |
| 1978 | // Validate that argument count is present. |
| 1979 | if (FAILED(pSig->GetData(&ulArgCnt))) |
| 1980 | { |
| 1981 | IfFailGo(VLDTR_E_SIG_MISSFPTRARGCNT); |
| 1982 | } |
| 1983 | |
| 1984 | // FNPTR signature must follow the rules of MethodDef |
| 1985 | // Validate and consume return type. |
| 1986 | IfFailGo(validateOneArg(mdtMethodDef, pSig, NULL, pImport, FALSE)); |
| 1987 | |
| 1988 | // Validate and consume the arguments. |
| 1989 | while(ulArgCnt--) |
| 1990 | { |
| 1991 | IfFailGo(validateOneArg(mdtMethodDef, pSig, NULL, pImport, TRUE)); |
| 1992 | } |
| 1993 | break; |
| 1994 | |
| 1995 | case ELEMENT_TYPE_ARRAY: |
| 1996 | // Validate and consume the base type. |
| 1997 | IfFailGo(validateOneArg(tk, pSig, pulNSentinels, pImport, TRUE)); |
| 1998 | |
| 1999 | // Validate that the rank is present. |
| 2000 | if (FAILED(pSig->GetData(&ulRank))) |
| 2001 | { |
| 2002 | IfFailGo(VLDTR_E_SIG_MISSRANK); |
| 2003 | } |
| 2004 | |
| 2005 | // Process the sizes. |
| 2006 | if (ulRank) |
| 2007 | { |
| 2008 | // Validate that the count of sized-dimensions is specified. |
| 2009 | if (FAILED(pSig->GetData(&ulSizes))) |
| 2010 | { |
| 2011 | IfFailGo(VLDTR_E_SIG_MISSNSIZE); |
| 2012 | } |
| 2013 | |
| 2014 | // Loop over the sizes. |
| 2015 | while(ulSizes--) |
| 2016 | { |
| 2017 | // Validate the current size. |
| 2018 | if (FAILED(pSig->GetData(NULL))) |
| 2019 | { |
| 2020 | IfFailGo(VLDTR_E_SIG_MISSSIZE); |
| 2021 | } |
| 2022 | } |
| 2023 | |
| 2024 | // Validate that the count of lower bounds is specified. |
| 2025 | if (FAILED(pSig->GetData(&ulLbnds))) |
| 2026 | { |
| 2027 | IfFailGo(VLDTR_E_SIG_MISSNLBND); |
| 2028 | } |
| 2029 | |
| 2030 | // Loop over the lower bounds. |
| 2031 | while(ulLbnds--) |
| 2032 | { |
| 2033 | // Validate the current lower bound. |
| 2034 | if (FAILED(pSig->GetData(NULL))) |
| 2035 | { |
| 2036 | IfFailGo(VLDTR_E_SIG_MISSLBND); |
| 2037 | } |
| 2038 | } |
| 2039 | } |
| 2040 | break; |
| 2041 | case ELEMENT_TYPE_VAR: |
| 2042 | case ELEMENT_TYPE_MVAR: |
| 2043 | // Validate that index is present. |
| 2044 | if (FAILED(pSig->GetData(&ulIndex))) |
| 2045 | { |
| 2046 | IfFailGo(VLDTR_E_SIG_MISSFPTRARGCNT); |
| 2047 | } |
| 2048 | |
| 2049 | //@todo GENERICS: check that index is in range |
| 2050 | break; |
| 2051 | |
| 2052 | case ELEMENT_TYPE_GENERICINST: |
| 2053 | // Validate the generic type. |
| 2054 | IfFailGo(validateOneArg(tk, pSig, pulNSentinels, pImport, TRUE)); |
| 2055 | |
| 2056 | // Validate that parameter count is present. |
| 2057 | if (FAILED(pSig->GetData(&ulArgCnt))) |
| 2058 | { |
| 2059 | IfFailGo(VLDTR_E_SIG_MISSFPTRARGCNT); |
| 2060 | } |
| 2061 | |
| 2062 | //@todo GENERICS: check that number of parameters matches definition? |
| 2063 | |
| 2064 | // Validate and consume the parameters. |
| 2065 | while(ulArgCnt--) |
| 2066 | { |
| 2067 | IfFailGo(validateOneArg(tk, pSig, NULL, pImport, TRUE)); |
| 2068 | } |
| 2069 | break; |
| 2070 | |
| 2071 | case ELEMENT_TYPE_SENTINEL: // this case never works because all modifiers are skipped before switch |
| 2072 | if(TypeFromToken(tk) == mdtMethodDef) IfFailGo(VLDTR_E_SIG_SENTINMETHODDEF); |
| 2073 | break; |
| 2074 | |
| 2075 | default: |
| 2076 | IfFailGo(VLDTR_E_SIG_BADELTYPE); |
| 2077 | break; |
| 2078 | } // switch (ulElementType) |
| 2079 | } // end while(bRepeat) |
| 2080 | ErrExit: |
| 2081 | |
| 2082 | END_SO_INTOLERANT_CODE; |
| 2083 | return hr; |
| 2084 | } // validateOneArg() |
| 2085 | |
| 2086 | //***************************************************************************** |
| 2087 | // This function validates the given Method/Field/Standalone signature. |
| 2088 | //@todo GENERICS: MethodInstantiation? |
| 2089 | //***************************************************************************** |
| 2090 | HRESULT validateTokenSig( |
| 2091 | mdToken tk, // [IN] Token whose signature needs to be validated. |
| 2092 | PCCOR_SIGNATURE pbSig, // [IN] Signature. |
| 2093 | ULONG cbSig, // [IN] Size in bytes of the signature. |
| 2094 | DWORD dwFlags, // [IN] Method flags. |
| 2095 | IMDInternalImport* pImport) // [IN] Internal MD Import interface ptr |
| 2096 | { |
| 2097 | CONTRACTL |
| 2098 | { |
| 2099 | NOTHROW; |
| 2100 | } |
| 2101 | CONTRACTL_END; |
| 2102 | |
| 2103 | ULONG ulCallConv; // Calling convention. |
| 2104 | ULONG ulArgCount = 1; // Count of arguments (1 because of the return type) |
| 2105 | ULONG ulTyArgCount = 0; // Count of type arguments |
| 2106 | ULONG ulArgIx = 0; // Starting index of argument (standalone sig: 1) |
| 2107 | ULONG i; // Looping index. |
| 2108 | HRESULT hr = S_OK; // Value returned. |
| 2109 | ULONG ulNSentinels = 0; |
| 2110 | SigParser sig(pbSig, cbSig); |
| 2111 | |
| 2112 | _ASSERTE(TypeFromToken(tk) == mdtMethodDef || |
| 2113 | TypeFromToken(tk) == mdtMemberRef || |
| 2114 | TypeFromToken(tk) == mdtSignature || |
| 2115 | TypeFromToken(tk) == mdtFieldDef); |
| 2116 | |
| 2117 | // Check for NULL signature. |
| 2118 | if (!pbSig || !cbSig) return VLDTR_E_SIGNULL; |
| 2119 | |
| 2120 | // Validate the calling convention. |
| 2121 | |
| 2122 | // Moves behind calling convention |
| 2123 | IfFailRet(sig.GetCallingConvInfo(&ulCallConv)); |
| 2124 | i = ulCallConv & IMAGE_CEE_CS_CALLCONV_MASK; |
| 2125 | switch(TypeFromToken(tk)) |
| 2126 | { |
| 2127 | case mdtMethodDef: // MemberRefs have no flags available |
| 2128 | // If HASTHIS is set on the calling convention, the method should not be static. |
| 2129 | if ((ulCallConv & IMAGE_CEE_CS_CALLCONV_HASTHIS) && |
| 2130 | IsMdStatic(dwFlags)) return VLDTR_E_MD_THISSTATIC; |
| 2131 | |
| 2132 | // If HASTHIS is not set on the calling convention, the method should be static. |
| 2133 | if (!(ulCallConv & IMAGE_CEE_CS_CALLCONV_HASTHIS) && |
| 2134 | !IsMdStatic(dwFlags)) return VLDTR_E_MD_NOTTHISNOTSTATIC; |
| 2135 | // fall thru to callconv check; |
| 2136 | |
| 2137 | case mdtMemberRef: |
| 2138 | if(i == IMAGE_CEE_CS_CALLCONV_FIELD) return validateOneArg(tk, &sig, NULL, pImport, TRUE); |
| 2139 | |
| 2140 | // EXPLICITTHIS and native call convs are for stand-alone sigs only (for calli) |
| 2141 | if(((i != IMAGE_CEE_CS_CALLCONV_DEFAULT)&&( i != IMAGE_CEE_CS_CALLCONV_VARARG)) |
| 2142 | || (ulCallConv & IMAGE_CEE_CS_CALLCONV_EXPLICITTHIS)) return VLDTR_E_MD_BADCALLINGCONV; |
| 2143 | break; |
| 2144 | |
| 2145 | case mdtSignature: |
| 2146 | if(i != IMAGE_CEE_CS_CALLCONV_LOCAL_SIG) // then it is function sig for calli |
| 2147 | { |
| 2148 | if((i >= IMAGE_CEE_CS_CALLCONV_MAX) |
| 2149 | ||((ulCallConv & IMAGE_CEE_CS_CALLCONV_EXPLICITTHIS) |
| 2150 | &&(!(ulCallConv & IMAGE_CEE_CS_CALLCONV_HASTHIS)))) return VLDTR_E_MD_BADCALLINGCONV; |
| 2151 | } |
| 2152 | else |
| 2153 | ulArgIx = 1; // Local variable signatures don't have a return type |
| 2154 | break; |
| 2155 | |
| 2156 | case mdtFieldDef: |
| 2157 | if(i != IMAGE_CEE_CS_CALLCONV_FIELD) return VLDTR_E_MD_BADCALLINGCONV; |
| 2158 | return validateOneArg(tk, &sig, NULL, pImport, TRUE); |
| 2159 | } |
| 2160 | // Is there any sig left for arguments? |
| 2161 | |
| 2162 | // Get the type argument count |
| 2163 | if (ulCallConv & IMAGE_CEE_CS_CALLCONV_GENERIC) |
