| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | // |
| 6 | #include "common.h" |
| 7 | |
| 8 | #ifdef FEATURE_INTERPRETER |
| 9 | |
| 10 | #include "interpreter.h" |
| 11 | #include "interpreter.hpp" |
| 12 | #include "cgencpu.h" |
| 13 | #include "stublink.h" |
| 14 | #include "openum.h" |
| 15 | #include "fcall.h" |
| 16 | #include "frames.h" |
| 17 | #include "gcheaputilities.h" |
| 18 | #include <float.h> |
| 19 | #include "jitinterface.h" |
| 20 | #include "safemath.h" |
| 21 | #include "exceptmacros.h" |
| 22 | #include "runtimeexceptionkind.h" |
| 23 | #include "runtimehandles.h" |
| 24 | #include "vars.hpp" |
| 25 | #include "cycletimer.h" |
| 26 | |
| 27 | inline CORINFO_CALLINFO_FLAGS combine(CORINFO_CALLINFO_FLAGS flag1, CORINFO_CALLINFO_FLAGS flag2) |
| 28 | { |
| 29 | return (CORINFO_CALLINFO_FLAGS) (flag1 | flag2); |
| 30 | } |
| 31 | |
| 32 | static CorInfoType asCorInfoType(CORINFO_CLASS_HANDLE clsHnd) |
| 33 | { |
| 34 | TypeHandle typeHnd(clsHnd); |
| 35 | return CEEInfo::asCorInfoType(typeHnd.GetInternalCorElementType(), typeHnd, NULL); |
| 36 | } |
| 37 | |
| 38 | InterpreterMethodInfo::InterpreterMethodInfo(CEEInfo* comp, CORINFO_METHOD_INFO* methInfo) |
| 39 | : m_method(methInfo->ftn), |
| 40 | m_module(methInfo->scope), |
| 41 | m_ILCode(methInfo->ILCode), |
| 42 | m_ILCodeEnd(methInfo->ILCode + methInfo->ILCodeSize), |
| 43 | m_maxStack(methInfo->maxStack), |
| 44 | #if INTERP_PROFILE |
| 45 | m_totIlInstructionsExeced(0), |
| 46 | m_maxIlInstructionsExeced(0), |
| 47 | #endif |
| 48 | m_ehClauseCount(methInfo->EHcount), |
| 49 | m_varArgHandleArgNum(NO_VA_ARGNUM), |
| 50 | m_numArgs(methInfo->args.numArgs), |
| 51 | m_numLocals(methInfo->locals.numArgs), |
| 52 | m_flags(0), |
| 53 | m_argDescs(NULL), |
| 54 | m_returnType(methInfo->args.retType), |
| 55 | m_invocations(0), |
| 56 | m_methodCache(NULL) |
| 57 | { |
| 58 | // Overflow sanity check. (Can ILCodeSize ever be zero?) |
| 59 | assert(m_ILCode <= m_ILCodeEnd); |
| 60 | |
| 61 | // Does the calling convention indicate an implicit "this" (first arg) or generic type context arg (last arg)? |
| 62 | SetFlag<Flag_hasThisArg>((methInfo->args.callConv & CORINFO_CALLCONV_HASTHIS) != 0); |
| 63 | if (GetFlag<Flag_hasThisArg>()) |
| 64 | { |
| 65 | GCX_PREEMP(); |
| 66 | CORINFO_CLASS_HANDLE methClass = comp->getMethodClass(methInfo->ftn); |
| 67 | DWORD attribs = comp->getClassAttribs(methClass); |
| 68 | SetFlag<Flag_thisArgIsObjPtr>((attribs & CORINFO_FLG_VALUECLASS) == 0); |
| 69 | } |
| 70 | |
| 71 | #if INTERP_PROFILE || defined(_DEBUG) |
| 72 | { |
| 73 | const char* clsName; |
| 74 | #if defined(_DEBUG) |
| 75 | m_methName = ::eeGetMethodFullName(comp, methInfo->ftn, &clsName); |
| 76 | #else |
| 77 | m_methName = comp->getMethodName(methInfo->ftn, &clsName); |
| 78 | #endif |
| 79 | char* myClsName = new char[strlen(clsName) + 1]; |
| 80 | strcpy(myClsName, clsName); |
| 81 | m_clsName = myClsName; |
| 82 | } |
| 83 | #endif // INTERP_PROFILE |
| 84 | |
| 85 | // Do we have a ret buff? If its a struct or refany, then *maybe*, depending on architecture... |
| 86 | bool hasRetBuff = (methInfo->args.retType == CORINFO_TYPE_VALUECLASS || methInfo->args.retType == CORINFO_TYPE_REFANY); |
