1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | //========================================================================= |
6 | |
7 | // |
8 | // HillClimbing.cpp |
9 | // |
10 | // Defines classes for the ThreadPool's HillClimbing concurrency-optimization |
11 | // algorithm. |
12 | // |
13 | |
14 | //========================================================================= |
15 | |
16 | // |
17 | // TODO: write an essay about how/why this works. Maybe put it in BotR? |
18 | // |
19 | |
20 | #include "common.h" |
21 | #include "hillclimbing.h" |
22 | #include "win32threadpool.h" |
23 | |
24 | // |
25 | // Default compilation mode is /fp:precise, which disables fp intrinsics. This causes us to pull in FP stuff (sin,cos,etc.) from |
26 | // The CRT, and increases our download size by ~5k. We don't need the extra precision this gets us, so let's switch to |
27 | // the intrinsic versions. |
28 | // |
29 | #ifdef _MSC_VER |
30 | #pragma float_control(precise, off) |
31 | #endif |
32 | |
33 | |
34 | |
35 | const double pi = 3.141592653589793; |
36 | |
37 | void HillClimbing::Initialize() |
38 | { |
39 | CONTRACTL |
40 | { |
41 | THROWS; |
42 | GC_NOTRIGGER; |
43 | MODE_ANY; |
44 | } |
45 | CONTRACTL_END; |
46 | |
47 | m_wavePeriod = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_WavePeriod); |
48 | m_maxThreadWaveMagnitude = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_MaxWaveMagnitude); |
49 | m_threadMagnitudeMultiplier = (double)CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_WaveMagnitudeMultiplier) / 100.0; |
50 | m_samplesToMeasure = m_wavePeriod * (int)CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_WaveHistorySize); |
51 | m_targetThroughputRatio = (double)CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_Bias) / 100.0; |
52 | m_targetSignalToNoiseRatio = (double)CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_TargetSignalToNoiseRatio) / 100.0; |
53 | m_maxChangePerSecond = (double)CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_MaxChangePerSecond); |
54 | m_maxChangePerSample = (double)CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_MaxChangePerSample); |
55 | m_sampleIntervalLow = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_SampleIntervalLow); |
56 | m_sampleIntervalHigh = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_SampleIntervalHigh); |
57 | m_throughputErrorSmoothingFactor = (double)CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_ErrorSmoothingFactor) / 100.0; |
58 | m_gainExponent = (double)CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_GainExponent) / 100.0; |
59 | m_maxSampleError = (double)CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_MaxSampleErrorPercent) / 100.0; |
60 | m_currentControlSetting = 0; |
61 | m_totalSamples = 0; |
62 | m_lastThreadCount = 0; |
63 | m_averageThroughputNoise = 0; |
64 | m_elapsedSinceLastChange = 0; |
65 | m_completionsSinceLastChange = 0; |
66 | m_accumulatedCompletionCount = 0; |
67 | m_accumulatedSampleDuration = 0; |
68 | |
69 | m_samples = new double[m_samplesToMeasure]; |
70 | m_threadCounts = new double[m_samplesToMeasure]; |
71 | |
72 | // seed our random number generator with the CLR instance ID and the process ID, to avoid correlations with other CLR ThreadPool instances. |
73 | #ifndef DACCESS_COMPILE |
74 | m_randomIntervalGenerator.Init(((int)GetClrInstanceId() << 16) ^ (int)GetCurrentProcessId()); |
75 | #endif |
76 | m_currentSampleInterval = m_randomIntervalGenerator.Next(m_sampleIntervalLow, m_sampleIntervalHigh+1); |
77 | } |
78 | |
79 | int HillClimbing::Update(int currentThreadCount, double sampleDuration, int numCompletions, int* pNewSampleInterval) |
80 | { |
81 | LIMITED_METHOD_CONTRACT; |
82 | |
83 | #ifdef DACCESS_COMPILE |
84 | return 1; |
85 | #else |
86 | |
87 | // |
88 | // If someone changed the thread count without telling us, update our records accordingly. |
89 | // |
