| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | //========================================================================= |
| 6 | |
| 7 | // |
| 8 | // HillClimbing.cpp |
| 9 | // |
| 10 | // Defines classes for the ThreadPool's HillClimbing concurrency-optimization |
| 11 | // algorithm. |
| 12 | // |
| 13 | |
| 14 | //========================================================================= |
| 15 | |
| 16 | // |
| 17 | // TODO: write an essay about how/why this works. Maybe put it in BotR? |
| 18 | // |
| 19 | |
| 20 | #include "common.h" |
| 21 | #include "hillclimbing.h" |
| 22 | #include "win32threadpool.h" |
| 23 | |
| 24 | // |
| 25 | // Default compilation mode is /fp:precise, which disables fp intrinsics. This causes us to pull in FP stuff (sin,cos,etc.) from |
| 26 | // The CRT, and increases our download size by ~5k. We don't need the extra precision this gets us, so let's switch to |
| 27 | // the intrinsic versions. |
| 28 | // |
| 29 | #ifdef _MSC_VER |
| 30 | #pragma float_control(precise, off) |
| 31 | #endif |
| 32 | |
| 33 | |
| 34 | |
| 35 | const double pi = 3.141592653589793; |
| 36 | |
| 37 | void HillClimbing::Initialize() |
| 38 | { |
| 39 | CONTRACTL |
| 40 | { |
| 41 | THROWS; |
| 42 | GC_NOTRIGGER; |
| 43 | MODE_ANY; |
| 44 | } |
| 45 | CONTRACTL_END; |
| 46 | |
| 47 | m_wavePeriod = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_WavePeriod); |
| 48 | m_maxThreadWaveMagnitude = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_MaxWaveMagnitude); |
| 49 | m_threadMagnitudeMultiplier = (double)CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_WaveMagnitudeMultiplier) / 100.0; |
| 50 | m_samplesToMeasure = m_wavePeriod * (int)CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_WaveHistorySize); |
| 51 | m_targetThroughputRatio = (double)CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_Bias) / 100.0; |
| 52 | m_targetSignalToNoiseRatio = (double)CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_TargetSignalToNoiseRatio) / 100.0; |
| 53 | m_maxChangePerSecond = (double)CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_MaxChangePerSecond); |
| 54 | m_maxChangePerSample = (double)CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_MaxChangePerSample); |
| 55 | m_sampleIntervalLow = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_SampleIntervalLow); |
| 56 | m_sampleIntervalHigh = CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_SampleIntervalHigh); |
| 57 | m_throughputErrorSmoothingFactor = (double)CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_ErrorSmoothingFactor) / 100.0; |
| 58 | m_gainExponent = (double)CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_GainExponent) / 100.0; |
| 59 | m_maxSampleError = (double)CLRConfig::GetConfigValue(CLRConfig::INTERNAL_HillClimbing_MaxSampleErrorPercent) / 100.0; |
| 60 | m_currentControlSetting = 0; |
| 61 | m_totalSamples = 0; |
| 62 | m_lastThreadCount = 0; |
| 63 | m_averageThroughputNoise = 0; |
| 64 | m_elapsedSinceLastChange = 0; |
| 65 | m_completionsSinceLastChange = 0; |
| 66 | m_accumulatedCompletionCount = 0; |
| 67 | m_accumulatedSampleDuration = 0; |
| 68 | |
| 69 | m_samples = new double[m_samplesToMeasure]; |
| 70 | m_threadCounts = new double[m_samplesToMeasure]; |
| 71 | |
| 72 | // seed our random number generator with the CLR instance ID and the process ID, to avoid correlations with other CLR ThreadPool instances. |