| 2164 | { |
| 2165 | if (FAILED(sig.GetData(&ulTyArgCount))) |
| 2166 | { |
| 2167 | return VLDTR_E_MD_NOARGCNT; |
| 2168 | } |
| 2169 | } |
| 2170 | |
| 2171 | // Get the argument count. |
| 2172 | if (FAILED(sig.GetData(&ulArgCount))) |
| 2173 | { |
| 2174 | return VLDTR_E_MD_NOARGCNT; |
| 2175 | } |
| 2176 | |
| 2177 | // Validate the return type and the arguments. |
| 2178 | // (at this moment ulArgCount = num.args+1, ulArgIx = (standalone sig. ? 1 :0); ) |
| 2179 | for(; ulArgIx < ulArgCount; ulArgIx++) |
| 2180 | { |
| 2181 | if(FAILED(hr = validateOneArg(tk, &sig, &ulNSentinels, pImport, (ulArgIx!=0)))) return hr; |
| 2182 | } |
| 2183 | |
| 2184 | // <TODO>@todo: we allow junk to be at the end of the signature (we may not consume it all) |
| 2185 | // do we care?</TODO> |
| 2186 | |
| 2187 | if((ulNSentinels != 0) && ((ulCallConv & IMAGE_CEE_CS_CALLCONV_MASK) != IMAGE_CEE_CS_CALLCONV_VARARG )) |
| 2188 | return VLDTR_E_SIG_SENTMUSTVARARG; |
| 2189 | if(ulNSentinels > 1) return VLDTR_E_SIG_MULTSENTINELS; |
| 2190 | return S_OK; |
| 2191 | } // validateTokenSig() |
| 2192 | |
| 2193 | HRESULT GetImageRuntimeVersionString(PVOID pMetaData, LPCSTR* pString) |
| 2194 | { |
| 2195 | CONTRACTL |
| 2196 | { |
| 2197 | NOTHROW; |
| 2198 | } |
| 2199 | CONTRACTL_END; |
| 2200 | |
| 2201 | _ASSERTE(pString); |
| 2202 | STORAGESIGNATURE* pSig = (STORAGESIGNATURE*) pMetaData; |
| 2203 | |
| 2204 | // Verify the signature. |
| 2205 | |
| 2206 | // If signature didn't match, you shouldn't be here. |
| 2207 | if (pSig->GetSignature() != STORAGE_MAGIC_SIG) |
| 2208 | return CLDB_E_FILE_CORRUPT; |
| 2209 | |
| 2210 | // The version started in version 1.1 |
| 2211 | if (pSig->GetMajorVer() < 1) |
| 2212 | return CLDB_E_FILE_OLDVER; |
| 2213 | |
| 2214 | if (pSig->GetMajorVer() == 1 && pSig->GetMinorVer() < 1) |
| 2215 | return CLDB_E_FILE_OLDVER; |
| 2216 | |
| 2217 | // Header data starts after signature. |
| 2218 | *pString = (LPCSTR) pSig->pVersion; |
| 2219 | return S_OK; |
| 2220 | } |
| 2221 | |
| 2222 | //***************************************************************************** |
| 2223 | // Convert a UTF8 string to Unicode, into a CQuickArray<WCHAR>. |
| 2224 | //***************************************************************************** |
| 2225 | HRESULT Utf2Quick( |
| 2226 | LPCUTF8 pStr, // The string to convert. |
| 2227 | CQuickArray<WCHAR> &rStr, // The QuickArray<WCHAR> to convert it into. |
| 2228 | int iCurLen) // Inital characters in the array to leave (default 0). |
| 2229 | { |
| 2230 | CONTRACTL |
| 2231 | { |
| 2232 | NOTHROW; |
| 2233 | } |
| 2234 | CONTRACTL_END; |
| 2235 | |
| 2236 | HRESULT hr = S_OK; // A result. |
| 2237 | int iReqLen; // Required additional length. |
| 2238 | int iActLen; |
| 2239 | int bAlloc = 0; // If non-zero, allocation was required. |
| 2240 | |
| 2241 | if (iCurLen < 0 ) |
| 2242 | { |
| 2243 | _ASSERTE_MSG(false, "Invalid current length" ); |
| 2244 | return E_INVALIDARG; |
| 2245 | } |
| 2246 | |
| 2247 | // Calculate the space available |
| 2248 | S_SIZE_T cchAvail = S_SIZE_T(rStr.MaxSize()) - S_SIZE_T(iCurLen); |
| 2249 | if (cchAvail.IsOverflow() || cchAvail.Value() > INT_MAX) |
| 2250 | { |
| 2251 | _ASSERTE_MSG(false, "Integer overflow/underflow" ); |
| 2252 | return HRESULT_FROM_WIN32(ERROR_ARITHMETIC_OVERFLOW); |
| 2253 | } |
| 2254 | |
| 2255 | // Attempt the conversion. |
| 2256 | LPWSTR rNewStr = rStr.Ptr()+iCurLen; |
| 2257 | if(rNewStr < rStr.Ptr()) |
| 2258 | { |
| 2259 | _ASSERTE_MSG(false, "Integer overflow/underflow" ); |
| 2260 | return HRESULT_FROM_WIN32(ERROR_ARITHMETIC_OVERFLOW); |
| 2261 | } |
| 2262 | iReqLen = WszMultiByteToWideChar(CP_UTF8, 0, pStr, -1, rNewStr, (int)(cchAvail.Value())); |
| 2263 | |
| 2264 | // If the buffer was too small, determine what is required. |
| 2265 | if (iReqLen == 0) |
| 2266 | bAlloc = iReqLen = WszMultiByteToWideChar(CP_UTF8, 0, pStr, -1, 0, 0); |
| 2267 | // Resize the buffer. If the buffer was large enough, this just sets the internal |
| 2268 | // counter, but if it was too small, this will attempt a reallocation. Note that |
| 2269 | // the length includes the terminating W('/0'). |
| 2270 | IfFailGo(rStr.ReSizeNoThrow(iCurLen+iReqLen)); |
| 2271 | // If we had to realloc, then do the conversion again, now that the buffer is |
| 2272 | // large enough. |
| 2273 | if (bAlloc) { |
| 2274 | //recalculating cchAvail since MaxSize could have been changed. |
| 2275 | cchAvail = S_SIZE_T(rStr.MaxSize()) - S_SIZE_T(iCurLen); |
| 2276 | if (cchAvail.IsOverflow() || cchAvail.Value() > INT_MAX) |
| 2277 | { |
| 2278 | _ASSERTE_MSG(false, "Integer overflow/underflow" ); |
| 2279 | return HRESULT_FROM_WIN32(ERROR_ARITHMETIC_OVERFLOW); |
| 2280 | } |
| 2281 | //reculculating rNewStr |
| 2282 | rNewStr = rStr.Ptr()+iCurLen; |
| 2283 | |
| 2284 | if(rNewStr < rStr.Ptr()) |
| 2285 | { |
| 2286 | _ASSERTE_MSG(false, "Integer overflow/underflow" ); |
| 2287 | return HRESULT_FROM_WIN32(ERROR_ARITHMETIC_OVERFLOW); |
| 2288 | } |
| 2289 | iActLen = WszMultiByteToWideChar(CP_UTF8, 0, pStr, -1, rNewStr, (int)(cchAvail.Value())); |
| 2290 | _ASSERTE(iReqLen == iActLen); |
| 2291 | } |
| 2292 | ErrExit: |
| 2293 | return hr; |
| 2294 | } // HRESULT Utf2Quick() |
| 2295 | |
| 2296 | |
| 2297 | //***************************************************************************** |
| 2298 | // Extract the movl 64-bit unsigned immediate from an IA64 bundle |
| 2299 | // (Format X2) |
| 2300 | //***************************************************************************** |
| 2301 | UINT64 GetIA64Imm64(UINT64 * pBundle) |
| 2302 | { |
| 2303 | WRAPPER_NO_CONTRACT; |
| 2304 | |
| 2305 | UINT64 temp0 = PTR_UINT64(pBundle)[0]; |
| 2306 | UINT64 temp1 = PTR_UINT64(pBundle)[1]; |
| 2307 | |
| 2308 | return GetIA64Imm64(temp0, temp1); |
| 2309 | } |
| 2310 | |
| 2311 | UINT64 GetIA64Imm64(UINT64 qword0, UINT64 qword1) |
| 2312 | { |
| 2313 | LIMITED_METHOD_CONTRACT; |
| 2314 | |
| 2315 | UINT64 imm64 = 0; |
| 2316 | |
| 2317 | #ifdef _DEBUG_IMPL |
| 2318 | // |
| 2319 | // make certain we're decoding a movl opcode, with template 4 or 5 |
| 2320 | // |
| 2321 | UINT64 templa = (qword0 >> 0) & 0x1f; |
| 2322 | UINT64 opcode = (qword1 >> 60) & 0xf; |
| 2323 | |
| 2324 | _ASSERTE((opcode == 0x6) && ((templa == 0x4) || (templa == 0x5))); |
| 2325 | #endif |
| 2326 | |
| 2327 | imm64 = (qword1 >> 59) << 63; // 1 i |
| 2328 | imm64 |= (qword1 << 41) >> 1; // 23 high bits of imm41 |
| 2329 | imm64 |= (qword0 >> 46) << 22; // 18 low bits of imm41 |
| 2330 | imm64 |= (qword1 >> 23) & 0x200000; // 1 ic |
| 2331 | imm64 |= (qword1 >> 29) & 0x1F0000; // 5 imm5c |
| 2332 | imm64 |= (qword1 >> 43) & 0xFF80; // 9 imm9d |
| 2333 | imm64 |= (qword1 >> 36) & 0x7F; // 7 imm7b |
| 2334 | |
| 2335 | return imm64; |
| 2336 | } |
| 2337 | |
| 2338 | //***************************************************************************** |
| 2339 | // Deposit the movl 64-bit unsigned immediate into an IA64 bundle |
| 2340 | // (Format X2) |
| 2341 | //***************************************************************************** |
