| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /* |
| 6 | * gcenv.os.cpp |
| 7 | * |
| 8 | * GCToOSInterface implementation |
| 9 | * |
| 10 | |
| 11 | * |
| 12 | */ |
| 13 | |
| 14 | #include "common.h" |
| 15 | #include "gcenv.h" |
| 16 | |
| 17 | #ifndef FEATURE_PAL |
| 18 | #include <Psapi.h> |
| 19 | #endif |
| 20 | |
| 21 | #ifdef Sleep |
| 22 | #undef Sleep |
| 23 | #endif // Sleep |
| 24 | |
| 25 | #include "../gc/env/gcenv.os.h" |
| 26 | |
| 27 | #define MAX_PTR ((uint8_t*)(~(ptrdiff_t)0)) |
| 28 | |
| 29 | #ifdef FEATURE_PAL |
| 30 | uint32_t g_pageSizeUnixInl = 0; |
| 31 | #endif |
| 32 | |
| 33 | |
| 34 | // Initialize the interface implementation |
| 35 | // Return: |
| 36 | // true if it has succeeded, false if it has failed |
| 37 | bool GCToOSInterface::Initialize() |
| 38 | { |
| 39 | LIMITED_METHOD_CONTRACT; |
| 40 | |
| 41 | #ifdef FEATURE_PAL |
| 42 | g_pageSizeUnixInl = GetOsPageSize(); |
| 43 | #endif |
| 44 | |
| 45 | return true; |
| 46 | } |
| 47 | |
| 48 | // Shutdown the interface implementation |
| 49 | void GCToOSInterface::Shutdown() |
| 50 | { |
| 51 | LIMITED_METHOD_CONTRACT; |
| 52 | } |
| 53 | |
| 54 | // Get numeric id of the current thread if possible on the |
| 55 | // current platform. It is indended for logging purposes only. |
| 56 | // Return: |
| 57 | // Numeric id of the current thread or 0 if the |
| 58 | uint64_t GCToOSInterface::GetCurrentThreadIdForLogging() |
| 59 | { |
| 60 | LIMITED_METHOD_CONTRACT; |
| 61 | return ::GetCurrentThreadId(); |
| 62 | } |
| 63 | |
| 64 | // Get id of the process |
| 65 | // Return: |
| 66 | // Id of the current process |
| 67 | uint32_t GCToOSInterface::GetCurrentProcessId() |
| 68 | { |
| 69 | LIMITED_METHOD_CONTRACT; |
| 70 | return ::GetCurrentProcessId(); |
| 71 | } |
| 72 | |
| 73 | // Set ideal affinity for the current thread |
| 74 | // Parameters: |
| 75 | // affinity - ideal processor affinity for the thread |
| 76 | // Return: |
| 77 | // true if it has succeeded, false if it has failed |
| 78 | bool GCToOSInterface::SetCurrentThreadIdealAffinity(GCThreadAffinity* affinity) |
| 79 | { |
| 80 | LIMITED_METHOD_CONTRACT; |
| 81 | |
| 82 | bool success = true; |
| 83 | |
| 84 | #if !defined(FEATURE_CORESYSTEM) |
| 85 | SetThreadIdealProcessor(GetCurrentThread(), (DWORD)affinity->Processor); |
| 86 | #else |
| 87 | PROCESSOR_NUMBER proc; |
| 88 | |
| 89 | if (affinity->Group != -1) |
| 90 | { |
| 91 | proc.Group = (WORD)affinity->Group; |
| 92 | proc.Number = (BYTE)affinity->Processor; |
| 93 | proc.Reserved = 0; |
| 94 | |
| 95 | success = !!SetThreadIdealProcessorEx(GetCurrentThread(), &proc, NULL); |
| 96 | } |
| 97 | #if !defined(FEATURE_PAL) |
| 98 | else |
| 99 | { |
| 100 | if (GetThreadIdealProcessorEx(GetCurrentThread(), &proc)) |
| 101 | { |
| 102 | proc.Number = (BYTE)affinity->Processor; |
| 103 | success = !!SetThreadIdealProcessorEx(GetCurrentThread(), &proc, &proc); |
| 104 | } |
| 105 | } |
| 106 | #endif // !defined(FEATURE_PAL) |
| 107 | #endif |
| 108 | |
| 109 | return success; |
| 110 | } |
| 111 | |
| 112 | // Get the number of the current processor |
| 113 | uint32_t GCToOSInterface::GetCurrentProcessorNumber() |
| 114 | { |
| 115 | LIMITED_METHOD_CONTRACT; |
| 116 | |
| 117 | _ASSERTE(CanGetCurrentProcessorNumber()); |
| 118 | return ::GetCurrentProcessorNumber(); |
| 119 | } |
| 120 | |
| 121 | // Check if the OS supports getting current processor number |
| 122 | bool GCToOSInterface::CanGetCurrentProcessorNumber() |
| 123 | { |
| 124 | LIMITED_METHOD_CONTRACT; |
| 125 | |
| 126 | #ifdef FEATURE_PAL |
| 127 | return PAL_HasGetCurrentProcessorNumber(); |
| 128 | #else |
| 129 | // on all Windows platforms we support this API exists |
| 130 | return true; |
| 131 | #endif |
| 132 | } |
| 133 | |
| 134 | // Flush write buffers of processors that are executing threads of the current process |
| 135 | void GCToOSInterface::FlushProcessWriteBuffers() |
| 136 | { |
| 137 | LIMITED_METHOD_CONTRACT; |
| 138 | ::FlushProcessWriteBuffers(); |
| 139 | } |
| 140 | |
| 141 | // Break into a debugger |
| 142 | void GCToOSInterface::DebugBreak() |
| 143 | { |
| 144 | LIMITED_METHOD_CONTRACT; |
| 145 | ::DebugBreak(); |
| 146 | } |
| 147 | |
| 148 | // Causes the calling thread to sleep for the specified number of milliseconds |
| 149 | // Parameters: |
