| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | |
| 6 | #include "common.h" |
| 7 | |
| 8 | #include "gcinfodecoder.h" |
| 9 | |
| 10 | #ifdef USE_GC_INFO_DECODER |
| 11 | |
| 12 | #ifndef CHECK_APP_DOMAIN |
| 13 | #define CHECK_APP_DOMAIN 0 |
| 14 | #endif |
| 15 | |
| 16 | #ifndef GCINFODECODER_CONTRACT |
| 17 | #define GCINFODECODER_CONTRACT LIMITED_METHOD_CONTRACT |
| 18 | #endif // !GCINFODECODER_CONTRACT |
| 19 | |
| 20 | |
| 21 | #ifndef GET_CALLER_SP |
| 22 | #define GET_CALLER_SP(pREGDISPLAY) EECodeManager::GetCallerSp(pREGDISPLAY) |
| 23 | #endif // !GET_CALLER_SP |
| 24 | |
| 25 | #ifndef VALIDATE_OBJECTREF |
| 26 | #if defined(DACCESS_COMPILE) || defined(CROSSGEN_COMPILE) |
| 27 | #define VALIDATE_OBJECTREF(objref, fDeep) |
| 28 | #else // DACCESS_COMPILE || CROSSGEN_COMPILE |
| 29 | #define VALIDATE_OBJECTREF(objref, fDeep) OBJECTREF_TO_UNCHECKED_OBJECTREF(objref)->Validate(fDeep) |
| 30 | #endif // DACCESS_COMPILE || CROSSGEN_COMPILE |
| 31 | #endif // !VALIDATE_OBJECTREF |
| 32 | |
| 33 | #ifndef VALIDATE_ROOT |
| 34 | #include "gcenv.h" |
| 35 | #define VALIDATE_ROOT(isInterior, hCallBack, pObjRef) \ |
| 36 | do { \ |
| 37 | /* Only call Object::Validate() with bDeep == TRUE if we are in the promote phase. */ \ |
| 38 | /* We should call Validate() with bDeep == FALSE if we are in the relocation phase. */ \ |
| 39 | /* Actually with the introduction of the POPO feature, we cannot validate during */ \ |
| 40 | /* relocate because POPO might have written over the object. It will require non */ \ |
| 41 | /* trivial amount of work to make this work.*/ \ |
| 42 | \ |
| 43 | GCCONTEXT* pGCCtx = (GCCONTEXT*)(hCallBack); \ |
| 44 | \ |
| 45 | if (!(isInterior) && !(m_Flags & DECODE_NO_VALIDATION) && (pGCCtx->sc->promotion)) { \ |
| 46 | VALIDATE_OBJECTREF(*(pObjRef), pGCCtx->sc->promotion == TRUE); \ |
| 47 | } \ |
| 48 | } while (0) |
| 49 | #endif // !VALIDATE_ROOT |
| 50 | |
| 51 | #ifndef LOG_PIPTR |
| 52 | #define LOG_PIPTR(pObjRef, gcFlags, hCallBack) \ |
| 53 | { \ |
| 54 | GCCONTEXT* pGCCtx = (GCCONTEXT*)(hCallBack); \ |
| 55 | if (pGCCtx->sc->promotion) \ |
| 56 | { \ |
| 57 | LOG((LF_GCROOTS, LL_INFO1000, /* Part Three */ \ |
| 58 | LOG_PIPTR_OBJECT_CLASS(OBJECTREF_TO_UNCHECKED_OBJECTREF(*pObjRef), (gcFlags & GC_CALL_PINNED), (gcFlags & GC_CALL_INTERIOR)))); \ |
| 59 | } \ |
| 60 | else \ |
| 61 | { \ |
| 62 | LOG((LF_GCROOTS, LL_INFO1000, /* Part Three */ \ |
| 63 | LOG_PIPTR_OBJECT(OBJECTREF_TO_UNCHECKED_OBJECTREF(*pObjRef), (gcFlags & GC_CALL_PINNED), (gcFlags & GC_CALL_INTERIOR)))); \ |
| 64 | } \ |
| 65 | } |
| 66 | #endif // !LOG_PIPTR |
| 67 | |
| 68 | bool GcInfoDecoder::SetIsInterruptibleCB (UINT32 startOffset, UINT32 stopOffset, void * hCallback) |
| 69 | { |
| 70 | GcInfoDecoder *pThis = (GcInfoDecoder*)hCallback; |
| 71 | |
| 72 | |
| 73 | bool fStop = pThis->m_InstructionOffset >= startOffset && pThis->m_InstructionOffset < stopOffset; |
| 74 | |
| 75 | if (fStop) |
| 76 | pThis->m_IsInterruptible = true; |
| 77 | |
| 78 | return fStop; |
| 79 | } |
| 80 | |
| 81 | GcInfoDecoder::GcInfoDecoder( |
| 82 | GCInfoToken gcInfoToken, |
| 83 | GcInfoDecoderFlags flags, |
| 84 | UINT32 breakOffset |
| 85 | ) |
| 86 | : m_Reader(dac_cast<PTR_CBYTE>(gcInfoToken.Info)) |
| 87 | , m_InstructionOffset(breakOffset) |
| 88 | , m_IsInterruptible(false) |
| 89 | , m_ReturnKind(RT_Illegal) |
| 90 | #ifdef _DEBUG |
| 91 | , m_Flags( flags ) |
| 92 | , m_GcInfoAddress(dac_cast<PTR_CBYTE>(gcInfoToken.Info)) |
| 93 | #endif |
| 94 | , m_Version(gcInfoToken.Version) |
| 95 | { |
| 96 | _ASSERTE( (flags & (DECODE_INTERRUPTIBILITY | DECODE_GC_LIFETIMES)) || (0 == breakOffset) ); |
| 97 | |
| 98 | // The current implementation doesn't support the two flags together |
| 99 | _ASSERTE( |
| 100 | ((flags & (DECODE_INTERRUPTIBILITY | DECODE_GC_LIFETIMES)) != (DECODE_INTERRUPTIBILITY | DECODE_GC_LIFETIMES)) |
| 101 | ); |
| 102 | |
| 103 | //-------------------------------------------- |
| 104 | // Pre-decode information |
| 105 | //-------------------------------------------- |
| 106 | |
| 107 | GcInfoHeaderFlags ; |
| 108 | bool = (m_Reader.ReadOneFast() == 0); |
| 109 | |
| 110 | if (slimHeader) |
| 111 | { |
| 112 | headerFlags = (GcInfoHeaderFlags)(m_Reader.ReadOneFast() ? GC_INFO_HAS_STACK_BASE_REGISTER : 0); |
| 113 | } |
| 114 | else |
| 115 | { |
| 116 | int numFlagBits = (m_Version == 1) ? GC_INFO_FLAGS_BIT_SIZE_VERSION_1 : GC_INFO_FLAGS_BIT_SIZE; |
| 117 | headerFlags = (GcInfoHeaderFlags) m_Reader.Read(numFlagBits); |
| 118 | } |
| 119 | |
| 120 | m_IsVarArg = headerFlags & GC_INFO_IS_VARARG; |
| 121 | int hasSecurityObject = headerFlags & GC_INFO_HAS_SECURITY_OBJECT; |
| 122 | int hasGSCookie = headerFlags & GC_INFO_HAS_GS_COOKIE; |
| 123 | int hasPSPSym = headerFlags & GC_INFO_HAS_PSP_SYM; |
| 124 | int hasGenericsInstContext = (headerFlags & GC_INFO_HAS_GENERICS_INST_CONTEXT_MASK) != GC_INFO_HAS_GENERICS_INST_CONTEXT_NONE; |
| 125 | m_GenericSecretParamIsMD = (headerFlags & GC_INFO_HAS_GENERICS_INST_CONTEXT_MASK) == GC_INFO_HAS_GENERICS_INST_CONTEXT_MD; |
| 126 | m_GenericSecretParamIsMT = (headerFlags & GC_INFO_HAS_GENERICS_INST_CONTEXT_MASK) == GC_INFO_HAS_GENERICS_INST_CONTEXT_MT; |
| 127 | int hasStackBaseRegister = headerFlags & GC_INFO_HAS_STACK_BASE_REGISTER; |
| 128 | #ifdef _TARGET_AMD64_ |
| 129 | m_WantsReportOnlyLeaf = ((headerFlags & GC_INFO_WANTS_REPORT_ONLY_LEAF) != 0); |
| 130 | #elif defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 131 | m_HasTailCalls = ((headerFlags & GC_INFO_HAS_TAILCALLS) != 0); |
| 132 | #endif // _TARGET_AMD64_ |
| 133 | int hasSizeOfEditAndContinuePreservedArea = headerFlags & GC_INFO_HAS_EDIT_AND_CONTINUE_PRESERVED_SLOTS; |
| 134 | |
| 135 | int hasReversePInvokeFrame = false; |
| 136 | if (gcInfoToken.IsReversePInvokeFrameAvailable()) |
| 137 | { |
| 138 | hasReversePInvokeFrame = headerFlags & GC_INFO_REVERSE_PINVOKE_FRAME; |
| 139 | } |
| 140 | |
| 141 | if (gcInfoToken.IsReturnKindAvailable()) |
| 142 | { |
| 143 | int returnKindBits = (slimHeader) ? SIZE_OF_RETURN_KIND_IN_SLIM_HEADER : SIZE_OF_RETURN_KIND_IN_FAT_HEADER; |
| 144 | m_ReturnKind = |
| 145 | (ReturnKind)((UINT32)m_Reader.Read(returnKindBits)); |
| 146 | } |
| 147 | else |
| 148 | { |
| 149 | #ifndef _TARGET_X86_ |
| 150 | m_ReturnKind = RT_Unset; |
| 151 | #endif // ! _TARGET_X86_ |
| 152 | } |
| 153 | |
| 154 | if (flags == DECODE_RETURN_KIND) { |
| 155 | // Bail, if we've decoded enough, |
| 156 | return; |
| 157 | } |
| 158 | |
| 159 | m_CodeLength = (UINT32) DENORMALIZE_CODE_LENGTH((UINT32) m_Reader.DecodeVarLengthUnsigned(CODE_LENGTH_ENCBASE)); |
| 160 | |
| 161 | if (flags == DECODE_CODE_LENGTH) { |
| 162 | // Bail, if we've decoded enough, |
| 163 | return; |
| 164 | } |
| 165 | |
| 166 | if (hasGSCookie) |
| 167 | { |
| 168 | // Note that normalization as a code offset can be different than |
| 169 | // normalization as code legnth |
| 170 | UINT32 normCodeLength = NORMALIZE_CODE_OFFSET(m_CodeLength); |
| 171 | |
| 172 | // Decode prolog/epilog information |
| 173 | UINT32 normPrologSize = (UINT32) m_Reader.DecodeVarLengthUnsigned(NORM_PROLOG_SIZE_ENCBASE) + 1; |
| 174 | UINT32 normEpilogSize = (UINT32) m_Reader.DecodeVarLengthUnsigned(NORM_EPILOG_SIZE_ENCBASE); |
| 175 | |
| 176 | m_ValidRangeStart = (UINT32) DENORMALIZE_CODE_OFFSET(normPrologSize); |
| 177 | m_ValidRangeEnd = (UINT32) DENORMALIZE_CODE_OFFSET(normCodeLength - normEpilogSize); |
| 178 | _ASSERTE(m_ValidRangeStart < m_ValidRangeEnd); |
| 179 | } |
| 180 | else if (hasSecurityObject || hasGenericsInstContext) |
| 181 | { |
| 182 | // Decode prolog information |
| 183 | UINT32 normPrologSize = (UINT32) m_Reader.DecodeVarLengthUnsigned(NORM_PROLOG_SIZE_ENCBASE) + 1; |
| 184 | m_ValidRangeStart = (UINT32) DENORMALIZE_CODE_OFFSET(normPrologSize); |
| 185 | // satisfy asserts that assume m_GSCookieValidRangeStart != 0 ==> m_GSCookieValidRangeStart < m_GSCookieValidRangeEnd |
| 186 | m_ValidRangeEnd = m_ValidRangeStart + 1; |
| 187 | } |
| 188 | else |
| 189 | { |
| 190 | m_ValidRangeStart = m_ValidRangeEnd = 0; |
| 191 | } |
| 192 | |
| 193 | if (flags == DECODE_PROLOG_LENGTH) { |
| 194 | // Bail, if we've decoded enough, |
| 195 | return; |