| 2342 | void PutIA64Imm64(UINT64 * pBundle, UINT64 imm64) |
| 2343 | { |
| 2344 | LIMITED_METHOD_CONTRACT; |
| 2345 | |
| 2346 | #ifdef _DEBUG_IMPL |
| 2347 | // |
| 2348 | // make certain we're decoding a movl opcode, with template 4 or 5 |
| 2349 | // |
| 2350 | UINT64 templa = (pBundle[0] >> 0) & 0x1f; |
| 2351 | UINT64 opcode = (pBundle[1] >> 60) & 0xf ; |
| 2352 | |
| 2353 | _ASSERTE((opcode == 0x6) && ((templa == 0x4) || (templa == 0x5))); |
| 2354 | #endif |
| 2355 | |
| 2356 | const UINT64 mask0 = UI64(0x00003FFFFFFFFFFF); |
| 2357 | const UINT64 mask1 = UI64(0xF000080FFF800000); |
| 2358 | |
| 2359 | /* Clear all bits used as part of the imm64 */ |
| 2360 | pBundle[0] &= mask0; |
| 2361 | pBundle[1] &= mask1; |
| 2362 | |
| 2363 | UINT64 temp0; |
| 2364 | UINT64 temp1; |
| 2365 | |
| 2366 | temp1 = (imm64 >> 63) << 59; // 1 i |
| 2367 | temp1 |= (imm64 & 0xFF80) << 43; // 9 imm9d |
| 2368 | temp1 |= (imm64 & 0x1F0000) << 29; // 5 imm5c |
| 2369 | temp1 |= (imm64 & 0x200000) << 23; // 1 ic |
| 2370 | temp1 |= (imm64 & 0x7F) << 36; // 7 imm7b |
| 2371 | temp1 |= (imm64 << 1) >> 41; // 23 high bits of imm41 |
| 2372 | temp0 = (imm64 >> 22) << 46; // 18 low bits of imm41 |
| 2373 | |
| 2374 | /* Or in the new bits used in the imm64 */ |
| 2375 | pBundle[0] |= temp0; |
| 2376 | pBundle[1] |= temp1; |
| 2377 | FlushInstructionCache(GetCurrentProcess(),pBundle,16); |
| 2378 | } |
| 2379 | |
| 2380 | //***************************************************************************** |
| 2381 | // Extract the IP-Relative signed 25-bit immediate from an IA64 bundle |
| 2382 | // (Formats B1, B2 or B3) |
| 2383 | // Note that due to branch target alignment requirements |
| 2384 | // the lowest four bits in the result will always be zero. |
| 2385 | //***************************************************************************** |
| 2386 | INT32 GetIA64Rel25(UINT64 * pBundle, UINT32 slot) |
| 2387 | { |
| 2388 | WRAPPER_NO_CONTRACT; |
| 2389 | |
| 2390 | UINT64 temp0 = PTR_UINT64(pBundle)[0]; |
| 2391 | UINT64 temp1 = PTR_UINT64(pBundle)[1]; |
| 2392 | |
| 2393 | return GetIA64Rel25(temp0, temp1, slot); |
| 2394 | } |
| 2395 | |
| 2396 | INT32 GetIA64Rel25(UINT64 qword0, UINT64 qword1, UINT32 slot) |
| 2397 | { |
| 2398 | LIMITED_METHOD_CONTRACT; |
| 2399 | |
| 2400 | INT32 imm25 = 0; |
| 2401 | |
| 2402 | if (slot == 2) |
| 2403 | { |
| 2404 | if ((qword1 >> 59) & 1) |
| 2405 | imm25 = 0xFF000000; |
| 2406 | imm25 |= (qword1 >> 32) & 0x00FFFFF0; // 20 imm20b |
| 2407 | } |
| 2408 | else if (slot == 1) |
| 2409 | { |
| 2410 | if ((qword1 >> 18) & 1) |
| 2411 | imm25 = 0xFF000000; |
| 2412 | imm25 |= (qword1 << 9) & 0x00FFFE00; // high 15 of imm20b |
| 2413 | imm25 |= (qword0 >> 55) & 0x000001F0; // low 5 of imm20b |
| 2414 | } |
| 2415 | else if (slot == 0) |
| 2416 | { |
| 2417 | if ((qword0 >> 41) & 1) |
| 2418 | imm25 = 0xFF000000; |
| 2419 | imm25 |= (qword0 >> 14) & 0x00FFFFF0; // 20 imm20b |
| 2420 | } |
| 2421 | |
| 2422 | return imm25; |
| 2423 | } |
| 2424 | |
| 2425 | //***************************************************************************** |
| 2426 | // Deposit the IP-Relative signed 25-bit immediate into an IA64 bundle |
| 2427 | // (Formats B1, B2 or B3) |
| 2428 | // Note that due to branch target alignment requirements |
| 2429 | // the lowest four bits are required to be zero. |
| 2430 | //***************************************************************************** |
| 2431 | void PutIA64Rel25(UINT64 * pBundle, UINT32 slot, INT32 imm25) |
| 2432 | { |
| 2433 | LIMITED_METHOD_CONTRACT; |
| 2434 | |
| 2435 | _ASSERTE((imm25 & 0xF) == 0); |
| 2436 | |
| 2437 | if (slot == 2) |
| 2438 | { |
| 2439 | const UINT64 mask1 = UI64(0xF700000FFFFFFFFF); |
| 2440 | /* Clear all bits used as part of the imm25 */ |
| 2441 | pBundle[1] &= mask1; |
| 2442 | |
| 2443 | UINT64 temp1; |
| 2444 | |
| 2445 | temp1 = (UINT64) (imm25 & 0x1000000) << 35; // 1 s |
| 2446 | temp1 |= (UINT64) (imm25 & 0x0FFFFF0) << 32; // 20 imm20b |
| 2447 | |
| 2448 | /* Or in the new bits used in the imm64 */ |
| 2449 | pBundle[1] |= temp1; |
| 2450 | } |
| 2451 | else if (slot == 1) |
| 2452 | { |
| 2453 | const UINT64 mask0 = UI64(0x0EFFFFFFFFFFFFFF); |
| 2454 | const UINT64 mask1 = UI64(0xFFFFFFFFFFFB8000); |
| 2455 | /* Clear all bits used as part of the imm25 */ |
| 2456 | pBundle[0] &= mask0; |
| 2457 | pBundle[1] &= mask1; |
| 2458 | |
| 2459 | UINT64 temp0; |
| 2460 | UINT64 temp1; |
| 2461 | |
| 2462 | temp1 = (UINT64) (imm25 & 0x1000000) >> 7; // 1 s |
| 2463 | temp1 |= (UINT64) (imm25 & 0x0FFFE00) >> 9; // high 15 of imm20b |
| 2464 | temp0 = (UINT64) (imm25 & 0x00001F0) << 55; // low 5 of imm20b |
| 2465 | |
| 2466 | /* Or in the new bits used in the imm64 */ |
| 2467 | pBundle[0] |= temp0; |
| 2468 | pBundle[1] |= temp1; |
| 2469 | } |
| 2470 | else if (slot == 0) |
| 2471 | { |
| 2472 | const UINT64 mask0 = UI64(0xFFFFFDC00003FFFF); |
| 2473 | /* Clear all bits used as part of the imm25 */ |
| 2474 | pBundle[0] &= mask0; |
| 2475 | |
| 2476 | UINT64 temp0; |
| 2477 | |
| 2478 | temp0 = (UINT64) (imm25 & 0x1000000) << 16; // 1 s |
| 2479 | temp0 |= (UINT64) (imm25 & 0x0FFFFF0) << 14; // 20 imm20b |
| 2480 | |
| 2481 | /* Or in the new bits used in the imm64 */ |
| 2482 | pBundle[0] |= temp0; |
| 2483 | |
| 2484 | } |
| 2485 | FlushInstructionCache(GetCurrentProcess(),pBundle,16); |
| 2486 | } |
| 2487 | |
| 2488 | //***************************************************************************** |
| 2489 | // Extract the IP-Relative signed 64-bit immediate from an IA64 bundle |
| 2490 | // (Formats X3 or X4) |
| 2491 | //***************************************************************************** |
| 2492 | INT64 GetIA64Rel64(UINT64 * pBundle) |
| 2493 | { |
| 2494 | WRAPPER_NO_CONTRACT; |
| 2495 | |
| 2496 | UINT64 temp0 = PTR_UINT64(pBundle)[0]; |
| 2497 | UINT64 temp1 = PTR_UINT64(pBundle)[1]; |
| 2498 | |
| 2499 | return GetIA64Rel64(temp0, temp1); |
| 2500 | } |
| 2501 | |
| 2502 | INT64 GetIA64Rel64(UINT64 qword0, UINT64 qword1) |
| 2503 | { |
| 2504 | LIMITED_METHOD_CONTRACT; |
| 2505 | |
| 2506 | INT64 imm64 = 0; |
| 2507 | |
| 2508 | #ifdef _DEBUG_IMPL |
| 2509 | // |
| 2510 | // make certain we're decoding a brl opcode, with template 4 or 5 |
| 2511 | // |
| 2512 | UINT64 templa = (qword0 >> 0) & 0x1f; |
| 2513 | UINT64 opcode = (qword1 >> 60) & 0xf; |
| 2514 | |
| 2515 | _ASSERTE(((opcode == 0xC) || (opcode == 0xD)) && |
| 2516 | ((templa == 0x4) || (templa == 0x5))); |
| 2517 | #endif |
| 2518 | |
| 2519 | imm64 = (qword1 >> 59) << 63; // 1 i |
| 2520 | imm64 |= (qword1 << 41) >> 1; // 23 high bits of imm39 |
| 2521 | imm64 |= (qword0 >> 48) << 24; // 16 low bits of imm39 |
| 2522 | imm64 |= (qword1 >> 32) & 0xFFFFF0; // 20 imm20b |
| 2523 | // 4 bits of zeros |
| 2524 | return imm64; |
| 2525 | } |
| 2526 | |
| 2527 | //***************************************************************************** |
| 2528 | // Deposit the IP-Relative signed 64-bit immediate into an IA64 bundle |
| 2529 | // (Formats X3 or X4) |
| 2530 | //***************************************************************************** |