| 150 | // sleepMSec - time to sleep before switching to another thread |
| 151 | void GCToOSInterface::Sleep(uint32_t sleepMSec) |
| 152 | { |
| 153 | LIMITED_METHOD_CONTRACT; |
| 154 | __SwitchToThread(sleepMSec, 0); |
| 155 | } |
| 156 | |
| 157 | // Causes the calling thread to yield execution to another thread that is ready to run on the current processor. |
| 158 | // Parameters: |
| 159 | // switchCount - number of times the YieldThread was called in a loop |
| 160 | void GCToOSInterface::YieldThread(uint32_t switchCount) |
| 161 | { |
| 162 | LIMITED_METHOD_CONTRACT; |
| 163 | __SwitchToThread(0, switchCount); |
| 164 | } |
| 165 | |
| 166 | // Reserve virtual memory range. |
| 167 | // Parameters: |
| 168 | // address - starting virtual address, it can be NULL to let the function choose the starting address |
| 169 | // size - size of the virtual memory range |
| 170 | // alignment - requested memory alignment |
| 171 | // flags - flags to control special settings like write watching |
| 172 | // Return: |
| 173 | // Starting virtual address of the reserved range |
| 174 | void* GCToOSInterface::VirtualReserve(size_t size, size_t alignment, uint32_t flags) |
| 175 | { |
| 176 | LIMITED_METHOD_CONTRACT; |
| 177 | |
| 178 | DWORD memFlags = (flags & VirtualReserveFlags::WriteWatch) ? (MEM_RESERVE | MEM_WRITE_WATCH) : MEM_RESERVE; |
| 179 | |
| 180 | // This is not strictly necessary for a correctness standpoint. Windows already guarantees |
| 181 | // allocation granularity alignment when using MEM_RESERVE, so aligning the size here has no effect. |
| 182 | // However, ClrVirtualAlloc does expect the size to be aligned to the allocation granularity. |
| 183 | size_t aligned_size = (size + g_SystemInfo.dwAllocationGranularity - 1) & ~static_cast<size_t>(g_SystemInfo.dwAllocationGranularity - 1); |
| 184 | if (alignment == 0) |
| 185 | { |
| 186 | return ::ClrVirtualAlloc(0, aligned_size, memFlags, PAGE_READWRITE); |
| 187 | } |
| 188 | else |
| 189 | { |
| 190 | return ::ClrVirtualAllocAligned(0, aligned_size, memFlags, PAGE_READWRITE, alignment); |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | // Release virtual memory range previously reserved using VirtualReserve |
| 195 | // Parameters: |
| 196 | // address - starting virtual address |
| 197 | // size - size of the virtual memory range |
| 198 | // Return: |
| 199 | // true if it has succeeded, false if it has failed |
| 200 | bool GCToOSInterface::VirtualRelease(void* address, size_t size) |
| 201 | { |
| 202 | LIMITED_METHOD_CONTRACT; |
| 203 | |
| 204 | UNREFERENCED_PARAMETER(size); |
| 205 | return !!::ClrVirtualFree(address, 0, MEM_RELEASE); |
| 206 | } |
| 207 | |
| 208 | // Commit virtual memory range. It must be part of a range reserved using VirtualReserve. |
| 209 | // Parameters: |
| 210 | // address - starting virtual address |
| 211 | // size - size of the virtual memory range |
| 212 | // Return: |
| 213 | // true if it has succeeded, false if it has failed |
| 214 | bool GCToOSInterface::VirtualCommit(void* address, size_t size, uint32_t node) |
| 215 | { |
| 216 | LIMITED_METHOD_CONTRACT; |
| 217 | |
| 218 | if (node == NUMA_NODE_UNDEFINED) |
| 219 | { |
| 220 | return ::ClrVirtualAlloc(address, size, MEM_COMMIT, PAGE_READWRITE) != NULL; |
| 221 | } |
| 222 | else |
| 223 | { |
| 224 | return NumaNodeInfo::VirtualAllocExNuma(::GetCurrentProcess(), address, size, MEM_COMMIT, PAGE_READWRITE, node) != NULL; |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | // Decomit virtual memory range. |
| 229 | // Parameters: |
| 230 | // address - starting virtual address |
| 231 | // size - size of the virtual memory range |
| 232 | // Return: |
| 233 | // true if it has succeeded, false if it has failed |
| 234 | bool GCToOSInterface::VirtualDecommit(void* address, size_t size) |
| 235 | { |
| 236 | LIMITED_METHOD_CONTRACT; |
| 237 | |
| 238 | return !!::ClrVirtualFree(address, size, MEM_DECOMMIT); |
| 239 | } |
| 240 | |
| 241 | // Reset virtual memory range. Indicates that data in the memory range specified by address and size is no |
| 242 | // longer of interest, but it should not be decommitted. |
| 243 | // Parameters: |
| 244 | // address - starting virtual address |
| 245 | // size - size of the virtual memory range |
| 246 | // unlock - true if the memory range should also be unlocked |
