| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | // |
| 5 | |
| 6 | // |
| 7 | |
| 8 | #include "common.h" |
| 9 | |
| 10 | #ifdef WIN64EXCEPTIONS |
| 11 | #include "exceptionhandling.h" |
| 12 | #include "dbginterface.h" |
| 13 | #include "asmconstants.h" |
| 14 | #include "eetoprofinterfacewrapper.inl" |
| 15 | #include "eedbginterfaceimpl.inl" |
| 16 | #include "perfcounters.h" |
| 17 | #include "eventtrace.h" |
| 18 | #include "virtualcallstub.h" |
| 19 | |
| 20 | #if defined(_TARGET_X86_) |
| 21 | #define USE_CURRENT_CONTEXT_IN_FILTER |
| 22 | #endif // _TARGET_X86_ |
| 23 | |
| 24 | #if defined(_TARGET_ARM_) || defined(_TARGET_X86_) |
| 25 | #define VSD_STUB_CAN_THROW_AV |
| 26 | #endif // _TARGET_ARM_ || _TARGET_X86_ |
| 27 | |
| 28 | #if defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 29 | // ARM/ARM64 uses Caller-SP to locate PSPSym in the funclet frame. |
| 30 | #define USE_CALLER_SP_IN_FUNCLET |
| 31 | #endif // _TARGET_ARM_ || _TARGET_ARM64_ |
| 32 | |
| 33 | #if defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) || defined(_TARGET_X86_) |
| 34 | #define ADJUST_PC_UNWOUND_TO_CALL |
| 35 | #define STACK_RANGE_BOUNDS_ARE_CALLER_SP |
| 36 | #define USE_FUNCLET_CALL_HELPER |
| 37 | // For ARM/ARM64, EstablisherFrame is Caller-SP (SP just before executing call instruction). |
| 38 | // This has been confirmed by AaronGi from the kernel team for Windows. |
| 39 | // |
| 40 | // For x86/Linux, RtlVirtualUnwind sets EstablisherFrame as Caller-SP. |
| 41 | #define ESTABLISHER_FRAME_ADDRESS_IS_CALLER_SP |
| 42 | #endif // _TARGET_ARM_ || _TARGET_ARM64_ || _TARGET_X86_ |
| 43 | |
| 44 | #ifndef FEATURE_PAL |
| 45 | void __declspec(noinline) |
| 46 | ClrUnwindEx(EXCEPTION_RECORD* pExceptionRecord, |
| 47 | UINT_PTR ReturnValue, |
| 48 | UINT_PTR TargetIP, |
| 49 | UINT_PTR TargetFrameSp); |
| 50 | #endif // !FEATURE_PAL |
| 51 | |
| 52 | #ifdef USE_CURRENT_CONTEXT_IN_FILTER |
| 53 | inline void CaptureNonvolatileRegisters(PKNONVOLATILE_CONTEXT pNonvolatileContext, PCONTEXT pContext) |
| 54 | { |
| 55 | #define CALLEE_SAVED_REGISTER(reg) pNonvolatileContext->reg = pContext->reg; |
| 56 | ENUM_CALLEE_SAVED_REGISTERS(); |
| 57 | #undef CALLEE_SAVED_REGISTER |
| 58 | } |
| 59 | |
| 60 | inline void RestoreNonvolatileRegisters(PCONTEXT pContext, PKNONVOLATILE_CONTEXT pNonvolatileContext) |
| 61 | { |
| 62 | #define CALLEE_SAVED_REGISTER(reg) pContext->reg = pNonvolatileContext->reg; |
| 63 | ENUM_CALLEE_SAVED_REGISTERS(); |
| 64 | #undef CALLEE_SAVED_REGISTER |
| 65 | } |
| 66 | |
| 67 | inline void RestoreNonvolatileRegisterPointers(PT_KNONVOLATILE_CONTEXT_POINTERS pContextPointers, PKNONVOLATILE_CONTEXT pNonvolatileContext) |
| 68 | { |
| 69 | #define CALLEE_SAVED_REGISTER(reg) pContextPointers->reg = &pNonvolatileContext->reg; |
| 70 | ENUM_CALLEE_SAVED_REGISTERS(); |
| 71 | #undef CALLEE_SAVED_REGISTER |
| 72 | } |
| 73 | #endif |
| 74 | #ifndef DACCESS_COMPILE |
| 75 | |
| 76 | // o Functions and funclets are tightly associated. In fact, they are laid out in contiguous memory. |
| 77 | // They also present some interesting issues with respect to EH because we will see callstacks with |
| 78 | // both functions and funclets, but need to logically treat them as the original single IL function |
| 79 | // described them. |
| 80 | // |
| 81 | // o All funclets are ripped out of line from the main function. Finally clause are pulled out of |
| 82 | // line and replaced by calls to the funclets. Catch clauses, however, are simply pulled out of |
| 83 | // line. !!!This causes a loss of nesting information in clause offsets.!!! A canonical example of |
| 84 | // two different functions which look identical due to clause removal is as shown in the code |
| 85 | // snippets below. The reason they look identical in the face of out-of-line funclets is that the |
| 86 | // region bounds for the "try A" region collapse and become identical to the region bounds for |
| 87 | // region "try B". This will look identical to the region information for Bar because Bar must |
| 88 | // have a separate entry for each catch clause, both of which will have the same try-region bounds. |
| 89 | // |
| 90 | // void Foo() void Bar() |
| 91 | // { { |
| 92 | // try A try C |
| 93 | // { { |
| 94 | // try B BAR_BLK_1 |
| 95 | // { } |
| 96 | // FOO_BLK_1 catch C |
| 97 | // } { |
| 98 | // catch B BAR_BLK_2 |
| 99 | // { } |
| 100 | // FOO_BLK_2 catch D |
| 101 | // } { |
| 102 | // } BAR_BLK_3 |
| 103 | // catch A } |
| 104 | // { } |
| 105 | // FOO_BLK_3 |
| 106 | // } |
| 107 | // } |
| 108 | // |
| 109 | // O The solution is to duplicate all clauses that logically cover the funclet in its parent |
| 110 | // method, but with the try-region covering the entire out-of-line funclet code range. This will |
| 111 | // differentiate the canonical example above because the CatchB funclet will have a try-clause |
| 112 | // covering it whose associated handler is CatchA. In Bar, there is no such duplication of any clauses. |
| 113 | // |
| 114 | // o The behavior of the personality routine depends upon the JIT to properly order the clauses from |
| 115 | // inside-out. This allows us to properly handle a situation where our control PC is covered by clauses |
| 116 | // that should not be considered because a more nested clause will catch the exception and resume within |
| 117 | // the scope of the outer clauses. |
| 118 | // |
| 119 | // o This sort of clause duplication for funclets should be done for all clause types, not just catches. |
| 120 | // Unfortunately, I cannot articulate why at the moment. |
| 121 | // |
| 122 | #ifdef _DEBUG |
| 123 | void DumpClauses(IJitManager* pJitMan, const METHODTOKEN& MethToken, UINT_PTR uMethodStartPC, UINT_PTR dwControlPc); |
| 124 | static void DoEHLog(DWORD lvl, __in_z const char *fmt, ...); |
| 125 | #define EH_LOG(expr) { DoEHLog expr ; } |
| 126 | #else |
| 127 | #define EH_LOG(expr) |
| 128 | #endif |
| 129 | |
| 130 | TrackerAllocator g_theTrackerAllocator; |
| 131 | |
| 132 | bool FixNonvolatileRegisters(UINT_PTR uOriginalSP, |
| 133 | Thread* pThread, |
| 134 | CONTEXT* pContextRecord, |
| 135 | bool fAborting |
| 136 | ); |
| 137 | |
| 138 | void FixContext(PCONTEXT pContextRecord) |
| 139 | { |
| 140 | #define FIXUPREG(reg, value) \ |
| 141 | do { \ |
| 142 | STRESS_LOG2(LF_GCROOTS, LL_INFO100, "Updating " #reg " %p to %p\n", \ |
| 143 | pContextRecord->reg, \ |
| 144 | (value)); \ |
| 145 | pContextRecord->reg = (value); \ |
| 146 | } while (0) |
| 147 | |
| 148 | #ifdef _TARGET_X86_ |
| 149 | size_t resumeSp = EECodeManager::GetResumeSp(pContextRecord); |
| 150 | FIXUPREG(Esp, resumeSp); |
| 151 | #endif // _TARGET_X86_ |
| 152 | |
| 153 | #undef FIXUPREG |
| 154 | } |
| 155 | |
| 156 | MethodDesc * GetUserMethodForILStub(Thread * pThread, UINT_PTR uStubSP, MethodDesc * pILStubMD, Frame ** ppFrameOut); |
| 157 | |
| 158 | #ifdef FEATURE_PAL |
| 159 | BOOL HandleHardwareException(PAL_SEHException* ex); |
| 160 | BOOL IsSafeToHandleHardwareException(PCONTEXT contextRecord, PEXCEPTION_RECORD exceptionRecord); |
| 161 | #endif // FEATURE_PAL |
| 162 | |
| 163 | static ExceptionTracker* GetTrackerMemory() |
| 164 | { |
| 165 | CONTRACTL |
| 166 | { |
| 167 | GC_TRIGGERS; |
| 168 | NOTHROW; |
| 169 | MODE_ANY; |
| 170 | } |
| 171 | CONTRACTL_END; |
| 172 | |
| 173 | return g_theTrackerAllocator.GetTrackerMemory(); |
| 174 | } |
| 175 | |
| 176 | void FreeTrackerMemory(ExceptionTracker* pTracker, TrackerMemoryType mem) |
| 177 | { |
| 178 | CONTRACTL |
| 179 | { |
| 180 | GC_NOTRIGGER; |
| 181 | NOTHROW; |
| 182 | MODE_ANY; |
| 183 | } |
| 184 | CONTRACTL_END; |
| 185 | |
| 186 | if (mem & memManaged) |
| 187 | { |
| 188 | pTracker->ReleaseResources(); |
| 189 | } |
| 190 | |
| 191 | if (mem & memUnmanaged) |
| 192 | { |
| 193 | g_theTrackerAllocator.FreeTrackerMemory(pTracker); |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | static inline void UpdatePerformanceMetrics(CrawlFrame *pcfThisFrame, BOOL bIsRethrownException, BOOL bIsNewException) |
| 198 | { |
| 199 | WRAPPER_NO_CONTRACT; |
| 200 | COUNTER_ONLY(GetPerfCounters().m_Excep.cThrown++); |
| 201 | |
| 202 | // Fire an exception thrown ETW event when an exception occurs |
| 203 | ETW::ExceptionLog::ExceptionThrown(pcfThisFrame, bIsRethrownException, bIsNewException); |
| 204 | } |
| 205 | |
| 206 | void ShutdownEEAndExitProcess() |
| 207 | { |
| 208 | ForceEEShutdown(SCA_ExitProcessWhenShutdownComplete); |
| 209 | } |
| 210 | |
| 211 | void InitializeExceptionHandling() |
| 212 | { |
| 213 | EH_LOG((LL_INFO100, "InitializeExceptionHandling(): ExceptionTracker size: 0x%x bytes\n" , sizeof(ExceptionTracker))); |
| 214 | |
| 215 | InitSavedExceptionInfo(); |
| 216 | |
| 217 | CLRAddVectoredHandlers(); |
| 218 | |
| 219 | g_theTrackerAllocator.Init(); |
| 220 | |
| 221 | // Initialize the lock used for synchronizing access to the stacktrace in the exception object |
| 222 | g_StackTraceArrayLock.Init(LOCK_TYPE_DEFAULT, TRUE); |
| 223 | |
| 224 | #ifdef FEATURE_PAL |
| 225 | // Register handler of hardware exceptions like null reference in PAL |
| 226 | PAL_SetHardwareExceptionHandler(HandleHardwareException, IsSafeToHandleHardwareException); |
| 227 | |
| 228 | // Register handler for determining whether the specified IP has code that is a GC marker for GCCover |
| 229 | PAL_SetGetGcMarkerExceptionCode(GetGcMarkerExceptionCode); |
| 230 | |
| 231 | // Register handler for termination requests (e.g. SIGTERM) |
| 232 | PAL_SetTerminationRequestHandler(ShutdownEEAndExitProcess); |
| 233 | #endif // FEATURE_PAL |
| 234 | } |
| 235 | |
| 236 | struct UpdateObjectRefInResumeContextCallbackState |
| 237 | { |
| 238 | UINT_PTR uResumeSP; |
| 239 | Frame *pHighestFrameWithRegisters; |
| 240 | TADDR uResumeFrameFP; |
| 241 | TADDR uICFCalleeSavedFP; |
| 242 | |
| 243 | #ifdef _DEBUG |
| 244 | UINT nFrames; |
| 245 | bool fFound; |
| 246 | #endif |
| 247 | }; |
| 248 | |
| 249 | // Stack unwind callback for UpdateObjectRefInResumeContext(). |
| 250 | StackWalkAction UpdateObjectRefInResumeContextCallback(CrawlFrame* pCF, LPVOID pData) |
| 251 | { |
| 252 | CONTRACTL |
| 253 | { |
| 254 | MODE_ANY; |
| 255 | NOTHROW; |
| 256 | GC_NOTRIGGER; |
| 257 | } |
| 258 | CONTRACTL_END; |
| 259 | |
| 260 | UpdateObjectRefInResumeContextCallbackState *pState = (UpdateObjectRefInResumeContextCallbackState*)pData; |
| 261 | CONTEXT* pSrcContext = pCF->GetRegisterSet()->pCurrentContext; |
| 262 | |
| 263 | INDEBUG(pState->nFrames++); |
| 264 | |
| 265 | // Check to see if we have reached the resume frame. |
| 266 | if (pCF->IsFrameless()) |
| 267 | { |
| 268 | // At this point, we are trying to find the managed frame containing the catch handler to be invoked. |
| 269 | // This is done by comparing the SP of the managed frame for which this callback was invoked with the |
| 270 | // SP the OS passed to our personality routine for the current managed frame. If they match, then we have |
| 271 | // reached the target frame. |
| 272 | // |
| 273 | // It is possible that a managed frame may execute a PInvoke after performing a stackalloc: |
| 274 | // |
| 275 | // 1) The ARM JIT will always inline the PInvoke in the managed frame, whether or not the frame |
| 276 | // contains EH. As a result, the ICF will live in the same frame which performs stackalloc. |
| 277 | // |
| 278 | // 2) JIT64 will only inline the PInvoke in the managed frame if the frame *does not* contain EH. If it does, |
| 279 | // then pinvoke will be performed via an ILStub and thus, stackalloc will be performed in a frame different |
| 280 | // from the one (ILStub) that contains the ICF. |
| 281 | // |
| 282 | // Thus, for the scenario where the catch handler lives in the frame that performed stackalloc, in case of |
| 283 | // ARM JIT, the SP returned by the OS will be the SP *after* the stackalloc has happened. However, |
| 284 | // the stackwalker will invoke this callback with the CrawlFrameSP that was initialized at the time ICF was setup, i.e., |
| 285 | // it will be the SP after the prolog has executed (refer to InlinedCallFrame::UpdateRegDisplay). |
| 286 | // |
| 287 | // Thus, checking only the SP will not work for this scenario when using the ARM JIT. |
| 288 | // |
| 289 | // To address this case, the callback data also contains the frame pointer (FP) passed by the OS. This will |
| 290 | // be the value that is saved in the "CalleeSavedFP" field of the InlinedCallFrame during ICF |
| 291 | // initialization. When the stackwalker sees an ICF and invokes this callback, we copy the value of "CalleeSavedFP" in the data |
| 292 | // structure passed to this callback. |
| 293 | // |
| 294 | // Later, when the stackwalker invokes the callback for the managed frame containing the ICF, and the check |
| 295 | // for SP comaprison fails, we will compare the FP value we got from the ICF with the FP value the OS passed |
| 296 | // to us. If they match, then we have reached the resume frame. |
| 297 | // |
| 298 | // Note: This problem/scenario is not applicable to JIT64 since it does not perform pinvoke inlining if the |
| 299 | // method containing pinvoke also contains EH. Thus, the SP check will never fail for it. |
| 300 | if (pState->uResumeSP == GetSP(pSrcContext)) |
| 301 | { |
| 302 | INDEBUG(pState->fFound = true); |
| 303 | |
| 304 | return SWA_ABORT; |
| 305 | } |
| 306 | |
| 307 | // Perform the FP check, as explained above. |
| 308 | if ((pState->uICFCalleeSavedFP !=0) && (pState->uICFCalleeSavedFP == pState->uResumeFrameFP)) |
| 309 | { |
| 310 | // FP from ICF is the one that was also copied to the FP register in InlinedCallFrame::UpdateRegDisplay. |
| 311 | _ASSERTE(pState->uICFCalleeSavedFP == GetFP(pSrcContext)); |
| 312 | |
| 313 | INDEBUG(pState->fFound = true); |
| 314 | |
| 315 | return SWA_ABORT; |
| 316 | } |
| 317 | |
| 318 | // Reset the ICF FP in callback data |
| 319 | pState->uICFCalleeSavedFP = 0; |
| 320 | } |
| 321 | else |
| 322 | { |
| 323 | Frame *pFrame = pCF->GetFrame(); |
| 324 | |
| 325 | if (pFrame->NeedsUpdateRegDisplay()) |
| 326 | { |
| 327 | CONSISTENCY_CHECK(pFrame >= pState->pHighestFrameWithRegisters); |
| 328 | pState->pHighestFrameWithRegisters = pFrame; |
| 329 | |
| 330 | // Is this an InlinedCallFrame? |
| 331 | if (pFrame->GetVTablePtr() == InlinedCallFrame::GetMethodFrameVPtr()) |
| 332 | { |
| 333 | // If we are here, then ICF is expected to be active. |
| 334 | _ASSERTE(InlinedCallFrame::FrameHasActiveCall(pFrame)); |
| 335 | |
| 336 | // Copy the CalleeSavedFP to the data structure that is passed this callback |
| 337 | // by the stackwalker. This is the value of frame pointer when ICF is setup |
| 338 | // in a managed frame. |
| 339 | // |
| 340 | // Setting this value here is based upon the assumption (which holds true on X64 and ARM) that |
| 341 | // the stackwalker invokes the callback for explicit frames before their |
| 342 | // container/corresponding managed frame. |
| 343 | pState->uICFCalleeSavedFP = ((PTR_InlinedCallFrame)pFrame)->GetCalleeSavedFP(); |
| 344 | } |
| 345 | else |
| 346 | { |
| 347 | // For any other frame, simply reset uICFCalleeSavedFP field |
| 348 | pState->uICFCalleeSavedFP = 0; |
| 349 | } |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | return SWA_CONTINUE; |
| 354 | } |
| 355 | |
| 356 | |
| 357 | // |
| 358 | // Locates the locations of the nonvolatile registers. This will be used to |
| 359 | // retrieve the latest values of the object references before we resume |
| 360 | // execution from an exception. |
| 361 | // |
| 362 | //static |
| 363 | bool ExceptionTracker::FindNonvolatileRegisterPointers(Thread* pThread, UINT_PTR uOriginalSP, REGDISPLAY* pRegDisplay, TADDR uResumeFrameFP) |
| 364 | { |
| 365 | CONTRACTL |
| 366 | { |
| 367 | MODE_ANY; |
| 368 | NOTHROW; |
| 369 | GC_NOTRIGGER; |
| 370 | } |
| 371 | CONTRACTL_END; |
| 372 | |
| 373 | // |
| 374 | // Find the highest frame below the resume frame that will update the |
| 375 | // REGDISPLAY. A normal StackWalkFrames will RtlVirtualUnwind through all |
| 376 | // managed frames on the stack, so this avoids some unnecessary work. The |
| 377 | // frame we find will have all of the nonvolatile registers/other state |
| 378 | // needed to start a managed unwind from that point. |
| 379 | // |
| 380 | Frame *pHighestFrameWithRegisters = NULL; |
| 381 | Frame *pFrame = pThread->GetFrame(); |
| 382 | |
| 383 | while ((UINT_PTR)pFrame < uOriginalSP) |
| 384 | { |
| 385 | if (pFrame->NeedsUpdateRegDisplay()) |
| 386 | pHighestFrameWithRegisters = pFrame; |
| 387 | |
| 388 | pFrame = pFrame->Next(); |
| 389 | } |
| 390 | |
| 391 | // |
| 392 | // Do a stack walk from this frame. This may find a higher frame within |
| 393 | // the resume frame (ex. inlined pinvoke frame). This will also update |
| 394 | // the REGDISPLAY pointers if any intervening managed frames saved |
| 395 | // nonvolatile registers. |
| 396 | // |
| 397 | |
| 398 | UpdateObjectRefInResumeContextCallbackState state; |
| 399 | |
| 400 | state.uResumeSP = uOriginalSP; |
| 401 | state.uResumeFrameFP = uResumeFrameFP; |
| 402 | state.uICFCalleeSavedFP = 0; |
| 403 | state.pHighestFrameWithRegisters = pHighestFrameWithRegisters; |
| 404 | |
| 405 | INDEBUG(state.nFrames = 0); |
| 406 | INDEBUG(state.fFound = false); |
| 407 | |
| 408 | pThread->StackWalkFramesEx(pRegDisplay, &UpdateObjectRefInResumeContextCallback, &state, 0, pHighestFrameWithRegisters); |
| 409 | |
| 410 | // For managed exceptions, we should at least find a HelperMethodFrame (the one we put in IL_Throw()). |
| 411 | // For native exceptions such as AV's, we should at least find the FaultingExceptionFrame. |
| 412 | // If we don't find anything, then we must have hit an SO when we are trying to erect an HMF. |
| 413 | // Bail out in such situations. |
| 414 | // |
| 415 | // Note that pinvoke frames may be inlined in a managed method, so we cannot use the child SP (a.k.a. the current SP) |
| 416 | // to check for explicit frames "higher" on the stack ("higher" here means closer to the leaf frame). The stackwalker |
| 417 | // knows how to deal with inlined pinvoke frames, and it issues callbacks for them before issuing the callback for the |
| 418 | // containing managed method. So we have to do this check after we are done with the stackwalk. |
| 419 | pHighestFrameWithRegisters = state.pHighestFrameWithRegisters; |
| 420 | if (pHighestFrameWithRegisters == NULL) |
| 421 | { |
| 422 | return false; |
| 423 | } |
| 424 | |
| 425 | CONSISTENCY_CHECK(state.nFrames); |
| 426 | CONSISTENCY_CHECK(state.fFound); |
| 427 | CONSISTENCY_CHECK(NULL != pHighestFrameWithRegisters); |
| 428 | |
| 429 | // |
| 430 | // Now the REGDISPLAY has been unwound to the resume frame. The |
| 431 | // nonvolatile registers will either point into pHighestFrameWithRegisters, |
| 432 | // an inlined pinvoke frame, or into calling managed frames. |
| 433 | // |
| 434 | |
| 435 | return true; |
| 436 | } |
| 437 | |
| 438 | |
| 439 | //static |
| 440 | void ExceptionTracker::UpdateNonvolatileRegisters(CONTEXT *pContextRecord, REGDISPLAY *pRegDisplay, bool fAborting) |
| 441 | { |
| 442 | CONTEXT* pAbortContext = NULL; |
| 443 | if (fAborting) |
| 444 | { |
| 445 | pAbortContext = GetThread()->GetAbortContext(); |
| 446 | } |
| 447 | |
| 448 | #ifndef FEATURE_PAL |
| 449 | #define HANDLE_NULL_CONTEXT_POINTER _ASSERTE(false) |
| 450 | #else // FEATURE_PAL |
| 451 | #define HANDLE_NULL_CONTEXT_POINTER |
| 452 | #endif // FEATURE_PAL |
| 453 | |
| 454 | #define UPDATEREG(reg) \ |
| 455 | do { \ |
| 456 | if (pRegDisplay->pCurrentContextPointers->reg != NULL) \ |
| 457 | { \ |
| 458 | STRESS_LOG3(LF_GCROOTS, LL_INFO100, "Updating " #reg " %p to %p from %p\n", \ |
| 459 | pContextRecord->reg, \ |
| 460 | *pRegDisplay->pCurrentContextPointers->reg, \ |
| 461 | pRegDisplay->pCurrentContextPointers->reg); \ |
| 462 | pContextRecord->reg = *pRegDisplay->pCurrentContextPointers->reg; \ |
| 463 | } \ |
| 464 | else \ |
| 465 | { \ |
| 466 | HANDLE_NULL_CONTEXT_POINTER; \ |
| 467 | } \ |
| 468 | if (pAbortContext) \ |
| 469 | { \ |
| 470 | pAbortContext->reg = pContextRecord->reg; \ |
| 471 | } \ |
| 472 | } while (0) |
| 473 | |
| 474 | |
| 475 | #if defined(_TARGET_X86_) |
| 476 | |
| 477 | UPDATEREG(Ebx); |
| 478 | UPDATEREG(Esi); |
| 479 | UPDATEREG(Edi); |
| 480 | UPDATEREG(Ebp); |
| 481 | |
| 482 | #elif defined(_TARGET_AMD64_) |
| 483 | |
| 484 | UPDATEREG(Rbx); |
| 485 | UPDATEREG(Rbp); |
| 486 | #ifndef UNIX_AMD64_ABI |
| 487 | UPDATEREG(Rsi); |
| 488 | UPDATEREG(Rdi); |
| 489 | #endif |
| 490 | UPDATEREG(R12); |
| 491 | UPDATEREG(R13); |
| 492 | UPDATEREG(R14); |
| 493 | UPDATEREG(R15); |
| 494 | |
| 495 | #elif defined(_TARGET_ARM_) |
| 496 | |
| 497 | UPDATEREG(R4); |
| 498 | UPDATEREG(R5); |
| 499 | UPDATEREG(R6); |
| 500 | UPDATEREG(R7); |
| 501 | UPDATEREG(R8); |
| 502 | UPDATEREG(R9); |
| 503 | UPDATEREG(R10); |
| 504 | UPDATEREG(R11); |
| 505 | |
| 506 | #elif defined(_TARGET_ARM64_) |
| 507 | |
| 508 | UPDATEREG(X19); |
| 509 | UPDATEREG(X20); |
| 510 | UPDATEREG(X21); |
| 511 | UPDATEREG(X22); |
| 512 | UPDATEREG(X23); |
| 513 | UPDATEREG(X24); |
| 514 | UPDATEREG(X25); |
| 515 | UPDATEREG(X26); |
| 516 | UPDATEREG(X27); |
| 517 | UPDATEREG(X28); |
| 518 | UPDATEREG(Fp); |
| 519 | |
| 520 | #else |
| 521 | PORTABILITY_ASSERT("ExceptionTracker::UpdateNonvolatileRegisters" ); |
| 522 | #endif |
| 523 | |
| 524 | #undef UPDATEREG |
| 525 | } |
| 526 | |
| 527 | |
| 528 | #ifndef _DEBUG |
| 529 | #define DebugLogExceptionRecord(pExceptionRecord) |
| 530 | #else // _DEBUG |
| 531 | #define LOG_FLAG(name) \ |
| 532 | if (flags & name) \ |
| 533 | { \ |
| 534 | LOG((LF_EH, LL_INFO100, "" #name " ")); \ |
| 535 | } \ |
| 536 | |
| 537 | void DebugLogExceptionRecord(EXCEPTION_RECORD* pExceptionRecord) |
| 538 | { |
| 539 | ULONG flags = pExceptionRecord->ExceptionFlags; |
| 540 | |
| 541 | EH_LOG((LL_INFO100, ">>exr: %p, code: %08x, addr: %p, flags: 0x%02x " , pExceptionRecord, pExceptionRecord->ExceptionCode, pExceptionRecord->ExceptionAddress, flags)); |
| 542 | |
| 543 | LOG_FLAG(EXCEPTION_NONCONTINUABLE); |
| 544 | LOG_FLAG(EXCEPTION_UNWINDING); |
| 545 | LOG_FLAG(EXCEPTION_EXIT_UNWIND); |
| 546 | LOG_FLAG(EXCEPTION_STACK_INVALID); |
| 547 | LOG_FLAG(EXCEPTION_NESTED_CALL); |
| 548 | LOG_FLAG(EXCEPTION_TARGET_UNWIND); |
| 549 | LOG_FLAG(EXCEPTION_COLLIDED_UNWIND); |
| 550 | |
| 551 | LOG((LF_EH, LL_INFO100, "\n" )); |
| 552 | |
| 553 | } |
| 554 | |
| 555 | LPCSTR DebugGetExceptionDispositionName(EXCEPTION_DISPOSITION disp) |
| 556 | { |
| 557 | |
| 558 | switch (disp) |
| 559 | { |
| 560 | case ExceptionContinueExecution: return "ExceptionContinueExecution" ; |
| 561 | case ExceptionContinueSearch: return "ExceptionContinueSearch" ; |
| 562 | case ExceptionNestedException: return "ExceptionNestedException" ; |
| 563 | case ExceptionCollidedUnwind: return "ExceptionCollidedUnwind" ; |
| 564 | default: |
| 565 | UNREACHABLE_MSG("Invalid EXCEPTION_DISPOSITION!" ); |
| 566 | } |
| 567 | } |
| 568 | #endif // _DEBUG |
| 569 | |
| 570 | bool ExceptionTracker::IsStackOverflowException() |
| 571 | { |
| 572 | if (m_pThread->GetThrowableAsHandle() == g_pPreallocatedStackOverflowException) |
| 573 | { |
| 574 | return true; |
| 575 | } |
| 576 | |
| 577 | return false; |
| 578 | } |
| 579 | |
| 580 | UINT_PTR ExceptionTracker::CallCatchHandler(CONTEXT* pContextRecord, bool* pfAborting /*= NULL*/) |
| 581 | { |
| 582 | CONTRACTL |
| 583 | { |
| 584 | MODE_COOPERATIVE; |
| 585 | GC_TRIGGERS; |
| 586 | THROWS; |
| 587 | |
| 588 | PRECONDITION(CheckPointer(pContextRecord, NULL_OK)); |
| 589 | } |
| 590 | CONTRACTL_END; |
| 591 | |
| 592 | UINT_PTR uResumePC = 0; |
| 593 | ULONG_PTR ulRelOffset; |
| 594 | StackFrame sfStackFp = m_sfResumeStackFrame; |
| 595 | Thread* pThread = m_pThread; |
| 596 | MethodDesc* pMD = m_pMethodDescOfCatcher; |
| 597 | bool fIntercepted = false; |
| 598 | |
| 599 | ThreadExceptionState* pExState = pThread->GetExceptionState(); |
| 600 | |
| 601 | #if defined(DEBUGGING_SUPPORTED) |
| 602 | |
| 603 | // If the exception is intercepted, use the information stored in the DebuggerExState to resume the |
| 604 | // exception instead of calling the catch clause (there may not even be one). |
| 605 | if (pExState->GetFlags()->DebuggerInterceptInfo()) |
| 606 | { |
| 607 | _ASSERTE(pMD != NULL); |
| 608 | |
| 609 | // retrieve the interception information |
| 610 | pExState->GetDebuggerState()->GetDebuggerInterceptInfo(NULL, NULL, (PBYTE*)&(sfStackFp.SP), &ulRelOffset, NULL); |
| 611 | |
| 612 | PCODE pStartAddress = pMD->GetNativeCode(); |
| 613 | |
| 614 | EECodeInfo codeInfo(pStartAddress); |
| 615 | _ASSERTE(codeInfo.IsValid()); |
| 616 | |
| 617 | // Note that the value returned for ulRelOffset is actually the offset, |
| 618 | // so we need to adjust it to get the actual IP. |
| 619 | _ASSERTE(FitsIn<DWORD>(ulRelOffset)); |
| 620 | uResumePC = codeInfo.GetJitManager()->GetCodeAddressForRelOffset(codeInfo.GetMethodToken(), static_cast<DWORD>(ulRelOffset)); |
| 621 | |
| 622 | // Either we haven't set m_uResumeStackFrame (for unhandled managed exceptions), or we have set it |
| 623 | // and it equals to MemoryStackFp. |
| 624 | _ASSERTE(m_sfResumeStackFrame.IsNull() || m_sfResumeStackFrame == sfStackFp); |
| 625 | |
| 626 | fIntercepted = true; |
| 627 | } |
| 628 | #endif // DEBUGGING_SUPPORTED |
| 629 | |
| 630 | _ASSERTE(!sfStackFp.IsNull()); |
| 631 | |
| 632 | m_sfResumeStackFrame.Clear(); |
| 633 | m_pMethodDescOfCatcher = NULL; |
| 634 | |
| 635 | _ASSERTE(pContextRecord); |
| 636 | |
| 637 | // |
| 638 | // call the handler |
| 639 | // |
| 640 | EH_LOG((LL_INFO100, " calling catch at 0x%p\n" , m_uCatchToCallPC)); |
| 641 | |
| 642 | // do not call the catch clause if the exception is intercepted |
| 643 | if (!fIntercepted) |
| 644 | { |
| 645 | _ASSERTE(m_uCatchToCallPC != 0 && m_pClauseForCatchToken != NULL); |
| 646 | uResumePC = CallHandler(m_uCatchToCallPC, sfStackFp, &m_ClauseForCatch, pMD, Catch X86_ARG(pContextRecord) ARM_ARG(pContextRecord) ARM64_ARG(pContextRecord)); |
| 647 | } |
| 648 | else |
| 649 | { |
| 650 | // Since the exception has been intercepted and we could resuming execution at any |
| 651 | // user-specified arbitary location, reset the EH clause index and EstablisherFrame |
| 652 | // we may have saved for addressing any potential ThreadAbort raise. |
| 653 | // |
| 654 | // This is done since the saved EH clause index is related to the catch block executed, |
| 655 | // which does not happen in interception. As user specifies where we resume execution, |
| 656 | // we let that behaviour override the index and pretend as if we have no index available. |
| 657 | m_dwIndexClauseForCatch = 0; |
| 658 | m_sfEstablisherOfActualHandlerFrame.Clear(); |
| 659 | m_sfCallerOfActualHandlerFrame.Clear(); |
| 660 | } |
| 661 | |
| 662 | EH_LOG((LL_INFO100, " resume address should be 0x%p\n" , uResumePC)); |
| 663 | |
| 664 | // |
| 665 | // Our tracker may have gone away at this point, don't reference it. |
| 666 | // |
| 667 | |
| 668 | return FinishSecondPass(pThread, uResumePC, sfStackFp, pContextRecord, this, pfAborting); |
| 669 | } |
| 670 | |
| 671 | // static |
| 672 | UINT_PTR ExceptionTracker::FinishSecondPass( |
| 673 | Thread* pThread, |
| 674 | UINT_PTR uResumePC, |
| 675 | StackFrame sf, |
| 676 | CONTEXT* pContextRecord, |
| 677 | ExceptionTracker* pTracker, |
| 678 | bool* pfAborting /*= NULL*/) |
| 679 | { |
| 680 | CONTRACTL |
| 681 | { |
| 682 | MODE_COOPERATIVE; |
| 683 | GC_NOTRIGGER; |
| 684 | NOTHROW; |
| 685 | PRECONDITION(CheckPointer(pThread, NULL_NOT_OK)); |
| 686 | PRECONDITION(CheckPointer((void*)uResumePC, NULL_NOT_OK)); |
| 687 | PRECONDITION(CheckPointer(pContextRecord, NULL_OK)); |
| 688 | } |
| 689 | CONTRACTL_END; |
| 690 | |
| 691 | // Between the time when we pop the ExceptionTracker for the current exception and the time |
| 692 | // when we actually resume execution, it is unsafe to start a funclet-skipping stackwalk. |
| 693 | // So we set a flag here to indicate that we are in this time window. The only user of this |
| 694 | // information right now is the profiler. |
| 695 | ThreadExceptionFlagHolder tefHolder(ThreadExceptionState::TEF_InconsistentExceptionState); |
| 696 | |
| 697 | #ifdef DEBUGGING_SUPPORTED |
| 698 | // This must be done before we pop the trackers. |
| 699 | BOOL fIntercepted = pThread->GetExceptionState()->GetFlags()->DebuggerInterceptInfo(); |
| 700 | #endif // DEBUGGING_SUPPORTED |
| 701 | |
| 702 | // Since we may [re]raise ThreadAbort post the catch block execution, |
| 703 | // save the index, and Establisher, of the EH clause corresponding to the handler |
| 704 | // we just executed before we release the tracker. This will be used to ensure that reraise |
| 705 | // proceeds forward and not get stuck in a loop. Refer to |
| 706 | // ExceptionTracker::ProcessManagedCallFrame for details. |
| 707 | DWORD ehClauseCurrentHandlerIndex = pTracker->GetCatchHandlerExceptionClauseIndex(); |
| 708 | StackFrame sfEstablisherOfActualHandlerFrame = pTracker->GetEstablisherOfActualHandlingFrame(); |
| 709 | |
| 710 | EH_LOG((LL_INFO100, "second pass finished\n" )); |
| 711 | EH_LOG((LL_INFO100, "cleaning up ExceptionTracker state\n" )); |
| 712 | |
| 713 | // Release the exception trackers till the current (specified) frame. |
| 714 | ExceptionTracker::PopTrackers(sf, true); |
| 715 | |
| 716 | // This will set the last thrown to be either null if we have handled all the exceptions in the nested chain or |
| 717 | // to whatever the current exception is. |
| 718 | // |
| 719 | // In a case when we're nested inside another catch block, the domain in which we're executing may not be the |
| 720 | // same as the one the domain of the throwable that was just made the current throwable above. Therefore, we |
| 721 | // make a special effort to preserve the domain of the throwable as we update the the last thrown object. |
| 722 | // |
| 723 | // If an exception is active, we dont want to reset the LastThrownObject to NULL as the active exception |
| 724 | // might be represented by a tracker created in the second pass (refer to |
| 725 | // CEHelper::SetupCorruptionSeverityForActiveExceptionInUnwindPass to understand how exception trackers can be |
| 726 | // created in the 2nd pass on 64bit) that does not have a throwable attached to it. Thus, if this exception |
| 727 | // is caught in the VM and it attempts to get the LastThrownObject using GET_THROWABLE macro, then it should be available. |
| 728 | // |
| 729 | // But, if the active exception tracker remains consistent in the 2nd pass (which will happen if the exception is caught |
| 730 | // in managed code), then the call to SafeUpdateLastThrownObject below will automatically update the LTO as per the |
| 731 | // active exception. |
| 732 | if (!pThread->GetExceptionState()->IsExceptionInProgress()) |
| 733 | { |
| 734 | pThread->SafeSetLastThrownObject(NULL); |
| 735 | } |
| 736 | |
| 737 | // Sync managed exception state, for the managed thread, based upon any active exception tracker |
| 738 | pThread->SyncManagedExceptionState(false); |
| 739 | |
| 740 | // |
| 741 | // If we are aborting, we should not resume execution. Instead, we raise another |
| 742 | // exception. However, we do this by resuming execution at our thread redirecter |
| 743 | // function (RedirectForThrowControl), which is the same process we use for async |
| 744 | // thread stops. This redirecter function will cover the stack frame and register |
| 745 | // stack frame and then throw an exception. When we first see the exception thrown |
| 746 | // by this redirecter, we fixup the context for the thread stackwalk by copying |
| 747 | // pThread->m_OSContext into the dispatcher context and restarting the exception |
| 748 | // dispatch. As a result, we need to save off the "correct" resume context before |
| 749 | // we resume so the exception processing can work properly after redirect. A side |
| 750 | // benefit of this mechanism is that it makes synchronous and async thread abort |
| 751 | // use exactly the same codepaths. |
| 752 | // |
| 753 | UINT_PTR uAbortAddr = 0; |
| 754 | |
| 755 | #if defined(DEBUGGING_SUPPORTED) |
| 756 | // Don't honour thread abort requests at this time for intercepted exceptions. |
| 757 | if (fIntercepted) |
| 758 | { |
| 759 | uAbortAddr = 0; |
| 760 | } |
| 761 | else |
| 762 | #endif // !DEBUGGING_SUPPORTED |
| 763 | { |
| 764 | CopyOSContext(pThread->m_OSContext, pContextRecord); |
| 765 | SetIP(pThread->m_OSContext, (PCODE)uResumePC); |
| 766 | uAbortAddr = (UINT_PTR)COMPlusCheckForAbort(uResumePC); |
| 767 | } |
| 768 | |
| 769 | if (uAbortAddr) |
| 770 | { |
| 771 | if (pfAborting != NULL) |
| 772 | { |
| 773 | *pfAborting = true; |
| 774 | } |
| 775 | |
| 776 | EH_LOG((LL_INFO100, "thread abort in progress, resuming thread under control...\n" )); |
| 777 | |
| 778 | // We are aborting, so keep the reference to the current EH clause index. |
| 779 | // We will use this when the exception is reraised and we begin commencing |
| 780 | // exception dispatch. This is done in ExceptionTracker::ProcessOSExceptionNotification. |
| 781 | // |
| 782 | // The "if" condition below can be false if the exception has been intercepted (refer to |
| 783 | // ExceptionTracker::CallCatchHandler for details) |
| 784 | if ((ehClauseCurrentHandlerIndex > 0) && (!sfEstablisherOfActualHandlerFrame.IsNull())) |
| 785 | { |
| 786 | pThread->m_dwIndexClauseForCatch = ehClauseCurrentHandlerIndex; |
| 787 | pThread->m_sfEstablisherOfActualHandlerFrame = sfEstablisherOfActualHandlerFrame; |
| 788 | } |
| 789 | |
| 790 | CONSISTENCY_CHECK(CheckPointer(pContextRecord)); |
| 791 | |
| 792 | STRESS_LOG1(LF_EH, LL_INFO10, "resume under control: ip: %p\n" , uResumePC); |
| 793 | |
| 794 | #ifdef _TARGET_AMD64_ |
| 795 | pContextRecord->Rcx = uResumePC; |
| 796 | #elif defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 797 | // On ARM & ARM64, we save off the original PC in Lr. This is the same as done |
| 798 | // in HandleManagedFault for H/W generated exceptions. |
| 799 | pContextRecord->Lr = uResumePC; |
| 800 | #endif |
| 801 | |
| 802 | uResumePC = uAbortAddr; |
| 803 | } |
| 804 | |
| 805 | CONSISTENCY_CHECK(pThread->DetermineIfGuardPagePresent()); |
| 806 | |
| 807 | EH_LOG((LL_INFO100, "FinishSecondPass complete, uResumePC = %p, current SP = %p\n" , uResumePC, GetCurrentSP())); |
| 808 | return uResumePC; |
| 809 | } |
| 810 | |
| 811 | // On CoreARM, the MemoryStackFp is ULONG when passed by RtlDispatchException, |
| 812 | // unlike its 64bit counterparts. |
| 813 | EXTERN_C EXCEPTION_DISPOSITION |
| 814 | ProcessCLRException(IN PEXCEPTION_RECORD pExceptionRecord |
| 815 | WIN64_ARG(IN ULONG64 MemoryStackFp) |
| 816 | NOT_WIN64_ARG(IN ULONG MemoryStackFp), |
| 817 | IN OUT PCONTEXT pContextRecord, |
| 818 | IN OUT PDISPATCHER_CONTEXT pDispatcherContext |
| 819 | ) |
| 820 | { |
| 821 | // |
| 822 | // This method doesn't always return, so it will leave its |
| 823 | // state on the thread if using dynamic contracts. |
| 824 | // |
| 825 | STATIC_CONTRACT_MODE_ANY; |
| 826 | STATIC_CONTRACT_GC_TRIGGERS; |
| 827 | STATIC_CONTRACT_THROWS; |
| 828 | |
| 829 | // We must preserve this so that GCStress=4 eh processing doesnt kill last error. |
| 830 | DWORD dwLastError = GetLastError(); |
| 831 | |
| 832 | EXCEPTION_DISPOSITION returnDisposition = ExceptionContinueSearch; |
| 833 | |
| 834 | STRESS_LOG5(LF_EH, LL_INFO10, "Processing exception at establisher=%p, ip=%p disp->cxr: %p, sp: %p, cxr @ exception: %p\n" , |
| 835 | MemoryStackFp, pDispatcherContext->ControlPc, |
| 836 | pDispatcherContext->ContextRecord, |
| 837 | GetSP(pDispatcherContext->ContextRecord), pContextRecord); |
| 838 | AMD64_ONLY(STRESS_LOG3(LF_EH, LL_INFO10, " rbx=%p, rsi=%p, rdi=%p\n" , pContextRecord->Rbx, pContextRecord->Rsi, pContextRecord->Rdi)); |
| 839 | |
| 840 | // sample flags early on because we may change pExceptionRecord below |
| 841 | // if we are seeing a STATUS_UNWIND_CONSOLIDATE |
| 842 | DWORD dwExceptionFlags = pExceptionRecord->ExceptionFlags; |
| 843 | Thread* pThread = GetThread(); |
| 844 | |
| 845 | // Stack Overflow is handled specially by the CLR EH mechanism. In fact |
| 846 | // there are cases where we aren't in managed code, but aren't quite in |
| 847 | // known unmanaged code yet either... |
| 848 | // |
| 849 | // These "boundary code" cases include: |
| 850 | // - in JIT helper methods which don't have a frame |
| 851 | // - in JIT helper methods before/during frame setup |
| 852 | // - in FCALL before/during frame setup |
| 853 | // |
| 854 | // In those cases on x86 we take special care to start our unwind looking |
| 855 | // for a handler which is below the last explicit frame which has been |
| 856 | // established on the stack as it can't reliably crawl the stack frames |
| 857 | // above that. |
| 858 | // NOTE: see code in the CLRVectoredExceptionHandler() routine. |
| 859 | // |
| 860 | // From the perspective of the EH subsystem, we can handle unwind correctly |
| 861 | // even without erecting a transition frame on WIN64. However, since the GC |
| 862 | // uses the stackwalker to update object references, and since the stackwalker |
| 863 | // relies on transition frame, we still cannot let an exception be handled |
| 864 | // by an unprotected managed frame. |
| 865 | // |
| 866 | // This code below checks to see if a SO has occurred outside of managed code. |
| 867 | // If it has, and if we don't have a transition frame higher up the stack, then |
| 868 | // we don't handle the SO. |
| 869 | if (!(dwExceptionFlags & EXCEPTION_UNWINDING)) |
| 870 | { |
| 871 | if (IsSOExceptionCode(pExceptionRecord->ExceptionCode)) |
| 872 | { |
| 873 | // We don't need to unwind the frame chain here because we have backstop |
| 874 | // personality routines at the U2M boundary to handle do that. They are |
| 875 | // the personality routines of CallDescrWorker() and UMThunkStubCommon(). |
| 876 | // |
| 877 | // See VSW 471619 for more information. |
| 878 | |
| 879 | // We should be in cooperative mode if we are going to handle the SO. |
| 880 | // We track SO state for the thread. |
| 881 | EEPolicy::HandleStackOverflow(SOD_ManagedFrameHandler, (void*)MemoryStackFp); |
| 882 | FastInterlockAnd (&pThread->m_fPreemptiveGCDisabled, 0); |
| 883 | return ExceptionContinueSearch; |
| 884 | } |
| 885 | else |
| 886 | { |
| 887 | #ifdef FEATURE_STACK_PROBE |
| 888 | if (GetEEPolicy()->GetActionOnFailure(FAIL_StackOverflow) == eRudeUnloadAppDomain) |
| 889 | { |
| 890 | RetailStackProbe(static_cast<unsigned int>(ADJUST_PROBE(BACKOUT_CODE_STACK_LIMIT)), pThread); |
| 891 | } |
| 892 | #endif |
| 893 | } |
| 894 | } |
| 895 | else |
| 896 | { |
| 897 | DWORD exceptionCode = pExceptionRecord->ExceptionCode; |
| 898 | |
| 899 | if (exceptionCode == STATUS_UNWIND) |
| 900 | // If exceptionCode is STATUS_UNWIND, RtlUnwind is called with a NULL ExceptionRecord, |
| 901 | // therefore OS uses a faked ExceptionRecord with STATUS_UNWIND code. Then we need to |
| 902 | // look at our saved exception code. |
| 903 | exceptionCode = GetCurrentExceptionCode(); |
