1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | /* |
6 | * gcenv.os.cpp |
7 | * |
8 | * GCToOSInterface implementation |
9 | * |
10 | |
11 | * |
12 | */ |
13 | |
14 | #include "common.h" |
15 | #include "gcenv.h" |
16 | |
17 | #ifndef FEATURE_PAL |
18 | #include <Psapi.h> |
19 | #endif |
20 | |
21 | #ifdef Sleep |
22 | #undef Sleep |
23 | #endif // Sleep |
24 | |
25 | #include "../gc/env/gcenv.os.h" |
26 | |
27 | #define MAX_PTR ((uint8_t*)(~(ptrdiff_t)0)) |
28 | |
29 | #ifdef FEATURE_PAL |
30 | uint32_t g_pageSizeUnixInl = 0; |
31 | #endif |
32 | |
33 | |
34 | // Initialize the interface implementation |
35 | // Return: |
36 | // true if it has succeeded, false if it has failed |
37 | bool GCToOSInterface::Initialize() |
38 | { |
39 | LIMITED_METHOD_CONTRACT; |
40 | |
41 | #ifdef FEATURE_PAL |
42 | g_pageSizeUnixInl = GetOsPageSize(); |
43 | #endif |
44 | |
45 | return true; |
46 | } |
47 | |
48 | // Shutdown the interface implementation |
49 | void GCToOSInterface::Shutdown() |
50 | { |
51 | LIMITED_METHOD_CONTRACT; |
52 | } |
53 | |
54 | // Get numeric id of the current thread if possible on the |
55 | // current platform. It is indended for logging purposes only. |
56 | // Return: |
57 | // Numeric id of the current thread or 0 if the |
58 | uint64_t GCToOSInterface::GetCurrentThreadIdForLogging() |
59 | { |
60 | LIMITED_METHOD_CONTRACT; |
61 | return ::GetCurrentThreadId(); |
62 | } |
63 | |
64 | // Get id of the process |
65 | // Return: |
66 | // Id of the current process |
67 | uint32_t GCToOSInterface::GetCurrentProcessId() |
68 | { |
69 | LIMITED_METHOD_CONTRACT; |
70 | return ::GetCurrentProcessId(); |
71 | } |
72 | |
73 | // Set ideal affinity for the current thread |
74 | // Parameters: |
75 | // affinity - ideal processor affinity for the thread |
76 | // Return: |
77 | // true if it has succeeded, false if it has failed |
78 | bool GCToOSInterface::SetCurrentThreadIdealAffinity(GCThreadAffinity* affinity) |
79 | { |
80 | LIMITED_METHOD_CONTRACT; |
81 | |
82 | bool success = true; |
83 | |
84 | #if !defined(FEATURE_CORESYSTEM) |
85 | SetThreadIdealProcessor(GetCurrentThread(), (DWORD)affinity->Processor); |
86 | #else |
87 | PROCESSOR_NUMBER proc; |
88 | |
89 | if (affinity->Group != -1) |
90 | { |
91 | proc.Group = (WORD)affinity->Group; |
92 | proc.Number = (BYTE)affinity->Processor; |
93 | proc.Reserved = 0; |
94 | |
95 | success = !!SetThreadIdealProcessorEx(GetCurrentThread(), &proc, NULL); |
96 | } |
97 | #if !defined(FEATURE_PAL) |
98 | else |
99 | { |
100 | if (GetThreadIdealProcessorEx(GetCurrentThread(), &proc)) |
101 | { |
102 | proc.Number = (BYTE)affinity->Processor; |
103 | success = !!SetThreadIdealProcessorEx(GetCurrentThread(), &proc, &proc); |
104 | } |
105 | } |
106 | #endif // !defined(FEATURE_PAL) |
107 | #endif |
108 | |
109 | return success; |
110 | } |
111 | |
112 | // Get the number of the current processor |
113 | uint32_t GCToOSInterface::GetCurrentProcessorNumber() |
114 | { |
115 | LIMITED_METHOD_CONTRACT; |
116 | |
117 | _ASSERTE(CanGetCurrentProcessorNumber()); |
118 | return ::GetCurrentProcessorNumber(); |
119 | } |
120 | |
121 | // Check if the OS supports getting current processor number |
122 | bool GCToOSInterface::CanGetCurrentProcessorNumber() |
123 | { |
124 | LIMITED_METHOD_CONTRACT; |
125 | |
126 | #ifdef FEATURE_PAL |
127 | return PAL_HasGetCurrentProcessorNumber(); |
128 | #else |
129 | // on all Windows platforms we support this API exists |
130 | return true; |
131 | #endif |
132 | } |
133 | |
134 | // Flush write buffers of processors that are executing threads of the current process |
135 | void GCToOSInterface::FlushProcessWriteBuffers() |
136 | { |
137 | LIMITED_METHOD_CONTRACT; |
138 | ::FlushProcessWriteBuffers(); |
139 | } |
140 | |
141 | // Break into a debugger |
142 | void GCToOSInterface::DebugBreak() |
143 | { |
144 | LIMITED_METHOD_CONTRACT; |
145 | ::DebugBreak(); |
146 | } |
147 | |
148 | // Causes the calling thread to sleep for the specified number of milliseconds |
149 | // Parameters: |
150 | // sleepMSec - time to sleep before switching to another thread |