| 247 | // Return: |
| 248 | // true if it has succeeded, false if it has failed |
| 249 | bool GCToOSInterface::VirtualReset(void * address, size_t size, bool unlock) |
| 250 | { |
| 251 | LIMITED_METHOD_CONTRACT; |
| 252 | |
| 253 | bool success = ::ClrVirtualAlloc(address, size, MEM_RESET, PAGE_READWRITE) != NULL; |
| 254 | #ifndef FEATURE_PAL |
| 255 | if (success && unlock) |
| 256 | { |
| 257 | // Remove the page range from the working set |
| 258 | ::VirtualUnlock(address, size); |
| 259 | } |
| 260 | #endif // FEATURE_PAL |
| 261 | |
| 262 | return success; |
| 263 | } |
| 264 | |
| 265 | // Check if the OS supports write watching |
| 266 | bool GCToOSInterface::SupportsWriteWatch() |
| 267 | { |
| 268 | LIMITED_METHOD_CONTRACT; |
| 269 | |
| 270 | bool writeWatchSupported = false; |
| 271 | |
| 272 | // check if the OS supports write-watch. |
| 273 | // Drawbridge does not support write-watch so we still need to do the runtime detection for them. |
| 274 | // Otherwise, all currently supported OSes do support write-watch. |
| 275 | void* mem = VirtualReserve (g_SystemInfo.dwAllocationGranularity, 0, VirtualReserveFlags::WriteWatch); |
| 276 | if (mem != NULL) |
| 277 | { |
| 278 | VirtualRelease (mem, g_SystemInfo.dwAllocationGranularity); |
| 279 | writeWatchSupported = true; |
| 280 | } |
| 281 | |
| 282 | return writeWatchSupported; |
| 283 | } |
| 284 | |
| 285 | // Reset the write tracking state for the specified virtual memory range. |
| 286 | // Parameters: |
| 287 | // address - starting virtual address |
| 288 | // size - size of the virtual memory range |
| 289 | void GCToOSInterface::ResetWriteWatch(void* address, size_t size) |
| 290 | { |
| 291 | LIMITED_METHOD_CONTRACT; |
| 292 | |
| 293 | ::ResetWriteWatch(address, size); |
| 294 | } |
| 295 | |
| 296 | // Retrieve addresses of the pages that are written to in a region of virtual memory |
| 297 | // Parameters: |
| 298 | // resetState - true indicates to reset the write tracking state |
| 299 | // address - starting virtual address |
| 300 | // size - size of the virtual memory range |
| 301 | // pageAddresses - buffer that receives an array of page addresses in the memory region |
| 302 | // pageAddressesCount - on input, size of the lpAddresses array, in array elements |
| 303 | // on output, the number of page addresses that are returned in the array. |
| 304 | // Return: |
| 305 | // true if it has succeeded, false if it has failed |
| 306 | bool GCToOSInterface::GetWriteWatch(bool resetState, void* address, size_t size, void** pageAddresses, uintptr_t* pageAddressesCount) |
| 307 | { |
| 308 | LIMITED_METHOD_CONTRACT; |
| 309 | |
| 310 | uint32_t flags = resetState ? 1 : 0; |
| 311 | ULONG granularity; |
| 312 | |
| 313 | bool success = ::GetWriteWatch(flags, address, size, pageAddresses, (ULONG_PTR*)pageAddressesCount, &granularity) == 0; |
| 314 | _ASSERTE (granularity == GetOsPageSize()); |
| 315 | |
| 316 | return success; |
| 317 | } |
| 318 | |
| 319 | // Get size of the largest cache on the processor die |
| 320 | // Parameters: |
| 321 | // trueSize - true to return true cache size, false to return scaled up size based on |
| 322 | // the processor architecture |
| 323 | // Return: |
| 324 | // Size of the cache |
| 325 | size_t GCToOSInterface::GetCacheSizePerLogicalCpu(bool trueSize) |
| 326 | { |
| 327 | LIMITED_METHOD_CONTRACT; |
| 328 | |
| 329 | return ::GetCacheSizePerLogicalCpu(trueSize); |
| 330 | } |
| 331 | |
| 332 | // Sets the calling thread's affinity to only run on the processor specified |
| 333 | // in the GCThreadAffinity structure. |
| 334 | // Parameters: |
| 335 | // affinity - The requested affinity for the calling thread. At most one processor |
| 336 | // can be provided. |
| 337 | // Return: |
| 338 | // true if setting the affinity was successful, false otherwise. |
| 339 | bool GCToOSInterface::SetThreadAffinity(GCThreadAffinity* affinity) |
| 340 | { |
| 341 | LIMITED_METHOD_CONTRACT; |
| 342 | |
| 343 | assert(affinity != nullptr); |
| 344 | if (affinity->Group != GCThreadAffinity::None) |
| 345 | { |
| 346 | assert(affinity->Processor != GCThreadAffinity::None); |
| 347 | |
| 348 | GROUP_AFFINITY ga; |
| 349 | ga.Group = (WORD)affinity->Group; |
| 350 | ga.Reserved[0] = 0; // reserve must be filled with zero |