| 904 | |
| 905 | if (IsSOExceptionCode(exceptionCode)) |
| 906 | { |
| 907 | return ExceptionContinueSearch; |
| 908 | } |
| 909 | } |
| 910 | |
| 911 | BEGIN_CONTRACT_VIOLATION(SOToleranceViolation); |
| 912 | |
| 913 | StackFrame sf((UINT_PTR)MemoryStackFp); |
| 914 | |
| 915 | |
| 916 | { |
| 917 | GCX_COOP(); |
| 918 | // Update the current establisher frame |
| 919 | if (dwExceptionFlags & EXCEPTION_UNWINDING) |
| 920 | { |
| 921 | ExceptionTracker *pCurrentTracker = pThread->GetExceptionState()->GetCurrentExceptionTracker(); |
| 922 | if (pCurrentTracker != NULL) |
| 923 | { |
| 924 | pCurrentTracker->SetCurrentEstablisherFrame(sf); |
| 925 | } |
| 926 | } |
| 927 | |
| 928 | #ifdef _DEBUG |
| 929 | Thread::ObjectRefFlush(pThread); |
| 930 | #endif // _DEBUG |
| 931 | } |
| 932 | |
| 933 | |
| 934 | // |
| 935 | // begin Early Processing |
| 936 | // |
| 937 | { |
| 938 | #ifndef USE_REDIRECT_FOR_GCSTRESS |
| 939 | if (IsGcMarker(pContextRecord, pExceptionRecord)) |
| 940 | { |
| 941 | returnDisposition = ExceptionContinueExecution; |
| 942 | goto lExit; |
| 943 | } |
| 944 | #endif // !USE_REDIRECT_FOR_GCSTRESS |
| 945 | |
| 946 | EH_LOG((LL_INFO100, "..................................................................................\n" )); |
| 947 | EH_LOG((LL_INFO100, "ProcessCLRException enter, sp = 0x%p, ControlPc = 0x%p\n" , MemoryStackFp, pDispatcherContext->ControlPc)); |
| 948 | DebugLogExceptionRecord(pExceptionRecord); |
| 949 | |
| 950 | if (STATUS_UNWIND_CONSOLIDATE == pExceptionRecord->ExceptionCode) |
| 951 | { |
| 952 | EH_LOG((LL_INFO100, "STATUS_UNWIND_CONSOLIDATE, retrieving stored exception record\n" )); |
| 953 | _ASSERTE(pExceptionRecord->NumberParameters >= 7); |
| 954 | pExceptionRecord = (EXCEPTION_RECORD*)pExceptionRecord->ExceptionInformation[6]; |
| 955 | DebugLogExceptionRecord(pExceptionRecord); |
| 956 | } |
| 957 | |
| 958 | CONSISTENCY_CHECK_MSG(!DebugIsEECxxException(pExceptionRecord), "EE C++ Exception leaked into managed code!!\n" ); |
| 959 | } |
| 960 | // |
| 961 | // end Early Processing (tm) -- we're now into really processing an exception for managed code |
| 962 | // |
| 963 | |
| 964 | if (!(dwExceptionFlags & EXCEPTION_UNWINDING)) |
| 965 | { |
| 966 | // If the exception is a breakpoint, but outside of the runtime or managed code, |
| 967 | // let it go. It is not ours, so someone else will handle it, or we'll see |
| 968 | // it again as an unhandled exception. |
| 969 | if ((pExceptionRecord->ExceptionCode == STATUS_BREAKPOINT) || |
| 970 | (pExceptionRecord->ExceptionCode == STATUS_SINGLE_STEP)) |
| 971 | { |
| 972 | // It is a breakpoint; is it from the runtime or managed code? |
| 973 | PCODE ip = GetIP(pContextRecord); // IP of the fault. |
| 974 | |
| 975 | BOOL fExternalException = FALSE; |
| 976 | |
| 977 | BEGIN_SO_INTOLERANT_CODE_NOPROBE; |
| 978 | |
| 979 | fExternalException = (!ExecutionManager::IsManagedCode(ip) && |
| 980 | !IsIPInModule(g_pMSCorEE, ip)); |
| 981 | |
| 982 | END_SO_INTOLERANT_CODE_NOPROBE; |
| 983 | |
| 984 | if (fExternalException) |
| 985 | { |
| 986 | // The breakpoint was not ours. Someone else can handle it. (Or if not, we'll get it again as |
| 987 | // an unhandled exception.) |
| 988 | returnDisposition = ExceptionContinueSearch; |
| 989 | goto lExit; |
| 990 | } |
| 991 | } |
| 992 | } |
| 993 | |
| 994 | { |
| 995 | BOOL bAsynchronousThreadStop = IsThreadHijackedForThreadStop(pThread, pExceptionRecord); |
| 996 | |
| 997 | // we already fixed the context in HijackHandler, so let's |
| 998 | // just clear the thread state. |
| 999 | pThread->ResetThrowControlForThread(); |
| 1000 | |
| 1001 | ExceptionTracker::StackTraceState STState; |
| 1002 | |
| 1003 | ExceptionTracker* pTracker = ExceptionTracker::GetOrCreateTracker( |
| 1004 | pDispatcherContext->ControlPc, |
| 1005 | sf, |
| 1006 | pExceptionRecord, |
| 1007 | pContextRecord, |
| 1008 | bAsynchronousThreadStop, |
| 1009 | !(dwExceptionFlags & EXCEPTION_UNWINDING), |
| 1010 | &STState); |
| 1011 | |
| 1012 | #ifdef FEATURE_CORRUPTING_EXCEPTIONS |
| 1013 | // Only setup the Corruption Severity in the first pass |
| 1014 | if (!(dwExceptionFlags & EXCEPTION_UNWINDING)) |
| 1015 | { |
| 1016 | // Switch to COOP mode |
| 1017 | GCX_COOP(); |
| 1018 | |
| 1019 | if (pTracker && pTracker->GetThrowable() != NULL) |
| 1020 | { |
| 1021 | // Setup the state in current exception tracker indicating the corruption severity |
| 1022 | // of the active exception. |
| 1023 | CEHelper::SetupCorruptionSeverityForActiveException((STState == ExceptionTracker::STS_FirstRethrowFrame), (pTracker->GetPreviousExceptionTracker() != NULL), |
| 1024 | CEHelper::ShouldTreatActiveExceptionAsNonCorrupting()); |
| 1025 | } |
| 1026 | |
| 1027 | // Failfast if exception indicates corrupted process state |
| 1028 | if (pTracker->GetCorruptionSeverity() == ProcessCorrupting) |
| 1029 | EEPOLICY_HANDLE_FATAL_ERROR(pExceptionRecord->ExceptionCode); |
| 1030 | } |
| 1031 | #endif // FEATURE_CORRUPTING_EXCEPTIONS |
| 1032 | |
| 1033 | { |
| 1034 | // Switch to COOP mode since we are going to work |
| 1035 | // with throwable |
| 1036 | GCX_COOP(); |
| 1037 | if (pTracker->GetThrowable() != NULL) |
| 1038 | { |
| 1039 | BOOL fIsThrownExceptionAV = FALSE; |
| 1040 | OBJECTREF oThrowable = NULL; |
| 1041 | GCPROTECT_BEGIN(oThrowable); |
| 1042 | oThrowable = pTracker->GetThrowable(); |
| 1043 | |
| 1044 | // Check if we are dealing with AV or not and if we are, |
| 1045 | // ensure that this is a real AV and not managed AV exception |
| 1046 | if ((pExceptionRecord->ExceptionCode == STATUS_ACCESS_VIOLATION) && |
| 1047 | (MscorlibBinder::GetException(kAccessViolationException) == oThrowable->GetMethodTable())) |
| 1048 | { |
| 1049 | // Its an AV - set the flag |
| 1050 | fIsThrownExceptionAV = TRUE; |
| 1051 | } |
| 1052 | |
| 1053 | GCPROTECT_END(); |
| 1054 | |
| 1055 | // Did we get an AV? |
| 1056 | if (fIsThrownExceptionAV == TRUE) |
| 1057 | { |
| 1058 | // Get the escalation policy action for handling AV |
| 1059 | EPolicyAction actionAV = GetEEPolicy()->GetActionOnFailure(FAIL_AccessViolation); |
| 1060 | |
| 1061 | // Valid actions are: eNoAction (default behviour) or eRudeExitProcess |
| 1062 | _ASSERTE(((actionAV == eNoAction) || (actionAV == eRudeExitProcess))); |
| 1063 | if (actionAV == eRudeExitProcess) |
| 1064 | { |
| 1065 | LOG((LF_EH, LL_INFO100, "ProcessCLRException: AccessViolation handler found and doing RudeExitProcess due to escalation policy (eRudeExitProcess)\n" )); |
| 1066 | |
| 1067 | // EEPolicy::HandleFatalError will help us RudeExit the process. |
| 1068 | // RudeExitProcess due to AV is to prevent a security risk - we are ripping |
| 1069 | // at the boundary, without looking for the handlers. |
| 1070 | EEPOLICY_HANDLE_FATAL_ERROR(COR_E_SECURITY); |
| 1071 | } |
| 1072 | } |
| 1073 | } |
| 1074 | } |
| 1075 | |
| 1076 | #ifndef FEATURE_PAL // Watson is on Windows only |
| 1077 | // Setup bucketing details for nested exceptions (rethrow and non-rethrow) only if we are in the first pass |
| 1078 | if (!(dwExceptionFlags & EXCEPTION_UNWINDING)) |
| 1079 | { |
| 1080 | ExceptionTracker *pPrevEHTracker = pTracker->GetPreviousExceptionTracker(); |
| 1081 | if (pPrevEHTracker != NULL) |
| 1082 | { |
| 1083 | SetStateForWatsonBucketing((STState == ExceptionTracker::STS_FirstRethrowFrame), pPrevEHTracker->GetThrowableAsHandle()); |
| 1084 | } |
| 1085 | } |
| 1086 | #endif //!FEATURE_PAL |
| 1087 | |
| 1088 | CLRUnwindStatus status; |
| 1089 | |
| 1090 | #ifdef USE_PER_FRAME_PINVOKE_INIT |
| 1091 | // Refer to comment in ProcessOSExceptionNotification about ICF and codegen difference. |
| 1092 | InlinedCallFrame *pICFSetAsLimitFrame = NULL; |
| 1093 | #endif // USE_PER_FRAME_PINVOKE_INIT |
| 1094 | |
| 1095 | status = pTracker->ProcessOSExceptionNotification( |
| 1096 | pExceptionRecord, |
| 1097 | pContextRecord, |
| 1098 | pDispatcherContext, |
| 1099 | dwExceptionFlags, |
| 1100 | sf, |
| 1101 | pThread, |
| 1102 | STState |
| 1103 | #ifdef USE_PER_FRAME_PINVOKE_INIT |
| 1104 | , (PVOID)pICFSetAsLimitFrame |
| 1105 | #endif // USE_PER_FRAME_PINVOKE_INIT |
| 1106 | ); |
| 1107 | |
| 1108 | if (FirstPassComplete == status) |
| 1109 | { |
| 1110 | EH_LOG((LL_INFO100, "first pass finished, found handler, TargetFrameSp = %p\n" , |
| 1111 | pDispatcherContext->EstablisherFrame)); |
| 1112 | |
| 1113 | SetLastError(dwLastError); |
| 1114 | |
| 1115 | #ifndef FEATURE_PAL |
| 1116 | // |
| 1117 | // At this point (the end of the 1st pass) we don't know where |
| 1118 | // we are going to resume to. So, we pass in an address, which |
| 1119 | // lies in NULL pointer partition of the memory, as the target IP. |
| 1120 | // |
| 1121 | // Once we reach the target frame in the second pass unwind, we call |
| 1122 | // the catch funclet that caused us to resume execution and it |
| 1123 | // tells us where we are resuming to. At that point, we patch |
| 1124 | // the context record with the resume IP and RtlUnwind2 finishes |
| 1125 | // by restoring our context at the right spot. |
| 1126 | // |
| 1127 | // If we are unable to set the resume PC for some reason, then |
| 1128 | // the OS will try to resume at the NULL partition address and the |
| 1129 | // attempt will fail due to AV, resulting in failfast, helping us |
| 1130 | // isolate problems in patching the IP. |
| 1131 | |
| 1132 | ClrUnwindEx(pExceptionRecord, |
| 1133 | (UINT_PTR)pThread, |
| 1134 | INVALID_RESUME_ADDRESS, |
| 1135 | pDispatcherContext->EstablisherFrame); |
| 1136 | |
| 1137 | UNREACHABLE(); |
| 1138 | // |
| 1139 | // doesn't return |
| 1140 | // |
| 1141 | #else |
| 1142 | // On Unix, we will return ExceptionStackUnwind back to the custom |
| 1143 | // exception dispatch system. When it sees this disposition, it will |
| 1144 | // know that we want to handle the exception and will commence unwind |
| 1145 | // via the custom unwinder. |
| 1146 | return ExceptionStackUnwind; |
| 1147 | |
| 1148 | #endif // FEATURE_PAL |
| 1149 | } |
| 1150 | else if (SecondPassComplete == status) |
| 1151 | { |
| 1152 | bool fAborting = false; |
| 1153 | UINT_PTR uResumePC = (UINT_PTR)-1; |
| 1154 | UINT_PTR uOriginalSP = GetSP(pContextRecord); |
| 1155 | |
| 1156 | Frame* pLimitFrame = pTracker->GetLimitFrame(); |
| 1157 | |
| 1158 | pDispatcherContext->ContextRecord = pContextRecord; |
| 1159 | |
| 1160 | // We may be in COOP mode at this point - the indefinite switch was done |
| 1161 | // in ExceptionTracker::ProcessManagedCallFrame. |
| 1162 | // |
| 1163 | // However, if a finally was invoked non-exceptionally and raised an exception |
| 1164 | // that was caught in its parent method, unwind will result in invoking any applicable termination |
| 1165 | // handlers in the finally funclet and thus, also switching the mode to COOP indefinitely. |
| 1166 | // |
| 1167 | // Since the catch block to be executed will lie in the parent method, |
| 1168 | // we will skip frames till we reach the parent and in the process, switch back to PREEMP mode |
| 1169 | // as control goes back to the OS. |
| 1170 | // |
| 1171 | // Upon reaching the target of unwind, we wont call ExceptionTracker::ProcessManagedCallFrame (since any |
| 1172 | // handlers in finally or surrounding it will be invoked when we unwind finally funclet). Thus, |
| 1173 | // we may not be in COOP mode. |
| 1174 | // |
| 1175 | // Since CallCatchHandler expects to be in COOP mode, perform the switch here. |
| 1176 | GCX_COOP_NO_DTOR(); |
| 1177 | uResumePC = pTracker->CallCatchHandler(pContextRecord, &fAborting); |
| 1178 | |
| 1179 | { |
| 1180 | // |
| 1181 | // GC must NOT occur after the handler has returned until |
| 1182 | // we resume at the new address because the stackwalker |
| 1183 | // EnumGcRefs would try and report things as live from the |
| 1184 | // try body, that were probably reported dead from the |
| 1185 | // handler body. |
| 1186 | // |
| 1187 | // GC must NOT occur once the frames have been popped because |
| 1188 | // the values in the unwound CONTEXT are not GC-protected. |
| 1189 | // |
| 1190 | GCX_FORBID(); |
| 1191 | |
| 1192 | CONSISTENCY_CHECK((UINT_PTR)-1 != uResumePC); |
| 1193 | |
| 1194 | // Ensure we are not resuming to the invalid target IP we had set at the end of |
| 1195 | // first pass |
| 1196 | _ASSERTE_MSG(INVALID_RESUME_ADDRESS != uResumePC, "CallCatchHandler returned invalid resume PC!" ); |
| 1197 | |
| 1198 | // |
| 1199 | // CallCatchHandler freed the tracker. |
| 1200 | // |
| 1201 | INDEBUG(pTracker = (ExceptionTracker*)POISONC); |
| 1202 | |
| 1203 | // Note that we should only fail to fix up for SO. |
| 1204 | bool fFixedUp = FixNonvolatileRegisters(uOriginalSP, pThread, pContextRecord, fAborting); |
| 1205 | _ASSERTE(fFixedUp || (pExceptionRecord->ExceptionCode == STATUS_STACK_OVERFLOW)); |
| 1206 | |
| 1207 | |
| 1208 | CONSISTENCY_CHECK(pLimitFrame > dac_cast<PTR_VOID>(GetSP(pContextRecord))); |
| 1209 | #ifdef USE_PER_FRAME_PINVOKE_INIT |
| 1210 | if (pICFSetAsLimitFrame != NULL) |
| 1211 | { |
| 1212 | _ASSERTE(pICFSetAsLimitFrame == pLimitFrame); |
| 1213 | |
| 1214 | // Mark the ICF as inactive (by setting the return address as NULL). |
| 1215 | // It will be marked as active at the next PInvoke callsite. |
| 1216 | // |
| 1217 | // This ensures that any stackwalk post the catch handler but before |
| 1218 | // the next pinvoke callsite does not see the frame as active. |
| 1219 | pICFSetAsLimitFrame->Reset(); |
| 1220 | } |
| 1221 | #endif // USE_PER_FRAME_PINVOKE_INIT |
| 1222 | |
| 1223 | pThread->SetFrame(pLimitFrame); |
| 1224 | |
| 1225 | FixContext(pContextRecord); |
| 1226 | |
| 1227 | SetIP(pContextRecord, (PCODE)uResumePC); |
| 1228 | } |
| 1229 | |
| 1230 | #ifdef STACK_GUARDS_DEBUG |
| 1231 | // We are transitioning back to managed code, so ensure that we are in |
| 1232 | // SO-tolerant mode before we do so. |
| 1233 | RestoreSOToleranceState(); |
| 1234 | #endif |
| 1235 | RESET_CONTRACT_VIOLATION(); |
| 1236 | ExceptionTracker::ResumeExecution(pContextRecord, |
| 1237 | NULL |
| 1238 | ); |
| 1239 | UNREACHABLE(); |
| 1240 | } |
| 1241 | } |
| 1242 | |
| 1243 | lExit: ; |
| 1244 | |
| 1245 | EH_LOG((LL_INFO100, "returning %s\n" , DebugGetExceptionDispositionName(returnDisposition))); |
| 1246 | CONSISTENCY_CHECK( !((dwExceptionFlags & EXCEPTION_TARGET_UNWIND) && (ExceptionContinueSearch == returnDisposition))); |
| 1247 | |
| 1248 | if ((ExceptionContinueSearch == returnDisposition)) |
| 1249 | { |
| 1250 | GCX_PREEMP_NO_DTOR(); |
| 1251 | } |
| 1252 | |
| 1253 | END_CONTRACT_VIOLATION; |
| 1254 | |
| 1255 | SetLastError(dwLastError); |
| 1256 | |
| 1257 | return returnDisposition; |
| 1258 | } |
| 1259 | |
| 1260 | // When we hit a native exception such as an AV in managed code, we put up a FaultingExceptionFrame which saves all the |
| 1261 | // non-volatile registers. The GC may update these registers if they contain object references. However, the CONTEXT |
| 1262 | // with which we are going to resume execution doesn't have these updated values. Thus, we need to fix up the non-volatile |
| 1263 | // registers in the CONTEXT with the updated ones stored in the FaultingExceptionFrame. To do so properly, we need |
| 1264 | // to perform a full stackwalk. |
| 1265 | bool FixNonvolatileRegisters(UINT_PTR uOriginalSP, |
| 1266 | Thread* pThread, |
| 1267 | CONTEXT* pContextRecord, |
| 1268 | bool fAborting |
| 1269 | ) |
| 1270 | { |
| 1271 | CONTRACTL |
| 1272 | { |
| 1273 | MODE_COOPERATIVE; |
| 1274 | NOTHROW; |
| 1275 | GC_NOTRIGGER; |
| 1276 | SO_TOLERANT; |
| 1277 | } |
| 1278 | CONTRACTL_END; |
| 1279 | |
| 1280 | CONTEXT _ctx = {0}; |
| 1281 | |
| 1282 | // Ctor will initialize it to NULL |
| 1283 | REGDISPLAY regdisp; |
| 1284 | |
| 1285 | pThread->FillRegDisplay(®disp, &_ctx); |
| 1286 | |
| 1287 | bool fFound = ExceptionTracker::FindNonvolatileRegisterPointers(pThread, uOriginalSP, ®disp, GetFP(pContextRecord)); |
| 1288 | if (!fFound) |
| 1289 | { |
| 1290 | return false; |
| 1291 | } |
| 1292 | |
| 1293 | { |
| 1294 | // |
| 1295 | // GC must NOT occur once the frames have been popped because |
| 1296 | // the values in the unwound CONTEXT are not GC-protected. |
| 1297 | // |
| 1298 | GCX_FORBID(); |
| 1299 | |
| 1300 | ExceptionTracker::UpdateNonvolatileRegisters(pContextRecord, ®disp, fAborting); |
| 1301 | } |
| 1302 | |
| 1303 | return true; |
| 1304 | } |
| 1305 | |
| 1306 | |
| 1307 | |
| 1308 | |
| 1309 | // static |
| 1310 | void ExceptionTracker::InitializeCrawlFrameForExplicitFrame(CrawlFrame* pcfThisFrame, Frame* pFrame, MethodDesc *pMD) |
| 1311 | { |
| 1312 | CONTRACTL |
| 1313 | { |
| 1314 | MODE_ANY; |
| 1315 | NOTHROW; |
| 1316 | GC_NOTRIGGER; |
| 1317 | |
| 1318 | PRECONDITION(pFrame != FRAME_TOP); |
| 1319 | } |
| 1320 | CONTRACTL_END; |
| 1321 | |
| 1322 | INDEBUG(memset(pcfThisFrame, 0xCC, sizeof(*pcfThisFrame))); |
| 1323 | |
| 1324 | pcfThisFrame->isFrameless = false; |
| 1325 | pcfThisFrame->pFrame = pFrame; |
| 1326 | pcfThisFrame->pFunc = pFrame->GetFunction(); |
| 1327 | |
| 1328 | if (pFrame->GetVTablePtr() == InlinedCallFrame::GetMethodFrameVPtr() && |
| 1329 | !InlinedCallFrame::FrameHasActiveCall(pFrame)) |
| 1330 | { |
| 1331 | // Inactive ICFs in IL stubs contain the true interop MethodDesc which must be |
| 1332 | // reported in the stack trace. |
| 1333 | if (pMD->IsILStub() && pMD->AsDynamicMethodDesc()->HasMDContextArg()) |
| 1334 | { |
| 1335 | // Report interop MethodDesc |
| 1336 | pcfThisFrame->pFunc = ((InlinedCallFrame *)pFrame)->GetActualInteropMethodDesc(); |
| 1337 | _ASSERTE(pcfThisFrame->pFunc != NULL); |
| 1338 | _ASSERTE(pcfThisFrame->pFunc->SanityCheck()); |
| 1339 | } |
| 1340 | } |
| 1341 | |
| 1342 | pcfThisFrame->pFirstGSCookie = NULL; |
| 1343 | pcfThisFrame->pCurGSCookie = NULL; |
| 1344 | } |
| 1345 | |
| 1346 | // This method will initialize the RegDisplay in the CrawlFrame with the correct state for current and caller context |
| 1347 | // See the long description of contexts and their validity in ExceptionTracker::InitializeCrawlFrame for details. |
| 1348 | void ExceptionTracker::InitializeCurrentContextForCrawlFrame(CrawlFrame* pcfThisFrame, PT_DISPATCHER_CONTEXT pDispatcherContext, StackFrame sfEstablisherFrame) |
| 1349 | { |
| 1350 | CONTRACTL |
| 1351 | { |
| 1352 | MODE_ANY; |
| 1353 | NOTHROW; |
| 1354 | GC_NOTRIGGER; |
| 1355 | PRECONDITION(IsInFirstPass()); |
| 1356 | } |
| 1357 | CONTRACTL_END; |
| 1358 | |
| 1359 | if (IsInFirstPass()) |
| 1360 | { |
| 1361 | REGDISPLAY *pRD = pcfThisFrame->pRD; |
| 1362 | |
| 1363 | #ifndef USE_CURRENT_CONTEXT_IN_FILTER |
| 1364 | INDEBUG(memset(pRD->pCurrentContext, 0xCC, sizeof(*(pRD->pCurrentContext)))); |
| 1365 | // Ensure that clients can tell the current context isn't valid. |
| 1366 | SetIP(pRD->pCurrentContext, 0); |
| 1367 | #else // !USE_CURRENT_CONTEXT_IN_FILTER |
| 1368 | RestoreNonvolatileRegisters(pRD->pCurrentContext, pDispatcherContext->CurrentNonVolatileContextRecord); |
| 1369 | RestoreNonvolatileRegisterPointers(pRD->pCurrentContextPointers, pDispatcherContext->CurrentNonVolatileContextRecord); |
| 1370 | #endif // USE_CURRENT_CONTEXT_IN_FILTER |
| 1371 | |
| 1372 | *(pRD->pCallerContext) = *(pDispatcherContext->ContextRecord); |
| 1373 | pRD->IsCallerContextValid = TRUE; |
| 1374 | |
| 1375 | pRD->SP = sfEstablisherFrame.SP; |
| 1376 | pRD->ControlPC = pDispatcherContext->ControlPc; |
| 1377 | |
| 1378 | #ifdef ESTABLISHER_FRAME_ADDRESS_IS_CALLER_SP |
| 1379 | pcfThisFrame->pRD->IsCallerSPValid = TRUE; |
| 1380 | |
| 1381 | // Assert our first pass assumptions for the Arm/Arm64 |
| 1382 | _ASSERTE(sfEstablisherFrame.SP == GetSP(pDispatcherContext->ContextRecord)); |
| 1383 | #endif // ESTABLISHER_FRAME_ADDRESS_IS_CALLER_SP |
| 1384 | |
| 1385 | } |
| 1386 | |
| 1387 | EH_LOG((LL_INFO100, "ExceptionTracker::InitializeCurrentContextForCrawlFrame: DispatcherContext->ControlPC = %p; IP in DispatcherContext->ContextRecord = %p.\n" , |
| 1388 | pDispatcherContext->ControlPc, GetIP(pDispatcherContext->ContextRecord))); |
| 1389 | } |
| 1390 | |
| 1391 | // static |
| 1392 | void ExceptionTracker::InitializeCrawlFrame(CrawlFrame* pcfThisFrame, Thread* pThread, StackFrame sf, REGDISPLAY* pRD, |
| 1393 | PDISPATCHER_CONTEXT pDispatcherContext, DWORD_PTR ControlPCForEHSearch, |
| 1394 | UINT_PTR* puMethodStartPC, |
| 1395 | ExceptionTracker *pCurrentTracker) |
| 1396 | { |
| 1397 | CONTRACTL |
| 1398 | { |
| 1399 | MODE_ANY; |
| 1400 | NOTHROW; |
| 1401 | GC_NOTRIGGER; |
| 1402 | } |
| 1403 | CONTRACTL_END; |
| 1404 | |
| 1405 | INDEBUG(memset(pcfThisFrame, 0xCC, sizeof(*pcfThisFrame))); |
| 1406 | pcfThisFrame->pRD = pRD; |
| 1407 | |
| 1408 | #ifdef FEATURE_INTERPRETER |
| 1409 | pcfThisFrame->pFrame = NULL; |
| 1410 | #endif // FEATURE_INTERPRETER |
| 1411 | |
| 1412 | // Initialize the RegDisplay from DC->ContextRecord. DC->ControlPC always contains the IP |
| 1413 | // in the frame for which the personality routine was invoked. |
| 1414 | // |
| 1415 | // <AMD64> |
| 1416 | // |
| 1417 | // During 1st pass, DC->ContextRecord contains the context of the caller of the frame for which personality |
| 1418 | // routine was invoked. On the other hand, in the 2nd pass, it contains the context of the frame for which |
| 1419 | // personality routine was invoked. |
| 1420 | // |
| 1421 | // </AMD64> |
| 1422 | // |
| 1423 | // <ARM and ARM64> |
| 1424 | // |
| 1425 | // In the first pass on ARM & ARM64: |
| 1426 | // |
| 1427 | // 1) EstablisherFrame (passed as 'sf' to this method) represents the SP at the time |
| 1428 | // the current managed method was invoked and thus, is the SP of the caller. This is |
| 1429 | // the value of DispatcherContext->EstablisherFrame as well. |
| 1430 | // 2) DispatcherContext->ControlPC is the pc in the current managed method for which personality |
| 1431 | // routine has been invoked. |
| 1432 | // 3) DispatcherContext->ContextRecord contains the context record of the caller (and thus, IP |
| 1433 | // in the caller). Most of the times, these values will be distinct. However, recursion |
| 1434 | // may result in them being the same (case "run2" of baseservices\Regression\V1\Threads\functional\CS_TryFinally.exe |
| 1435 | // is an example). In such a case, we ensure that EstablisherFrame value is the same as |
| 1436 | // the SP in DispatcherContext->ContextRecord (which is (1) above). |
| 1437 | // |
| 1438 | // In second pass on ARM & ARM64: |
| 1439 | // |
| 1440 | // 1) EstablisherFrame (passed as 'sf' to this method) represents the SP at the time |
| 1441 | // the current managed method was invoked and thus, is the SP of the caller. This is |
| 1442 | // the value of DispatcherContext->EstablisherFrame as well. |
| 1443 | // 2) DispatcherContext->ControlPC is the pc in the current managed method for which personality |
| 1444 | // routine has been invoked. |
| 1445 | // 3) DispatcherContext->ContextRecord contains the context record of the current managed method |
| 1446 | // for which the personality routine is invoked. |
| 1447 | // |
| 1448 | // </ARM and ARM64> |
| 1449 | pThread->InitRegDisplay(pcfThisFrame->pRD, pDispatcherContext->ContextRecord, true); |
| 1450 | |
| 1451 | bool fAdjustRegdisplayControlPC = false; |
| 1452 | |
| 1453 | // The "if" check below is trying to determine when we have a valid current context in DC->ContextRecord and whether, or not, |
| 1454 | // RegDisplay needs to be fixed up to set SP and ControlPC to have the values for the current frame for which personality routine |
| 1455 | // is invoked. |
| 1456 | // |
| 1457 | // We do this based upon the current pass for the exception tracker as this will also handle the case when current frame |
| 1458 | // and its caller have the same return address (i.e. ControlPc). This can happen in cases when, due to certain JIT optimizations, the following callstack |
| 1459 | // |
| 1460 | // A -> B -> A -> C |
| 1461 | // |
| 1462 | // Could get transformed to the one below when B is inlined in the first (left-most) A resulting in: |
| 1463 | // |
| 1464 | // A -> A -> C |
| 1465 | // |
| 1466 | // In this case, during 1st pass, when personality routine is invoked for the second A, DC->ControlPc could have the same |
| 1467 | // value as DC->ContextRecord->Rip even though the DC->ContextRecord actually represents caller context (of first A). |
| 1468 | // As a result, we will not initialize the value of SP and controlPC in RegDisplay for the current frame (frame for |
| 1469 | // which personality routine was invoked - second A in the optimized scenario above) resulting in frame specific lookup (e.g. |
| 1470 | // GenericArgType) to happen incorrectly (against first A). |
| 1471 | // |
| 1472 | // Thus, we should always use the pass identification in ExceptionTracker to determine when we need to perform the fixup below. |
| 1473 | if (pCurrentTracker->IsInFirstPass()) |
| 1474 | { |
| 1475 | pCurrentTracker->InitializeCurrentContextForCrawlFrame(pcfThisFrame, pDispatcherContext, sf); |
| 1476 | } |
| 1477 | else |
| 1478 | { |
| 1479 | #if defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 1480 | // See the comment above the call to InitRegDisplay for this assertion. |
| 1481 | _ASSERTE(pDispatcherContext->ControlPc == GetIP(pDispatcherContext->ContextRecord)); |
| 1482 | #endif // _TARGET_ARM_ || _TARGET_ARM64_ |
| 1483 | |
| 1484 | #ifdef ESTABLISHER_FRAME_ADDRESS_IS_CALLER_SP |
| 1485 | // Simply setup the callerSP during the second pass in the caller context. |
| 1486 | // This is used in setting up the "EnclosingClauseCallerSP" in ExceptionTracker::ProcessManagedCallFrame |
| 1487 | // when the termination handlers are invoked. |
| 1488 | ::SetSP(pcfThisFrame->pRD->pCallerContext, sf.SP); |
| 1489 | pcfThisFrame->pRD->IsCallerSPValid = TRUE; |
| 1490 | #endif // ESTABLISHER_FRAME_ADDRESS_IS_CALLER_SP |
| 1491 | } |
| 1492 | |
| 1493 | #ifdef ADJUST_PC_UNWOUND_TO_CALL |
| 1494 | // Further below, we will adjust the ControlPC based upon whether we are at a callsite or not. |
| 1495 | // We need to do this for "RegDisplay.ControlPC" field as well so that when data structures like |
| 1496 | // EECodeInfo initialize themselves using this field, they will have the correct absolute value |
| 1497 | // that is in sync with the "relOffset" we calculate below. |
| 1498 | // |
| 1499 | // However, we do this *only* when "ControlPCForEHSearch" is the same as "DispatcherContext->ControlPC", |
| 1500 | // indicating we are not using the thread-abort reraise loop prevention logic. |
| 1501 | // |
| 1502 | if (pDispatcherContext->ControlPc == ControlPCForEHSearch) |
| 1503 | { |
| 1504 | // Since DispatcherContext->ControlPc is used to initialize the |
| 1505 | // RegDisplay.ControlPC field, assert that it is the same |
| 1506 | // as the ControlPC we are going to use to initialize the CrawlFrame |
| 1507 | // with as well. |
| 1508 | _ASSERTE(pcfThisFrame->pRD->ControlPC == ControlPCForEHSearch); |
| 1509 | fAdjustRegdisplayControlPC = true; |
| 1510 | |
| 1511 | } |
| 1512 | #endif // ADJUST_PC_UNWOUND_TO_CALL |
| 1513 | |
| 1514 | #if defined(_TARGET_ARM_) |
| 1515 | // Remove the Thumb bit |
| 1516 | ControlPCForEHSearch = ThumbCodeToDataPointer<DWORD_PTR, DWORD_PTR>(ControlPCForEHSearch); |
| 1517 | #endif |
| 1518 | |
| 1519 | #ifdef ADJUST_PC_UNWOUND_TO_CALL |
| 1520 | // If the OS indicated that the IP is a callsite, then adjust the ControlPC by decrementing it |
| 1521 | // by two. This is done because unwinding at callsite will make ControlPC point to the |
| 1522 | // instruction post the callsite. If a protected region ends "at" the callsite, then |
| 1523 | // not doing this adjustment will result in a one-off error that can result in us not finding |
| 1524 | // a handler. |
| 1525 | // |
| 1526 | // For async exceptions (e.g. AV), this will be false. |
| 1527 | // |
| 1528 | // We decrement by two to be in accordance with how the kernel does as well. |
| 1529 | if (pDispatcherContext->ControlPcIsUnwound) |
| 1530 | { |
| 1531 | ControlPCForEHSearch -= STACKWALK_CONTROLPC_ADJUST_OFFSET; |
| 1532 | if (fAdjustRegdisplayControlPC == true) |
| 1533 | { |
| 1534 | // Once the check above is removed, the assignment below should |
| 1535 | // be done unconditionally. |
| 1536 | pcfThisFrame->pRD->ControlPC = ControlPCForEHSearch; |
| 1537 | // On ARM & ARM64, the IP is either at the callsite (post the adjustment above) |
| 1538 | // or at the instruction at which async exception took place. |
| 1539 | pcfThisFrame->isIPadjusted = true; |
| 1540 | } |
| 1541 | } |
| 1542 | #endif // ADJUST_PC_UNWOUND_TO_CALL |
| 1543 | |
| 1544 | pcfThisFrame->codeInfo.Init(ControlPCForEHSearch); |
| 1545 | |
| 1546 | if (pcfThisFrame->codeInfo.IsValid()) |
| 1547 | { |
| 1548 | pcfThisFrame->isFrameless = true; |
| 1549 | pcfThisFrame->pFunc = pcfThisFrame->codeInfo.GetMethodDesc(); |
| 1550 | |
| 1551 | *puMethodStartPC = pcfThisFrame->codeInfo.GetStartAddress(); |
| 1552 | } |
| 1553 | else |
| 1554 | { |
| 1555 | pcfThisFrame->isFrameless = false; |
| 1556 | pcfThisFrame->pFunc = NULL; |
| 1557 | |
| 1558 | *puMethodStartPC = NULL; |
| 1559 | } |
| 1560 | |
| 1561 | pcfThisFrame->pThread = pThread; |
| 1562 | pcfThisFrame->hasFaulted = false; |
| 1563 | |
| 1564 | Frame* pTopFrame = pThread->GetFrame(); |
| 1565 | pcfThisFrame->isIPadjusted = (FRAME_TOP != pTopFrame) && (pTopFrame->GetVTablePtr() != FaultingExceptionFrame::GetMethodFrameVPtr()); |
| 1566 | if (pcfThisFrame->isFrameless && (pcfThisFrame->isIPadjusted == false) && (pcfThisFrame->GetRelOffset() == 0)) |
| 1567 | { |
| 1568 | // If we are here, then either a hardware generated exception happened at the first instruction |
| 1569 | // of a managed method an exception was thrown at that location. |
| 1570 | // |
| 1571 | // Adjusting IP in such a case will lead us into unknown code - it could be native code or some |
| 1572 | // other JITted code. |
| 1573 | // |
| 1574 | // Hence, we will flag that the IP is already adjusted. |
| 1575 | pcfThisFrame->isIPadjusted = true; |
| 1576 | |
| 1577 | EH_LOG((LL_INFO100, "ExceptionTracker::InitializeCrawlFrame: Exception at offset zero of the method (MethodDesc %p); setting IP as adjusted.\n" , |
| 1578 | pcfThisFrame->pFunc)); |
| 1579 | } |
| 1580 | |
| 1581 | pcfThisFrame->pFirstGSCookie = NULL; |
| 1582 | pcfThisFrame->pCurGSCookie = NULL; |
| 1583 | |
| 1584 | pcfThisFrame->isFilterFuncletCached = FALSE; |
| 1585 | } |
| 1586 | |
| 1587 | bool ExceptionTracker::UpdateScannedStackRange(StackFrame sf, bool fIsFirstPass) |
| 1588 | { |
| 1589 | CONTRACTL |
| 1590 | { |
| 1591 | // Since this function will modify the scanned stack range, which is also accessed during the GC stackwalk, |
| 1592 | // we invoke it in COOP mode so that that access to the range is synchronized. |
| 1593 | MODE_COOPERATIVE; |
| 1594 | GC_TRIGGERS; |
| 1595 | THROWS; |
| 1596 | } |
| 1597 | CONTRACTL_END; |
| 1598 | |
| 1599 | // |
| 1600 | // collapse trackers if a nested exception passes a previous exception |
| 1601 | // |
| 1602 | |
| 1603 | HandleNestedExceptionEscape(sf, fIsFirstPass); |
| 1604 | |
| 1605 | // |
| 1606 | // update stack bounds |
| 1607 | // |
| 1608 | BOOL fUnwindingToFindResumeFrame = m_ExceptionFlags.UnwindingToFindResumeFrame(); |
| 1609 | |
| 1610 | if (m_ScannedStackRange.Contains(sf)) |
| 1611 | { |
| 1612 | // If we're unwinding to find the resume frame and we're examining the topmost previously scanned frame, |
| 1613 | // then we can't ignore it because we could resume here due to an escaped nested exception. |
| 1614 | if (!fUnwindingToFindResumeFrame || (m_ScannedStackRange.GetUpperBound() != sf)) |
| 1615 | { |
| 1616 | // been there, done that. |
| 1617 | EH_LOG((LL_INFO100, " IGNOREFRAME: This frame has been processed already\n" )); |
| 1618 | return false; |
| 1619 | } |
| 1620 | } |
| 1621 | else |
| 1622 | { |
| 1623 | if (sf < m_ScannedStackRange.GetLowerBound()) |
| 1624 | { |
| 1625 | m_ScannedStackRange.ExtendLowerBound(sf); |
| 1626 | } |
| 1627 | |
| 1628 | if (sf > m_ScannedStackRange.GetUpperBound()) |
| 1629 | { |
| 1630 | m_ScannedStackRange.ExtendUpperBound(sf); |
| 1631 | } |
| 1632 | |
| 1633 | DebugLogTrackerRanges(" C" ); |
| 1634 | } |
| 1635 | |
| 1636 | return true; |
| 1637 | } |
| 1638 | |
| 1639 | void CheckForRudeAbort(Thread* pThread, bool fIsFirstPass) |
| 1640 | { |
| 1641 | if (fIsFirstPass && pThread->IsRudeAbort()) |
| 1642 | { |
| 1643 | GCX_COOP(); |
| 1644 | OBJECTREF rudeAbortThrowable = CLRException::GetPreallocatedRudeThreadAbortException(); |
| 1645 | if (pThread->GetThrowable() != rudeAbortThrowable) |
| 1646 | { |
| 1647 | pThread->SafeSetThrowables(rudeAbortThrowable); |
| 1648 | } |
| 1649 | |
| 1650 | if (!pThread->IsRudeAbortInitiated()) |
| 1651 | { |
| 1652 | pThread->PreWorkForThreadAbort(); |
| 1653 | } |
| 1654 | } |
| 1655 | } |
| 1656 | |
| 1657 | void ExceptionTracker::FirstPassIsComplete() |
| 1658 | { |
| 1659 | m_ExceptionFlags.ResetUnwindingToFindResumeFrame(); |
| 1660 | m_pSkipToParentFunctionMD = NULL; |
| 1661 | } |
| 1662 | |
| 1663 | void ExceptionTracker::SecondPassIsComplete(MethodDesc* pMD, StackFrame sfResumeStackFrame) |
| 1664 | { |
| 1665 | EH_LOG((LL_INFO100, " second pass unwind completed\n" )); |
| 1666 | |
| 1667 | m_pMethodDescOfCatcher = pMD; |
| 1668 | m_sfResumeStackFrame = sfResumeStackFrame; |
| 1669 | } |
| 1670 | |
| 1671 | CLRUnwindStatus ExceptionTracker::ProcessOSExceptionNotification( |
| 1672 | PEXCEPTION_RECORD pExceptionRecord, |
| 1673 | PCONTEXT pContextRecord, |
| 1674 | PDISPATCHER_CONTEXT pDispatcherContext, |
| 1675 | DWORD dwExceptionFlags, |
| 1676 | StackFrame sf, |
| 1677 | Thread* pThread, |
| 1678 | StackTraceState STState |
| 1679 | #ifdef USE_PER_FRAME_PINVOKE_INIT |
| 1680 | , PVOID pICFSetAsLimitFrame |
| 1681 | #endif // USE_PER_FRAME_PINVOKE_INIT |
| 1682 | ) |
| 1683 | { |
| 1684 | CONTRACTL |
| 1685 | { |
| 1686 | MODE_ANY; |
| 1687 | GC_TRIGGERS; |
| 1688 | THROWS; |
| 1689 | } |
| 1690 | CONTRACTL_END; |
| 1691 | |
| 1692 | CLRUnwindStatus status = UnwindPending; |
| 1693 | |
| 1694 | CrawlFrame cfThisFrame; |
| 1695 | REGDISPLAY regdisp; |
| 1696 | UINT_PTR uMethodStartPC; |
| 1697 | UINT_PTR uCallerSP; |
| 1698 | |
| 1699 | DWORD_PTR ControlPc = pDispatcherContext->ControlPc; |
| 1700 | |
| 1701 | ExceptionTracker::InitializeCrawlFrame(&cfThisFrame, pThread, sf, ®disp, pDispatcherContext, ControlPc, &uMethodStartPC, this); |
| 1702 | |
| 1703 | #ifndef ESTABLISHER_FRAME_ADDRESS_IS_CALLER_SP |
| 1704 | uCallerSP = EECodeManager::GetCallerSp(cfThisFrame.pRD); |
| 1705 | #else // !ESTABLISHER_FRAME_ADDRESS_IS_CALLER_SP |
| 1706 | uCallerSP = sf.SP; |
| 1707 | #endif // ESTABLISHER_FRAME_ADDRESS_IS_CALLER_SP |
| 1708 | |
| 1709 | EH_LOG((LL_INFO100, "ProcessCrawlFrame: PSP: " FMT_ADDR " EstablisherFrame: " FMT_ADDR "\n" , DBG_ADDR(uCallerSP), DBG_ADDR(sf.SP))); |
| 1710 | |
| 1711 | bool fIsFirstPass = !(dwExceptionFlags & EXCEPTION_UNWINDING); |
| 1712 | bool fTargetUnwind = !!(dwExceptionFlags & EXCEPTION_TARGET_UNWIND); |
| 1713 | |
| 1714 | // If a thread abort was raised after a catch block's execution, we would have saved |
| 1715 | // the index and EstablisherFrame of the EH clause corresponding to the handler that executed. |
| 1716 | // Fetch that locally and reset the state against the thread if we are in the unwind pass. |
| 1717 | // |
| 1718 | // It should be kept in mind that by the virtue of copying the information below, we will |
| 1719 | // have it available for the first frame seen during the unwind pass (which will be the |
| 1720 | // frame where ThreadAbort was raised after the catch block) for us to skip any termination |
| 1721 | // handlers that may be present prior to the EH clause whose index we saved. |
| 1722 | DWORD dwTACatchHandlerClauseIndex = pThread->m_dwIndexClauseForCatch; |
| 1723 | StackFrame sfEstablisherOfActualHandlerFrame = pThread->m_sfEstablisherOfActualHandlerFrame; |
| 1724 | if (!fIsFirstPass) |
| 1725 | { |
| 1726 | pThread->m_dwIndexClauseForCatch = 0; |
| 1727 | pThread->m_sfEstablisherOfActualHandlerFrame.Clear(); |
| 1728 | } |
| 1729 | |
| 1730 | bool fProcessThisFrame = false; |
| 1731 | bool fCrawlFrameIsDirty = false; |
| 1732 | |
| 1733 | // <GC_FUNCLET_REFERENCE_REPORTING> |
| 1734 | // |
| 1735 | // Refer to the detailed comment in ExceptionTracker::ProcessManagedCallFrame for more context. |
| 1736 | // In summary, if we have reached the target of the unwind, then we need to fix CallerSP (for |
| 1737 | // GC reference reporting) if we have been asked to. |
| 1738 | // |
| 1739 | // This will be done only when we reach the frame that is handling the exception. |
| 1740 | // |
| 1741 | // </GC_FUNCLET_REFERENCE_REPORTING> |
| 1742 | if (fTargetUnwind && (m_fFixupCallerSPForGCReporting == true)) |
| 1743 | { |
| 1744 | m_fFixupCallerSPForGCReporting = false; |
| 1745 | this->m_EnclosingClauseInfoForGCReporting.SetEnclosingClauseCallerSP(uCallerSP); |
| 1746 | } |
| 1747 | |
| 1748 | #ifdef USE_PER_FRAME_PINVOKE_INIT |
| 1749 | // Refer to detailed comment below. |
| 1750 | PTR_Frame pICFForUnwindTarget = NULL; |
| 1751 | #endif // USE_PER_FRAME_PINVOKE_INIT |
| 1752 | |
| 1753 | CheckForRudeAbort(pThread, fIsFirstPass); |
| 1754 | |
| 1755 | bool fIsFrameLess = cfThisFrame.IsFrameless(); |
| 1756 | GSCookie* pGSCookie = NULL; |
| 1757 | bool fSetLastUnwoundEstablisherFrame = false; |
| 1758 | |
| 1759 | // |
| 1760 | // process any frame since the last frame we've seen |
| 1761 | // |
| 1762 | { |
| 1763 | GCX_COOP_THREAD_EXISTS(pThread); |
| 1764 | |
| 1765 | // UpdateScannedStackRange needs to be invoked in COOP mode since |
| 1766 | // the stack range can also be accessed during GC stackwalk. |
| 1767 | fProcessThisFrame = UpdateScannedStackRange(sf, fIsFirstPass); |
| 1768 | |
| 1769 | MethodDesc *pMD = cfThisFrame.GetFunction(); |
| 1770 | |
| 1771 | Frame* pFrame = GetLimitFrame(); // next frame to process |
| 1772 | if (pFrame != FRAME_TOP) |
| 1773 | { |
| 1774 | // The following function call sets the GS cookie pointers and checks the cookie. |
| 1775 | cfThisFrame.SetCurGSCookie(Frame::SafeGetGSCookiePtr(pFrame)); |
| 1776 | } |
| 1777 | |
| 1778 | while (((UINT_PTR)pFrame) < uCallerSP) |
| 1779 | { |
| 1780 | #ifdef USE_PER_FRAME_PINVOKE_INIT |
| 1781 | // InlinedCallFrames (ICF) are allocated, initialized and linked to the Frame chain |
| 1782 | // by the code generated by the JIT for a method containing a PInvoke. |
| 1783 | // |
| 1784 | // On X64, JIT generates code to dynamically link and unlink the ICF around |
| 1785 | // each PInvoke call. On ARM, on the other hand, JIT's codegen, in context of ICF, |
| 1786 | // is more inline with X86 and thus, it links in the ICF at the start of the method |
| 1787 | // and unlinks it towards the method end. Thus, ICF is present on the Frame chain |
| 1788 | // at any given point so long as the method containing the PInvoke is on the stack. |
| 1789 | // |
| 1790 | // Now, if the method containing ICF catches an exception, we will reset the Frame chain |
| 1791 | // with the LimitFrame, that is computed below, after the catch handler returns. Since this |