| 196 | } |
| 197 | |
| 198 | // Decode the offset to the security object. |
| 199 | if(hasSecurityObject) |
| 200 | { |
| 201 | m_SecurityObjectStackSlot = (INT32) DENORMALIZE_STACK_SLOT(m_Reader.DecodeVarLengthSigned(SECURITY_OBJECT_STACK_SLOT_ENCBASE)); |
| 202 | } |
| 203 | else |
| 204 | { |
| 205 | m_SecurityObjectStackSlot = NO_SECURITY_OBJECT; |
| 206 | } |
| 207 | |
| 208 | if (flags == DECODE_SECURITY_OBJECT) { |
| 209 | // Bail, if we've decoded enough, |
| 210 | return; |
| 211 | } |
| 212 | |
| 213 | // Decode the offset to the GS cookie. |
| 214 | if(hasGSCookie) |
| 215 | { |
| 216 | m_GSCookieStackSlot = (INT32) DENORMALIZE_STACK_SLOT(m_Reader.DecodeVarLengthSigned(GS_COOKIE_STACK_SLOT_ENCBASE)); |
| 217 | } |
| 218 | else |
| 219 | { |
| 220 | m_GSCookieStackSlot = NO_GS_COOKIE; |
| 221 | } |
| 222 | |
| 223 | if (flags == DECODE_GS_COOKIE) { |
| 224 | // Bail, if we've decoded enough, |
| 225 | return; |
| 226 | } |
| 227 | |
| 228 | // Decode the offset to the PSPSym. |
| 229 | // The PSPSym is relative to the caller SP on IA64 and the initial stack pointer before any stack allocation on X64 (InitialSP). |
| 230 | if(hasPSPSym) |
| 231 | { |
| 232 | m_PSPSymStackSlot = (INT32) DENORMALIZE_STACK_SLOT(m_Reader.DecodeVarLengthSigned(PSP_SYM_STACK_SLOT_ENCBASE)); |
| 233 | } |
| 234 | else |
| 235 | { |
| 236 | m_PSPSymStackSlot = NO_PSP_SYM; |
| 237 | } |
| 238 | |
| 239 | if (flags == DECODE_PSP_SYM) { |
| 240 | // Bail, if we've decoded enough, |
| 241 | return; |
| 242 | } |
| 243 | |
| 244 | // Decode the offset to the generics type context. |
| 245 | if(hasGenericsInstContext) |
| 246 | { |
| 247 | m_GenericsInstContextStackSlot = (INT32) DENORMALIZE_STACK_SLOT(m_Reader.DecodeVarLengthSigned(GENERICS_INST_CONTEXT_STACK_SLOT_ENCBASE)); |
| 248 | } |
| 249 | else |
| 250 | { |
| 251 | m_GenericsInstContextStackSlot = NO_GENERICS_INST_CONTEXT; |
| 252 | } |
| 253 | |
| 254 | if (flags == DECODE_GENERICS_INST_CONTEXT) { |
| 255 | // Bail, if we've decoded enough, |
| 256 | return; |
| 257 | } |
| 258 | |
| 259 | if(hasStackBaseRegister) |
| 260 | { |
| 261 | if (slimHeader) |
| 262 | { |
| 263 | m_StackBaseRegister = (UINT32) DENORMALIZE_STACK_BASE_REGISTER(0); |
| 264 | } |
| 265 | else |
| 266 | { |
| 267 | m_StackBaseRegister = (UINT32) DENORMALIZE_STACK_BASE_REGISTER(m_Reader.DecodeVarLengthUnsigned(STACK_BASE_REGISTER_ENCBASE)); |
| 268 | } |
| 269 | } |
| 270 | else |
| 271 | { |
| 272 | m_StackBaseRegister = NO_STACK_BASE_REGISTER; |
| 273 | } |
| 274 | |
| 275 | if (hasSizeOfEditAndContinuePreservedArea) |
| 276 | { |
| 277 | m_SizeOfEditAndContinuePreservedArea = (UINT32) m_Reader.DecodeVarLengthUnsigned(SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA_ENCBASE); |
| 278 | } |
| 279 | else |
| 280 | { |
| 281 | m_SizeOfEditAndContinuePreservedArea = NO_SIZE_OF_EDIT_AND_CONTINUE_PRESERVED_AREA; |
| 282 | } |
| 283 | |
| 284 | if (hasReversePInvokeFrame) |
| 285 | { |
| 286 | m_ReversePInvokeFrameStackSlot = (INT32)m_Reader.DecodeVarLengthSigned(REVERSE_PINVOKE_FRAME_ENCBASE); |
| 287 | } |
| 288 | else |
| 289 | { |
| 290 | m_ReversePInvokeFrameStackSlot = NO_REVERSE_PINVOKE_FRAME; |
| 291 | } |
| 292 | |
| 293 | |
| 294 | #ifdef FIXED_STACK_PARAMETER_SCRATCH_AREA |
| 295 | if (slimHeader) |
| 296 | { |
| 297 | m_SizeOfStackOutgoingAndScratchArea = 0; |
| 298 | } |
| 299 | else |
| 300 | { |
| 301 | m_SizeOfStackOutgoingAndScratchArea = (UINT32)DENORMALIZE_SIZE_OF_STACK_AREA(m_Reader.DecodeVarLengthUnsigned(SIZE_OF_STACK_AREA_ENCBASE)); |
| 302 | } |
| 303 | #endif // FIXED_STACK_PARAMETER_SCRATCH_AREA |
| 304 | |
| 305 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 306 | m_NumSafePoints = (UINT32) DENORMALIZE_NUM_SAFE_POINTS(m_Reader.DecodeVarLengthUnsigned(NUM_SAFE_POINTS_ENCBASE)); |
| 307 | #endif |
| 308 | |
| 309 | if (slimHeader) |
| 310 | { |
| 311 | m_NumInterruptibleRanges = 0; |
| 312 | } |
| 313 | else |
| 314 | { |
| 315 | m_NumInterruptibleRanges = (UINT32) DENORMALIZE_NUM_INTERRUPTIBLE_RANGES(m_Reader.DecodeVarLengthUnsigned(NUM_INTERRUPTIBLE_RANGES_ENCBASE)); |
| 316 | } |
| 317 | |
| 318 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 319 | if(flags & (DECODE_INTERRUPTIBILITY | DECODE_GC_LIFETIMES)) |
| 320 | { |
| 321 | if(m_NumSafePoints) |
| 322 | { |
| 323 | m_SafePointIndex = FindSafePoint(m_InstructionOffset); |
| 324 | } |
| 325 | else |
| 326 | { |
| 327 | m_SafePointIndex = 0; |
| 328 | } |
| 329 | } |
| 330 | else if(flags & DECODE_FOR_RANGES_CALLBACK) |
| 331 | { |
| 332 | // Note that normalization as a code offset can be different than |
| 333 | // normalization as code legnth |
| 334 | UINT32 normCodeLength = NORMALIZE_CODE_OFFSET(m_CodeLength); |
| 335 | |
| 336 | UINT32 numBitsPerOffset = CeilOfLog2(normCodeLength); |
| 337 | m_Reader.Skip(m_NumSafePoints * numBitsPerOffset); |
| 338 | } |
| 339 | #endif |
| 340 | |
| 341 | if(!m_IsInterruptible && (flags & DECODE_INTERRUPTIBILITY)) |
| 342 | { |
| 343 | EnumerateInterruptibleRanges(&SetIsInterruptibleCB, this); |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | bool GcInfoDecoder::IsInterruptible() |
| 348 | { |
| 349 | _ASSERTE( m_Flags & DECODE_INTERRUPTIBILITY ); |
| 350 | return m_IsInterruptible; |
| 351 | } |
| 352 | |
| 353 | bool GcInfoDecoder::HasMethodDescGenericsInstContext() |
| 354 | { |
| 355 | _ASSERTE( m_Flags & DECODE_GENERICS_INST_CONTEXT ); |
| 356 | return m_GenericSecretParamIsMD; |
| 357 | } |
| 358 | |
| 359 | bool GcInfoDecoder::HasMethodTableGenericsInstContext() |
| 360 | { |
| 361 | _ASSERTE( m_Flags & DECODE_GENERICS_INST_CONTEXT ); |
| 362 | return m_GenericSecretParamIsMT; |
| 363 | } |
| 364 | |
| 365 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 366 | |
| 367 | // This is used for gccoverage: is the given offset |
| 368 | // a call-return offset with partially-interruptible GC info? |
| 369 | bool GcInfoDecoder::IsSafePoint(UINT32 codeOffset) |
| 370 | { |
| 371 | _ASSERTE(m_Flags == DECODE_EVERYTHING && m_InstructionOffset == 0); |
| 372 | if(m_NumSafePoints == 0) |
| 373 | return false; |
| 374 | |
| 375 | #if defined(_TARGET_AMD64_) || defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 376 | // Safepoints are encoded with a -1 adjustment |
| 377 | codeOffset--; |
| 378 | #endif |
| 379 | size_t savedPos = m_Reader.GetCurrentPos(); |
| 380 | UINT32 safePointIndex = FindSafePoint(codeOffset); |
| 381 | m_Reader.SetCurrentPos(savedPos); |
| 382 | return (bool) (safePointIndex != m_NumSafePoints); |
| 383 | |
| 384 | } |
| 385 | |
| 386 | UINT32 GcInfoDecoder::FindSafePoint(UINT32 breakOffset) |
| 387 | { |
| 388 | if(m_NumSafePoints == 0) |
| 389 | return 0; |
| 390 | |
| 391 | const size_t savedPos = m_Reader.GetCurrentPos(); |
| 392 | const UINT32 numBitsPerOffset = CeilOfLog2(NORMALIZE_CODE_OFFSET(m_CodeLength)); |
| 393 | UINT32 result = m_NumSafePoints; |
| 394 | |
| 395 | #if defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 396 | // Safepoints are encoded with a -1 adjustment |
| 397 | // but normalizing them masks off the low order bit |
| 398 | // Thus only bother looking if the address is odd |
| 399 | if ((breakOffset & 1) != 0) |
| 400 | #endif |
| 401 | { |
| 402 | const UINT32 normBreakOffset = NORMALIZE_CODE_OFFSET(breakOffset); |
| 403 | |
| 404 | INT32 low = 0; |
| 405 | INT32 high = (INT32)m_NumSafePoints; |
| 406 | |
| 407 | while(low < high) |
| 408 | { |
| 409 | const INT32 mid = (low+high)/2; |
| 410 | _ASSERTE(mid >= 0 && mid < (INT32)m_NumSafePoints); |
| 411 | m_Reader.SetCurrentPos(savedPos + (UINT32)mid * numBitsPerOffset); |
| 412 | UINT32 normOffset = (UINT32)m_Reader.Read(numBitsPerOffset); |
| 413 | if(normOffset == normBreakOffset) |
| 414 | { |
| 415 | result = (UINT32) mid; |
| 416 | break; |
| 417 | } |
| 418 | |
| 419 | if(normOffset < normBreakOffset) |
| 420 | low = mid+1; |
| 421 | else |
| 422 | high = mid; |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | m_Reader.SetCurrentPos(savedPos + m_NumSafePoints * numBitsPerOffset); |
| 427 | return result; |
| 428 | } |
| 429 | |
| 430 | void GcInfoDecoder::EnumerateSafePoints(EnumerateSafePointsCallback *pCallback, void * hCallback) |
| 431 | { |
| 432 | if(m_NumSafePoints == 0) |