| 351 | ga.Reserved[1] = 0; // otherwise call may fail |
| 352 | ga.Reserved[2] = 0; |
| 353 | ga.Mask = (size_t)1 << affinity->Processor; |
| 354 | return !!SetThreadGroupAffinity(GetCurrentThread(), &ga, nullptr); |
| 355 | } |
| 356 | else if (affinity->Processor != GCThreadAffinity::None) |
| 357 | { |
| 358 | return !!SetThreadAffinityMask(GetCurrentThread(), (DWORD_PTR)1 << affinity->Processor); |
| 359 | } |
| 360 | |
| 361 | // Given affinity must specify at least one processor to use. |
| 362 | return false; |
| 363 | } |
| 364 | |
| 365 | // Boosts the calling thread's thread priority to a level higher than the default |
| 366 | // for new threads. |
| 367 | // Parameters: |
| 368 | // None. |
| 369 | // Return: |
| 370 | // true if the priority boost was successful, false otherwise. |
| 371 | bool GCToOSInterface::BoostThreadPriority() |
| 372 | { |
| 373 | return !!SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_HIGHEST); |
| 374 | } |
| 375 | |
| 376 | // Get affinity mask of the current process |
| 377 | // Parameters: |
| 378 | // processMask - affinity mask for the specified process |
| 379 | // systemMask - affinity mask for the system |
| 380 | // Return: |
| 381 | // true if it has succeeded, false if it has failed |
| 382 | // Remarks: |
| 383 | // A process affinity mask is a bit vector in which each bit represents the processors that |
| 384 | // a process is allowed to run on. A system affinity mask is a bit vector in which each bit |
| 385 | // represents the processors that are configured into a system. |
| 386 | // A process affinity mask is a subset of the system affinity mask. A process is only allowed |
| 387 | // to run on the processors configured into a system. Therefore, the process affinity mask cannot |
| 388 | // specify a 1 bit for a processor when the system affinity mask specifies a 0 bit for that processor. |
| 389 | bool GCToOSInterface::GetCurrentProcessAffinityMask(uintptr_t* processMask, uintptr_t* systemMask) |
| 390 | { |
| 391 | LIMITED_METHOD_CONTRACT; |
| 392 | |
| 393 | return !!::GetProcessAffinityMask(GetCurrentProcess(), (PDWORD_PTR)processMask, (PDWORD_PTR)systemMask); |
| 394 | } |
| 395 | |
| 396 | // Get number of processors assigned to the current process |
| 397 | // Return: |
| 398 | // The number of processors |
| 399 | uint32_t GCToOSInterface::GetCurrentProcessCpuCount() |
| 400 | { |
| 401 | LIMITED_METHOD_CONTRACT; |
| 402 | |
| 403 | return ::GetCurrentProcessCpuCount(); |
| 404 | } |
| 405 | |
| 406 | // Return the size of the user-mode portion of the virtual address space of this process. |
| 407 | // Return: |
| 408 | // non zero if it has succeeded, 0 if it has failed |
| 409 | size_t GCToOSInterface::GetVirtualMemoryLimit() |
| 410 | { |
| 411 | LIMITED_METHOD_CONTRACT; |
| 412 | |
| 413 | MEMORYSTATUSEX memStatus; |
| 414 | ::GetProcessMemoryLoad(&memStatus); |
| 415 | |
| 416 | return (size_t)memStatus.ullTotalVirtual; |
| 417 | } |
| 418 | |
| 419 | static size_t g_RestrictedPhysicalMemoryLimit = (size_t)MAX_PTR; |
| 420 | |
| 421 | #ifndef FEATURE_PAL |
| 422 | |
| 423 | // For 32-bit processes the virtual address range could be smaller than the amount of physical |
| 424 | // memory on the machine/in the container, we need to restrict by the VM. |
| 425 | static bool g_UseRestrictedVirtualMemory = false; |
| 426 | |
| 427 | typedef BOOL (WINAPI *PGET_PROCESS_MEMORY_INFO)(HANDLE handle, PROCESS_MEMORY_COUNTERS* memCounters, uint32_t cb); |
| 428 | static PGET_PROCESS_MEMORY_INFO GCGetProcessMemoryInfo = 0; |
| 429 | |
| 430 | typedef BOOL (WINAPI *PIS_PROCESS_IN_JOB)(HANDLE processHandle, HANDLE jobHandle, BOOL* result); |
| 431 | typedef BOOL (WINAPI *PQUERY_INFORMATION_JOB_OBJECT)(HANDLE jobHandle, JOBOBJECTINFOCLASS jobObjectInfoClass, void* lpJobObjectInfo, DWORD cbJobObjectInfoLength, LPDWORD lpReturnLength); |
| 432 | |
| 433 | static size_t GetRestrictedPhysicalMemoryLimit() |
| 434 | { |
| 435 | LIMITED_METHOD_CONTRACT; |
| 436 | |
| 437 | // The limit was cached already |
| 438 | if (g_RestrictedPhysicalMemoryLimit != (size_t)MAX_PTR) |
| 439 | return g_RestrictedPhysicalMemoryLimit; |
| 440 | |
| 441 | size_t job_physical_memory_limit = (size_t)MAX_PTR; |
| 442 | uint64_t total_virtual = 0; |
| 443 | uint64_t total_physical = 0; |
| 444 | BOOL in_job_p = FALSE; |