| 2531 | void PutIA64Rel64(UINT64 * pBundle, INT64 imm64) |
| 2532 | { |
| 2533 | LIMITED_METHOD_CONTRACT; |
| 2534 | |
| 2535 | #ifdef _DEBUG_IMPL |
| 2536 | // |
| 2537 | // make certain we're decoding a brl opcode, with template 4 or 5 |
| 2538 | // |
| 2539 | UINT64 templa = (pBundle[0] >> 0) & 0x1f; |
| 2540 | UINT64 opcode = (pBundle[1] >> 60) & 0xf; |
| 2541 | |
| 2542 | _ASSERTE(((opcode == 0xC) || (opcode == 0xD)) && |
| 2543 | ((templa == 0x4) || (templa == 0x5))); |
| 2544 | _ASSERTE((imm64 & 0xF) == 0); |
| 2545 | #endif |
| 2546 | |
| 2547 | const UINT64 mask0 = UI64(0x00003FFFFFFFFFFF); |
| 2548 | const UINT64 mask1 = UI64(0xF700000FFF800000); |
| 2549 | |
| 2550 | /* Clear all bits used as part of the imm64 */ |
| 2551 | pBundle[0] &= mask0; |
| 2552 | pBundle[1] &= mask1; |
| 2553 | |
| 2554 | UINT64 temp0 = (imm64 & UI64(0x000000FFFF000000)) << 24; // 16 low bits of imm39 |
| 2555 | UINT64 temp1 = (imm64 & UI64(0x8000000000000000)) >> 4 // 1 i |
| 2556 | | (imm64 & UI64(0x7FFFFF0000000000)) >> 40 // 23 high bits of imm39 |
| 2557 | | (imm64 & UI64(0x0000000000FFFFF0)) << 32; // 20 imm20b |
| 2558 | |
| 2559 | /* Or in the new bits used in the imm64 */ |
| 2560 | pBundle[0] |= temp0; |
| 2561 | pBundle[1] |= temp1; |
| 2562 | FlushInstructionCache(GetCurrentProcess(),pBundle,16); |
| 2563 | } |
| 2564 | |
| 2565 | //***************************************************************************** |
| 2566 | // Extract the 16-bit immediate from ARM Thumb2 Instruction (format T2_N) |
| 2567 | //***************************************************************************** |
| 2568 | static FORCEINLINE UINT16 GetThumb2Imm16(UINT16 * p) |
| 2569 | { |
| 2570 | LIMITED_METHOD_CONTRACT; |
| 2571 | |
| 2572 | return ((p[0] << 12) & 0xf000) | |
| 2573 | ((p[0] << 1) & 0x0800) | |
| 2574 | ((p[1] >> 4) & 0x0700) | |
| 2575 | ((p[1] >> 0) & 0x00ff); |
| 2576 | } |
| 2577 | |
| 2578 | //***************************************************************************** |
| 2579 | // Extract the 32-bit immediate from movw/movt sequence |
| 2580 | //***************************************************************************** |
| 2581 | UINT32 GetThumb2Mov32(UINT16 * p) |
| 2582 | { |
| 2583 | LIMITED_METHOD_CONTRACT; |
| 2584 | |
| 2585 | // Make sure we are decoding movw/movt sequence |
| 2586 | _ASSERTE_IMPL((*(p+0) & 0xFBF0) == 0xF240); |
| 2587 | _ASSERTE_IMPL((*(p+2) & 0xFBF0) == 0xF2C0); |
| 2588 | |
| 2589 | return (UINT32)GetThumb2Imm16(p) + ((UINT32)GetThumb2Imm16(p + 2) << 16); |
| 2590 | } |
| 2591 | |
| 2592 | //***************************************************************************** |
| 2593 | // Deposit the 16-bit immediate into ARM Thumb2 Instruction (format T2_N) |
| 2594 | //***************************************************************************** |
| 2595 | static FORCEINLINE void PutThumb2Imm16(UINT16 * p, UINT16 imm16) |
| 2596 | { |
| 2597 | LIMITED_METHOD_CONTRACT; |
| 2598 | |
| 2599 | USHORT Opcode0 = p[0]; |
| 2600 | USHORT Opcode1 = p[1]; |
| 2601 | Opcode0 &= ~((0xf000 >> 12) | (0x0800 >> 1)); |
| 2602 | Opcode1 &= ~((0x0700 << 4) | (0x00ff << 0)); |
| 2603 | Opcode0 |= (imm16 & 0xf000) >> 12; |
| 2604 | Opcode0 |= (imm16 & 0x0800) >> 1; |
| 2605 | Opcode1 |= (imm16 & 0x0700) << 4; |
| 2606 | Opcode1 |= (imm16 & 0x00ff) << 0; |
| 2607 | p[0] = Opcode0; |
| 2608 | p[1] = Opcode1; |
| 2609 | } |
| 2610 | |
| 2611 | //***************************************************************************** |
| 2612 | // Deposit the 32-bit immediate into movw/movt Thumb2 sequence |
| 2613 | //***************************************************************************** |
| 2614 | void PutThumb2Mov32(UINT16 * p, UINT32 imm32) |
| 2615 | { |
| 2616 | LIMITED_METHOD_CONTRACT; |
| 2617 | |
| 2618 | // Make sure we are decoding movw/movt sequence |
| 2619 | _ASSERTE_IMPL((*(p+0) & 0xFBF0) == 0xF240); |
| 2620 | _ASSERTE_IMPL((*(p+2) & 0xFBF0) == 0xF2C0); |
| 2621 | |
| 2622 | PutThumb2Imm16(p, (UINT16)imm32); |
| 2623 | PutThumb2Imm16(p + 2, (UINT16)(imm32 >> 16)); |
| 2624 | } |
| 2625 | |
| 2626 | //***************************************************************************** |
| 2627 | // Extract the 24-bit rel offset from bl instruction |
| 2628 | //***************************************************************************** |
| 2629 | INT32 GetThumb2BlRel24(UINT16 * p) |
| 2630 | { |
| 2631 | LIMITED_METHOD_CONTRACT; |
| 2632 | |
| 2633 | USHORT Opcode0 = p[0]; |
| 2634 | USHORT Opcode1 = p[1]; |
| 2635 | |
| 2636 | UINT32 S = Opcode0 >> 10; |
| 2637 | UINT32 J2 = Opcode1 >> 11; |
| 2638 | UINT32 J1 = Opcode1 >> 13; |
| 2639 | |
| 2640 | INT32 ret = |
| 2641 | ((S << 24) & 0x1000000) | |
| 2642 | (((J1 ^ S ^ 1) << 23) & 0x0800000) | |
| 2643 | (((J2 ^ S ^ 1) << 22) & 0x0400000) | |
| 2644 | ((Opcode0 << 12) & 0x03FF000) | |
| 2645 | ((Opcode1 << 1) & 0x0000FFE); |
| 2646 | |
| 2647 | // Sign-extend and return |
| 2648 | return (ret << 7) >> 7; |
| 2649 | } |
| 2650 | |
| 2651 | //***************************************************************************** |
| 2652 | // Extract the 24-bit rel offset from bl instruction |
| 2653 | //***************************************************************************** |
| 2654 | void PutThumb2BlRel24(UINT16 * p, INT32 imm24) |
| 2655 | { |
| 2656 | LIMITED_METHOD_CONTRACT; |
| 2657 | |
| 2658 | // Verify that we got a valid offset |
| 2659 | _ASSERTE(FitsInThumb2BlRel24(imm24)); |
| 2660 | |
| 2661 | #if defined(_TARGET_ARM_) |
| 2662 | // Ensure that the ThumbBit is not set on the offset |
| 2663 | // as it cannot be encoded. |
| 2664 | _ASSERTE(!(imm24 & THUMB_CODE)); |
| 2665 | #endif // _TARGET_ARM_ |
| 2666 | |
| 2667 | USHORT Opcode0 = p[0]; |
| 2668 | USHORT Opcode1 = p[1]; |
| 2669 | Opcode0 &= 0xF800; |
| 2670 | Opcode1 &= 0xD000; |
| 2671 | |
| 2672 | UINT32 S = (imm24 & 0x1000000) >> 24; |
| 2673 | UINT32 J1 = ((imm24 & 0x0800000) >> 23) ^ S ^ 1; |
| 2674 | UINT32 J2 = ((imm24 & 0x0400000) >> 22) ^ S ^ 1; |
| 2675 | |
| 2676 | Opcode0 |= ((imm24 & 0x03FF000) >> 12) | (S << 10); |
| 2677 | Opcode1 |= ((imm24 & 0x0000FFE) >> 1) | (J1 << 13) | (J2 << 11); |
| 2678 | |
| 2679 | p[0] = Opcode0; |
| 2680 | p[1] = Opcode1; |
| 2681 | |
| 2682 | _ASSERTE(GetThumb2BlRel24(p) == imm24); |
| 2683 | } |
| 2684 | |
| 2685 | //***************************************************************************** |
| 2686 | // Extract the PC-Relative offset from a b or bl instruction |
| 2687 | //***************************************************************************** |
| 2688 | INT32 GetArm64Rel28(UINT32 * pCode) |
| 2689 | { |
| 2690 | LIMITED_METHOD_CONTRACT; |
| 2691 | |
| 2692 | UINT32 branchInstr = *pCode; |
| 2693 | |
| 2694 | // first shift 6 bits left to set the sign bit, |
| 2695 | // then arithmetic shift right by 4 bits |
| 2696 | INT32 imm28 = (((INT32)(branchInstr & 0x03FFFFFF)) << 6) >> 4; |
| 2697 | |
| 2698 | return imm28; |
| 2699 | } |
| 2700 | |
| 2701 | //***************************************************************************** |
| 2702 | // Extract the PC-Relative offset from an adrp instruction |
| 2703 | //***************************************************************************** |