151 | void GCToOSInterface::Sleep(uint32_t sleepMSec) |
152 | { |
153 | LIMITED_METHOD_CONTRACT; |
154 | __SwitchToThread(sleepMSec, 0); |
155 | } |
156 | |
157 | // Causes the calling thread to yield execution to another thread that is ready to run on the current processor. |
158 | // Parameters: |
159 | // switchCount - number of times the YieldThread was called in a loop |
160 | void GCToOSInterface::YieldThread(uint32_t switchCount) |
161 | { |
162 | LIMITED_METHOD_CONTRACT; |
163 | __SwitchToThread(0, switchCount); |
164 | } |
165 | |
166 | // Reserve virtual memory range. |
167 | // Parameters: |
168 | // address - starting virtual address, it can be NULL to let the function choose the starting address |
169 | // size - size of the virtual memory range |
170 | // alignment - requested memory alignment |
171 | // flags - flags to control special settings like write watching |
172 | // Return: |
173 | // Starting virtual address of the reserved range |
174 | void* GCToOSInterface::VirtualReserve(size_t size, size_t alignment, uint32_t flags) |
175 | { |
176 | LIMITED_METHOD_CONTRACT; |
177 | |
178 | DWORD memFlags = (flags & VirtualReserveFlags::WriteWatch) ? (MEM_RESERVE | MEM_WRITE_WATCH) : MEM_RESERVE; |
179 | |
180 | // This is not strictly necessary for a correctness standpoint. Windows already guarantees |
181 | // allocation granularity alignment when using MEM_RESERVE, so aligning the size here has no effect. |
182 | // However, ClrVirtualAlloc does expect the size to be aligned to the allocation granularity. |
183 | size_t aligned_size = (size + g_SystemInfo.dwAllocationGranularity - 1) & ~static_cast<size_t>(g_SystemInfo.dwAllocationGranularity - 1); |
184 | if (alignment == 0) |
185 | { |
186 | return ::ClrVirtualAlloc(0, aligned_size, memFlags, PAGE_READWRITE); |
187 | } |
188 | else |
189 | { |
190 | return ::ClrVirtualAllocAligned(0, aligned_size, memFlags, PAGE_READWRITE, alignment); |
191 | } |
192 | } |
193 | |
194 | // Release virtual memory range previously reserved using VirtualReserve |
195 | // Parameters: |
196 | // address - starting virtual address |
197 | // size - size of the virtual memory range |
198 | // Return: |
199 | // true if it has succeeded, false if it has failed |
200 | bool GCToOSInterface::VirtualRelease(void* address, size_t size) |
201 | { |
202 | LIMITED_METHOD_CONTRACT; |
203 | |
204 | UNREFERENCED_PARAMETER(size); |
205 | return !!::ClrVirtualFree(address, 0, MEM_RELEASE); |
206 | } |
207 | |
208 | // Commit virtual memory range. It must be part of a range reserved using VirtualReserve. |
209 | // Parameters: |
210 | // address - starting virtual address |
211 | // size - size of the virtual memory range |
212 | // Return: |
213 | // true if it has succeeded, false if it has failed |
214 | bool GCToOSInterface::VirtualCommit(void* address, size_t size, uint32_t node) |
215 | { |
216 | LIMITED_METHOD_CONTRACT; |
217 | |
218 | if (node == NUMA_NODE_UNDEFINED) |
219 | { |
220 | return ::ClrVirtualAlloc(address, size, MEM_COMMIT, PAGE_READWRITE) != NULL; |
221 | } |
222 | else |
223 | { |
224 | return NumaNodeInfo::VirtualAllocExNuma(::GetCurrentProcess(), address, size, MEM_COMMIT, PAGE_READWRITE, node) != NULL; |
225 | } |
226 | } |
227 | |
228 | // Decomit virtual memory range. |
229 | // Parameters: |
230 | // address - starting virtual address |
231 | // size - size of the virtual memory range |
232 | // Return: |
233 | // true if it has succeeded, false if it has failed |
234 | bool GCToOSInterface::VirtualDecommit(void* address, size_t size) |
235 | { |
236 | LIMITED_METHOD_CONTRACT; |
237 | |
238 | return !!::ClrVirtualFree(address, size, MEM_DECOMMIT); |
239 | } |
240 | |
241 | // Reset virtual memory range. Indicates that data in the memory range specified by address and size is no |
242 | // longer of interest, but it should not be decommitted. |
243 | // Parameters: |
244 | // address - starting virtual address |
245 | // size - size of the virtual memory range |
246 | // unlock - true if the memory range should also be unlocked |