| 87 | #if defined(FEATURE_HFA) |
| 88 | // ... unless its an HFA type (and not varargs)... |
| 89 | if (hasRetBuff && CorInfoTypeIsFloatingPoint(comp->getHFAType(methInfo->args.retTypeClass)) && methInfo->args.getCallConv() != CORINFO_CALLCONV_VARARG) |
| 90 | { |
| 91 | hasRetBuff = false; |
| 92 | } |
| 93 | #endif |
| 94 | #if defined(_ARM_) || defined(_AMD64_)|| defined(_ARM64_) |
| 95 | // ...or it fits into one register. |
| 96 | if (hasRetBuff && getClassSize(methInfo->args.retTypeClass) <= sizeof(void*)) |
| 97 | { |
| 98 | hasRetBuff = false; |
| 99 | } |
| 100 | #endif |
| 101 | SetFlag<Flag_hasRetBuffArg>(hasRetBuff); |
| 102 | |
| 103 | MetaSig sig(reinterpret_cast<MethodDesc*>(methInfo->ftn)); |
| 104 | SetFlag<Flag_hasGenericsContextArg>((methInfo->args.callConv & CORINFO_CALLCONV_PARAMTYPE) != 0); |
| 105 | SetFlag<Flag_isVarArg>((methInfo->args.callConv & CORINFO_CALLCONV_VARARG) != 0); |
| 106 | SetFlag<Flag_typeHasGenericArgs>(methInfo->args.sigInst.classInstCount > 0); |
| 107 | SetFlag<Flag_methHasGenericArgs>(methInfo->args.sigInst.methInstCount > 0); |
| 108 | _ASSERTE_MSG(!GetFlag<Flag_hasGenericsContextArg>() |
| 109 | || ((GetFlag<Flag_typeHasGenericArgs>() & !(GetFlag<Flag_hasThisArg>() && GetFlag<Flag_thisArgIsObjPtr>())) || GetFlag<Flag_methHasGenericArgs>()), |
| 110 | "If the method takes a generic parameter, is a static method of generic class (or meth of a value class), and/or itself takes generic parameters" ); |
| 111 | |
| 112 | if (GetFlag<Flag_hasThisArg>()) |
| 113 | { |
| 114 | m_numArgs++; |
| 115 | } |
| 116 | if (GetFlag<Flag_hasRetBuffArg>()) |
| 117 | { |
| 118 | m_numArgs++; |
| 119 | } |
| 120 | if (GetFlag<Flag_isVarArg>()) |
| 121 | { |
| 122 | m_numArgs++; |
| 123 | } |
| 124 | if (GetFlag<Flag_hasGenericsContextArg>()) |
| 125 | { |
| 126 | m_numArgs++; |
| 127 | } |
| 128 | if (m_numArgs == 0) |
| 129 | { |
| 130 | m_argDescs = NULL; |
| 131 | } |
| 132 | else |
| 133 | { |
| 134 | m_argDescs = new ArgDesc[m_numArgs]; |
| 135 | } |
| 136 | |
| 137 | // Now we'll do the locals. |
| 138 | m_localDescs = new LocalDesc[m_numLocals]; |
| 139 | // Allocate space for the pinning reference bits (lazily). |
| 140 | m_localIsPinningRefBits = NULL; |
| 141 | |
| 142 | // Now look at each local. |
| 143 | CORINFO_ARG_LIST_HANDLE localsPtr = methInfo->locals.args; |
| 144 | CORINFO_CLASS_HANDLE vcTypeRet; |
| 145 | unsigned curLargeStructOffset = 0; |
| 146 | for (unsigned k = 0; k < methInfo->locals.numArgs; k++) |
| 147 | { |
| 148 | // TODO: if this optimization succeeds, the switch below on localType |
| 149 | // can become much simpler. |
| 150 | m_localDescs[k].m_offset = 0; |
| 151 | #ifdef _DEBUG |
| 152 | vcTypeRet = NULL; |
| 153 | #endif |
| 154 | CorInfoTypeWithMod localTypWithMod = comp->getArgType(&methInfo->locals, localsPtr, &vcTypeRet); |
| 155 | // If the local vars is a pinning reference, set the bit to indicate this. |
| 156 | if ((localTypWithMod & CORINFO_TYPE_MOD_PINNED) != 0) |
| 157 | { |
| 158 | SetPinningBit(k); |
| 159 | } |
| 160 | |
| 161 | CorInfoType localType = strip(localTypWithMod); |
| 162 | switch (localType) |
| 163 | { |
| 164 | case CORINFO_TYPE_VALUECLASS: |