90 | if (currentThreadCount != m_lastThreadCount) |
91 | ForceChange(currentThreadCount, Initializing); |
92 | |
93 | // |
94 | // Update the cumulative stats for this thread count |
95 | // |
96 | m_elapsedSinceLastChange += sampleDuration; |
97 | m_completionsSinceLastChange += numCompletions; |
98 | |
99 | // |
100 | // Add in any data we've already collected about this sample |
101 | // |
102 | sampleDuration += m_accumulatedSampleDuration; |
103 | numCompletions += m_accumulatedCompletionCount; |
104 | |
105 | // |
106 | // We need to make sure we're collecting reasonably accurate data. Since we're just counting the end |
107 | // of each work item, we are goinng to be missing some data about what really happened during the |
108 | // sample interval. The count produced by each thread includes an initial work item that may have |
109 | // started well before the start of the interval, and each thread may have been running some new |
110 | // work item for some time before the end of the interval, which did not yet get counted. So |
111 | // our count is going to be off by +/- threadCount workitems. |
112 | // |
113 | // The exception is that the thread that reported to us last time definitely wasn't running any work |
114 | // at that time, and the thread that's reporting now definitely isn't running a work item now. So |
115 | // we really only need to consider threadCount-1 threads. |
116 | // |
117 | // Thus the percent error in our count is +/- (threadCount-1)/numCompletions. |
118 | // |
119 | // We cannot rely on the frequency-domain analysis we'll be doing later to filter out this error, because |
120 | // of the way it accumulates over time. If this sample is off by, say, 33% in the negative direction, |
121 | // then the next one likely will be too. The one after that will include the sum of the completions |
122 | // we missed in the previous samples, and so will be 33% positive. So every three samples we'll have |
123 | // two "low" samples and one "high" sample. This will appear as periodic variation right in the frequency |
124 | // range we're targeting, which will not be filtered by the frequency-domain translation. |
125 | // |
126 | if (m_totalSamples > 0 && ((currentThreadCount-1.0) / numCompletions) >= m_maxSampleError) |
127 | { |
128 | // not accurate enough yet. Let's accumulate the data so far, and tell the ThreadPool |
129 | // to collect a little more. |
130 | m_accumulatedSampleDuration = sampleDuration; |
131 | m_accumulatedCompletionCount = numCompletions; |
132 | *pNewSampleInterval = 10; |
133 | return currentThreadCount; |
134 | } |
135 | |
136 | // |
137 | // We've got enouugh data for our sample; reset our accumulators for next time. |
138 | // |
139 | m_accumulatedSampleDuration = 0; |
140 | m_accumulatedCompletionCount = 0; |
141 | |
142 | // |
143 | // Add the current thread count and throughput sample to our history |
144 | // |
145 | double throughput = (double)numCompletions / sampleDuration; |
146 | FireEtwThreadPoolWorkerThreadAdjustmentSample(throughput, GetClrInstanceId()); |
147 | |
148 | int sampleIndex = m_totalSamples % m_samplesToMeasure; |
149 | m_samples[sampleIndex] = throughput; |
150 | m_threadCounts[sampleIndex] = currentThreadCount; |
151 | m_totalSamples++; |
152 | |
153 | // |
154 | // Set up defaults for our metrics |
155 | // |
156 | Complex threadWaveComponent = 0; |
157 | Complex throughputWaveComponent = 0; |
158 | double throughputErrorEstimate = 0; |
159 | Complex ratio = 0; |
160 | double confidence = 0; |
161 | |
162 | HillClimbingStateTransition transition = Warmup; |
163 | |
164 | // |
165 | // How many samples will we use? It must be at least the three wave periods we're looking for, and it must also be a whole |
166 | // multiple of the primary wave's period; otherwise the frequency we're looking for will fall between two frequency bands |
167 | // in the Fourier analysis, and we won't be able to measure it accurately. |