247 | // Return: |
248 | // true if it has succeeded, false if it has failed |
249 | bool GCToOSInterface::VirtualReset(void * address, size_t size, bool unlock) |
250 | { |
251 | LIMITED_METHOD_CONTRACT; |
252 | |
253 | bool success = ::ClrVirtualAlloc(address, size, MEM_RESET, PAGE_READWRITE) != NULL; |
254 | #ifndef FEATURE_PAL |
255 | if (success && unlock) |
256 | { |
257 | // Remove the page range from the working set |
258 | ::VirtualUnlock(address, size); |
259 | } |
260 | #endif // FEATURE_PAL |
261 | |
262 | return success; |
263 | } |
264 | |
265 | // Check if the OS supports write watching |
266 | bool GCToOSInterface::SupportsWriteWatch() |
267 | { |
268 | LIMITED_METHOD_CONTRACT; |
269 | |
270 | bool writeWatchSupported = false; |
271 | |
272 | // check if the OS supports write-watch. |
273 | // Drawbridge does not support write-watch so we still need to do the runtime detection for them. |
274 | // Otherwise, all currently supported OSes do support write-watch. |
275 | void* mem = VirtualReserve (g_SystemInfo.dwAllocationGranularity, 0, VirtualReserveFlags::WriteWatch); |
276 | if (mem != NULL) |
277 | { |
278 | VirtualRelease (mem, g_SystemInfo.dwAllocationGranularity); |
279 | writeWatchSupported = true; |
280 | } |
281 | |
282 | return writeWatchSupported; |
283 | } |
284 | |
285 | // Reset the write tracking state for the specified virtual memory range. |
286 | // Parameters: |
287 | // address - starting virtual address |
288 | // size - size of the virtual memory range |
289 | void GCToOSInterface::ResetWriteWatch(void* address, size_t size) |
290 | { |
291 | LIMITED_METHOD_CONTRACT; |
292 | |
293 | ::ResetWriteWatch(address, size); |
294 | } |
295 | |
296 | // Retrieve addresses of the pages that are written to in a region of virtual memory |
297 | // Parameters: |
298 | // resetState - true indicates to reset the write tracking state |
299 | // address - starting virtual address |
300 | // size - size of the virtual memory range |
301 | // pageAddresses - buffer that receives an array of page addresses in the memory region |
302 | // pageAddressesCount - on input, size of the lpAddresses array, in array elements |
303 | // on output, the number of page addresses that are returned in the array. |
304 | // Return: |
305 | // true if it has succeeded, false if it has failed |
306 | bool GCToOSInterface::GetWriteWatch(bool resetState, void* address, size_t size, void** pageAddresses, uintptr_t* pageAddressesCount) |
307 | { |
308 | LIMITED_METHOD_CONTRACT; |
309 | |
310 | uint32_t flags = resetState ? 1 : 0; |
311 | ULONG granularity; |
312 | |
313 | bool success = ::GetWriteWatch(flags, address, size, pageAddresses, (ULONG_PTR*)pageAddressesCount, &granularity) == 0; |
314 | _ASSERTE (granularity == GetOsPageSize()); |
315 | |
316 | return success; |
317 | } |
318 | |
319 | // Get size of the largest cache on the processor die |
320 | // Parameters: |
321 | // trueSize - true to return true cache size, false to return scaled up size based on |
322 | // the processor architecture |
323 | // Return: |
324 | // Size of the cache |
325 | size_t GCToOSInterface::GetCacheSizePerLogicalCpu(bool trueSize) |
326 | { |
327 | LIMITED_METHOD_CONTRACT; |
328 | |
329 | return ::GetCacheSizePerLogicalCpu(trueSize); |
330 | } |
331 | |
332 | // Sets the calling thread's affinity to only run on the processor specified |
333 | // in the GCThreadAffinity structure. |
334 | // Parameters: |
335 | // affinity - The requested affinity for the calling thread. At most one processor |
336 | // can be provided. |
337 | // Return: |
338 | // true if setting the affinity was successful, false otherwise. |
339 | bool GCToOSInterface::SetThreadAffinity(GCThreadAffinity* affinity) |
340 | { |
341 | LIMITED_METHOD_CONTRACT; |
342 | |
343 | assert(affinity != nullptr); |
344 | if (affinity->Group != GCThreadAffinity::None) |
345 | { |
346 | assert(affinity->Processor != GCThreadAffinity::None); |
347 | |
348 | GROUP_AFFINITY ga; |
349 | ga.Group = (WORD)affinity->Group; |
350 | ga.Reserved[0] = 0; // reserve must be filled with zero |