| 1792 | // computation is done relative to the CallerSP (on both X64 and ARM), we will end up |
| 1793 | // removing the ICF from the Frame chain as that will always be below (stack growing down) |
| 1794 | // the CallerSP since it lives in the stack space of the current managed frame. |
| 1795 | // |
| 1796 | // As a result, if there is another PInvoke call after the catch block, it will expect |
| 1797 | // the ICF to be present and without one, execution will go south. |
| 1798 | // |
| 1799 | // To account for this ICF codegen difference, in the EH system we check if the current |
| 1800 | // Frame is an ICF or not. If it is and lies inside the current managed method, we |
| 1801 | // keep a reference to it and reset the LimitFrame to this saved reference before we |
| 1802 | // return back to invoke the catch handler. |
| 1803 | // |
| 1804 | // Thus, if there is another PInvoke call post the catch handler, it will find ICF as expected. |
| 1805 | // |
| 1806 | // This is based upon the following assumptions: |
| 1807 | // |
| 1808 | // 1) There will be no other explicit Frame inserted above the ICF inside the |
| 1809 | // managed method containing ICF. That is, ICF is the top-most explicit frame |
| 1810 | // in the managed method (and thus, lies in the current managed frame). |
| 1811 | // |
| 1812 | // 2) There is only one ICF per managed method containing one (or more) PInvoke(s). |
| 1813 | // |
| 1814 | // 3) We only do this if the current frame is the one handling the exception. This is to |
| 1815 | // address the scenario of keeping any ICF from frames lower in the stack active. |
| 1816 | // |
| 1817 | // 4) The ExceptionUnwind method of the ICF is a no-op. As noted above, we save a reference |
| 1818 | // to the ICF and yet continue to process the frame chain. During unwind, this implies |
| 1819 | // that we will end up invoking the ExceptionUnwind methods of all frames that lie |
| 1820 | // below the caller SP of the managed frame handling the exception. And since the handling |
| 1821 | // managed frame contains an ICF, it will be the topmost frame that will lie |
| 1822 | // below the callerSP for which we will invoke ExceptionUnwind. |
| 1823 | // |
| 1824 | // Thus, ICF::ExceptionUnwind should not do anything significant. If any of these assumptions |
| 1825 | // break, then the next best thing will be to make the JIT link/unlink the frame dynamically. |
| 1826 | |
| 1827 | if (fTargetUnwind && (pFrame->GetVTablePtr() == InlinedCallFrame::GetMethodFrameVPtr())) |
| 1828 | { |
| 1829 | PTR_InlinedCallFrame pICF = (PTR_InlinedCallFrame)pFrame; |
| 1830 | // Does it live inside the current managed method? It will iff: |
| 1831 | // |
| 1832 | // 1) ICF address is higher than the current frame's SP (which we get from DispatcherContext), AND |
| 1833 | // 2) ICF address is below callerSP. |
| 1834 | if ((GetSP(pDispatcherContext->ContextRecord) < (TADDR)pICF) && |
| 1835 | ((UINT_PTR)pICF < uCallerSP)) |
| 1836 | { |
| 1837 | pICFForUnwindTarget = pFrame; |
| 1838 | } |
| 1839 | } |
| 1840 | #endif // defined(_TARGET_ARM_) |
| 1841 | |
| 1842 | cfThisFrame.CheckGSCookies(); |
| 1843 | |
| 1844 | if (fProcessThisFrame) |
| 1845 | { |
| 1846 | ExceptionTracker::InitializeCrawlFrameForExplicitFrame(&cfThisFrame, pFrame, pMD); |
| 1847 | fCrawlFrameIsDirty = true; |
| 1848 | |
| 1849 | status = ProcessExplicitFrame( |
| 1850 | &cfThisFrame, |
| 1851 | sf, |
| 1852 | fIsFirstPass, |
| 1853 | STState); |
| 1854 | cfThisFrame.CheckGSCookies(); |
| 1855 | } |
| 1856 | |
| 1857 | if (!fIsFirstPass) |
| 1858 | { |
| 1859 | // |
| 1860 | // notify Frame of unwind |
| 1861 | // |
| 1862 | pFrame->ExceptionUnwind(); |
| 1863 | |
| 1864 | // If we have not yet set the initial explicit frame processed by this tracker, then |
| 1865 | // set it now. |
| 1866 | if (m_pInitialExplicitFrame == NULL) |
| 1867 | { |
| 1868 | m_pInitialExplicitFrame = pFrame; |
| 1869 | } |
| 1870 | } |
| 1871 | |
| 1872 | pFrame = pFrame->Next(); |
| 1873 | m_pLimitFrame = pFrame; |
| 1874 | |
| 1875 | if (UnwindPending != status) |
| 1876 | { |
| 1877 | goto lExit; |
| 1878 | } |
| 1879 | } |
| 1880 | |
| 1881 | if (fCrawlFrameIsDirty) |
| 1882 | { |
| 1883 | // If crawlframe is dirty, it implies that it got modified as part of explicit frame processing. Thus, we shall |
| 1884 | // reinitialize it here. |
| 1885 | ExceptionTracker::InitializeCrawlFrame(&cfThisFrame, pThread, sf, ®disp, pDispatcherContext, ControlPc, &uMethodStartPC, this); |
| 1886 | } |
| 1887 | |
| 1888 | if (fIsFrameLess) |
| 1889 | { |
| 1890 | pGSCookie = (GSCookie*)cfThisFrame.GetCodeManager()->GetGSCookieAddr(cfThisFrame.pRD, |
| 1891 | &cfThisFrame.codeInfo, |
| 1892 | &cfThisFrame.codeManState); |
| 1893 | if (pGSCookie) |
| 1894 | { |
| 1895 | // The following function call sets the GS cookie pointers and checks the cookie. |
| 1896 | cfThisFrame.SetCurGSCookie(pGSCookie); |
| 1897 | } |
| 1898 | |
| 1899 | status = HandleFunclets(&fProcessThisFrame, fIsFirstPass, |
| 1900 | cfThisFrame.GetFunction(), cfThisFrame.IsFunclet(), sf); |
| 1901 | } |
| 1902 | |
| 1903 | if ((!fIsFirstPass) && (!fProcessThisFrame)) |
| 1904 | { |
| 1905 | // If we are unwinding and not processing the current frame, it implies that |
| 1906 | // this frame has been unwound for one of the following reasons: |
| 1907 | // |
| 1908 | // 1) We have already seen it due to nested exception processing, OR |
| 1909 | // 2) We are skipping frames to find a funclet's parent and thus, its been already |
| 1910 | // unwound. |
| 1911 | // |
| 1912 | // If the current frame is NOT the target of unwind, update the last unwound |
| 1913 | // establisher frame. We don't do this for "target of unwind" since it has the catch handler, for a |
| 1914 | // duplicate EH clause reported in the funclet, that needs to be invoked and thus, may have valid |
| 1915 | // references to report for GC reporting. |
| 1916 | // |
| 1917 | // If we are not skipping the managed frame, then LastUnwoundEstablisherFrame will be updated later in this method, |
| 1918 | // just before we return back to our caller. |
| 1919 | if (!fTargetUnwind) |
| 1920 | { |
| 1921 | SetLastUnwoundEstablisherFrame(sf); |
| 1922 | fSetLastUnwoundEstablisherFrame = true; |
| 1923 | } |
| 1924 | } |
| 1925 | |
| 1926 | // GCX_COOP_THREAD_EXISTS ends here and we may switch to preemp mode now (if applicable). |
| 1927 | } |
| 1928 | |
| 1929 | // |
| 1930 | // now process managed call frame if needed |
| 1931 | // |
| 1932 | if (fIsFrameLess) |
| 1933 | { |
| 1934 | if (fProcessThisFrame) |
| 1935 | { |
| 1936 | status = ProcessManagedCallFrame( |
| 1937 | &cfThisFrame, |
| 1938 | sf, |
| 1939 | StackFrame::FromEstablisherFrame(pDispatcherContext->EstablisherFrame), |
| 1940 | pExceptionRecord, |
| 1941 | STState, |
| 1942 | uMethodStartPC, |
| 1943 | dwExceptionFlags, |
| 1944 | dwTACatchHandlerClauseIndex, |
| 1945 | sfEstablisherOfActualHandlerFrame); |
| 1946 | |
| 1947 | if (pGSCookie) |
| 1948 | { |
| 1949 | cfThisFrame.CheckGSCookies(); |
| 1950 | } |
| 1951 | } |
| 1952 | |
| 1953 | if (fTargetUnwind && (UnwindPending == status)) |
| 1954 | { |
| 1955 | SecondPassIsComplete(cfThisFrame.GetFunction(), sf); |
| 1956 | status = SecondPassComplete; |
| 1957 | } |
| 1958 | } |
| 1959 | |
| 1960 | lExit: |
| 1961 | |
| 1962 | // If we are unwinding and have returned successfully from unwinding the frame, then mark it as the last unwound frame for the current |
| 1963 | // exception. We don't do this if the frame is target of unwind (i.e. handling the exception) since catch block invocation may have references to be |
| 1964 | // reported (if a GC happens during catch block invocation). |
| 1965 | // |
| 1966 | // If an exception escapes out of a funclet (this is only possible for fault/finally/catch clauses), then we will not return here. |
| 1967 | // Since this implies that the funclet no longer has any valid references to report, we will need to set the LastUnwoundEstablisherFrame |
| 1968 | // close to the point we detect the exception has escaped the funclet. This is done in ExceptionTracker::CallHandler and marks the |
| 1969 | // frame that invoked (and thus, contained) the funclet as the LastUnwoundEstablisherFrame. |
| 1970 | // |
| 1971 | // Note: Do no add any GC triggering code between the return from ProcessManagedCallFrame and setting of the LastUnwoundEstablisherFrame |
| 1972 | if ((!fIsFirstPass) && (!fTargetUnwind) && (!fSetLastUnwoundEstablisherFrame)) |
| 1973 | { |
| 1974 | GCX_COOP(); |
| 1975 | SetLastUnwoundEstablisherFrame(sf); |
| 1976 | } |
| 1977 | |
| 1978 | if (FirstPassComplete == status) |
| 1979 | { |
| 1980 | FirstPassIsComplete(); |
| 1981 | } |
| 1982 | |
| 1983 | if (fTargetUnwind && (status == SecondPassComplete)) |
| 1984 | { |
| 1985 | #ifdef USE_PER_FRAME_PINVOKE_INIT |
| 1986 | // If we have got a ICF to set as the LimitFrame, do that now. |
| 1987 | // The Frame chain is still intact and would be updated using |
| 1988 | // the LimitFrame (done after the catch handler returns). |
| 1989 | // |
| 1990 | // NOTE: This should be done as the last thing before we return |
| 1991 | // back to invoke the catch handler. |
| 1992 | if (pICFForUnwindTarget != NULL) |
| 1993 | { |
| 1994 | m_pLimitFrame = pICFForUnwindTarget; |
| 1995 | pICFSetAsLimitFrame = (PVOID)pICFForUnwindTarget; |
| 1996 | } |
| 1997 | #endif // USE_PER_FRAME_PINVOKE_INIT |
| 1998 | |
| 1999 | // Since second pass is complete and we have reached |
| 2000 | // the frame containing the catch funclet, reset the enclosing |
| 2001 | // clause SP for the catch funclet, if applicable, to be the CallerSP of the |
| 2002 | // current frame. |
| 2003 | // |
| 2004 | // Refer to the detailed comment about this code |
| 2005 | // in ExceptionTracker::ProcessManagedCallFrame. |
| 2006 | if (m_fResetEnclosingClauseSPForCatchFunclet) |
| 2007 | { |
| 2008 | #ifdef ESTABLISHER_FRAME_ADDRESS_IS_CALLER_SP |
| 2009 | // DispatcherContext->EstablisherFrame's value |
| 2010 | // represents the CallerSP of the current frame. |
| 2011 | UINT_PTR EnclosingClauseCallerSP = (UINT_PTR)pDispatcherContext->EstablisherFrame; |
| 2012 | #else // ESTABLISHER_FRAME_ADDRESS_IS_CALLER_SP |
| 2013 | // Extract the CallerSP from RegDisplay |
| 2014 | REGDISPLAY *pRD = cfThisFrame.GetRegisterSet(); |
| 2015 | _ASSERTE(pRD->IsCallerContextValid || pRD->IsCallerSPValid); |
| 2016 | UINT_PTR EnclosingClauseCallerSP = (UINT_PTR)GetSP(pRD->pCallerContext); |
| 2017 | #endif // !ESTABLISHER_FRAME_ADDRESS_IS_CALLER_SP |
| 2018 | m_EnclosingClauseInfo = EnclosingClauseInfo(false, cfThisFrame.GetRelOffset(), EnclosingClauseCallerSP); |
| 2019 | } |
| 2020 | m_fResetEnclosingClauseSPForCatchFunclet = FALSE; |
| 2021 | } |
| 2022 | |
| 2023 | // If we are unwinding and the exception was not caught in managed code and we have reached the |
| 2024 | // topmost frame we saw in the first pass, then reset thread abort state if this is the last managed |
| 2025 | // code personality routine on the stack. |
| 2026 | if ((fIsFirstPass == false) && (this->GetTopmostStackFrameFromFirstPass() == sf) && (GetCatchToCallPC() == NULL)) |
| 2027 | { |
| 2028 | ExceptionTracker::ResetThreadAbortStatus(pThread, &cfThisFrame, sf); |
| 2029 | } |
| 2030 | |
| 2031 | // |
| 2032 | // fill in the out parameter |
| 2033 | // |
| 2034 | return status; |
| 2035 | } |
| 2036 | |
| 2037 | // static |
| 2038 | void ExceptionTracker::DebugLogTrackerRanges(__in_z const char *pszTag) |
| 2039 | { |
| 2040 | #ifdef _DEBUG |
| 2041 | CONTRACTL |
| 2042 | { |
| 2043 | MODE_ANY; |
| 2044 | GC_NOTRIGGER; |
| 2045 | NOTHROW; |
| 2046 | } |
| 2047 | CONTRACTL_END; |
| 2048 | |
| 2049 | Thread* pThread = GetThread(); |
| 2050 | ExceptionTracker* pTracker = pThread ? pThread->GetExceptionState()->m_pCurrentTracker : NULL; |
| 2051 | |
| 2052 | int i = 0; |
| 2053 | |
| 2054 | while (pTracker) |
| 2055 | { |
| 2056 | EH_LOG((LL_INFO100, "%s:|%02d| %p: (%p %p) %s\n" , pszTag, i, pTracker, pTracker->m_ScannedStackRange.GetLowerBound().SP, pTracker->m_ScannedStackRange.GetUpperBound().SP, |
| 2057 | pTracker->IsInFirstPass() ? "1st pass" : "2nd pass" |
| 2058 | )); |
| 2059 | pTracker = pTracker->m_pPrevNestedInfo; |
| 2060 | i++; |
| 2061 | } |
| 2062 | #endif // _DEBUG |
| 2063 | } |
| 2064 | |
| 2065 | |
| 2066 | bool ExceptionTracker::HandleNestedExceptionEscape(StackFrame sf, bool fIsFirstPass) |
| 2067 | { |
| 2068 | CONTRACTL |
| 2069 | { |
| 2070 | // Since this function can modify the scanned stack range, which is also accessed during the GC stackwalk, |
| 2071 | // we invoke it in COOP mode so that that access to the range is synchronized. |
| 2072 | MODE_COOPERATIVE; |
| 2073 | GC_NOTRIGGER; |
| 2074 | NOTHROW; |
| 2075 | } |
| 2076 | CONTRACTL_END; |
| 2077 | |
| 2078 | bool fResult = false; |
| 2079 | |
| 2080 | DebugLogTrackerRanges(" A" ); |
| 2081 | |
| 2082 | ExceptionTracker* pPreviousTracker = m_pPrevNestedInfo; |
| 2083 | |
| 2084 | while (pPreviousTracker && pPreviousTracker->m_ScannedStackRange.IsSupersededBy(sf)) |
| 2085 | { |
| 2086 | // |
| 2087 | // If the previous tracker (representing exception E1 and whose scanned stack range is superseded by the current frame) |
| 2088 | // is in the first pass AND current tracker (representing exceptio E2) has not seen the current frame AND we are here, |
| 2089 | // it implies that we had a nested exception while the previous tracker was in the first pass. |
| 2090 | // |
| 2091 | // This can happen in the following scenarios: |
| 2092 | // |
| 2093 | // 1) An exception escapes a managed filter (which are invoked in the first pass). However, |
| 2094 | // that is not possible since any exception escaping them is swallowed by the runtime. |
| 2095 | // If someone does longjmp from within the filter, then that is illegal and unsupported. |
| 2096 | // |
| 2097 | // 2) While processing an exception (E1), either us or native code caught it, triggering unwind. However, before the |
| 2098 | // first managed frame was processed for unwind, another native frame (below the first managed frame on the stack) |
| 2099 | // did a longjmp to go past us or raised another exception from one of their termination handlers. |
| 2100 | // |
| 2101 | // Thus, we will never get a chance to switch our tracker for E1 to 2nd pass (which would be done when |
| 2102 | // ExceptionTracker::GetOrCreateTracker will be invoked for the first managed frame) since the longjmp, or the |
| 2103 | // new-exception would result in a new tracker being setup. |
| 2104 | // |
| 2105 | // Below is an example of such a case that does longjmp |
| 2106 | // ---------------------------------------------------- |
| 2107 | // |
| 2108 | // NativeA (does setjmp) -> ManagedFunc -> NativeB |
| 2109 | // |
| 2110 | // |
| 2111 | // NativeB could be implemented as: |
| 2112 | // |
| 2113 | // __try { // raise exception } __finally { longjmp(jmp1, 1); } |
| 2114 | // |
| 2115 | // "jmp1" is the jmp_buf setup by NativeA by calling setjmp. |
| 2116 | // |
| 2117 | // ManagedFunc could be implemented as: |
| 2118 | // |
| 2119 | // try { |
| 2120 | // try { NativeB(); } |
| 2121 | // finally { Console.WriteLine("Finally in ManagedFunc"); } |
| 2122 | // } |
| 2123 | // catch(Exception ex} { Console.WriteLine("Caught"); } |
| 2124 | // |
| 2125 | // |
| 2126 | // In case of nested exception, we combine the stack range (see below) since we have already seen those frames |
| 2127 | // in the specified pass for the previous tracker. However, in the example above, the current tracker (in 2nd pass) |
| 2128 | // has not see the frames which the previous tracker (which is in the first pass) has seen. |
| 2129 | // |
| 2130 | // On a similar note, the __finally in the example above could also do a "throw 1;". In such a case, we would expect |
| 2131 | // that the catch in ManagedFunc would catch the exception (since "throw 1;" would be represented as SEHException in |
| 2132 | // the runtime). However, during first pass, when the exception enters ManagedFunc, the current tracker would not have |
| 2133 | // processed the ManagedFunc frame, while the previous tracker (for E1) would have. If we proceed to combine the stack |
| 2134 | // ranges, we will omit examining the catch clause in ManagedFunc. |
| 2135 | // |
| 2136 | // Thus, we cannot combine the stack range yet and must let each frame, already scanned by the previous |
| 2137 | // tracker, be also processed by the current (longjmp) tracker if not already done. |
| 2138 | // |
| 2139 | // Note: This is not a concern if the previous tracker (for exception E1) is in the second pass since any escaping exception (E2) |
| 2140 | // would come out of a finally/fault funclet and the runtime's funclet skipping logic will deal with it correctly. |
| 2141 | |
| 2142 | if (pPreviousTracker->IsInFirstPass() && (!this->m_ScannedStackRange.Contains(sf))) |
| 2143 | { |
| 2144 | // Allow all stackframes seen by previous tracker to be seen by the current |
| 2145 | // tracker as well. |
| 2146 | if (sf <= pPreviousTracker->m_ScannedStackRange.GetUpperBound()) |
| 2147 | { |
| 2148 | EH_LOG((LL_INFO100, " - not updating current tracker bounds for escaped exception since\n" )); |
| 2149 | EH_LOG((LL_INFO100, " - active tracker (%p; %s) has not seen the current frame [" , this, this->IsInFirstPass()?"FirstPass" :"SecondPass" )); |
| 2150 | EH_LOG((LL_INFO100, " - SP = %p" , sf.SP)); |
| 2151 | EH_LOG((LL_INFO100, "]\n" )); |
| 2152 | EH_LOG((LL_INFO100, " - which the previous (%p) tracker has processed.\n" , pPreviousTracker)); |
| 2153 | return fResult; |
| 2154 | } |
| 2155 | } |
| 2156 | |
| 2157 | EH_LOG((LL_INFO100, " nested exception ESCAPED\n" )); |
| 2158 | EH_LOG((LL_INFO100, " - updating current tracker stack bounds\n" )); |
| 2159 | m_ScannedStackRange.CombineWith(sf, &pPreviousTracker->m_ScannedStackRange); |
| 2160 | |
| 2161 | // |
| 2162 | // Only the topmost tracker can be in the first pass. |
| 2163 | // |
| 2164 | // (Except in the case where we have an exception thrown in a filter, |
| 2165 | // which should never escape the filter, and thus, will never supersede |
| 2166 | // the previous exception. This is why we cannot walk the entire list |
| 2167 | // of trackers to assert that they're all in the right mode.) |
| 2168 | // |
| 2169 | // CONSISTENCY_CHECK(!pPreviousTracker->IsInFirstPass()); |
| 2170 | |
| 2171 | // If our modes don't match, don't actually delete the supersceded exception. |
| 2172 | // If we did, we would lose valueable state on which frames have been scanned |
| 2173 | // on the second pass if an exception is thrown during the 2nd pass. |
| 2174 | |
| 2175 | // Advance the current tracker pointer now, since it may be deleted below. |
| 2176 | pPreviousTracker = pPreviousTracker->m_pPrevNestedInfo; |
| 2177 | |
| 2178 | if (!fIsFirstPass) |
| 2179 | { |
| 2180 | |
| 2181 | // During unwind, at each frame we collapse exception trackers only once i.e. there cannot be multiple |
| 2182 | // exception trackers that are collapsed at each frame. Store the information of collapsed exception |
| 2183 | // tracker in current tracker to be able to find the parent frame when nested exception escapes. |
| 2184 | m_csfEHClauseOfCollapsedTracker = m_pPrevNestedInfo->m_EHClauseInfo.GetCallerStackFrameForEHClause(); |
| 2185 | m_EnclosingClauseInfoOfCollapsedTracker = m_pPrevNestedInfo->m_EnclosingClauseInfoForGCReporting; |
| 2186 | |
| 2187 | EH_LOG((LL_INFO100, " - removing previous tracker\n" )); |
| 2188 | |
| 2189 | ExceptionTracker* pTrackerToFree = m_pPrevNestedInfo; |
| 2190 | m_pPrevNestedInfo = pTrackerToFree->m_pPrevNestedInfo; |
| 2191 | |
| 2192 | #if defined(DEBUGGING_SUPPORTED) |
| 2193 | if (g_pDebugInterface != NULL) |
| 2194 | { |
| 2195 | g_pDebugInterface->DeleteInterceptContext(pTrackerToFree->m_DebuggerExState.GetDebuggerInterceptContext()); |
| 2196 | } |
| 2197 | #endif // DEBUGGING_SUPPORTED |
| 2198 | |
| 2199 | CONSISTENCY_CHECK(pTrackerToFree->IsValid()); |
| 2200 | FreeTrackerMemory(pTrackerToFree, memBoth); |
| 2201 | } |
| 2202 | |
| 2203 | DebugLogTrackerRanges(" B" ); |
| 2204 | } |
| 2205 | |
| 2206 | return fResult; |
| 2207 | } |
| 2208 | |
| 2209 | CLRUnwindStatus ExceptionTracker::ProcessExplicitFrame( |
| 2210 | CrawlFrame* pcfThisFrame, |
| 2211 | StackFrame sf, |
| 2212 | BOOL fIsFirstPass, |
| 2213 | StackTraceState& STState |
| 2214 | ) |
| 2215 | { |
| 2216 | CONTRACTL |
| 2217 | { |
| 2218 | MODE_COOPERATIVE; |
| 2219 | GC_TRIGGERS; |
| 2220 | THROWS; |
| 2221 | PRECONDITION(!pcfThisFrame->IsFrameless()); |
| 2222 | PRECONDITION(pcfThisFrame->GetFrame() != FRAME_TOP); |
| 2223 | } |
| 2224 | CONTRACTL_END; |
| 2225 | |
| 2226 | Frame* pFrame = pcfThisFrame->GetFrame(); |
| 2227 | |
| 2228 | EH_LOG((LL_INFO100, " [ ProcessExplicitFrame: pFrame: " FMT_ADDR " pMD: " FMT_ADDR " %s PASS ]\n" , DBG_ADDR(pFrame), DBG_ADDR(pFrame->GetFunction()), fIsFirstPass ? "FIRST" : "SECOND" )); |
| 2229 | |
| 2230 | if (FRAME_TOP == pFrame) |
| 2231 | { |
| 2232 | goto lExit; |
| 2233 | } |
| 2234 | |
| 2235 | if (!m_ExceptionFlags.UnwindingToFindResumeFrame()) |
| 2236 | { |
| 2237 | // |
| 2238 | // update our exception stacktrace |
| 2239 | // |
| 2240 | |
| 2241 | BOOL bReplaceStack = FALSE; |
| 2242 | BOOL bSkipLastElement = FALSE; |
| 2243 | |
| 2244 | if (STS_FirstRethrowFrame == STState) |
| 2245 | { |
| 2246 | bSkipLastElement = TRUE; |
| 2247 | } |
| 2248 | else |
| 2249 | if (STS_NewException == STState) |
| 2250 | { |
| 2251 | bReplaceStack = TRUE; |
| 2252 | } |
| 2253 | |
| 2254 | // Normally, we need to notify the profiler in two cases: |
| 2255 | // 1) a brand new exception is thrown, and |
| 2256 | // 2) an exception is rethrown. |
| 2257 | // However, in this case, if the explicit frame doesn't correspond to a MD, we don't set STState to STS_Append, |
| 2258 | // so the next managed call frame we process will give another ExceptionThrown() callback to the profiler. |
| 2259 | // So we give the callback below, only in the case when we append to the stack trace. |
| 2260 | |
| 2261 | MethodDesc* pMD = pcfThisFrame->GetFunction(); |
| 2262 | if (pMD) |
| 2263 | { |
| 2264 | Thread* pThread = m_pThread; |
| 2265 | |
| 2266 | if (fIsFirstPass) |
| 2267 | { |
| 2268 | // |
| 2269 | // notify profiler of new/rethrown exception |
| 2270 | // |
| 2271 | if (bSkipLastElement || bReplaceStack) |
| 2272 | { |
| 2273 | GCX_COOP(); |
| 2274 | EEToProfilerExceptionInterfaceWrapper::ExceptionThrown(pThread); |
| 2275 | UpdatePerformanceMetrics(pcfThisFrame, bSkipLastElement, bReplaceStack); |
| 2276 | } |
| 2277 | |
| 2278 | // |
| 2279 | // Update stack trace |
| 2280 | // |
| 2281 | m_StackTraceInfo.AppendElement(CanAllocateMemory(), NULL, sf.SP, pMD, pcfThisFrame); |
| 2282 | m_StackTraceInfo.SaveStackTrace(CanAllocateMemory(), m_hThrowable, bReplaceStack, bSkipLastElement); |
| 2283 | |
| 2284 | // |
| 2285 | // make callback to debugger and/or profiler |
| 2286 | // |
| 2287 | #if defined(DEBUGGING_SUPPORTED) |
| 2288 | if (ExceptionTracker::NotifyDebuggerOfStub(pThread, sf, pFrame)) |
| 2289 | { |
| 2290 | // Deliver the FirstChanceNotification after the debugger, if not already delivered. |
| 2291 | if (!this->DeliveredFirstChanceNotification()) |
| 2292 | { |
| 2293 | ExceptionNotifications::DeliverFirstChanceNotification(); |
| 2294 | } |
| 2295 | } |
| 2296 | #endif // DEBUGGING_SUPPORTED |
| 2297 | |
| 2298 | STState = STS_Append; |
| 2299 | } |
| 2300 | } |
| 2301 | } |
| 2302 | |
| 2303 | lExit: |
| 2304 | return UnwindPending; |
| 2305 | } |
| 2306 | |
| 2307 | CLRUnwindStatus ExceptionTracker::HandleFunclets(bool* pfProcessThisFrame, bool fIsFirstPass, |
| 2308 | MethodDesc * pMD, bool fFunclet, StackFrame sf) |
| 2309 | { |
| 2310 | CONTRACTL |
| 2311 | { |
| 2312 | MODE_ANY; |
| 2313 | GC_NOTRIGGER; |
| 2314 | NOTHROW; |
| 2315 | } |
| 2316 | CONTRACTL_END; |
| 2317 | |
| 2318 | BOOL fUnwindingToFindResumeFrame = m_ExceptionFlags.UnwindingToFindResumeFrame(); |
| 2319 | |
| 2320 | // |
| 2321 | // handle out-of-line finallys |
| 2322 | // |
| 2323 | |
| 2324 | // In the second pass, we always want to execute this code. |
| 2325 | // In the first pass, we only execute this code if we are not unwinding to find the resume frame. |
| 2326 | // We do this to avoid calling the same filter more than once. Search for "UnwindingToFindResumeFrame" |
| 2327 | // to find a more elaborate comment in ProcessManagedCallFrame(). |
| 2328 | |
| 2329 | // If we are in the first pass and we are unwinding to find the resume frame, then make sure the flag is cleared. |
| 2330 | if (fIsFirstPass && fUnwindingToFindResumeFrame) |
| 2331 | { |
| 2332 | m_pSkipToParentFunctionMD = NULL; |
| 2333 | } |
| 2334 | else |
| 2335 | { |
| 2336 | // <TODO> |
| 2337 | // this 'skip to parent function MD' code only seems to be needed |
| 2338 | // in the case where we call a finally funclet from the normal |
| 2339 | // execution codepath. Is there a better way to achieve the same |
| 2340 | // goal? Also, will recursion break us in any corner cases? |
| 2341 | // [ThrowInFinallyNestedInTryTest] |
| 2342 | // [GoryManagedPresentTest] |
| 2343 | // </TODO> |
| 2344 | |
| 2345 | // <TODO> |
| 2346 | // this was done for AMD64, but i don't understand why AMD64 needed the workaround.. |
| 2347 | // (the workaround is the "double call on parent method" part.) |
| 2348 | // </TODO> |
| 2349 | |
| 2350 | // |
| 2351 | // If we encounter a funclet, we need to skip all call frames up |
| 2352 | // to and including its parent method call frame. The reason |
| 2353 | // behind this is that a funclet is logically part of the parent |
| 2354 | // method has all the clauses that covered its logical location |
| 2355 | // in the parent covering its body. |
| 2356 | // |
| 2357 | if (((UINT_PTR)m_pSkipToParentFunctionMD) & 1) |
| 2358 | { |
| 2359 | EH_LOG((LL_INFO100, " IGNOREFRAME: SKIPTOPARENT: skipping to parent\n" )); |
| 2360 | *pfProcessThisFrame = false; |
| 2361 | if ((((UINT_PTR)pMD) == (((UINT_PTR)m_pSkipToParentFunctionMD) & ~((UINT_PTR)1))) && !fFunclet) |
| 2362 | { |
| 2363 | EH_LOG((LL_INFO100, " SKIPTOPARENT: found parent for funclet pMD = %p, sf.SP = %p, will stop skipping frames\n" , pMD, sf.SP)); |
| 2364 | _ASSERTE(0 == (((UINT_PTR)sf.SP) & 1)); |
| 2365 | m_pSkipToParentFunctionMD = (MethodDesc*)sf.SP; |
| 2366 | |
| 2367 | _ASSERTE(!fUnwindingToFindResumeFrame); |
| 2368 | } |
| 2369 | } |
| 2370 | else if (fFunclet) |
| 2371 | { |
| 2372 | EH_LOG((LL_INFO100, " SKIPTOPARENT: found funclet pMD = %p, will start skipping frames\n" , pMD)); |
| 2373 | _ASSERTE(0 == (((UINT_PTR)pMD) & 1)); |
| 2374 | m_pSkipToParentFunctionMD = (MethodDesc*)(((UINT_PTR)pMD) | 1); |
| 2375 | } |
| 2376 | else |
| 2377 | { |
| 2378 | if (sf.SP == ((UINT_PTR)m_pSkipToParentFunctionMD)) |
| 2379 | { |
| 2380 | EH_LOG((LL_INFO100, " IGNOREFRAME: SKIPTOPARENT: got double call on parent method\n" )); |
| 2381 | *pfProcessThisFrame = false; |
| 2382 | } |
| 2383 | else if (m_pSkipToParentFunctionMD && (sf.SP > ((UINT_PTR)m_pSkipToParentFunctionMD))) |
| 2384 | { |
| 2385 | EH_LOG((LL_INFO100, " SKIPTOPARENT: went past parent method\n" )); |
| 2386 | m_pSkipToParentFunctionMD = NULL; |
| 2387 | } |
| 2388 | } |
| 2389 | } |
| 2390 | |
| 2391 | return UnwindPending; |
| 2392 | } |
| 2393 | |
| 2394 | CLRUnwindStatus ExceptionTracker::ProcessManagedCallFrame( |
| 2395 | CrawlFrame* pcfThisFrame, |
| 2396 | StackFrame sf, |
| 2397 | StackFrame sfEstablisherFrame, |
| 2398 | EXCEPTION_RECORD* pExceptionRecord, |
| 2399 | StackTraceState STState, |
| 2400 | UINT_PTR uMethodStartPC, |
| 2401 | DWORD dwExceptionFlags, |
| 2402 | DWORD dwTACatchHandlerClauseIndex, |
| 2403 | StackFrame sfEstablisherOfActualHandlerFrame |
| 2404 | ) |
| 2405 | { |
| 2406 | CONTRACTL |
| 2407 | { |
| 2408 | MODE_ANY; |
| 2409 | GC_TRIGGERS; |
| 2410 | THROWS; |
| 2411 | PRECONDITION(pcfThisFrame->IsFrameless()); |
| 2412 | } |
| 2413 | CONTRACTL_END; |
| 2414 | |
| 2415 | UINT_PTR uControlPC = (UINT_PTR)GetControlPC(pcfThisFrame->GetRegisterSet()); |
| 2416 | CLRUnwindStatus ReturnStatus = UnwindPending; |
| 2417 | |
| 2418 | MethodDesc* pMD = pcfThisFrame->GetFunction(); |
| 2419 | |
| 2420 | bool fIsFirstPass = !(dwExceptionFlags & EXCEPTION_UNWINDING); |
| 2421 | bool fIsFunclet = pcfThisFrame->IsFunclet(); |
| 2422 | |
| 2423 | CONSISTENCY_CHECK(IsValid()); |
| 2424 | CONSISTENCY_CHECK(ThrowableIsValid() || !fIsFirstPass); |
| 2425 | CONSISTENCY_CHECK(pMD != 0); |
| 2426 | |
| 2427 | EH_LOG((LL_INFO100, " [ ProcessManagedCallFrame this=%p, %s PASS ]\n" , this, (fIsFirstPass ? "FIRST" : "SECOND" ))); |
| 2428 | |
| 2429 | EH_LOG((LL_INFO100, " [ method: %s%s, %s ]\n" , |
| 2430 | (fIsFunclet ? "FUNCLET of " : "" ), |
| 2431 | pMD->m_pszDebugMethodName, pMD->m_pszDebugClassName)); |
| 2432 | |
| 2433 | Thread *pThread = GetThread(); |
| 2434 | _ASSERTE (pThread); |
| 2435 | |
| 2436 | INDEBUG( DumpClauses(pcfThisFrame->GetJitManager(), pcfThisFrame->GetMethodToken(), uMethodStartPC, uControlPC) ); |
| 2437 | |
| 2438 | bool fIsILStub = pMD->IsILStub(); |
| 2439 | bool fGiveDebuggerAndProfilerNotification = !fIsILStub; |
| 2440 | BOOL fUnwindingToFindResumeFrame = m_ExceptionFlags.UnwindingToFindResumeFrame(); |
| 2441 | |
| 2442 | bool fIgnoreThisFrame = false; |
| 2443 | bool fProcessThisFrameToFindResumeFrameOnly = false; |
| 2444 | |
| 2445 | MethodDesc * pUserMDForILStub = NULL; |
| 2446 | Frame * pILStubFrame = NULL; |
| 2447 | if (fIsILStub && !fIsFunclet) // only make this callback on the main method body of IL stubs |
| 2448 | pUserMDForILStub = GetUserMethodForILStub(pThread, sf.SP, pMD, &pILStubFrame); |
| 2449 | |
| 2450 | #ifdef FEATURE_CORRUPTING_EXCEPTIONS |
| 2451 | BOOL fCanMethodHandleException = TRUE; |
| 2452 | CorruptionSeverity currentSeverity = NotCorrupting; |
| 2453 | { |
| 2454 | // Switch to COOP mode since we are going to request throwable |
| 2455 | GCX_COOP(); |
| 2456 | |
| 2457 | // We must defer to the MethodDesc of the user method instead of the IL stub |
| 2458 | // itself because the user can specify the policy on a per-method basis and |
| 2459 | // that won't be reflected via the IL stub's MethodDesc. |
| 2460 | MethodDesc * pMDWithCEAttribute = (pUserMDForILStub != NULL) ? pUserMDForILStub : pMD; |
| 2461 | |
| 2462 | // Check if the exception can be delivered to the method? It will check if the exception |
| 2463 | // is a CE or not. If it is, it will check if the method can process it or not. |
| 2464 | currentSeverity = pThread->GetExceptionState()->GetCurrentExceptionTracker()->GetCorruptionSeverity(); |
| 2465 | fCanMethodHandleException = CEHelper::CanMethodHandleException(currentSeverity, pMDWithCEAttribute); |
| 2466 | } |
| 2467 | #endif // FEATURE_CORRUPTING_EXCEPTIONS |
| 2468 | |
| 2469 | // Doing rude abort. Skip all non-constrained execution region code. |
| 2470 | // When rude abort is initiated, we cannot intercept any exceptions. |
| 2471 | if ((pThread->IsRudeAbortInitiated() && !pThread->IsWithinCer(pcfThisFrame))) |
| 2472 | { |
| 2473 | // If we are unwinding to find the real resume frame, then we cannot ignore frames yet. |
| 2474 | // We need to make sure we find the correct resume frame before starting to ignore frames. |
| 2475 | if (fUnwindingToFindResumeFrame) |
| 2476 | { |
| 2477 | fProcessThisFrameToFindResumeFrameOnly = true; |
| 2478 | } |
| 2479 | else |
| 2480 | { |
| 2481 | EH_LOG((LL_INFO100, " IGNOREFRAME: rude abort/CE\n" )); |
| 2482 | fIgnoreThisFrame = true; |
| 2483 | } |
| 2484 | } |
| 2485 | |
| 2486 | // |
| 2487 | // BEGIN resume frame processing code |
| 2488 | // |
| 2489 | // Often times, we'll run into the situation where the actual resume call frame |
| 2490 | // is not the same call frame that we see the catch clause in. The reason for this |
| 2491 | // is that catch clauses get duplicated down to cover funclet code ranges. When we |
| 2492 | // see a catch clause covering our control PC, but it is marked as a duplicate, we |
| 2493 | // need to continue to unwind until we find the same clause that isn't marked as a |
| 2494 | // duplicate. This will be the correct resume frame. |
| 2495 | // |
| 2496 | // We actually achieve this skipping by observing that if we are catching at a |
| 2497 | // duplicated clause, all the call frames we should be skipping have already been |
| 2498 | // processed by a previous exception dispatch. So if we allow the unwind to |
| 2499 | // continue, we will immediately bump into the ExceptionTracker for the previous |
| 2500 | // dispatch, and our resume frame will be the last frame seen by that Tracker. |
| 2501 | // |
| 2502 | // Note that we will have visited all the EH clauses for a particular method when we |
| 2503 | // see its first funclet (the funclet which is closest to the leaf). We need to make |
| 2504 | // sure we don't process any EH clause again when we see other funclets or the parent |
| 2505 | // method until we get to the real resume frame. The real resume frame may be another |
| 2506 | // funclet, which is why we can't blindly skip all funclets until we see the parent |
| 2507 | // method frame. |
| 2508 | // |
| 2509 | // If the exception is handled by the method, then UnwindingToFindResumeFrame takes |
| 2510 | // care of the skipping. We basically skip everything when we are unwinding to find |
| 2511 | // the resume frame. If the exception is not handled by the method, then we skip all the |
| 2512 | // funclets until we get to the parent method. The logic to handle this is in |
| 2513 | // HandleFunclets(). In the first pass, HandleFunclets() only kicks |
| 2514 | // in if we are not unwinding to find the resume frame. |
| 2515 | // |
| 2516 | // Then on the second pass, we need to process frames up to the initial place where |
| 2517 | // we saw the catch clause, which means upto and including part of the resume stack |
| 2518 | // frame. Then we need to skip the call frames up to the real resume stack frame |
| 2519 | // and resume. |
| 2520 | // |
| 2521 | // In the second pass, we have the same problem with skipping funclets as in the first |
| 2522 | // pass. However, in this case, we know exactly which frame is our target unwind frame |
| 2523 | // (EXCEPTION_TARGET_UNWIND will be set). So we blindly unwind until we see the parent |
| 2524 | // method, or until the target unwind frame. |
| 2525 | PTR_EXCEPTION_CLAUSE_TOKEN pLimitClauseToken = NULL; |
| 2526 | if (!fIgnoreThisFrame && !fIsFirstPass && !m_sfResumeStackFrame.IsNull() && (sf >= m_sfResumeStackFrame)) |
| 2527 | { |
| 2528 | EH_LOG((LL_INFO100, " RESUMEFRAME: sf is %p and m_sfResumeStackFrame: %p\n" , sf.SP, m_sfResumeStackFrame.SP)); |
| 2529 | EH_LOG((LL_INFO100, " RESUMEFRAME: %s initial resume frame: %p\n" , (sf == m_sfResumeStackFrame) ? "REACHED" : "PASSED" , m_sfResumeStackFrame.SP)); |
| 2530 | |
| 2531 | // process this frame to call handlers |
| 2532 | EH_LOG((LL_INFO100, " RESUMEFRAME: Found last frame to process finallys in, need to process only part of call frame\n" )); |
| 2533 | EH_LOG((LL_INFO100, " RESUMEFRAME: Limit clause token: %p\n" , m_pClauseForCatchToken)); |
| 2534 | pLimitClauseToken = m_pClauseForCatchToken; |
| 2535 | |
| 2536 | // The limit clause is the same as the clause we're catching at. It is used |
| 2537 | // as the last clause we process in the "inital resume frame". Anything further |
| 2538 | // down the list of clauses is skipped along with all call frames up to the actual |
| 2539 | // resume frame. |
| 2540 | CONSISTENCY_CHECK_MSG(sf == m_sfResumeStackFrame, "Passed initial resume frame and fIgnoreThisFrame wasn't set!" ); |
| 2541 | } |
| 2542 | // |
| 2543 | // END resume frame code |
| 2544 | // |
| 2545 | |
| 2546 | if (!fIgnoreThisFrame) |
| 2547 | { |
| 2548 | BOOL fFoundHandler = FALSE; |
| 2549 | DWORD_PTR dwHandlerStartPC = NULL; |
| 2550 | |
| 2551 | BOOL bReplaceStack = FALSE; |
| 2552 | BOOL bSkipLastElement = FALSE; |
| 2553 | bool fUnwindFinished = false; |
| 2554 | |
| 2555 | if (STS_FirstRethrowFrame == STState) |
| 2556 | { |
| 2557 | bSkipLastElement = TRUE; |
| 2558 | } |
| 2559 | else |
| 2560 | if (STS_NewException == STState) |
| 2561 | { |
| 2562 | bReplaceStack = TRUE; |
| 2563 | } |
| 2564 | |
| 2565 | // We need to notify the profiler on the first pass in two cases: |
| 2566 | // 1) a brand new exception is thrown, and |
| 2567 | // 2) an exception is rethrown. |
| 2568 | if (fIsFirstPass && (bSkipLastElement || bReplaceStack)) |
| 2569 | { |
| 2570 | GCX_COOP(); |
| 2571 | EEToProfilerExceptionInterfaceWrapper::ExceptionThrown(pThread); |
| 2572 | UpdatePerformanceMetrics(pcfThisFrame, bSkipLastElement, bReplaceStack); |
| 2573 | } |
| 2574 | |
| 2575 | if (!fUnwindingToFindResumeFrame) |
| 2576 | { |
| 2577 | // |
| 2578 | // update our exception stacktrace, ignoring IL stubs |
| 2579 | // |
| 2580 | if (fIsFirstPass && !pMD->IsILStub()) |
| 2581 | { |
| 2582 | GCX_COOP(); |
| 2583 | |
| 2584 | m_StackTraceInfo.AppendElement(CanAllocateMemory(), uControlPC, sf.SP, pMD, pcfThisFrame); |
| 2585 | m_StackTraceInfo.SaveStackTrace(CanAllocateMemory(), m_hThrowable, bReplaceStack, bSkipLastElement); |
| 2586 | } |
| 2587 | |
| 2588 | // |
| 2589 | // make callback to debugger and/or profiler |
| 2590 | // |
| 2591 | if (fGiveDebuggerAndProfilerNotification) |
| 2592 | { |
| 2593 | if (fIsFirstPass) |
| 2594 | { |
| 2595 | EEToProfilerExceptionInterfaceWrapper::ExceptionSearchFunctionEnter(pMD); |
| 2596 | |
| 2597 | // Notfiy the debugger that we are on the first pass for a managed exception. |
| 2598 | // Note that this callback is made for every managed frame. |
| 2599 | EEToDebuggerExceptionInterfaceWrapper::FirstChanceManagedException(pThread, uControlPC, sf.SP); |
| 2600 | |
| 2601 | #if defined(DEBUGGING_SUPPORTED) |
| 2602 | _ASSERTE(this == pThread->GetExceptionState()->m_pCurrentTracker); |
| 2603 | |
| 2604 | // check if the current exception has been intercepted. |
| 2605 | if (m_ExceptionFlags.DebuggerInterceptInfo()) |
| 2606 | { |
| 2607 | // According to the x86 implementation, we don't need to call the ExceptionSearchFunctionLeave() |
| 2608 | // profiler callback. |
| 2609 | StackFrame sfInterceptStackFrame; |
| 2610 | m_DebuggerExState.GetDebuggerInterceptInfo(NULL, NULL, |
| 2611 | reinterpret_cast<PBYTE *>(&(sfInterceptStackFrame.SP)), |
| 2612 | NULL, NULL); |
| 2613 | |
| 2614 | // Save the target unwind frame just like we do when we find a catch clause. |
| 2615 | m_sfResumeStackFrame = sfInterceptStackFrame; |
| 2616 | ReturnStatus = FirstPassComplete; |
| 2617 | goto lExit; |
| 2618 | } |
| 2619 | #endif // DEBUGGING_SUPPORTED |
| 2620 | |
| 2621 | // Attempt to deliver the first chance notification to the AD only *AFTER* the debugger |
| 2622 | // has done that, provided we have not already delivered it. |
| 2623 | if (!this->DeliveredFirstChanceNotification()) |
| 2624 | { |
| 2625 | ExceptionNotifications::DeliverFirstChanceNotification(); |
| 2626 | } |
| 2627 | } |
| 2628 | else |
| 2629 | { |
| 2630 | #if defined(DEBUGGING_SUPPORTED) |
| 2631 | _ASSERTE(this == pThread->GetExceptionState()->m_pCurrentTracker); |
| 2632 | |
| 2633 | // check if the exception is intercepted. |