| 445 | HINSTANCE hinstKernel32 = 0; |
| 446 | |
| 447 | PIS_PROCESS_IN_JOB GCIsProcessInJob = 0; |
| 448 | PQUERY_INFORMATION_JOB_OBJECT GCQueryInformationJobObject = 0; |
| 449 | |
| 450 | GCIsProcessInJob = &(::IsProcessInJob); |
| 451 | |
| 452 | if (!GCIsProcessInJob(GetCurrentProcess(), NULL, &in_job_p)) |
| 453 | goto exit; |
| 454 | |
| 455 | if (in_job_p) |
| 456 | { |
| 457 | hinstKernel32 = WszLoadLibrary(L"kernel32.dll" ); |
| 458 | if (!hinstKernel32) |
| 459 | goto exit; |
| 460 | |
| 461 | GCGetProcessMemoryInfo = (PGET_PROCESS_MEMORY_INFO)GetProcAddress(hinstKernel32, "K32GetProcessMemoryInfo" ); |
| 462 | |
| 463 | if (!GCGetProcessMemoryInfo) |
| 464 | goto exit; |
| 465 | |
| 466 | GCQueryInformationJobObject = &(::QueryInformationJobObject); |
| 467 | |
| 468 | if (!GCQueryInformationJobObject) |
| 469 | goto exit; |
| 470 | |
| 471 | JOBOBJECT_EXTENDED_LIMIT_INFORMATION limit_info; |
| 472 | if (GCQueryInformationJobObject (NULL, JobObjectExtendedLimitInformation, &limit_info, |
| 473 | sizeof(limit_info), NULL)) |
| 474 | { |
| 475 | size_t job_memory_limit = (size_t)MAX_PTR; |
| 476 | size_t job_process_memory_limit = (size_t)MAX_PTR; |
| 477 | size_t job_workingset_limit = (size_t)MAX_PTR; |
| 478 | |
| 479 | // Notes on the NT job object: |
| 480 | // |
| 481 | // You can specific a bigger process commit or working set limit than |
| 482 | // job limit which is pointless so we use the smallest of all 3 as |
| 483 | // to calculate our "physical memory load" or "available physical memory" |
| 484 | // when running inside a job object, ie, we treat this as the amount of physical memory |
| 485 | // our process is allowed to use. |
| 486 | // |
| 487 | // The commit limit is already reflected by default when you run in a |
| 488 | // job but the physical memory load is not. |
| 489 | // |
| 490 | if ((limit_info.BasicLimitInformation.LimitFlags & JOB_OBJECT_LIMIT_JOB_MEMORY) != 0) |
| 491 | job_memory_limit = limit_info.JobMemoryLimit; |
| 492 | if ((limit_info.BasicLimitInformation.LimitFlags & JOB_OBJECT_LIMIT_PROCESS_MEMORY) != 0) |
| 493 | job_process_memory_limit = limit_info.ProcessMemoryLimit; |
| 494 | if ((limit_info.BasicLimitInformation.LimitFlags & JOB_OBJECT_LIMIT_WORKINGSET) != 0) |
| 495 | job_workingset_limit = limit_info.BasicLimitInformation.MaximumWorkingSetSize; |
| 496 | |
| 497 | job_physical_memory_limit = min (job_memory_limit, job_process_memory_limit); |
| 498 | job_physical_memory_limit = min (job_physical_memory_limit, job_workingset_limit); |
| 499 | |
| 500 | MEMORYSTATUSEX ms; |
| 501 | ::GetProcessMemoryLoad(&ms); |
| 502 | total_virtual = ms.ullTotalVirtual; |
| 503 | total_physical = ms.ullAvailPhys; |
| 504 | |
| 505 | // A sanity check in case someone set a larger limit than there is actual physical memory. |
| 506 | job_physical_memory_limit = (size_t) min (job_physical_memory_limit, ms.ullTotalPhys); |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | exit: |
| 511 | if (job_physical_memory_limit == (size_t)MAX_PTR) |
| 512 | { |
| 513 | job_physical_memory_limit = 0; |
| 514 | |
| 515 | if (hinstKernel32 != 0) |
| 516 | { |
| 517 | FreeLibrary(hinstKernel32); |
| 518 | hinstKernel32 = 0; |
| 519 | GCGetProcessMemoryInfo = 0; |
| 520 | } |
| 521 | } |
| 522 | |
| 523 | // Check to see if we are limited by VM. |
| 524 | if (total_virtual == 0) |
| 525 | { |
| 526 | MEMORYSTATUSEX ms; |
| 527 | ::GetProcessMemoryLoad(&ms); |
| 528 | |
| 529 | total_virtual = ms.ullTotalVirtual; |
| 530 | total_physical = ms.ullTotalPhys; |
| 531 | } |
| 532 | |
| 533 | if (job_physical_memory_limit != 0) |
| 534 | { |
| 535 | total_physical = job_physical_memory_limit; |
| 536 | } |
| 537 | |
| 538 | if (total_virtual < total_physical) |
| 539 | { |
| 540 | if (hinstKernel32 != 0) |
| 541 | { |
| 542 | // We can also free the lib here - if we are limited by VM we will not be calling |
| 543 | // GetProcessMemoryInfo. |
| 544 | FreeLibrary(hinstKernel32); |
| 545 | GCGetProcessMemoryInfo = 0; |
| 546 | } |
| 547 | g_UseRestrictedVirtualMemory = true; |
| 548 | job_physical_memory_limit = (size_t)total_virtual; |
| 549 | } |
| 550 | |
| 551 | VolatileStore(&g_RestrictedPhysicalMemoryLimit, job_physical_memory_limit); |
| 552 | return g_RestrictedPhysicalMemoryLimit; |
| 553 | } |
| 554 | |
| 555 | #else |
| 556 | |