351 | ga.Reserved[1] = 0; // otherwise call may fail |
352 | ga.Reserved[2] = 0; |
353 | ga.Mask = (size_t)1 << affinity->Processor; |
354 | return !!SetThreadGroupAffinity(GetCurrentThread(), &ga, nullptr); |
355 | } |
356 | else if (affinity->Processor != GCThreadAffinity::None) |
357 | { |
358 | return !!SetThreadAffinityMask(GetCurrentThread(), (DWORD_PTR)1 << affinity->Processor); |
359 | } |
360 | |
361 | // Given affinity must specify at least one processor to use. |
362 | return false; |
363 | } |
364 | |
365 | // Boosts the calling thread's thread priority to a level higher than the default |
366 | // for new threads. |
367 | // Parameters: |
368 | // None. |
369 | // Return: |
370 | // true if the priority boost was successful, false otherwise. |
371 | bool GCToOSInterface::BoostThreadPriority() |
372 | { |
373 | return !!SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_HIGHEST); |
374 | } |
375 | |
376 | // Get affinity mask of the current process |
377 | // Parameters: |
378 | // processMask - affinity mask for the specified process |
379 | // systemMask - affinity mask for the system |
380 | // Return: |
381 | // true if it has succeeded, false if it has failed |
382 | // Remarks: |
383 | // A process affinity mask is a bit vector in which each bit represents the processors that |
384 | // a process is allowed to run on. A system affinity mask is a bit vector in which each bit |
385 | // represents the processors that are configured into a system. |
386 | // A process affinity mask is a subset of the system affinity mask. A process is only allowed |
387 | // to run on the processors configured into a system. Therefore, the process affinity mask cannot |
388 | // specify a 1 bit for a processor when the system affinity mask specifies a 0 bit for that processor. |
389 | bool GCToOSInterface::GetCurrentProcessAffinityMask(uintptr_t* processMask, uintptr_t* systemMask) |
390 | { |
391 | LIMITED_METHOD_CONTRACT; |
392 | |
393 | return !!::GetProcessAffinityMask(GetCurrentProcess(), (PDWORD_PTR)processMask, (PDWORD_PTR)systemMask); |
394 | } |
395 | |
396 | // Get number of processors assigned to the current process |
397 | // Return: |
398 | // The number of processors |
399 | uint32_t GCToOSInterface::GetCurrentProcessCpuCount() |
400 | { |
401 | LIMITED_METHOD_CONTRACT; |
402 | |
403 | return ::GetCurrentProcessCpuCount(); |
404 | } |
405 | |
406 | // Return the size of the user-mode portion of the virtual address space of this process. |
407 | // Return: |
408 | // non zero if it has succeeded, 0 if it has failed |
409 | size_t GCToOSInterface::GetVirtualMemoryLimit() |
410 | { |
411 | LIMITED_METHOD_CONTRACT; |
412 | |
413 | MEMORYSTATUSEX memStatus; |
414 | ::GetProcessMemoryLoad(&memStatus); |
415 | |
416 | return (size_t)memStatus.ullTotalVirtual; |
417 | } |
418 | |
419 | static size_t g_RestrictedPhysicalMemoryLimit = (size_t)MAX_PTR; |
420 | |
421 | #ifndef FEATURE_PAL |
422 | |
423 | // For 32-bit processes the virtual address range could be smaller than the amount of physical |
424 | // memory on the machine/in the container, we need to restrict by the VM. |
425 | static bool g_UseRestrictedVirtualMemory = false; |
426 | |
427 | typedef BOOL (WINAPI *PGET_PROCESS_MEMORY_INFO)(HANDLE handle, PROCESS_MEMORY_COUNTERS* memCounters, uint32_t cb); |
428 | static PGET_PROCESS_MEMORY_INFO GCGetProcessMemoryInfo = 0; |
429 | |
430 | typedef BOOL (WINAPI *PIS_PROCESS_IN_JOB)(HANDLE processHandle, HANDLE jobHandle, BOOL* result); |
431 | typedef BOOL (WINAPI *PQUERY_INFORMATION_JOB_OBJECT)(HANDLE jobHandle, JOBOBJECTINFOCLASS jobObjectInfoClass, void* lpJobObjectInfo, DWORD cbJobObjectInfoLength, LPDWORD lpReturnLength); |
432 | |
433 | static size_t GetRestrictedPhysicalMemoryLimit() |
434 | { |
435 | LIMITED_METHOD_CONTRACT; |
436 | |
437 | // The limit was cached already |
438 | if (g_RestrictedPhysicalMemoryLimit != (size_t)MAX_PTR) |
439 | return g_RestrictedPhysicalMemoryLimit; |
440 | |
441 | size_t job_physical_memory_limit = (size_t)MAX_PTR; |
442 | uint64_t total_virtual = 0; |