| 2634 | if (m_ExceptionFlags.DebuggerInterceptInfo()) |
| 2635 | { |
| 2636 | MethodDesc* pInterceptMD = NULL; |
| 2637 | StackFrame sfInterceptStackFrame; |
| 2638 | |
| 2639 | // check if we have reached the interception point yet |
| 2640 | m_DebuggerExState.GetDebuggerInterceptInfo(&pInterceptMD, NULL, |
| 2641 | reinterpret_cast<PBYTE *>(&(sfInterceptStackFrame.SP)), |
| 2642 | NULL, NULL); |
| 2643 | |
| 2644 | // If the exception has gone unhandled in the first pass, we wouldn't have a chance |
| 2645 | // to set the target unwind frame. Check for this case now. |
| 2646 | if (m_sfResumeStackFrame.IsNull()) |
| 2647 | { |
| 2648 | m_sfResumeStackFrame = sfInterceptStackFrame; |
| 2649 | } |
| 2650 | _ASSERTE(m_sfResumeStackFrame == sfInterceptStackFrame); |
| 2651 | |
| 2652 | if ((pInterceptMD == pMD) && |
| 2653 | (sfInterceptStackFrame == sf)) |
| 2654 | { |
| 2655 | // If we have reached the stack frame at which the exception is intercepted, |
| 2656 | // then finish the second pass prematurely. |
| 2657 | SecondPassIsComplete(pMD, sf); |
| 2658 | ReturnStatus = SecondPassComplete; |
| 2659 | goto lExit; |
| 2660 | } |
| 2661 | } |
| 2662 | #endif // DEBUGGING_SUPPORTED |
| 2663 | |
| 2664 | // According to the x86 implementation, we don't need to call the ExceptionUnwindFunctionEnter() |
| 2665 | // profiler callback when an exception is intercepted. |
| 2666 | EEToProfilerExceptionInterfaceWrapper::ExceptionUnwindFunctionEnter(pMD); |
| 2667 | } |
| 2668 | } |
| 2669 | |
| 2670 | } |
| 2671 | |
| 2672 | #ifdef FEATURE_STACK_PROBE |
| 2673 | // Don't call a handler if we're within a certain distance of the end of the stack. Could end up here via probe, in |
| 2674 | // which case guard page is intact, or via hard SO, in which case guard page won't be. So don't check for presence of |
| 2675 | // guard page, just check for sufficient space on stack. |
| 2676 | if ( IsStackOverflowException() |
| 2677 | && !pThread->CanResetStackTo((void*)sf.SP)) |
| 2678 | { |
| 2679 | EH_LOG((LL_INFO100, " STACKOVERFLOW: IGNOREFRAME: stack frame too close to guard page: sf.SP: %p\n" , sf.SP)); |
| 2680 | } |
| 2681 | else |
| 2682 | #endif // FEATURE_STACK_PROBE |
| 2683 | { |
| 2684 | IJitManager* pJitMan = pcfThisFrame->GetJitManager(); |
| 2685 | const METHODTOKEN& MethToken = pcfThisFrame->GetMethodToken(); |
| 2686 | |
| 2687 | EH_CLAUSE_ENUMERATOR EnumState; |
| 2688 | unsigned EHCount; |
| 2689 | |
| 2690 | #ifdef FEATURE_CORRUPTING_EXCEPTIONS |
| 2691 | // The method cannot handle the exception (e.g. cannot handle the CE), then simply bail out |
| 2692 | // without examining the EH clauses in it. |
| 2693 | if (!fCanMethodHandleException) |
| 2694 | { |
| 2695 | LOG((LF_EH, LL_INFO100, "ProcessManagedCallFrame - CEHelper decided not to look for exception handlers in the method(MD:%p).\n" , pMD)); |
| 2696 | |
| 2697 | // Set the flag to skip this frame since the CE cannot be delivered |
| 2698 | _ASSERTE(currentSeverity == ProcessCorrupting); |
| 2699 | |
| 2700 | // Force EHClause count to be zero |
| 2701 | EHCount = 0; |
| 2702 | } |
| 2703 | else |
| 2704 | #endif // FEATURE_CORRUPTING_EXCEPTIONS |
| 2705 | { |
| 2706 | EHCount = pJitMan->InitializeEHEnumeration(MethToken, &EnumState); |
| 2707 | } |
| 2708 | |
| 2709 | |
| 2710 | if (!fIsFirstPass) |
| 2711 | { |
| 2712 | // For a method that may have nested funclets, it is possible that a reference may be |
| 2713 | // dead at the point where control flow left the method but may become active once |
| 2714 | // a funclet is executed. |
| 2715 | // |
| 2716 | // Upon returning from the funclet but before the next funclet is invoked, a GC |
| 2717 | // may happen if we are in preemptive mode. Since the GC stackwalk will commence |
| 2718 | // at the original IP at which control left the method, it can result in the reference |
| 2719 | // not being updated (since it was dead at the point control left the method) if the object |
| 2720 | // is moved during GC. |
| 2721 | // |
| 2722 | // To address this, we will indefinitely switch to COOP mode while enumerating, and invoking, |
| 2723 | // funclets. |
| 2724 | // |
| 2725 | // This switch is also required for another scenario: we may be in unwind phase and the current frame |
| 2726 | // may not have any termination handlers to be invoked (i.e. it may have zero EH clauses applicable to |
| 2727 | // the unwind phase). If we do not switch to COOP mode for such a frame, we could remain in preemp mode. |
| 2728 | // Upon returning back from ProcessOSExceptionNotification in ProcessCLRException, when we attempt to |
| 2729 | // switch to COOP mode to update the LastUnwoundEstablisherFrame, we could get blocked due to an |
| 2730 | // active GC, prior to peforming the update. |
| 2731 | // |
| 2732 | // In this case, if the GC stackwalk encounters the current frame and attempts to check if it has been |
| 2733 | // unwound by an exception, then while it has been unwound (especially since it had no termination handlers) |
| 2734 | // logically, it will not figure out as unwound and thus, GC stackwalk would attempt to report references from |
| 2735 | // it, which is incorrect. |
| 2736 | // |
| 2737 | // Thus, when unwinding, we will always switch to COOP mode indefinitely, irrespective of whether |
| 2738 | // the frame has EH clauses to be processed or not. |
| 2739 | GCX_COOP_NO_DTOR(); |
| 2740 | |
| 2741 | // We will also forbid any GC to happen between successive funclet invocations. |
| 2742 | // This will be automatically undone when the contract goes off the stack as the method |
| 2743 | // returns back to its caller. |
| 2744 | BEGINFORBIDGC(); |
| 2745 | } |
| 2746 | |
| 2747 | for (unsigned i = 0; i < EHCount; i++) |
| 2748 | { |
| 2749 | EE_ILEXCEPTION_CLAUSE EHClause; |
| 2750 | PTR_EXCEPTION_CLAUSE_TOKEN pEHClauseToken = pJitMan->GetNextEHClause(&EnumState, &EHClause); |
| 2751 | |
| 2752 | EH_LOG((LL_INFO100, " considering %s clause [%x,%x), ControlPc is %s clause (offset %x)" , |
| 2753 | (IsFault(&EHClause) ? "fault" : |
| 2754 | (IsFinally(&EHClause) ? "finally" : |
| 2755 | (IsFilterHandler(&EHClause) ? "filter" : |
| 2756 | (IsTypedHandler(&EHClause) ? "typed" : "unknown" )))), |
| 2757 | EHClause.TryStartPC, |
| 2758 | EHClause.TryEndPC, |
| 2759 | (ClauseCoversPC(&EHClause, pcfThisFrame->GetRelOffset()) ? "inside" : "outside" ), |
| 2760 | pcfThisFrame->GetRelOffset() |
| 2761 | )); |
| 2762 | |
| 2763 | LOG((LF_EH, LL_INFO100, "\n" )); |
| 2764 | |
| 2765 | // If we have a valid EstablisherFrame for the managed frame where |
| 2766 | // ThreadAbort was raised after the catch block, then see if we |
| 2767 | // have reached that frame during the exception dispatch. If we |
| 2768 | // have, then proceed to skip applicable EH clauses. |
| 2769 | if ((!sfEstablisherOfActualHandlerFrame.IsNull()) && (sfEstablisherFrame == sfEstablisherOfActualHandlerFrame)) |
| 2770 | { |
| 2771 | // We should have a valid index of the EH clause (corresponding to a catch block) after |
| 2772 | // which thread abort was raised? |
| 2773 | _ASSERTE(dwTACatchHandlerClauseIndex > 0); |
| 2774 | { |
| 2775 | // Since we have the index, check if the current EH clause index |
| 2776 | // is less then saved index. If it is, then it implies that |
| 2777 | // we are evaluating clauses that lie "before" the EH clause |
| 2778 | // for the catch block "after" which thread abort was raised. |
| 2779 | // |
| 2780 | // Since ThreadAbort has to make forward progress, we will |
| 2781 | // skip evaluating any such EH clauses. Two things can happen: |
| 2782 | // |
| 2783 | // 1) We will find clauses representing handlers beyond the |
| 2784 | // catch block after which ThreadAbort was raised. Since this is |
| 2785 | // what we want, we evaluate them. |
| 2786 | // |
| 2787 | // 2) There wont be any more clauses implying that the catch block |
| 2788 | // after which the exception was raised was the outermost |
| 2789 | // handler in the method. Thus, the exception will escape out, |
| 2790 | // which is semantically the correct thing to happen. |
| 2791 | // |
| 2792 | // The premise of this check is based upon a JIT compiler's implementation |
| 2793 | // detail: when it generates EH clauses, JIT compiler will order them from |
| 2794 | // top->bottom (when reading a method) and inside->out when reading nested |
| 2795 | // clauses. |
| 2796 | // |
| 2797 | // This assumption is not new since the basic EH type-matching is reliant |
| 2798 | // on this very assumption. However, now we have one more candidate that |
| 2799 | // gets to rely on it. |
| 2800 | // |
| 2801 | // Eventually, this enables forward progress of thread abort exception. |
| 2802 | if (i <= (dwTACatchHandlerClauseIndex -1)) |
| 2803 | { |
| 2804 | EH_LOG((LL_INFO100, " skipping the evaluation of EH clause (index=%d) since we cannot process an exception in a handler\n" , i)); |
| 2805 | EH_LOG((LL_INFO100, " that exists prior to the one (index=%d) after which ThreadAbort was [re]raised.\n" , dwTACatchHandlerClauseIndex)); |
| 2806 | continue; |
| 2807 | } |
| 2808 | } |
| 2809 | } |
| 2810 | |
| 2811 | |
| 2812 | // see comment above where we set pLimitClauseToken |
| 2813 | if (pEHClauseToken == pLimitClauseToken) |
| 2814 | { |
| 2815 | EH_LOG((LL_INFO100, " found limit clause, stopping clause enumeration\n" )); |
| 2816 | |
| 2817 | // <GC_FUNCLET_REFERENCE_REPORTING> |
| 2818 | // |
| 2819 | // If we are here, the exception has been identified to be handled by a duplicate catch clause |
| 2820 | // that is protecting the current funclet. The call to SetEnclosingClauseInfo (below) |
| 2821 | // will setup the CallerSP (for GC reference reporting) to be the SP of the |
| 2822 | // of the caller of current funclet (where the exception has happened, or is escaping from). |
| 2823 | // |
| 2824 | // However, we need the CallerSP to be set as the SP of the caller of the |
| 2825 | // actual frame that will contain (and invoke) the catch handler corresponding to |
| 2826 | // the duplicate clause. But that isn't available right now and we can only know |
| 2827 | // once we unwind upstack to reach the target frame. |
| 2828 | // |
| 2829 | // Thus, upon reaching the target frame and before invoking the catch handler, |
| 2830 | // we will fix up the CallerSP (for GC reporting) to be that of the caller of the |
| 2831 | // target frame that will be invoking the actual catch handler. |
| 2832 | // |
| 2833 | // </GC_FUNCLET_REFERENCE_REPORTING> |
| 2834 | // |
| 2835 | // for catch clauses |
| 2836 | SetEnclosingClauseInfo(fIsFunclet, |
| 2837 | pcfThisFrame->GetRelOffset(), |
| 2838 | GetSP(pcfThisFrame->GetRegisterSet()->pCallerContext)); |
| 2839 | fUnwindFinished = true; |
| 2840 | m_fFixupCallerSPForGCReporting = true; |
| 2841 | break; |
| 2842 | } |
| 2843 | |
| 2844 | BOOL fTermHandler = IsFaultOrFinally(&EHClause); |
| 2845 | fFoundHandler = FALSE; |
| 2846 | |
| 2847 | if (( fIsFirstPass && fTermHandler) || |
| 2848 | (!fIsFirstPass && !fTermHandler)) |
| 2849 | { |
| 2850 | continue; |
| 2851 | } |
| 2852 | |
| 2853 | if (ClauseCoversPC(&EHClause, pcfThisFrame->GetRelOffset())) |
| 2854 | { |
| 2855 | EH_LOG((LL_INFO100, " clause covers ControlPC\n" )); |
| 2856 | |
| 2857 | dwHandlerStartPC = pJitMan->GetCodeAddressForRelOffset(MethToken, EHClause.HandlerStartPC); |
| 2858 | |
| 2859 | if (fUnwindingToFindResumeFrame) |
| 2860 | { |
| 2861 | CONSISTENCY_CHECK(fIsFirstPass); |
| 2862 | if (!fTermHandler) |
| 2863 | { |
| 2864 | // m_pClauseForCatchToken can only be NULL for continuable exceptions, but we should never |
| 2865 | // get here if we are handling continuable exceptions. fUnwindingToFindResumeFrame is |
| 2866 | // only true at the end of the first pass. |
| 2867 | _ASSERTE(m_pClauseForCatchToken != NULL); |
| 2868 | |
| 2869 | // handlers match and not duplicate? |
| 2870 | EH_LOG((LL_INFO100, " RESUMEFRAME: catch handler: [%x,%x], this handler: [%x,%x] %s\n" , |
| 2871 | m_ClauseForCatch.HandlerStartPC, |
| 2872 | m_ClauseForCatch.HandlerEndPC, |
| 2873 | EHClause.HandlerStartPC, |
| 2874 | EHClause.HandlerEndPC, |
| 2875 | IsDuplicateClause(&EHClause) ? "[duplicate]" : "" )); |
| 2876 | |
| 2877 | if ((m_ClauseForCatch.HandlerStartPC == EHClause.HandlerStartPC) && |
| 2878 | (m_ClauseForCatch.HandlerEndPC == EHClause.HandlerEndPC)) |
| 2879 | { |
| 2880 | EH_LOG((LL_INFO100, " RESUMEFRAME: found clause with same handler as catch\n" )); |
| 2881 | if (!IsDuplicateClause(&EHClause)) |
| 2882 | { |
| 2883 | CONSISTENCY_CHECK(fIsFirstPass); |
| 2884 | |
| 2885 | if (fProcessThisFrameToFindResumeFrameOnly) |
| 2886 | { |
| 2887 | EH_LOG((LL_INFO100, " RESUMEFRAME: identified real resume frame, \ |
| 2888 | but rude thread abort is initiated: %p\n" , sf.SP)); |
| 2889 | |
| 2890 | // We have found the real resume frame. However, rude thread abort |
| 2891 | // has been initiated. Thus, we need to continue the first pass |
| 2892 | // as if we have not found a handler yet. To do so, we need to |
| 2893 | // reset all the information we have saved when we find the handler. |
| 2894 | m_ExceptionFlags.ResetUnwindingToFindResumeFrame(); |
| 2895 | |
| 2896 | m_uCatchToCallPC = NULL; |
| 2897 | m_pClauseForCatchToken = NULL; |
| 2898 | |
| 2899 | m_sfResumeStackFrame.Clear(); |
| 2900 | ReturnStatus = UnwindPending; |
| 2901 | } |
| 2902 | else |
| 2903 | { |
| 2904 | EH_LOG((LL_INFO100, " RESUMEFRAME: identified real resume frame: %p\n" , sf.SP)); |
| 2905 | |
| 2906 | // Save off the index and the EstablisherFrame of the EH clause of the non-duplicate handler |
| 2907 | // that decided to handle the exception. We may need it |
| 2908 | // if a ThreadAbort is raised after the catch block |
| 2909 | // executes. |
| 2910 | m_dwIndexClauseForCatch = i + 1; |
| 2911 | m_sfEstablisherOfActualHandlerFrame = sfEstablisherFrame; |
| 2912 | #ifndef ESTABLISHER_FRAME_ADDRESS_IS_CALLER_SP |
| 2913 | m_sfCallerOfActualHandlerFrame = EECodeManager::GetCallerSp(pcfThisFrame->pRD); |
| 2914 | #else // !ESTABLISHER_FRAME_ADDRESS_IS_CALLER_SP |
| 2915 | // On ARM & ARM64, the EstablisherFrame is the value of SP at the time a function was called and before it's prolog |
| 2916 | // executed. Effectively, it is the SP of the caller. |
| 2917 | m_sfCallerOfActualHandlerFrame = sfEstablisherFrame.SP; |
| 2918 | #endif // ESTABLISHER_FRAME_ADDRESS_IS_CALLER_SP |
| 2919 | |
| 2920 | ReturnStatus = FirstPassComplete; |
| 2921 | } |
| 2922 | } |
| 2923 | break; |
| 2924 | } |
| 2925 | } |
| 2926 | } |
| 2927 | else if (IsFilterHandler(&EHClause)) |
| 2928 | { |
| 2929 | DWORD_PTR dwResult = EXCEPTION_CONTINUE_SEARCH; |
| 2930 | DWORD_PTR dwFilterStartPC; |
| 2931 | |
| 2932 | dwFilterStartPC = pJitMan->GetCodeAddressForRelOffset(MethToken, EHClause.FilterOffset); |
| 2933 | |
| 2934 | EH_LOG((LL_INFO100, " calling filter\n" )); |
| 2935 | |
| 2936 | // @todo : If user code throws a StackOveflowException and we have plenty of stack, |
| 2937 | // we probably don't want to be so strict in not calling handlers. |
| 2938 | if (! IsStackOverflowException()) |
| 2939 | { |
| 2940 | // Save the current EHClause Index and Establisher of the clause post which |
| 2941 | // ThreadAbort was raised. This is done an exception handled inside a filter |
| 2942 | // reset the state that was setup before the filter was invoked. |
| 2943 | // |
| 2944 | // We dont have to do this for finally/fault clauses since they execute |
| 2945 | // in the second pass and by that time, we have already skipped the required |
| 2946 | // EH clauses in the applicable stackframe. |
| 2947 | DWORD dwPreFilterTACatchHandlerClauseIndex = dwTACatchHandlerClauseIndex; |
| 2948 | StackFrame sfPreFilterEstablisherOfActualHandlerFrame = sfEstablisherOfActualHandlerFrame; |
| 2949 | |
| 2950 | EX_TRY |
| 2951 | { |
| 2952 | // We want to call filters even if the thread is aborting, so suppress abort |
| 2953 | // checks while the filter runs. |
| 2954 | ThreadPreventAsyncHolder preventAbort(TRUE); |
| 2955 | |
| 2956 | // for filter clauses |
| 2957 | SetEnclosingClauseInfo(fIsFunclet, |
| 2958 | pcfThisFrame->GetRelOffset(), |
| 2959 | GetSP(pcfThisFrame->GetRegisterSet()->pCallerContext)); |
| 2960 | #ifdef USE_FUNCLET_CALL_HELPER |
| 2961 | // On ARM & ARM64, the OS passes us the CallerSP for the frame for which personality routine has been invoked. |
| 2962 | // Since IL filters are invoked in the first pass, we pass this CallerSP to the filter funclet which will |
| 2963 | // then lookup the actual frame pointer value using it since we dont have a frame pointer to pass to it |
| 2964 | // directly. |
| 2965 | // |
| 2966 | // Assert our invariants (we had set them up in InitializeCrawlFrame): |
| 2967 | REGDISPLAY *pCurRegDisplay = pcfThisFrame->GetRegisterSet(); |
| 2968 | |
| 2969 | CONTEXT *pContext = NULL; |
| 2970 | #ifndef USE_CURRENT_CONTEXT_IN_FILTER |
| 2971 | // 1) In first pass, we dont have a valid current context IP |
| 2972 | _ASSERTE(GetIP(pCurRegDisplay->pCurrentContext) == 0); |
| 2973 | pContext = pCurRegDisplay->pCallerContext; |
| 2974 | #else |
| 2975 | pContext = pCurRegDisplay->pCurrentContext; |
| 2976 | #endif // !USE_CURRENT_CONTEXT_IN_FILTER |
| 2977 | #ifdef USE_CALLER_SP_IN_FUNCLET |
| 2978 | // 2) Our caller context and caller SP are valid |
| 2979 | _ASSERTE(pCurRegDisplay->IsCallerContextValid && pCurRegDisplay->IsCallerSPValid); |
| 2980 | // 3) CallerSP is intact |
| 2981 | _ASSERTE(GetSP(pCurRegDisplay->pCallerContext) == GetRegdisplaySP(pCurRegDisplay)); |
| 2982 | #endif // USE_CALLER_SP_IN_FUNCLET |
| 2983 | #endif // USE_FUNCLET_CALL_HELPER |
| 2984 | { |
| 2985 | // CallHandler expects to be in COOP mode. |
| 2986 | GCX_COOP(); |
| 2987 | dwResult = CallHandler(dwFilterStartPC, sf, &EHClause, pMD, Filter X86_ARG(pContext) ARM_ARG(pContext) ARM64_ARG(pContext)); |
| 2988 | } |
| 2989 | } |
| 2990 | EX_CATCH |
| 2991 | { |
| 2992 | // We had an exception in filter invocation that remained unhandled. |
| 2993 | |
| 2994 | // Sync managed exception state, for the managed thread, based upon the active exception tracker. |
| 2995 | pThread->SyncManagedExceptionState(false); |
| 2996 | |
| 2997 | // we've returned from the filter abruptly, now out of managed code |
| 2998 | m_EHClauseInfo.SetManagedCodeEntered(FALSE); |
| 2999 | |
| 3000 | EH_LOG((LL_INFO100, " filter threw an exception\n" )); |
| 3001 | |
| 3002 | // notify profiler |
| 3003 | EEToProfilerExceptionInterfaceWrapper::ExceptionSearchFilterLeave(); |
| 3004 | m_EHClauseInfo.ResetInfo(); |
| 3005 | |
| 3006 | // continue search |
| 3007 | } |
| 3008 | EX_END_CATCH(SwallowAllExceptions); |
| 3009 | |
| 3010 | // Reset the EH clause Index and Establisher of the TA reraise clause |
| 3011 | pThread->m_dwIndexClauseForCatch = dwPreFilterTACatchHandlerClauseIndex; |
| 3012 | pThread->m_sfEstablisherOfActualHandlerFrame = sfPreFilterEstablisherOfActualHandlerFrame; |
| 3013 | |
| 3014 | if (pThread->IsRudeAbortInitiated() && !pThread->IsWithinCer(pcfThisFrame)) |
| 3015 | { |
| 3016 | EH_LOG((LL_INFO100, " IGNOREFRAME: rude abort\n" )); |
| 3017 | goto lExit; |
| 3018 | } |
| 3019 | } |
| 3020 | else |
| 3021 | { |
| 3022 | EH_LOG((LL_INFO100, " STACKOVERFLOW: filter not called due to lack of guard page\n" )); |
| 3023 | // continue search |
| 3024 | } |
| 3025 | |
| 3026 | if (EXCEPTION_EXECUTE_HANDLER == dwResult) |
| 3027 | { |
| 3028 | fFoundHandler = TRUE; |
| 3029 | } |
| 3030 | else if (EXCEPTION_CONTINUE_SEARCH != dwResult) |
| 3031 | { |
| 3032 | // |
| 3033 | // Behavior is undefined according to the spec. Let's not execute the handler. |
| 3034 | // |
| 3035 | } |
| 3036 | EH_LOG((LL_INFO100, " filter returned %s\n" , (fFoundHandler ? "EXCEPTION_EXECUTE_HANDLER" : "EXCEPTION_CONTINUE_SEARCH" ))); |
| 3037 | } |
| 3038 | else if (IsTypedHandler(&EHClause)) |
| 3039 | { |
| 3040 | GCX_COOP(); |
| 3041 | |
| 3042 | TypeHandle thrownType = TypeHandle(); |
| 3043 | OBJECTREF oThrowable = m_pThread->GetThrowable(); |
| 3044 | if (oThrowable != NULL) |
| 3045 | { |
| 3046 | oThrowable = PossiblyUnwrapThrowable(oThrowable, pcfThisFrame->GetAssembly()); |
| 3047 | thrownType = oThrowable->GetTrueTypeHandle(); |
| 3048 | } |
| 3049 | |
| 3050 | if (!thrownType.IsNull()) |
| 3051 | { |
| 3052 | if (EHClause.ClassToken == mdTypeRefNil) |
| 3053 | { |
| 3054 | // this is a catch(...) |
| 3055 | fFoundHandler = TRUE; |
| 3056 | } |
| 3057 | else |
| 3058 | { |
| 3059 | TypeHandle typeHnd = pJitMan->ResolveEHClause(&EHClause, pcfThisFrame); |
| 3060 | |
| 3061 | EH_LOG((LL_INFO100, |
| 3062 | " clause type = %s\n" , |
| 3063 | (!typeHnd.IsNull() ? typeHnd.GetMethodTable()->GetDebugClassName() |
| 3064 | : "<couldn't resolve>" ))); |
| 3065 | EH_LOG((LL_INFO100, |
| 3066 | " thrown type = %s\n" , |
| 3067 | thrownType.GetMethodTable()->GetDebugClassName())); |
| 3068 | |
| 3069 | fFoundHandler = !typeHnd.IsNull() && ExceptionIsOfRightType(typeHnd, thrownType); |
| 3070 | } |
| 3071 | } |
| 3072 | } |
| 3073 | else |
| 3074 | { |
| 3075 | _ASSERTE(fTermHandler); |
| 3076 | fFoundHandler = TRUE; |
| 3077 | } |
| 3078 | |
| 3079 | if (fFoundHandler) |
| 3080 | { |
| 3081 | if (fIsFirstPass) |
| 3082 | { |
| 3083 | _ASSERTE(IsFilterHandler(&EHClause) || IsTypedHandler(&EHClause)); |
| 3084 | |
| 3085 | EH_LOG((LL_INFO100, " found catch at 0x%p, sp = 0x%p\n" , dwHandlerStartPC, sf.SP)); |
| 3086 | m_uCatchToCallPC = dwHandlerStartPC; |
| 3087 | m_pClauseForCatchToken = pEHClauseToken; |
| 3088 | m_ClauseForCatch = EHClause; |
| 3089 | |
| 3090 | m_sfResumeStackFrame = sf; |
| 3091 | |
| 3092 | #if defined(DEBUGGING_SUPPORTED) || defined(PROFILING_SUPPORTED) |
| 3093 | // |
| 3094 | // notify the debugger and profiler |
| 3095 | // |
| 3096 | if (fGiveDebuggerAndProfilerNotification) |
| 3097 | { |
| 3098 | EEToProfilerExceptionInterfaceWrapper::ExceptionSearchCatcherFound(pMD); |
| 3099 | } |
| 3100 | |
| 3101 | if (fIsILStub) |
| 3102 | { |
| 3103 | // |
| 3104 | // NotifyOfCHFFilter has two behaviors |
| 3105 | // * Notifify debugger, get interception info and unwind (function will not return) |
| 3106 | // In this case, m_sfResumeStackFrame is expected to be NULL or the frame of interception. |
| 3107 | // We NULL it out because we get the interception event after this point. |
| 3108 | // * Notifify debugger and return. |
| 3109 | // In this case the normal EH proceeds and we need to reset m_sfResumeStackFrame to the sf catch handler. |
| 3110 | // TODO: remove this call and try to report the IL catch handler in the IL stub itself. |
| 3111 | m_sfResumeStackFrame.Clear(); |
| 3112 | EEToDebuggerExceptionInterfaceWrapper::NotifyOfCHFFilter((EXCEPTION_POINTERS*)&m_ptrs, pILStubFrame); |
| 3113 | m_sfResumeStackFrame = sf; |
| 3114 | } |
| 3115 | else |
| 3116 | { |
| 3117 | // We don't need to do anything special for continuable exceptions after calling |
| 3118 | // this callback. We are going to start unwinding anyway. |
| 3119 | EEToDebuggerExceptionInterfaceWrapper::FirstChanceManagedExceptionCatcherFound(pThread, pMD, (TADDR) uMethodStartPC, sf.SP, |
| 3120 | &EHClause); |
| 3121 | } |
| 3122 | |
| 3123 | // If the exception is intercepted, then the target unwind frame may not be the |
| 3124 | // stack frame we are currently processing, so clear it now. We'll set it |
| 3125 | // later in second pass. |
| 3126 | if (pThread->GetExceptionState()->GetFlags()->DebuggerInterceptInfo()) |
| 3127 | { |
| 3128 | m_sfResumeStackFrame.Clear(); |
| 3129 | } |
| 3130 | #endif //defined(DEBUGGING_SUPPORTED) || defined(PROFILING_SUPPORTED) |
| 3131 | |
| 3132 | // |
| 3133 | // BEGIN resume frame code |
| 3134 | // |
| 3135 | EH_LOG((LL_INFO100, " RESUMEFRAME: initial resume stack frame: %p\n" , sf.SP)); |
| 3136 | |
| 3137 | if (IsDuplicateClause(&EHClause)) |
| 3138 | { |
| 3139 | EH_LOG((LL_INFO100, " RESUMEFRAME: need to unwind to find real resume frame\n" )); |
| 3140 | m_ExceptionFlags.SetUnwindingToFindResumeFrame(); |
| 3141 | |
| 3142 | // This is a duplicate catch funclet. As a result, we will continue to let the |
| 3143 | // exception dispatch proceed upstack to find the actual frame where the |
| 3144 | // funclet lives. |
| 3145 | // |
| 3146 | // At the same time, we also need to save the CallerSP of the frame containing |
| 3147 | // the catch funclet (like we do for other funclets). If the current frame |
| 3148 | // represents a funclet that was invoked by JITted code, then we will save |
| 3149 | // the caller SP of the current frame when we see it during the 2nd pass - |
| 3150 | // refer to the use of "pLimitClauseToken" in the code above. |
| 3151 | // |
| 3152 | // However, that is not the callerSP of the frame containing the catch funclet |
| 3153 | // as the actual frame containing the funclet (and where it will be executed) |
| 3154 | // is the one that will be the target of unwind during the first pass. |
| 3155 | // |
| 3156 | // To correctly get that, we will determine if the current frame is a funclet |
| 3157 | // and if it was invoked from JITted code. If this is true, then current frame |
| 3158 | // represents a finally funclet invoked non-exceptionally (from its parent frame |
| 3159 | // or yet another funclet). In such a case, we will set a flag indicating that |
| 3160 | // we need to reset the enclosing clause SP for the catch funclet and later, |
| 3161 | // when 2nd pass reaches the actual frame containing the catch funclet to be |
| 3162 | // executed, we will update the enclosing clause SP if the |
| 3163 | // "m_fResetEnclosingClauseSPForCatchFunclet" flag is set, just prior to |
| 3164 | // invoking the catch funclet. |
| 3165 | if (fIsFunclet) |
| 3166 | { |
| 3167 | REGDISPLAY* pCurRegDisplay = pcfThisFrame->GetRegisterSet(); |
| 3168 | _ASSERTE(pCurRegDisplay->IsCallerContextValid); |
| 3169 | TADDR adrReturnAddressFromFunclet = PCODEToPINSTR(GetIP(pCurRegDisplay->pCallerContext)) - STACKWALK_CONTROLPC_ADJUST_OFFSET; |
| 3170 | m_fResetEnclosingClauseSPForCatchFunclet = ExecutionManager::IsManagedCode(adrReturnAddressFromFunclet); |
| 3171 | } |
| 3172 | |
| 3173 | ReturnStatus = UnwindPending; |
| 3174 | break; |
| 3175 | } |
| 3176 | |
| 3177 | EH_LOG((LL_INFO100, " RESUMEFRAME: no extra unwinding required, real resume frame: %p\n" , sf.SP)); |
| 3178 | |
| 3179 | // Save off the index and the EstablisherFrame of the EH clause of the non-duplicate handler |
| 3180 | // that decided to handle the exception. We may need it |
| 3181 | // if a ThreadAbort is raised after the catch block |
| 3182 | // executes. |
| 3183 | m_dwIndexClauseForCatch = i + 1; |
| 3184 | m_sfEstablisherOfActualHandlerFrame = sfEstablisherFrame; |
| 3185 | |
| 3186 | #ifndef ESTABLISHER_FRAME_ADDRESS_IS_CALLER_SP |
| 3187 | m_sfCallerOfActualHandlerFrame = EECodeManager::GetCallerSp(pcfThisFrame->pRD); |
| 3188 | #else // !ESTABLISHER_FRAME_ADDRESS_IS_CALLER_SP |
| 3189 | m_sfCallerOfActualHandlerFrame = sfEstablisherFrame.SP; |
| 3190 | #endif // ESTABLISHER_FRAME_ADDRESS_IS_CALLER_SP |
| 3191 | // |
| 3192 | // END resume frame code |
| 3193 | // |
| 3194 | |
| 3195 | ReturnStatus = FirstPassComplete; |
| 3196 | break; |
| 3197 | } |
| 3198 | else |
| 3199 | { |
| 3200 | EH_LOG((LL_INFO100, " found finally/fault at 0x%p\n" , dwHandlerStartPC)); |
| 3201 | _ASSERTE(fTermHandler); |
| 3202 | |
| 3203 | // @todo : If user code throws a StackOveflowException and we have plenty of stack, |
| 3204 | // we probably don't want to be so strict in not calling handlers. |
| 3205 | if (!IsStackOverflowException()) |
| 3206 | { |
| 3207 | DWORD_PTR dwStatus; |
| 3208 | |
| 3209 | // for finally clauses |
| 3210 | SetEnclosingClauseInfo(fIsFunclet, |
| 3211 | pcfThisFrame->GetRelOffset(), |
| 3212 | GetSP(pcfThisFrame->GetRegisterSet()->pCallerContext)); |
| 3213 | |
| 3214 | // We have switched to indefinite COOP mode just before this loop started. |
| 3215 | // Since we also forbid GC during second pass, disable it now since |
| 3216 | // invocation of managed code can result in a GC. |
| 3217 | ENDFORBIDGC(); |
| 3218 | dwStatus = CallHandler(dwHandlerStartPC, sf, &EHClause, pMD, FaultFinally X86_ARG(pcfThisFrame->GetRegisterSet()->pCurrentContext) ARM_ARG(pcfThisFrame->GetRegisterSet()->pCurrentContext) ARM64_ARG(pcfThisFrame->GetRegisterSet()->pCurrentContext)); |
| 3219 | |
| 3220 | // Once we return from a funclet, forbid GC again (refer to comment before start of the loop for details) |
| 3221 | BEGINFORBIDGC(); |
| 3222 | } |
| 3223 | else |
| 3224 | { |
| 3225 | EH_LOG((LL_INFO100, " STACKOVERFLOW: finally not called due to lack of guard page\n" )); |
| 3226 | // continue search |
| 3227 | } |
| 3228 | |
| 3229 | // |
| 3230 | // will continue to find next fault/finally in this call frame |
| 3231 | // |
| 3232 | } |
| 3233 | } // if fFoundHandler |
| 3234 | } // if clause covers PC |
| 3235 | } // foreach eh clause |
| 3236 | } // if stack frame is far enough away from guard page |
| 3237 | |
| 3238 | // |
| 3239 | // notify the profiler |
| 3240 | // |
| 3241 | if (fGiveDebuggerAndProfilerNotification) |
| 3242 | { |
| 3243 | if (fIsFirstPass) |
| 3244 | { |
| 3245 | if (!fUnwindingToFindResumeFrame) |
| 3246 | { |
| 3247 | EEToProfilerExceptionInterfaceWrapper::ExceptionSearchFunctionLeave(pMD); |
| 3248 | } |
| 3249 | } |
| 3250 | else |
| 3251 | { |
| 3252 | if (!fUnwindFinished) |
| 3253 | { |
| 3254 | EEToProfilerExceptionInterfaceWrapper::ExceptionUnwindFunctionLeave(pMD); |
| 3255 | } |
| 3256 | } |
| 3257 | } |
| 3258 | } // fIgnoreThisFrame |
| 3259 | |
| 3260 | lExit: |
| 3261 | return ReturnStatus; |
| 3262 | } |
| 3263 | |
| 3264 | // <64bit_And_Arm_Specific> |
| 3265 | |
| 3266 | // For funclets, add support for unwinding frame chain during SO. These definitions will be automatically picked up by |
| 3267 | // BEGIN_SO_TOLERANT_CODE/END_SO_TOLERANT_CODE usage in ExceptionTracker::CallHandler below. |
| 3268 | // |
| 3269 | // This is required since funclet invocation is the only case of calling managed code from VM that is not wrapped by |
| 3270 | // assembly helper with associated personality routine. The personality routine will invoke CleanupForSecondPass to |
| 3271 | // release exception trackers and unwind frame chain. |
| 3272 | // |
| 3273 | // We need to do the same work as CleanupForSecondPass for funclet invocation in the face of SO. Thus, we redefine OPTIONAL_SO_CLEANUP_UNWIND |
| 3274 | // below. This will perform frame chain unwind inside the "__finally" block that is part of the END_SO_TOLERANT_CODE macro only in the face |
| 3275 | // of an SO. |
| 3276 | // |
| 3277 | // The second part of work, releasing exception trackers, is done inside the "__except" block also part of the END_SO_TOLERANT_CODE by invoking |
| 3278 | // ClearExceptionStateAfterSO. |
| 3279 | // |
| 3280 | // </64bit_And_Arm_Specific> |
| 3281 | |
| 3282 | #undef OPTIONAL_SO_CLEANUP_UNWIND |
| 3283 | |
| 3284 | #define OPTIONAL_SO_CLEANUP_UNWIND(pThread, pFrame) if (pThread->GetFrame() < pFrame) { UnwindFrameChain(pThread, pFrame); } |
| 3285 | |
| 3286 | typedef DWORD_PTR (HandlerFn)(UINT_PTR uStackFrame, Object* pExceptionObj); |
| 3287 | |
| 3288 | #ifdef USE_FUNCLET_CALL_HELPER |
| 3289 | // This is an assembly helper that enables us to call into EH funclets. |
| 3290 | EXTERN_C DWORD_PTR STDCALL CallEHFunclet(Object *pThrowable, UINT_PTR pFuncletToInvoke, UINT_PTR *pFirstNonVolReg, UINT_PTR *pFuncletCallerSP); |
| 3291 | |
| 3292 | // This is an assembly helper that enables us to call into EH filter funclets. |
| 3293 | EXTERN_C DWORD_PTR STDCALL CallEHFilterFunclet(Object *pThrowable, TADDR CallerSP, UINT_PTR pFuncletToInvoke, UINT_PTR *pFuncletCallerSP); |
| 3294 | |
| 3295 | static inline UINT_PTR CastHandlerFn(HandlerFn *pfnHandler) |
| 3296 | { |
| 3297 | #ifdef _TARGET_ARM_ |
| 3298 | return DataPointerToThumbCode<UINT_PTR, HandlerFn *>(pfnHandler); |
| 3299 | #else |
| 3300 | return (UINT_PTR)pfnHandler; |
| 3301 | #endif |
| 3302 | } |
| 3303 | |
| 3304 | static inline UINT_PTR *GetFirstNonVolatileRegisterAddress(PCONTEXT pContextRecord) |
| 3305 | { |
| 3306 | #if defined(_TARGET_ARM_) |
| 3307 | return (UINT_PTR*)&(pContextRecord->R4); |
| 3308 | #elif defined(_TARGET_ARM64_) |
| 3309 | return (UINT_PTR*)&(pContextRecord->X19); |
| 3310 | #elif defined(_TARGET_X86_) |
| 3311 | return (UINT_PTR*)&(pContextRecord->Edi); |
| 3312 | #else |
| 3313 | PORTABILITY_ASSERT("GetFirstNonVolatileRegisterAddress" ); |
| 3314 | return NULL; |
| 3315 | #endif |
| 3316 | } |
| 3317 | |
| 3318 | static inline TADDR GetFrameRestoreBase(PCONTEXT pContextRecord) |
| 3319 | { |
| 3320 | #if defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 3321 | return GetSP(pContextRecord); |
| 3322 | #elif defined(_TARGET_X86_) |
| 3323 | return pContextRecord->Ebp; |
| 3324 | #else |
| 3325 | PORTABILITY_ASSERT("GetFrameRestoreBase" ); |
| 3326 | return NULL; |
| 3327 | #endif |
| 3328 | } |
| 3329 | |
| 3330 | #endif // USE_FUNCLET_CALL_HELPER |
| 3331 | |
| 3332 | DWORD_PTR ExceptionTracker::CallHandler( |
| 3333 | UINT_PTR uHandlerStartPC, |
| 3334 | StackFrame sf, |
| 3335 | EE_ILEXCEPTION_CLAUSE* pEHClause, |
| 3336 | MethodDesc* pMD, |
| 3337 | EHFuncletType funcletType |
| 3338 | X86_ARG(PCONTEXT pContextRecord) |
| 3339 | ARM_ARG(PCONTEXT pContextRecord) |
| 3340 | ARM64_ARG(PCONTEXT pContextRecord) |
| 3341 | ) |
| 3342 | { |
| 3343 | STATIC_CONTRACT_THROWS; |
| 3344 | STATIC_CONTRACT_GC_TRIGGERS; |
| 3345 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 3346 | |
| 3347 | DWORD_PTR dwResumePC; |
| 3348 | OBJECTREF throwable; |
| 3349 | HandlerFn* pfnHandler = (HandlerFn*)uHandlerStartPC; |
| 3350 | |
| 3351 | EH_LOG((LL_INFO100, " calling handler at 0x%p, sp = 0x%p\n" , uHandlerStartPC, sf.SP)); |
| 3352 | |
| 3353 | Thread* pThread = GetThread(); |
| 3354 | |
| 3355 | // The first parameter specifies whether we want to make callbacks before (true) or after (false) |
| 3356 | // calling the handler. |
| 3357 | MakeCallbacksRelatedToHandler(true, pThread, pMD, pEHClause, uHandlerStartPC, sf); |
| 3358 | |
| 3359 | _ASSERTE(pThread->DetermineIfGuardPagePresent()); |
| 3360 | |
| 3361 | throwable = PossiblyUnwrapThrowable(pThread->GetThrowable(), pMD->GetAssembly()); |
| 3362 | |
| 3363 | // We probe for stack space before attempting to call a filter, finally, or catch clause. The path from |
| 3364 | // here to the actual managed code is very short. We must probe, however, because the JIT does not generate a |
| 3365 | // probe for us upon entry to the handler. This probe ensures we have enough stack space to actually make it |
| 3366 | // into the managed code. |
| 3367 | // |
| 3368 | // Incase a SO happens, this macro will also unwind the frame chain before continuing to dispatch the SO |
| 3369 | // upstack (look at the macro implementation for details). |
| 3370 | BEGIN_SO_TOLERANT_CODE(pThread); |
| 3371 | |
| 3372 | // Stores the current SP and BSP, which will be the caller SP and BSP for the funclet. |
| 3373 | // Note that we are making the assumption here that the SP and BSP don't change from this point |
| 3374 | // forward until we actually make the call to the funclet. If it's not the case then we will need |
| 3375 | // some sort of assembly wrappers to help us out. |
| 3376 | CallerStackFrame csfFunclet = CallerStackFrame((UINT_PTR)GetCurrentSP()); |
| 3377 | this->m_EHClauseInfo.SetManagedCodeEntered(TRUE); |
| 3378 | this->m_EHClauseInfo.SetCallerStackFrame(csfFunclet); |
| 3379 | |
| 3380 | switch(funcletType) |
| 3381 | { |
| 3382 | case EHFuncletType::Filter: |
| 3383 | ETW::ExceptionLog::ExceptionFilterBegin(pMD, (PVOID)uHandlerStartPC); |
| 3384 | break; |
| 3385 | case EHFuncletType::FaultFinally: |
| 3386 | ETW::ExceptionLog::ExceptionFinallyBegin(pMD, (PVOID)uHandlerStartPC); |
| 3387 | break; |
| 3388 | case EHFuncletType::Catch: |
| 3389 | ETW::ExceptionLog::ExceptionCatchBegin(pMD, (PVOID)uHandlerStartPC); |
| 3390 | break; |
| 3391 | } |
| 3392 | |
| 3393 | #ifdef USE_FUNCLET_CALL_HELPER |
| 3394 | // Invoke the funclet. We pass throwable only when invoking the catch block. |
| 3395 | // Since the actual caller of the funclet is the assembly helper, pass the reference |
| 3396 | // to the CallerStackFrame instance so that it can be updated. |
| 3397 | CallerStackFrame* pCallerStackFrame = this->m_EHClauseInfo.GetCallerStackFrameForEHClauseReference(); |
| 3398 | UINT_PTR *pFuncletCallerSP = &(pCallerStackFrame->SP); |
| 3399 | if (funcletType != EHFuncletType::Filter) |
| 3400 | { |
| 3401 | dwResumePC = CallEHFunclet((funcletType == EHFuncletType::Catch)?OBJECTREFToObject(throwable):(Object *)NULL, |
| 3402 | CastHandlerFn(pfnHandler), |
| 3403 | GetFirstNonVolatileRegisterAddress(pContextRecord), |
| 3404 | pFuncletCallerSP); |
| 3405 | } |
| 3406 | else |
| 3407 | { |
| 3408 | // For invoking IL filter funclet, we pass the CallerSP to the funclet using which |
| 3409 | // it will retrieve the framepointer for accessing the locals in the parent |
| 3410 | // method. |
| 3411 | dwResumePC = CallEHFilterFunclet(OBJECTREFToObject(throwable), |
| 3412 | GetFrameRestoreBase(pContextRecord), |
| 3413 | CastHandlerFn(pfnHandler), |
| 3414 | pFuncletCallerSP); |
| 3415 | } |
| 3416 | #else // USE_FUNCLET_CALL_HELPER |
| 3417 | // |
| 3418 | // Invoke the funclet. |
| 3419 | // |
| 3420 | dwResumePC = pfnHandler(sf.SP, OBJECTREFToObject(throwable)); |
| 3421 | #endif // !USE_FUNCLET_CALL_HELPER |
| 3422 | |
| 3423 | switch(funcletType) |
| 3424 | { |
| 3425 | case EHFuncletType::Filter: |
| 3426 | ETW::ExceptionLog::ExceptionFilterEnd(); |
| 3427 | break; |
| 3428 | case EHFuncletType::FaultFinally: |
| 3429 | ETW::ExceptionLog::ExceptionFinallyEnd(); |
| 3430 | break; |
| 3431 | case EHFuncletType::Catch: |
| 3432 | ETW::ExceptionLog::ExceptionCatchEnd(); |
| 3433 | ETW::ExceptionLog::ExceptionThrownEnd(); |
| 3434 | break; |
| 3435 | } |
| 3436 | |
| 3437 | this->m_EHClauseInfo.SetManagedCodeEntered(FALSE); |
| 3438 | |
| 3439 | END_SO_TOLERANT_CODE; |
| 3440 | |
| 3441 | // The first parameter specifies whether we want to make callbacks before (true) or after (false) |
| 3442 | // calling the handler. |
| 3443 | MakeCallbacksRelatedToHandler(false, pThread, pMD, pEHClause, uHandlerStartPC, sf); |
| 3444 | |
| 3445 | return dwResumePC; |
| 3446 | } |
| 3447 | |
| 3448 | #undef OPTIONAL_SO_CLEANUP_UNWIND |
| 3449 | #define OPTIONAL_SO_CLEANUP_UNWIND(pThread, pFrame) |
| 3450 | |
| 3451 | |
| 3452 | // |
| 3453 | // this must be done after the second pass has run, it does not |
| 3454 | // reference anything on the stack, so it is safe to run in an |
| 3455 | // SEH __except clause as well as a C++ catch clause. |
| 3456 | // |
| 3457 | // static |
| 3458 | void ExceptionTracker::PopTrackers( |
| 3459 | void* pStackFrameSP |
| 3460 | ) |
| 3461 | { |
| 3462 | CONTRACTL |
| 3463 | { |
| 3464 | MODE_ANY; |
| 3465 | GC_NOTRIGGER; |
| 3466 | NOTHROW; |
| 3467 | } |
| 3468 | CONTRACTL_END; |
| 3469 | |
| 3470 | StackFrame sf((UINT_PTR)pStackFrameSP); |
| 3471 | |
| 3472 | // Only call into PopTrackers if we have a managed thread and we have an exception progress. |
| 3473 | // Otherwise, the call below (to PopTrackers) is a noop. If this ever changes, then this short-circuit needs to be fixed. |