| 557 | static size_t GetRestrictedPhysicalMemoryLimit() |
| 558 | { |
| 559 | LIMITED_METHOD_CONTRACT; |
| 560 | |
| 561 | // The limit was cached already |
| 562 | if (g_RestrictedPhysicalMemoryLimit != (size_t)MAX_PTR) |
| 563 | return g_RestrictedPhysicalMemoryLimit; |
| 564 | |
| 565 | size_t memory_limit = PAL_GetRestrictedPhysicalMemoryLimit(); |
| 566 | |
| 567 | VolatileStore(&g_RestrictedPhysicalMemoryLimit, memory_limit); |
| 568 | return g_RestrictedPhysicalMemoryLimit; |
| 569 | } |
| 570 | #endif // FEATURE_PAL |
| 571 | |
| 572 | |
| 573 | // Get the physical memory that this process can use. |
| 574 | // Return: |
| 575 | // non zero if it has succeeded, 0 if it has failed |
| 576 | uint64_t GCToOSInterface::GetPhysicalMemoryLimit() |
| 577 | { |
| 578 | LIMITED_METHOD_CONTRACT; |
| 579 | |
| 580 | size_t restricted_limit = GetRestrictedPhysicalMemoryLimit(); |
| 581 | if (restricted_limit != 0) |
| 582 | return restricted_limit; |
| 583 | |
| 584 | MEMORYSTATUSEX memStatus; |
| 585 | ::GetProcessMemoryLoad(&memStatus); |
| 586 | |
| 587 | return memStatus.ullTotalPhys; |
| 588 | } |
| 589 | |
| 590 | // Get memory status |
| 591 | // Parameters: |
| 592 | // memory_load - A number between 0 and 100 that specifies the approximate percentage of physical memory |
| 593 | // that is in use (0 indicates no memory use and 100 indicates full memory use). |
| 594 | // available_physical - The amount of physical memory currently available, in bytes. |
| 595 | // available_page_file - The maximum amount of memory the current process can commit, in bytes. |
| 596 | // Remarks: |
| 597 | // Any parameter can be null. |
| 598 | void GCToOSInterface::GetMemoryStatus(uint32_t* memory_load, uint64_t* available_physical, uint64_t* available_page_file) |
| 599 | { |
| 600 | LIMITED_METHOD_CONTRACT; |
| 601 | |
| 602 | uint64_t restricted_limit = GetRestrictedPhysicalMemoryLimit(); |
| 603 | if (restricted_limit != 0) |
| 604 | { |
| 605 | size_t workingSetSize; |
| 606 | BOOL status = FALSE; |
| 607 | #ifndef FEATURE_PAL |
| 608 | if (!g_UseRestrictedVirtualMemory) |
| 609 | { |
| 610 | PROCESS_MEMORY_COUNTERS pmc; |
| 611 | status = GCGetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc)); |
| 612 | workingSetSize = pmc.WorkingSetSize; |
| 613 | } |
| 614 | #else |
| 615 | status = PAL_GetPhysicalMemoryUsed(&workingSetSize); |
| 616 | #endif |
| 617 | if(status) |
| 618 | { |
| 619 | if (memory_load) |
| 620 | *memory_load = (uint32_t)((float)workingSetSize * 100.0 / (float)restricted_limit); |
| 621 | if (available_physical) |
| 622 | { |
| 623 | if(workingSetSize > restricted_limit) |
| 624 | *available_physical = 0; |
| 625 | else |
| 626 | *available_physical = restricted_limit - workingSetSize; |
| 627 | } |
| 628 | // Available page file doesn't mean much when physical memory is restricted since |
| 629 | // we don't know how much of it is available to this process so we are not going to |
| 630 | // bother to make another OS call for it. |
| 631 | if (available_page_file) |
| 632 | *available_page_file = 0; |
| 633 | |
| 634 | return; |
| 635 | } |
| 636 | } |
| 637 | |
| 638 | MEMORYSTATUSEX ms; |
| 639 | ::GetProcessMemoryLoad(&ms); |
| 640 | |
| 641 | #ifndef FEATURE_PAL |
| 642 | if (g_UseRestrictedVirtualMemory) |
| 643 | { |
| 644 | _ASSERTE (ms.ullTotalVirtual == restricted_limit); |
| 645 | if (memory_load != NULL) |
| 646 | *memory_load = (uint32_t)((float)(ms.ullTotalVirtual - ms.ullAvailVirtual) * 100.0 / (float)ms.ullTotalVirtual); |
| 647 | if (available_physical != NULL) |
| 648 | *available_physical = ms.ullTotalVirtual; |
| 649 | |
| 650 | // Available page file isn't helpful when we are restricted by virtual memory |
| 651 | // since the amount of memory we can reserve is less than the amount of |
| 652 | // memory we can commit. |
| 653 | if (available_page_file != NULL) |
| 654 | *available_page_file = 0; |
| 655 | } |
| 656 | else |
| 657 | #endif //!FEATURE_PAL |
| 658 | { |
| 659 | if (memory_load != NULL) |
| 660 | *memory_load = ms.dwMemoryLoad; |
| 661 | if (available_physical != NULL) |
| 662 | *available_physical = ms.ullAvailPhys; |
| 663 | if (available_page_file != NULL) |
| 664 | *available_page_file = ms.ullAvailPageFile; |
| 665 | } |
| 666 | } |
| 667 | |
| 668 | // Get a high precision performance counter |
| 669 | // Return: |