| 165 | case CORINFO_TYPE_REFANY: // Just a special case: vcTypeRet is handle for TypedReference in this case... |
| 166 | { |
| 167 | InterpreterType tp = InterpreterType(comp, vcTypeRet); |
| 168 | unsigned size = static_cast<unsigned>(tp.Size(comp)); |
| 169 | size = max(size, sizeof(void*)); |
| 170 | m_localDescs[k].m_type = tp; |
| 171 | if (tp.IsLargeStruct(comp)) |
| 172 | { |
| 173 | m_localDescs[k].m_offset = curLargeStructOffset; |
| 174 | curLargeStructOffset += size; |
| 175 | } |
| 176 | } |
| 177 | break; |
| 178 | |
| 179 | case CORINFO_TYPE_VAR: |
| 180 | NYI_INTERP("argument of generic parameter type" ); // Should not happen; |
| 181 | break; |
| 182 | |
| 183 | default: |
| 184 | m_localDescs[k].m_type = InterpreterType(localType); |
| 185 | break; |
| 186 | } |
| 187 | m_localDescs[k].m_typeStackNormal = m_localDescs[k].m_type.StackNormalize(); |
| 188 | localsPtr = comp->getArgNext(localsPtr); |
| 189 | } |
| 190 | m_largeStructLocalSize = curLargeStructOffset; |
| 191 | } |
| 192 | |
| 193 | void InterpreterMethodInfo::InitArgInfo(CEEInfo* comp, CORINFO_METHOD_INFO* methInfo, short* argOffsets_) |
| 194 | { |
| 195 | unsigned numSigArgsPlusThis = methInfo->args.numArgs; |
| 196 | if (GetFlag<Flag_hasThisArg>()) |
| 197 | { |
| 198 | numSigArgsPlusThis++; |
| 199 | } |
| 200 | |
| 201 | // The m_argDescs array is constructed in the following "canonical" order: |
| 202 | // 1. 'this' pointer |
| 203 | // 2. signature arguments |
| 204 | // 3. return buffer |
| 205 | // 4. type parameter -or- vararg cookie |
| 206 | // |
| 207 | // argOffsets_ is passed in this order, and serves to establish the offsets to arguments |
| 208 | // when the interpreter is invoked using the native calling convention (i.e., not directly). |
| 209 | // |
| 210 | // When the interpreter is invoked directly, the arguments will appear in the same order |
| 211 | // and form as arguments passed to MethodDesc::CallDescr(). This ordering is as follows: |
| 212 | // 1. 'this' pointer |
| 213 | // 2. return buffer |
| 214 | // 3. signature arguments |
| 215 | // |
| 216 | // MethodDesc::CallDescr() does not support generic parameters or varargs functions. |
| 217 | |
| 218 | _ASSERTE_MSG((methInfo->args.callConv & (CORINFO_CALLCONV_EXPLICITTHIS)) == 0, |
| 219 | "Don't yet handle EXPLICITTHIS calling convention modifier." ); |
| 220 | switch (methInfo->args.callConv & CORINFO_CALLCONV_MASK) |
| 221 | { |
| 222 | case CORINFO_CALLCONV_DEFAULT: |
| 223 | case CORINFO_CALLCONV_VARARG: |
| 224 | { |
| 225 | unsigned k = 0; |
| 226 | ARG_SLOT* directOffset = NULL; |
| 227 | short directRetBuffOffset = 0; |
| 228 | short directVarArgOffset = 0; |
| 229 | short directTypeParamOffset = 0; |
| 230 | |
| 231 | // If there's a "this" argument, handle it. |
| 232 | if (GetFlag<Flag_hasThisArg>()) |
| 233 | { |
| 234 | m_argDescs[k].m_type = InterpreterType(CORINFO_TYPE_UNDEF); |
| 235 | #ifdef FEATURE_STUBS_AS_IL |
| 236 | MethodDesc *pMD = reinterpret_cast<MethodDesc*>(methInfo->ftn); |
| 237 | // The signature of the ILStubs may be misleading. |
| 238 | // If a StubTarget is ever set, we'll find the correct type by inspecting the |
| 239 | // target, rather than the stub. |
| 240 | if (pMD->IsILStub()) |