| 3474 | Thread *pCurThread = GetThread(); |
| 3475 | if ((pCurThread != NULL) && (pCurThread->GetExceptionState()->IsExceptionInProgress())) |
| 3476 | { |
| 3477 | // Refer to the comment around ExceptionTracker::HasFrameBeenUnwoundByAnyActiveException |
| 3478 | // for details on the usage of this COOP switch. |
| 3479 | GCX_COOP(); |
| 3480 | |
| 3481 | PopTrackers(sf, false); |
| 3482 | } |
| 3483 | } |
| 3484 | |
| 3485 | // |
| 3486 | // during the second pass, an exception might escape out to |
| 3487 | // unmanaged code where it is swallowed (or potentially rethrown). |
| 3488 | // The current tracker is abandoned in this case, and if a rethrow |
| 3489 | // does happen in unmanaged code, this is unfortunately treated as |
| 3490 | // a brand new exception. This is unavoidable because if two |
| 3491 | // exceptions escape out to unmanaged code in this manner, a subsequent |
| 3492 | // rethrow cannot be disambiguated as corresponding to the nested vs. |
| 3493 | // the original exception. |
| 3494 | void ExceptionTracker::PopTrackerIfEscaping( |
| 3495 | void* pStackPointer |
| 3496 | ) |
| 3497 | { |
| 3498 | CONTRACTL |
| 3499 | { |
| 3500 | MODE_ANY; |
| 3501 | GC_NOTRIGGER; |
| 3502 | NOTHROW; |
| 3503 | } |
| 3504 | CONTRACTL_END; |
| 3505 | |
| 3506 | Thread* pThread = GetThread(); |
| 3507 | ThreadExceptionState* pExState = pThread->GetExceptionState(); |
| 3508 | ExceptionTracker* pTracker = pExState->m_pCurrentTracker; |
| 3509 | CONSISTENCY_CHECK((NULL == pTracker) || pTracker->IsValid()); |
| 3510 | |
| 3511 | // If we are resuming in managed code (albeit further up the stack) we will still need this |
| 3512 | // tracker. Otherwise we are either propagating into unmanaged code -- with the rethrow |
| 3513 | // issues mentioned above -- or we are going unhandled. |
| 3514 | // |
| 3515 | // Note that we don't distinguish unmanaged code in the EE vs. unmanaged code outside the |
| 3516 | // EE. We could use the types of the Frames above us to make this distinction. Without |
| 3517 | // this, the technique of EX_TRY/EX_CATCH/EX_RETHROW inside the EE will lose its tracker |
| 3518 | // and have to rely on LastThrownObject in the rethrow. Along the same lines, unhandled |
| 3519 | // exceptions only have access to LastThrownObject. |
| 3520 | // |
| 3521 | // There may not be a current tracker if, for instance, UMThunk has dispatched into managed |
| 3522 | // code via CallDescr. In that case, CallDescr may pop the tracker, leaving UMThunk with |
| 3523 | // nothing to do. |
| 3524 | |
| 3525 | if (pTracker && pTracker->m_sfResumeStackFrame.IsNull()) |
| 3526 | { |
| 3527 | StackFrame sf((UINT_PTR)pStackPointer); |
| 3528 | StackFrame sfTopMostStackFrameFromFirstPass = pTracker->GetTopmostStackFrameFromFirstPass(); |
| 3529 | |
| 3530 | // Refer to the comment around ExceptionTracker::HasFrameBeenUnwoundByAnyActiveException |
| 3531 | // for details on the usage of this COOP switch. |
| 3532 | GCX_COOP(); |
| 3533 | ExceptionTracker::PopTrackers(sf, true); |
| 3534 | } |
| 3535 | } |
| 3536 | |
| 3537 | // |
| 3538 | // static |
| 3539 | void ExceptionTracker::PopTrackers( |
| 3540 | StackFrame sfResumeFrame, |
| 3541 | bool fPopWhenEqual |
| 3542 | ) |
| 3543 | { |
| 3544 | CONTRACTL |
| 3545 | { |
| 3546 | // Refer to the comment around ExceptionTracker::HasFrameBeenUnwoundByAnyActiveException |
| 3547 | // for details on the mode being COOP here. |
| 3548 | MODE_COOPERATIVE; |
| 3549 | GC_NOTRIGGER; |
| 3550 | NOTHROW; |
| 3551 | } |
| 3552 | CONTRACTL_END; |
| 3553 | |
| 3554 | Thread* pThread = GetThread(); |
| 3555 | ExceptionTracker* pTracker = (pThread ? pThread->GetExceptionState()->m_pCurrentTracker : NULL); |
| 3556 | |
| 3557 | // NOTE: |
| 3558 | // |
| 3559 | // This method is a no-op when there is no managed Thread object. We detect such a case and short circuit out in ExceptionTrackers::PopTrackers. |
| 3560 | // If this ever changes, then please revisit that method and fix it up appropriately. |
| 3561 | |
| 3562 | // If this tracker does not have valid stack ranges and it is in the first pass, |
| 3563 | // then we came here likely when the tracker was being setup |
| 3564 | // and an exception took place. |
| 3565 | // |
| 3566 | // In such a case, we will not pop off the tracker |
| 3567 | if (pTracker && pTracker->m_ScannedStackRange.IsEmpty() && pTracker->IsInFirstPass()) |
| 3568 | { |
| 3569 | // skip any others with empty ranges... |
| 3570 | do |
| 3571 | { |
| 3572 | pTracker = pTracker->m_pPrevNestedInfo; |
| 3573 | } |
| 3574 | while (pTracker && pTracker->m_ScannedStackRange.IsEmpty()); |
| 3575 | |
| 3576 | // pTracker is now the first non-empty one, make sure it doesn't need popping |
| 3577 | // if it does, then someone let an exception propagate out of the exception dispatch code |
| 3578 | |
| 3579 | _ASSERTE(!pTracker || (pTracker->m_ScannedStackRange.GetUpperBound() > sfResumeFrame)); |
| 3580 | return; |
| 3581 | } |
| 3582 | |
| 3583 | #if defined(DEBUGGING_SUPPORTED) |
| 3584 | DWORD_PTR dwInterceptStackFrame = 0; |
| 3585 | |
| 3586 | // This method may be called on an unmanaged thread, in which case no interception can be done. |
| 3587 | if (pTracker) |
| 3588 | { |
| 3589 | ThreadExceptionState* pExState = pThread->GetExceptionState(); |
| 3590 | |
| 3591 | // If the exception is intercepted, then pop trackers according to the stack frame at which |
| 3592 | // the exception is intercepted. We must retrieve the frame pointer before we start popping trackers. |
| 3593 | if (pExState->GetFlags()->DebuggerInterceptInfo()) |
| 3594 | { |
| 3595 | pExState->GetDebuggerState()->GetDebuggerInterceptInfo(NULL, NULL, (PBYTE*)&dwInterceptStackFrame, |
| 3596 | NULL, NULL); |
| 3597 | } |
| 3598 | } |
| 3599 | #endif // DEBUGGING_SUPPORTED |
| 3600 | |
| 3601 | while (pTracker) |
| 3602 | { |
| 3603 | #ifndef FEATURE_PAL |
| 3604 | // When we are about to pop off a tracker, it should |
| 3605 | // have a stack range setup. |
| 3606 | // It is not true on PAL where the scanned stack range needs to |
| 3607 | // be reset after unwinding a sequence of native frames. |
| 3608 | _ASSERTE(!pTracker->m_ScannedStackRange.IsEmpty()); |
| 3609 | #endif // FEATURE_PAL |
| 3610 | |
| 3611 | ExceptionTracker* pPrev = pTracker->m_pPrevNestedInfo; |
| 3612 | |
| 3613 | // <TODO> |
| 3614 | // with new tracker collapsing code, we will only ever pop one of these at a time |
| 3615 | // at the end of the 2nd pass. However, CLRException::HandlerState::SetupCatch |
| 3616 | // still uses this function and we still need to revisit how it interacts with |
| 3617 | // ExceptionTrackers |
| 3618 | // </TODO> |
| 3619 | |
| 3620 | if ((fPopWhenEqual && (pTracker->m_ScannedStackRange.GetUpperBound() == sfResumeFrame)) || |
| 3621 | (pTracker->m_ScannedStackRange.GetUpperBound() < sfResumeFrame)) |
| 3622 | { |
| 3623 | #if defined(DEBUGGING_SUPPORTED) |
| 3624 | if (g_pDebugInterface != NULL) |
| 3625 | { |
| 3626 | if (pTracker->m_ScannedStackRange.GetUpperBound().SP < dwInterceptStackFrame) |
| 3627 | { |
| 3628 | g_pDebugInterface->DeleteInterceptContext(pTracker->m_DebuggerExState.GetDebuggerInterceptContext()); |
| 3629 | } |
| 3630 | else |
| 3631 | { |
| 3632 | _ASSERTE(dwInterceptStackFrame == 0 || |
| 3633 | ( dwInterceptStackFrame == sfResumeFrame.SP && |
| 3634 | dwInterceptStackFrame == pTracker->m_ScannedStackRange.GetUpperBound().SP )); |
| 3635 | } |
| 3636 | } |
| 3637 | #endif // DEBUGGING_SUPPORTED |
| 3638 | |
| 3639 | ExceptionTracker* pTrackerToFree = pTracker; |
| 3640 | EH_LOG((LL_INFO100, "Unlinking ExceptionTracker object 0x%p, thread = 0x%p\n" , pTrackerToFree, pTrackerToFree->m_pThread)); |
| 3641 | CONSISTENCY_CHECK(pTracker->IsValid()); |
| 3642 | pTracker = pPrev; |
| 3643 | |
| 3644 | // free managed tracker resources causing notification -- do this before unlinking the tracker |
| 3645 | // this is necessary so that we know an exception is still in flight while we give the notification |
| 3646 | FreeTrackerMemory(pTrackerToFree, memManaged); |
| 3647 | |
| 3648 | // unlink the tracker from the thread |
| 3649 | pThread->GetExceptionState()->m_pCurrentTracker = pTracker; |
| 3650 | CONSISTENCY_CHECK((NULL == pTracker) || pTracker->IsValid()); |
| 3651 | |
| 3652 | // free unmanaged tracker resources |
| 3653 | FreeTrackerMemory(pTrackerToFree, memUnmanaged); |
| 3654 | } |
| 3655 | else |
| 3656 | { |
| 3657 | break; |
| 3658 | } |
| 3659 | } |
| 3660 | } |
| 3661 | |
| 3662 | // |
| 3663 | // static |
| 3664 | ExceptionTracker* ExceptionTracker::GetOrCreateTracker( |
| 3665 | UINT_PTR ControlPc, |
| 3666 | StackFrame sf, |
| 3667 | EXCEPTION_RECORD* pExceptionRecord, |
| 3668 | CONTEXT* pContextRecord, |
| 3669 | BOOL bAsynchronousThreadStop, |
| 3670 | bool fIsFirstPass, |
| 3671 | StackTraceState* pStackTraceState |
| 3672 | ) |
| 3673 | { |
| 3674 | CONTRACT(ExceptionTracker*) |
| 3675 | { |
| 3676 | MODE_ANY; |
| 3677 | GC_TRIGGERS; |
| 3678 | NOTHROW; |
| 3679 | PRECONDITION(CheckPointer(pStackTraceState)); |
| 3680 | POSTCONDITION(CheckPointer(RETVAL)); |
| 3681 | } |
| 3682 | CONTRACT_END; |
| 3683 | |
| 3684 | Thread* pThread = GetThread(); |
| 3685 | ThreadExceptionState* pExState = pThread->GetExceptionState(); |
| 3686 | ExceptionTracker* pTracker = pExState->m_pCurrentTracker; |
| 3687 | CONSISTENCY_CHECK((NULL == pTracker) || (pTracker->IsValid())); |
| 3688 | |
| 3689 | bool fCreateNewTracker = false; |
| 3690 | bool fIsRethrow = false; |
| 3691 | bool fTransitionFromSecondToFirstPass = false; |
| 3692 | |
| 3693 | // Initialize the out parameter. |
| 3694 | *pStackTraceState = STS_Append; |
| 3695 | |
| 3696 | if (NULL != pTracker) |
| 3697 | { |
| 3698 | fTransitionFromSecondToFirstPass = fIsFirstPass && !pTracker->IsInFirstPass(); |
| 3699 | |
| 3700 | #ifndef FEATURE_PAL |
| 3701 | // We don't check this on PAL where the scanned stack range needs to |
| 3702 | // be reset after unwinding a sequence of native frames. |
| 3703 | CONSISTENCY_CHECK(!pTracker->m_ScannedStackRange.IsEmpty()); |
| 3704 | #endif // FEATURE_PAL |
| 3705 | |
| 3706 | if (pTracker->m_ExceptionFlags.IsRethrown()) |
| 3707 | { |
| 3708 | EH_LOG((LL_INFO100, ">>continued processing of RETHROWN exception\n" )); |
| 3709 | // this is the first time we've seen a rethrown exception, reuse the tracker and reset some state |
| 3710 | |
| 3711 | fCreateNewTracker = true; |
| 3712 | fIsRethrow = true; |
| 3713 | } |
| 3714 | else |
| 3715 | if ((pTracker->m_ptrs.ExceptionRecord != pExceptionRecord) && fIsFirstPass) |
| 3716 | { |
| 3717 | EH_LOG((LL_INFO100, ">>NEW exception (exception records do not match)\n" )); |
| 3718 | fCreateNewTracker = true; |
| 3719 | } |
| 3720 | else |
| 3721 | if (sf >= pTracker->m_ScannedStackRange.GetUpperBound()) |
| 3722 | { |
| 3723 | // We can't have a transition from 1st pass to 2nd pass in this case. |
| 3724 | _ASSERTE( ( sf == pTracker->m_ScannedStackRange.GetUpperBound() ) || |
| 3725 | ( fIsFirstPass || !pTracker->IsInFirstPass() ) ); |
| 3726 | |
| 3727 | if (fTransitionFromSecondToFirstPass) |
| 3728 | { |
| 3729 | // We just transition from 2nd pass to 1st pass without knowing it. |
| 3730 | // This means that some unmanaged frame outside of the EE catches the previous exception, |
| 3731 | // so we should trash the current tracker and create a new one. |
| 3732 | EH_LOG((LL_INFO100, ">>NEW exception (the previous second pass finishes at some unmanaged frame outside of the EE)\n" )); |
| 3733 | { |
| 3734 | GCX_COOP(); |
| 3735 | ExceptionTracker::PopTrackers(sf, false); |
| 3736 | } |
| 3737 | |
| 3738 | fCreateNewTracker = true; |
| 3739 | } |
| 3740 | else |
| 3741 | { |
| 3742 | EH_LOG((LL_INFO100, ">>continued processing of PREVIOUS exception\n" )); |
| 3743 | // previously seen exception, reuse the tracker |
| 3744 | |
| 3745 | *pStackTraceState = STS_Append; |
| 3746 | } |
| 3747 | } |
| 3748 | else |
| 3749 | if (pTracker->m_ScannedStackRange.Contains(sf)) |
| 3750 | { |
| 3751 | EH_LOG((LL_INFO100, ">>continued processing of PREVIOUS exception (revisiting previously processed frames)\n" )); |
| 3752 | } |
| 3753 | else |
| 3754 | { |
| 3755 | // nested exception |
| 3756 | EH_LOG((LL_INFO100, ">>new NESTED exception\n" )); |
| 3757 | fCreateNewTracker = true; |
| 3758 | } |
| 3759 | } |
| 3760 | else |
| 3761 | { |
| 3762 | EH_LOG((LL_INFO100, ">>NEW exception\n" )); |
| 3763 | fCreateNewTracker = true; |
| 3764 | } |
| 3765 | |
| 3766 | if (fCreateNewTracker) |
| 3767 | { |
| 3768 | #ifdef _DEBUG |
| 3769 | if (STATUS_STACK_OVERFLOW == pExceptionRecord->ExceptionCode) |
| 3770 | { |
| 3771 | CONSISTENCY_CHECK(pExceptionRecord->NumberParameters >= 2); |
| 3772 | UINT_PTR uFaultAddress = pExceptionRecord->ExceptionInformation[1]; |
| 3773 | UINT_PTR uStackLimit = (UINT_PTR)pThread->GetCachedStackLimit(); |
| 3774 | |
| 3775 | EH_LOG((LL_INFO100, "STATUS_STACK_OVERFLOW accessing address %p %s\n" , |
| 3776 | uFaultAddress)); |
| 3777 | |
| 3778 | UINT_PTR uDispatchStackAvailable; |
| 3779 | |
| 3780 | uDispatchStackAvailable = uFaultAddress - uStackLimit - HARD_GUARD_REGION_SIZE; |
| 3781 | |
| 3782 | EH_LOG((LL_INFO100, "%x bytes available for SO processing\n" , uDispatchStackAvailable)); |
| 3783 | } |
| 3784 | else if ((IsComPlusException(pExceptionRecord)) && |
| 3785 | (pThread->GetThrowableAsHandle() == g_pPreallocatedStackOverflowException)) |
| 3786 | { |
| 3787 | EH_LOG((LL_INFO100, "STACKOVERFLOW: StackOverflowException manually thrown\n" )); |
| 3788 | } |
| 3789 | #endif // _DEBUG |
| 3790 | |
| 3791 | ExceptionTracker* pNewTracker; |
| 3792 | |
| 3793 | pNewTracker = GetTrackerMemory(); |
| 3794 | if (!pNewTracker) |
| 3795 | { |
| 3796 | if (NULL != pExState->m_OOMTracker.m_pThread) |
| 3797 | { |
| 3798 | // Fatal error: we spun and could not allocate another tracker |
| 3799 | // and our existing emergency tracker is in use. |
| 3800 | EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE); |
| 3801 | } |
| 3802 | |
| 3803 | pNewTracker = &pExState->m_OOMTracker; |
| 3804 | } |
| 3805 | |
| 3806 | new (pNewTracker) ExceptionTracker(ControlPc, |
| 3807 | pExceptionRecord, |
| 3808 | pContextRecord); |
| 3809 | |
| 3810 | CONSISTENCY_CHECK(pNewTracker->IsValid()); |
| 3811 | CONSISTENCY_CHECK(pThread == pNewTracker->m_pThread); |
| 3812 | |
| 3813 | EH_LOG((LL_INFO100, "___________________________________________\n" )); |
| 3814 | EH_LOG((LL_INFO100, "creating new tracker object 0x%p, thread = 0x%p\n" , pNewTracker, pThread)); |
| 3815 | |
| 3816 | GCX_COOP(); |
| 3817 | |
| 3818 | // We always create a throwable in the first pass when we first see an exception. |
| 3819 | // |
| 3820 | // On 64bit, every time the exception passes beyond a boundary (e.g. RPInvoke call, or CallDescrWorker call), |
| 3821 | // the exception trackers that were created below (stack growing down) that boundary are released, during the 2nd pass, |
| 3822 | // if the exception was not caught in managed code. This is because the catcher is in native code and managed exception |
| 3823 | // data structures are for use of VM only when the exception is caught in managed code. Also, passing by such |
| 3824 | // boundaries is our only opportunity to release such internal structures and not leak the memory. |
| 3825 | // |
| 3826 | // However, in certain case, release of exception trackers at each boundary can prove to be a bit aggressive. |
| 3827 | // Take the example below where "VM" prefix refers to a VM frame and "M" prefix refers to a managed frame on the stack. |
| 3828 | // |
| 3829 | // VM1 -> M1 - VM2 - (via RPinvoke) -> M2 |
| 3830 | // |
| 3831 | // Let M2 throw E2 that remains unhandled in managed code (i.e. M1 also does not catch it) but is caught in VM1. |
| 3832 | // Note that the acting of throwing an exception also sets it as the LastThrownObject (LTO) against the thread. |
| 3833 | // |
| 3834 | // Since this is native code (as mentioned in the comments above, there is no distinction made between VM native |
| 3835 | // code and external native code) that caught the exception, when the unwind goes past the "Reverse Pinvoke" boundary, |
| 3836 | // its personality routine will release the tracker for E2. Thus, only the LTO (which is off the Thread object and not |
| 3837 | // the exception tracker) is indicative of type of the last exception thrown. |
| 3838 | // |
| 3839 | // As the unwind goes up the stack, we come across M1 and, since the original tracker was released, we create a new |
| 3840 | // tracker in the 2nd pass that does not contain details like the active exception object. A managed finally executes in M1 |
| 3841 | // that throws and catches E1 inside the finally block. Thus, LTO is updated to indicate E1 as the last exception thrown. |
| 3842 | // When the exception is caught in VM1 and VM attempts to get LTO, it gets E1, which is incorrect as it was handled within the finally. |
| 3843 | // Semantically, it should have got E2 as the LTO. |
| 3844 | // |
| 3845 | // To address, this we will *also* create a throwable during second pass for most exceptions |
| 3846 | // since most of them have had the corresponding first pass. If we are processing |
| 3847 | // an exception's second pass, we would have processed its first pass as well and thus, already |
| 3848 | // created a throwable that would be setup as the LastThrownObject (LTO) against the Thread. |
| 3849 | // |
| 3850 | // The only exception to this rule is the longjump - this exception only has second pass |
| 3851 | // Thus, if we are in second pass and exception in question is longjump, then do not create a throwable. |
| 3852 | // |
| 3853 | // In the case of the scenario above, when we attempt to create a new exception tracker, during the unwind, |
| 3854 | // for M1, we will also setup E2 as the throwable in the tracker. As a result, when the finally in M1 throws |
| 3855 | // and catches the exception, the LTO is correctly updated against the thread (see SafeUpdateLastThrownObject) |
| 3856 | // and thus, when VM requests for the LTO, it gets E2 as expected. |
| 3857 | bool fCreateThrowableForCurrentPass = true; |
| 3858 | if (pExceptionRecord->ExceptionCode == STATUS_LONGJUMP) |
| 3859 | { |
| 3860 | // Long jump is only in second pass of exception dispatch |
| 3861 | _ASSERTE(!fIsFirstPass); |
| 3862 | fCreateThrowableForCurrentPass = false; |
| 3863 | } |
| 3864 | |
| 3865 | // When dealing with SQL Hosting like scenario, a real SO |
| 3866 | // may be caught in native code. As a result, CRT will perform |
| 3867 | // STATUS_UNWIND_CONSOLIDATE that will result in replacing |
| 3868 | // the exception record in ProcessCLRException. This replaced |
| 3869 | // exception record will point to the exception record for original |
| 3870 | // SO for which we will not have created a throwable in the first pass |
| 3871 | // due to the SO-specific early exit code in ProcessCLRException. |
| 3872 | // |
| 3873 | // Thus, if we see that we are here for SO in the 2nd pass, then |
| 3874 | // we shouldn't attempt to create a throwable. |
| 3875 | if ((!fIsFirstPass) && (IsSOExceptionCode(pExceptionRecord->ExceptionCode))) |
| 3876 | { |
| 3877 | fCreateThrowableForCurrentPass = false; |
| 3878 | } |
| 3879 | |
| 3880 | #ifdef _DEBUG |
| 3881 | if ((!fIsFirstPass) && (fCreateThrowableForCurrentPass == true)) |
| 3882 | { |
| 3883 | // We should have a LTO available if we are creating |
| 3884 | // a throwable during second pass. |
| 3885 | _ASSERTE(pThread->LastThrownObjectHandle() != NULL); |
| 3886 | } |
| 3887 | #endif // _DEBUG |
| 3888 | |
| 3889 | bool fCreateThrowable = (fCreateThrowableForCurrentPass || (bAsynchronousThreadStop && !pThread->IsAsyncPrevented())); |
| 3890 | OBJECTREF oThrowable = NULL; |
| 3891 | |
| 3892 | if (fCreateThrowable) |
| 3893 | { |
| 3894 | if (fIsRethrow) |
| 3895 | { |
| 3896 | oThrowable = ObjectFromHandle(pTracker->m_hThrowable); |
| 3897 | } |
| 3898 | else |
| 3899 | { |
| 3900 | // this can take a nested exception |
| 3901 | oThrowable = CreateThrowable(pExceptionRecord, bAsynchronousThreadStop); |
| 3902 | } |
| 3903 | } |
| 3904 | |
| 3905 | GCX_FORBID(); // we haven't protected oThrowable |
| 3906 | |
| 3907 | if (pExState->m_pCurrentTracker != pNewTracker) // OOM can make this false |
| 3908 | { |
| 3909 | pNewTracker->m_pPrevNestedInfo = pExState->m_pCurrentTracker; |
| 3910 | pTracker = pNewTracker; |
| 3911 | pThread->GetExceptionState()->m_pCurrentTracker = pTracker; |
| 3912 | } |
| 3913 | |
| 3914 | if (fCreateThrowable) |
| 3915 | { |
| 3916 | CONSISTENCY_CHECK(oThrowable != NULL); |
| 3917 | CONSISTENCY_CHECK(NULL == pTracker->m_hThrowable); |
| 3918 | |
| 3919 | pThread->SafeSetThrowables(oThrowable); |
| 3920 | |
| 3921 | if (pTracker->CanAllocateMemory()) |
| 3922 | { |
| 3923 | pTracker->m_StackTraceInfo.AllocateStackTrace(); |
| 3924 | } |
| 3925 | } |
| 3926 | INDEBUG(oThrowable = NULL); |
| 3927 | |
| 3928 | if (fIsRethrow) |
| 3929 | { |
| 3930 | *pStackTraceState = STS_FirstRethrowFrame; |
| 3931 | } |
| 3932 | else |
| 3933 | { |
| 3934 | *pStackTraceState = STS_NewException; |
| 3935 | } |
| 3936 | |
| 3937 | _ASSERTE(pTracker->m_pLimitFrame == NULL); |
| 3938 | pTracker->ResetLimitFrame(); |
| 3939 | } |
| 3940 | |
| 3941 | if (!fIsFirstPass) |
| 3942 | { |
| 3943 | { |
| 3944 | // Refer to the comment around ExceptionTracker::HasFrameBeenUnwoundByAnyActiveException |
| 3945 | // for details on the usage of this COOP switch. |
| 3946 | GCX_COOP(); |
| 3947 | |
| 3948 | if (pTracker->IsInFirstPass()) |
| 3949 | { |
| 3950 | CONSISTENCY_CHECK_MSG(fCreateNewTracker || pTracker->m_ScannedStackRange.Contains(sf), |
| 3951 | "Tracker did not receive a first pass!" ); |
| 3952 | |
| 3953 | // Save the topmost StackFrame the tracker saw in the first pass before we reset the |
| 3954 | // scanned stack range. |
| 3955 | pTracker->m_sfFirstPassTopmostFrame = pTracker->m_ScannedStackRange.GetUpperBound(); |
| 3956 | |
| 3957 | // We have to detect this transition because otherwise we break when unmanaged code |
| 3958 | // catches our exceptions. |
| 3959 | EH_LOG((LL_INFO100, ">>tracker transitioned to second pass\n" )); |
| 3960 | pTracker->m_ScannedStackRange.Reset(); |
| 3961 | |
| 3962 | pTracker->m_ExceptionFlags.SetUnwindHasStarted(); |
| 3963 | if (pTracker->m_ExceptionFlags.UnwindingToFindResumeFrame()) |
| 3964 | { |
| 3965 | // UnwindingToFindResumeFrame means that in the first pass, we determine that a method |
| 3966 | // catches the exception, but the method frame we are inspecting is a funclet method frame |
| 3967 | // and is not the correct frame to resume execution. We need to resume to the correct |
| 3968 | // method frame before starting the second pass. The correct method frame is most likely |
| 3969 | // the parent method frame, but it can also be another funclet method frame. |
| 3970 | // |
| 3971 | // If the exception transitions from first pass to second pass before we find the parent |
| 3972 | // method frame, there is only one possibility: some other thread has initiated a rude |
| 3973 | // abort on the current thread, causing us to skip processing of all method frames. |
| 3974 | _ASSERTE(pThread->IsRudeAbortInitiated()); |
| 3975 | } |
| 3976 | // Lean on the safe side and just reset everything unconditionally. |
| 3977 | pTracker->FirstPassIsComplete(); |
| 3978 | |
| 3979 | EEToDebuggerExceptionInterfaceWrapper::ManagedExceptionUnwindBegin(pThread); |
| 3980 | |
| 3981 | pTracker->ResetLimitFrame(); |
| 3982 | } |
| 3983 | else |
| 3984 | { |
| 3985 | // In the second pass, there's a possibility that UMThunkUnwindFrameChainHandler() has |
| 3986 | // popped some frames off the frame chain underneath us. Check for this case here. |
| 3987 | if (pTracker->m_pLimitFrame < pThread->GetFrame()) |
| 3988 | { |
| 3989 | pTracker->ResetLimitFrame(); |
| 3990 | } |
| 3991 | } |
| 3992 | } |
| 3993 | |
| 3994 | #ifdef FEATURE_CORRUPTING_EXCEPTIONS |
| 3995 | if (fCreateNewTracker) |
| 3996 | { |
| 3997 | // Exception tracker should be in the 2nd pass right now |
| 3998 | _ASSERTE(!pTracker->IsInFirstPass()); |
| 3999 | |
| 4000 | // The corruption severity of a newly created tracker is NotSet |
| 4001 | _ASSERTE(pTracker->GetCorruptionSeverity() == NotSet); |
| 4002 | |
| 4003 | // See comment in CEHelper::SetupCorruptionSeverityForActiveExceptionInUnwindPass for details |
| 4004 | CEHelper::SetupCorruptionSeverityForActiveExceptionInUnwindPass(pThread, pTracker, FALSE, pExceptionRecord->ExceptionCode); |
| 4005 | } |
| 4006 | #endif // FEATURE_CORRUPTING_EXCEPTIONS |
| 4007 | } |
| 4008 | |
| 4009 | _ASSERTE(pTracker->m_pLimitFrame >= pThread->GetFrame()); |
| 4010 | |
| 4011 | RETURN pTracker; |
| 4012 | } |
| 4013 | |
| 4014 | void ExceptionTracker::ResetLimitFrame() |
| 4015 | { |
| 4016 | WRAPPER_NO_CONTRACT; |
| 4017 | |
| 4018 | m_pLimitFrame = m_pThread->GetFrame(); |
| 4019 | } |
| 4020 | |
| 4021 | // |
| 4022 | // static |
| 4023 | void ExceptionTracker::ResumeExecution( |
| 4024 | CONTEXT* pContextRecord, |
| 4025 | EXCEPTION_RECORD* pExceptionRecord |
| 4026 | ) |
| 4027 | { |
| 4028 | // |
| 4029 | // This method never returns, so it will leave its |
| 4030 | // state on the thread if useing dynamic contracts. |
| 4031 | // |
| 4032 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 4033 | STATIC_CONTRACT_GC_NOTRIGGER; |
| 4034 | STATIC_CONTRACT_NOTHROW; |
| 4035 | |
| 4036 | AMD64_ONLY(STRESS_LOG4(LF_GCROOTS, LL_INFO100, "Resuming after exception at %p, rbx=%p, rsi=%p, rdi=%p\n" , |
| 4037 | GetIP(pContextRecord), |
| 4038 | pContextRecord->Rbx, |
| 4039 | pContextRecord->Rsi, |
| 4040 | pContextRecord->Rdi)); |
| 4041 | |
| 4042 | EH_LOG((LL_INFO100, "resuming execution at 0x%p\n" , GetIP(pContextRecord))); |
| 4043 | EH_LOG((LL_INFO100, "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n" )); |
| 4044 | |
| 4045 | RtlRestoreContext(pContextRecord, pExceptionRecord); |
| 4046 | |
| 4047 | UNREACHABLE(); |
| 4048 | // |
| 4049 | // doesn't return |
| 4050 | // |
| 4051 | } |
| 4052 | |
| 4053 | // |
| 4054 | // static |
| 4055 | OBJECTREF ExceptionTracker::CreateThrowable( |
| 4056 | PEXCEPTION_RECORD pExceptionRecord, |
| 4057 | BOOL bAsynchronousThreadStop |
| 4058 | ) |
| 4059 | { |
| 4060 | CONTRACTL |
| 4061 | { |
| 4062 | MODE_COOPERATIVE; |
| 4063 | GC_TRIGGERS; |
| 4064 | NOTHROW; |
| 4065 | } |
| 4066 | CONTRACTL_END; |
| 4067 | |
| 4068 | OBJECTREF oThrowable = NULL; |
| 4069 | Thread* pThread = GetThread(); |
| 4070 | |
| 4071 | |
| 4072 | if ((!bAsynchronousThreadStop) && IsComPlusException(pExceptionRecord)) |
| 4073 | { |
| 4074 | oThrowable = pThread->LastThrownObject(); |
| 4075 | } |
| 4076 | else |
| 4077 | { |
| 4078 | oThrowable = CreateCOMPlusExceptionObject(pThread, pExceptionRecord, bAsynchronousThreadStop); |
| 4079 | } |
| 4080 | |
| 4081 | return oThrowable; |
| 4082 | } |
| 4083 | |
| 4084 | // |
| 4085 | //static |
| 4086 | BOOL ExceptionTracker::ClauseCoversPC( |
| 4087 | EE_ILEXCEPTION_CLAUSE* pEHClause, |
| 4088 | DWORD dwOffset |
| 4089 | ) |
| 4090 | { |
| 4091 | // TryStartPC and TryEndPC are offsets relative to the start |
| 4092 | // of the method so we can just compare them to the offset returned |
| 4093 | // by JitCodeToMethodInfo. |
| 4094 | // |
| 4095 | return ((pEHClause->TryStartPC <= dwOffset) && (dwOffset < pEHClause->TryEndPC)); |
| 4096 | } |
| 4097 | |
| 4098 | #if defined(DEBUGGING_SUPPORTED) |
| 4099 | BOOL ExceptionTracker::NotifyDebuggerOfStub(Thread* pThread, StackFrame sf, Frame* pCurrentFrame) |
| 4100 | { |
| 4101 | LIMITED_METHOD_CONTRACT; |
| 4102 | |
| 4103 | BOOL fDeliveredFirstChanceNotification = FALSE; |
| 4104 | |
| 4105 | // <TODO> |
| 4106 | // Remove this once SIS is fully enabled. |
| 4107 | // </TODO> |
| 4108 | extern bool g_EnableSIS; |
| 4109 | |
| 4110 | if (g_EnableSIS) |
| 4111 | { |
| 4112 | _ASSERTE(GetThread() == pThread); |
| 4113 | |
| 4114 | GCX_COOP(); |
| 4115 | |
| 4116 | // For debugger, we may want to notify 1st chance exceptions if they're coming out of a stub. |
| 4117 | // We recognize stubs as Frames with a M2U transition type. The debugger's stackwalker also |
| 4118 | // recognizes these frames and publishes ICorDebugInternalFrames in the stackwalk. It's |
| 4119 | // important to use pFrame as the stack address so that the Exception callback matches up |
| 4120 | // w/ the ICorDebugInternlFrame stack range. |
| 4121 | if (CORDebuggerAttached()) |
| 4122 | { |
| 4123 | if (pCurrentFrame->GetTransitionType() == Frame::TT_M2U) |
| 4124 | { |
| 4125 | // Use -1 for the backing store pointer whenever we use the address of a frame as the stack pointer. |
| 4126 | EEToDebuggerExceptionInterfaceWrapper::FirstChanceManagedException(pThread, |
| 4127 | (SIZE_T)0, |
| 4128 | (SIZE_T)pCurrentFrame); |
| 4129 | fDeliveredFirstChanceNotification = TRUE; |
| 4130 | } |
| 4131 | } |
| 4132 | } |
| 4133 | |
| 4134 | return fDeliveredFirstChanceNotification; |
| 4135 | } |
| 4136 | |
| 4137 | bool ExceptionTracker::IsFilterStartOffset(EE_ILEXCEPTION_CLAUSE* pEHClause, DWORD_PTR dwHandlerStartPC) |
| 4138 | { |
| 4139 | EECodeInfo codeInfo((PCODE)dwHandlerStartPC); |
| 4140 | _ASSERTE(codeInfo.IsValid()); |
| 4141 | |
| 4142 | return pEHClause->FilterOffset == codeInfo.GetRelOffset(); |
| 4143 | } |
| 4144 | |
| 4145 | void ExceptionTracker::MakeCallbacksRelatedToHandler( |
| 4146 | bool fBeforeCallingHandler, |
| 4147 | Thread* pThread, |
| 4148 | MethodDesc* pMD, |
| 4149 | EE_ILEXCEPTION_CLAUSE* pEHClause, |
| 4150 | DWORD_PTR dwHandlerStartPC, |
| 4151 | StackFrame sf |
| 4152 | ) |
| 4153 | { |
| 4154 | // Here we need to make an extra check for filter handlers because we could be calling the catch handler |
| 4155 | // associated with a filter handler and yet the EH clause we have saved is for the filter handler. |
| 4156 | BOOL fIsFilterHandler = IsFilterHandler(pEHClause) && ExceptionTracker::IsFilterStartOffset(pEHClause, dwHandlerStartPC); |
| 4157 | BOOL fIsFaultOrFinallyHandler = IsFaultOrFinally(pEHClause); |
| 4158 | |
| 4159 | if (fBeforeCallingHandler) |
| 4160 | { |
| 4161 | StackFrame sfToStore = sf; |
| 4162 | if ((this->m_pPrevNestedInfo != NULL) && |
| 4163 | (this->m_pPrevNestedInfo->m_EnclosingClauseInfo == this->m_EnclosingClauseInfo)) |
| 4164 | { |
| 4165 | // If this is a nested exception which has the same enclosing clause as the previous exception, |
| 4166 | // we should just propagate the clause info from the previous exception. |
| 4167 | sfToStore = this->m_pPrevNestedInfo->m_EHClauseInfo.GetStackFrameForEHClause(); |
| 4168 | } |
| 4169 | m_EHClauseInfo.SetInfo(COR_PRF_CLAUSE_NONE, (UINT_PTR)dwHandlerStartPC, sfToStore); |
| 4170 | |
| 4171 | if (pMD->IsILStub()) |
| 4172 | { |
| 4173 | return; |
| 4174 | } |
| 4175 | |
| 4176 | if (fIsFilterHandler) |
| 4177 | { |
| 4178 | m_EHClauseInfo.SetEHClauseType(COR_PRF_CLAUSE_FILTER); |
| 4179 | EEToDebuggerExceptionInterfaceWrapper::ExceptionFilter(pMD, (TADDR) dwHandlerStartPC, pEHClause->FilterOffset, (BYTE*)sf.SP); |
| 4180 | |
| 4181 | EEToProfilerExceptionInterfaceWrapper::ExceptionSearchFilterEnter(pMD); |
| 4182 | |
| 4183 | COUNTER_ONLY(GetPerfCounters().m_Excep.cFiltersExecuted++); |
| 4184 | } |
| 4185 | else |
| 4186 | { |
| 4187 | EEToDebuggerExceptionInterfaceWrapper::ExceptionHandle(pMD, (TADDR) dwHandlerStartPC, pEHClause->HandlerStartPC, (BYTE*)sf.SP); |
| 4188 | |
| 4189 | if (fIsFaultOrFinallyHandler) |
| 4190 | { |
| 4191 | m_EHClauseInfo.SetEHClauseType(COR_PRF_CLAUSE_FINALLY); |
| 4192 | EEToProfilerExceptionInterfaceWrapper::ExceptionUnwindFinallyEnter(pMD); |
| 4193 | COUNTER_ONLY(GetPerfCounters().m_Excep.cFinallysExecuted++); |
| 4194 | } |
| 4195 | else |
| 4196 | { |
| 4197 | m_EHClauseInfo.SetEHClauseType(COR_PRF_CLAUSE_CATCH); |
| 4198 | EEToProfilerExceptionInterfaceWrapper::ExceptionCatcherEnter(pThread, pMD); |
| 4199 | |
| 4200 | DACNotify::DoExceptionCatcherEnterNotification(pMD, pEHClause->HandlerStartPC); |
| 4201 | } |
| 4202 | } |
| 4203 | } |
| 4204 | else |
| 4205 | { |
| 4206 | if (pMD->IsILStub()) |
| 4207 | { |
| 4208 | return; |
| 4209 | } |
| 4210 | |
| 4211 | if (fIsFilterHandler) |
| 4212 | { |
| 4213 | EEToProfilerExceptionInterfaceWrapper::ExceptionSearchFilterLeave(); |
| 4214 | } |
| 4215 | else |
| 4216 | { |
| 4217 | if (fIsFaultOrFinallyHandler) |
| 4218 | { |
| 4219 | EEToProfilerExceptionInterfaceWrapper::ExceptionUnwindFinallyLeave(); |
| 4220 | } |
| 4221 | else |
| 4222 | { |
| 4223 | EEToProfilerExceptionInterfaceWrapper::ExceptionCatcherLeave(); |
| 4224 | } |
| 4225 | } |
| 4226 | m_EHClauseInfo.ResetInfo(); |
| 4227 | } |
| 4228 | } |
| 4229 | |
| 4230 | #ifdef DEBUGGER_EXCEPTION_INTERCEPTION_SUPPORTED |
| 4231 | //--------------------------------------------------------------------------------------- |
| 4232 | // |
| 4233 | // This function is called by DefaultCatchHandler() to intercept an exception and start an unwind. |
| 4234 | // |
| 4235 | // Arguments: |
| 4236 | // pCurrentEstablisherFrame - unused on WIN64 |
| 4237 | // pExceptionRecord - EXCEPTION_RECORD of the exception being intercepted |
| 4238 | // |
| 4239 | // Return Value: |
| 4240 | // ExceptionContinueSearch if the exception cannot be intercepted |
| 4241 | // |
| 4242 | // Notes: |
| 4243 | // If the exception is intercepted, this function never returns. |
| 4244 | // |
| 4245 | |
| 4246 | EXCEPTION_DISPOSITION ClrDebuggerDoUnwindAndIntercept(X86_FIRST_ARG(EXCEPTION_REGISTRATION_RECORD* pCurrentEstablisherFrame) |
| 4247 | EXCEPTION_RECORD* pExceptionRecord) |
| 4248 | { |
| 4249 | if (!CheckThreadExceptionStateForInterception()) |
| 4250 | { |
| 4251 | return ExceptionContinueSearch; |
| 4252 | } |
| 4253 | |
| 4254 | Thread* pThread = GetThread(); |
| 4255 | ThreadExceptionState* pExState = pThread->GetExceptionState(); |
| 4256 | |
| 4257 | UINT_PTR uInterceptStackFrame = 0; |
| 4258 | |
| 4259 | pExState->GetDebuggerState()->GetDebuggerInterceptInfo(NULL, NULL, |
| 4260 | (PBYTE*)&uInterceptStackFrame, |
| 4261 | NULL, NULL); |
| 4262 | |
| 4263 | ClrUnwindEx(pExceptionRecord, (UINT_PTR)pThread, INVALID_RESUME_ADDRESS, uInterceptStackFrame); |
| 4264 | |
| 4265 | UNREACHABLE(); |
| 4266 | } |
| 4267 | #endif // DEBUGGER_EXCEPTION_INTERCEPTION_SUPPORTED |
| 4268 | #endif // DEBUGGING_SUPPORTED |
| 4269 | |
| 4270 | #ifdef _DEBUG |
| 4271 | inline bool ExceptionTracker::IsValid() |
| 4272 | { |
| 4273 | bool fRetVal = false; |
| 4274 | |
| 4275 | EX_TRY |
| 4276 | { |
| 4277 | Thread* pThisThread = GetThread(); |
| 4278 | if (m_pThread == pThisThread) |
| 4279 | { |
| 4280 | fRetVal = true; |
| 4281 | } |
| 4282 | } |
| 4283 | EX_CATCH |
| 4284 | { |
| 4285 | } |
| 4286 | EX_END_CATCH(SwallowAllExceptions); |
| 4287 | |
| 4288 | if (!fRetVal) |
| 4289 | { |
| 4290 | EH_LOG((LL_ERROR, "ExceptionTracker::IsValid() failed! this = 0x%p\n" , this)); |
| 4291 | } |
| 4292 | |
| 4293 | return fRetVal; |
| 4294 | } |
| 4295 | BOOL ExceptionTracker::ThrowableIsValid() |
| 4296 | { |
| 4297 | GCX_COOP(); |
| 4298 | CONSISTENCY_CHECK(IsValid()); |
| 4299 | |
| 4300 | BOOL isValid = FALSE; |
| 4301 | |
| 4302 | |
| 4303 | isValid = (m_pThread->GetThrowable() != NULL); |
| 4304 | |
| 4305 | return isValid; |
| 4306 | } |
| 4307 | // |
| 4308 | // static |
| 4309 | UINT_PTR ExceptionTracker::DebugComputeNestingLevel() |
| 4310 | { |
| 4311 | UINT_PTR uNestingLevel = 0; |
| 4312 | Thread* pThread = GetThread(); |
| 4313 | |
| 4314 | if (pThread) |
| 4315 | { |
| 4316 | ExceptionTracker* pTracker; |
| 4317 | pTracker = pThread->GetExceptionState()->m_pCurrentTracker; |
| 4318 | |
| 4319 | while (pTracker) |
| 4320 | { |
| 4321 | uNestingLevel++; |
| 4322 | pTracker = pTracker->m_pPrevNestedInfo; |
| 4323 | }; |
| 4324 | } |
| 4325 | |
| 4326 | return uNestingLevel; |
| 4327 | } |
| 4328 | void DumpClauses(IJitManager* pJitMan, const METHODTOKEN& MethToken, UINT_PTR uMethodStartPC, UINT_PTR dwControlPc) |
| 4329 | { |
| 4330 | EH_CLAUSE_ENUMERATOR EnumState; |
| 4331 | unsigned EHCount; |
| 4332 | |
| 4333 | EH_LOG((LL_INFO1000, " | uMethodStartPC: %p, ControlPc at offset %x\n" , uMethodStartPC, dwControlPc - uMethodStartPC)); |
| 4334 | |
| 4335 | EHCount = pJitMan->InitializeEHEnumeration(MethToken, &EnumState); |
| 4336 | for (unsigned i = 0; i < EHCount; i++) |
| 4337 | { |
| 4338 | EE_ILEXCEPTION_CLAUSE EHClause; |
| 4339 | pJitMan->GetNextEHClause(&EnumState, &EHClause); |
| 4340 | |
| 4341 | EH_LOG((LL_INFO1000, " | %s clause [%x, %x], handler: [%x, %x] %s" , |
| 4342 | (IsFault(&EHClause) ? "fault" : |
| 4343 | (IsFinally(&EHClause) ? "finally" : |
| 4344 | (IsFilterHandler(&EHClause) ? "filter" : |
| 4345 | (IsTypedHandler(&EHClause) ? "typed" : "unknown" )))), |
| 4346 | EHClause.TryStartPC , // + uMethodStartPC, |
| 4347 | EHClause.TryEndPC , // + uMethodStartPC, |
| 4348 | EHClause.HandlerStartPC , // + uMethodStartPC, |
| 4349 | EHClause.HandlerEndPC , // + uMethodStartPC |
| 4350 | (IsDuplicateClause(&EHClause) ? "[duplicate]" : "" ) |
| 4351 | )); |
| 4352 | |
| 4353 | if (IsFilterHandler(&EHClause)) |
| 4354 | { |
| 4355 | LOG((LF_EH, LL_INFO1000, " filter: [%x, ...]" , |
| 4356 | EHClause.FilterOffset));// + uMethodStartPC |
| 4357 | } |
| 4358 | |
| 4359 | LOG((LF_EH, LL_INFO1000, "\n" )); |
| 4360 | } |
| 4361 | |
| 4362 | } |
| 4363 | |
| 4364 | #define STACK_ALLOC_ARRAY(numElements, type) \ |
| 4365 | ((type *)_alloca((numElements)*(sizeof(type)))) |
| 4366 | |
| 4367 | static void DoEHLog( |
| 4368 | DWORD lvl, |
| 4369 | __in_z const char *fmt, |
| 4370 | ... |
| 4371 | ) |
| 4372 | { |
| 4373 | if (!LoggingOn(LF_EH, lvl)) |
| 4374 | return; |
| 4375 | |
| 4376 | va_list args; |
| 4377 | va_start(args, fmt); |
| 4378 | |
| 4379 | UINT_PTR nestinglevel = ExceptionTracker::DebugComputeNestingLevel(); |
| 4380 | if (nestinglevel) |
| 4381 | { |
| 4382 | _ASSERTE(FitsIn<UINT_PTR>(2 * nestinglevel)); |
| 4383 | UINT_PTR cch = 2 * nestinglevel; |
| 4384 | char* pPadding = STACK_ALLOC_ARRAY(cch + 1, char); |
| 4385 | memset(pPadding, '.', cch); |
| 4386 | pPadding[cch] = 0; |
| 4387 | |
| 4388 | LOG((LF_EH, lvl, pPadding)); |
| 4389 | } |
| 4390 | |
| 4391 | LogSpewValist(LF_EH, lvl, fmt, args); |
| 4392 | va_end(args); |
| 4393 | } |
| 4394 | #endif // _DEBUG |
| 4395 | |
| 4396 | #ifdef FEATURE_PAL |
| 4397 | |
| 4398 | //--------------------------------------------------------------------------------------- |
| 4399 | // |
| 4400 | // This functions performs an unwind procedure for a managed exception. The stack is unwound |
| 4401 | // until the target frame is reached. For each frame we use its PC value to find |
| 4402 | // a handler using information that has been built by JIT. |
| 4403 | // |
| 4404 | // Arguments: |
| 4405 | // ex - the PAL_SEHException representing the managed exception |
| 4406 | // unwindStartContext - the context that the unwind should start at. Either the original exception |
| 4407 | // context (when the exception didn't cross native frames) or the first managed |
| 4408 | // frame after crossing native frames. |
| 4409 | // |
| 4410 | VOID UnwindManagedExceptionPass2(PAL_SEHException& ex, CONTEXT* unwindStartContext) |
| 4411 | { |