| 670 | // The counter value |
| 671 | int64_t GCToOSInterface::QueryPerformanceCounter() |
| 672 | { |
| 673 | LIMITED_METHOD_CONTRACT; |
| 674 | |
| 675 | LARGE_INTEGER ts; |
| 676 | if (!::QueryPerformanceCounter(&ts)) |
| 677 | { |
| 678 | DebugBreak(); |
| 679 | _ASSERTE(!"Fatal Error - cannot query performance counter." ); |
| 680 | EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE); // TODO: fatal error |
| 681 | } |
| 682 | |
| 683 | return ts.QuadPart; |
| 684 | } |
| 685 | |
| 686 | // Get a frequency of the high precision performance counter |
| 687 | // Return: |
| 688 | // The counter frequency |
| 689 | int64_t GCToOSInterface::QueryPerformanceFrequency() |
| 690 | { |
| 691 | LIMITED_METHOD_CONTRACT; |
| 692 | |
| 693 | LARGE_INTEGER frequency; |
| 694 | if (!::QueryPerformanceFrequency(&frequency)) |
| 695 | { |
| 696 | DebugBreak(); |
| 697 | _ASSERTE(!"Fatal Error - cannot query performance counter." ); |
| 698 | EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE); // TODO: fatal error |
| 699 | } |
| 700 | |
| 701 | return frequency.QuadPart; |
| 702 | } |
| 703 | |
| 704 | // Get a time stamp with a low precision |
| 705 | // Return: |
| 706 | // Time stamp in milliseconds |
| 707 | uint32_t GCToOSInterface::GetLowPrecisionTimeStamp() |
| 708 | { |
| 709 | LIMITED_METHOD_CONTRACT; |
| 710 | |
| 711 | return ::GetTickCount(); |
| 712 | } |
| 713 | |
| 714 | uint32_t GCToOSInterface::GetTotalProcessorCount() |
| 715 | { |
| 716 | LIMITED_METHOD_CONTRACT; |
| 717 | |
| 718 | if (CPUGroupInfo::CanEnableGCCPUGroups()) |
| 719 | { |
| 720 | return CPUGroupInfo::GetNumActiveProcessors(); |
| 721 | } |
| 722 | else |
| 723 | { |
| 724 | return g_SystemInfo.dwNumberOfProcessors; |
| 725 | } |
| 726 | } |
| 727 | |
| 728 | bool GCToOSInterface::CanEnableGCNumaAware() |
| 729 | { |
| 730 | LIMITED_METHOD_CONTRACT; |
| 731 | |
| 732 | return NumaNodeInfo::CanEnableGCNumaAware() != FALSE; |
| 733 | } |
| 734 | |
| 735 | bool GCToOSInterface::GetNumaProcessorNode(PPROCESSOR_NUMBER proc_no, uint16_t *node_no) |
| 736 | { |
| 737 | LIMITED_METHOD_CONTRACT; |
| 738 | |
| 739 | return NumaNodeInfo::GetNumaProcessorNodeEx(proc_no, node_no) != FALSE; |
| 740 | } |
| 741 | |
| 742 | bool GCToOSInterface::CanEnableGCCPUGroups() |
| 743 | { |
| 744 | LIMITED_METHOD_CONTRACT; |
| 745 | |
| 746 | return CPUGroupInfo::CanEnableGCCPUGroups() != FALSE; |
| 747 | } |
| 748 | |
| 749 | void GCToOSInterface::GetGroupForProcessor(uint16_t processor_number, uint16_t* group_number, uint16_t* group_processor_number) |
| 750 | { |
| 751 | LIMITED_METHOD_CONTRACT; |
| 752 | |
| 753 | return CPUGroupInfo::GetGroupForProcessor(processor_number, group_number, group_processor_number); |
| 754 | } |
| 755 | |
| 756 | // Initialize the critical section |
| 757 | void CLRCriticalSection::Initialize() |
| 758 | { |
| 759 | WRAPPER_NO_CONTRACT; |
| 760 | UnsafeInitializeCriticalSection(&m_cs); |
| 761 | } |
| 762 | |
| 763 | // Destroy the critical section |
| 764 | void CLRCriticalSection::Destroy() |
| 765 | { |
| 766 | WRAPPER_NO_CONTRACT; |
| 767 | UnsafeDeleteCriticalSection(&m_cs); |
| 768 | } |
| 769 | |
| 770 | // Enter the critical section. Blocks until the section can be entered. |
| 771 | void CLRCriticalSection::Enter() |
| 772 | { |
| 773 | WRAPPER_NO_CONTRACT; |
| 774 | UnsafeEnterCriticalSection(&m_cs); |
| 775 | } |
| 776 | |
| 777 | // Leave the critical section |
| 778 | void CLRCriticalSection::Leave() |
| 779 | { |
| 780 | WRAPPER_NO_CONTRACT; |
| 781 | UnsafeLeaveCriticalSection(&m_cs); |
| 782 | } |
| 783 | |
| 784 | // An implementatino of GCEvent that delegates to |
| 785 | // a CLREvent, which in turn delegates to the PAL. This event |
| 786 | // is also host-aware. |
| 787 | class GCEvent::Impl |
| 788 | { |
| 789 | private: |
| 790 | CLREvent m_event; |
| 791 | |
| 792 | public: |
| 793 | Impl() = default; |
| 794 | |
| 795 | bool IsValid() |
| 796 | { |
| 797 | WRAPPER_NO_CONTRACT; |
| 798 | |
| 799 | return !!m_event.IsValid(); |
| 800 | } |
| 801 | |
| 802 | void CloseEvent() |
| 803 | { |
| 804 | WRAPPER_NO_CONTRACT; |
| 805 | |
| 806 | assert(m_event.IsValid()); |
| 807 | m_event.CloseEvent(); |
| 808 | } |
| 809 | |
| 810 | void Set() |
| 811 | { |
| 812 | WRAPPER_NO_CONTRACT; |
| 813 | |
| 814 | assert(m_event.IsValid()); |