| 2704 | INT32 GetArm64Rel21(UINT32 * pCode) |
| 2705 | { |
| 2706 | LIMITED_METHOD_CONTRACT; |
| 2707 | |
| 2708 | UINT32 addInstr = *pCode; |
| 2709 | |
| 2710 | // 23-5 bits for the high part. Shift it by 5. |
| 2711 | INT32 immhi = (((INT32)(addInstr & 0xFFFFE0))) >> 5; |
| 2712 | // 30,29 bits for the lower part. Shift it by 29. |
| 2713 | INT32 immlo = ((INT32)(addInstr & 0x60000000)) >> 29; |
| 2714 | |
| 2715 | // Merge them |
| 2716 | INT32 imm21 = (immhi << 2) | immlo; |
| 2717 | |
| 2718 | return imm21; |
| 2719 | } |
| 2720 | |
| 2721 | //***************************************************************************** |
| 2722 | // Extract the PC-Relative offset from an add instruction |
| 2723 | //***************************************************************************** |
| 2724 | INT32 GetArm64Rel12(UINT32 * pCode) |
| 2725 | { |
| 2726 | LIMITED_METHOD_CONTRACT; |
| 2727 | |
| 2728 | UINT32 addInstr = *pCode; |
| 2729 | |
| 2730 | // 21-10 contains value. Mask 12 bits and shift by 10 bits. |
| 2731 | INT32 imm12 = (INT32)(addInstr & 0x003FFC00) >> 10; |
| 2732 | |
| 2733 | return imm12; |
| 2734 | } |
| 2735 | |
| 2736 | //***************************************************************************** |
| 2737 | // Deposit the PC-Relative offset 'imm28' into a b or bl instruction |
| 2738 | //***************************************************************************** |
| 2739 | void PutArm64Rel28(UINT32 * pCode, INT32 imm28) |
| 2740 | { |
| 2741 | LIMITED_METHOD_CONTRACT; |
| 2742 | |
| 2743 | // Verify that we got a valid offset |
| 2744 | _ASSERTE(FitsInRel28(imm28)); |
| 2745 | _ASSERTE((imm28 & 0x3) == 0); // the low two bits must be zero |
| 2746 | |
| 2747 | UINT32 branchInstr = *pCode; |
| 2748 | |
| 2749 | branchInstr &= 0xFC000000; // keep bits 31-26 |
| 2750 | |
| 2751 | // Assemble the pc-relative delta 'imm28' into the branch instruction |
| 2752 | branchInstr |= ((imm28 >> 2) & 0x03FFFFFF); |
| 2753 | |
| 2754 | *pCode = branchInstr; // write the assembled instruction |
| 2755 | |
| 2756 | _ASSERTE(GetArm64Rel28(pCode) == imm28); |
| 2757 | } |
| 2758 | |
| 2759 | //***************************************************************************** |
| 2760 | // Deposit the PC-Relative offset 'imm21' into an adrp instruction |
| 2761 | //***************************************************************************** |
| 2762 | void PutArm64Rel21(UINT32 * pCode, INT32 imm21) |
| 2763 | { |
| 2764 | LIMITED_METHOD_CONTRACT; |
| 2765 | |
| 2766 | // Verify that we got a valid offset |
| 2767 | _ASSERTE(FitsInRel21(imm21)); |
| 2768 | |
| 2769 | UINT32 adrpInstr = *pCode; |
| 2770 | // Check adrp opcode 1ii1 0000 ... |
| 2771 | _ASSERTE((adrpInstr & 0x9F000000) == 0x90000000); |
| 2772 | |
| 2773 | adrpInstr &= 0x9F00001F; // keep bits 31, 28-24, 4-0. |
| 2774 | INT32 immlo = imm21 & 0x03; // Extract low 2 bits which will occupy 30-29 bits. |
| 2775 | INT32 immhi = (imm21 & 0x1FFFFC) >> 2; // Extract high 19 bits which will occupy 23-5 bits. |
| 2776 | adrpInstr |= ((immlo << 29) | (immhi << 5)); |
| 2777 | |
| 2778 | *pCode = adrpInstr; // write the assembled instruction |
| 2779 | |
| 2780 | _ASSERTE(GetArm64Rel21(pCode) == imm21); |
| 2781 | } |
| 2782 | |
| 2783 | //***************************************************************************** |
| 2784 | // Deposit the PC-Relative offset 'imm12' into an add instruction |
| 2785 | //***************************************************************************** |
| 2786 | void PutArm64Rel12(UINT32 * pCode, INT32 imm12) |
| 2787 | { |
| 2788 | LIMITED_METHOD_CONTRACT; |
| 2789 | |
| 2790 | // Verify that we got a valid offset |
| 2791 | _ASSERTE(FitsInRel12(imm12)); |
| 2792 | |
| 2793 | UINT32 addInstr = *pCode; |
| 2794 | // Check add opcode 1001 0001 00... |
| 2795 | _ASSERTE((addInstr & 0xFFC00000) == 0x91000000); |
| 2796 | |
| 2797 | addInstr &= 0xFFC003FF; // keep bits 31-22, 9-0 |
| 2798 | addInstr |= (imm12 << 10); // Occupy 21-10. |
| 2799 | |
| 2800 | *pCode = addInstr; // write the assembled instruction |
| 2801 | |
| 2802 | _ASSERTE(GetArm64Rel12(pCode) == imm12); |
| 2803 | } |
| 2804 | |
| 2805 | //--------------------------------------------------------------------- |
| 2806 | // Splits a command line into argc/argv lists, using the VC7 parsing rules. |
| 2807 | // |
| 2808 | // This functions interface mimics the CommandLineToArgvW api. |
| 2809 | // |
| 2810 | // If function fails, returns NULL. |
| 2811 | // |
| 2812 | // If function suceeds, call delete [] on return pointer when done. |
| 2813 | // |
| 2814 | //--------------------------------------------------------------------- |
| 2815 | // NOTE: Implementation-wise, once every few years it would be a good idea to |
| 2816 | // compare this code with the C runtime library's parse_cmdline method, |
| 2817 | // which is in vctools\crt\crtw32\startup\stdargv.c. (Note we don't |
| 2818 | // support wild cards, and we use Unicode characters exclusively.) |
| 2819 | // We are up to date as of ~6/2005. |
| 2820 | //--------------------------------------------------------------------- |
| 2821 | LPWSTR *SegmentCommandLine(LPCWSTR lpCmdLine, DWORD *pNumArgs) |
| 2822 | { |
| 2823 | STATIC_CONTRACT_NOTHROW; |
| 2824 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 2825 | STATIC_CONTRACT_FAULT; |
| 2826 | |
| 2827 | |
| 2828 | *pNumArgs = 0; |
| 2829 | |
| 2830 | int nch = (int)wcslen(lpCmdLine); |
| 2831 | |
| 2832 | // Calculate the worstcase storage requirement. (One pointer for |
| 2833 | // each argument, plus storage for the arguments themselves.) |
| 2834 | int cbAlloc = (nch+1)*sizeof(LPWSTR) + sizeof(WCHAR)*(nch + 1); |
| 2835 | LPWSTR pAlloc = new (nothrow) WCHAR[cbAlloc / sizeof(WCHAR)]; |
| 2836 | if (!pAlloc) |
| 2837 | return NULL; |
| 2838 | |
| 2839 | LPWSTR *argv = (LPWSTR*) pAlloc; // We store the argv pointers in the first halt |
| 2840 | LPWSTR pdst = (LPWSTR)( ((BYTE*)pAlloc) + sizeof(LPWSTR)*(nch+1) ); // A running pointer to second half to store arguments |
| 2841 | LPCWSTR psrc = lpCmdLine; |
| 2842 | WCHAR c; |
| 2843 | BOOL inquote; |
| 2844 | BOOL copychar; |
| 2845 | int numslash; |
| 2846 | |
| 2847 | // First, parse the program name (argv[0]). Argv[0] is parsed under |
| 2848 | // special rules. Anything up to the first whitespace outside a quoted |
| 2849 | // subtring is accepted. Backslashes are treated as normal characters. |
| 2850 | argv[ (*pNumArgs)++ ] = pdst; |
| 2851 | inquote = FALSE; |
| 2852 | do { |
| 2853 | if (*psrc == W('"') ) |
| 2854 | { |
| 2855 | inquote = !inquote; |
| 2856 | c = *psrc++; |
| 2857 | continue; |
| 2858 | } |
| 2859 | *pdst++ = *psrc; |
| 2860 | |
| 2861 | c = *psrc++; |
| 2862 | |
| 2863 | } while ( (c != W('\0') && (inquote || (c != W(' ') && c != W('\t')))) ); |
| 2864 | |
| 2865 | if ( c == W('\0') ) { |
| 2866 | psrc--; |
| 2867 | } else { |
| 2868 | *(pdst-1) = W('\0'); |
| 2869 | } |
| 2870 | |
| 2871 | inquote = FALSE; |
| 2872 | |
| 2873 | |
| 2874 | |
| 2875 | /* loop on each argument */ |
| 2876 | for(;;) |
| 2877 | { |
| 2878 | if ( *psrc ) |
| 2879 | { |