| 433 | return; |
| 434 | |
| 435 | const UINT32 numBitsPerOffset = CeilOfLog2(NORMALIZE_CODE_OFFSET(m_CodeLength)); |
| 436 | |
| 437 | for(UINT32 i = 0; i < m_NumSafePoints; i++) |
| 438 | { |
| 439 | UINT32 normOffset = (UINT32)m_Reader.Read(numBitsPerOffset); |
| 440 | UINT32 offset = DENORMALIZE_CODE_OFFSET(normOffset) + 2; |
| 441 | |
| 442 | #if defined(_TARGET_AMD64_) || defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 443 | // Safepoints are encoded with a -1 adjustment |
| 444 | offset--; |
| 445 | #endif |
| 446 | |
| 447 | pCallback(offset, hCallback); |
| 448 | } |
| 449 | } |
| 450 | #endif |
| 451 | |
| 452 | void GcInfoDecoder::EnumerateInterruptibleRanges ( |
| 453 | EnumerateInterruptibleRangesCallback *pCallback, |
| 454 | void * hCallback) |
| 455 | { |
| 456 | // If no info is found for the call site, we default to fully-interruptbile |
| 457 | LOG((LF_GCROOTS, LL_INFO1000000, "No GC info found for call site at offset %x. Defaulting to fully-interruptible information.\n" , (int) m_InstructionOffset)); |
| 458 | |
| 459 | UINT32 lastInterruptibleRangeStopOffsetNormalized = 0; |
| 460 | |
| 461 | for(UINT32 i=0; i<m_NumInterruptibleRanges; i++) |
| 462 | { |
| 463 | UINT32 normStartDelta = (UINT32) m_Reader.DecodeVarLengthUnsigned( INTERRUPTIBLE_RANGE_DELTA1_ENCBASE ); |
| 464 | UINT32 normStopDelta = (UINT32) m_Reader.DecodeVarLengthUnsigned( INTERRUPTIBLE_RANGE_DELTA2_ENCBASE ) + 1; |
| 465 | |
| 466 | UINT32 rangeStartOffsetNormalized = lastInterruptibleRangeStopOffsetNormalized + normStartDelta; |
| 467 | UINT32 rangeStopOffsetNormalized = rangeStartOffsetNormalized + normStopDelta; |
| 468 | |
| 469 | UINT32 rangeStartOffset = DENORMALIZE_CODE_OFFSET(rangeStartOffsetNormalized); |
| 470 | UINT32 rangeStopOffset = DENORMALIZE_CODE_OFFSET(rangeStopOffsetNormalized); |
| 471 | |
| 472 | bool fStop = pCallback(rangeStartOffset, rangeStopOffset, hCallback); |
| 473 | if (fStop) |
| 474 | return; |
| 475 | |
| 476 | lastInterruptibleRangeStopOffsetNormalized = rangeStopOffsetNormalized; |
| 477 | } |
| 478 | } |
| 479 | |
| 480 | INT32 GcInfoDecoder::GetSecurityObjectStackSlot() |
| 481 | { |
| 482 | _ASSERTE( m_Flags & DECODE_SECURITY_OBJECT ); |
| 483 | return m_SecurityObjectStackSlot; |
| 484 | } |
| 485 | |
| 486 | INT32 GcInfoDecoder::GetGSCookieStackSlot() |
| 487 | { |
| 488 | _ASSERTE( m_Flags & DECODE_GS_COOKIE ); |
| 489 | return m_GSCookieStackSlot; |
| 490 | } |
| 491 | |
| 492 | INT32 GcInfoDecoder::GetReversePInvokeFrameStackSlot() |
| 493 | { |
| 494 | _ASSERTE(m_Flags & DECODE_REVERSE_PINVOKE_VAR); |
| 495 | return m_ReversePInvokeFrameStackSlot; |
| 496 | } |
| 497 | |
| 498 | UINT32 GcInfoDecoder::GetGSCookieValidRangeStart() |
| 499 | { |
| 500 | _ASSERTE( m_Flags & DECODE_GS_COOKIE ); |
| 501 | return m_ValidRangeStart; |
| 502 | } |
| 503 | UINT32 GcInfoDecoder::GetGSCookieValidRangeEnd() |
| 504 | { |
| 505 | _ASSERTE( m_Flags & DECODE_GS_COOKIE ); |
| 506 | return m_ValidRangeEnd; |
| 507 | } |
| 508 | |
| 509 | UINT32 GcInfoDecoder::GetPrologSize() |
| 510 | { |
| 511 | _ASSERTE( m_Flags & DECODE_PROLOG_LENGTH ); |
| 512 | |
| 513 | return m_ValidRangeStart; |
| 514 | } |
| 515 | |
| 516 | INT32 GcInfoDecoder::GetGenericsInstContextStackSlot() |
| 517 | { |
| 518 | _ASSERTE( m_Flags & DECODE_GENERICS_INST_CONTEXT ); |
| 519 | return m_GenericsInstContextStackSlot; |
| 520 | } |
| 521 | |
| 522 | INT32 GcInfoDecoder::GetPSPSymStackSlot() |
| 523 | { |
| 524 | _ASSERTE( m_Flags & DECODE_PSP_SYM ); |
| 525 | return m_PSPSymStackSlot; |
| 526 | } |
| 527 | |
| 528 | bool GcInfoDecoder::GetIsVarArg() |
| 529 | { |
| 530 | _ASSERTE( m_Flags & DECODE_VARARG ); |
| 531 | return m_IsVarArg; |
| 532 | } |
| 533 | |
| 534 | #if defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
| 535 | bool GcInfoDecoder::HasTailCalls() |
| 536 | { |
| 537 | _ASSERTE( m_Flags & DECODE_HAS_TAILCALLS ); |
| 538 | return m_HasTailCalls; |
| 539 | } |
| 540 | #endif // _TARGET_ARM_ || _TARGET_ARM64_ |
| 541 | |
| 542 | bool GcInfoDecoder::WantsReportOnlyLeaf() |
| 543 | { |
| 544 | // Only AMD64 with JIT64 can return false here. |
| 545 | #ifdef _TARGET_AMD64_ |
| 546 | return m_WantsReportOnlyLeaf; |
| 547 | #else |
| 548 | return true; |
| 549 | #endif |
| 550 | } |
| 551 | |
| 552 | UINT32 GcInfoDecoder::GetCodeLength() |
| 553 | { |
| 554 | // SUPPORTS_DAC; |
| 555 | _ASSERTE( m_Flags & DECODE_CODE_LENGTH ); |
| 556 | return m_CodeLength; |
| 557 | } |
| 558 | |
| 559 | ReturnKind GcInfoDecoder::GetReturnKind() |
| 560 | { |
| 561 | // SUPPORTS_DAC; |
| 562 | _ASSERTE( m_Flags & DECODE_RETURN_KIND ); |
| 563 | return m_ReturnKind; |
| 564 | } |
| 565 | |
| 566 | UINT32 GcInfoDecoder::GetStackBaseRegister() |
| 567 | { |
| 568 | return m_StackBaseRegister; |
| 569 | } |
| 570 | |
| 571 | UINT32 GcInfoDecoder::GetSizeOfEditAndContinuePreservedArea() |
| 572 | { |
| 573 | _ASSERTE( m_Flags & DECODE_EDIT_AND_CONTINUE ); |
| 574 | return m_SizeOfEditAndContinuePreservedArea; |
| 575 | } |
| 576 | |
| 577 | size_t GcInfoDecoder::GetNumBytesRead() |
| 578 | { |
| 579 | return (m_Reader.GetCurrentPos() + 7) / 8; |
| 580 | } |
| 581 | |
| 582 | |
| 583 | #ifdef FIXED_STACK_PARAMETER_SCRATCH_AREA |
| 584 | |
| 585 | UINT32 GcInfoDecoder::GetSizeOfStackParameterArea() |
| 586 | { |
| 587 | return m_SizeOfStackOutgoingAndScratchArea; |
| 588 | } |
| 589 | |
| 590 | #endif // FIXED_STACK_PARAMETER_SCRATCH_AREA |
| 591 | |
| 592 | |
| 593 | bool GcInfoDecoder::EnumerateLiveSlots( |
| 594 | PREGDISPLAY pRD, |
| 595 | bool reportScratchSlots, |
| 596 | unsigned inputFlags, |
| 597 | GCEnumCallback pCallBack, |
| 598 | void * hCallBack |
| 599 | ) |
| 600 | { |
| 601 | |
| 602 | unsigned executionAborted = (inputFlags & ExecutionAborted); |
| 603 | |
| 604 | // In order to make ARM more x86-like we only ever report the leaf frame |
| 605 | // of any given function. We accomplish this by having the stackwalker |
| 606 | // pass a flag whenever walking the frame of a method where it has |
| 607 | // previously visited a child funclet |
| 608 | if (WantsReportOnlyLeaf() && (inputFlags & ParentOfFuncletStackFrame)) |
| 609 | { |
| 610 | LOG((LF_GCROOTS, LL_INFO100000, "Not reporting this frame because it was already reported via another funclet.\n" )); |
| 611 | return true; |
| 612 | } |
| 613 | |
| 614 | // |
| 615 | // If this is a non-leaf frame and we are executing a call, the unwinder has given us the PC |
| 616 | // of the call instruction. We should adjust it to the PC of the instruction after the call in order to |
| 617 | // obtain transition information for scratch slots. However, we always assume scratch slots to be |
| 618 | // dead for non-leaf frames (except for ResumableFrames), so we don't need to adjust the PC. |
| 619 | // If this is a non-leaf frame and we are not executing a call (i.e.: a fault occurred in the function), |
| 620 | // then it would be incorrect to adjust the PC |
| 621 | // |
| 622 | |
| 623 | _ASSERTE(GC_SLOT_INTERIOR == GC_CALL_INTERIOR); |
| 624 | _ASSERTE(GC_SLOT_PINNED == GC_CALL_PINNED); |
| 625 | |
| 626 | _ASSERTE( m_Flags & DECODE_GC_LIFETIMES ); |
| 627 | |
| 628 | GcSlotDecoder slotDecoder; |
| 629 | |
| 630 | UINT32 normBreakOffset = NORMALIZE_CODE_OFFSET(m_InstructionOffset); |
| 631 | |
| 632 | // Normalized break offset |
| 633 | // Relative to interruptible ranges #if PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 634 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 635 | UINT32 pseudoBreakOffset = 0; |
| 636 | UINT32 numInterruptibleLength = 0; |
| 637 | #else |
| 638 | UINT32 pseudoBreakOffset = normBreakOffset; |
| 639 | UINT32 numInterruptibleLength = NORMALIZE_CODE_OFFSET(m_CodeLength); |
| 640 | #endif |
| 641 | |
| 642 | |
| 643 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 644 | bool noTrackedRefs = false; |
| 645 | |
| 646 | if(m_SafePointIndex < m_NumSafePoints && !executionAborted) |
| 647 | { |
| 648 | // Skip interruptibility information |
| 649 | for(UINT32 i=0; i<m_NumInterruptibleRanges; i++) |
| 650 | { |
| 651 | m_Reader.DecodeVarLengthUnsigned( INTERRUPTIBLE_RANGE_DELTA1_ENCBASE ); |
| 652 | m_Reader.DecodeVarLengthUnsigned( INTERRUPTIBLE_RANGE_DELTA2_ENCBASE ); |