168 | // |
169 | int sampleCount = ((int)min(m_totalSamples-1, m_samplesToMeasure) / m_wavePeriod) * m_wavePeriod; |
170 | |
171 | if (sampleCount > m_wavePeriod) |
172 | { |
173 | // |
174 | // Average the throughput and thread count samples, so we can scale the wave magnitudes later. |
175 | // |
176 | double sampleSum = 0; |
177 | double threadSum = 0; |
178 | for (int i = 0; i < sampleCount; i++) |
179 | { |
180 | sampleSum += m_samples[(m_totalSamples - sampleCount + i) % m_samplesToMeasure]; |
181 | threadSum += m_threadCounts[(m_totalSamples - sampleCount + i) % m_samplesToMeasure]; |
182 | } |
183 | double averageThroughput = sampleSum / sampleCount; |
184 | double averageThreadCount = threadSum / sampleCount; |
185 | |
186 | if (averageThroughput > 0 && averageThreadCount > 0) |
187 | { |
188 | // |
189 | // Calculate the periods of the adjacent frequency bands we'll be using to measure noise levels. |
190 | // We want the two adjacent Fourier frequency bands. |
191 | // |
192 | double adjacentPeriod1 = sampleCount / (((double)sampleCount / (double)m_wavePeriod) + 1); |
193 | double adjacentPeriod2 = sampleCount / (((double)sampleCount / (double)m_wavePeriod) - 1); |
194 | |
195 | // |
196 | // Get the the three different frequency components of the throughput (scaled by average |
197 | // throughput). Our "error" estimate (the amount of noise that might be present in the |
198 | // frequency band we're really interested in) is the average of the adjacent bands. |
199 | // |
200 | throughputWaveComponent = GetWaveComponent(m_samples, sampleCount, m_wavePeriod) / averageThroughput; |
201 | throughputErrorEstimate = abs(GetWaveComponent(m_samples, sampleCount, adjacentPeriod1) / averageThroughput); |
202 | if (adjacentPeriod2 <= sampleCount) |
203 | throughputErrorEstimate = max(throughputErrorEstimate, abs(GetWaveComponent(m_samples, sampleCount, adjacentPeriod2) / averageThroughput)); |
204 | |
205 | // |
206 | // Do the same for the thread counts, so we have something to compare to. We don't measure thread count |
207 | // noise, because there is none; these are exact measurements. |
208 | // |
209 | threadWaveComponent = GetWaveComponent(m_threadCounts, sampleCount, m_wavePeriod) / averageThreadCount; |
210 | |
211 | // |
212 | // Update our moving average of the throughput noise. We'll use this later as feedback to |
213 | // determine the new size of the thread wave. |
214 | // |
215 | if (m_averageThroughputNoise == 0) |
216 | m_averageThroughputNoise = throughputErrorEstimate; |
217 | else |
218 | m_averageThroughputNoise = (m_throughputErrorSmoothingFactor * throughputErrorEstimate) + ((1.0-m_throughputErrorSmoothingFactor) * m_averageThroughputNoise); |
219 | |
220 | if (abs(threadWaveComponent) > 0) |
221 | { |
222 | // |
223 | // Adjust the throughput wave so it's centered around the target wave, and then calculate the adjusted throughput/thread ratio. |
224 | // |
225 | ratio = (throughputWaveComponent - (m_targetThroughputRatio * threadWaveComponent)) / threadWaveComponent; |
226 | transition = ClimbingMove; |
227 | } |
228 | else |
229 | { |
230 | ratio = 0; |
231 | transition = Stabilizing; |
232 | } |
233 | |
234 | // |
235 | // Calculate how confident we are in the ratio. More noise == less confident. This has |
236 | // the effect of slowing down movements that might be affected by random noise. |
237 | // |
238 | double noiseForConfidence = max(m_averageThroughputNoise, throughputErrorEstimate); |
239 | if (noiseForConfidence > 0) |
240 | confidence = (abs(threadWaveComponent) / noiseForConfidence) / m_targetSignalToNoiseRatio; |
241 | else |
242 | confidence = 1.0; //there is no noise! |
243 | |
244 | } |
245 | } |
246 | |
247 | // |
248 | // We use just the real part of the complex ratio we just calculated. If the throughput signal |
249 | // is exactly in phase with the thread signal, this will be the same as taking the magnitude of |