| 73 | #ifndef DACCESS_COMPILE |
| 74 | m_randomIntervalGenerator.Init(((int)GetClrInstanceId() << 16) ^ (int)GetCurrentProcessId()); |
| 75 | #endif |
| 76 | m_currentSampleInterval = m_randomIntervalGenerator.Next(m_sampleIntervalLow, m_sampleIntervalHigh+1); |
| 77 | } |
| 78 | |
| 79 | int HillClimbing::Update(int currentThreadCount, double sampleDuration, int numCompletions, int* pNewSampleInterval) |
| 80 | { |
| 81 | LIMITED_METHOD_CONTRACT; |
| 82 | |
| 83 | #ifdef DACCESS_COMPILE |
| 84 | return 1; |
| 85 | #else |
| 86 | |
| 87 | // |
| 88 | // If someone changed the thread count without telling us, update our records accordingly. |
| 89 | // |
| 90 | if (currentThreadCount != m_lastThreadCount) |
| 91 | ForceChange(currentThreadCount, Initializing); |
| 92 | |
| 93 | // |
| 94 | // Update the cumulative stats for this thread count |
| 95 | // |
| 96 | m_elapsedSinceLastChange += sampleDuration; |
| 97 | m_completionsSinceLastChange += numCompletions; |
| 98 | |
| 99 | // |
| 100 | // Add in any data we've already collected about this sample |
| 101 | // |
| 102 | sampleDuration += m_accumulatedSampleDuration; |
| 103 | numCompletions += m_accumulatedCompletionCount; |
| 104 | |
| 105 | // |
| 106 | // We need to make sure we're collecting reasonably accurate data. Since we're just counting the end |
| 107 | // of each work item, we are goinng to be missing some data about what really happened during the |
| 108 | // sample interval. The count produced by each thread includes an initial work item that may have |
| 109 | // started well before the start of the interval, and each thread may have been running some new |
| 110 | // work item for some time before the end of the interval, which did not yet get counted. So |
| 111 | // our count is going to be off by +/- threadCount workitems. |
| 112 | // |
| 113 | // The exception is that the thread that reported to us last time definitely wasn't running any work |
| 114 | // at that time, and the thread that's reporting now definitely isn't running a work item now. So |
| 115 | // we really only need to consider threadCount-1 threads. |
| 116 | // |
| 117 | // Thus the percent error in our count is +/- (threadCount-1)/numCompletions. |
| 118 | // |
| 119 | // We cannot rely on the frequency-domain analysis we'll be doing later to filter out this error, because |
| 120 | // of the way it accumulates over time. If this sample is off by, say, 33% in the negative direction, |
| 121 | // then the next one likely will be too. The one after that will include the sum of the completions |
| 122 | // we missed in the previous samples, and so will be 33% positive. So every three samples we'll have |
| 123 | // two "low" samples and one "high" sample. This will appear as periodic variation right in the frequency |
| 124 | // range we're targeting, which will not be filtered by the frequency-domain translation. |
| 125 | // |
| 126 | if (m_totalSamples > 0 && ((currentThreadCount-1.0) / numCompletions) >= m_maxSampleError) |
| 127 | { |
| 128 | // not accurate enough yet. Let's accumulate the data so far, and tell the ThreadPool |
| 129 | // to collect a little more. |
| 130 | m_accumulatedSampleDuration = sampleDuration; |
| 131 | m_accumulatedCompletionCount = numCompletions; |
| 132 | *pNewSampleInterval = 10; |
| 133 | return currentThreadCount; |
| 134 | } |
| 135 | |
| 136 | // |