| 653 | } |
| 654 | } |
| 655 | else |
| 656 | { |
| 657 | // |
| 658 | // We didn't find the break offset in the list of call sites |
| 659 | // or we are in an executionAborted frame |
| 660 | // So either we have fully-interruptible information, |
| 661 | // or execution will not resume at the current method |
| 662 | // and nothing should be reported |
| 663 | // |
| 664 | if(!executionAborted) |
| 665 | { |
| 666 | if(m_NumInterruptibleRanges == 0) |
| 667 | { |
| 668 | // No ranges and no explicit safepoint - must be MinOpts with untracked refs. |
| 669 | noTrackedRefs = true; |
| 670 | } |
| 671 | } |
| 672 | |
| 673 | if(m_NumInterruptibleRanges != 0) |
| 674 | { |
| 675 | int countIntersections = 0; |
| 676 | UINT32 lastNormStop = 0; |
| 677 | for(UINT32 i=0; i<m_NumInterruptibleRanges; i++) |
| 678 | { |
| 679 | UINT32 normStartDelta = (UINT32) m_Reader.DecodeVarLengthUnsigned( INTERRUPTIBLE_RANGE_DELTA1_ENCBASE ); |
| 680 | UINT32 normStopDelta = (UINT32) m_Reader.DecodeVarLengthUnsigned( INTERRUPTIBLE_RANGE_DELTA2_ENCBASE ) + 1; |
| 681 | |
| 682 | UINT32 normStart = lastNormStop + normStartDelta; |
| 683 | UINT32 normStop = normStart + normStopDelta; |
| 684 | if(normBreakOffset >= normStart && normBreakOffset < normStop) |
| 685 | { |
| 686 | _ASSERTE(pseudoBreakOffset == 0); |
| 687 | countIntersections++; |
| 688 | pseudoBreakOffset = numInterruptibleLength + normBreakOffset - normStart; |
| 689 | } |
| 690 | numInterruptibleLength += normStopDelta; |
| 691 | lastNormStop = normStop; |
| 692 | } |
| 693 | _ASSERTE(countIntersections <= 1); |
| 694 | if(countIntersections == 0) |
| 695 | { |
| 696 | _ASSERTE(executionAborted); |
| 697 | LOG((LF_GCROOTS, LL_INFO100000, "Not reporting this frame because it is aborted and not fully interruptible.\n" )); |
| 698 | goto ExitSuccess; |
| 699 | } |
| 700 | } |
| 701 | } |
| 702 | #else // !PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 703 | |
| 704 | // Skip interruptibility information |
| 705 | for(UINT32 i=0; i<m_NumInterruptibleRanges; i++) |
| 706 | { |
| 707 | m_Reader.DecodeVarLengthUnsigned( INTERRUPTIBLE_RANGE_DELTA1_ENCBASE ); |
| 708 | m_Reader.DecodeVarLengthUnsigned( INTERRUPTIBLE_RANGE_DELTA2_ENCBASE ); |
| 709 | } |
| 710 | #endif |
| 711 | |
| 712 | |
| 713 | //------------------------------------------------------------------------------ |
| 714 | // Read the slot table |
| 715 | //------------------------------------------------------------------------------ |
| 716 | |
| 717 | |
| 718 | slotDecoder.DecodeSlotTable(m_Reader); |
| 719 | |
| 720 | { |
| 721 | UINT32 numSlots = slotDecoder.GetNumTracked(); |
| 722 | |
| 723 | if(!numSlots) |
| 724 | goto ReportUntracked; |
| 725 | |
| 726 | #ifdef PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 727 | |
| 728 | UINT32 numBitsPerOffset = 0; |
| 729 | // Duplicate the encoder's heuristic to determine if we have indirect live |
| 730 | // slot table (similar to the chunk pointers) |
| 731 | if ((m_NumSafePoints > 0) && m_Reader.ReadOneFast()) |
| 732 | { |
| 733 | numBitsPerOffset = (UINT32) m_Reader.DecodeVarLengthUnsigned(POINTER_SIZE_ENCBASE) + 1; |
| 734 | _ASSERTE(numBitsPerOffset != 0); |
| 735 | } |
| 736 | |
| 737 | //------------------------------------------------------------------------------ |
| 738 | // Try partially interruptible first |
| 739 | //------------------------------------------------------------------------------ |
| 740 | |
| 741 | if( !executionAborted && m_SafePointIndex != m_NumSafePoints ) |
| 742 | { |
| 743 | if (numBitsPerOffset) |
| 744 | { |
| 745 | const size_t offsetTablePos = m_Reader.GetCurrentPos(); |
| 746 | m_Reader.Skip(m_SafePointIndex * numBitsPerOffset); |
| 747 | const size_t liveStatesOffset = m_Reader.Read(numBitsPerOffset); |
| 748 | const size_t liveStatesStart = ((offsetTablePos + m_NumSafePoints * numBitsPerOffset + 7) & (~7)); |
| 749 | m_Reader.SetCurrentPos(liveStatesStart + liveStatesOffset); |
| 750 | if (m_Reader.ReadOneFast()) { |
| 751 | // RLE encoded |
| 752 | bool fSkip = (m_Reader.ReadOneFast() == 0); |
| 753 | bool fReport = true; |
| 754 | UINT32 readSlots = (UINT32)m_Reader.DecodeVarLengthUnsigned( fSkip ? LIVESTATE_RLE_SKIP_ENCBASE : LIVESTATE_RLE_RUN_ENCBASE ); |
| 755 | fSkip = !fSkip; |
| 756 | while (readSlots < numSlots) |
| 757 | { |
| 758 | UINT32 cnt = (UINT32)m_Reader.DecodeVarLengthUnsigned( fSkip ? LIVESTATE_RLE_SKIP_ENCBASE : LIVESTATE_RLE_RUN_ENCBASE ) + 1; |
| 759 | if (fReport) |
| 760 | { |
| 761 | for(UINT32 slotIndex = readSlots; slotIndex < readSlots + cnt; slotIndex++) |
| 762 | { |
| 763 | ReportSlotToGC(slotDecoder, |
| 764 | slotIndex, |
| 765 | pRD, |
| 766 | reportScratchSlots, |
| 767 | inputFlags, |
| 768 | pCallBack, |
| 769 | hCallBack |
| 770 | ); |
| 771 | } |
| 772 | } |
| 773 | readSlots += cnt; |
| 774 | fSkip = !fSkip; |
| 775 | fReport = !fReport; |
| 776 | } |
| 777 | _ASSERTE(readSlots == numSlots); |
| 778 | goto ReportUntracked; |
| 779 | } |
| 780 | // Just a normal live state (1 bit per slot), so use the normal decoding loop |
| 781 | } |
| 782 | else |
| 783 | { |
| 784 | m_Reader.Skip(m_SafePointIndex * numSlots); |
| 785 | } |
| 786 | |
| 787 | for(UINT32 slotIndex = 0; slotIndex < numSlots; slotIndex++) |
| 788 | { |
| 789 | if(m_Reader.ReadOneFast()) |
| 790 | { |
| 791 | ReportSlotToGC( |
| 792 | slotDecoder, |
| 793 | slotIndex, |
| 794 | pRD, |
| 795 | reportScratchSlots, |
| 796 | inputFlags, |
| 797 | pCallBack, |
| 798 | hCallBack |
| 799 | ); |
| 800 | } |
| 801 | } |
| 802 | goto ReportUntracked; |
| 803 | } |
| 804 | else |
| 805 | { |
| 806 | m_Reader.Skip(m_NumSafePoints * numSlots); |
| 807 | if(m_NumInterruptibleRanges == 0) |
| 808 | goto ReportUntracked; |
| 809 | } |
| 810 | #endif // PARTIALLY_INTERRUPTIBLE_GC_SUPPORTED |
| 811 | |
| 812 | _ASSERTE(m_NumInterruptibleRanges); |
| 813 | _ASSERTE(numInterruptibleLength); |
| 814 | |
| 815 | // If no info is found for the call site, we default to fully-interruptbile |
| 816 | LOG((LF_GCROOTS, LL_INFO1000000, "No GC info found for call site at offset %x. Defaulting to fully-interruptible information.\n" , (int) m_InstructionOffset)); |
| 817 | |
| 818 | UINT32 numChunks = (numInterruptibleLength + NUM_NORM_CODE_OFFSETS_PER_CHUNK - 1) / NUM_NORM_CODE_OFFSETS_PER_CHUNK; |
| 819 | UINT32 breakChunk = pseudoBreakOffset / NUM_NORM_CODE_OFFSETS_PER_CHUNK; |
| 820 | _ASSERTE(breakChunk < numChunks); |
| 821 | |
| 822 | UINT32 numBitsPerPointer = (UINT32) m_Reader.DecodeVarLengthUnsigned(POINTER_SIZE_ENCBASE); |
| 823 | |
| 824 | if(!numBitsPerPointer) |
| 825 | goto ReportUntracked; |
| 826 | |
| 827 | size_t pointerTablePos = m_Reader.GetCurrentPos(); |
| 828 | |
| 829 | size_t chunkPointer; |
| 830 | UINT32 chunk = breakChunk; |
| 831 | for(;;) |
| 832 | { |
| 833 | m_Reader.SetCurrentPos(pointerTablePos + chunk * numBitsPerPointer); |
| 834 | chunkPointer = m_Reader.Read(numBitsPerPointer); |
| 835 | if(chunkPointer) |
| 836 | break; |
| 837 | |
| 838 | if(chunk-- == 0) |
| 839 | goto ReportUntracked; |
| 840 | } |
| 841 | |
| 842 | size_t chunksStartPos = ((pointerTablePos + numChunks * numBitsPerPointer + 7) & (~7)); |
| 843 | size_t chunkPos = chunksStartPos + chunkPointer - 1; |
| 844 | m_Reader.SetCurrentPos(chunkPos); |
| 845 | |
| 846 | { |
| 847 | BitStreamReader couldBeLiveReader(m_Reader); |
| 848 | |
| 849 | UINT32 numCouldBeLiveSlots = 0; |
| 850 | // A potentially compressed bit vector of which slots have any lifetimes |
| 851 | if (m_Reader.ReadOneFast()) |
| 852 | { |
| 853 | // RLE encoded |
| 854 | bool fSkip = (m_Reader.ReadOneFast() == 0); |
| 855 | bool fReport = true; |
| 856 | UINT32 readSlots = (UINT32)m_Reader.DecodeVarLengthUnsigned( fSkip ? LIVESTATE_RLE_SKIP_ENCBASE : LIVESTATE_RLE_RUN_ENCBASE ); |
| 857 | fSkip = !fSkip; |
| 858 | while (readSlots < numSlots) |
| 859 | { |
| 860 | UINT32 cnt = (UINT32)m_Reader.DecodeVarLengthUnsigned( fSkip ? LIVESTATE_RLE_SKIP_ENCBASE : LIVESTATE_RLE_RUN_ENCBASE ) + 1; |
| 861 | if (fReport) |
| 862 | { |
| 863 | numCouldBeLiveSlots += cnt; |
| 864 | } |
| 865 | readSlots += cnt; |
| 866 | fSkip = !fSkip; |
| 867 | fReport = !fReport; |
| 868 | } |