443 | uint64_t total_physical = 0; |
444 | BOOL in_job_p = FALSE; |
445 | HINSTANCE hinstKernel32 = 0; |
446 | |
447 | PIS_PROCESS_IN_JOB GCIsProcessInJob = 0; |
448 | PQUERY_INFORMATION_JOB_OBJECT GCQueryInformationJobObject = 0; |
449 | |
450 | GCIsProcessInJob = &(::IsProcessInJob); |
451 | |
452 | if (!GCIsProcessInJob(GetCurrentProcess(), NULL, &in_job_p)) |
453 | goto exit; |
454 | |
455 | if (in_job_p) |
456 | { |
457 | hinstKernel32 = WszLoadLibrary(L"kernel32.dll" ); |
458 | if (!hinstKernel32) |
459 | goto exit; |
460 | |
461 | GCGetProcessMemoryInfo = (PGET_PROCESS_MEMORY_INFO)GetProcAddress(hinstKernel32, "K32GetProcessMemoryInfo" ); |
462 | |
463 | if (!GCGetProcessMemoryInfo) |
464 | goto exit; |
465 | |
466 | GCQueryInformationJobObject = &(::QueryInformationJobObject); |
467 | |
468 | if (!GCQueryInformationJobObject) |
469 | goto exit; |
470 | |
471 | JOBOBJECT_EXTENDED_LIMIT_INFORMATION limit_info; |
472 | if (GCQueryInformationJobObject (NULL, JobObjectExtendedLimitInformation, &limit_info, |
473 | sizeof(limit_info), NULL)) |
474 | { |
475 | size_t job_memory_limit = (size_t)MAX_PTR; |
476 | size_t job_process_memory_limit = (size_t)MAX_PTR; |
477 | size_t job_workingset_limit = (size_t)MAX_PTR; |
478 | |
479 | // Notes on the NT job object: |
480 | // |
481 | // You can specific a bigger process commit or working set limit than |
482 | // job limit which is pointless so we use the smallest of all 3 as |
483 | // to calculate our "physical memory load" or "available physical memory" |
484 | // when running inside a job object, ie, we treat this as the amount of physical memory |
485 | // our process is allowed to use. |
486 | // |
487 | // The commit limit is already reflected by default when you run in a |
488 | // job but the physical memory load is not. |
489 | // |
490 | if ((limit_info.BasicLimitInformation.LimitFlags & JOB_OBJECT_LIMIT_JOB_MEMORY) != 0) |
491 | job_memory_limit = limit_info.JobMemoryLimit; |
492 | if ((limit_info.BasicLimitInformation.LimitFlags & JOB_OBJECT_LIMIT_PROCESS_MEMORY) != 0) |
493 | job_process_memory_limit = limit_info.ProcessMemoryLimit; |
494 | if ((limit_info.BasicLimitInformation.LimitFlags & JOB_OBJECT_LIMIT_WORKINGSET) != 0) |
495 | job_workingset_limit = limit_info.BasicLimitInformation.MaximumWorkingSetSize; |
496 | |
497 | job_physical_memory_limit = min (job_memory_limit, job_process_memory_limit); |
498 | job_physical_memory_limit = min (job_physical_memory_limit, job_workingset_limit); |
499 | |
500 | MEMORYSTATUSEX ms; |
501 | ::GetProcessMemoryLoad(&ms); |
502 | total_virtual = ms.ullTotalVirtual; |
503 | total_physical = ms.ullAvailPhys; |
504 | |
505 | // A sanity check in case someone set a larger limit than there is actual physical memory. |
506 | job_physical_memory_limit = (size_t) min (job_physical_memory_limit, ms.ullTotalPhys); |
507 | } |
508 | } |
509 | |
510 | exit: |
511 | if (job_physical_memory_limit == (size_t)MAX_PTR) |
512 | { |
513 | job_physical_memory_limit = 0; |
514 | |
515 | if (hinstKernel32 != 0) |
516 | { |
517 | FreeLibrary(hinstKernel32); |
518 | hinstKernel32 = 0; |
519 | GCGetProcessMemoryInfo = 0; |
520 | } |
521 | } |
522 | |
523 | // Check to see if we are limited by VM. |
524 | if (total_virtual == 0) |
525 | { |
526 | MEMORYSTATUSEX ms; |
527 | ::GetProcessMemoryLoad(&ms); |
528 | |
529 | total_virtual = ms.ullTotalVirtual; |
530 | total_physical = ms.ullTotalPhys; |
531 | } |
532 | |
533 | if (job_physical_memory_limit != 0) |
534 | { |
535 | total_physical = job_physical_memory_limit; |
536 | } |
537 | |
538 | if (total_virtual < total_physical) |
539 | { |
540 | if (hinstKernel32 != 0) |
541 | { |
542 | // We can also free the lib here - if we are limited by VM we will not be calling |
543 | // GetProcessMemoryInfo. |
544 | FreeLibrary(hinstKernel32); |
545 | GCGetProcessMemoryInfo = 0; |
546 | } |
547 | g_UseRestrictedVirtualMemory = true; |
548 | job_physical_memory_limit = (size_t)total_virtual; |
549 | } |
550 | |
551 | VolatileStore(&g_RestrictedPhysicalMemoryLimit, job_physical_memory_limit); |