250 | // the complex move and moving that far up. If they're 180 degrees out of phase, we'll move |
251 | // backward (because this indicates that our changes are having the opposite of the intended effect). |
252 | // If they're 90 degrees out of phase, we won't move at all, because we can't tell wether we're |
253 | // having a negative or positive effect on throughput. |
254 | // |
255 | double move = min(1.0, max(-1.0, ratio.r)); |
256 | |
257 | // |
258 | // Apply our confidence multiplier. |
259 | // |
260 | move *= min(1.0, max(0.0, confidence)); |
261 | |
262 | // |
263 | // Now apply non-linear gain, such that values around zero are attenuated, while higher values |
264 | // are enhanced. This allows us to move quickly if we're far away from the target, but more slowly |
265 | // if we're getting close, giving us rapid ramp-up without wild oscillations around the target. |
266 | // |
267 | double gain = m_maxChangePerSecond * sampleDuration; |
268 | move = pow(fabs(move), m_gainExponent) * (move >= 0.0 ? 1 : -1) * gain; |
269 | move = min(move, m_maxChangePerSample); |
270 | |
271 | // |
272 | // If the result was positive, and CPU is > 95%, refuse the move. |
273 | // |
274 | if (move > 0.0 && ThreadpoolMgr::cpuUtilization > CpuUtilizationHigh) |
275 | move = 0.0; |
276 | |
277 | // |
278 | // Apply the move to our control setting |
279 | // |
280 | m_currentControlSetting += move; |
281 | |
282 | // |
283 | // Calculate the new thread wave magnitude, which is based on the moving average we've been keeping of |
284 | // the throughput error. This average starts at zero, so we'll start with a nice safe little wave at first. |
285 | // |
286 | int newThreadWaveMagnitude = (int)(0.5 + (m_currentControlSetting * m_averageThroughputNoise * m_targetSignalToNoiseRatio * m_threadMagnitudeMultiplier * 2.0)); |
287 | newThreadWaveMagnitude = min(newThreadWaveMagnitude, m_maxThreadWaveMagnitude); |
288 | newThreadWaveMagnitude = max(newThreadWaveMagnitude, 1); |
289 | |
290 | // |
291 | // Make sure our control setting is within the ThreadPool's limits |
292 | // |
293 | m_currentControlSetting = min(ThreadpoolMgr::MaxLimitTotalWorkerThreads-newThreadWaveMagnitude, m_currentControlSetting); |
294 | m_currentControlSetting = max(ThreadpoolMgr::MinLimitTotalWorkerThreads, m_currentControlSetting); |
295 | |
296 | // |
297 | // Calculate the new thread count (control setting + square wave) |
298 | // |
299 | int newThreadCount = (int)(m_currentControlSetting + newThreadWaveMagnitude * ((m_totalSamples / (m_wavePeriod/2)) % 2)); |
300 | |
301 | // |
302 | // Make sure the new thread count doesn't exceed the ThreadPool's limits |
303 | // |
304 | newThreadCount = min(ThreadpoolMgr::MaxLimitTotalWorkerThreads, newThreadCount); |
305 | newThreadCount = max(ThreadpoolMgr::MinLimitTotalWorkerThreads, newThreadCount); |
306 | |
307 | // |
308 | // Record these numbers for posterity |
309 | // |
310 | FireEtwThreadPoolWorkerThreadAdjustmentStats( |
311 | sampleDuration, |
312 | throughput, |
313 | threadWaveComponent.r, |
314 | throughputWaveComponent.r, |
315 | throughputErrorEstimate, |
316 | m_averageThroughputNoise, |
317 | ratio.r, |
318 | confidence, |
319 | m_currentControlSetting, |
320 | (unsigned short)newThreadWaveMagnitude, |
321 | GetClrInstanceId()); |
322 | |
323 | // |
324 | // If all of this caused an actual change in thread count, log that as well. |
325 | // |
326 | if (newThreadCount != currentThreadCount) |
327 | ChangeThreadCount(newThreadCount, transition); |
328 | |
329 | // |
330 | // Return the new thread count and sample interval. This is randomized to prevent correlations with other periodic |
331 | // changes in throughput. Among other things, this prevents us from getting confused by Hill Climbing instances |
332 | // running in other processes. |
333 | // |