| 869 | _ASSERTE(readSlots == numSlots); |
| 870 | |
| 871 | } |
| 872 | else |
| 873 | { |
| 874 | for(UINT32 i = 0; i < numSlots; i++) |
| 875 | { |
| 876 | if(m_Reader.ReadOneFast()) |
| 877 | numCouldBeLiveSlots++; |
| 878 | } |
| 879 | } |
| 880 | _ASSERTE(numCouldBeLiveSlots > 0); |
| 881 | |
| 882 | BitStreamReader finalStateReader(m_Reader); |
| 883 | |
| 884 | m_Reader.Skip(numCouldBeLiveSlots); |
| 885 | |
| 886 | int lifetimeTransitionsCount = 0; |
| 887 | |
| 888 | UINT32 slotIndex = 0; |
| 889 | bool fSimple = (couldBeLiveReader.ReadOneFast() == 0); |
| 890 | bool fSkipFirst = false; // silence the warning |
| 891 | UINT32 cnt = 0; |
| 892 | if (!fSimple) |
| 893 | { |
| 894 | fSkipFirst = (couldBeLiveReader.ReadOneFast() == 0); |
| 895 | slotIndex = -1; |
| 896 | } |
| 897 | for(UINT32 i = 0; i < numCouldBeLiveSlots; i++) |
| 898 | { |
| 899 | if (fSimple) |
| 900 | { |
| 901 | while(!couldBeLiveReader.ReadOneFast()) |
| 902 | slotIndex++; |
| 903 | } |
| 904 | else if (cnt > 0) |
| 905 | { |
| 906 | // We have more from the last run to report |
| 907 | cnt--; |
| 908 | } |
| 909 | // We need to find a new run |
| 910 | else if (fSkipFirst) |
| 911 | { |
| 912 | UINT32 tmp = (UINT32)couldBeLiveReader.DecodeVarLengthUnsigned( LIVESTATE_RLE_SKIP_ENCBASE ) + 1; |
| 913 | slotIndex += tmp; |
| 914 | cnt = (UINT32)couldBeLiveReader.DecodeVarLengthUnsigned( LIVESTATE_RLE_RUN_ENCBASE ); |
| 915 | } |
| 916 | else |
| 917 | { |
| 918 | UINT32 tmp = (UINT32)couldBeLiveReader.DecodeVarLengthUnsigned( LIVESTATE_RLE_RUN_ENCBASE ) + 1; |
| 919 | slotIndex += tmp; |
| 920 | cnt = (UINT32)couldBeLiveReader.DecodeVarLengthUnsigned( LIVESTATE_RLE_SKIP_ENCBASE ); |
| 921 | } |
| 922 | |
| 923 | UINT32 isLive = (UINT32) finalStateReader.Read(1); |
| 924 | |
| 925 | if(chunk == breakChunk) |
| 926 | { |
| 927 | // Read transitions |
| 928 | UINT32 normBreakOffsetDelta = pseudoBreakOffset % NUM_NORM_CODE_OFFSETS_PER_CHUNK; |
| 929 | for(;;) |
| 930 | { |
| 931 | if(!m_Reader.ReadOneFast()) |
| 932 | break; |
| 933 | |
| 934 | UINT32 transitionOffset = (UINT32) m_Reader.Read(NUM_NORM_CODE_OFFSETS_PER_CHUNK_LOG2); |
| 935 | |
| 936 | lifetimeTransitionsCount++; |
| 937 | _ASSERTE(transitionOffset && transitionOffset < NUM_NORM_CODE_OFFSETS_PER_CHUNK); |
| 938 | if(transitionOffset > normBreakOffsetDelta) |
| 939 | { |
| 940 | isLive ^= 1; |
| 941 | } |
| 942 | } |
| 943 | } |
| 944 | |
| 945 | if(isLive) |
| 946 | { |
| 947 | ReportSlotToGC( |
| 948 | slotDecoder, |
| 949 | slotIndex, |
| 950 | pRD, |
| 951 | reportScratchSlots, |
| 952 | inputFlags, |
| 953 | pCallBack, |
| 954 | hCallBack |
| 955 | ); |
| 956 | } |
| 957 | |
| 958 | slotIndex++; |
| 959 | } |
| 960 | |
| 961 | LOG((LF_GCROOTS, LL_INFO1000000, "Decoded %d lifetime transitions.\n" , (int) lifetimeTransitionsCount )); |
| 962 | } |
| 963 | } |
| 964 | |
| 965 | ReportUntracked: |
| 966 | |
| 967 | //------------------------------------------------------------------------------ |
| 968 | // Last report anything untracked |
| 969 | // But only for the leaf funclet/frame |
| 970 | // Turned on in the VM for regular GC reporting and the DAC for !CLRStack -gc |
| 971 | // But turned off in the #includes for nidump and sos's !u -gcinfo and !gcinfo |
| 972 | //------------------------------------------------------------------------------ |
| 973 | |
| 974 | if (slotDecoder.GetNumUntracked() && !(inputFlags & (ParentOfFuncletStackFrame | NoReportUntracked))) |
| 975 | { |
| 976 | ReportUntrackedSlots(slotDecoder, pRD, inputFlags, pCallBack, hCallBack); |
| 977 | } |
| 978 | |
| 979 | ExitSuccess: |
| 980 | |
| 981 | return true; |
| 982 | } |
| 983 | |
| 984 | void GcInfoDecoder::EnumerateUntrackedSlots( |
| 985 | PREGDISPLAY pRD, |
| 986 | unsigned inputFlags, |
| 987 | GCEnumCallback pCallBack, |
| 988 | void * hCallBack |
| 989 | ) |
| 990 | { |
| 991 | _ASSERTE(GC_SLOT_INTERIOR == GC_CALL_INTERIOR); |
| 992 | _ASSERTE(GC_SLOT_PINNED == GC_CALL_PINNED); |
| 993 | |
| 994 | _ASSERTE( m_Flags & DECODE_GC_LIFETIMES ); |
| 995 | |
| 996 | GcSlotDecoder slotDecoder; |
| 997 | |
| 998 | // Skip interruptibility information |
| 999 | for(UINT32 i=0; i<m_NumInterruptibleRanges; i++) |
| 1000 | { |
| 1001 | m_Reader.DecodeVarLengthUnsigned( INTERRUPTIBLE_RANGE_DELTA1_ENCBASE ); |
| 1002 | m_Reader.DecodeVarLengthUnsigned( INTERRUPTIBLE_RANGE_DELTA2_ENCBASE ); |
| 1003 | } |
| 1004 | |
| 1005 | //------------------------------------------------------------------------------ |
| 1006 | // Read the slot table |
| 1007 | //------------------------------------------------------------------------------ |
| 1008 | |
| 1009 | slotDecoder.DecodeSlotTable(m_Reader); |
| 1010 | |
| 1011 | if (slotDecoder.GetNumUntracked()) |
| 1012 | { |
| 1013 | ReportUntrackedSlots(slotDecoder, pRD, inputFlags, pCallBack, hCallBack); |
| 1014 | } |
| 1015 | } |
| 1016 | |
| 1017 | void GcInfoDecoder::ReportUntrackedSlots( |
| 1018 | GcSlotDecoder& slotDecoder, |
| 1019 | PREGDISPLAY pRD, |
| 1020 | unsigned inputFlags, |
| 1021 | GCEnumCallback pCallBack, |
| 1022 | void * hCallBack |
| 1023 | ) |
| 1024 | { |
| 1025 | for(UINT32 slotIndex = slotDecoder.GetNumTracked(); slotIndex < slotDecoder.GetNumSlots(); slotIndex++) |
| 1026 | { |
| 1027 | ReportSlotToGC(slotDecoder, |
| 1028 | slotIndex, |
| 1029 | pRD, |
| 1030 | true, // Report everything (although there should *never* be any scratch slots that are untracked) |
| 1031 | inputFlags, |
| 1032 | pCallBack, |
| 1033 | hCallBack |
| 1034 | ); |
| 1035 | } |
| 1036 | } |
| 1037 | |
| 1038 | void GcSlotDecoder::DecodeSlotTable(BitStreamReader& reader) |
| 1039 | { |
| 1040 | if (reader.ReadOneFast()) |
| 1041 | { |
| 1042 | m_NumRegisters = (UINT32) reader.DecodeVarLengthUnsigned(NUM_REGISTERS_ENCBASE); |
| 1043 | } |
| 1044 | else |
| 1045 | { |
| 1046 | m_NumRegisters = 0; |
| 1047 | } |
| 1048 | UINT32 numStackSlots; |
| 1049 | if (reader.ReadOneFast()) |
| 1050 | { |
| 1051 | numStackSlots = (UINT32) reader.DecodeVarLengthUnsigned(NUM_STACK_SLOTS_ENCBASE); |
| 1052 | m_NumUntracked = (UINT32) reader.DecodeVarLengthUnsigned(NUM_UNTRACKED_SLOTS_ENCBASE); |
| 1053 | } |
| 1054 | else |
| 1055 | { |
| 1056 | numStackSlots = 0; |
| 1057 | m_NumUntracked = 0; |
| 1058 | } |
| 1059 | m_NumSlots = m_NumRegisters + numStackSlots + m_NumUntracked; |
| 1060 | |
| 1061 | UINT32 i = 0; |
| 1062 | |
| 1063 | if(m_NumRegisters > 0) |
| 1064 | { |
| 1065 | // We certainly predecode the first register |
| 1066 | |
| 1067 | _ASSERTE(i < MAX_PREDECODED_SLOTS); |
| 1068 | |
| 1069 | UINT32 normRegNum = (UINT32) reader.DecodeVarLengthUnsigned(REGISTER_ENCBASE); |
| 1070 | UINT32 regNum = DENORMALIZE_REGISTER(normRegNum); |
| 1071 | GcSlotFlags flags = (GcSlotFlags) reader.Read(2); |
| 1072 | |
| 1073 | m_SlotArray[0].Slot.RegisterNumber = regNum; |
| 1074 | m_SlotArray[0].Flags = flags; |
| 1075 | |
| 1076 | UINT32 loopEnd = _min(m_NumRegisters, MAX_PREDECODED_SLOTS); |
| 1077 | for(i++; i < loopEnd; i++) |
| 1078 | { |
| 1079 | if(flags) |
| 1080 | { |
| 1081 | normRegNum = (UINT32) reader.DecodeVarLengthUnsigned(REGISTER_ENCBASE); |
| 1082 | regNum = DENORMALIZE_REGISTER(normRegNum); |
| 1083 | flags = (GcSlotFlags) reader.Read(2); |
| 1084 | } |
| 1085 | else |
| 1086 | { |
| 1087 | UINT32 normRegDelta = (UINT32) reader.DecodeVarLengthUnsigned(REGISTER_DELTA_ENCBASE) + 1; |
| 1088 | normRegNum += normRegDelta; |
| 1089 | regNum = DENORMALIZE_REGISTER(normRegNum); |
| 1090 | } |
| 1091 | |
| 1092 | m_SlotArray[i].Slot.RegisterNumber = regNum; |
| 1093 | m_SlotArray[i].Flags = flags; |
| 1094 | } |
| 1095 | } |
| 1096 | |
| 1097 | if((numStackSlots > 0) && (i < MAX_PREDECODED_SLOTS)) |
| 1098 | { |
| 1099 | // We have stack slots left and more room to predecode |
| 1100 | |
| 1101 | GcStackSlotBase spBase = (GcStackSlotBase) reader.Read(2); |
| 1102 | UINT32 normSpOffset = (INT32) reader.DecodeVarLengthSigned(STACK_SLOT_ENCBASE); |
| 1103 | INT32 spOffset = DENORMALIZE_STACK_SLOT(normSpOffset); |
| 1104 | GcSlotFlags flags = (GcSlotFlags) reader.Read(2); |
| 1105 | |
| 1106 | m_SlotArray[i].Slot.Stack.SpOffset = spOffset; |
| 1107 | m_SlotArray[i].Slot.Stack.Base = spBase; |
| 1108 | m_SlotArray[i].Flags = flags; |