552 | return g_RestrictedPhysicalMemoryLimit; |
553 | } |
554 | |
555 | #else |
556 | |
557 | static size_t GetRestrictedPhysicalMemoryLimit() |
558 | { |
559 | LIMITED_METHOD_CONTRACT; |
560 | |
561 | // The limit was cached already |
562 | if (g_RestrictedPhysicalMemoryLimit != (size_t)MAX_PTR) |
563 | return g_RestrictedPhysicalMemoryLimit; |
564 | |
565 | size_t memory_limit = PAL_GetRestrictedPhysicalMemoryLimit(); |
566 | |
567 | VolatileStore(&g_RestrictedPhysicalMemoryLimit, memory_limit); |
568 | return g_RestrictedPhysicalMemoryLimit; |
569 | } |
570 | #endif // FEATURE_PAL |
571 | |
572 | |
573 | // Get the physical memory that this process can use. |
574 | // Return: |
575 | // non zero if it has succeeded, 0 if it has failed |
576 | uint64_t GCToOSInterface::GetPhysicalMemoryLimit() |
577 | { |
578 | LIMITED_METHOD_CONTRACT; |
579 | |
580 | size_t restricted_limit = GetRestrictedPhysicalMemoryLimit(); |
581 | if (restricted_limit != 0) |
582 | return restricted_limit; |
583 | |
584 | MEMORYSTATUSEX memStatus; |
585 | ::GetProcessMemoryLoad(&memStatus); |
586 | |
587 | return memStatus.ullTotalPhys; |
588 | } |
589 | |
590 | // Get memory status |
591 | // Parameters: |
592 | // memory_load - A number between 0 and 100 that specifies the approximate percentage of physical memory |
593 | // that is in use (0 indicates no memory use and 100 indicates full memory use). |
594 | // available_physical - The amount of physical memory currently available, in bytes. |
595 | // available_page_file - The maximum amount of memory the current process can commit, in bytes. |
596 | // Remarks: |
597 | // Any parameter can be null. |
598 | void GCToOSInterface::GetMemoryStatus(uint32_t* memory_load, uint64_t* available_physical, uint64_t* available_page_file) |
599 | { |
600 | LIMITED_METHOD_CONTRACT; |
601 | |
602 | uint64_t restricted_limit = GetRestrictedPhysicalMemoryLimit(); |
603 | if (restricted_limit != 0) |
604 | { |
605 | size_t workingSetSize; |
606 | BOOL status = FALSE; |
607 | #ifndef FEATURE_PAL |
608 | if (!g_UseRestrictedVirtualMemory) |
609 | { |
610 | PROCESS_MEMORY_COUNTERS pmc; |
611 | status = GCGetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc)); |
612 | workingSetSize = pmc.WorkingSetSize; |
613 | } |
614 | #else |
615 | status = PAL_GetPhysicalMemoryUsed(&workingSetSize); |
616 | #endif |
617 | if(status) |
618 | { |
619 | if (memory_load) |
620 | *memory_load = (uint32_t)((float)workingSetSize * 100.0 / (float)restricted_limit); |
621 | if (available_physical) |
622 | { |
623 | if(workingSetSize > restricted_limit) |
624 | *available_physical = 0; |
625 | else |
626 | *available_physical = restricted_limit - workingSetSize; |
627 | } |
628 | // Available page file doesn't mean much when physical memory is restricted since |
629 | // we don't know how much of it is available to this process so we are not going to |
630 | // bother to make another OS call for it. |
631 | if (available_page_file) |
632 | *available_page_file = 0; |
633 | |
634 | return; |
635 | } |
636 | } |
637 | |
638 | MEMORYSTATUSEX ms; |
639 | ::GetProcessMemoryLoad(&ms); |
640 | |
641 | #ifndef FEATURE_PAL |
642 | if (g_UseRestrictedVirtualMemory) |
643 | { |
644 | _ASSERTE (ms.ullTotalVirtual == restricted_limit); |
645 | if (memory_load != NULL) |
646 | *memory_load = (uint32_t)((float)(ms.ullTotalVirtual - ms.ullAvailVirtual) * 100.0 / (float)ms.ullTotalVirtual); |
647 | if (available_physical != NULL) |
648 | *available_physical = ms.ullTotalVirtual; |
649 | |
650 | // Available page file isn't helpful when we are restricted by virtual memory |
651 | // since the amount of memory we can reserve is less than the amount of |
652 | // memory we can commit. |
653 | if (available_page_file != NULL) |
654 | *available_page_file = 0; |
655 | } |
656 | else |
657 | #endif //!FEATURE_PAL |
658 | { |
659 | if (memory_load != NULL) |
660 | *memory_load = ms.dwMemoryLoad; |
661 | if (available_physical != NULL) |
662 | *available_physical = ms.ullAvailPhys; |
663 | if (available_page_file != NULL) |