| 4412 | UINT_PTR controlPc; |
| 4413 | PVOID sp; |
| 4414 | EXCEPTION_DISPOSITION disposition; |
| 4415 | CONTEXT* currentFrameContext; |
| 4416 | CONTEXT* callerFrameContext; |
| 4417 | CONTEXT contextStorage; |
| 4418 | DISPATCHER_CONTEXT dispatcherContext; |
| 4419 | EECodeInfo codeInfo; |
| 4420 | UINT_PTR establisherFrame = NULL; |
| 4421 | PVOID handlerData; |
| 4422 | |
| 4423 | // Indicate that we are performing second pass. |
| 4424 | ex.GetExceptionRecord()->ExceptionFlags = EXCEPTION_UNWINDING; |
| 4425 | |
| 4426 | currentFrameContext = unwindStartContext; |
| 4427 | callerFrameContext = &contextStorage; |
| 4428 | |
| 4429 | memset(&dispatcherContext, 0, sizeof(DISPATCHER_CONTEXT)); |
| 4430 | disposition = ExceptionContinueSearch; |
| 4431 | |
| 4432 | do |
| 4433 | { |
| 4434 | controlPc = GetIP(currentFrameContext); |
| 4435 | |
| 4436 | codeInfo.Init(controlPc); |
| 4437 | |
| 4438 | dispatcherContext.FunctionEntry = codeInfo.GetFunctionEntry(); |
| 4439 | dispatcherContext.ControlPc = controlPc; |
| 4440 | dispatcherContext.ImageBase = codeInfo.GetModuleBase(); |
| 4441 | #ifdef ADJUST_PC_UNWOUND_TO_CALL |
| 4442 | dispatcherContext.ControlPcIsUnwound = !!(currentFrameContext->ContextFlags & CONTEXT_UNWOUND_TO_CALL); |
| 4443 | #endif |
| 4444 | // Check whether we have a function table entry for the current controlPC. |
| 4445 | // If yes, then call RtlVirtualUnwind to get the establisher frame pointer. |
| 4446 | if (dispatcherContext.FunctionEntry != NULL) |
| 4447 | { |
| 4448 | // Create a copy of the current context because we don't want |
| 4449 | // the current context record to be updated by RtlVirtualUnwind. |
| 4450 | memcpy(callerFrameContext, currentFrameContext, sizeof(CONTEXT)); |
| 4451 | RtlVirtualUnwind(UNW_FLAG_EHANDLER, |
| 4452 | dispatcherContext.ImageBase, |
| 4453 | dispatcherContext.ControlPc, |
| 4454 | dispatcherContext.FunctionEntry, |
| 4455 | callerFrameContext, |
| 4456 | &handlerData, |
| 4457 | &establisherFrame, |
| 4458 | NULL); |
| 4459 | |
| 4460 | // Make sure that the establisher frame pointer is within stack boundaries |
| 4461 | // and we did not go below that target frame. |
| 4462 | // TODO: make sure the establisher frame is properly aligned. |
| 4463 | if (!Thread::IsAddressInCurrentStack((void*)establisherFrame) || establisherFrame > ex.TargetFrameSp) |
| 4464 | { |
| 4465 | // TODO: add better error handling |
| 4466 | UNREACHABLE(); |
| 4467 | } |
| 4468 | |
| 4469 | dispatcherContext.EstablisherFrame = establisherFrame; |
| 4470 | dispatcherContext.ContextRecord = currentFrameContext; |
| 4471 | |
| 4472 | EXCEPTION_RECORD* exceptionRecord = ex.GetExceptionRecord(); |
| 4473 | |
| 4474 | if (establisherFrame == ex.TargetFrameSp) |
| 4475 | { |
| 4476 | // We have reached the frame that will handle the exception. |
| 4477 | ex.GetExceptionRecord()->ExceptionFlags |= EXCEPTION_TARGET_UNWIND; |
| 4478 | ExceptionTracker* pTracker = GetThread()->GetExceptionState()->GetCurrentExceptionTracker(); |
| 4479 | pTracker->TakeExceptionPointersOwnership(&ex); |
| 4480 | } |
| 4481 | |
| 4482 | // Perform unwinding of the current frame |
| 4483 | disposition = ProcessCLRException(exceptionRecord, |
| 4484 | establisherFrame, |
| 4485 | currentFrameContext, |
| 4486 | &dispatcherContext); |
| 4487 | |
| 4488 | if (disposition == ExceptionContinueSearch) |
| 4489 | { |
| 4490 | // Exception handler not found. Try the parent frame. |
| 4491 | CONTEXT* temp = currentFrameContext; |
| 4492 | currentFrameContext = callerFrameContext; |
| 4493 | callerFrameContext = temp; |
| 4494 | } |
| 4495 | else |
| 4496 | { |
| 4497 | UNREACHABLE(); |
| 4498 | } |
| 4499 | } |
| 4500 | else |
| 4501 | { |
| 4502 | Thread::VirtualUnwindLeafCallFrame(currentFrameContext); |
| 4503 | } |
| 4504 | |
| 4505 | controlPc = GetIP(currentFrameContext); |
| 4506 | sp = (PVOID)GetSP(currentFrameContext); |
| 4507 | |
| 4508 | // Check whether we are crossing managed-to-native boundary |
| 4509 | if (!ExecutionManager::IsManagedCode(controlPc)) |
| 4510 | { |
| 4511 | // Return back to the UnwindManagedExceptionPass1 and let it unwind the native frames |
| 4512 | { |
| 4513 | GCX_COOP(); |
| 4514 | // Pop all frames that are below the block of native frames and that would be |
| 4515 | // in the unwound part of the stack when UnwindManagedExceptionPass2 is resumed |
| 4516 | // at the next managed frame. |
| 4517 | |
| 4518 | UnwindFrameChain(GetThread(), sp); |
| 4519 | // We are going to reclaim the stack range that was scanned by the exception tracker |
| 4520 | // until now. We need to reset the explicit frames range so that if GC fires before |
| 4521 | // we recreate the tracker at the first managed frame after unwinding the native |
| 4522 | // frames, it doesn't attempt to scan the reclaimed stack range. |
| 4523 | // We also need to reset the scanned stack range since the scanned frames will be |
| 4524 | // obsolete after the unwind of the native frames completes. |
| 4525 | ExceptionTracker* pTracker = GetThread()->GetExceptionState()->GetCurrentExceptionTracker(); |
| 4526 | pTracker->CleanupBeforeNativeFramesUnwind(); |
| 4527 | } |
| 4528 | |
| 4529 | // Now we need to unwind the native frames until we reach managed frames again or the exception is |
| 4530 | // handled in the native code. |
| 4531 | STRESS_LOG2(LF_EH, LL_INFO100, "Unwinding native frames starting at IP = %p, SP = %p \n" , controlPc, sp); |
| 4532 | PAL_ThrowExceptionFromContext(currentFrameContext, &ex); |
| 4533 | UNREACHABLE(); |
| 4534 | } |
| 4535 | |
| 4536 | } while (Thread::IsAddressInCurrentStack(sp) && (establisherFrame != ex.TargetFrameSp)); |
| 4537 | |
| 4538 | _ASSERTE(!"UnwindManagedExceptionPass2: Unwinding failed. Reached the end of the stack" ); |
| 4539 | EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE); |
| 4540 | } |
| 4541 | |
| 4542 | //--------------------------------------------------------------------------------------- |
| 4543 | // |
| 4544 | // This functions performs dispatching of a managed exception. |
| 4545 | // It tries to find an exception handler by examining each frame in the call stack. |
| 4546 | // The search is started from the managed frame caused the exception to be thrown. |
| 4547 | // For each frame we use its PC value to find a handler using information that |
| 4548 | // has been built by JIT. If an exception handler is found then this function initiates |
| 4549 | // the second pass to unwind the stack and execute the handler. |
| 4550 | // |
| 4551 | // Arguments: |
| 4552 | // ex - a PAL_SEHException that stores information about the managed |
| 4553 | // exception that needs to be dispatched. |
| 4554 | // frameContext - the context of the first managed frame of the exception call stack |
| 4555 | // |
| 4556 | VOID DECLSPEC_NORETURN UnwindManagedExceptionPass1(PAL_SEHException& ex, CONTEXT* frameContext) |
| 4557 | { |
| 4558 | CONTEXT unwindStartContext; |
| 4559 | EXCEPTION_DISPOSITION disposition; |
| 4560 | DISPATCHER_CONTEXT dispatcherContext; |
| 4561 | EECodeInfo codeInfo; |
| 4562 | UINT_PTR controlPc; |
| 4563 | UINT_PTR establisherFrame = NULL; |
| 4564 | PVOID handlerData; |
| 4565 | |
| 4566 | #ifdef FEATURE_HIJACK |
| 4567 | GetThread()->UnhijackThread(); |
| 4568 | #endif |
| 4569 | |
| 4570 | controlPc = GetIP(frameContext); |
| 4571 | unwindStartContext = *frameContext; |
| 4572 | |
| 4573 | if (!ExecutionManager::IsManagedCode(GetIP(ex.GetContextRecord()))) |
| 4574 | { |
| 4575 | // This is the first time we see the managed exception, set its context to the managed frame that has caused |
| 4576 | // the exception to be thrown |
| 4577 | *ex.GetContextRecord() = *frameContext; |
| 4578 | ex.GetExceptionRecord()->ExceptionAddress = (VOID*)controlPc; |
| 4579 | } |
| 4580 | |
| 4581 | ex.GetExceptionRecord()->ExceptionFlags = 0; |
| 4582 | |
| 4583 | memset(&dispatcherContext, 0, sizeof(DISPATCHER_CONTEXT)); |
| 4584 | disposition = ExceptionContinueSearch; |
| 4585 | |
| 4586 | do |
| 4587 | { |
| 4588 | codeInfo.Init(controlPc); |
| 4589 | dispatcherContext.FunctionEntry = codeInfo.GetFunctionEntry(); |
| 4590 | dispatcherContext.ControlPc = controlPc; |
| 4591 | dispatcherContext.ImageBase = codeInfo.GetModuleBase(); |
| 4592 | #ifdef ADJUST_PC_UNWOUND_TO_CALL |
| 4593 | dispatcherContext.ControlPcIsUnwound = !!(frameContext->ContextFlags & CONTEXT_UNWOUND_TO_CALL); |
| 4594 | #endif |
| 4595 | |
| 4596 | // Check whether we have a function table entry for the current controlPC. |
| 4597 | // If yes, then call RtlVirtualUnwind to get the establisher frame pointer |
| 4598 | // and then check whether an exception handler exists for the frame. |
| 4599 | if (dispatcherContext.FunctionEntry != NULL) |
| 4600 | { |
| 4601 | #ifdef USE_CURRENT_CONTEXT_IN_FILTER |
| 4602 | KNONVOLATILE_CONTEXT currentNonVolatileContext; |
| 4603 | CaptureNonvolatileRegisters(¤tNonVolatileContext, frameContext); |
| 4604 | #endif // USE_CURRENT_CONTEXT_IN_FILTER |
| 4605 | |
| 4606 | RtlVirtualUnwind(UNW_FLAG_EHANDLER, |
| 4607 | dispatcherContext.ImageBase, |
| 4608 | dispatcherContext.ControlPc, |
| 4609 | dispatcherContext.FunctionEntry, |
| 4610 | frameContext, |
| 4611 | &handlerData, |
| 4612 | &establisherFrame, |
| 4613 | NULL); |
| 4614 | |
| 4615 | // Make sure that the establisher frame pointer is within stack boundaries. |
| 4616 | // TODO: make sure the establisher frame is properly aligned. |
| 4617 | if (!Thread::IsAddressInCurrentStack((void*)establisherFrame)) |
| 4618 | { |
| 4619 | // TODO: add better error handling |
| 4620 | UNREACHABLE(); |
| 4621 | } |
| 4622 | |
| 4623 | dispatcherContext.EstablisherFrame = establisherFrame; |
| 4624 | #ifdef USE_CURRENT_CONTEXT_IN_FILTER |
| 4625 | dispatcherContext.CurrentNonVolatileContextRecord = ¤tNonVolatileContext; |
| 4626 | #endif // USE_CURRENT_CONTEXT_IN_FILTER |
| 4627 | dispatcherContext.ContextRecord = frameContext; |
| 4628 | |
| 4629 | // Find exception handler in the current frame |
| 4630 | disposition = ProcessCLRException(ex.GetExceptionRecord(), |
| 4631 | establisherFrame, |
| 4632 | ex.GetContextRecord(), |
| 4633 | &dispatcherContext); |
| 4634 | |
| 4635 | if (disposition == ExceptionContinueSearch) |
| 4636 | { |
| 4637 | // Exception handler not found. Try the parent frame. |
| 4638 | controlPc = GetIP(frameContext); |
| 4639 | } |
| 4640 | else if (disposition == ExceptionStackUnwind) |
| 4641 | { |
| 4642 | // The first pass is complete. We have found the frame that |
| 4643 | // will handle the exception. Start the second pass. |
| 4644 | ex.TargetFrameSp = establisherFrame; |
| 4645 | UnwindManagedExceptionPass2(ex, &unwindStartContext); |
| 4646 | } |
| 4647 | else |
| 4648 | { |
| 4649 | // TODO: This needs to implemented. Make it fail for now. |
| 4650 | UNREACHABLE(); |
| 4651 | } |
| 4652 | } |
| 4653 | else |
| 4654 | { |
| 4655 | controlPc = Thread::VirtualUnwindLeafCallFrame(frameContext); |
| 4656 | } |
| 4657 | |
| 4658 | // Check whether we are crossing managed-to-native boundary |
| 4659 | while (!ExecutionManager::IsManagedCode(controlPc)) |
| 4660 | { |
| 4661 | UINT_PTR sp = GetSP(frameContext); |
| 4662 | |
| 4663 | BOOL success = PAL_VirtualUnwind(frameContext, NULL); |
| 4664 | if (!success) |
| 4665 | { |
| 4666 | _ASSERTE(!"UnwindManagedExceptionPass1: PAL_VirtualUnwind failed" ); |
| 4667 | EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE); |
| 4668 | } |
| 4669 | |
| 4670 | controlPc = GetIP(frameContext); |
| 4671 | |
| 4672 | STRESS_LOG2(LF_EH, LL_INFO100, "Processing exception at native frame: IP = %p, SP = %p \n" , controlPc, sp); |
| 4673 | |
| 4674 | if (controlPc == 0) |
| 4675 | { |
| 4676 | if (!GetThread()->HasThreadStateNC(Thread::TSNC_ProcessedUnhandledException)) |
| 4677 | { |
| 4678 | LONG disposition = InternalUnhandledExceptionFilter_Worker(&ex.ExceptionPointers); |
| 4679 | _ASSERTE(disposition == EXCEPTION_CONTINUE_SEARCH); |
| 4680 | } |
| 4681 | TerminateProcess(GetCurrentProcess(), 1); |
| 4682 | UNREACHABLE(); |
| 4683 | } |
| 4684 | |
| 4685 | UINT_PTR parentSp = GetSP(frameContext); |
| 4686 | |
| 4687 | // Find all holders on this frame that are in scopes embedded in each other and call their filters. |
| 4688 | NativeExceptionHolderBase* holder = nullptr; |
| 4689 | while ((holder = NativeExceptionHolderBase::FindNextHolder(holder, (void*)sp, (void*)parentSp)) != nullptr) |
| 4690 | { |
| 4691 | EXCEPTION_DISPOSITION disposition = holder->InvokeFilter(ex); |
| 4692 | if (disposition == EXCEPTION_EXECUTE_HANDLER) |
| 4693 | { |
| 4694 | // Switch to pass 2 |
| 4695 | STRESS_LOG1(LF_EH, LL_INFO100, "First pass finished, found native handler, TargetFrameSp = %p\n" , sp); |
| 4696 | |
| 4697 | ex.TargetFrameSp = sp; |
| 4698 | UnwindManagedExceptionPass2(ex, &unwindStartContext); |
| 4699 | UNREACHABLE(); |
| 4700 | } |
| 4701 | |
| 4702 | // The EXCEPTION_CONTINUE_EXECUTION is not supported and should never be returned by a filter |
| 4703 | _ASSERTE(disposition == EXCEPTION_CONTINUE_SEARCH); |
| 4704 | } |
| 4705 | } |
| 4706 | |
| 4707 | } while (Thread::IsAddressInCurrentStack((void*)GetSP(frameContext))); |
| 4708 | |
| 4709 | _ASSERTE(!"UnwindManagedExceptionPass1: Failed to find a handler. Reached the end of the stack" ); |
| 4710 | EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE); |
| 4711 | } |
| 4712 | |
| 4713 | VOID DECLSPEC_NORETURN DispatchManagedException(PAL_SEHException& ex, bool isHardwareException) |
| 4714 | { |
| 4715 | do |
| 4716 | { |
| 4717 | try |
| 4718 | { |
| 4719 | // Unwind the context to the first managed frame |
| 4720 | CONTEXT frameContext; |
| 4721 | |
| 4722 | // If the exception is hardware exceptions, we use the exception's context record directly |
| 4723 | if (isHardwareException) |
| 4724 | { |
| 4725 | frameContext = *ex.GetContextRecord(); |
| 4726 | } |
| 4727 | else |
| 4728 | { |
| 4729 | RtlCaptureContext(&frameContext); |
| 4730 | UINT_PTR currentSP = GetSP(&frameContext); |
| 4731 | |
| 4732 | if (Thread::VirtualUnwindToFirstManagedCallFrame(&frameContext) == 0) |
| 4733 | { |
| 4734 | // There are no managed frames on the stack, so we need to continue unwinding using C++ exception |
| 4735 | // handling |
| 4736 | break; |
| 4737 | } |
| 4738 | |
| 4739 | UINT_PTR firstManagedFrameSP = GetSP(&frameContext); |
| 4740 | |
| 4741 | // Check if there is any exception holder in the skipped frames. If there is one, we need to unwind them |
| 4742 | // using the C++ handling. This is a special case when the UNINSTALL_MANAGED_EXCEPTION_DISPATCHER was |
| 4743 | // not at the managed to native boundary. |
| 4744 | if (NativeExceptionHolderBase::FindNextHolder(nullptr, (void*)currentSP, (void*)firstManagedFrameSP) != nullptr) |
| 4745 | { |
| 4746 | break; |
| 4747 | } |
| 4748 | } |
| 4749 | |
| 4750 | if (ex.IsFirstPass()) |
| 4751 | { |
| 4752 | UnwindManagedExceptionPass1(ex, &frameContext); |
| 4753 | } |
| 4754 | else |
| 4755 | { |
| 4756 | // This is a continuation of pass 2 after native frames unwinding. |
| 4757 | UnwindManagedExceptionPass2(ex, &frameContext); |
| 4758 | } |
| 4759 | UNREACHABLE(); |
| 4760 | } |
| 4761 | catch (PAL_SEHException& ex2) |
| 4762 | { |
| 4763 | isHardwareException = false; |
| 4764 | ex = std::move(ex2); |
| 4765 | } |
| 4766 | |
| 4767 | } |
| 4768 | while (true); |
| 4769 | |
| 4770 | // Ensure that the corruption severity is set for exceptions that didn't pass through managed frames |
| 4771 | // yet and so there is no exception tracker. |
| 4772 | if (ex.IsFirstPass()) |
| 4773 | { |
| 4774 | // Get the thread and the thread exception state - they must exist at this point |
| 4775 | Thread *pCurThread = GetThread(); |
| 4776 | _ASSERTE(pCurThread != NULL); |
| 4777 | |
| 4778 | ThreadExceptionState * pCurTES = pCurThread->GetExceptionState(); |
| 4779 | _ASSERTE(pCurTES != NULL); |
| 4780 | |
| 4781 | #ifdef FEATURE_CORRUPTING_EXCEPTIONS |
| 4782 | ExceptionTracker* pEHTracker = pCurTES->GetCurrentExceptionTracker(); |
| 4783 | if (pEHTracker == NULL) |
| 4784 | { |
| 4785 | CorruptionSeverity severity = NotCorrupting; |
| 4786 | if (CEHelper::IsProcessCorruptedStateException(ex.GetExceptionRecord()->ExceptionCode)) |
| 4787 | { |
| 4788 | severity = ProcessCorrupting; |
| 4789 | } |
| 4790 | |
| 4791 | pCurTES->SetLastActiveExceptionCorruptionSeverity(severity); |
| 4792 | } |
| 4793 | #endif // FEATURE_CORRUPTING_EXCEPTIONS |
| 4794 | } |
| 4795 | |
| 4796 | throw std::move(ex); |
| 4797 | } |
| 4798 | |
| 4799 | #if defined(_TARGET_AMD64_) || defined(_TARGET_X86_) |
| 4800 | |
| 4801 | /*++ |
| 4802 | Function : |
| 4803 | GetRegisterAddressByIndex |
| 4804 | |
| 4805 | Get address of a register in a context |
| 4806 | |
| 4807 | Parameters: |
| 4808 | PCONTEXT pContext : context containing the registers |
| 4809 | UINT index : index of the register (Rax=0 .. R15=15) |
| 4810 | |
| 4811 | Return value : |
| 4812 | Pointer to the context member represeting the register |
| 4813 | --*/ |
| 4814 | VOID* GetRegisterAddressByIndex(PCONTEXT pContext, UINT index) |
| 4815 | { |
| 4816 | return getRegAddr(index, pContext); |
| 4817 | } |
| 4818 | |
| 4819 | /*++ |
| 4820 | Function : |
| 4821 | GetRegisterValueByIndex |
| 4822 | |
| 4823 | Get value of a register in a context |
| 4824 | |
| 4825 | Parameters: |
| 4826 | PCONTEXT pContext : context containing the registers |
| 4827 | UINT index : index of the register (Rax=0 .. R15=15) |
| 4828 | |
| 4829 | Return value : |
| 4830 | Value of the context member represeting the register |
| 4831 | --*/ |
| 4832 | DWORD64 GetRegisterValueByIndex(PCONTEXT pContext, UINT index) |
| 4833 | { |
| 4834 | _ASSERTE(index < 16); |
| 4835 | return *(DWORD64*)GetRegisterAddressByIndex(pContext, index); |
| 4836 | } |
| 4837 | |
| 4838 | /*++ |
| 4839 | Function : |
| 4840 | GetModRMOperandValue |
| 4841 | |
| 4842 | Get value of an instruction operand represented by the ModR/M field |
| 4843 | |
| 4844 | Parameters: |
| 4845 | BYTE rex : REX prefix, 0 if there was none |
| 4846 | BYTE* ip : instruction pointer pointing to the ModR/M field |
| 4847 | PCONTEXT pContext : context containing the registers |
| 4848 | bool is8Bit : true if the operand size is 8 bit |
| 4849 | bool hasOpSizePrefix : true if the instruction has op size prefix (0x66) |
| 4850 | |
| 4851 | Return value : |
| 4852 | Value of the context member represeting the register |
| 4853 | --*/ |
| 4854 | DWORD64 GetModRMOperandValue(BYTE rex, BYTE* ip, PCONTEXT pContext, bool is8Bit, bool hasOpSizePrefix) |
| 4855 | { |
| 4856 | DWORD64 result; |
| 4857 | |
| 4858 | BYTE rex_b = (rex & 0x1); // high bit to modrm r/m field or SIB base field |
| 4859 | BYTE rex_x = (rex & 0x2) >> 1; // high bit to sib index field |
| 4860 | BYTE rex_r = (rex & 0x4) >> 2; // high bit to modrm reg field |
| 4861 | BYTE rex_w = (rex & 0x8) >> 3; // 1 = 64 bit operand size, 0 = operand size determined by hasOpSizePrefix |
| 4862 | |
| 4863 | BYTE modrm = *ip++; |
| 4864 | |
| 4865 | _ASSERTE(modrm != 0); |
| 4866 | |
| 4867 | BYTE mod = (modrm & 0xC0) >> 6; |
| 4868 | BYTE reg = (modrm & 0x38) >> 3; |
| 4869 | BYTE rm = (modrm & 0x07); |
| 4870 | |
| 4871 | reg |= (rex_r << 3); |
| 4872 | BYTE rmIndex = rm | (rex_b << 3); |
| 4873 | |
| 4874 | // 8 bit idiv without the REX prefix uses registers AH, CH, DH, BH for rm 4..8 |
| 4875 | // which is an exception from the regular register indexes. |
| 4876 | bool isAhChDhBh = is8Bit && (rex == 0) && (rm >= 4); |
| 4877 | |
| 4878 | // See: Tables A-15,16,17 in AMD Dev Manual 3 for information |
| 4879 | // about how the ModRM/SIB/REX bytes interact. |
| 4880 | |
| 4881 | switch (mod) |
| 4882 | { |
| 4883 | case 0: |
| 4884 | case 1: |
| 4885 | case 2: |
| 4886 | if (rm == 4) // we have an SIB byte following |
| 4887 | { |
| 4888 | // |
| 4889 | // Get values from the SIB byte |
| 4890 | // |
| 4891 | BYTE sib = *ip++; |
| 4892 | |
| 4893 | _ASSERTE(sib != 0); |
| 4894 | |
| 4895 | BYTE ss = (sib & 0xC0) >> 6; |
| 4896 | BYTE index = (sib & 0x38) >> 3; |
| 4897 | BYTE base = (sib & 0x07); |
| 4898 | |
| 4899 | index |= (rex_x << 3); |
| 4900 | base |= (rex_b << 3); |
| 4901 | |
| 4902 | // |
| 4903 | // Get starting value |
| 4904 | // |
| 4905 | if ((mod == 0) && (base == 5)) |
| 4906 | { |
| 4907 | result = 0; |
| 4908 | } |
| 4909 | else |
| 4910 | { |
| 4911 | result = GetRegisterValueByIndex(pContext, base); |
| 4912 | } |
| 4913 | |
| 4914 | // |
| 4915 | // Add in the [index] |
| 4916 | // |
| 4917 | if (index != 4) |
| 4918 | { |
| 4919 | result += GetRegisterValueByIndex(pContext, index) << ss; |
| 4920 | } |
| 4921 | |
| 4922 | // |
| 4923 | // Finally add in the offset |
| 4924 | // |
| 4925 | if (mod == 0) |
| 4926 | { |
| 4927 | if (base == 5) |
| 4928 | { |
| 4929 | result += *((INT32*)ip); |
| 4930 | } |
| 4931 | } |
| 4932 | else if (mod == 1) |
| 4933 | { |
| 4934 | result += *((INT8*)ip); |
| 4935 | } |
| 4936 | else // mod == 2 |
| 4937 | { |
| 4938 | result += *((INT32*)ip); |
| 4939 | } |
| 4940 | |
| 4941 | } |
| 4942 | else |
| 4943 | { |
| 4944 | // |
| 4945 | // Get the value we need from the register. |
| 4946 | // |
| 4947 | |
| 4948 | // Check for RIP-relative addressing mode for AMD64 |
| 4949 | // Check for Displacement only addressing mode for x86 |
| 4950 | if ((mod == 0) && (rm == 5)) |
| 4951 | { |
| 4952 | #if defined(_TARGET_AMD64_) |
| 4953 | result = (DWORD64)ip + sizeof(INT32) + *(INT32*)ip; |
| 4954 | #else |
| 4955 | result = (DWORD64)(*(DWORD*)ip); |
| 4956 | #endif // _TARGET_AMD64_ |
| 4957 | } |
| 4958 | else |
| 4959 | { |
| 4960 | result = GetRegisterValueByIndex(pContext, rmIndex); |
| 4961 | |
| 4962 | if (mod == 1) |
| 4963 | { |
| 4964 | result += *((INT8*)ip); |
| 4965 | } |
| 4966 | else if (mod == 2) |
| 4967 | { |
| 4968 | result += *((INT32*)ip); |
| 4969 | } |
| 4970 | } |
| 4971 | } |
| 4972 | |
| 4973 | break; |
| 4974 | |
| 4975 | case 3: |
| 4976 | default: |
| 4977 | // The operand is stored in a register. |
| 4978 | if (isAhChDhBh) |
| 4979 | { |
| 4980 | // 8 bit idiv without the REX prefix uses registers AH, CH, DH or BH for rm 4..8. |
| 4981 | // So we shift the register index to get the real register index. |
| 4982 | rmIndex -= 4; |
| 4983 | } |
| 4984 | |
| 4985 | result = (DWORD64)GetRegisterAddressByIndex(pContext, rmIndex); |
| 4986 | |
| 4987 | if (isAhChDhBh) |
| 4988 | { |
| 4989 | // Move one byte higher to get an address of the AH, CH, DH or BH |
| 4990 | result++; |
| 4991 | } |
| 4992 | |
| 4993 | break; |
| 4994 | |
| 4995 | } |
| 4996 | |
| 4997 | // |
| 4998 | // Now dereference thru the result to get the resulting value. |
| 4999 | // |
| 5000 | if (is8Bit) |
| 5001 | { |
| 5002 | result = *((BYTE*)result); |
| 5003 | } |
| 5004 | else if (rex_w != 0) |
| 5005 | { |
| 5006 | result = *((DWORD64*)result); |
| 5007 | } |
| 5008 | else if (hasOpSizePrefix) |
| 5009 | { |
| 5010 | result = *((USHORT*)result); |
| 5011 | } |
| 5012 | else |
| 5013 | { |
| 5014 | result = *((UINT32*)result); |
| 5015 | } |
| 5016 | |
| 5017 | return result; |
| 5018 | } |
| 5019 | |
| 5020 | /*++ |
| 5021 | Function : |
| 5022 | SkipPrefixes |
| 5023 | |
| 5024 | Skip all prefixes until the instruction code or the REX prefix is found |
| 5025 | |
| 5026 | Parameters: |
| 5027 | BYTE** ip : Pointer to the current instruction pointer. Updated |
| 5028 | as the function walks the codes. |
| 5029 | bool* hasOpSizePrefix : Pointer to bool, on exit set to true if a op size prefix |
| 5030 | was found. |
| 5031 | |
| 5032 | Return value : |
| 5033 | Code of the REX prefix or the instruction code after the prefixes. |
| 5034 | --*/ |
| 5035 | BYTE SkipPrefixes(BYTE **ip, bool* hasOpSizePrefix) |
| 5036 | { |
| 5037 | *hasOpSizePrefix = false; |
| 5038 | |
| 5039 | while (true) |
| 5040 | { |
| 5041 | BYTE code = *(*ip)++; |
| 5042 | |
| 5043 | switch (code) |
| 5044 | { |
| 5045 | case 0x66: // Operand-Size |
| 5046 | *hasOpSizePrefix = true; |
| 5047 | break; |
| 5048 | |
| 5049 | // Segment overrides |
| 5050 | case 0x26: // ES |
| 5051 | case 0x2E: // CS |
| 5052 | case 0x36: // SS |
| 5053 | case 0x3E: // DS |
| 5054 | case 0x64: // FS |
| 5055 | case 0x65: // GS |
| 5056 | |
| 5057 | // Size overrides |
| 5058 | case 0x67: // Address-Size |
| 5059 | |
| 5060 | // Lock |
| 5061 | case 0xf0: |
| 5062 | |
| 5063 | // String REP prefixes |
| 5064 | case 0xf2: // REPNE/REPNZ |
| 5065 | case 0xf3: |
| 5066 | break; |
| 5067 | |
| 5068 | default: |
| 5069 | // Return address of the nonprefix code |
| 5070 | return code; |
| 5071 | } |
| 5072 | } |
| 5073 | } |
| 5074 | |
| 5075 | /*++ |
| 5076 | Function : |
| 5077 | IsDivByZeroAnIntegerOverflow |
| 5078 | |
| 5079 | Check if a division by zero exception is in fact a division overflow. The |
| 5080 | x64 processor generate the same exception in both cases for the IDIV / DIV |
| 5081 | instruction. So we need to decode the instruction argument and check |
| 5082 | whether it was zero or not. |
| 5083 | |
| 5084 | Parameters: |
| 5085 | PCONTEXT pContext : context containing the registers |
| 5086 | PEXCEPTION_RECORD pExRecord : exception record of the exception |
| 5087 | |
| 5088 | Return value : |
| 5089 | true if the division error was an overflow |
| 5090 | --*/ |
| 5091 | bool IsDivByZeroAnIntegerOverflow(PCONTEXT pContext) |
| 5092 | { |
| 5093 | BYTE * ip = (BYTE *)GetIP(pContext); |
| 5094 | BYTE rex = 0; |
| 5095 | bool hasOpSizePrefix = false; |
| 5096 | |
| 5097 | BYTE code = SkipPrefixes(&ip, &hasOpSizePrefix); |
| 5098 | |
| 5099 | // The REX prefix must directly preceed the instruction code |
| 5100 | if ((code & 0xF0) == 0x40) |
| 5101 | { |
| 5102 | rex = code; |
| 5103 | code = *ip++; |
| 5104 | } |
| 5105 | |
| 5106 | DWORD64 divisor = 0; |
| 5107 | |
| 5108 | // Check if the instruction is IDIV or DIV. The instruction code includes the three |
| 5109 | // 'reg' bits in the ModRM byte. These are 7 for IDIV and 6 for DIV |
| 5110 | BYTE regBits = (*ip & 0x38) >> 3; |
| 5111 | if ((code == 0xF7 || code == 0xF6) && (regBits == 7 || regBits == 6)) |
| 5112 | { |
| 5113 | bool is8Bit = (code == 0xF6); |
| 5114 | divisor = GetModRMOperandValue(rex, ip, pContext, is8Bit, hasOpSizePrefix); |
| 5115 | } |
| 5116 | else |
| 5117 | { |
| 5118 | _ASSERTE(!"Invalid instruction (expected IDIV or DIV)" ); |
| 5119 | } |
| 5120 | |
| 5121 | // If the division operand is zero, it was division by zero. Otherwise the failure |
| 5122 | // must have been an overflow. |
| 5123 | return divisor != 0; |
| 5124 | } |
| 5125 | #endif // _TARGET_AMD64_ || _TARGET_X86_ |
| 5126 | |
| 5127 | BOOL IsSafeToCallExecutionManager() |
| 5128 | { |
| 5129 | Thread *pThread = GetThread(); |
| 5130 | |
| 5131 | // It is safe to call the ExecutionManager::IsManagedCode only if the current thread is in |
| 5132 | // the cooperative mode. Otherwise ExecutionManager::IsManagedCode could deadlock if |
| 5133 | // the exception happened when the thread was holding the ExecutionManager's writer lock. |
| 5134 | // When the thread is in preemptive mode, we know for sure that it is not executing managed code. |
| 5135 | // Unfortunately, when running GC stress mode that invokes GC after every jitted or NGENed |
| 5136 | // instruction, we need to relax that to enable instrumentation of PInvoke stubs that switch to |
| 5137 | // preemptive GC mode at some point. |
| 5138 | return ((pThread != NULL) && pThread->PreemptiveGCDisabled()) || |
| 5139 | GCStress<cfg_instr_jit>::IsEnabled() || |
| 5140 | GCStress<cfg_instr_ngen>::IsEnabled(); |
| 5141 | } |
| 5142 | |
| 5143 | #ifdef VSD_STUB_CAN_THROW_AV |
| 5144 | //Return TRUE if pContext->Pc is in VirtualStub |
| 5145 | static BOOL IsIPinVirtualStub(PCODE f_IP) |
| 5146 | { |
| 5147 | LIMITED_METHOD_CONTRACT; |
| 5148 | |
| 5149 | Thread * pThread = GetThread(); |
| 5150 | |
| 5151 | // We may not have a managed thread object. Example is an AV on the helper thread. |
| 5152 | // (perhaps during StubManager::IsStub) |
| 5153 | if (pThread == NULL) |
| 5154 | { |
| 5155 | return FALSE; |
| 5156 | } |
| 5157 | |
| 5158 | VirtualCallStubManager::StubKind sk; |
| 5159 | VirtualCallStubManager::FindStubManager(f_IP, &sk, FALSE /* usePredictStubKind */); |
| 5160 | |
| 5161 | if (sk == VirtualCallStubManager::SK_DISPATCH) |
| 5162 | { |
| 5163 | return TRUE; |
| 5164 | } |
| 5165 | else if (sk == VirtualCallStubManager::SK_RESOLVE) |
| 5166 | { |
| 5167 | return TRUE; |
| 5168 | } |
| 5169 | |
| 5170 | else { |
| 5171 | return FALSE; |
| 5172 | } |
| 5173 | } |
| 5174 | #endif // VSD_STUB_CAN_THROW_AV |
| 5175 | |
| 5176 | BOOL IsSafeToHandleHardwareException(PCONTEXT contextRecord, PEXCEPTION_RECORD exceptionRecord) |
| 5177 | { |
| 5178 | PCODE controlPc = GetIP(contextRecord); |
| 5179 | return g_fEEStarted && ( |
| 5180 | exceptionRecord->ExceptionCode == STATUS_BREAKPOINT || |
| 5181 | exceptionRecord->ExceptionCode == STATUS_SINGLE_STEP || |
| 5182 | (IsSafeToCallExecutionManager() && ExecutionManager::IsManagedCode(controlPc)) || |
| 5183 | #ifdef VSD_STUB_CAN_THROW_AV |
| 5184 | IsIPinVirtualStub(controlPc) || // access violation comes from DispatchStub of Interface call |
| 5185 | #endif // VSD_STUB_CAN_THROW_AV |
| 5186 | IsIPInMarkedJitHelper(controlPc)); |
| 5187 | } |
| 5188 | |
| 5189 | #ifdef _TARGET_ARM_ |
| 5190 | static inline BOOL HandleArmSingleStep(PCONTEXT pContext, PEXCEPTION_RECORD pExceptionRecord, Thread *pThread) |
| 5191 | { |
| 5192 | #ifdef __linux__ |
| 5193 | // On ARM Linux exception point to the break instruction, |
| 5194 | // but the rest of the code expects that it points to an instruction after the break |
| 5195 | if (pExceptionRecord->ExceptionCode == EXCEPTION_BREAKPOINT) |
| 5196 | { |
| 5197 | SetIP(pContext, GetIP(pContext) + CORDbg_BREAK_INSTRUCTION_SIZE); |
| 5198 | pExceptionRecord->ExceptionAddress = (void *)GetIP(pContext); |
| 5199 | } |
| 5200 | #endif |
| 5201 | // On ARM we don't have any reliable hardware support for single stepping so it is emulated in software. |
| 5202 | // The implementation will end up throwing an EXCEPTION_BREAKPOINT rather than an EXCEPTION_SINGLE_STEP |
| 5203 | // and leaves other aspects of the thread context in an invalid state. Therefore we use this opportunity |
| 5204 | // to fixup the state before any other part of the system uses it (we do it here since only the debugger |
| 5205 | // uses single step functionality). |
| 5206 | |
| 5207 | // First ask the emulation itself whether this exception occurred while single stepping was enabled. If so |
| 5208 | // it will fix up the context to be consistent again and return true. If so and the exception was |
| 5209 | // EXCEPTION_BREAKPOINT then we translate it to EXCEPTION_SINGLE_STEP (otherwise we leave it be, e.g. the |
| 5210 | // instruction stepped caused an access violation). |
| 5211 | if (pThread->HandleSingleStep(pContext, pExceptionRecord->ExceptionCode) && (pExceptionRecord->ExceptionCode == EXCEPTION_BREAKPOINT)) |
| 5212 | { |
| 5213 | pExceptionRecord->ExceptionCode = EXCEPTION_SINGLE_STEP; |
| 5214 | pExceptionRecord->ExceptionAddress = (void *)GetIP(pContext); |
| 5215 | return TRUE; |
| 5216 | } |
| 5217 | return FALSE; |
| 5218 | } |
| 5219 | #endif // _TARGET_ARM_ |
| 5220 | |
| 5221 | BOOL HandleHardwareException(PAL_SEHException* ex) |
| 5222 | { |
| 5223 | _ASSERTE(IsSafeToHandleHardwareException(ex->GetContextRecord(), ex->GetExceptionRecord())); |
| 5224 | |
| 5225 | if (ex->GetExceptionRecord()->ExceptionCode != STATUS_BREAKPOINT && ex->GetExceptionRecord()->ExceptionCode != STATUS_SINGLE_STEP) |
| 5226 | { |
| 5227 | // A hardware exception is handled only if it happened in a jitted code or |
| 5228 | // in one of the JIT helper functions (JIT_MemSet, ...) |
| 5229 | PCODE controlPc = GetIP(ex->GetContextRecord()); |
| 5230 | if (ExecutionManager::IsManagedCode(controlPc) && IsGcMarker(ex->GetContextRecord(), ex->GetExceptionRecord())) |
| 5231 | { |
| 5232 | // Exception was handled, let the signal handler return to the exception context. Some registers in the context can |
| 5233 | // have been modified by the GC. |
| 5234 | return TRUE; |
| 5235 | } |
| 5236 | |
| 5237 | #if defined(_TARGET_AMD64_) || defined(_TARGET_X86_) |
| 5238 | // It is possible that an overflow was mapped to a divide-by-zero exception. |
| 5239 | // This happens when we try to divide the maximum negative value of a |
| 5240 | // signed integer with -1. |
| 5241 | // |
| 5242 | // Thus, we will attempt to decode the instruction @ RIP to determine if that |
| 5243 | // is the case using the faulting context. |
| 5244 | if ((ex->GetExceptionRecord()->ExceptionCode == EXCEPTION_INT_DIVIDE_BY_ZERO) && |
| 5245 | IsDivByZeroAnIntegerOverflow(ex->GetContextRecord())) |
| 5246 | { |
| 5247 | // The exception was an integer overflow, so augment the exception code. |
| 5248 | ex->GetExceptionRecord()->ExceptionCode = EXCEPTION_INT_OVERFLOW; |
| 5249 | } |
| 5250 | #endif // _TARGET_AMD64_ || _TARGET_X86_ |
| 5251 | |
| 5252 | // Create frame necessary for the exception handling |
| 5253 | FrameWithCookie<FaultingExceptionFrame> fef; |
| 5254 | *((&fef)->GetGSCookiePtr()) = GetProcessGSCookie(); |
| 5255 | { |
| 5256 | GCX_COOP(); // Must be cooperative to modify frame chain. |
| 5257 | if (IsIPInMarkedJitHelper(controlPc)) |
| 5258 | { |
| 5259 | // For JIT helpers, we need to set the frame to point to the |
| 5260 | // managed code that called the helper, otherwise the stack |
| 5261 | // walker would skip all the managed frames upto the next |
| 5262 | // explicit frame. |
| 5263 | PAL_VirtualUnwind(ex->GetContextRecord(), NULL); |
| 5264 | ex->GetExceptionRecord()->ExceptionAddress = (PVOID)GetIP(ex->GetContextRecord()); |
| 5265 | } |
| 5266 | #ifdef VSD_STUB_CAN_THROW_AV |
| 5267 | else if (IsIPinVirtualStub(controlPc)) |
| 5268 | { |
| 5269 | AdjustContextForVirtualStub(ex->GetExceptionRecord(), ex->GetContextRecord()); |
| 5270 | } |
| 5271 | #endif // VSD_STUB_CAN_THROW_AV |
| 5272 | fef.InitAndLink(ex->GetContextRecord()); |
| 5273 | } |
| 5274 | |
| 5275 | DispatchManagedException(*ex, true /* isHardwareException */); |
| 5276 | UNREACHABLE(); |
| 5277 | } |
| 5278 | else |
| 5279 | { |
| 5280 | // This is a breakpoint or single step stop, we report it to the debugger. |
| 5281 | Thread *pThread = GetThread(); |
| 5282 | if (pThread != NULL && g_pDebugInterface != NULL) |
| 5283 | { |
| 5284 | #ifdef _TARGET_ARM_ |
| 5285 | HandleArmSingleStep(ex->GetContextRecord(), ex->GetExceptionRecord(), pThread); |
| 5286 | #endif |
| 5287 | if (ex->GetExceptionRecord()->ExceptionCode == STATUS_BREAKPOINT) |
| 5288 | { |
| 5289 | // If this is breakpoint context, it is set up to point to an instruction after the break instruction. |
| 5290 | // But debugger expects to see context that points to the break instruction, that's why we correct it. |
| 5291 | SetIP(ex->GetContextRecord(), GetIP(ex->GetContextRecord()) - CORDbg_BREAK_INSTRUCTION_SIZE); |
| 5292 | ex->GetExceptionRecord()->ExceptionAddress = (void *)GetIP(ex->GetContextRecord()); |
| 5293 | } |
| 5294 | |
| 5295 | if (g_pDebugInterface->FirstChanceNativeException(ex->GetExceptionRecord(), |
| 5296 | ex->GetContextRecord(), |
| 5297 | ex->GetExceptionRecord()->ExceptionCode, |
| 5298 | pThread)) |
| 5299 | { |
| 5300 | // Exception was handled, let the signal handler return to the exception context. Some registers in the context can |
| 5301 | // have been modified by the debugger. |
| 5302 | return TRUE; |
| 5303 | } |
| 5304 | } |
| 5305 | } |
| 5306 | |
| 5307 | return FALSE; |
| 5308 | } |
| 5309 | |
| 5310 | #endif // FEATURE_PAL |
| 5311 | |
| 5312 | #ifndef FEATURE_PAL |
| 5313 | void ClrUnwindEx(EXCEPTION_RECORD* pExceptionRecord, UINT_PTR ReturnValue, UINT_PTR TargetIP, UINT_PTR TargetFrameSp) |
| 5314 | { |
| 5315 | PVOID TargetFrame = (PVOID)TargetFrameSp; |
| 5316 | |
| 5317 | CONTEXT ctx; |
| 5318 | RtlUnwindEx(TargetFrame, |
| 5319 | (PVOID)TargetIP, |
| 5320 | pExceptionRecord, |
| 5321 | (PVOID)ReturnValue, // ReturnValue |
| 5322 | &ctx, |
| 5323 | NULL); // HistoryTable |
| 5324 | |
| 5325 | // doesn't return |
| 5326 | UNREACHABLE(); |
| 5327 | } |
| 5328 | #endif // !FEATURE_PAL |
| 5329 | |
| 5330 | void TrackerAllocator::Init() |
| 5331 | { |
| 5332 | void* pvFirstPage = (void*)new BYTE[TRACKER_ALLOCATOR_PAGE_SIZE]; |
| 5333 | |
| 5334 | ZeroMemory(pvFirstPage, TRACKER_ALLOCATOR_PAGE_SIZE); |
| 5335 | |
| 5336 | m_pFirstPage = (Page*)pvFirstPage; |
| 5337 | |
| 5338 | _ASSERTE(NULL == m_pFirstPage->m_header.m_pNext); |
| 5339 | _ASSERTE(0 == m_pFirstPage->m_header.m_idxFirstFree); |
| 5340 | |
| 5341 | m_pCrst = new Crst(CrstException, CRST_UNSAFE_ANYMODE); |
| 5342 | |
| 5343 | EH_LOG((LL_INFO100, "TrackerAllocator::Init() succeeded..\n" )); |
| 5344 | } |
| 5345 | |
| 5346 | void TrackerAllocator::Terminate() |
| 5347 | { |
| 5348 | Page* pPage = m_pFirstPage; |
| 5349 | |
| 5350 | while (pPage) |
| 5351 | { |
| 5352 | Page* pDeleteMe = pPage; |
| 5353 | pPage = pPage->m_header.m_pNext; |
| 5354 | delete [] pDeleteMe; |
| 5355 | } |
| 5356 | delete m_pCrst; |
| 5357 | } |
| 5358 | |
| 5359 | ExceptionTracker* TrackerAllocator::GetTrackerMemory() |
| 5360 | { |
| 5361 | CONTRACT(ExceptionTracker*) |
| 5362 | { |
| 5363 | GC_TRIGGERS; |
| 5364 | NOTHROW; |
| 5365 | MODE_ANY; |
| 5366 | POSTCONDITION(CheckPointer(RETVAL, NULL_OK)); |
| 5367 | } |
| 5368 | CONTRACT_END; |
| 5369 | |
| 5370 | _ASSERTE(NULL != m_pFirstPage); |
| 5371 | |
| 5372 | Page* pPage = m_pFirstPage; |
| 5373 | |
| 5374 | ExceptionTracker* pTracker = NULL; |
| 5375 | |
| 5376 | for (int i = 0; i < TRACKER_ALLOCATOR_MAX_OOM_SPINS; i++) |
| 5377 | { |
| 5378 | { // open lock scope |
| 5379 | CrstHolder ch(m_pCrst); |
| 5380 | |
| 5381 | while (pPage) |
| 5382 | { |
| 5383 | int idx; |
| 5384 | for (idx = 0; idx < NUM_TRACKERS_PER_PAGE; idx++) |
| 5385 | { |
| 5386 | pTracker = &(pPage->m_rgTrackers[idx]); |
| 5387 | if (pTracker->m_pThread == NULL) |
| 5388 | { |
| 5389 | break; |
| 5390 | } |
| 5391 | } |
| 5392 | |
| 5393 | if (idx < NUM_TRACKERS_PER_PAGE) |
| 5394 | { |
| 5395 | break; |
| 5396 | } |
| 5397 | else |
| 5398 | { |
| 5399 | if (NULL == pPage->m_header.m_pNext) |
| 5400 | { |
| 5401 | Page* pNewPage = (Page*) new (nothrow) BYTE[TRACKER_ALLOCATOR_PAGE_SIZE]; |
| 5402 | |
| 5403 | if (pNewPage) |
| 5404 | { |
| 5405 | STRESS_LOG0(LF_EH, LL_INFO10, "TrackerAllocator: allocated page\n" ); |
| 5406 | pPage->m_header.m_pNext = pNewPage; |
| 5407 | ZeroMemory(pPage->m_header.m_pNext, TRACKER_ALLOCATOR_PAGE_SIZE); |
| 5408 | } |
| 5409 | else |
| 5410 | { |
| 5411 | STRESS_LOG0(LF_EH, LL_WARNING, "TrackerAllocator: failed to allocate a page\n" ); |
| 5412 | pTracker = NULL; |
| 5413 | } |
| 5414 | } |
| 5415 | |
| 5416 | pPage = pPage->m_header.m_pNext; |
| 5417 | } |
| 5418 | } |
| 5419 | |
| 5420 | if (pTracker) |
| 5421 | { |
| 5422 | Thread* pThread = GetThread(); |
| 5423 | _ASSERTE(NULL != pPage); |
| 5424 | ZeroMemory(pTracker, sizeof(*pTracker)); |
| 5425 | pTracker->m_pThread = pThread; |
| 5426 | EH_LOG((LL_INFO100, "TrackerAllocator: allocating tracker 0x%p, thread = 0x%p\n" , pTracker, pTracker->m_pThread)); |
| 5427 | break; |
| 5428 | } |
| 5429 | } // end lock scope |