| 1109 | |
| 1110 | UINT32 loopEnd = _min(m_NumRegisters + numStackSlots, MAX_PREDECODED_SLOTS); |
| 1111 | for(i++; i < loopEnd; i++) |
| 1112 | { |
| 1113 | spBase = (GcStackSlotBase) reader.Read(2); |
| 1114 | |
| 1115 | if(flags) |
| 1116 | { |
| 1117 | normSpOffset = (INT32) reader.DecodeVarLengthSigned(STACK_SLOT_ENCBASE); |
| 1118 | spOffset = DENORMALIZE_STACK_SLOT(normSpOffset); |
| 1119 | flags = (GcSlotFlags) reader.Read(2); |
| 1120 | } |
| 1121 | else |
| 1122 | { |
| 1123 | INT32 normSpOffsetDelta = (INT32) reader.DecodeVarLengthUnsigned(STACK_SLOT_DELTA_ENCBASE); |
| 1124 | normSpOffset += normSpOffsetDelta; |
| 1125 | spOffset = DENORMALIZE_STACK_SLOT(normSpOffset); |
| 1126 | } |
| 1127 | |
| 1128 | m_SlotArray[i].Slot.Stack.SpOffset = spOffset; |
| 1129 | m_SlotArray[i].Slot.Stack.Base = spBase; |
| 1130 | m_SlotArray[i].Flags = flags; |
| 1131 | } |
| 1132 | } |
| 1133 | |
| 1134 | if((m_NumUntracked > 0) && (i < MAX_PREDECODED_SLOTS)) |
| 1135 | { |
| 1136 | // We have untracked stack slots left and more room to predecode |
| 1137 | |
| 1138 | GcStackSlotBase spBase = (GcStackSlotBase) reader.Read(2); |
| 1139 | UINT32 normSpOffset = (INT32) reader.DecodeVarLengthSigned(STACK_SLOT_ENCBASE); |
| 1140 | INT32 spOffset = DENORMALIZE_STACK_SLOT(normSpOffset); |
| 1141 | GcSlotFlags flags = (GcSlotFlags) reader.Read(2); |
| 1142 | |
| 1143 | m_SlotArray[i].Slot.Stack.SpOffset = spOffset; |
| 1144 | m_SlotArray[i].Slot.Stack.Base = spBase; |
| 1145 | m_SlotArray[i].Flags = flags; |
| 1146 | |
| 1147 | UINT32 loopEnd = _min(m_NumSlots, MAX_PREDECODED_SLOTS); |
| 1148 | for(i++; i < loopEnd; i++) |
| 1149 | { |
| 1150 | spBase = (GcStackSlotBase) reader.Read(2); |
| 1151 | |
| 1152 | if(flags) |
| 1153 | { |
| 1154 | normSpOffset = (INT32) reader.DecodeVarLengthSigned(STACK_SLOT_ENCBASE); |
| 1155 | spOffset = DENORMALIZE_STACK_SLOT(normSpOffset); |
| 1156 | flags = (GcSlotFlags) reader.Read(2); |
| 1157 | } |
| 1158 | else |
| 1159 | { |
| 1160 | INT32 normSpOffsetDelta = (INT32) reader.DecodeVarLengthUnsigned(STACK_SLOT_DELTA_ENCBASE); |
| 1161 | normSpOffset += normSpOffsetDelta; |
| 1162 | spOffset = DENORMALIZE_STACK_SLOT(normSpOffset); |
| 1163 | } |
| 1164 | |
| 1165 | m_SlotArray[i].Slot.Stack.SpOffset = spOffset; |
| 1166 | m_SlotArray[i].Slot.Stack.Base = spBase; |
| 1167 | m_SlotArray[i].Flags = flags; |
| 1168 | } |
| 1169 | } |
| 1170 | |
| 1171 | // Done pre-decoding |
| 1172 | |
| 1173 | if(i < m_NumSlots) |
| 1174 | { |
| 1175 | // Prepare for lazy decoding |
| 1176 | |
| 1177 | _ASSERTE(i == MAX_PREDECODED_SLOTS); |
| 1178 | m_NumDecodedSlots = i; |
| 1179 | m_pLastSlot = &m_SlotArray[MAX_PREDECODED_SLOTS - 1]; |
| 1180 | |
| 1181 | m_SlotReader = reader; |
| 1182 | |
| 1183 | // Move the argument reader past the end of the table |
| 1184 | |
| 1185 | GcSlotFlags flags = m_pLastSlot->Flags; |
| 1186 | |
| 1187 | // Skip any remaining registers |
| 1188 | |
| 1189 | for(; i < m_NumRegisters; i++) |
| 1190 | { |
| 1191 | if(flags) |
| 1192 | { |
| 1193 | reader.DecodeVarLengthUnsigned(REGISTER_ENCBASE); |
| 1194 | flags = (GcSlotFlags) reader.Read(2); |
| 1195 | } |
| 1196 | else |
| 1197 | { |
| 1198 | reader.DecodeVarLengthUnsigned(REGISTER_DELTA_ENCBASE); |
| 1199 | } |
| 1200 | } |
| 1201 | |
| 1202 | if(numStackSlots > 0) |
| 1203 | { |
| 1204 | if(i == m_NumRegisters) |
| 1205 | { |
| 1206 | // Skip the first stack slot |
| 1207 | |
| 1208 | reader.Read(2); |
| 1209 | reader.DecodeVarLengthSigned(STACK_SLOT_ENCBASE); |
| 1210 | flags = (GcSlotFlags) reader.Read(2); |
| 1211 | i++; |
| 1212 | } |
| 1213 | |
| 1214 | // Skip any remaining stack slots |
| 1215 | |
| 1216 | const UINT32 loopEnd = m_NumRegisters + numStackSlots; |
| 1217 | for(; i < loopEnd; i++) |
| 1218 | { |
| 1219 | reader.Read(2); |
| 1220 | |
| 1221 | if(flags) |
| 1222 | { |
| 1223 | reader.DecodeVarLengthSigned(STACK_SLOT_ENCBASE); |
| 1224 | flags = (GcSlotFlags) reader.Read(2); |
| 1225 | } |
| 1226 | else |
| 1227 | { |
| 1228 | reader.DecodeVarLengthUnsigned(STACK_SLOT_DELTA_ENCBASE); |
| 1229 | } |
| 1230 | } |
| 1231 | } |
| 1232 | |
| 1233 | if(m_NumUntracked > 0) |
| 1234 | { |
| 1235 | if(i == m_NumRegisters + numStackSlots) |
| 1236 | { |
| 1237 | // Skip the first untracked slot |
| 1238 | |
| 1239 | reader.Read(2); |
| 1240 | reader.DecodeVarLengthSigned(STACK_SLOT_ENCBASE); |
| 1241 | flags = (GcSlotFlags) reader.Read(2); |
| 1242 | i++; |
| 1243 | } |
| 1244 | |
| 1245 | // Skip any remaining untracked slots |
| 1246 | |
| 1247 | for(; i < m_NumSlots; i++) |
| 1248 | { |
| 1249 | reader.Read(2); |
| 1250 | |
| 1251 | if(flags) |
| 1252 | { |
| 1253 | reader.DecodeVarLengthSigned(STACK_SLOT_ENCBASE); |
| 1254 | flags = (GcSlotFlags) reader.Read(2); |
| 1255 | } |
| 1256 | else |
| 1257 | { |
| 1258 | reader.DecodeVarLengthUnsigned(STACK_SLOT_DELTA_ENCBASE); |
| 1259 | } |
| 1260 | } |
| 1261 | } |
| 1262 | } |
| 1263 | } |
| 1264 | |
| 1265 | const GcSlotDesc* GcSlotDecoder::GetSlotDesc(UINT32 slotIndex) |
| 1266 | { |
| 1267 | _ASSERTE(slotIndex < m_NumSlots); |
| 1268 | |
| 1269 | if(slotIndex < MAX_PREDECODED_SLOTS) |
| 1270 | { |
| 1271 | return &m_SlotArray[slotIndex]; |
| 1272 | } |
| 1273 | |
| 1274 | _ASSERTE(m_NumDecodedSlots >= MAX_PREDECODED_SLOTS && m_NumDecodedSlots < m_NumSlots); |
| 1275 | _ASSERTE(m_NumDecodedSlots <= slotIndex); |
| 1276 | |
| 1277 | while(m_NumDecodedSlots <= slotIndex) |
| 1278 | { |
| 1279 | if(m_NumDecodedSlots < m_NumRegisters) |
| 1280 | { |
| 1281 | // |
| 1282 | // Decode a register |
| 1283 | // |
| 1284 | |
| 1285 | if(m_NumDecodedSlots == 0) |
| 1286 | { |
| 1287 | // Decode the first register |
| 1288 | UINT32 normRegNum = (UINT32) m_SlotReader.DecodeVarLengthUnsigned(REGISTER_ENCBASE); |
| 1289 | m_pLastSlot->Slot.RegisterNumber = DENORMALIZE_REGISTER(normRegNum); |
| 1290 | m_pLastSlot->Flags = (GcSlotFlags) m_SlotReader.Read(2); |
| 1291 | } |
| 1292 | else |
| 1293 | { |
| 1294 | if(m_pLastSlot->Flags) |
| 1295 | { |
| 1296 | UINT32 normRegNum = (UINT32) m_SlotReader.DecodeVarLengthUnsigned(REGISTER_ENCBASE); |
| 1297 | m_pLastSlot->Slot.RegisterNumber = DENORMALIZE_REGISTER(normRegNum); |
| 1298 | m_pLastSlot->Flags = (GcSlotFlags) m_SlotReader.Read(2); |
| 1299 | } |
| 1300 | else |
| 1301 | { |
| 1302 | UINT32 normRegDelta = (UINT32) m_SlotReader.DecodeVarLengthUnsigned(REGISTER_DELTA_ENCBASE) + 1; |
| 1303 | UINT32 normRegNum = normRegDelta + NORMALIZE_REGISTER(m_pLastSlot->Slot.RegisterNumber); |
| 1304 | m_pLastSlot->Slot.RegisterNumber = DENORMALIZE_REGISTER(normRegNum); |
| 1305 | } |
| 1306 | } |
| 1307 | } |
| 1308 | else |
| 1309 | { |
| 1310 | // |
| 1311 | // Decode a stack slot |
| 1312 | // |
| 1313 | |
| 1314 | if((m_NumDecodedSlots == m_NumRegisters) || (m_NumDecodedSlots == GetNumTracked())) |
| 1315 | { |
| 1316 | // Decode the first stack slot or first untracked slot |
| 1317 | m_pLastSlot->Slot.Stack.Base = (GcStackSlotBase) m_SlotReader.Read(2); |
| 1318 | UINT32 normSpOffset = (INT32) m_SlotReader.DecodeVarLengthSigned(STACK_SLOT_ENCBASE); |
| 1319 | m_pLastSlot->Slot.Stack.SpOffset = DENORMALIZE_STACK_SLOT(normSpOffset); |
| 1320 | m_pLastSlot->Flags = (GcSlotFlags) m_SlotReader.Read(2); |
| 1321 | } |
| 1322 | else |
| 1323 | { |
| 1324 | m_pLastSlot->Slot.Stack.Base = (GcStackSlotBase) m_SlotReader.Read(2); |
| 1325 | |
| 1326 | if(m_pLastSlot->Flags) |
| 1327 | { |
| 1328 | INT32 normSpOffset = (INT32) m_SlotReader.DecodeVarLengthSigned(STACK_SLOT_ENCBASE); |
| 1329 | m_pLastSlot->Slot.Stack.SpOffset = DENORMALIZE_STACK_SLOT(normSpOffset); |
| 1330 | m_pLastSlot->Flags = (GcSlotFlags) m_SlotReader.Read(2); |
| 1331 | } |
| 1332 | else |
| 1333 | { |
| 1334 | INT32 normSpOffsetDelta = (INT32) m_SlotReader.DecodeVarLengthUnsigned(STACK_SLOT_DELTA_ENCBASE); |
| 1335 | INT32 normSpOffset = normSpOffsetDelta + NORMALIZE_STACK_SLOT(m_pLastSlot->Slot.Stack.SpOffset); |
| 1336 | m_pLastSlot->Slot.Stack.SpOffset = DENORMALIZE_STACK_SLOT(normSpOffset); |
| 1337 | } |
| 1338 | } |
| 1339 | } |
| 1340 | |
| 1341 | m_NumDecodedSlots++; |
| 1342 | } |
| 1343 | |
| 1344 | return m_pLastSlot; |
| 1345 | } |
| 1346 | |
| 1347 | |