334 | // If we're at minThreads, and we seem to be hurting performance by going higher, we can't go any lower to fix this. So |
335 | // we'll simply stay at minThreads much longer, and only occasionally try a higher value. |
336 | // |
337 | if (ratio.r < 0.0 && newThreadCount == ThreadpoolMgr::MinLimitTotalWorkerThreads) |
338 | *pNewSampleInterval = (int)(0.5 + m_currentSampleInterval * (10.0 * min(-ratio.r, 1.0))); |
339 | else |
340 | *pNewSampleInterval = m_currentSampleInterval; |
341 | |
342 | return newThreadCount; |
343 | |
344 | #endif //DACCESS_COMPILE |
345 | } |
346 | |
347 | |
348 | void HillClimbing::ForceChange(int newThreadCount, HillClimbingStateTransition transition) |
349 | { |
350 | LIMITED_METHOD_CONTRACT; |
351 | |
352 | if (newThreadCount != m_lastThreadCount) |
353 | { |
354 | m_currentControlSetting += (newThreadCount - m_lastThreadCount); |
355 | ChangeThreadCount(newThreadCount, transition); |
356 | } |
357 | } |
358 | |
359 | |
360 | void HillClimbing::ChangeThreadCount(int newThreadCount, HillClimbingStateTransition transition) |
361 | { |
362 | LIMITED_METHOD_CONTRACT; |
363 | |
364 | m_lastThreadCount = newThreadCount; |
365 | m_currentSampleInterval = m_randomIntervalGenerator.Next(m_sampleIntervalLow, m_sampleIntervalHigh+1); |
366 | double throughput = (m_elapsedSinceLastChange > 0) ? (m_completionsSinceLastChange / m_elapsedSinceLastChange) : 0; |
367 | LogTransition(newThreadCount, throughput, transition); |
368 | m_elapsedSinceLastChange = 0; |
369 | m_completionsSinceLastChange = 0; |
370 | } |
371 | |
372 | |
373 | GARY_IMPL(HillClimbingLogEntry, HillClimbingLog, HillClimbingLogCapacity); |
374 | GVAL_IMPL(int, HillClimbingLogFirstIndex); |
375 | GVAL_IMPL(int, HillClimbingLogSize); |
376 | |
377 | |
378 | void HillClimbing::LogTransition(int threadCount, double throughput, HillClimbingStateTransition transition) |
379 | { |
380 | LIMITED_METHOD_CONTRACT; |
381 | |
382 | #ifndef DACCESS_COMPILE |
383 | int index = (HillClimbingLogFirstIndex + HillClimbingLogSize) % HillClimbingLogCapacity; |
384 | |
385 | if (HillClimbingLogSize == HillClimbingLogCapacity) |
386 | { |
387 | HillClimbingLogFirstIndex = (HillClimbingLogFirstIndex + 1) % HillClimbingLogCapacity; |
388 | HillClimbingLogSize--; //hide this slot while we update it |
389 | } |
390 | |
391 | HillClimbingLogEntry* entry = &HillClimbingLog[index]; |
392 | |
393 | entry->TickCount = GetTickCount(); |
394 | entry->Transition = transition; |
395 | entry->NewControlSetting = threadCount; |
396 | |
397 | entry->LastHistoryCount = (int)(min(m_totalSamples, m_samplesToMeasure) / m_wavePeriod) * m_wavePeriod; |
398 | entry->LastHistoryMean = (float) throughput; |
399 | |
400 | HillClimbingLogSize++; |
401 | |
402 | FireEtwThreadPoolWorkerThreadAdjustmentAdjustment( |
403 | throughput, |
404 | threadCount, |
405 | transition, |
406 | GetClrInstanceId()); |
407 | |
408 | #endif //DACCESS_COMPILE |
409 | } |
410 | |
411 | Complex HillClimbing::GetWaveComponent(double* samples, int sampleCount, double period) |
412 | { |
413 | LIMITED_METHOD_CONTRACT; |
414 | |
415 | _ASSERTE(sampleCount >= period); //can't measure a wave that doesn't fit |
416 | _ASSERTE(period >= 2); //can't measure above the Nyquist frequency |
417 | |
418 | // |
419 | // Calculate the sinusoid with the given period. |
420 | // We're using the Goertzel algorithm for this. See http://en.wikipedia.org/wiki/Goertzel_algorithm. |
421 | // |
422 | double w = 2.0 * pi / period; |
423 | double cosine = cos(w); |
424 | double sine = sin(w); |
425 | double coeff = 2.0 * cosine; |
426 | double q0 = 0, q1 = 0, q2 = 0; |
427 | |
428 | for (int i = 0; i < sampleCount; i++) |
429 | { |
430 | double sample = samples[(m_totalSamples - sampleCount + i) % m_samplesToMeasure]; |
431 | |
432 | q0 = coeff * q1 - q2 + sample; |
433 | q2 = q1; |
434 | q1 = q0; |
435 | } |
436 | |
437 | return Complex(q1 - q2 * cosine, q2 * sine) / (double)sampleCount; |
438 | } |
439 | |
440 | |