| 137 | // We've got enouugh data for our sample; reset our accumulators for next time. |
| 138 | // |
| 139 | m_accumulatedSampleDuration = 0; |
| 140 | m_accumulatedCompletionCount = 0; |
| 141 | |
| 142 | // |
| 143 | // Add the current thread count and throughput sample to our history |
| 144 | // |
| 145 | double throughput = (double)numCompletions / sampleDuration; |
| 146 | FireEtwThreadPoolWorkerThreadAdjustmentSample(throughput, GetClrInstanceId()); |
| 147 | |
| 148 | int sampleIndex = m_totalSamples % m_samplesToMeasure; |
| 149 | m_samples[sampleIndex] = throughput; |
| 150 | m_threadCounts[sampleIndex] = currentThreadCount; |
| 151 | m_totalSamples++; |
| 152 | |
| 153 | // |
| 154 | // Set up defaults for our metrics |
| 155 | // |
| 156 | Complex threadWaveComponent = 0; |
| 157 | Complex throughputWaveComponent = 0; |
| 158 | double throughputErrorEstimate = 0; |
| 159 | Complex ratio = 0; |
| 160 | double confidence = 0; |
| 161 | |
| 162 | HillClimbingStateTransition transition = Warmup; |
| 163 | |
| 164 | // |
| 165 | // How many samples will we use? It must be at least the three wave periods we're looking for, and it must also be a whole |
| 166 | // multiple of the primary wave's period; otherwise the frequency we're looking for will fall between two frequency bands |
| 167 | // in the Fourier analysis, and we won't be able to measure it accurately. |
| 168 | // |
| 169 | int sampleCount = ((int)min(m_totalSamples-1, m_samplesToMeasure) / m_wavePeriod) * m_wavePeriod; |
| 170 | |
| 171 | if (sampleCount > m_wavePeriod) |
| 172 | { |
| 173 | // |
| 174 | // Average the throughput and thread count samples, so we can scale the wave magnitudes later. |
| 175 | // |
| 176 | double sampleSum = 0; |
| 177 | double threadSum = 0; |
| 178 | for (int i = 0; i < sampleCount; i++) |
| 179 | { |
| 180 | sampleSum += m_samples[(m_totalSamples - sampleCount + i) % m_samplesToMeasure]; |
| 181 | threadSum += m_threadCounts[(m_totalSamples - sampleCount + i) % m_samplesToMeasure]; |
| 182 | } |
| 183 | double averageThroughput = sampleSum / sampleCount; |
| 184 | double averageThreadCount = threadSum / sampleCount; |
| 185 | |
| 186 | if (averageThroughput > 0 && averageThreadCount > 0) |
| 187 | { |
| 188 | // |
| 189 | // Calculate the periods of the adjacent frequency bands we'll be using to measure noise levels. |
| 190 | // We want the two adjacent Fourier frequency bands. |
| 191 | // |
| 192 | double adjacentPeriod1 = sampleCount / (((double)sampleCount / (double)m_wavePeriod) + 1); |
| 193 | double adjacentPeriod2 = sampleCount / (((double)sampleCount / (double)m_wavePeriod) - 1); |
| 194 | |
| 195 | // |
| 196 | // Get the the three different frequency components of the throughput (scaled by average |
| 197 | // throughput). Our "error" estimate (the amount of noise that might be present in the |
| 198 | // frequency band we're really interested in) is the average of the adjacent bands. |
| 199 | // |
| 200 | throughputWaveComponent = GetWaveComponent(m_samples, sampleCount, m_wavePeriod) / averageThroughput; |
| 201 | throughputErrorEstimate = abs(GetWaveComponent(m_samples, sampleCount, adjacentPeriod1) / averageThroughput); |
| 202 | if (adjacentPeriod2 <= sampleCount) |
| 203 | throughputErrorEstimate = max(throughputErrorEstimate, abs(GetWaveComponent(m_samples, sampleCount, adjacentPeriod2) / averageThroughput)); |
| 204 | |
| 205 | // |