664 | *available_page_file = ms.ullAvailPageFile; |
665 | } |
666 | } |
667 | |
668 | // Get a high precision performance counter |
669 | // Return: |
670 | // The counter value |
671 | int64_t GCToOSInterface::QueryPerformanceCounter() |
672 | { |
673 | LIMITED_METHOD_CONTRACT; |
674 | |
675 | LARGE_INTEGER ts; |
676 | if (!::QueryPerformanceCounter(&ts)) |
677 | { |
678 | DebugBreak(); |
679 | _ASSERTE(!"Fatal Error - cannot query performance counter." ); |
680 | EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE); // TODO: fatal error |
681 | } |
682 | |
683 | return ts.QuadPart; |
684 | } |
685 | |
686 | // Get a frequency of the high precision performance counter |
687 | // Return: |
688 | // The counter frequency |
689 | int64_t GCToOSInterface::QueryPerformanceFrequency() |
690 | { |
691 | LIMITED_METHOD_CONTRACT; |
692 | |
693 | LARGE_INTEGER frequency; |
694 | if (!::QueryPerformanceFrequency(&frequency)) |
695 | { |
696 | DebugBreak(); |
697 | _ASSERTE(!"Fatal Error - cannot query performance counter." ); |
698 | EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE); // TODO: fatal error |
699 | } |
700 | |
701 | return frequency.QuadPart; |
702 | } |
703 | |
704 | // Get a time stamp with a low precision |
705 | // Return: |
706 | // Time stamp in milliseconds |
707 | uint32_t GCToOSInterface::GetLowPrecisionTimeStamp() |
708 | { |
709 | LIMITED_METHOD_CONTRACT; |
710 | |
711 | return ::GetTickCount(); |
712 | } |
713 | |
714 | uint32_t GCToOSInterface::GetTotalProcessorCount() |
715 | { |
716 | LIMITED_METHOD_CONTRACT; |
717 | |
718 | if (CPUGroupInfo::CanEnableGCCPUGroups()) |
719 | { |
720 | return CPUGroupInfo::GetNumActiveProcessors(); |
721 | } |
722 | else |
723 | { |
724 | return g_SystemInfo.dwNumberOfProcessors; |
725 | } |
726 | } |
727 | |
728 | bool GCToOSInterface::CanEnableGCNumaAware() |
729 | { |
730 | LIMITED_METHOD_CONTRACT; |
731 | |
732 | return NumaNodeInfo::CanEnableGCNumaAware() != FALSE; |
733 | } |
734 | |
735 | bool GCToOSInterface::GetNumaProcessorNode(PPROCESSOR_NUMBER proc_no, uint16_t *node_no) |
736 | { |
737 | LIMITED_METHOD_CONTRACT; |
738 | |
739 | return NumaNodeInfo::GetNumaProcessorNodeEx(proc_no, node_no) != FALSE; |
740 | } |
741 | |
742 | bool GCToOSInterface::CanEnableGCCPUGroups() |
743 | { |
744 | LIMITED_METHOD_CONTRACT; |
745 | |
746 | return CPUGroupInfo::CanEnableGCCPUGroups() != FALSE; |
747 | } |
748 | |
749 | void GCToOSInterface::GetGroupForProcessor(uint16_t processor_number, uint16_t* group_number, uint16_t* group_processor_number) |
750 | { |
751 | LIMITED_METHOD_CONTRACT; |
752 | |
753 | return CPUGroupInfo::GetGroupForProcessor(processor_number, group_number, group_processor_number); |
754 | } |
755 | |
756 | // Initialize the critical section |
757 | void CLRCriticalSection::Initialize() |
758 | { |
759 | WRAPPER_NO_CONTRACT; |
760 | UnsafeInitializeCriticalSection(&m_cs); |
761 | } |
762 | |
763 | // Destroy the critical section |
764 | void CLRCriticalSection::Destroy() |
765 | { |
766 | WRAPPER_NO_CONTRACT; |
767 | UnsafeDeleteCriticalSection(&m_cs); |
768 | } |
769 | |
770 | // Enter the critical section. Blocks until the section can be entered. |
771 | void CLRCriticalSection::Enter() |
772 | { |
773 | WRAPPER_NO_CONTRACT; |
774 | UnsafeEnterCriticalSection(&m_cs); |
775 | } |
776 | |
777 | // Leave the critical section |
778 | void CLRCriticalSection::Leave() |
779 | { |
780 | WRAPPER_NO_CONTRACT; |
781 | UnsafeLeaveCriticalSection(&m_cs); |
782 | } |
783 | |
784 | // An implementatino of GCEvent that delegates to |
785 | // a CLREvent, which in turn delegates to the PAL. This event |
786 | // is also host-aware. |
787 | class GCEvent::Impl |
788 | { |
789 | private: |
790 | CLREvent m_event; |
791 | |
792 | public: |
793 | Impl() = default; |
794 | |
795 | bool IsValid() |
796 | { |
797 | WRAPPER_NO_CONTRACT; |
798 | |
799 | return !!m_event.IsValid(); |
800 | } |
801 | |
802 | void CloseEvent() |
803 | { |
804 | WRAPPER_NO_CONTRACT; |
805 | |
806 | assert(m_event.IsValid()); |
807 | m_event.CloseEvent(); |
808 | } |
809 | |
810 | void Set() |