| 2880 | while (*psrc == W(' ') || *psrc == W('\t')) |
| 2881 | { |
| 2882 | ++psrc; |
| 2883 | } |
| 2884 | } |
| 2885 | |
| 2886 | if (*psrc == W('\0')) |
| 2887 | break; /* end of args */ |
| 2888 | |
| 2889 | /* scan an argument */ |
| 2890 | argv[ (*pNumArgs)++ ] = pdst; |
| 2891 | |
| 2892 | /* loop through scanning one argument */ |
| 2893 | for (;;) |
| 2894 | { |
| 2895 | copychar = 1; |
| 2896 | /* Rules: 2N backslashes + " ==> N backslashes and begin/end quote |
| 2897 | 2N+1 backslashes + " ==> N backslashes + literal " |
| 2898 | N backslashes ==> N backslashes */ |
| 2899 | numslash = 0; |
| 2900 | while (*psrc == W('\\')) |
| 2901 | { |
| 2902 | /* count number of backslashes for use below */ |
| 2903 | ++psrc; |
| 2904 | ++numslash; |
| 2905 | } |
| 2906 | if (*psrc == W('"')) |
| 2907 | { |
| 2908 | /* if 2N backslashes before, start/end quote, otherwise |
| 2909 | copy literally */ |
| 2910 | if (numslash % 2 == 0) |
| 2911 | { |
| 2912 | if (inquote && psrc[1] == W('"')) |
| 2913 | { |
| 2914 | psrc++; /* Double quote inside quoted string */ |
| 2915 | } |
| 2916 | else |
| 2917 | { |
| 2918 | /* skip first quote char and copy second */ |
| 2919 | copychar = 0; /* don't copy quote */ |
| 2920 | inquote = !inquote; |
| 2921 | } |
| 2922 | } |
| 2923 | numslash /= 2; /* divide numslash by two */ |
| 2924 | } |
| 2925 | |
| 2926 | /* copy slashes */ |
| 2927 | while (numslash--) |
| 2928 | { |
| 2929 | *pdst++ = W('\\'); |
| 2930 | } |
| 2931 | |
| 2932 | /* if at end of arg, break loop */ |
| 2933 | if (*psrc == W('\0') || (!inquote && (*psrc == W(' ') || *psrc == W('\t')))) |
| 2934 | break; |
| 2935 | |
| 2936 | /* copy character into argument */ |
| 2937 | if (copychar) |
| 2938 | { |
| 2939 | *pdst++ = *psrc; |
| 2940 | } |
| 2941 | ++psrc; |
| 2942 | } |
| 2943 | |
| 2944 | /* null-terminate the argument */ |
| 2945 | |
| 2946 | *pdst++ = W('\0'); /* terminate string */ |
| 2947 | } |
| 2948 | |
| 2949 | /* We put one last argument in -- a null ptr */ |
| 2950 | argv[ (*pNumArgs) ] = NULL; |
| 2951 | |
| 2952 | // If we hit this assert, we overwrote our destination buffer. |
| 2953 | // Since we're supposed to allocate for the worst |
| 2954 | // case, either the parsing rules have changed or our worse case |
| 2955 | // formula is wrong. |
| 2956 | _ASSERTE((BYTE*)pdst <= (BYTE*)pAlloc + cbAlloc); |
| 2957 | return argv; |
| 2958 | } |
| 2959 | |
| 2960 | Volatile<PVOID> ForbidCallsIntoHostOnThisThread::s_pvOwningFiber = NULL; |
| 2961 | |
| 2962 | //====================================================================== |
| 2963 | // This function returns true, if it can determine that the instruction pointer |
| 2964 | // refers to a code address that belongs in the range of the given image. |
| 2965 | // <TODO>@TODO: Merge with IsIPInModule from vm\util.hpp</TODO> |
| 2966 | |
| 2967 | BOOL IsIPInModule(HMODULE_TGT hModule, PCODE ip) |
| 2968 | { |
| 2969 | STATIC_CONTRACT_LEAF; |
| 2970 | SUPPORTS_DAC; |
| 2971 | |
| 2972 | struct Param |
| 2973 | { |
| 2974 | HMODULE_TGT hModule; |
| 2975 | PCODE ip; |
| 2976 | BOOL fRet; |
| 2977 | } param; |
| 2978 | param.hModule = hModule; |
| 2979 | param.ip = ip; |
| 2980 | param.fRet = FALSE; |
| 2981 | |
| 2982 | // UNIXTODO: implement a proper version for PAL |
| 2983 | #ifndef FEATURE_PAL |
| 2984 | PAL_TRY(Param *, pParam, ¶m) |
| 2985 | { |
| 2986 | PTR_BYTE pBase = dac_cast<PTR_BYTE>(pParam->hModule); |
| 2987 | |
| 2988 | PTR_IMAGE_DOS_HEADER pDOS = NULL; |
| 2989 | PTR_IMAGE_NT_HEADERS pNT = NULL; |
| 2990 | USHORT cbOptHdr; |
| 2991 | PCODE baseAddr; |
| 2992 | |
| 2993 | // |
| 2994 | // First, must validate the format of the PE headers to make sure that |
| 2995 | // the fields we're interested in using exist in the image. |
| 2996 | // |
| 2997 | |
| 2998 | // Validate the DOS header. |
| 2999 | pDOS = PTR_IMAGE_DOS_HEADER(pBase); |
| 3000 | if (pDOS->e_magic != VAL16(IMAGE_DOS_SIGNATURE) || |
| 3001 | pDOS->e_lfanew == 0) |
| 3002 | { |
| 3003 | goto lDone; |
| 3004 | } |
| 3005 | |
| 3006 | // Validate the NT header |
| 3007 | pNT = PTR_IMAGE_NT_HEADERS(pBase + VAL32(pDOS->e_lfanew)); |
| 3008 | |
| 3009 | if (pNT->Signature != VAL32(IMAGE_NT_SIGNATURE)) |
| 3010 | { |
| 3011 | goto lDone; |
| 3012 | } |
| 3013 | |
| 3014 | // Validate that the optional header is large enough to contain the fields |
| 3015 | // we're interested, namely IMAGE_OPTIONAL_HEADER::SizeOfImage. The reason |
| 3016 | // we don't just check that SizeOfOptionalHeader == IMAGE_SIZEOF_NT_OPTIONAL_HEADER |
| 3017 | // is due to VSW443590, which states that the extensibility of this structure |
| 3018 | // is such that it is possible to include only a portion of the optional header. |
| 3019 | cbOptHdr = pNT->FileHeader.SizeOfOptionalHeader; |
| 3020 | |
| 3021 | // Check that the magic field is contained by the optional header and set to the correct value. |
| 3022 | if (cbOptHdr < (offsetof(IMAGE_OPTIONAL_HEADER, Magic) + sizeofmember(IMAGE_OPTIONAL_HEADER, Magic)) || |
| 3023 | pNT->OptionalHeader.Magic != VAL16(IMAGE_NT_OPTIONAL_HDR_MAGIC)) |
| 3024 | { |
| 3025 | goto lDone; |
| 3026 | } |
| 3027 | |
| 3028 | // Check that the SizeOfImage is contained by the optional header. |
| 3029 | if (cbOptHdr < (offsetof(IMAGE_OPTIONAL_HEADER, SizeOfImage) + sizeofmember(IMAGE_OPTIONAL_HEADER, SizeOfImage))) |
| 3030 | { |
| 3031 | goto lDone; |
| 3032 | } |
| 3033 | |
| 3034 | // |
| 3035 | // The real check |
| 3036 | // |
| 3037 | |
| 3038 | baseAddr = dac_cast<PCODE>(pBase); |
| 3039 | if ((pParam->ip < baseAddr) || (pParam->ip >= (baseAddr + VAL32(pNT->OptionalHeader.SizeOfImage)))) |
| 3040 | { |
| 3041 | goto lDone; |
| 3042 | } |
| 3043 | |
| 3044 | pParam->fRet = TRUE; |
| 3045 | |
| 3046 | lDone: ; |
| 3047 | } |
| 3048 | PAL_EXCEPT (EXCEPTION_EXECUTE_HANDLER) |
| 3049 | { |
| 3050 | } |
| 3051 | PAL_ENDTRY |
| 3052 | #endif // !FEATURE_PAL |
| 3053 | |
| 3054 | return param.fRet; |
| 3055 | } |
| 3056 | |
| 3057 | #ifdef FEATURE_CORRUPTING_EXCEPTIONS |
| 3058 | |
| 3059 | // To include definition of EXCEPTION_SOFTSO |
| 3060 | #include "corexcep.h" |
| 3061 | |
| 3062 | // These functions provide limited support for corrupting exceptions |
| 3063 | // outside the VM folder. Its limited since we don't have access to the |
| 3064 | // throwable. |
| 3065 | // |
| 3066 | // These functions are also wrapped by the corresponding CEHelper |
| 3067 | // methods in excep.cpp. |
| 3068 | |
| 3069 | // Given an exception code, this method returns a BOOL to indicate if the |
| 3070 | // code belongs to a corrupting exception or not. |
| 3071 | BOOL IsProcessCorruptedStateException(DWORD dwExceptionCode, BOOL fCheckForSO /*=TRUE*/) |
| 3072 | { |
| 3073 | LIMITED_METHOD_CONTRACT; |
| 3074 | |
| 3075 | // By default, assume its not corrupting |
| 3076 | BOOL fIsCorruptedStateException = FALSE; |
| 3077 | |
| 3078 | if (CLRConfig::GetConfigValue(CLRConfig::UNSUPPORTED_legacyCorruptedStateExceptionsPolicy) == 1) |
| 3079 | { |
| 3080 | return fIsCorruptedStateException; |
| 3081 | } |
| 3082 | |
| 3083 | // If we have been asked not to include SO in the CSE check |