| 5430 | |
| 5431 | // |
| 5432 | // We could not allocate a new page of memory. This is a fatal error if it happens twice (nested) |
| 5433 | // on the same thread because we have only one m_OOMTracker. We will spin hoping for another thread |
| 5434 | // to give back to the pool or for the allocation to succeed. |
| 5435 | // |
| 5436 | |
| 5437 | ClrSleepEx(TRACKER_ALLOCATOR_OOM_SPIN_DELAY, FALSE); |
| 5438 | STRESS_LOG1(LF_EH, LL_WARNING, "TrackerAllocator: retry #%d\n" , i); |
| 5439 | } |
| 5440 | |
| 5441 | RETURN pTracker; |
| 5442 | } |
| 5443 | |
| 5444 | void TrackerAllocator::FreeTrackerMemory(ExceptionTracker* pTracker) |
| 5445 | { |
| 5446 | CONTRACTL |
| 5447 | { |
| 5448 | GC_NOTRIGGER; |
| 5449 | NOTHROW; |
| 5450 | MODE_ANY; |
| 5451 | } |
| 5452 | CONTRACTL_END; |
| 5453 | |
| 5454 | // mark this entry as free |
| 5455 | EH_LOG((LL_INFO100, "TrackerAllocator: freeing tracker 0x%p, thread = 0x%p\n" , pTracker, pTracker->m_pThread)); |
| 5456 | CONSISTENCY_CHECK(pTracker->IsValid()); |
| 5457 | FastInterlockExchangePointer(&(pTracker->m_pThread), NULL); |
| 5458 | } |
| 5459 | |
| 5460 | #ifndef FEATURE_PAL |
| 5461 | // This is Windows specific implementation as it is based upon the notion of collided unwind that is specific |
| 5462 | // to Windows 64bit. |
| 5463 | // |
| 5464 | // If pContext is not NULL, then this function copies pContext to pDispatcherContext->ContextRecord. If pContext |
| 5465 | // is NULL, then this function assumes that pDispatcherContext->ContextRecord has already been fixed up. In any |
| 5466 | // case, this function then starts to update the various fields in pDispatcherContext. |
| 5467 | // |
| 5468 | // In order to redirect the unwind, the OS requires us to provide a personality routine for the code at the |
| 5469 | // new context we are providing. If RtlVirtualUnwind can't determine the personality routine and using |
| 5470 | // the default managed code personality routine isn't appropriate (maybe you aren't returning to managed code) |
| 5471 | // specify pUnwindPersonalityRoutine. For instance the debugger uses this to unwind from ExceptionHijack back |
| 5472 | // to RaiseException in win32 and specifies an empty personality routine. For more details about this |
| 5473 | // see the comments in the code below. |
| 5474 | // |
| 5475 | // <AMD64-specific> |
| 5476 | // AMD64 is more "advanced", in that the DISPATCHER_CONTEXT contains a field for the TargetIp. So we don't have |
| 5477 | // to use the control PC in pDispatcherContext->ContextRecord to indicate the target IP for the unwind. However, |
| 5478 | // this also means that pDispatcherContext->ContextRecord is expected to be consistent. |
| 5479 | // </AMD64-specific> |
| 5480 | // |
| 5481 | // For more information, refer to vctools\crt\crtw32\misc\{ia64|amd64}\chandler.c for __C_specific_handler() and |
| 5482 | // nt\base\ntos\rtl\{ia64|amd64}\exdsptch.c for RtlUnwindEx(). |
| 5483 | void FixupDispatcherContext(DISPATCHER_CONTEXT* pDispatcherContext, CONTEXT* pContext, LPVOID originalControlPC, PEXCEPTION_ROUTINE pUnwindPersonalityRoutine) |
| 5484 | { |
| 5485 | if (pContext) |
| 5486 | { |
| 5487 | STRESS_LOG1(LF_EH, LL_INFO10, "FDC: pContext: %p\n" , pContext); |
| 5488 | CopyOSContext(pDispatcherContext->ContextRecord, pContext); |
| 5489 | } |
| 5490 | |
| 5491 | pDispatcherContext->ControlPc = (UINT_PTR) GetIP(pDispatcherContext->ContextRecord); |
| 5492 | |
| 5493 | #if defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 5494 | // Since this routine is used to fixup contexts for async exceptions, |
| 5495 | // clear the CONTEXT_UNWOUND_TO_CALL flag since, semantically, frames |
| 5496 | // where such exceptions have happened do not have callsites. On a similar |
| 5497 | // note, also clear out the ControlPcIsUnwound field. Post discussion with |
| 5498 | // AaronGi from the kernel team, it's safe for us to have both of these |
| 5499 | // cleared. |
| 5500 | // |
| 5501 | // The OS will pick this up with the rest of the DispatcherContext state |
| 5502 | // when it processes collided unwind and thus, when our managed personality |
| 5503 | // routine is invoked, ExceptionTracker::InitializeCrawlFrame will adjust |
| 5504 | // ControlPC correctly. |
| 5505 | pDispatcherContext->ContextRecord->ContextFlags &= ~CONTEXT_UNWOUND_TO_CALL; |
| 5506 | pDispatcherContext->ControlPcIsUnwound = FALSE; |
| 5507 | |
| 5508 | // Also, clear out the debug-registers flag so that when this context is used by the |
| 5509 | // OS, it does not end up setting bogus access breakpoints. The kernel team will also |
| 5510 | // be fixing it at their end, in their implementation of collided unwind. |
| 5511 | pDispatcherContext->ContextRecord->ContextFlags &= ~CONTEXT_DEBUG_REGISTERS; |
| 5512 | |
| 5513 | #ifdef _TARGET_ARM_ |
| 5514 | // But keep the architecture flag set (its part of CONTEXT_DEBUG_REGISTERS) |
| 5515 | pDispatcherContext->ContextRecord->ContextFlags |= CONTEXT_ARM; |
| 5516 | #else // _TARGET_ARM64_ |
| 5517 | // But keep the architecture flag set (its part of CONTEXT_DEBUG_REGISTERS) |
| 5518 | pDispatcherContext->ContextRecord->ContextFlags |= CONTEXT_ARM64; |
| 5519 | #endif // _TARGET_ARM_ |
| 5520 | |
| 5521 | #endif // _TARGET_ARM_ || _TARGET_ARM64_ |
| 5522 | |
| 5523 | INDEBUG(pDispatcherContext->FunctionEntry = (PT_RUNTIME_FUNCTION)INVALID_POINTER_CD); |
| 5524 | INDEBUG(pDispatcherContext->ImageBase = INVALID_POINTER_CD); |
| 5525 | |
| 5526 | pDispatcherContext->FunctionEntry = RtlLookupFunctionEntry(pDispatcherContext->ControlPc, |
| 5527 | &(pDispatcherContext->ImageBase), |
| 5528 | NULL |
| 5529 | ); |
| 5530 | |
| 5531 | _ASSERTE(((PT_RUNTIME_FUNCTION)INVALID_POINTER_CD) != pDispatcherContext->FunctionEntry); |
| 5532 | _ASSERTE(INVALID_POINTER_CD != pDispatcherContext->ImageBase); |
| 5533 | |
| 5534 | // |
| 5535 | // need to find the establisher frame by virtually unwinding |
| 5536 | // |
| 5537 | CONTEXT tempContext; |
| 5538 | PVOID HandlerData; |
| 5539 | |
| 5540 | CopyOSContext(&tempContext, pDispatcherContext->ContextRecord); |
| 5541 | |
| 5542 | // RtlVirtualUnwind returns the language specific handler for the ControlPC in question |
| 5543 | // on ARM and AMD64. |
| 5544 | pDispatcherContext->LanguageHandler = RtlVirtualUnwind( |
| 5545 | NULL, // HandlerType |
| 5546 | pDispatcherContext->ImageBase, |
| 5547 | pDispatcherContext->ControlPc, |
| 5548 | pDispatcherContext->FunctionEntry, |
| 5549 | &tempContext, |
| 5550 | &HandlerData, |
| 5551 | &(pDispatcherContext->EstablisherFrame), |
| 5552 | NULL); |
| 5553 | |
| 5554 | pDispatcherContext->HandlerData = NULL; |
| 5555 | pDispatcherContext->HistoryTable = NULL; |
| 5556 | |
| 5557 | |
| 5558 | // Why does the OS consider it invalid to have a NULL personality routine (or, why does |
| 5559 | // the OS assume that DispatcherContext returned from ExceptionCollidedUnwind will always |
| 5560 | // have a valid personality routine)? |
| 5561 | // |
| 5562 | // |
| 5563 | // We force the OS to pickup the DispatcherContext (that we fixed above) by returning |
| 5564 | // ExceptionCollidedUnwind. Per Dave Cutler, the only entity which is allowed to return |
| 5565 | // this exception disposition is the personality routine of the assembly helper which is used |
| 5566 | // to invoke the user (stack-based) personality routines. For such invocations made by the |
| 5567 | // OS assembly helper, the DispatcherContext it saves before invoking the user personality routine |
| 5568 | // will always have a valid personality routine reference and thus, when a real collided unwind happens |
| 5569 | // and this exception disposition is returned, OS exception dispatch will have a valid personality routine |
| 5570 | // to invoke. |
| 5571 | // |
| 5572 | // By using this exception disposition to make the OS walk stacks we broke (for async exceptions), we are |
| 5573 | // simply abusing the semantic of this disposition. However, since we must use it, we should also check |
| 5574 | // that we are returning a valid personality routine reference back to the OS. |
| 5575 | if(pDispatcherContext->LanguageHandler == NULL) |
| 5576 | { |
| 5577 | if (pUnwindPersonalityRoutine != NULL) |
| 5578 | { |
| 5579 | pDispatcherContext->LanguageHandler = pUnwindPersonalityRoutine; |
| 5580 | } |
| 5581 | else |
| 5582 | { |
| 5583 | // We would be here only for fixing up context for an async exception in managed code. |
| 5584 | // This implies that we should have got a personality routine returned from the call to |
| 5585 | // RtlVirtualUnwind above. |
| 5586 | // |
| 5587 | // However, if the ControlPC happened to be in the prolog or epilog of a managed method, |
| 5588 | // then RtlVirtualUnwind will always return NULL. We cannot return this NULL back to the |
| 5589 | // OS as it is an invalid value which the OS does not expect (and attempting to do so will |
| 5590 | // result in the kernel exception dispatch going haywire). |
| 5591 | #if defined(_DEBUG) |
| 5592 | // We should be in jitted code |
| 5593 | TADDR adrRedirectedIP = PCODEToPINSTR(pDispatcherContext->ControlPc); |
| 5594 | _ASSERTE(ExecutionManager::IsManagedCode(adrRedirectedIP)); |
| 5595 | #endif // _DEBUG |
| 5596 | |
| 5597 | // Set the personality routine to be returned as the one which is conventionally |
| 5598 | // invoked for exception dispatch. |
| 5599 | pDispatcherContext->LanguageHandler = (PEXCEPTION_ROUTINE)GetEEFuncEntryPoint(ProcessCLRException); |
| 5600 | STRESS_LOG1(LF_EH, LL_INFO10, "FDC: ControlPC was in prolog/epilog, so setting DC->LanguageHandler to %p\n" , pDispatcherContext->LanguageHandler); |
| 5601 | } |
| 5602 | } |
| 5603 | |
| 5604 | _ASSERTE(pDispatcherContext->LanguageHandler != NULL); |
| 5605 | } |
| 5606 | |
| 5607 | |
| 5608 | // See the comment above for the overloaded version of this function. |
| 5609 | void FixupDispatcherContext(DISPATCHER_CONTEXT* pDispatcherContext, CONTEXT* pContext, CONTEXT* pOriginalContext, PEXCEPTION_ROUTINE pUnwindPersonalityRoutine = NULL) |
| 5610 | { |
| 5611 | _ASSERTE(pOriginalContext != NULL); |
| 5612 | FixupDispatcherContext(pDispatcherContext, pContext, (LPVOID)::GetIP(pOriginalContext), pUnwindPersonalityRoutine); |
| 5613 | } |
| 5614 | |
| 5615 | |
| 5616 | BOOL FirstCallToHandler ( |
| 5617 | DISPATCHER_CONTEXT *pDispatcherContext, |
| 5618 | CONTEXT **ppContextRecord) |
| 5619 | { |
| 5620 | CONTRACTL |
| 5621 | { |
| 5622 | NOTHROW; |
| 5623 | GC_NOTRIGGER; |
| 5624 | MODE_ANY; |
| 5625 | SO_TOLERANT; |
| 5626 | } |
| 5627 | CONTRACTL_END; |
| 5628 | |
| 5629 | FaultingExceptionFrame *pFrame = GetFrameFromRedirectedStubStackFrame(pDispatcherContext); |
| 5630 | |
| 5631 | BOOL *pfFilterExecuted = pFrame->GetFilterExecutedFlag(); |
| 5632 | BOOL fFilterExecuted = *pfFilterExecuted; |
| 5633 | |
| 5634 | STRESS_LOG4(LF_EH, LL_INFO10, "FirstCallToHandler: Fixing exception context for redirect stub, sp %p, establisher %p, flag %p -> %u\n" , |
| 5635 | GetSP(pDispatcherContext->ContextRecord), |
| 5636 | pDispatcherContext->EstablisherFrame, |
| 5637 | pfFilterExecuted, |
| 5638 | fFilterExecuted); |
| 5639 | |
| 5640 | *ppContextRecord = pFrame->GetExceptionContext(); |
| 5641 | *pfFilterExecuted = TRUE; |
| 5642 | |
| 5643 | return !fFilterExecuted; |
| 5644 | } |
| 5645 | |
| 5646 | |
| 5647 | EXTERN_C EXCEPTION_DISPOSITION |
| 5648 | HijackHandler(IN PEXCEPTION_RECORD pExceptionRecord |
| 5649 | WIN64_ARG(IN ULONG64 MemoryStackFp) |
| 5650 | NOT_WIN64_ARG(IN ULONG MemoryStackFp), |
| 5651 | IN OUT PCONTEXT pContextRecord, |
| 5652 | IN OUT PDISPATCHER_CONTEXT pDispatcherContext |
| 5653 | ) |
| 5654 | { |
| 5655 | CONTRACTL |
| 5656 | { |
| 5657 | GC_NOTRIGGER; |
| 5658 | NOTHROW; |
| 5659 | MODE_ANY; |
| 5660 | SO_TOLERANT; |
| 5661 | } |
| 5662 | CONTRACTL_END; |
| 5663 | |
| 5664 | STRESS_LOG4(LF_EH, LL_INFO10, "HijackHandler: establisher: %p, disp->cxr: %p, sp %p, cxr @ exception: %p\n" , |
| 5665 | pDispatcherContext->EstablisherFrame, |
| 5666 | pDispatcherContext->ContextRecord, |
| 5667 | GetSP(pDispatcherContext->ContextRecord), |
| 5668 | pContextRecord); |
| 5669 | |
| 5670 | Thread* pThread = GetThread(); |
| 5671 | CONTEXT *pNewContext = NULL; |
| 5672 | |
| 5673 | VALIDATE_BACKOUT_STACK_CONSUMPTION; |
| 5674 | |
| 5675 | if (FirstCallToHandler(pDispatcherContext, &pNewContext)) |
| 5676 | { |
| 5677 | // |
| 5678 | // We've pushed a Frame, but it is not initialized yet, so we |
| 5679 | // must not be in preemptive mode |
| 5680 | // |
| 5681 | CONSISTENCY_CHECK(pThread->PreemptiveGCDisabled()); |
| 5682 | |
| 5683 | // |
| 5684 | // AdjustContextForThreadStop will reset the ThrowControlForThread state |
| 5685 | // on the thread, but we don't want to do that just yet. We need that |
| 5686 | // information in our personality routine, so we will reset it back to |
| 5687 | // InducedThreadStop and then clear it in our personality routine. |
| 5688 | // |
| 5689 | CONSISTENCY_CHECK(IsThreadHijackedForThreadStop(pThread, pExceptionRecord)); |
| 5690 | AdjustContextForThreadStop(pThread, pNewContext); |
| 5691 | pThread->SetThrowControlForThread(Thread::InducedThreadStop); |
| 5692 | } |
| 5693 | |
| 5694 | FixupDispatcherContext(pDispatcherContext, pNewContext, pContextRecord); |
| 5695 | |
| 5696 | STRESS_LOG4(LF_EH, LL_INFO10, "HijackHandler: new establisher: %p, disp->cxr: %p, new ip: %p, new sp: %p\n" , |
| 5697 | pDispatcherContext->EstablisherFrame, |
| 5698 | pDispatcherContext->ContextRecord, |
| 5699 | GetIP(pDispatcherContext->ContextRecord), |
| 5700 | GetSP(pDispatcherContext->ContextRecord)); |
| 5701 | |
| 5702 | // Returning ExceptionCollidedUnwind will cause the OS to take our new context record |
| 5703 | // and dispatcher context and restart the exception dispatching on this call frame, |
| 5704 | // which is exactly the behavior we want in order to restore our thread's unwindability |
| 5705 | // (which was broken when we whacked the IP to get control over the thread) |
| 5706 | return ExceptionCollidedUnwind; |
| 5707 | } |
| 5708 | |
| 5709 | |
| 5710 | EXTERN_C VOID FixContextForFaultingExceptionFrame ( |
| 5711 | EXCEPTION_RECORD* pExceptionRecord, |
| 5712 | CONTEXT *pContextRecord); |
| 5713 | |
| 5714 | EXTERN_C EXCEPTION_DISPOSITION |
| 5715 | FixContextHandler(IN PEXCEPTION_RECORD pExceptionRecord |
| 5716 | WIN64_ARG(IN ULONG64 MemoryStackFp) |
| 5717 | NOT_WIN64_ARG(IN ULONG MemoryStackFp), |
| 5718 | IN OUT PCONTEXT pContextRecord, |
| 5719 | IN OUT PDISPATCHER_CONTEXT pDispatcherContext |
| 5720 | ) |
| 5721 | { |
| 5722 | CONTEXT* pNewContext = NULL; |
| 5723 | |
| 5724 | VALIDATE_BACKOUT_STACK_CONSUMPTION; |
| 5725 | |
| 5726 | // Our backout validation should ensure that we don't SO here. |
| 5727 | BEGIN_CONTRACT_VIOLATION(SOToleranceViolation); |
| 5728 | |
| 5729 | if (FirstCallToHandler(pDispatcherContext, &pNewContext)) |
| 5730 | { |
| 5731 | // |
| 5732 | // We've pushed a Frame, but it is not initialized yet, so we |
| 5733 | // must not be in preemptive mode |
| 5734 | // |
| 5735 | CONSISTENCY_CHECK(GetThread()->PreemptiveGCDisabled()); |
| 5736 | |
| 5737 | FixContextForFaultingExceptionFrame(pExceptionRecord, pNewContext); |
| 5738 | } |
| 5739 | |
| 5740 | FixupDispatcherContext(pDispatcherContext, pNewContext, pContextRecord); |
| 5741 | |
| 5742 | END_CONTRACT_VIOLATION; |
| 5743 | |
| 5744 | // Returning ExceptionCollidedUnwind will cause the OS to take our new context record |
| 5745 | // and dispatcher context and restart the exception dispatching on this call frame, |
| 5746 | // which is exactly the behavior we want in order to restore our thread's unwindability |
| 5747 | // (which was broken when we whacked the IP to get control over the thread) |
| 5748 | return ExceptionCollidedUnwind; |
| 5749 | } |
| 5750 | #endif // !FEATURE_PAL |
| 5751 | |
| 5752 | #ifdef _DEBUG |
| 5753 | // IsSafeToUnwindFrameChain: |
| 5754 | // Arguments: |
| 5755 | // pThread the Thread* being unwound |
| 5756 | // MemoryStackFpForFrameChain the stack limit to unwind the Frames |
| 5757 | // Returns |
| 5758 | // FALSE if the value MemoryStackFpForFrameChain falls between a M2U transition frame |
| 5759 | // and its corresponding managed method stack pointer |
| 5760 | // TRUE otherwise. |
| 5761 | // |
| 5762 | // If the managed method will *NOT* be unwound by the current exception |
| 5763 | // pass we have an error: with no Frame on the stack to report it, the |
| 5764 | // managed method will not be included in the next stack walk. |
| 5765 | // An example of running into this issue was DDBug 1133, where |
| 5766 | // TransparentProxyStubIA64 had a personality routine that removed a |
| 5767 | // transition frame. As a consequence the managed method did not |
| 5768 | // participate in the stack walk until the exception handler was called. At |
| 5769 | // that time the stack walking code was able to see the managed method again |
| 5770 | // but by this time all references from this managed method were stale. |
| 5771 | BOOL IsSafeToUnwindFrameChain(Thread* pThread, LPVOID MemoryStackFpForFrameChain) |
| 5772 | { |
| 5773 | // Look for the last Frame to be removed that marks a managed-to-unmanaged transition |
| 5774 | Frame* pLastFrameOfInterest = FRAME_TOP; |
| 5775 | for (Frame* pf = pThread->m_pFrame; pf < MemoryStackFpForFrameChain; pf = pf->PtrNextFrame()) |
| 5776 | { |
| 5777 | PCODE retAddr = pf->GetReturnAddress(); |
| 5778 | if (retAddr != NULL && ExecutionManager::IsManagedCode(retAddr)) |
| 5779 | { |
| 5780 | pLastFrameOfInterest = pf; |
| 5781 | } |
| 5782 | } |
| 5783 | |
| 5784 | // If there is none it's safe to remove all these Frames |
| 5785 | if (pLastFrameOfInterest == FRAME_TOP) |
| 5786 | { |
| 5787 | return TRUE; |
| 5788 | } |
| 5789 | |
| 5790 | // Otherwise "unwind" to managed method |
| 5791 | REGDISPLAY rd; |
| 5792 | CONTEXT ctx; |
| 5793 | SetIP(&ctx, 0); |
| 5794 | SetSP(&ctx, 0); |
| 5795 | FillRegDisplay(&rd, &ctx); |
| 5796 | pLastFrameOfInterest->UpdateRegDisplay(&rd); |
| 5797 | |
| 5798 | // We're safe only if the managed method will be unwound also |
| 5799 | LPVOID managedSP = dac_cast<PTR_VOID>(GetRegdisplaySP(&rd)); |
| 5800 | |
| 5801 | if (managedSP < MemoryStackFpForFrameChain) |
| 5802 | { |
| 5803 | return TRUE; |
| 5804 | } |
| 5805 | else |
| 5806 | { |
| 5807 | return FALSE; |
| 5808 | } |
| 5809 | |
| 5810 | } |
| 5811 | #endif // _DEBUG |
| 5812 | |
| 5813 | |
| 5814 | void CleanUpForSecondPass(Thread* pThread, bool fIsSO, LPVOID MemoryStackFpForFrameChain, LPVOID MemoryStackFp) |
| 5815 | { |
| 5816 | WRAPPER_NO_CONTRACT; |
| 5817 | |
| 5818 | EH_LOG((LL_INFO100, "Exception is going into unmanaged code, unwinding frame chain to %p\n" , MemoryStackFpForFrameChain)); |
| 5819 | |
| 5820 | // On AMD64 the establisher pointer is the live stack pointer, but on |
| 5821 | // IA64 and ARM it's the caller's stack pointer. It makes no difference, since there |
| 5822 | // is no Frame anywhere in CallDescrWorker's region of stack. |
| 5823 | |
| 5824 | // First make sure that unwinding the frame chain does not remove any transition frames |
| 5825 | // that report managed methods that will not be unwound. |
| 5826 | // If this assert fires it's probably the personality routine of some assembly code that |
| 5827 | // incorrectly removed a transition frame (more details in IsSafeToUnwindFrameChain) |
| 5828 | // [Do not perform the IsSafeToUnwindFrameChain() check in the SO case, since |
| 5829 | // IsSafeToUnwindFrameChain() requires a large amount of stack space.] |
| 5830 | _ASSERTE(fIsSO || IsSafeToUnwindFrameChain(pThread, (Frame*)MemoryStackFpForFrameChain)); |
| 5831 | |
| 5832 | UnwindFrameChain(pThread, (Frame*)MemoryStackFpForFrameChain); |
| 5833 | |
| 5834 | // Only pop the trackers if this is not an SO. It's not safe to pop the trackers during EH for an SO. |
| 5835 | // Instead, we rely on the END_SO_TOLERANT_CODE macro to call ClearExceptionStateAfterSO(). Of course, |
| 5836 | // we may leak in the UMThunkStubCommon() case where we don't have this macro lower on the stack |
| 5837 | // (stack grows up). |
| 5838 | if (!fIsSO) |
| 5839 | { |
| 5840 | ExceptionTracker::PopTrackerIfEscaping((void*)MemoryStackFp); |
| 5841 | } |
| 5842 | } |
| 5843 | |
| 5844 | #ifdef FEATURE_PAL |
| 5845 | |
| 5846 | // This is a personality routine for TheUMEntryPrestub and UMThunkStub Unix asm stubs. |
| 5847 | // An exception propagating through these stubs is an unhandled exception. |
| 5848 | // This function dumps managed stack trace and terminates the current process. |
| 5849 | EXTERN_C _Unwind_Reason_Code |
| 5850 | UnhandledExceptionHandlerUnix( |
| 5851 | IN int version, |
| 5852 | IN _Unwind_Action action, |
| 5853 | IN uint64_t exceptionClass, |
| 5854 | IN struct _Unwind_Exception *exception, |
| 5855 | IN struct _Unwind_Context *context |
| 5856 | ) |
| 5857 | { |
| 5858 | // Unhandled exception happened, so dump the managed stack trace and terminate the process |
| 5859 | |
| 5860 | DefaultCatchHandler(NULL /*pExceptionInfo*/, NULL /*Throwable*/, TRUE /*useLastThrownObject*/, |
| 5861 | TRUE /*isTerminating*/, FALSE /*isThreadBaseFIlter*/, FALSE /*sendAppDomainEvents*/); |
| 5862 | |
| 5863 | EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE); |
| 5864 | return _URC_FATAL_PHASE1_ERROR; |
| 5865 | } |
| 5866 | |
| 5867 | #else // FEATURE_PAL |
| 5868 | |
| 5869 | EXTERN_C EXCEPTION_DISPOSITION |
| 5870 | UMThunkUnwindFrameChainHandler(IN PEXCEPTION_RECORD pExceptionRecord |
| 5871 | WIN64_ARG(IN ULONG64 MemoryStackFp) |
| 5872 | NOT_WIN64_ARG(IN ULONG MemoryStackFp), |
| 5873 | IN OUT PCONTEXT pContextRecord, |
| 5874 | IN OUT PDISPATCHER_CONTEXT pDispatcherContext |
| 5875 | ) |
| 5876 | { |
| 5877 | Thread* pThread = GetThread(); |
| 5878 | if (pThread == NULL) { |
| 5879 | return ExceptionContinueSearch; |
| 5880 | } |
| 5881 | |
| 5882 | bool fIsSO = |
| 5883 | IsSOExceptionCode(pExceptionRecord->ExceptionCode); |
| 5884 | |
| 5885 | VALIDATE_BACKOUT_STACK_CONSUMPTION; |
| 5886 | |
| 5887 | if (IS_UNWINDING(pExceptionRecord->ExceptionFlags)) |
| 5888 | { |
| 5889 | if (fIsSO) |
| 5890 | { |
| 5891 | if (!pThread->PreemptiveGCDisabled()) |
| 5892 | { |
| 5893 | pThread->DisablePreemptiveGC(); |
| 5894 | } |
| 5895 | } |
| 5896 | // The VALIDATE_BACKOUT_STACK_CONSUMPTION makes sure that this function does not use stack more than backout limit. |
| 5897 | CONTRACT_VIOLATION(SOToleranceViolation); |
| 5898 | CleanUpForSecondPass(pThread, fIsSO, (void*)MemoryStackFp, (void*)MemoryStackFp); |
| 5899 | } |
| 5900 | |
| 5901 | // The asm stub put us into COOP mode, but we're about to scan unmanaged call frames |
| 5902 | // so unmanaged filters/handlers/etc can run and we must be in PREEMP mode for that. |
| 5903 | if (pThread->PreemptiveGCDisabled()) |
| 5904 | { |
| 5905 | if (fIsSO) |
| 5906 | { |
| 5907 | // We don't have stack to do full-version EnablePreemptiveGC. |
| 5908 | FastInterlockAnd (&pThread->m_fPreemptiveGCDisabled, 0); |
| 5909 | } |
| 5910 | else |
| 5911 | { |
| 5912 | pThread->EnablePreemptiveGC(); |
| 5913 | } |
| 5914 | } |
| 5915 | |
| 5916 | return ExceptionContinueSearch; |
| 5917 | } |
| 5918 | |
| 5919 | EXTERN_C EXCEPTION_DISPOSITION |
| 5920 | UMEntryPrestubUnwindFrameChainHandler( |
| 5921 | IN PEXCEPTION_RECORD pExceptionRecord |
| 5922 | WIN64_ARG(IN ULONG64 MemoryStackFp) |
| 5923 | NOT_WIN64_ARG(IN ULONG MemoryStackFp), |
| 5924 | IN OUT PCONTEXT pContextRecord, |
| 5925 | IN OUT PDISPATCHER_CONTEXT pDispatcherContext |
| 5926 | ) |
| 5927 | { |
| 5928 | EXCEPTION_DISPOSITION disposition = UMThunkUnwindFrameChainHandler( |
| 5929 | pExceptionRecord, |
| 5930 | MemoryStackFp, |
| 5931 | pContextRecord, |
| 5932 | pDispatcherContext |
| 5933 | ); |
| 5934 | |
| 5935 | return disposition; |
| 5936 | } |
| 5937 | |
| 5938 | EXTERN_C EXCEPTION_DISPOSITION |
| 5939 | UMThunkStubUnwindFrameChainHandler( |
| 5940 | IN PEXCEPTION_RECORD pExceptionRecord |
| 5941 | WIN64_ARG(IN ULONG64 MemoryStackFp) |
| 5942 | NOT_WIN64_ARG(IN ULONG MemoryStackFp), |
| 5943 | IN OUT PCONTEXT pContextRecord, |
| 5944 | IN OUT PDISPATCHER_CONTEXT pDispatcherContext |
| 5945 | ) |
| 5946 | { |
| 5947 | |
| 5948 | #ifdef _DEBUG |
| 5949 | // If the exception is escaping the last CLR personality routine on the stack, |
| 5950 | // then state a flag on the thread to indicate so. |
| 5951 | // |
| 5952 | // We check for thread object since this function is the personality routine of the UMThunk |
| 5953 | // and we can landup here even when thread creation (within the thunk) fails. |
| 5954 | if (GetThread() != NULL) |
| 5955 | { |
| 5956 | SetReversePInvokeEscapingUnhandledExceptionStatus(IS_UNWINDING(pExceptionRecord->ExceptionFlags), |
| 5957 | MemoryStackFp |
| 5958 | ); |
| 5959 | } |
| 5960 | #endif // _DEBUG |
| 5961 | |
| 5962 | EXCEPTION_DISPOSITION disposition = UMThunkUnwindFrameChainHandler( |
| 5963 | pExceptionRecord, |
| 5964 | MemoryStackFp, |
| 5965 | pContextRecord, |
| 5966 | pDispatcherContext |
| 5967 | ); |
| 5968 | |
| 5969 | return disposition; |
| 5970 | } |
| 5971 | |
| 5972 | |
| 5973 | // This is the personality routine setup for the assembly helper (CallDescrWorker) that calls into |
| 5974 | // managed code. |
| 5975 | EXTERN_C EXCEPTION_DISPOSITION |
| 5976 | CallDescrWorkerUnwindFrameChainHandler(IN PEXCEPTION_RECORD pExceptionRecord |
| 5977 | WIN64_ARG(IN ULONG64 MemoryStackFp) |
| 5978 | NOT_WIN64_ARG(IN ULONG MemoryStackFp), |
| 5979 | IN OUT PCONTEXT pContextRecord, |
| 5980 | IN OUT PDISPATCHER_CONTEXT pDispatcherContext |
| 5981 | ) |
| 5982 | { |
| 5983 | |
| 5984 | Thread* pThread = GetThread(); |
| 5985 | _ASSERTE(pThread); |
| 5986 | |
| 5987 | if (IsSOExceptionCode(pExceptionRecord->ExceptionCode)) |
| 5988 | { |
| 5989 | if (IS_UNWINDING(pExceptionRecord->ExceptionFlags)) |
| 5990 | { |
| 5991 | GCX_COOP_NO_DTOR(); |
| 5992 | CleanUpForSecondPass(pThread, true, (void*)MemoryStackFp, (void*)MemoryStackFp); |
| 5993 | } |
| 5994 | |
| 5995 | FastInterlockAnd (&pThread->m_fPreemptiveGCDisabled, 0); |
| 5996 | // We'll let the SO infrastructure handle this exception... at that point, we |
| 5997 | // know that we'll have enough stack to do it. |
| 5998 | return ExceptionContinueSearch; |
| 5999 | } |
| 6000 | |
| 6001 | EXCEPTION_DISPOSITION retVal = ProcessCLRException(pExceptionRecord, |
| 6002 | MemoryStackFp, |
| 6003 | pContextRecord, |
| 6004 | pDispatcherContext); |
| 6005 | |
| 6006 | // Our backout validation should ensure that we don't SO here. Add a |
| 6007 | // backout validation here. |
| 6008 | BEGIN_CONTRACT_VIOLATION(SOToleranceViolation); |
| 6009 | |
| 6010 | if (retVal == ExceptionContinueSearch) |
| 6011 | { |
| 6012 | |
| 6013 | if (IS_UNWINDING(pExceptionRecord->ExceptionFlags)) |
| 6014 | { |
| 6015 | CleanUpForSecondPass(pThread, false, (void*)MemoryStackFp, (void*)MemoryStackFp); |
| 6016 | } |
| 6017 | |
| 6018 | // We're scanning out from CallDescr and potentially through the EE and out to unmanaged. |
| 6019 | // So switch to preemptive mode. |
| 6020 | GCX_PREEMP_NO_DTOR(); |
| 6021 | } |
| 6022 | |
| 6023 | END_CONTRACT_VIOLATION; |
| 6024 | |
| 6025 | return retVal; |
| 6026 | } |
| 6027 | |
| 6028 | #endif // FEATURE_PAL |
| 6029 | |
| 6030 | #ifdef FEATURE_COMINTEROP |
| 6031 | EXTERN_C EXCEPTION_DISPOSITION |
| 6032 | ReverseComUnwindFrameChainHandler(IN PEXCEPTION_RECORD pExceptionRecord |
| 6033 | WIN64_ARG(IN ULONG64 MemoryStackFp) |
| 6034 | NOT_WIN64_ARG(IN ULONG MemoryStackFp), |
| 6035 | IN OUT PCONTEXT pContextRecord, |
| 6036 | IN OUT PDISPATCHER_CONTEXT pDispatcherContext |
| 6037 | ) |
| 6038 | { |
| 6039 | if (IS_UNWINDING(pExceptionRecord->ExceptionFlags)) |
| 6040 | { |
| 6041 | ComMethodFrame::DoSecondPassHandlerCleanup(GetThread()->GetFrame()); |
| 6042 | } |
| 6043 | return ExceptionContinueSearch; |
| 6044 | } |
| 6045 | #endif // FEATURE_COMINTEROP |
| 6046 | |
| 6047 | #ifndef FEATURE_PAL |
| 6048 | EXTERN_C EXCEPTION_DISPOSITION |
| 6049 | FixRedirectContextHandler( |
| 6050 | IN PEXCEPTION_RECORD pExceptionRecord |
| 6051 | WIN64_ARG(IN ULONG64 MemoryStackFp) |
| 6052 | NOT_WIN64_ARG(IN ULONG MemoryStackFp), |
| 6053 | IN OUT PCONTEXT pContextRecord, |
| 6054 | IN OUT PDISPATCHER_CONTEXT pDispatcherContext |
| 6055 | ) |
| 6056 | { |
| 6057 | CONTRACTL |
| 6058 | { |
| 6059 | GC_NOTRIGGER; |
| 6060 | NOTHROW; |
| 6061 | MODE_ANY; |
| 6062 | SO_TOLERANT; |
| 6063 | } |
| 6064 | CONTRACTL_END; |
| 6065 | |
| 6066 | STRESS_LOG4(LF_EH, LL_INFO10, "FixRedirectContextHandler: sp %p, establisher %p, cxr: %p, disp cxr: %p\n" , |
| 6067 | GetSP(pDispatcherContext->ContextRecord), |
| 6068 | pDispatcherContext->EstablisherFrame, |
| 6069 | pContextRecord, |
| 6070 | pDispatcherContext->ContextRecord); |
| 6071 | |
| 6072 | VALIDATE_BACKOUT_STACK_CONSUMPTION; |
| 6073 | |
| 6074 | CONTEXT *pRedirectedContext = GetCONTEXTFromRedirectedStubStackFrame(pDispatcherContext); |
| 6075 | |
| 6076 | FixupDispatcherContext(pDispatcherContext, pRedirectedContext, pContextRecord); |
| 6077 | |
| 6078 | // Returning ExceptionCollidedUnwind will cause the OS to take our new context record |
| 6079 | // and dispatcher context and restart the exception dispatching on this call frame, |
| 6080 | // which is exactly the behavior we want in order to restore our thread's unwindability |
| 6081 | // (which was broken when we whacked the IP to get control over the thread) |
| 6082 | return ExceptionCollidedUnwind; |
| 6083 | } |
| 6084 | #endif // !FEATURE_PAL |
| 6085 | #endif // DACCESS_COMPILE |
| 6086 | |
| 6087 | void ExceptionTracker::StackRange::Reset() |
| 6088 | { |
| 6089 | LIMITED_METHOD_CONTRACT; |
| 6090 | |
| 6091 | m_sfLowBound.SetMaxVal(); |
| 6092 | m_sfHighBound.Clear(); |
| 6093 | } |
| 6094 | |
| 6095 | bool ExceptionTracker::StackRange::IsEmpty() |
| 6096 | { |
| 6097 | LIMITED_METHOD_CONTRACT; |
| 6098 | return (m_sfLowBound.IsMaxVal() && |
| 6099 | m_sfHighBound.IsNull()); |
| 6100 | } |
| 6101 | |
| 6102 | bool ExceptionTracker::StackRange::IsSupersededBy(StackFrame sf) |
| 6103 | { |
| 6104 | LIMITED_METHOD_CONTRACT; |
| 6105 | CONSISTENCY_CHECK(IsConsistent()); |
| 6106 | |
| 6107 | return (sf >= m_sfLowBound); |
| 6108 | } |
| 6109 | |
| 6110 | void ExceptionTracker::StackRange::CombineWith(StackFrame sfCurrent, StackRange* pPreviousRange) |
| 6111 | { |
| 6112 | LIMITED_METHOD_CONTRACT; |
| 6113 | |
| 6114 | if ((pPreviousRange->m_sfHighBound < sfCurrent) && IsEmpty()) |
| 6115 | { |
| 6116 | // This case comes from an unusual situation. It is possible for a new nested tracker to start its |
| 6117 | // first pass at a higher SP than any previously scanned frame in the previous "enclosing" tracker. |
| 6118 | // Typically this doesn't happen because the ProcessCLRException callback is made multiple times for |
| 6119 | // the frame where the nesting first occurs and that will ensure that the stack range of the new |
| 6120 | // nested exception is extended to contain the scan range of the previous tracker's scan. However, |
| 6121 | // if the exception dispatch calls a C++ handler (e.g. a finally) and then that handler tries to |
| 6122 | // reverse-pinvoke into the runtime, AND we trigger an exception (e.g. ThreadAbort) |
| 6123 | // before we reach another managed frame (which would have the CLR personality |
| 6124 | // routine associated with it), the first callback to ProcessCLRException for this new exception |
| 6125 | // will occur on a frame that has never been seen before by the current tracker. |
| 6126 | // |
| 6127 | // So in this case, we'll see a sfCurrent that is larger than the previous tracker's high bound and |
| 6128 | // we'll have an empty scan range for the current tracker. And we'll just need to pre-init the |
| 6129 | // scanned stack range for the new tracker to the previous tracker's range. This maintains the |
| 6130 | // invariant that the scanned range for nested trackers completely cover the scanned range of thier |
| 6131 | // previous tracker once they "escape" the previous tracker. |
| 6132 | STRESS_LOG3(LF_EH, LL_INFO100, |
| 6133 | "Initializing current StackRange with previous tracker's StackRange. sfCurrent: %p, prev low: %p, prev high: %p\n" , |
| 6134 | sfCurrent.SP, pPreviousRange->m_sfLowBound.SP, pPreviousRange->m_sfHighBound.SP); |
| 6135 | |
| 6136 | *this = *pPreviousRange; |
| 6137 | } |
| 6138 | else |
| 6139 | { |
| 6140 | #ifdef FEATURE_PAL |
| 6141 | // When the current range is empty, copy the low bound too. Otherwise a degenerate range would get |
| 6142 | // created and tests for stack frame in the stack range would always fail. |
| 6143 | // TODO: Check if we could enable it for non-PAL as well. |
| 6144 | if (IsEmpty()) |
| 6145 | { |
| 6146 | m_sfLowBound = pPreviousRange->m_sfLowBound; |
| 6147 | } |
| 6148 | #endif // FEATURE_PAL |
| 6149 | m_sfHighBound = pPreviousRange->m_sfHighBound; |
| 6150 | } |
| 6151 | } |
| 6152 | |
| 6153 | bool ExceptionTracker::StackRange::Contains(StackFrame sf) |
| 6154 | { |
| 6155 | LIMITED_METHOD_CONTRACT; |
| 6156 | CONSISTENCY_CHECK(IsConsistent()); |
| 6157 | |
| 6158 | return ((m_sfLowBound <= sf) && |
| 6159 | (sf <= m_sfHighBound)); |
| 6160 | } |
| 6161 | |
| 6162 | void ExceptionTracker::StackRange::ExtendUpperBound(StackFrame sf) |
| 6163 | { |
| 6164 | LIMITED_METHOD_CONTRACT; |
| 6165 | CONSISTENCY_CHECK(IsConsistent()); |
| 6166 | CONSISTENCY_CHECK(sf > m_sfHighBound); |
| 6167 | |
| 6168 | m_sfHighBound = sf; |
| 6169 | } |
| 6170 | |
| 6171 | void ExceptionTracker::StackRange::ExtendLowerBound(StackFrame sf) |
| 6172 | { |
| 6173 | LIMITED_METHOD_CONTRACT; |
| 6174 | CONSISTENCY_CHECK(IsConsistent()); |
| 6175 | CONSISTENCY_CHECK(sf < m_sfLowBound); |
| 6176 | |
| 6177 | m_sfLowBound = sf; |
| 6178 | } |
| 6179 | |
| 6180 | void ExceptionTracker::StackRange::TrimLowerBound(StackFrame sf) |
| 6181 | { |
| 6182 | LIMITED_METHOD_CONTRACT; |
| 6183 | CONSISTENCY_CHECK(IsConsistent()); |
| 6184 | CONSISTENCY_CHECK(sf >= m_sfLowBound); |
| 6185 | |
| 6186 | m_sfLowBound = sf; |
| 6187 | } |
| 6188 | |
| 6189 | StackFrame ExceptionTracker::StackRange::GetLowerBound() |
| 6190 | { |
| 6191 | LIMITED_METHOD_CONTRACT; |
| 6192 | CONSISTENCY_CHECK(IsConsistent()); |
| 6193 | |
| 6194 | return m_sfLowBound; |
| 6195 | } |
| 6196 | |
| 6197 | StackFrame ExceptionTracker::StackRange::GetUpperBound() |
| 6198 | { |
| 6199 | LIMITED_METHOD_CONTRACT; |
| 6200 | CONSISTENCY_CHECK(IsConsistent()); |
| 6201 | |
| 6202 | return m_sfHighBound; |
| 6203 | } |
| 6204 | |
| 6205 | #ifdef _DEBUG |
| 6206 | bool ExceptionTracker::StackRange::IsDisjointWithAndLowerThan(StackRange* pOtherRange) |
| 6207 | { |
| 6208 | CONSISTENCY_CHECK(IsConsistent()); |
| 6209 | CONSISTENCY_CHECK(pOtherRange->IsConsistent()); |
| 6210 | |
| 6211 | return m_sfHighBound < pOtherRange->m_sfLowBound; |
| 6212 | } |
| 6213 | |
| 6214 | #endif // _DEBUG |
| 6215 | |
| 6216 | |
| 6217 | #ifdef _DEBUG |
| 6218 | bool ExceptionTracker::StackRange::IsConsistent() |
| 6219 | { |
| 6220 | LIMITED_METHOD_CONTRACT; |
| 6221 | if (m_sfLowBound.IsMaxVal() || |
| 6222 | m_sfHighBound.IsNull()) |
| 6223 | { |
| 6224 | return true; |
| 6225 | } |
| 6226 | |
| 6227 | if (m_sfLowBound <= m_sfHighBound) |
| 6228 | { |
| 6229 | return true; |
| 6230 | } |
| 6231 | |
| 6232 | LOG((LF_EH, LL_ERROR, "sp: low: %p high: %p\n" , m_sfLowBound.SP, m_sfHighBound.SP)); |
| 6233 | |
| 6234 | return false; |
| 6235 | } |
| 6236 | #endif // _DEBUG |
| 6237 | |
| 6238 | // Determine if the given StackFrame is in the stack region unwound by the specified ExceptionTracker. |
| 6239 | // This is used by the stackwalker to skip funclets. Refer to the calls to this method in StackWalkFramesEx() |
| 6240 | // for more information. |
| 6241 | // |
| 6242 | // Effectively, this will make the stackwalker skip all the frames until it reaches the frame |
| 6243 | // containing the funclet. Details of the skipping logic are described in the method implementation. |
| 6244 | // |
| 6245 | // static |
| 6246 | bool ExceptionTracker::IsInStackRegionUnwoundBySpecifiedException(CrawlFrame * pCF, PTR_ExceptionTracker pExceptionTracker) |
| 6247 | { |
| 6248 | LIMITED_METHOD_CONTRACT; |
| 6249 | |
| 6250 | _ASSERTE(pCF != NULL); |
| 6251 | |
| 6252 | // The tracker must be in the second pass, and its stack range must not be empty. |
| 6253 | if ( (pExceptionTracker == NULL) || |
| 6254 | pExceptionTracker->IsInFirstPass() || |
| 6255 | pExceptionTracker->m_ScannedStackRange.IsEmpty()) |
| 6256 | { |
| 6257 | return false; |
| 6258 | } |
| 6259 | |
| 6260 | CallerStackFrame csfToCheck; |
| 6261 | if (pCF->IsFrameless()) |
| 6262 | { |
| 6263 | csfToCheck = CallerStackFrame::FromRegDisplay(pCF->GetRegisterSet()); |
| 6264 | } |
| 6265 | else |
| 6266 | { |
| 6267 | csfToCheck = CallerStackFrame((UINT_PTR)pCF->GetFrame()); |
| 6268 | } |
| 6269 | |
| 6270 | StackFrame sfLowerBound = pExceptionTracker->m_ScannedStackRange.GetLowerBound(); |
| 6271 | StackFrame sfUpperBound = pExceptionTracker->m_ScannedStackRange.GetUpperBound(); |
| 6272 | |
| 6273 | // |
| 6274 | // Let's take an example callstack that grows from left->right: |
| 6275 | // |
| 6276 | // M5 (50) -> M4 (40) -> M3 (30) -> M2 (20) -> M1 (10) ->throw |
| 6277 | // |
| 6278 | // These are all managed frames, where M1 throws and the exception is caught |
| 6279 | // in M4. The numbers in the brackets are the values of the stack pointer after |
| 6280 | // the prolog is executed (or, in case of dynamic allocation, its SP after |
| 6281 | // dynamic allocation) and will be the SP at the time the callee function |
| 6282 | // is invoked. |
| 6283 | // |
| 6284 | // When the stackwalker is asked to skip funclets during the stackwalk, |
| 6285 | // it will skip all the frames on the stack until it reaches the frame |
| 6286 | // containing the funclet after it has identified the funclet from |
| 6287 | // which the skipping of frames needs to commence. |
| 6288 | // |
| 6289 | // At such a point, the exception tracker's scanned stack range's |
| 6290 | // lowerbound will correspond to the frame that had the exception |
| 6291 | // and the upper bound will correspond to the frame that had the funclet. |
| 6292 | // For scenarios like security stackwalk that may be triggered out of a |
| 6293 | // funclet (e.g. a catch block), skipping funclets and frames in this fashion |
| 6294 | // is expected to lead us to the parent frame containing the funclet as it |
| 6295 | // will contain an object of interest (e.g. security descriptor). |
| 6296 | // |
| 6297 | // The check below ensures that we skip the frames from the one that |
| 6298 | // had exception to the one that is the callee of the method containing |
| 6299 | // the funclet of interest. In the example above, this would mean skipping |
| 6300 | // from M1 to M3. |
| 6301 | // |
| 6302 | // We use CallerSP of a given CrawlFrame to perform such a skip. On AMD64, |
| 6303 | // the first frame where CallerSP will be greater than SP of the frame |
| 6304 | // itself will be when we reach the lowest frame itself (i.e. M1). On a similar |
| 6305 | // note, the only time when CallerSP of a given CrawlFrame will be equal to the |