| 1348 | //----------------------------------------------------------------------------- |
| 1349 | // Platform-specific methods |
| 1350 | //----------------------------------------------------------------------------- |
| 1351 | |
| 1352 | #if defined(_TARGET_AMD64_) |
| 1353 | |
| 1354 | |
| 1355 | OBJECTREF* GcInfoDecoder::GetRegisterSlot( |
| 1356 | int regNum, |
| 1357 | PREGDISPLAY pRD |
| 1358 | ) |
| 1359 | { |
| 1360 | _ASSERTE(regNum >= 0 && regNum <= 16); |
| 1361 | _ASSERTE(regNum != 4); // rsp |
| 1362 | |
| 1363 | #ifdef FEATURE_REDHAWK |
| 1364 | PTR_UIntNative* ppRax = &pRD->pRax; |
| 1365 | if (regNum > 4) regNum--; // rsp is skipped in Redhawk RegDisplay |
| 1366 | #else |
| 1367 | // The fields of KNONVOLATILE_CONTEXT_POINTERS are in the same order as |
| 1368 | // the processor encoding numbers. |
| 1369 | |
| 1370 | ULONGLONG **ppRax = &pRD->pCurrentContextPointers->Rax; |
| 1371 | #endif |
| 1372 | |
| 1373 | return (OBJECTREF*)*(ppRax + regNum); |
| 1374 | } |
| 1375 | |
| 1376 | #ifdef FEATURE_PAL |
| 1377 | OBJECTREF* GcInfoDecoder::GetCapturedRegister( |
| 1378 | int regNum, |
| 1379 | PREGDISPLAY pRD |
| 1380 | ) |
| 1381 | { |
| 1382 | _ASSERTE(regNum >= 0 && regNum <= 16); |
| 1383 | _ASSERTE(regNum != 4); // rsp |
| 1384 | |
| 1385 | // The fields of CONTEXT are in the same order as |
| 1386 | // the processor encoding numbers. |
| 1387 | |
| 1388 | ULONGLONG *pRax = &pRD->pCurrentContext->Rax; |
| 1389 | |
| 1390 | return (OBJECTREF*)(pRax + regNum); |
| 1391 | } |
| 1392 | #endif // FEATURE_PAL |
| 1393 | |
| 1394 | bool GcInfoDecoder::IsScratchRegister(int regNum, PREGDISPLAY pRD) |
| 1395 | { |
| 1396 | _ASSERTE(regNum >= 0 && regNum <= 16); |
| 1397 | _ASSERTE(regNum != 4); // rsp |
| 1398 | |
| 1399 | UINT16 PreservedRegMask = |
| 1400 | (1 << 3) // rbx |
| 1401 | | (1 << 5) // rbp |
| 1402 | #ifndef UNIX_AMD64_ABI |
| 1403 | | (1 << 6) // rsi |
| 1404 | | (1 << 7) // rdi |
| 1405 | #endif // UNIX_AMD64_ABI |
| 1406 | | (1 << 12) // r12 |
| 1407 | | (1 << 13) // r13 |
| 1408 | | (1 << 14) // r14 |
| 1409 | | (1 << 15); // r15 |
| 1410 | |
| 1411 | return !(PreservedRegMask & (1 << regNum)); |
| 1412 | } |
| 1413 | |
| 1414 | |
| 1415 | bool GcInfoDecoder::IsScratchStackSlot(INT32 spOffset, GcStackSlotBase spBase, PREGDISPLAY pRD) |
| 1416 | { |
| 1417 | #ifdef FIXED_STACK_PARAMETER_SCRATCH_AREA |
| 1418 | _ASSERTE( m_Flags & DECODE_GC_LIFETIMES ); |
| 1419 | |
| 1420 | TADDR pSlot = (TADDR) GetStackSlot(spOffset, spBase, pRD); |
| 1421 | _ASSERTE(pSlot >= pRD->SP); |
| 1422 | |
| 1423 | return (pSlot < pRD->SP + m_SizeOfStackOutgoingAndScratchArea); |
| 1424 | #else |
| 1425 | return FALSE; |
| 1426 | #endif |
| 1427 | } |
| 1428 | |
| 1429 | |
| 1430 | void GcInfoDecoder::ReportRegisterToGC( // AMD64 |
| 1431 | int regNum, |
| 1432 | unsigned gcFlags, |
| 1433 | PREGDISPLAY pRD, |
| 1434 | unsigned flags, |
| 1435 | GCEnumCallback pCallBack, |
| 1436 | void * hCallBack) |
| 1437 | { |
| 1438 | GCINFODECODER_CONTRACT; |
| 1439 | |
| 1440 | _ASSERTE(regNum >= 0 && regNum <= 16); |
| 1441 | _ASSERTE(regNum != 4); // rsp |
| 1442 | |
| 1443 | LOG((LF_GCROOTS, LL_INFO1000, "Reporting " FMT_REG, regNum )); |
| 1444 | |
| 1445 | OBJECTREF* pObjRef = GetRegisterSlot( regNum, pRD ); |
| 1446 | #if defined(FEATURE_PAL) && !defined(SOS_TARGET_AMD64) |
| 1447 | // On PAL, we don't always have the context pointers available due to |
| 1448 | // a limitation of an unwinding library. In such case, the context |
| 1449 | // pointers for some nonvolatile registers are NULL. |
| 1450 | // In such case, we let the pObjRef point to the captured register |
| 1451 | // value in the context and pin the object itself. |
| 1452 | if (pObjRef == NULL) |
| 1453 | { |
| 1454 | // Report a pinned object to GC only in the promotion phase when the |
| 1455 | // GC is scanning roots. |
| 1456 | GCCONTEXT* pGCCtx = (GCCONTEXT*)(hCallBack); |
| 1457 | if (!pGCCtx->sc->promotion) |
| 1458 | { |
| 1459 | return; |
| 1460 | } |
| 1461 | |
| 1462 | pObjRef = GetCapturedRegister(regNum, pRD); |
| 1463 | |
| 1464 | gcFlags |= GC_CALL_PINNED; |
| 1465 | } |
| 1466 | #endif // FEATURE_PAL && !SOS_TARGET_AMD64 |
| 1467 | |
| 1468 | #ifdef _DEBUG |
| 1469 | if(IsScratchRegister(regNum, pRD)) |
| 1470 | { |
| 1471 | // Scratch registers cannot be reported for non-leaf frames |
| 1472 | _ASSERTE(flags & ActiveStackFrame); |
| 1473 | } |
| 1474 | |
| 1475 | LOG((LF_GCROOTS, LL_INFO1000, /* Part Two */ |
| 1476 | "at" FMT_ADDR "as " , DBG_ADDR(pObjRef) )); |
| 1477 | |
| 1478 | VALIDATE_ROOT((gcFlags & GC_CALL_INTERIOR), hCallBack, pObjRef); |
| 1479 | |
| 1480 | LOG_PIPTR(pObjRef, gcFlags, hCallBack); |
| 1481 | #endif //_DEBUG |
| 1482 | |
| 1483 | gcFlags |= CHECK_APP_DOMAIN; |
| 1484 | |
| 1485 | pCallBack(hCallBack, pObjRef, gcFlags DAC_ARG(DacSlotLocation(regNum, 0, false))); |
| 1486 | } |
| 1487 | |
| 1488 | #elif defined(_TARGET_ARM_) |
| 1489 | |
| 1490 | OBJECTREF* GcInfoDecoder::GetRegisterSlot( |
| 1491 | int regNum, |
| 1492 | PREGDISPLAY pRD |
| 1493 | ) |
| 1494 | { |
| 1495 | _ASSERTE(regNum >= 0 && regNum <= 14); |
| 1496 | _ASSERTE(regNum != 13); // sp |
| 1497 | |
| 1498 | DWORD **ppReg; |
| 1499 | |
| 1500 | if(regNum <= 3) |
| 1501 | { |
| 1502 | ppReg = &pRD->volatileCurrContextPointers.R0; |
| 1503 | return (OBJECTREF*)*(ppReg + regNum); |
| 1504 | } |
| 1505 | else if(regNum == 12) |
| 1506 | { |
| 1507 | return (OBJECTREF*) pRD->volatileCurrContextPointers.R12; |
| 1508 | } |
| 1509 | else if(regNum == 14) |
| 1510 | { |
| 1511 | return (OBJECTREF*) pRD->pCurrentContextPointers->Lr; |
| 1512 | } |
| 1513 | |
| 1514 | ppReg = &pRD->pCurrentContextPointers->R4; |
| 1515 | |
| 1516 | return (OBJECTREF*)*(ppReg + regNum-4); |
| 1517 | |
| 1518 | } |
| 1519 | |
| 1520 | #ifdef FEATURE_PAL |
| 1521 | OBJECTREF* GcInfoDecoder::GetCapturedRegister( |
| 1522 | int regNum, |
| 1523 | PREGDISPLAY pRD |
| 1524 | ) |
| 1525 | { |
| 1526 | _ASSERTE(regNum >= 0 && regNum <= 14); |
| 1527 | _ASSERTE(regNum != 13); // sp |
| 1528 | |
| 1529 | // The fields of CONTEXT are in the same order as |
| 1530 | // the processor encoding numbers. |
| 1531 | |
| 1532 | ULONG *pR0 = &pRD->pCurrentContext->R0; |
| 1533 | |
| 1534 | return (OBJECTREF*)(pR0 + regNum); |
| 1535 | } |
| 1536 | #endif // FEATURE_PAL |
| 1537 | |
| 1538 | |
| 1539 | bool GcInfoDecoder::IsScratchRegister(int regNum, PREGDISPLAY pRD) |
| 1540 | { |
| 1541 | _ASSERTE(regNum >= 0 && regNum <= 14); |
| 1542 | _ASSERTE(regNum != 13); // sp |
| 1543 | |
| 1544 | return regNum <= 3 || regNum >= 12; // R12 and R14/LR are both scratch registers |
| 1545 | } |
| 1546 | |
| 1547 | |
| 1548 | bool GcInfoDecoder::IsScratchStackSlot(INT32 spOffset, GcStackSlotBase spBase, PREGDISPLAY pRD) |
| 1549 | { |
| 1550 | #ifdef FIXED_STACK_PARAMETER_SCRATCH_AREA |
| 1551 | _ASSERTE( m_Flags & DECODE_GC_LIFETIMES ); |
| 1552 | |
| 1553 | TADDR pSlot = (TADDR) GetStackSlot(spOffset, spBase, pRD); |
| 1554 | _ASSERTE(pSlot >= pRD->SP); |
| 1555 | |
| 1556 | return (pSlot < pRD->SP + m_SizeOfStackOutgoingAndScratchArea); |
| 1557 | #else |
| 1558 | return FALSE; |
| 1559 | #endif |
| 1560 | } |
| 1561 | |
| 1562 | |
| 1563 | void GcInfoDecoder::ReportRegisterToGC( // ARM |
| 1564 | int regNum, |
| 1565 | unsigned gcFlags, |
| 1566 | PREGDISPLAY pRD, |
| 1567 | unsigned flags, |
| 1568 | GCEnumCallback pCallBack, |
| 1569 | void * hCallBack) |
| 1570 | { |
| 1571 | GCINFODECODER_CONTRACT; |
| 1572 | |
| 1573 | _ASSERTE(regNum >= 0 && regNum <= 14); |
| 1574 | _ASSERTE(regNum != 13); // sp |
| 1575 | |
| 1576 | LOG((LF_GCROOTS, LL_INFO1000, "Reporting " FMT_REG, regNum )); |
| 1577 | |
| 1578 | OBJECTREF* pObjRef = GetRegisterSlot( regNum, pRD ); |
| 1579 | |
| 1580 | #ifdef _DEBUG |
| 1581 | if(IsScratchRegister(regNum, pRD)) |
| 1582 | { |
| 1583 | // Scratch registers cannot be reported for non-leaf frames |
| 1584 | _ASSERTE(flags & ActiveStackFrame); |
| 1585 | } |
| 1586 | |
| 1587 | LOG((LF_GCROOTS, LL_INFO1000, /* Part Two */ |
| 1588 | "at" FMT_ADDR "as " , DBG_ADDR(pObjRef) )); |
| 1589 | |
| 1590 | VALIDATE_ROOT((gcFlags & GC_CALL_INTERIOR), hCallBack, pObjRef); |
| 1591 | |
| 1592 | LOG_PIPTR(pObjRef, gcFlags, hCallBack); |