| 3084 | // and the code represent SO, then exit now. |
| 3085 | if ((fCheckForSO == FALSE) && (dwExceptionCode == STATUS_STACK_OVERFLOW)) |
| 3086 | { |
| 3087 | return fIsCorruptedStateException; |
| 3088 | } |
| 3089 | |
| 3090 | switch(dwExceptionCode) |
| 3091 | { |
| 3092 | case STATUS_ACCESS_VIOLATION: |
| 3093 | case STATUS_STACK_OVERFLOW: |
| 3094 | case EXCEPTION_ILLEGAL_INSTRUCTION: |
| 3095 | case EXCEPTION_IN_PAGE_ERROR: |
| 3096 | case EXCEPTION_INVALID_DISPOSITION: |
| 3097 | case EXCEPTION_NONCONTINUABLE_EXCEPTION: |
| 3098 | case EXCEPTION_PRIV_INSTRUCTION: |
| 3099 | case STATUS_UNWIND_CONSOLIDATE: |
| 3100 | fIsCorruptedStateException = TRUE; |
| 3101 | break; |
| 3102 | } |
| 3103 | |
| 3104 | return fIsCorruptedStateException; |
| 3105 | } |
| 3106 | |
| 3107 | #endif // FEATURE_CORRUPTING_EXCEPTIONS |
| 3108 | |
| 3109 | void EnableTerminationOnHeapCorruption() |
| 3110 | { |
| 3111 | HeapSetInformation(NULL, HeapEnableTerminationOnCorruption, NULL, 0); |
| 3112 | } |
| 3113 | |
| 3114 | #ifdef FEATURE_COMINTEROP |
| 3115 | BOOL IsClrHostedLegacyComObject(REFCLSID rclsid) |
| 3116 | { |
| 3117 | // let's simply check for all CLSIDs that are known to be runtime implemented and capped to 2.0 |
| 3118 | return ( |
| 3119 | rclsid == CLSID_ComCallUnmarshal || |
| 3120 | rclsid == CLSID_CorMetaDataDispenser || |
| 3121 | rclsid == CLSID_CorMetaDataDispenserRuntime || |
| 3122 | rclsid == CLSID_TypeNameFactory); |
| 3123 | } |
| 3124 | #endif // FEATURE_COMINTEROP |
| 3125 | |
| 3126 | |
| 3127 | |
| 3128 | |
| 3129 | namespace Clr |
| 3130 | { |
| 3131 | namespace Util |
| 3132 | { |
| 3133 | static BOOL g_fLocalAppDataDirectoryInitted = FALSE; |
| 3134 | static WCHAR *g_wszLocalAppDataDirectory = NULL; |
| 3135 | |
| 3136 | // This api returns a pointer to a null-terminated string that contains the local appdata directory |
| 3137 | // or it returns NULL in the case that the directory could not be found. The return value from this function |
| 3138 | // is not actually checked for existence. |
| 3139 | HRESULT GetLocalAppDataDirectory(LPCWSTR *ppwzLocalAppDataDirectory) |
| 3140 | { |
| 3141 | CONTRACTL { |
| 3142 | NOTHROW; |
| 3143 | GC_NOTRIGGER; |
| 3144 | } CONTRACTL_END; |
| 3145 | |
| 3146 | HRESULT hr = S_OK; |
| 3147 | *ppwzLocalAppDataDirectory = NULL; |
| 3148 | |
| 3149 | EX_TRY |
| 3150 | { |
| 3151 | if (!g_fLocalAppDataDirectoryInitted) |
| 3152 | { |
| 3153 | WCHAR *wszLocalAppData = NULL; |
| 3154 | |
| 3155 | DWORD cCharsNeeded; |
| 3156 | cCharsNeeded = GetEnvironmentVariableW(W("LOCALAPPDATA" ), NULL, 0); |
| 3157 | |
| 3158 | if ((cCharsNeeded != 0) && (cCharsNeeded < MAX_LONGPATH)) |
| 3159 | { |
| 3160 | wszLocalAppData = new WCHAR[cCharsNeeded]; |
| 3161 | cCharsNeeded = GetEnvironmentVariableW(W("LOCALAPPDATA" ), wszLocalAppData, cCharsNeeded); |
| 3162 | if (cCharsNeeded != 0) |
| 3163 | { |
| 3164 | // We've collected the appropriate app data directory into a local. Now publish it. |
| 3165 | if (InterlockedCompareExchangeT(&g_wszLocalAppDataDirectory, wszLocalAppData, NULL) == NULL) |
| 3166 | { |
| 3167 | // This variable doesn't need to be freed, as it has been stored in the global |
| 3168 | wszLocalAppData = NULL; |
| 3169 | } |
| 3170 | } |
| 3171 | } |
| 3172 | |
| 3173 | g_fLocalAppDataDirectoryInitted = TRUE; |
| 3174 | delete[] wszLocalAppData; |
| 3175 | } |
| 3176 | } |
| 3177 | EX_CATCH_HRESULT(hr); |
| 3178 | |
| 3179 | if (SUCCEEDED(hr)) |
| 3180 | *ppwzLocalAppDataDirectory = g_wszLocalAppDataDirectory; |
| 3181 | |
| 3182 | return hr; |
| 3183 | } |
| 3184 | |
| 3185 | HRESULT SetLocalAppDataDirectory(LPCWSTR pwzLocalAppDataDirectory) |
| 3186 | { |
| 3187 | CONTRACTL { |
| 3188 | NOTHROW; |
| 3189 | GC_NOTRIGGER; |
| 3190 | } CONTRACTL_END; |
| 3191 | |
| 3192 | if (pwzLocalAppDataDirectory == NULL || *pwzLocalAppDataDirectory == W('\0')) |
| 3193 | return E_INVALIDARG; |
| 3194 | |
| 3195 | if (g_fLocalAppDataDirectoryInitted) |
| 3196 | return E_UNEXPECTED; |
| 3197 | |
| 3198 | HRESULT hr = S_OK; |
| 3199 | |
| 3200 | EX_TRY |
| 3201 | { |
| 3202 | size_t size = wcslen(pwzLocalAppDataDirectory) + 1; |
| 3203 | WCHAR *wszLocalAppData = new WCHAR[size]; |
| 3204 | wcscpy_s(wszLocalAppData, size, pwzLocalAppDataDirectory); |
| 3205 | |
| 3206 | // We've collected the appropriate app data directory into a local. Now publish it. |
| 3207 | if (InterlockedCompareExchangeT(&g_wszLocalAppDataDirectory, wszLocalAppData, NULL) != NULL) |
| 3208 | { |
| 3209 | // Someone else already set LocalAppData. Free our copy and return an error. |
| 3210 | delete[] wszLocalAppData; |
| 3211 | hr = E_UNEXPECTED; |
| 3212 | } |
| 3213 | |
| 3214 | g_fLocalAppDataDirectoryInitted = TRUE; |
| 3215 | } |
| 3216 | EX_CATCH_HRESULT(hr); |
| 3217 | |
| 3218 | return hr; |
| 3219 | } |
| 3220 | |
| 3221 | #ifndef FEATURE_PAL |
| 3222 | namespace Reg |
| 3223 | { |
| 3224 | HRESULT ReadStringValue(HKEY hKey, LPCWSTR wszSubKeyName, LPCWSTR wszValueName, SString & ssValue) |
| 3225 | { |
| 3226 | STANDARD_VM_CONTRACT; |
| 3227 | |
| 3228 | if (hKey == NULL) |
| 3229 | { |
| 3230 | return E_INVALIDARG; |
| 3231 | } |
| 3232 | |
| 3233 | RegKeyHolder hTargetKey; |
| 3234 | if (wszSubKeyName == NULL || *wszSubKeyName == W('\0')) |
| 3235 | { // No subkey was requested, use hKey as the resolved key. |
| 3236 | hTargetKey = hKey; |
| 3237 | hTargetKey.SuppressRelease(); |
| 3238 | } |
| 3239 | else |
| 3240 | { // Try to open the specified subkey. |
| 3241 | if (WszRegOpenKeyEx(hKey, wszSubKeyName, 0, KEY_READ, &hTargetKey) != ERROR_SUCCESS) |
| 3242 | return REGDB_E_CLASSNOTREG; |
| 3243 | } |
| 3244 | |
| 3245 | DWORD type; |
| 3246 | DWORD size; |
| 3247 | if ((WszRegQueryValueEx(hTargetKey, wszValueName, 0, &type, 0, &size) == ERROR_SUCCESS) && |
| 3248 | type == REG_SZ && size > 0) |
| 3249 | { |
| 3250 | LPWSTR wszValueBuf = ssValue.OpenUnicodeBuffer(static_cast<COUNT_T>((size / sizeof(WCHAR)) - 1)); |
| 3251 | LONG lResult = WszRegQueryValueEx( |
| 3252 | hTargetKey, |
| 3253 | wszValueName, |
| 3254 | 0, |
| 3255 | 0, |
| 3256 | reinterpret_cast<LPBYTE>(wszValueBuf), |
| 3257 | &size); |
| 3258 | |
| 3259 | _ASSERTE(lResult == ERROR_SUCCESS); |
| 3260 | if (lResult == ERROR_SUCCESS) |
| 3261 | { |
| 3262 | // Can't count on the returned size being accurate - I've seen at least |
| 3263 | // one string with an extra NULL at the end that will cause the resulting |
| 3264 | // SString to count the extra NULL as part of the string. An extra |
| 3265 | // terminating NULL is not a legitimate scenario for REG_SZ - this must |
| 3266 | // be done using REG_MULTI_SZ - however this was tolerated in the |
| 3267 | // past and so it would be a breaking change to stop doing so. |
| 3268 | _ASSERTE(wcslen(wszValueBuf) <= (size / sizeof(WCHAR)) - 1); |
| 3269 | ssValue.CloseBuffer((COUNT_T)wcsnlen(wszValueBuf, (size_t)size)); |
| 3270 | } |
| 3271 | else |
| 3272 | { |
| 3273 | ssValue.CloseBuffer(0); |
| 3274 | return HRESULT_FROM_WIN32(lResult); |
| 3275 | } |
| 3276 | |
| 3277 | return S_OK; |
| 3278 | } |
| 3279 | else |
| 3280 | { |
| 3281 | return REGDB_E_KEYMISSING; |