| 206 | // Do the same for the thread counts, so we have something to compare to. We don't measure thread count |
| 207 | // noise, because there is none; these are exact measurements. |
| 208 | // |
| 209 | threadWaveComponent = GetWaveComponent(m_threadCounts, sampleCount, m_wavePeriod) / averageThreadCount; |
| 210 | |
| 211 | // |
| 212 | // Update our moving average of the throughput noise. We'll use this later as feedback to |
| 213 | // determine the new size of the thread wave. |
| 214 | // |
| 215 | if (m_averageThroughputNoise == 0) |
| 216 | m_averageThroughputNoise = throughputErrorEstimate; |
| 217 | else |
| 218 | m_averageThroughputNoise = (m_throughputErrorSmoothingFactor * throughputErrorEstimate) + ((1.0-m_throughputErrorSmoothingFactor) * m_averageThroughputNoise); |
| 219 | |
| 220 | if (abs(threadWaveComponent) > 0) |
| 221 | { |
| 222 | // |
| 223 | // Adjust the throughput wave so it's centered around the target wave, and then calculate the adjusted throughput/thread ratio. |
| 224 | // |
| 225 | ratio = (throughputWaveComponent - (m_targetThroughputRatio * threadWaveComponent)) / threadWaveComponent; |
| 226 | transition = ClimbingMove; |
| 227 | } |
| 228 | else |
| 229 | { |
| 230 | ratio = 0; |
| 231 | transition = Stabilizing; |
| 232 | } |
| 233 | |
| 234 | // |
| 235 | // Calculate how confident we are in the ratio. More noise == less confident. This has |
| 236 | // the effect of slowing down movements that might be affected by random noise. |
| 237 | // |
| 238 | double noiseForConfidence = max(m_averageThroughputNoise, throughputErrorEstimate); |
| 239 | if (noiseForConfidence > 0) |
| 240 | confidence = (abs(threadWaveComponent) / noiseForConfidence) / m_targetSignalToNoiseRatio; |
| 241 | else |
| 242 | confidence = 1.0; //there is no noise! |
| 243 | |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | // |
| 248 | // We use just the real part of the complex ratio we just calculated. If the throughput signal |
| 249 | // is exactly in phase with the thread signal, this will be the same as taking the magnitude of |
| 250 | // the complex move and moving that far up. If they're 180 degrees out of phase, we'll move |
| 251 | // backward (because this indicates that our changes are having the opposite of the intended effect). |
| 252 | // If they're 90 degrees out of phase, we won't move at all, because we can't tell wether we're |
| 253 | // having a negative or positive effect on throughput. |
| 254 | // |
| 255 | double move = min(1.0, max(-1.0, ratio.r)); |
| 256 | |
| 257 | // |
| 258 | // Apply our confidence multiplier. |
| 259 | // |
| 260 | move *= min(1.0, max(0.0, confidence)); |
| 261 | |
| 262 | // |
| 263 | // Now apply non-linear gain, such that values around zero are attenuated, while higher values |
| 264 | // are enhanced. This allows us to move quickly if we're far away from the target, but more slowly |
| 265 | // if we're getting close, giving us rapid ramp-up without wild oscillations around the target. |
| 266 | // |
| 267 | double gain = m_maxChangePerSecond * sampleDuration; |
| 268 | move = pow(fabs(move), m_gainExponent) * (move >= 0.0 ? 1 : -1) * gain; |
| 269 | move = min(move, m_maxChangePerSample); |
| 270 | |
| 271 | // |
| 272 | // If the result was positive, and CPU is > 95%, refuse the move. |
| 273 | // |
| 274 | if (move > 0.0 && ThreadpoolMgr::cpuUtilization > CpuUtilizationHigh) |
| 275 | move = 0.0; |
| 276 | |
| 277 | // |