| 815 | m_event.Set(); |
| 816 | } |
| 817 | |
| 818 | void Reset() |
| 819 | { |
| 820 | WRAPPER_NO_CONTRACT; |
| 821 | |
| 822 | assert(m_event.IsValid()); |
| 823 | m_event.Reset(); |
| 824 | } |
| 825 | |
| 826 | uint32_t Wait(uint32_t timeout, bool alertable) |
| 827 | { |
| 828 | WRAPPER_NO_CONTRACT; |
| 829 | |
| 830 | assert(m_event.IsValid()); |
| 831 | return m_event.Wait(timeout, alertable); |
| 832 | } |
| 833 | |
| 834 | bool CreateAutoEvent(bool initialState) |
| 835 | { |
| 836 | CONTRACTL { |
| 837 | NOTHROW; |
| 838 | GC_NOTRIGGER; |
| 839 | } CONTRACTL_END; |
| 840 | |
| 841 | return !!m_event.CreateAutoEventNoThrow(initialState); |
| 842 | } |
| 843 | |
| 844 | bool CreateManualEvent(bool initialState) |
| 845 | { |
| 846 | CONTRACTL { |
| 847 | NOTHROW; |
| 848 | GC_NOTRIGGER; |
| 849 | } CONTRACTL_END; |
| 850 | |
| 851 | return !!m_event.CreateManualEventNoThrow(initialState); |
| 852 | } |
| 853 | |
| 854 | bool CreateOSAutoEvent(bool initialState) |
| 855 | { |
| 856 | CONTRACTL { |
| 857 | NOTHROW; |
| 858 | GC_NOTRIGGER; |
| 859 | } CONTRACTL_END; |
| 860 | |
| 861 | return !!m_event.CreateOSAutoEventNoThrow(initialState); |
| 862 | } |
| 863 | |
| 864 | bool CreateOSManualEvent(bool initialState) |
| 865 | { |
| 866 | CONTRACTL { |
| 867 | NOTHROW; |
| 868 | GC_NOTRIGGER; |
| 869 | } CONTRACTL_END; |
| 870 | |
| 871 | return !!m_event.CreateOSManualEventNoThrow(initialState); |
| 872 | } |
| 873 | }; |
| 874 | |
| 875 | GCEvent::GCEvent() |
| 876 | : m_impl(nullptr) |
| 877 | { |
| 878 | } |
| 879 | |
| 880 | void GCEvent::CloseEvent() |
| 881 | { |
| 882 | WRAPPER_NO_CONTRACT; |
| 883 | |
| 884 | assert(m_impl != nullptr); |
| 885 | m_impl->CloseEvent(); |
| 886 | } |
| 887 | |
| 888 | void GCEvent::Set() |
| 889 | { |
| 890 | WRAPPER_NO_CONTRACT; |
| 891 | |
| 892 | assert(m_impl != nullptr); |
| 893 | m_impl->Set(); |
| 894 | } |
| 895 | |
| 896 | void GCEvent::Reset() |
| 897 | { |
| 898 | WRAPPER_NO_CONTRACT; |
| 899 | |
| 900 | assert(m_impl != nullptr); |
| 901 | m_impl->Reset(); |
| 902 | } |
| 903 | |
| 904 | uint32_t GCEvent::Wait(uint32_t timeout, bool alertable) |
| 905 | { |
| 906 | WRAPPER_NO_CONTRACT; |
| 907 | |
| 908 | assert(m_impl != nullptr); |
| 909 | return m_impl->Wait(timeout, alertable); |
| 910 | } |
| 911 | |
| 912 | bool GCEvent::CreateManualEventNoThrow(bool initialState) |
| 913 | { |
| 914 | CONTRACTL { |
| 915 | NOTHROW; |
| 916 | GC_NOTRIGGER; |
| 917 | } CONTRACTL_END; |
| 918 | |
| 919 | assert(m_impl == nullptr); |
| 920 | NewHolder<GCEvent::Impl> event = new (nothrow) GCEvent::Impl(); |
| 921 | if (!event) |
| 922 | { |
| 923 | return false; |
| 924 | } |
| 925 | |
| 926 | event->CreateManualEvent(initialState); |
| 927 | m_impl = event.Extract(); |
| 928 | return true; |
| 929 | } |
| 930 | |
| 931 | bool GCEvent::CreateAutoEventNoThrow(bool initialState) |
| 932 | { |
| 933 | CONTRACTL { |
| 934 | NOTHROW; |
| 935 | GC_NOTRIGGER; |
| 936 | } CONTRACTL_END; |
| 937 | |
| 938 | assert(m_impl == nullptr); |
| 939 | NewHolder<GCEvent::Impl> event = new (nothrow) GCEvent::Impl(); |
| 940 | if (!event) |
| 941 | { |
| 942 | return false; |
| 943 | } |
| 944 | |
| 945 | event->CreateAutoEvent(initialState); |
| 946 | m_impl = event.Extract(); |
| 947 | return IsValid(); |
| 948 | } |
| 949 | |
| 950 | bool GCEvent::CreateOSAutoEventNoThrow(bool initialState) |
| 951 | { |
| 952 | CONTRACTL { |
| 953 | NOTHROW; |
| 954 | GC_NOTRIGGER; |
| 955 | } CONTRACTL_END; |
| 956 | |
| 957 | assert(m_impl == nullptr); |
| 958 | NewHolder<GCEvent::Impl> event = new (nothrow) GCEvent::Impl(); |
| 959 | if (!event) |
| 960 | { |
| 961 | return false; |
| 962 | } |
| 963 | |
| 964 | event->CreateOSAutoEvent(initialState); |
| 965 | m_impl = event.Extract(); |
| 966 | return IsValid(); |
| 967 | } |
| 968 | |
| 969 | bool GCEvent::CreateOSManualEventNoThrow(bool initialState) |
| 970 | { |
| 971 | CONTRACTL { |
| 972 | NOTHROW; |
| 973 | GC_NOTRIGGER; |
| 974 | } CONTRACTL_END; |
| 975 | |
| 976 | assert(m_impl == nullptr); |
| 977 | NewHolder<GCEvent::Impl> event = new (nothrow) GCEvent::Impl(); |
| 978 | if (!event) |
| 979 | { |
| 980 | return false; |
| 981 | } |
| 982 | |
| 983 | event->CreateOSManualEvent(initialState); |
| 984 | m_impl = event.Extract(); |
| 985 | return IsValid(); |
| 986 | } |
| 987 | |
| 988 | |