| 1593 | #endif //_DEBUG |
| 1594 | |
| 1595 | gcFlags |= CHECK_APP_DOMAIN; |
| 1596 | |
| 1597 | pCallBack(hCallBack, pObjRef, gcFlags DAC_ARG(DacSlotLocation(regNum, 0, false))); |
| 1598 | } |
| 1599 | |
| 1600 | #elif defined(_TARGET_ARM64_) |
| 1601 | |
| 1602 | OBJECTREF* GcInfoDecoder::GetRegisterSlot( |
| 1603 | int regNum, |
| 1604 | PREGDISPLAY pRD |
| 1605 | ) |
| 1606 | { |
| 1607 | _ASSERTE(regNum >= 0 && regNum <= 30); |
| 1608 | _ASSERTE(regNum != 18); // TEB |
| 1609 | |
| 1610 | DWORD64 **ppReg; |
| 1611 | |
| 1612 | if(regNum <= 17) |
| 1613 | { |
| 1614 | ppReg = &pRD->volatileCurrContextPointers.X0; |
| 1615 | return (OBJECTREF*)*(ppReg + regNum); |
| 1616 | } |
| 1617 | else if(regNum == 29) |
| 1618 | { |
| 1619 | return (OBJECTREF*) pRD->pCurrentContextPointers->Fp; |
| 1620 | } |
| 1621 | else if(regNum == 30) |
| 1622 | { |
| 1623 | return (OBJECTREF*) pRD->pCurrentContextPointers->Lr; |
| 1624 | } |
| 1625 | |
| 1626 | ppReg = &pRD->pCurrentContextPointers->X19; |
| 1627 | |
| 1628 | return (OBJECTREF*)*(ppReg + regNum-19); |
| 1629 | } |
| 1630 | |
| 1631 | bool GcInfoDecoder::IsScratchRegister(int regNum, PREGDISPLAY pRD) |
| 1632 | { |
| 1633 | _ASSERTE(regNum >= 0 && regNum <= 30); |
| 1634 | _ASSERTE(regNum != 18); |
| 1635 | |
| 1636 | return regNum <= 17 || regNum >= 29; // R12 and R14/LR are both scratch registers |
| 1637 | } |
| 1638 | |
| 1639 | bool GcInfoDecoder::IsScratchStackSlot(INT32 spOffset, GcStackSlotBase spBase, PREGDISPLAY pRD) |
| 1640 | { |
| 1641 | #ifdef FIXED_STACK_PARAMETER_SCRATCH_AREA |
| 1642 | _ASSERTE( m_Flags & DECODE_GC_LIFETIMES ); |
| 1643 | |
| 1644 | TADDR pSlot = (TADDR) GetStackSlot(spOffset, spBase, pRD); |
| 1645 | _ASSERTE(pSlot >= pRD->SP); |
| 1646 | |
| 1647 | return (pSlot < pRD->SP + m_SizeOfStackOutgoingAndScratchArea); |
| 1648 | #else |
| 1649 | return FALSE; |
| 1650 | #endif |
| 1651 | |
| 1652 | } |
| 1653 | |
| 1654 | void GcInfoDecoder::ReportRegisterToGC( // ARM64 |
| 1655 | int regNum, |
| 1656 | unsigned gcFlags, |
| 1657 | PREGDISPLAY pRD, |
| 1658 | unsigned flags, |
| 1659 | GCEnumCallback pCallBack, |
| 1660 | void * hCallBack) |
| 1661 | { |
| 1662 | GCINFODECODER_CONTRACT; |
| 1663 | |
| 1664 | _ASSERTE(regNum >= 0 && regNum <= 30); |
| 1665 | _ASSERTE(regNum != 18); |
| 1666 | |
| 1667 | LOG((LF_GCROOTS, LL_INFO1000, "Reporting " FMT_REG, regNum )); |
| 1668 | |
| 1669 | OBJECTREF* pObjRef = GetRegisterSlot( regNum, pRD ); |
| 1670 | |
| 1671 | #ifdef _DEBUG |
| 1672 | if(IsScratchRegister(regNum, pRD)) |
| 1673 | { |
| 1674 | // Scratch registers cannot be reported for non-leaf frames |
| 1675 | _ASSERTE(flags & ActiveStackFrame); |
| 1676 | } |
| 1677 | |
| 1678 | LOG((LF_GCROOTS, LL_INFO1000, /* Part Two */ |
| 1679 | "at" FMT_ADDR "as " , DBG_ADDR(pObjRef) )); |
| 1680 | |
| 1681 | VALIDATE_ROOT((gcFlags & GC_CALL_INTERIOR), hCallBack, pObjRef); |
| 1682 | |
| 1683 | LOG_PIPTR(pObjRef, gcFlags, hCallBack); |
| 1684 | #endif //_DEBUG |
| 1685 | |
| 1686 | gcFlags |= CHECK_APP_DOMAIN; |
| 1687 | |
| 1688 | pCallBack(hCallBack, pObjRef, gcFlags DAC_ARG(DacSlotLocation(regNum, 0, false))); |
| 1689 | } |
| 1690 | |
| 1691 | #ifdef FEATURE_PAL |
| 1692 | OBJECTREF* GcInfoDecoder::GetCapturedRegister( |
| 1693 | int regNum, |
| 1694 | PREGDISPLAY pRD |
| 1695 | ) |
| 1696 | { |
| 1697 | _ASSERTE(regNum >= 0 && regNum <= 28); |
| 1698 | |
| 1699 | // The fields of CONTEXT are in the same order as |
| 1700 | // the processor encoding numbers. |
| 1701 | |
| 1702 | DWORD64 *pX0 = &pRD->pCurrentContext->X0; |
| 1703 | |
| 1704 | return (OBJECTREF*)(pX0 + regNum); |
| 1705 | } |
| 1706 | #endif // FEATURE_PAL |
| 1707 | |
| 1708 | #else // Unknown platform |
| 1709 | |
| 1710 | OBJECTREF* GcInfoDecoder::GetRegisterSlot( |
| 1711 | int regNum, |
| 1712 | PREGDISPLAY pRD |
| 1713 | ) |
| 1714 | { |
| 1715 | PORTABILITY_ASSERT("GcInfoDecoder::GetRegisterSlot" ); |
| 1716 | return NULL; |
| 1717 | } |
| 1718 | |
| 1719 | bool GcInfoDecoder::IsScratchRegister(int regNum, PREGDISPLAY pRD) |
| 1720 | { |
| 1721 | PORTABILITY_ASSERT("GcInfoDecoder::IsScratchRegister" ); |
| 1722 | return false; |
| 1723 | } |
| 1724 | |
| 1725 | bool GcInfoDecoder::IsScratchStackSlot(INT32 spOffset, GcStackSlotBase spBase, PREGDISPLAY pRD) |
| 1726 | { |
| 1727 | _ASSERTE( !"NYI" ); |
| 1728 | return false; |
| 1729 | } |
| 1730 | |
| 1731 | void GcInfoDecoder::ReportRegisterToGC( |
| 1732 | int regNum, |
| 1733 | unsigned gcFlags, |
| 1734 | PREGDISPLAY pRD, |
| 1735 | unsigned flags, |
| 1736 | GCEnumCallback pCallBack, |
| 1737 | void * hCallBack) |
| 1738 | { |
| 1739 | _ASSERTE( !"NYI" ); |
| 1740 | } |
| 1741 | |
| 1742 | #endif // Unknown platform |
| 1743 | |
| 1744 | |
| 1745 | OBJECTREF* GcInfoDecoder::GetStackSlot( |
| 1746 | INT32 spOffset, |
| 1747 | GcStackSlotBase spBase, |
| 1748 | PREGDISPLAY pRD |
| 1749 | ) |
| 1750 | { |
| 1751 | #ifdef CROSSGEN_COMPILE |
| 1752 | _ASSERTE(!"GcInfoDecoder::GetStackSlot not supported in this build configuration" ); |
| 1753 | return NULL; |
| 1754 | #else // CROSSGEN_COMPILE |
| 1755 | OBJECTREF* pObjRef; |
| 1756 | |
| 1757 | if( GC_SP_REL == spBase ) |
| 1758 | { |
| 1759 | pObjRef = (OBJECTREF*) ((SIZE_T)pRD->SP + spOffset); |
| 1760 | } |
| 1761 | else if( GC_CALLER_SP_REL == spBase ) |
| 1762 | { |
| 1763 | pObjRef = (OBJECTREF*) (GET_CALLER_SP(pRD) + spOffset); |
| 1764 | } |
| 1765 | else |
| 1766 | { |
| 1767 | _ASSERTE( GC_FRAMEREG_REL == spBase ); |
| 1768 | _ASSERTE( NO_STACK_BASE_REGISTER != m_StackBaseRegister ); |
| 1769 | |
| 1770 | SIZE_T * pFrameReg = (SIZE_T*) GetRegisterSlot(m_StackBaseRegister, pRD); |
| 1771 | |
| 1772 | #ifdef FEATURE_PAL |
| 1773 | // On PAL, we don't always have the context pointers available due to |
| 1774 | // a limitation of an unwinding library. In such case, the context |
| 1775 | // pointers for some nonvolatile registers are NULL. |
| 1776 | if (pFrameReg == NULL) |
| 1777 | { |
| 1778 | pFrameReg = (SIZE_T*) GetCapturedRegister(m_StackBaseRegister, pRD); |
| 1779 | } |
| 1780 | #endif // FEATURE_PAL |
| 1781 | |
| 1782 | pObjRef = (OBJECTREF*)(*pFrameReg + spOffset); |
| 1783 | } |
| 1784 | |
| 1785 | return pObjRef; |
| 1786 | #endif // CROSSGEN_COMPILE |
| 1787 | } |
| 1788 | |
| 1789 | #ifdef DACCESS_COMPILE |
| 1790 | int GcInfoDecoder::GetStackReg(int spBase) |
| 1791 | { |
| 1792 | #if defined(_TARGET_AMD64_) |
| 1793 | int esp = 4; |
| 1794 | #elif defined(_TARGET_ARM_) |
| 1795 | int esp = 13; |
| 1796 | #elif defined(_TARGET_ARM64_) |
| 1797 | int esp = 31; |
| 1798 | #endif |
| 1799 | |
| 1800 | if( GC_SP_REL == spBase ) |
| 1801 | return esp; |
| 1802 | else if ( GC_CALLER_SP_REL == spBase ) |
| 1803 | return -(esp+1); |
| 1804 | else |
| 1805 | return m_StackBaseRegister; |
| 1806 | } |
| 1807 | #endif // DACCESS_COMPILE |
| 1808 | |
| 1809 | void GcInfoDecoder::ReportStackSlotToGC( |
| 1810 | INT32 spOffset, |
| 1811 | GcStackSlotBase spBase, |
| 1812 | unsigned gcFlags, |
| 1813 | PREGDISPLAY pRD, |
| 1814 | unsigned flags, |
| 1815 | GCEnumCallback pCallBack, |
| 1816 | void * hCallBack) |
| 1817 | { |
| 1818 | GCINFODECODER_CONTRACT; |
| 1819 | |
| 1820 | OBJECTREF* pObjRef = GetStackSlot(spOffset, spBase, pRD); |
| 1821 | _ASSERTE( IS_ALIGNED( pObjRef, sizeof( Object* ) ) ); |
| 1822 | |
| 1823 | #ifdef _DEBUG |
| 1824 | LOG((LF_GCROOTS, LL_INFO1000, /* Part One */ |
| 1825 | "Reporting %s" FMT_STK, |
| 1826 | ( (GC_SP_REL == spBase) ? "" : |
| 1827 | ((GC_CALLER_SP_REL == spBase) ? "caller's " : |
| 1828 | ((GC_FRAMEREG_REL == spBase) ? "frame " : "<unrecognized GcStackSlotBase> " ))), |
| 1829 | DBG_STK(spOffset) )); |
| 1830 | |
| 1831 | LOG((LF_GCROOTS, LL_INFO1000, /* Part Two */ |
| 1832 | "at" FMT_ADDR "as " , DBG_ADDR(pObjRef) )); |
| 1833 | |
| 1834 | VALIDATE_ROOT((gcFlags & GC_CALL_INTERIOR), hCallBack, pObjRef); |
| 1835 | |
| 1836 | LOG_PIPTR(pObjRef, gcFlags, hCallBack); |
| 1837 | #endif |
| 1838 | |
| 1839 | gcFlags |= CHECK_APP_DOMAIN; |
| 1840 | |
| 1841 | pCallBack(hCallBack, pObjRef, gcFlags DAC_ARG(DacSlotLocation(GetStackReg(spBase), spOffset, true))); |
| 1842 | } |
| 1843 | |
| 1844 | |
| 1845 | #endif // USE_GC_INFO_DECODER |
| 1846 | |
| 1847 | |