| 278 | // Apply the move to our control setting |
| 279 | // |
| 280 | m_currentControlSetting += move; |
| 281 | |
| 282 | // |
| 283 | // Calculate the new thread wave magnitude, which is based on the moving average we've been keeping of |
| 284 | // the throughput error. This average starts at zero, so we'll start with a nice safe little wave at first. |
| 285 | // |
| 286 | int newThreadWaveMagnitude = (int)(0.5 + (m_currentControlSetting * m_averageThroughputNoise * m_targetSignalToNoiseRatio * m_threadMagnitudeMultiplier * 2.0)); |
| 287 | newThreadWaveMagnitude = min(newThreadWaveMagnitude, m_maxThreadWaveMagnitude); |
| 288 | newThreadWaveMagnitude = max(newThreadWaveMagnitude, 1); |
| 289 | |
| 290 | // |
| 291 | // Make sure our control setting is within the ThreadPool's limits |
| 292 | // |
| 293 | m_currentControlSetting = min(ThreadpoolMgr::MaxLimitTotalWorkerThreads-newThreadWaveMagnitude, m_currentControlSetting); |
| 294 | m_currentControlSetting = max(ThreadpoolMgr::MinLimitTotalWorkerThreads, m_currentControlSetting); |
| 295 | |
| 296 | // |
| 297 | // Calculate the new thread count (control setting + square wave) |
| 298 | // |
| 299 | int newThreadCount = (int)(m_currentControlSetting + newThreadWaveMagnitude * ((m_totalSamples / (m_wavePeriod/2)) % 2)); |
| 300 | |
| 301 | // |
| 302 | // Make sure the new thread count doesn't exceed the ThreadPool's limits |
| 303 | // |
| 304 | newThreadCount = min(ThreadpoolMgr::MaxLimitTotalWorkerThreads, newThreadCount); |
| 305 | newThreadCount = max(ThreadpoolMgr::MinLimitTotalWorkerThreads, newThreadCount); |
| 306 | |
| 307 | // |
| 308 | // Record these numbers for posterity |
| 309 | // |
| 310 | FireEtwThreadPoolWorkerThreadAdjustmentStats( |
| 311 | sampleDuration, |
| 312 | throughput, |
| 313 | threadWaveComponent.r, |
| 314 | throughputWaveComponent.r, |
| 315 | throughputErrorEstimate, |
| 316 | m_averageThroughputNoise, |
| 317 | ratio.r, |
| 318 | confidence, |
| 319 | m_currentControlSetting, |
| 320 | (unsigned short)newThreadWaveMagnitude, |
| 321 | GetClrInstanceId()); |
| 322 | |
| 323 | // |
| 324 | // If all of this caused an actual change in thread count, log that as well. |
| 325 | // |
| 326 | if (newThreadCount != currentThreadCount) |
| 327 | ChangeThreadCount(newThreadCount, transition); |
| 328 | |
| 329 | // |
| 330 | // Return the new thread count and sample interval. This is randomized to prevent correlations with other periodic |
| 331 | // changes in throughput. Among other things, this prevents us from getting confused by Hill Climbing instances |
| 332 | // running in other processes. |
| 333 | // |
| 334 | // If we're at minThreads, and we seem to be hurting performance by going higher, we can't go any lower to fix this. So |
| 335 | // we'll simply stay at minThreads much longer, and only occasionally try a higher value. |
| 336 | // |
| 337 | if (ratio.r < 0.0 && newThreadCount == ThreadpoolMgr::MinLimitTotalWorkerThreads) |
| 338 | *pNewSampleInterval = (int)(0.5 + m_currentSampleInterval * (10.0 * min(-ratio.r, 1.0))); |
| 339 | else |
| 340 | *pNewSampleInterval = m_currentSampleInterval; |
| 341 | |
| 342 | return newThreadCount; |
| 343 | |
| 344 | #endif //DACCESS_COMPILE |
| 345 | } |
| 346 | |
| 347 | |
| 348 | void HillClimbing::ForceChange(int newThreadCount, HillClimbingStateTransition transition) |
| 349 | { |
| 350 | LIMITED_METHOD_CONTRACT; |
| 351 | |