811 | { |
812 | WRAPPER_NO_CONTRACT; |
813 | |
814 | assert(m_event.IsValid()); |
815 | m_event.Set(); |
816 | } |
817 | |
818 | void Reset() |
819 | { |
820 | WRAPPER_NO_CONTRACT; |
821 | |
822 | assert(m_event.IsValid()); |
823 | m_event.Reset(); |
824 | } |
825 | |
826 | uint32_t Wait(uint32_t timeout, bool alertable) |
827 | { |
828 | WRAPPER_NO_CONTRACT; |
829 | |
830 | assert(m_event.IsValid()); |
831 | return m_event.Wait(timeout, alertable); |
832 | } |
833 | |
834 | bool CreateAutoEvent(bool initialState) |
835 | { |
836 | CONTRACTL { |
837 | NOTHROW; |
838 | GC_NOTRIGGER; |
839 | } CONTRACTL_END; |
840 | |
841 | return !!m_event.CreateAutoEventNoThrow(initialState); |
842 | } |
843 | |
844 | bool CreateManualEvent(bool initialState) |
845 | { |
846 | CONTRACTL { |
847 | NOTHROW; |
848 | GC_NOTRIGGER; |
849 | } CONTRACTL_END; |
850 | |
851 | return !!m_event.CreateManualEventNoThrow(initialState); |
852 | } |
853 | |
854 | bool CreateOSAutoEvent(bool initialState) |
855 | { |
856 | CONTRACTL { |
857 | NOTHROW; |
858 | GC_NOTRIGGER; |
859 | } CONTRACTL_END; |
860 | |
861 | return !!m_event.CreateOSAutoEventNoThrow(initialState); |
862 | } |
863 | |
864 | bool CreateOSManualEvent(bool initialState) |
865 | { |
866 | CONTRACTL { |
867 | NOTHROW; |
868 | GC_NOTRIGGER; |
869 | } CONTRACTL_END; |
870 | |
871 | return !!m_event.CreateOSManualEventNoThrow(initialState); |
872 | } |
873 | }; |
874 | |
875 | GCEvent::GCEvent() |
876 | : m_impl(nullptr) |
877 | { |
878 | } |
879 | |
880 | void GCEvent::CloseEvent() |
881 | { |
882 | WRAPPER_NO_CONTRACT; |
883 | |
884 | assert(m_impl != nullptr); |
885 | m_impl->CloseEvent(); |
886 | } |
887 | |
888 | void GCEvent::Set() |
889 | { |
890 | WRAPPER_NO_CONTRACT; |
891 | |
892 | assert(m_impl != nullptr); |
893 | m_impl->Set(); |
894 | } |
895 | |
896 | void GCEvent::Reset() |
897 | { |
898 | WRAPPER_NO_CONTRACT; |
899 | |
900 | assert(m_impl != nullptr); |
901 | m_impl->Reset(); |
902 | } |
903 | |
904 | uint32_t GCEvent::Wait(uint32_t timeout, bool alertable) |
905 | { |
906 | WRAPPER_NO_CONTRACT; |
907 | |
908 | assert(m_impl != nullptr); |
909 | return m_impl->Wait(timeout, alertable); |
910 | } |
911 | |
912 | bool GCEvent::CreateManualEventNoThrow(bool initialState) |
913 | { |
914 | CONTRACTL { |
915 | NOTHROW; |
916 | GC_NOTRIGGER; |
917 | } CONTRACTL_END; |
918 | |
919 | assert(m_impl == nullptr); |
920 | NewHolder<GCEvent::Impl> event = new (nothrow) GCEvent::Impl(); |
921 | if (!event) |
922 | { |
923 | return false; |
924 | } |
925 | |
926 | event->CreateManualEvent(initialState); |
927 | m_impl = event.Extract(); |
928 | return true; |
929 | } |
930 | |
931 | bool GCEvent::CreateAutoEventNoThrow(bool initialState) |
932 | { |
933 | CONTRACTL { |
934 | NOTHROW; |
935 | GC_NOTRIGGER; |
936 | } CONTRACTL_END; |
937 | |
938 | assert(m_impl == nullptr); |
939 | NewHolder<GCEvent::Impl> event = new (nothrow) GCEvent::Impl(); |
940 | if (!event) |
941 | { |
942 | return false; |
943 | } |
944 | |
945 | event->CreateAutoEvent(initialState); |
946 | m_impl = event.Extract(); |
947 | return IsValid(); |
948 | } |
949 | |
950 | bool GCEvent::CreateOSAutoEventNoThrow(bool initialState) |
951 | { |
952 | CONTRACTL { |
953 | NOTHROW; |
954 | GC_NOTRIGGER; |
955 | } CONTRACTL_END; |
956 | |
957 | assert(m_impl == nullptr); |
958 | NewHolder<GCEvent::Impl> event = new (nothrow) GCEvent::Impl(); |
959 | if (!event) |
960 | { |
961 | return false; |
962 | } |
963 | |
964 | event->CreateOSAutoEvent(initialState); |
965 | m_impl = event.Extract(); |
966 | return IsValid(); |
967 | } |
968 | |
969 | bool GCEvent::CreateOSManualEventNoThrow(bool initialState) |
970 | { |
971 | CONTRACTL { |
972 | NOTHROW; |
973 | GC_NOTRIGGER; |
974 | } CONTRACTL_END; |
975 | |
976 | assert(m_impl == nullptr); |
977 | NewHolder<GCEvent::Impl> event = new (nothrow) GCEvent::Impl(); |
978 | if (!event) |
979 | { |
980 | return false; |
981 | } |
982 | |
983 | event->CreateOSManualEvent(initialState); |
984 | m_impl = event.Extract(); |
985 | return IsValid(); |
986 | } |
987 | |
988 | |