| 6306 | // upper bound is when we reach the callee of the frame containing the funclet. |
| 6307 | // Thus, our check for the skip range is done by the following clause: |
| 6308 | // |
| 6309 | // if ((sfLowerBound < csfToCheck) && (csfToCheck <= sfUpperBound)) |
| 6310 | // |
| 6311 | // On ARM and ARM64, while the lower and upper bounds are populated using the Establisher |
| 6312 | // frame given by the OS during exception dispatch, they actually correspond to the |
| 6313 | // SP of the caller of a given frame, instead of being the SP of the given frame. |
| 6314 | // Thus, in the example, we will have lowerBound as 20 (corresponding to M1) and |
| 6315 | // upperBound as 50 (corresponding to M4 which contains the catch funclet). |
| 6316 | // |
| 6317 | // Thus, to skip frames on ARM and ARM64 until we reach the frame containing funclet of |
| 6318 | // interest, the skipping will done by the following clause: |
| 6319 | // |
| 6320 | // if ((sfLowerBound <= csfToCheck) && (csfToCheck < sfUpperBound)) |
| 6321 | // |
| 6322 | // The first time when CallerSP of a given CrawlFrame will be the same as lowerBound |
| 6323 | // is when we will reach the first frame to be skipped. Likewise, last frame whose |
| 6324 | // CallerSP will be less than the upperBound will be the callee of the frame |
| 6325 | // containing the funclet. When CallerSP is equal to the upperBound, we have reached |
| 6326 | // the frame containing the funclet and DO NOT want to skip it. Hence, "<" |
| 6327 | // in the 2nd part of the clause. |
| 6328 | |
| 6329 | // Remember that sfLowerBound and sfUpperBound are in the "OS format". |
| 6330 | // Refer to the comment for CallerStackFrame for more information. |
| 6331 | #ifndef STACK_RANGE_BOUNDS_ARE_CALLER_SP |
| 6332 | if ((sfLowerBound < csfToCheck) && (csfToCheck <= sfUpperBound)) |
| 6333 | #else // !STACK_RANGE_BOUNDS_ARE_CALLER_SP |
| 6334 | if ((sfLowerBound <= csfToCheck) && (csfToCheck < sfUpperBound)) |
| 6335 | #endif // STACK_RANGE_BOUNDS_ARE_CALLER_SP |
| 6336 | { |
| 6337 | return true; |
| 6338 | } |
| 6339 | else |
| 6340 | { |
| 6341 | return false; |
| 6342 | } |
| 6343 | } |
| 6344 | |
| 6345 | // Returns a bool indicating if the specified CrawlFrame has been unwound by the active exception. |
| 6346 | bool ExceptionTracker::IsInStackRegionUnwoundByCurrentException(CrawlFrame * pCF) |
| 6347 | { |
| 6348 | LIMITED_METHOD_CONTRACT; |
| 6349 | |
| 6350 | Thread * pThread = pCF->pThread; |
| 6351 | PTR_ExceptionTracker pCurrentTracker = pThread->GetExceptionState()->GetCurrentExceptionTracker(); |
| 6352 | return ExceptionTracker::IsInStackRegionUnwoundBySpecifiedException(pCF, pCurrentTracker); |
| 6353 | } |
| 6354 | |
| 6355 | |
| 6356 | |
| 6357 | // Returns a bool indicating if the specified CrawlFrame has been unwound by any active (e.g. nested) exceptions. |
| 6358 | // |
| 6359 | // This method uses various fields of the ExceptionTracker data structure to do its work. Since this code runs on the thread |
| 6360 | // performing the GC stackwalk, it must be ensured that these fields are not updated on another thread in parallel. Thus, |
| 6361 | // any access to the fields in question that may result in updating them should happen in COOP mode. This provides a high-level |
| 6362 | // synchronization with the GC thread since when GC stackwalk is active, attempt to enter COOP mode will result in the thread blocking |
| 6363 | // and thus, attempts to update such fields will be synchronized. |
| 6364 | // |
| 6365 | // Currently, the following fields are used below: |
| 6366 | // |
| 6367 | // m_ExceptionFlags, m_ScannedStackRange, m_sfCurrentEstablisherFrame, m_sfLastUnwoundEstablisherFrame, |
| 6368 | // m_pInitialExplicitFrame, m_pLimitFrame, m_pPrevNestedInfo. |
| 6369 | // |
| 6370 | bool ExceptionTracker::HasFrameBeenUnwoundByAnyActiveException(CrawlFrame * pCF) |
| 6371 | { |
| 6372 | LIMITED_METHOD_CONTRACT; |
| 6373 | |
| 6374 | _ASSERTE(pCF != NULL); |
| 6375 | |
| 6376 | // Enumerate all (nested) exception trackers and see if any of them has unwound the |
| 6377 | // specified CrawlFrame. |
| 6378 | Thread * pTargetThread = pCF->pThread; |
| 6379 | PTR_ExceptionTracker pTopTracker = pTargetThread->GetExceptionState()->GetCurrentExceptionTracker(); |
| 6380 | PTR_ExceptionTracker pCurrentTracker = pTopTracker; |
| 6381 | |
| 6382 | bool fHasFrameBeenUnwound = false; |
| 6383 | |
| 6384 | while (pCurrentTracker != NULL) |
| 6385 | { |
| 6386 | bool fSkipCurrentTracker = false; |
| 6387 | |
| 6388 | // The tracker must be in the second pass, and its stack range must not be empty. |
| 6389 | if (pCurrentTracker->IsInFirstPass() || |
| 6390 | pCurrentTracker->m_ScannedStackRange.IsEmpty()) |
| 6391 | { |
| 6392 | fSkipCurrentTracker = true; |
| 6393 | } |
| 6394 | |
| 6395 | if (!fSkipCurrentTracker) |
| 6396 | { |
| 6397 | CallerStackFrame csfToCheck; |
| 6398 | bool fFrameless = false; |
| 6399 | if (pCF->IsFrameless()) |
| 6400 | { |
| 6401 | csfToCheck = CallerStackFrame::FromRegDisplay(pCF->GetRegisterSet()); |
| 6402 | fFrameless = true; |
| 6403 | } |
| 6404 | else |
| 6405 | { |
| 6406 | csfToCheck = CallerStackFrame((UINT_PTR)pCF->GetFrame()); |
| 6407 | } |
| 6408 | |
| 6409 | STRESS_LOG4(LF_EH|LF_GCROOTS, LL_INFO100, "CrawlFrame (%p): Frameless: %s %s: %p\n" , |
| 6410 | pCF, fFrameless ? "Yes" : "No" , fFrameless ? "CallerSP" : "Address" , csfToCheck.SP); |
| 6411 | |
| 6412 | StackFrame sfLowerBound = pCurrentTracker->m_ScannedStackRange.GetLowerBound(); |
| 6413 | StackFrame sfUpperBound = pCurrentTracker->m_ScannedStackRange.GetUpperBound(); |
| 6414 | StackFrame sfCurrentEstablisherFrame = pCurrentTracker->GetCurrentEstablisherFrame(); |
| 6415 | StackFrame sfLastUnwoundEstablisherFrame = pCurrentTracker->GetLastUnwoundEstablisherFrame(); |
| 6416 | |
| 6417 | STRESS_LOG4(LF_EH|LF_GCROOTS, LL_INFO100, "LowerBound/UpperBound/CurrentEstablisherFrame/LastUnwoundManagedFrame: %p/%p/%p/%p\n" , |
| 6418 | sfLowerBound.SP, sfUpperBound.SP, sfCurrentEstablisherFrame.SP, sfLastUnwoundEstablisherFrame.SP); |
| 6419 | |
| 6420 | // Refer to the detailed comment in ExceptionTracker::IsInStackRegionUnwoundBySpecifiedException on the nature |
| 6421 | // of this check. |
| 6422 | // |
| 6423 | #ifndef STACK_RANGE_BOUNDS_ARE_CALLER_SP |
| 6424 | if ((sfLowerBound < csfToCheck) && (csfToCheck <= sfUpperBound)) |
| 6425 | #else // !STACK_RANGE_BOUNDS_ARE_CALLER_SP |
| 6426 | if ((sfLowerBound <= csfToCheck) && (csfToCheck < sfUpperBound)) |
| 6427 | #endif // STACK_RANGE_BOUNDS_ARE_CALLER_SP |
| 6428 | { |
| 6429 | fHasFrameBeenUnwound = true; |
| 6430 | break; |
| 6431 | } |
| 6432 | |
| 6433 | // |
| 6434 | // The frame in question was not found to be covered by the scanned stack range of the exception tracker. |
| 6435 | // If the frame is managed, then it is possible that it forms the upper bound of the scanned stack range. |
| 6436 | // |
| 6437 | // The scanned stack range is updated by our personality routine once ExceptionTracker::ProcessOSExceptionNotification is invoked. |
| 6438 | // However, it is possible that we have unwound a frame and returned back to the OS (in preemptive mode) and: |
| 6439 | // |
| 6440 | // 1) Either our personality routine has been invoked for the subsequent upstack managed frame but it has not yet got a chance to update |
| 6441 | // the scanned stack range, OR |
| 6442 | // 2) We have simply returned to the kernel exception dispatch and yet to be invoked for a subsequent frame. |
| 6443 | // |
| 6444 | // In such a window, if we have been asked to check if the frame forming the upper bound of the scanned stack range has been unwound, or not, |
| 6445 | // then do the needful validations. |
| 6446 | // |
| 6447 | // This is applicable to managed frames only. |
| 6448 | if (fFrameless) |
| 6449 | { |
| 6450 | #ifndef STACK_RANGE_BOUNDS_ARE_CALLER_SP |
| 6451 | // On X64, if the SP of the managed frame indicates that the frame is forming the upper bound, |
| 6452 | // then: |
| 6453 | // |
| 6454 | // For case (1) above, sfCurrentEstablisherFrame will be the same as the callerSP of the managed frame. |
| 6455 | // For case (2) above, sfLastUnwoundEstbalisherFrame would be the same as the managed frame's SP (or upper bound) |
| 6456 | // |
| 6457 | // For these scenarios, the frame is considered unwound. |
| 6458 | |
| 6459 | // For most cases which satisfy above condition GetRegdisplaySP(pCF->GetRegisterSet()) will be equal to sfUpperBound.SP. |
| 6460 | // However, frames where Sp is modified after prolog ( eg. localloc) this might not be the case. For those scenarios, |
| 6461 | // we need to check if sfUpperBound.SP is in between GetRegdisplaySP(pCF->GetRegisterSet()) & callerSp. |
| 6462 | if (GetRegdisplaySP(pCF->GetRegisterSet()) <= sfUpperBound.SP && sfUpperBound < csfToCheck) |
| 6463 | { |
| 6464 | if (csfToCheck == sfCurrentEstablisherFrame) |
| 6465 | { |
| 6466 | fHasFrameBeenUnwound = true; |
| 6467 | break; |
| 6468 | } |
| 6469 | else if (sfUpperBound == sfLastUnwoundEstablisherFrame) |
| 6470 | { |
| 6471 | fHasFrameBeenUnwound = true; |
| 6472 | break; |
| 6473 | } |
| 6474 | } |
| 6475 | #else // !STACK_RANGE_BOUNDS_ARE_CALLER_SP |
| 6476 | // On ARM, if the callerSP of the managed frame is the same as upper bound, then: |
| 6477 | // |
| 6478 | // For case (1), sfCurrentEstablisherFrame will be above the callerSP of the managed frame (since EstbalisherFrame is the caller SP for a given frame on ARM) |
| 6479 | // For case (2), upper bound will be the same as LastUnwoundEstbalisherFrame. |
| 6480 | // |
| 6481 | // For these scenarios, the frame is considered unwound. |
| 6482 | if (sfUpperBound == csfToCheck) |
| 6483 | { |
| 6484 | if (csfToCheck < sfCurrentEstablisherFrame) |
| 6485 | { |
| 6486 | fHasFrameBeenUnwound = true; |
| 6487 | break; |
| 6488 | } |
| 6489 | else if (sfLastUnwoundEstablisherFrame == sfUpperBound) |
| 6490 | { |
| 6491 | fHasFrameBeenUnwound = true; |
| 6492 | break; |
| 6493 | } |
| 6494 | } |
| 6495 | #endif // STACK_RANGE_BOUNDS_ARE_CALLER_SP |
| 6496 | } |
| 6497 | |
| 6498 | // The frame in question does not appear in the current tracker's scanned stack range (of managed frames). |
| 6499 | // If the frame is an explicit frame, then check if it equal to (or greater) than the initial explicit frame |
| 6500 | // of the tracker. We can do this equality comparison because explicit frames are stack allocated. |
| 6501 | // |
| 6502 | // Do keep in mind that InitialExplicitFrame is only set in the 2nd (unwind) pass, which works |
| 6503 | // fine for the purpose of this method since it operates on exception trackers in the second pass only. |
| 6504 | if (!fFrameless) |
| 6505 | { |
| 6506 | PTR_Frame pInitialExplicitFrame = pCurrentTracker->GetInitialExplicitFrame(); |
| 6507 | PTR_Frame pLimitFrame = pCurrentTracker->GetLimitFrame(); |
| 6508 | |
| 6509 | #if !defined(DACCESS_COMPILE) |
| 6510 | STRESS_LOG2(LF_EH|LF_GCROOTS, LL_INFO100, "InitialExplicitFrame: %p, LimitFrame: %p\n" , pInitialExplicitFrame, pLimitFrame); |
| 6511 | #endif // !defined(DACCESS_COMPILE) |
| 6512 | |
| 6513 | // Ideally, we would like to perform a comparison check to determine if the |
| 6514 | // frame has been unwound. This, however, is based upon the premise that |
| 6515 | // each explicit frame that is added to the frame chain is at a lower |
| 6516 | // address than this predecessor. |
| 6517 | // |
| 6518 | // This works for frames across function calls but if we have multiple |
| 6519 | // explicit frames in the same function, then the compiler is free to |
| 6520 | // assign an address it deems fit. Thus, its totally possible for a |
| 6521 | // frame at the head of the frame chain to be at a higher address than |
| 6522 | // its predecessor. This has been observed to be true with VC++ compiler |
| 6523 | // in the CLR ret build. |
| 6524 | // |
| 6525 | // To address this, we loop starting from the InitialExplicitFrame until we reach |
| 6526 | // the LimitFrame. Since all frames starting from the InitialExplicitFrame, and prior |
| 6527 | // to the LimitFrame, have been unwound, we break out of the loop if we find |
| 6528 | // the frame we are looking for, setting a flag indicating that the frame in question |
| 6529 | // was unwound. |
| 6530 | |
| 6531 | /*if ((sfInitialExplicitFrame <= csfToCheck) && (csfToCheck < sfLimitFrame)) |
| 6532 | { |
| 6533 | // The explicit frame falls in the range of explicit frames unwound by this tracker. |
| 6534 | fHasFrameBeenUnwound = true; |
| 6535 | break; |
| 6536 | }*/ |
| 6537 | |
| 6538 | // The pInitialExplicitFrame can be NULL on Unix right after we've unwound a sequence |
| 6539 | // of native frames in the second pass of exception unwinding, since the pInitialExplicitFrame |
| 6540 | // is cleared to make sure that it doesn't point to a frame that was destroyed during the |
| 6541 | // native frames unwinding. At that point, the csfToCheck could not have been unwound, |
| 6542 | // so we don't need to do any check. |
| 6543 | if (pInitialExplicitFrame != NULL) |
| 6544 | { |
| 6545 | PTR_Frame pFrameToCheck = (PTR_Frame)csfToCheck.SP; |
| 6546 | PTR_Frame pCurrentFrame = pInitialExplicitFrame; |
| 6547 | |
| 6548 | { |
| 6549 | while((pCurrentFrame != FRAME_TOP) && (pCurrentFrame != pLimitFrame)) |
| 6550 | { |
| 6551 | if (pCurrentFrame == pFrameToCheck) |
| 6552 | { |
| 6553 | fHasFrameBeenUnwound = true; |
| 6554 | break; |
| 6555 | } |
| 6556 | |
| 6557 | pCurrentFrame = pCurrentFrame->PtrNextFrame(); |
| 6558 | } |
| 6559 | } |
| 6560 | |
| 6561 | if (fHasFrameBeenUnwound == true) |
| 6562 | { |
| 6563 | break; |
| 6564 | } |
| 6565 | } |
| 6566 | } |
| 6567 | } |
| 6568 | |
| 6569 | // Move to the next (previous) tracker |
| 6570 | pCurrentTracker = pCurrentTracker->GetPreviousExceptionTracker(); |
| 6571 | } |
| 6572 | |
| 6573 | if (fHasFrameBeenUnwound) |
| 6574 | STRESS_LOG0(LF_EH|LF_GCROOTS, LL_INFO100, "Has already been unwound\n" ); |
| 6575 | |
| 6576 | return fHasFrameBeenUnwound; |
| 6577 | } |
| 6578 | |
| 6579 | //--------------------------------------------------------------------------------------- |
| 6580 | // |
| 6581 | // Given the CrawlFrame of the current frame, return a StackFrame representing the current frame. |
| 6582 | // This StackFrame should only be used in a check to see if the current frame is the parent method frame |
| 6583 | // of a particular funclet. Don't use the returned StackFrame in any other way except to pass it back to |
| 6584 | // ExceptionTracker::IsUnwoundToTargetParentFrame(). The comparison logic is very platform-dependent. |
| 6585 | // |
| 6586 | // Arguments: |
| 6587 | // pCF - the CrawlFrame for the current frame |
| 6588 | // |
| 6589 | // Return Value: |
| 6590 | // Return a StackFrame for parent frame check |
| 6591 | // |
| 6592 | // Notes: |
| 6593 | // Don't use the returned StackFrame in any other way. |
| 6594 | // |
| 6595 | |
| 6596 | //static |
| 6597 | StackFrame ExceptionTracker::GetStackFrameForParentCheck(CrawlFrame * pCF) |
| 6598 | { |
| 6599 | WRAPPER_NO_CONTRACT; |
| 6600 | |
| 6601 | StackFrame sfResult; |
| 6602 | |
| 6603 | // Returns the CrawlFrame's caller's SP - this is used to determine if we have |
| 6604 | // reached the intended CrawlFrame in question (or not). |
| 6605 | |
| 6606 | // sfParent is returned by the EH subsystem, which uses the OS format, i.e. the initial SP before |
| 6607 | // any dynamic stack allocation. The stackwalker uses the current SP, i.e. the SP after all |
| 6608 | // dynamic stack allocations. Thus, we cannot do an equality check. Instead, we get the |
| 6609 | // CallerStackFrame, which is the caller SP. |
| 6610 | sfResult = (StackFrame)CallerStackFrame::FromRegDisplay(pCF->GetRegisterSet()); |
| 6611 | |
| 6612 | return sfResult; |
| 6613 | } |
| 6614 | |
| 6615 | //--------------------------------------------------------------------------------------- |
| 6616 | // |
| 6617 | // Given the StackFrame of a parent method frame, determine if we have unwound to it during stackwalking yet. |
| 6618 | // The StackFrame should be the return value of one of the FindParentStackFrameFor*() functions. |
| 6619 | // Refer to the comment for UnwindStackFrame for more information. |
| 6620 | // |
| 6621 | // Arguments: |
| 6622 | // pCF - the CrawlFrame of the current frame |
| 6623 | // sfParent - the StackFrame of the target parent method frame, |
| 6624 | // returned by one of the FindParentStackFrameFor*() functions |
| 6625 | // |
| 6626 | // Return Value: |
| 6627 | // whether we have unwound to the target parent method frame |
| 6628 | // |
| 6629 | |
| 6630 | // static |
| 6631 | bool ExceptionTracker::IsUnwoundToTargetParentFrame(CrawlFrame * pCF, StackFrame sfParent) |
| 6632 | { |
| 6633 | CONTRACTL |
| 6634 | { |
| 6635 | NOTHROW; |
| 6636 | GC_NOTRIGGER; |
| 6637 | MODE_ANY; |
| 6638 | PRECONDITION( CheckPointer(pCF, NULL_NOT_OK) ); |
| 6639 | PRECONDITION( pCF->IsFrameless() ); |
| 6640 | PRECONDITION( pCF->GetRegisterSet()->IsCallerContextValid || pCF->GetRegisterSet()->IsCallerSPValid ); |
| 6641 | } |
| 6642 | CONTRACTL_END; |
| 6643 | |
| 6644 | StackFrame sfToCheck = GetStackFrameForParentCheck(pCF); |
| 6645 | return IsUnwoundToTargetParentFrame(sfToCheck, sfParent); |
| 6646 | } |
| 6647 | |
| 6648 | // static |
| 6649 | bool ExceptionTracker::IsUnwoundToTargetParentFrame(StackFrame sfToCheck, StackFrame sfParent) |
| 6650 | { |
| 6651 | LIMITED_METHOD_CONTRACT; |
| 6652 | |
| 6653 | return (sfParent == sfToCheck); |
| 6654 | } |
| 6655 | |
| 6656 | // Given the CrawlFrame for a funclet frame, return the frame pointer of the enclosing funclet frame. |
| 6657 | // For filter funclet frames and normal method frames, this function returns a NULL StackFrame. |
| 6658 | // |
| 6659 | // <WARNING> |
| 6660 | // It is not valid to call this function on an arbitrary funclet. You have to be doing a full stackwalk from |
| 6661 | // the leaf frame and skipping method frames as indicated by the return value of this function. This function |
| 6662 | // relies on the ExceptionTrackers, which are collapsed in the second pass when a nested exception escapes. |
| 6663 | // When this happens, we'll lose information on the funclet represented by the collapsed tracker. |
| 6664 | // </WARNING> |
| 6665 | // |
| 6666 | // Return Value: |
| 6667 | // StackFrame.IsNull() - no skipping is necessary |
| 6668 | // StackFrame.IsMaxVal() - skip one frame and then ask again |
| 6669 | // Anything else - skip to the method frame indicated by the return value and ask again |
| 6670 | // |
| 6671 | // static |
| 6672 | StackFrame ExceptionTracker::FindParentStackFrameForStackWalk(CrawlFrame* pCF, bool fForGCReporting /*= false */) |
| 6673 | { |
| 6674 | WRAPPER_NO_CONTRACT; |
| 6675 | |
| 6676 | // We should never skip filter funclets. However, if we are stackwalking for GC reference |
| 6677 | // reporting, then we need to get the stackframe of the parent frame (where the filter was |
| 6678 | // invoked from) so that when we reach it, we can indicate that the filter has already |
| 6679 | // performed the reporting. |
| 6680 | // |
| 6681 | // Thus, for GC reporting purposes, get filter's parent frame. |
| 6682 | if (pCF->IsFilterFunclet() && (!fForGCReporting)) |
| 6683 | { |
| 6684 | return StackFrame(); |
| 6685 | } |
| 6686 | else |
| 6687 | { |
| 6688 | return FindParentStackFrameHelper(pCF, NULL, NULL, NULL, fForGCReporting); |
| 6689 | } |
| 6690 | } |
| 6691 | |
| 6692 | // Given the CrawlFrame for a filter funclet frame, return the frame pointer of the parent method frame. |
| 6693 | // It also returns the relative offset and the caller SP of the parent method frame. |
| 6694 | // |
| 6695 | // <WARNING> |
| 6696 | // The same warning for FindParentStackFrameForStackWalk() also applies here. Moreoever, although |
| 6697 | // this function seems to be more convenient, it may potentially trigger a full stackwalk! Do not |
| 6698 | // call this unless you know absolutely what you are doing. In most cases FindParentStackFrameForStackWalk() |
| 6699 | // is what you need. |
| 6700 | // </WARNING> |
| 6701 | // |
| 6702 | // Return Value: |
| 6703 | // StackFrame.IsNull() - no skipping is necessary |
| 6704 | // Anything else - the StackFrame of the parent method frame |
| 6705 | // |
| 6706 | // static |
| 6707 | StackFrame ExceptionTracker::FindParentStackFrameEx(CrawlFrame* pCF, |
| 6708 | DWORD* pParentOffset, |
| 6709 | UINT_PTR* pParentCallerSP) |
| 6710 | { |
| 6711 | CONTRACTL |
| 6712 | { |
| 6713 | NOTHROW; |
| 6714 | GC_NOTRIGGER; |
| 6715 | MODE_ANY; |
| 6716 | PRECONDITION( pCF != NULL ); |
| 6717 | PRECONDITION( pCF->IsFilterFunclet() ); |
| 6718 | } |
| 6719 | CONTRACTL_END; |
| 6720 | |
| 6721 | bool fRealParent = false; |
| 6722 | StackFrame sfResult = ExceptionTracker::FindParentStackFrameHelper(pCF, &fRealParent, pParentOffset, pParentCallerSP); |
| 6723 | |
| 6724 | if (fRealParent) |
| 6725 | { |
| 6726 | // If the enclosing method is the parent method, then we are done. |
| 6727 | return sfResult; |
| 6728 | } |
| 6729 | else |
| 6730 | { |
| 6731 | // Otherwise we need to do a full stackwalk to find the parent method frame. |
| 6732 | // This should only happen if we are calling a filter inside a funclet. |
| 6733 | return ExceptionTracker::RareFindParentStackFrame(pCF, pParentOffset, pParentCallerSP); |
| 6734 | } |
| 6735 | } |
| 6736 | |
| 6737 | // static |
| 6738 | StackFrame ExceptionTracker::GetCallerSPOfParentOfNonExceptionallyInvokedFunclet(CrawlFrame *pCF) |
| 6739 | { |
| 6740 | CONTRACTL |
| 6741 | { |
| 6742 | NOTHROW; |
| 6743 | GC_NOTRIGGER; |
| 6744 | MODE_ANY; |
| 6745 | PRECONDITION(pCF != NULL); |
| 6746 | PRECONDITION(pCF->IsFunclet() && (!pCF->IsFilterFunclet())); |
| 6747 | } |
| 6748 | CONTRACTL_END; |
| 6749 | |
| 6750 | PREGDISPLAY pRD = pCF->GetRegisterSet(); |
| 6751 | |
| 6752 | // Ensure that the caller Context is valid. |
| 6753 | _ASSERTE(pRD->IsCallerContextValid); |
| 6754 | |
| 6755 | // Make a copy of the caller context |
| 6756 | T_CONTEXT tempContext; |
| 6757 | CopyOSContext(&tempContext, pRD->pCallerContext); |
| 6758 | |
| 6759 | // Now unwind it to get the context of the caller's caller. |
| 6760 | EECodeInfo codeInfo(dac_cast<PCODE>(GetIP(pRD->pCallerContext))); |
| 6761 | Thread::VirtualUnwindCallFrame(&tempContext, NULL, &codeInfo); |
| 6762 | |
| 6763 | StackFrame sfRetVal = StackFrame((UINT_PTR)(GetSP(&tempContext))); |
| 6764 | _ASSERTE(!sfRetVal.IsNull() && !sfRetVal.IsMaxVal()); |
| 6765 | |
| 6766 | return sfRetVal; |
| 6767 | } |
| 6768 | |
| 6769 | // static |
| 6770 | StackFrame ExceptionTracker::FindParentStackFrameHelper(CrawlFrame* pCF, |
| 6771 | bool* pfRealParent, |
| 6772 | DWORD* pParentOffset, |
| 6773 | UINT_PTR* pParentCallerSP, |
| 6774 | bool fForGCReporting /* = false */) |
| 6775 | { |
| 6776 | CONTRACTL |
| 6777 | { |
| 6778 | NOTHROW; |
| 6779 | GC_NOTRIGGER; |
| 6780 | MODE_ANY; |
| 6781 | PRECONDITION( pCF != NULL ); |
| 6782 | PRECONDITION( pCF->IsFunclet() ); |
| 6783 | PRECONDITION( CheckPointer(pfRealParent, NULL_OK) ); |
| 6784 | PRECONDITION( CheckPointer(pParentOffset, NULL_OK) ); |
| 6785 | PRECONDITION( CheckPointer(pParentCallerSP, NULL_OK) ); |
| 6786 | } |
| 6787 | CONTRACTL_END; |
| 6788 | |
| 6789 | StackFrame sfResult; |
| 6790 | REGDISPLAY* pRegDisplay = pCF->GetRegisterSet(); |
| 6791 | |
| 6792 | // At this point, we need a valid caller SP and the CallerStackFrame::FromRegDisplay |
| 6793 | // asserts that the RegDisplay contains one. |
| 6794 | CallerStackFrame csfCurrent = CallerStackFrame::FromRegDisplay(pRegDisplay); |
| 6795 | ExceptionTracker *pCurrentTracker = NULL; |
| 6796 | bool fIsFilterFunclet = pCF->IsFilterFunclet(); |
| 6797 | |
| 6798 | // We can't do this on an unmanaged thread. |
| 6799 | Thread* pThread = pCF->pThread; |
| 6800 | if (pThread == NULL) |
| 6801 | { |
| 6802 | _ASSERTE(!"FindParentStackFrame() called on an unmanaged thread" ); |
| 6803 | goto lExit; |
| 6804 | } |
| 6805 | |
| 6806 | // Check for out-of-line finally funclets. Filter funclets can't be out-of-line. |
| 6807 | if (!fIsFilterFunclet) |
| 6808 | { |
| 6809 | if (pRegDisplay->IsCallerContextValid) |
| 6810 | { |
| 6811 | PCODE callerIP = dac_cast<PCODE>(GetIP(pRegDisplay->pCallerContext)); |
| 6812 | BOOL fIsCallerInVM = FALSE; |
| 6813 | |
| 6814 | // Check if the caller IP is in mscorwks. If it is not, then it is an out-of-line finally. |
| 6815 | // Normally, the caller of a finally is ExceptionTracker::CallHandler(). |
| 6816 | #ifdef FEATURE_PAL |
| 6817 | fIsCallerInVM = !ExecutionManager::IsManagedCode(callerIP); |
| 6818 | #else |
| 6819 | #if defined(DACCESS_COMPILE) |
| 6820 | HMODULE_TGT hEE = DacGlobalBase(); |
| 6821 | #else // !DACCESS_COMPILE |
| 6822 | HMODULE_TGT hEE = g_pMSCorEE; |
| 6823 | #endif // !DACCESS_COMPILE |
| 6824 | fIsCallerInVM = IsIPInModule(hEE, callerIP); |
| 6825 | #endif // FEATURE_PAL |
| 6826 | |
| 6827 | if (!fIsCallerInVM) |
| 6828 | { |
| 6829 | if (!fForGCReporting) |
| 6830 | { |
| 6831 | sfResult.SetMaxVal(); |
| 6832 | goto lExit; |
| 6833 | } |
| 6834 | else |
| 6835 | { |
| 6836 | // We have run into a non-exceptionally invoked finally funclet (aka out-of-line finally funclet). |
| 6837 | // Since these funclets are invoked from JITted code, we will not find their EnclosingClauseCallerSP |
| 6838 | // in an exception tracker as one does not exist (remember, these funclets are invoked "non"-exceptionally). |
| 6839 | // |
| 6840 | // At this point, the caller context is that of the parent frame of the funclet. All we need is the CallerSP |
| 6841 | // of that parent. We leverage a helper function that will perform an unwind against the caller context |
| 6842 | // and return us the SP (of the caller of the funclet's parent). |
| 6843 | StackFrame sfCallerSPOfFuncletParent = ExceptionTracker::GetCallerSPOfParentOfNonExceptionallyInvokedFunclet(pCF); |
| 6844 | return sfCallerSPOfFuncletParent; |
| 6845 | } |
| 6846 | } |
| 6847 | } |
| 6848 | } |
| 6849 | |
| 6850 | for (pCurrentTracker = pThread->GetExceptionState()->m_pCurrentTracker; |
| 6851 | pCurrentTracker != NULL; |
| 6852 | pCurrentTracker = pCurrentTracker->m_pPrevNestedInfo) |
| 6853 | { |
| 6854 | // Check if the tracker has just been created. |
| 6855 | if (pCurrentTracker->m_ScannedStackRange.IsEmpty()) |
| 6856 | { |
| 6857 | continue; |
| 6858 | } |
| 6859 | |
| 6860 | // Since the current frame is a non-filter funclet, determine if its caller is the same one |
| 6861 | // as was saved against the exception tracker before the funclet was invoked in ExceptionTracker::CallHandler. |
| 6862 | CallerStackFrame csfFunclet = pCurrentTracker->m_EHClauseInfo.GetCallerStackFrameForEHClause(); |
| 6863 | if (csfCurrent == csfFunclet) |
| 6864 | { |
| 6865 | // The EnclosingClauseCallerSP is initialized in ExceptionTracker::ProcessManagedCallFrame, just before |
| 6866 | // invoking the funclets. Basically, we are using the SP of the caller of the frame containing the funclet |
| 6867 | // to determine if we have reached the frame containing the funclet. |
| 6868 | EnclosingClauseInfo srcEnclosingClause = (fForGCReporting) ? pCurrentTracker->m_EnclosingClauseInfoForGCReporting |
| 6869 | : pCurrentTracker->m_EnclosingClauseInfo; |
| 6870 | sfResult = (StackFrame)(CallerStackFrame(srcEnclosingClause.GetEnclosingClauseCallerSP())); |
| 6871 | |
| 6872 | // Check whether the tracker has called any funclet yet. |
| 6873 | if (sfResult.IsNull()) |
| 6874 | { |
| 6875 | continue; |
| 6876 | } |
| 6877 | |
| 6878 | // Set the relevant information. |
| 6879 | if (pfRealParent != NULL) |
| 6880 | { |
| 6881 | *pfRealParent = !srcEnclosingClause.EnclosingClauseIsFunclet(); |
| 6882 | } |
| 6883 | if (pParentOffset != NULL) |
| 6884 | { |
| 6885 | *pParentOffset = srcEnclosingClause.GetEnclosingClauseOffset(); |
| 6886 | } |
| 6887 | if (pParentCallerSP != NULL) |
| 6888 | { |
| 6889 | *pParentCallerSP = srcEnclosingClause.GetEnclosingClauseCallerSP(); |
| 6890 | } |
| 6891 | |
| 6892 | break; |
| 6893 | } |
| 6894 | // Check if this tracker was collapsed with another tracker and if caller of funclet clause for collapsed exception tracker matches. |
| 6895 | else if (fForGCReporting && !(pCurrentTracker->m_csfEHClauseOfCollapsedTracker.IsNull()) && csfCurrent == pCurrentTracker->m_csfEHClauseOfCollapsedTracker) |
| 6896 | { |
| 6897 | EnclosingClauseInfo srcEnclosingClause = pCurrentTracker->m_EnclosingClauseInfoOfCollapsedTracker; |
| 6898 | sfResult = (StackFrame)(CallerStackFrame(srcEnclosingClause.GetEnclosingClauseCallerSP())); |
| 6899 | |
| 6900 | _ASSERTE(!sfResult.IsNull()); |
| 6901 | |
| 6902 | break; |
| 6903 | |
| 6904 | } |
| 6905 | } |
| 6906 | |
| 6907 | lExit: ; |
| 6908 | |
| 6909 | STRESS_LOG3(LF_EH|LF_GCROOTS, LL_INFO100, "Returning 0x%p as the parent stack frame for %s 0x%p\n" , |
| 6910 | sfResult.SP, fIsFilterFunclet ? "filter funclet" : "funclet" , csfCurrent.SP); |
| 6911 | |
| 6912 | return sfResult; |
| 6913 | } |
| 6914 | |
| 6915 | struct RareFindParentStackFrameCallbackState |
| 6916 | { |
| 6917 | StackFrame m_sfTarget; |
| 6918 | StackFrame m_sfParent; |
| 6919 | bool m_fFoundTarget; |
| 6920 | DWORD m_dwParentOffset; |
| 6921 | UINT_PTR m_uParentCallerSP; |
| 6922 | }; |
| 6923 | |
| 6924 | // This is the callback for the stackwalk to get the parent stack frame for a filter funclet. |
| 6925 | // |
| 6926 | // static |
| 6927 | StackWalkAction ExceptionTracker::RareFindParentStackFrameCallback(CrawlFrame* pCF, LPVOID pData) |
| 6928 | { |
| 6929 | CONTRACTL |
| 6930 | { |
| 6931 | NOTHROW; |
| 6932 | GC_NOTRIGGER; |
| 6933 | MODE_ANY; |
| 6934 | } |
| 6935 | CONTRACTL_END; |
| 6936 | |
| 6937 | RareFindParentStackFrameCallbackState* pState = (RareFindParentStackFrameCallbackState*)pData; |
| 6938 | |
| 6939 | // In all cases, we don't care about explicit frame. |
| 6940 | if (!pCF->IsFrameless()) |
| 6941 | { |
| 6942 | return SWA_CONTINUE; |
| 6943 | } |
| 6944 | |
| 6945 | REGDISPLAY* pRegDisplay = pCF->GetRegisterSet(); |
| 6946 | StackFrame sfCurrent = StackFrame::FromRegDisplay(pRegDisplay); |
| 6947 | |
| 6948 | // Check if we have reached the target already. |
| 6949 | if (!pState->m_fFoundTarget) |
| 6950 | { |
| 6951 | if (sfCurrent != pState->m_sfTarget) |
| 6952 | { |
| 6953 | return SWA_CONTINUE; |
| 6954 | } |
| 6955 | |
| 6956 | pState->m_fFoundTarget = true; |
| 6957 | } |
| 6958 | |
| 6959 | // We hae reached the target, now do the normal frames skipping. |
| 6960 | if (!pState->m_sfParent.IsNull()) |
| 6961 | { |
| 6962 | if (pState->m_sfParent.IsMaxVal() || IsUnwoundToTargetParentFrame(pCF, pState->m_sfParent)) |
| 6963 | { |
| 6964 | // We have reached the specified method frame to skip to. |
| 6965 | // Now clear the flag and ask again. |
| 6966 | pState->m_sfParent.Clear(); |
| 6967 | } |
| 6968 | } |
| 6969 | |
| 6970 | if (pState->m_sfParent.IsNull() && pCF->IsFunclet()) |
| 6971 | { |
| 6972 | pState->m_sfParent = ExceptionTracker::FindParentStackFrameHelper(pCF, NULL, NULL, NULL); |
| 6973 | } |
| 6974 | |
| 6975 | // If we still need to skip, then continue the stackwalk. |
| 6976 | if (!pState->m_sfParent.IsNull()) |
| 6977 | { |
| 6978 | return SWA_CONTINUE; |
| 6979 | } |
| 6980 | |
| 6981 | // At this point, we are done. |
| 6982 | pState->m_sfParent = ExceptionTracker::GetStackFrameForParentCheck(pCF); |
| 6983 | pState->m_dwParentOffset = pCF->GetRelOffset(); |
| 6984 | |
| 6985 | _ASSERTE(pRegDisplay->IsCallerContextValid); |
| 6986 | pState->m_uParentCallerSP = GetSP(pRegDisplay->pCallerContext); |
| 6987 | |
| 6988 | return SWA_ABORT; |
| 6989 | } |
| 6990 | |
| 6991 | // static |
| 6992 | StackFrame ExceptionTracker::RareFindParentStackFrame(CrawlFrame* pCF, |
| 6993 | DWORD* pParentOffset, |
| 6994 | UINT_PTR* pParentCallerSP) |
| 6995 | { |
| 6996 | CONTRACTL |
| 6997 | { |
| 6998 | NOTHROW; |
| 6999 | GC_NOTRIGGER; |
| 7000 | MODE_ANY; |
| 7001 | PRECONDITION( pCF != NULL ); |
| 7002 | PRECONDITION( pCF->IsFunclet() ); |
| 7003 | PRECONDITION( CheckPointer(pParentOffset, NULL_OK) ); |
| 7004 | PRECONDITION( CheckPointer(pParentCallerSP, NULL_OK) ); |
| 7005 | } |
| 7006 | CONTRACTL_END; |
| 7007 | |
| 7008 | Thread* pThread = pCF->pThread; |
| 7009 | |
| 7010 | RareFindParentStackFrameCallbackState state; |
| 7011 | state.m_sfParent.Clear(); |
| 7012 | state.m_sfTarget = StackFrame::FromRegDisplay(pCF->GetRegisterSet()); |
| 7013 | state.m_fFoundTarget = false; |
| 7014 | |
| 7015 | PTR_Frame pFrame = pCF->pFrame; |
| 7016 | T_CONTEXT ctx; |
| 7017 | REGDISPLAY rd; |
| 7018 | CopyRegDisplay((const PREGDISPLAY)pCF->GetRegisterSet(), &rd, &ctx); |
| 7019 | |
| 7020 | pThread->StackWalkFramesEx(&rd, &ExceptionTracker::RareFindParentStackFrameCallback, &state, 0, pFrame); |
| 7021 | |
| 7022 | if (pParentOffset != NULL) |
| 7023 | { |
| 7024 | *pParentOffset = state.m_dwParentOffset; |
| 7025 | } |
| 7026 | if (pParentCallerSP != NULL) |
| 7027 | { |
| 7028 | *pParentCallerSP = state.m_uParentCallerSP; |
| 7029 | } |
| 7030 | return state.m_sfParent; |
| 7031 | } |
| 7032 | |
| 7033 | ExceptionTracker::StackRange::StackRange() |
| 7034 | { |
| 7035 | WRAPPER_NO_CONTRACT; |
| 7036 | |
| 7037 | #ifndef DACCESS_COMPILE |
| 7038 | Reset(); |
| 7039 | #endif // DACCESS_COMPILE |
| 7040 | } |
| 7041 | |
| 7042 | ExceptionTracker::EnclosingClauseInfo::EnclosingClauseInfo() |
| 7043 | { |
| 7044 | LIMITED_METHOD_CONTRACT; |
| 7045 | |
| 7046 | m_fEnclosingClauseIsFunclet = false; |
| 7047 | m_dwEnclosingClauseOffset = 0; |
| 7048 | m_uEnclosingClauseCallerSP = 0; |
| 7049 | } |
| 7050 | |
| 7051 | ExceptionTracker::EnclosingClauseInfo::EnclosingClauseInfo(bool fEnclosingClauseIsFunclet, |
| 7052 | DWORD dwEnclosingClauseOffset, |
| 7053 | UINT_PTR uEnclosingClauseCallerSP) |
| 7054 | { |
| 7055 | LIMITED_METHOD_CONTRACT; |
| 7056 | |
| 7057 | m_fEnclosingClauseIsFunclet = fEnclosingClauseIsFunclet; |
| 7058 | m_dwEnclosingClauseOffset = dwEnclosingClauseOffset; |
| 7059 | m_uEnclosingClauseCallerSP = uEnclosingClauseCallerSP; |
| 7060 | } |
| 7061 | |
| 7062 | bool ExceptionTracker::EnclosingClauseInfo::EnclosingClauseIsFunclet() |
| 7063 | { |
| 7064 | LIMITED_METHOD_CONTRACT; |
| 7065 | return m_fEnclosingClauseIsFunclet; |
| 7066 | } |
| 7067 | |
| 7068 | DWORD ExceptionTracker::EnclosingClauseInfo::GetEnclosingClauseOffset() |
| 7069 | { |
| 7070 | LIMITED_METHOD_CONTRACT; |
| 7071 | return m_dwEnclosingClauseOffset; |
| 7072 | } |
| 7073 | |
| 7074 | UINT_PTR ExceptionTracker::EnclosingClauseInfo::GetEnclosingClauseCallerSP() |
| 7075 | { |
| 7076 | LIMITED_METHOD_CONTRACT; |
| 7077 | return m_uEnclosingClauseCallerSP; |
| 7078 | } |
| 7079 | |
| 7080 | void ExceptionTracker::EnclosingClauseInfo::SetEnclosingClauseCallerSP(UINT_PTR callerSP) |
| 7081 | { |
| 7082 | LIMITED_METHOD_CONTRACT; |
| 7083 | m_uEnclosingClauseCallerSP = callerSP; |
| 7084 | } |
| 7085 | |
| 7086 | bool ExceptionTracker::EnclosingClauseInfo::operator==(const EnclosingClauseInfo & rhs) |
| 7087 | { |
| 7088 | LIMITED_METHOD_CONTRACT; |
| 7089 | SUPPORTS_DAC; |
| 7090 | |
| 7091 | return ((this->m_fEnclosingClauseIsFunclet == rhs.m_fEnclosingClauseIsFunclet) && |
| 7092 | (this->m_dwEnclosingClauseOffset == rhs.m_dwEnclosingClauseOffset) && |
| 7093 | (this->m_uEnclosingClauseCallerSP == rhs.m_uEnclosingClauseCallerSP)); |
| 7094 | } |
| 7095 | |
| 7096 | void ExceptionTracker::ReleaseResources() |
| 7097 | { |
| 7098 | #ifndef DACCESS_COMPILE |
| 7099 | if (m_hThrowable) |
| 7100 | { |
| 7101 | if (!CLRException::IsPreallocatedExceptionHandle(m_hThrowable)) |
| 7102 | { |
| 7103 | DestroyHandle(m_hThrowable); |
| 7104 | } |
| 7105 | m_hThrowable = NULL; |
| 7106 | } |
| 7107 | m_StackTraceInfo.FreeStackTrace(); |
| 7108 | |
| 7109 | #ifndef FEATURE_PAL |
| 7110 | // Clear any held Watson Bucketing details |
| 7111 | GetWatsonBucketTracker()->ClearWatsonBucketDetails(); |
| 7112 | #else // !FEATURE_PAL |
| 7113 | if (m_fOwnsExceptionPointers) |
| 7114 | { |
| 7115 | PAL_FreeExceptionRecords(m_ptrs.ExceptionRecord, m_ptrs.ContextRecord); |
| 7116 | m_fOwnsExceptionPointers = FALSE; |
| 7117 | } |
| 7118 | #endif // !FEATURE_PAL |
| 7119 | #endif // DACCESS_COMPILE |
| 7120 | } |
| 7121 | |
| 7122 | void ExceptionTracker::SetEnclosingClauseInfo(bool fEnclosingClauseIsFunclet, |
| 7123 | DWORD dwEnclosingClauseOffset, |
| 7124 | UINT_PTR uEnclosingClauseCallerSP) |
| 7125 | { |
| 7126 | // Preserve the details of the current frame for GC reporting before |
| 7127 | // we apply the nested exception logic below. |
| 7128 | this->m_EnclosingClauseInfoForGCReporting = EnclosingClauseInfo(fEnclosingClauseIsFunclet, |
| 7129 | dwEnclosingClauseOffset, |
| 7130 | uEnclosingClauseCallerSP); |
| 7131 | if (this->m_pPrevNestedInfo != NULL) |
| 7132 | { |
| 7133 | PTR_ExceptionTracker pPrevTracker = this->m_pPrevNestedInfo; |
| 7134 | CallerStackFrame csfPrevEHClause = pPrevTracker->m_EHClauseInfo.GetCallerStackFrameForEHClause(); |
| 7135 | |
| 7136 | // Just propagate the information if this is a nested exception. |
| 7137 | if (csfPrevEHClause.SP == uEnclosingClauseCallerSP) |
| 7138 | { |
| 7139 | this->m_EnclosingClauseInfo = pPrevTracker->m_EnclosingClauseInfo; |
| 7140 | return; |
| 7141 | } |
| 7142 | } |
| 7143 | |
| 7144 | this->m_EnclosingClauseInfo = EnclosingClauseInfo(fEnclosingClauseIsFunclet, |
| 7145 | dwEnclosingClauseOffset, |
| 7146 | uEnclosingClauseCallerSP); |
| 7147 | } |
| 7148 | |
| 7149 | |
| 7150 | #ifdef DACCESS_COMPILE |
| 7151 | void ExceptionTracker::EnumMemoryRegions(CLRDataEnumMemoryFlags flags) |
| 7152 | { |
| 7153 | // ExInfo is embedded so don't enum 'this'. |
| 7154 | OBJECTHANDLE_EnumMemoryRegions(m_hThrowable); |
| 7155 | m_ptrs.ExceptionRecord.EnumMem(); |
| 7156 | m_ptrs.ContextRecord.EnumMem(); |
| 7157 | } |
| 7158 | #endif // DACCESS_COMPILE |
| 7159 | |
| 7160 | #ifndef DACCESS_COMPILE |
| 7161 | // This is a thin wrapper around ResetThreadAbortState. Its primarily used to |
| 7162 | // instantiate CrawlFrame, when required, for walking the stack on IA64. |
| 7163 | // |
| 7164 | // The "when required" part are the set of conditions checked prior to the call to |
| 7165 | // this method in ExceptionTracker::ProcessOSExceptionNotification (and asserted in |
| 7166 | // ResetThreadabortState). |
| 7167 | // |
| 7168 | // Also, since CrawlFrame ctor is protected, it can only be instantiated by friend |
| 7169 | // types (which ExceptionTracker is). |
| 7170 | |
| 7171 | // static |
| 7172 | void ExceptionTracker::ResetThreadAbortStatus(PTR_Thread pThread, CrawlFrame *pCf, StackFrame sfCurrentStackFrame) |
| 7173 | { |
| 7174 | CONTRACTL |
| 7175 | { |
| 7176 | NOTHROW; |
| 7177 | GC_NOTRIGGER; |
| 7178 | MODE_ANY; |
| 7179 | PRECONDITION(pThread != NULL); |
| 7180 | PRECONDITION(pCf != NULL); |
| 7181 | PRECONDITION(!sfCurrentStackFrame.IsNull()); |
| 7182 | } |
| 7183 | CONTRACTL_END; |
| 7184 | |
| 7185 | if (pThread->IsAbortRequested()) |
| 7186 | { |
| 7187 | ResetThreadAbortState(pThread, pCf, sfCurrentStackFrame); |
| 7188 | } |
| 7189 | } |
| 7190 | #endif //!DACCESS_COMPILE |
| 7191 | |
| 7192 | #endif // WIN64EXCEPTIONS |
| 7193 | |
| 7194 | |