| 352 | if (newThreadCount != m_lastThreadCount) |
| 353 | { |
| 354 | m_currentControlSetting += (newThreadCount - m_lastThreadCount); |
| 355 | ChangeThreadCount(newThreadCount, transition); |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | |
| 360 | void HillClimbing::ChangeThreadCount(int newThreadCount, HillClimbingStateTransition transition) |
| 361 | { |
| 362 | LIMITED_METHOD_CONTRACT; |
| 363 | |
| 364 | m_lastThreadCount = newThreadCount; |
| 365 | m_currentSampleInterval = m_randomIntervalGenerator.Next(m_sampleIntervalLow, m_sampleIntervalHigh+1); |
| 366 | double throughput = (m_elapsedSinceLastChange > 0) ? (m_completionsSinceLastChange / m_elapsedSinceLastChange) : 0; |
| 367 | LogTransition(newThreadCount, throughput, transition); |
| 368 | m_elapsedSinceLastChange = 0; |
| 369 | m_completionsSinceLastChange = 0; |
| 370 | } |
| 371 | |
| 372 | |
| 373 | GARY_IMPL(HillClimbingLogEntry, HillClimbingLog, HillClimbingLogCapacity); |
| 374 | GVAL_IMPL(int, HillClimbingLogFirstIndex); |
| 375 | GVAL_IMPL(int, HillClimbingLogSize); |
| 376 | |
| 377 | |
| 378 | void HillClimbing::LogTransition(int threadCount, double throughput, HillClimbingStateTransition transition) |
| 379 | { |
| 380 | LIMITED_METHOD_CONTRACT; |
| 381 | |
| 382 | #ifndef DACCESS_COMPILE |
| 383 | int index = (HillClimbingLogFirstIndex + HillClimbingLogSize) % HillClimbingLogCapacity; |
| 384 | |
| 385 | if (HillClimbingLogSize == HillClimbingLogCapacity) |
| 386 | { |
| 387 | HillClimbingLogFirstIndex = (HillClimbingLogFirstIndex + 1) % HillClimbingLogCapacity; |
| 388 | HillClimbingLogSize--; //hide this slot while we update it |
| 389 | } |
| 390 | |
| 391 | HillClimbingLogEntry* entry = &HillClimbingLog[index]; |
| 392 | |
| 393 | entry->TickCount = GetTickCount(); |
| 394 | entry->Transition = transition; |
| 395 | entry->NewControlSetting = threadCount; |
| 396 | |
| 397 | entry->LastHistoryCount = (int)(min(m_totalSamples, m_samplesToMeasure) / m_wavePeriod) * m_wavePeriod; |
| 398 | entry->LastHistoryMean = (float) throughput; |
| 399 | |
| 400 | HillClimbingLogSize++; |
| 401 | |
| 402 | FireEtwThreadPoolWorkerThreadAdjustmentAdjustment( |
| 403 | throughput, |
| 404 | threadCount, |
| 405 | transition, |
| 406 | GetClrInstanceId()); |
| 407 | |
| 408 | #endif //DACCESS_COMPILE |
| 409 | } |
| 410 | |
| 411 | Complex HillClimbing::GetWaveComponent(double* samples, int sampleCount, double period) |
| 412 | { |
| 413 | LIMITED_METHOD_CONTRACT; |
| 414 | |
| 415 | _ASSERTE(sampleCount >= period); //can't measure a wave that doesn't fit |
| 416 | _ASSERTE(period >= 2); //can't measure above the Nyquist frequency |
| 417 | |
| 418 | // |
| 419 | // Calculate the sinusoid with the given period. |
| 420 | // We're using the Goertzel algorithm for this. See http://en.wikipedia.org/wiki/Goertzel_algorithm. |
| 421 | // |
| 422 | double w = 2.0 * pi / period; |
| 423 | double cosine = cos(w); |
| 424 | double sine = sin(w); |
| 425 | double coeff = 2.0 * cosine; |
| 426 | double q0 = 0, q1 = 0, q2 = 0; |
| 427 | |
| 428 | for (int i = 0; i < sampleCount; i++) |
| 429 | { |
| 430 | double sample = samples[(m_totalSamples - sampleCount + i) % m_samplesToMeasure]; |
| 431 | |
| 432 | q0 = coeff * q1 - q2 + sample; |
| 433 | q2 = q1; |
| 434 | q1 = q0; |
| 435 | } |
| 436 | |
| 437 | return Complex(q1 - q2 * cosine, q2 * sine) / (double)sampleCount; |
| 438 | } |
| 439 | |
| 440 | |