| 3282 | } |
| 3283 | } |
| 3284 | |
| 3285 | HRESULT ReadStringValue(HKEY hKey, LPCWSTR wszSubKey, LPCWSTR wszName, __deref_out __deref_out_z LPWSTR* pwszValue) |
| 3286 | { |
| 3287 | CONTRACTL { |
| 3288 | NOTHROW; |
| 3289 | GC_NOTRIGGER; |
| 3290 | } CONTRACTL_END; |
| 3291 | |
| 3292 | HRESULT hr = S_OK; |
| 3293 | EX_TRY |
| 3294 | { |
| 3295 | StackSString ssValue; |
| 3296 | if (SUCCEEDED(hr = ReadStringValue(hKey, wszSubKey, wszName, ssValue))) |
| 3297 | { |
| 3298 | *pwszValue = new WCHAR[ssValue.GetCount() + 1]; |
| 3299 | wcscpy_s(*pwszValue, ssValue.GetCount() + 1, ssValue.GetUnicode()); |
| 3300 | } |
| 3301 | } |
| 3302 | EX_CATCH_HRESULT(hr); |
| 3303 | return hr; |
| 3304 | } |
| 3305 | } // namespace Reg |
| 3306 | |
| 3307 | namespace Com |
| 3308 | { |
| 3309 | namespace __imp |
| 3310 | { |
| 3311 | __success(return == S_OK) |
| 3312 | static |
| 3313 | HRESULT FindSubKeyDefaultValueForCLSID(REFCLSID rclsid, LPCWSTR wszSubKeyName, SString & ssValue) |
| 3314 | { |
| 3315 | STANDARD_VM_CONTRACT; |
| 3316 | |
| 3317 | HRESULT hr = S_OK; |
| 3318 | |
| 3319 | WCHAR wszClsid[39]; |
| 3320 | if (GuidToLPWSTR(rclsid, wszClsid, NumItems(wszClsid)) == 0) |
| 3321 | return E_UNEXPECTED; |
| 3322 | |
| 3323 | StackSString ssKeyName; |
| 3324 | ssKeyName.Append(SL(W("CLSID\\" ))); |
| 3325 | ssKeyName.Append(wszClsid); |
| 3326 | ssKeyName.Append(SL(W("\\" ))); |
| 3327 | ssKeyName.Append(wszSubKeyName); |
| 3328 | |
| 3329 | return Clr::Util::Reg::ReadStringValue(HKEY_CLASSES_ROOT, ssKeyName.GetUnicode(), NULL, ssValue); |
| 3330 | } |
| 3331 | |
| 3332 | __success(return == S_OK) |
| 3333 | static |
| 3334 | HRESULT FindSubKeyDefaultValueForCLSID(REFCLSID rclsid, LPCWSTR wszSubKeyName, __deref_out __deref_out_z LPWSTR* pwszValue) |
| 3335 | { |
| 3336 | CONTRACTL { |
| 3337 | NOTHROW; |
| 3338 | GC_NOTRIGGER; |
| 3339 | } CONTRACTL_END; |
| 3340 | |
| 3341 | HRESULT hr = S_OK; |
| 3342 | EX_TRY |
| 3343 | { |
| 3344 | StackSString ssValue; |
| 3345 | if (SUCCEEDED(hr = FindSubKeyDefaultValueForCLSID(rclsid, wszSubKeyName, ssValue))) |
| 3346 | { |
| 3347 | *pwszValue = new WCHAR[ssValue.GetCount() + 1]; |
| 3348 | wcscpy_s(*pwszValue, ssValue.GetCount() + 1, ssValue.GetUnicode()); |
| 3349 | } |
| 3350 | } |
| 3351 | EX_CATCH_HRESULT(hr); |
| 3352 | return hr; |
| 3353 | } |
| 3354 | } |
| 3355 | |
| 3356 | HRESULT FindServerUsingCLSID(REFCLSID rclsid, __deref_out __deref_out_z LPWSTR* pwszServerName) |
| 3357 | { |
| 3358 | WRAPPER_NO_CONTRACT; |
| 3359 | return __imp::FindSubKeyDefaultValueForCLSID(rclsid, W("Server" ), pwszServerName); |
| 3360 | } |
| 3361 | |
| 3362 | HRESULT FindServerUsingCLSID(REFCLSID rclsid, SString & ssServerName) |
| 3363 | { |
| 3364 | WRAPPER_NO_CONTRACT; |
| 3365 | return __imp::FindSubKeyDefaultValueForCLSID(rclsid, W("Server" ), ssServerName); |
| 3366 | } |
| 3367 | |
| 3368 | HRESULT FindInprocServer32UsingCLSID(REFCLSID rclsid, __deref_out __deref_out_z LPWSTR* pwszInprocServer32Name) |
| 3369 | { |
| 3370 | WRAPPER_NO_CONTRACT; |
| 3371 | return __imp::FindSubKeyDefaultValueForCLSID(rclsid, W("InprocServer32" ), pwszInprocServer32Name); |
| 3372 | } |
| 3373 | |
| 3374 | HRESULT FindInprocServer32UsingCLSID(REFCLSID rclsid, SString & ssInprocServer32Name) |
| 3375 | { |
| 3376 | WRAPPER_NO_CONTRACT; |
| 3377 | return __imp::FindSubKeyDefaultValueForCLSID(rclsid, W("InprocServer32" ), ssInprocServer32Name); |
| 3378 | } |
| 3379 | |
| 3380 | BOOL IsMscoreeInprocServer32(const SString & ssInprocServer32Name) |
| 3381 | { |
| 3382 | WRAPPER_NO_CONTRACT; |
| 3383 | |
| 3384 | return (ssInprocServer32Name.EqualsCaseInsensitive(SL(MSCOREE_SHIM_W)) || |
| 3385 | ssInprocServer32Name.EndsWithCaseInsensitive(SL(W("\\" ) MSCOREE_SHIM_W))); |
| 3386 | } |
| 3387 | |
| 3388 | BOOL CLSIDHasMscoreeAsInprocServer32(REFCLSID rclsid) |
| 3389 | { |
| 3390 | WRAPPER_NO_CONTRACT; |
| 3391 | |
| 3392 | StackSString ssInprocServer32; |
| 3393 | FindInprocServer32UsingCLSID(rclsid, ssInprocServer32); |
| 3394 | return IsMscoreeInprocServer32(ssInprocServer32); |
| 3395 | } |
| 3396 | |
| 3397 | } // namespace Com |
| 3398 | #endif // FEATURE_PAL |
| 3399 | |
| 3400 | namespace Win32 |
| 3401 | { |
| 3402 | void GetModuleFileName( |
| 3403 | HMODULE hModule, |
| 3404 | SString & ssFileName, |
| 3405 | bool fAllowLongFileNames) |
| 3406 | { |
| 3407 | STANDARD_VM_CONTRACT; |
| 3408 | |
| 3409 | // Try to use what the SString already has allocated. If it does not have anything allocated |
| 3410 | // or it has < 20 characters allocated, then bump the size requested to _MAX_PATH. |
| 3411 | |
| 3412 | DWORD dwResult = WszGetModuleFileName(hModule, ssFileName); |
| 3413 | |
| 3414 | |
| 3415 | if (dwResult == 0) |
| 3416 | ThrowHR(HRESULT_FROM_GetLastError()); |
| 3417 | |
| 3418 | _ASSERTE(dwResult != 0 ); |
| 3419 | } |
| 3420 | |
| 3421 | // Returns heap-allocated string in *pwszFileName |
| 3422 | HRESULT GetModuleFileName( |
| 3423 | HMODULE hModule, |
| 3424 | __deref_out_z LPWSTR * pwszFileName, |
| 3425 | bool fAllowLongFileNames) |
| 3426 | { |
| 3427 | CONTRACTL { |
| 3428 | NOTHROW; |
| 3429 | GC_NOTRIGGER; |
| 3430 | PRECONDITION(CheckPointer(pwszFileName)); |
| 3431 | } CONTRACTL_END; |
| 3432 | |
| 3433 | HRESULT hr = S_OK; |
| 3434 | EX_TRY |
| 3435 | { |
| 3436 | InlineSString<_MAX_PATH> ssFileName; |
| 3437 | GetModuleFileName(hModule, ssFileName); |
| 3438 | *pwszFileName = DuplicateStringThrowing(ssFileName.GetUnicode()); |
| 3439 | } |
| 3440 | EX_CATCH_HRESULT(hr); |
| 3441 | |
| 3442 | return hr; |
| 3443 | } |
| 3444 | |
| 3445 | void GetFullPathName( |
| 3446 | SString const & ssFileName, |
| 3447 | SString & ssPathName, |
| 3448 | DWORD * pdwFilePartIdx, |
| 3449 | bool fAllowLongFileNames) |
| 3450 | { |
| 3451 | STANDARD_VM_CONTRACT; |
| 3452 | |
| 3453 | // Get the required buffer length (including terminating NULL). |
| 3454 | DWORD dwLengthRequired = WszGetFullPathName(ssFileName.GetUnicode(), 0, NULL, NULL); |
| 3455 | |
| 3456 | if (dwLengthRequired == 0) |
| 3457 | ThrowHR(HRESULT_FROM_GetLastError()); |
| 3458 | |
| 3459 | LPWSTR wszPathName = ssPathName.OpenUnicodeBuffer(dwLengthRequired - 1); |
| 3460 | LPWSTR wszFileName = NULL; |
| 3461 | DWORD dwLengthWritten = WszGetFullPathName( |
| 3462 | ssFileName.GetUnicode(), |
| 3463 | dwLengthRequired, |
| 3464 | wszPathName, |
| 3465 | &wszFileName); |
| 3466 | |
| 3467 | // Calculate the index while the buffer is open and the string pointer is stable. |
| 3468 | if (dwLengthWritten != 0 && dwLengthWritten < dwLengthRequired && pdwFilePartIdx != NULL) |
| 3469 | *pdwFilePartIdx = static_cast<DWORD>(wszFileName - wszPathName); |
| 3470 | |
| 3471 | ssPathName.CloseBuffer(dwLengthWritten < dwLengthRequired ? dwLengthWritten : 0); |
| 3472 | |
| 3473 | if (dwLengthRequired == 0) |
| 3474 | ThrowHR(HRESULT_FROM_GetLastError()); |
| 3475 | |
| 3476 | // Overly defensive? Perhaps. |
| 3477 | if (!(dwLengthWritten < dwLengthRequired)) |
| 3478 | ThrowHR(E_UNEXPECTED); |
| 3479 | |
| 3480 | } |
| 3481 | } // namespace Win32 |
| 3482 | |
| 3483 | } // namespace Util |
| 3484 | } // namespace Clr |
| 3485 | |