| 241 | { |
| 242 | |
| 243 | if (pMD->AsDynamicMethodDesc()->IsUnboxingILStub()) |
| 244 | { |
| 245 | // This is an unboxing stub where the thisptr is passed as a boxed VT. |
| 246 | m_argDescs[k].m_type = InterpreterType(CORINFO_TYPE_CLASS); |
| 247 | } |
| 248 | else |
| 249 | { |
| 250 | MethodDesc *pTargetMD = pMD->AsDynamicMethodDesc()->GetILStubResolver()->GetStubTargetMethodDesc(); |
| 251 | if (pTargetMD != NULL) |
| 252 | { |
| 253 | if (pTargetMD->GetMethodTable()->IsValueType()) |
| 254 | { |
| 255 | m_argDescs[k].m_type = InterpreterType(CORINFO_TYPE_BYREF); |
| 256 | } |
| 257 | else |
| 258 | { |
| 259 | m_argDescs[k].m_type = InterpreterType(CORINFO_TYPE_CLASS); |
| 260 | } |
| 261 | |
| 262 | } |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | #endif // FEATURE_STUBS_AS_IL |
| 267 | if (m_argDescs[k].m_type == InterpreterType(CORINFO_TYPE_UNDEF)) |
| 268 | { |
| 269 | CORINFO_CLASS_HANDLE cls = comp->getMethodClass(methInfo->ftn); |
| 270 | DWORD attribs = comp->getClassAttribs(cls); |
| 271 | if (attribs & CORINFO_FLG_VALUECLASS) |
| 272 | { |
| 273 | m_argDescs[k].m_type = InterpreterType(CORINFO_TYPE_BYREF); |
| 274 | } |
| 275 | else |
| 276 | { |
| 277 | m_argDescs[k].m_type = InterpreterType(CORINFO_TYPE_CLASS); |
| 278 | } |
| 279 | } |
| 280 | m_argDescs[k].m_typeStackNormal = m_argDescs[k].m_type; |
| 281 | m_argDescs[k].m_nativeOffset = argOffsets_[k]; |
| 282 | m_argDescs[k].m_directOffset = reinterpret_cast<short>(ArgSlotEndianessFixup(directOffset, sizeof(void*))); |
| 283 | directOffset++; |
| 284 | k++; |
| 285 | } |
| 286 | |
| 287 | // If there is a return buffer, it will appear next in the arguments list for a direct call. |
| 288 | // Reserve its offset now, for use after the explicit arguments. |
| 289 | #if defined(_ARM_) |
| 290 | // On ARM, for direct calls we always treat HFA return types as having ret buffs. |
| 291 | // So figure out if we have an HFA return type. |
| 292 | bool hasHFARetType = |
| 293 | methInfo->args.retType == CORINFO_TYPE_VALUECLASS |
| 294 | && CorInfoTypeIsFloatingPoint(comp->getHFAType(methInfo->args.retTypeClass)) |
| 295 | && methInfo->args.getCallConv() != CORINFO_CALLCONV_VARARG; |
| 296 | #endif // defined(_ARM_) |
| 297 | |
| 298 | if (GetFlag<Flag_hasRetBuffArg>() |
| 299 | #if defined(_ARM_) |
| 300 | // On ARM, for direct calls we always treat HFA return types as having ret buffs. |
| 301 | || hasHFARetType |
| 302 | #endif // defined(_ARM_) |
| 303 | ) |
| 304 | { |
| 305 | directRetBuffOffset = reinterpret_cast<short>(ArgSlotEndianessFixup(directOffset, sizeof(void*))); |
| 306 | directOffset++; |
| 307 | } |
| 308 | #if defined(_AMD64_) |
| 309 | if (GetFlag<Flag_isVarArg>()) |
| 310 | { |
| 311 | directVarArgOffset = reinterpret_cast<short>(ArgSlotEndianessFixup(directOffset, sizeof(void*))); |
| 312 | directOffset++; |
| 313 | } |
| 314 | if (GetFlag<Flag_hasGenericsContextArg>()) |
| 315 | { |
| 316 | directTypeParamOffset = reinterpret_cast<short>(ArgSlotEndianessFixup(directOffset, sizeof(void*))); |
| 317 | directOffset++; |
| 318 | } |
| 319 | #endif |
| 320 | |
| 321 | // Now record the argument types for the rest of the arguments. |
| 322 | InterpreterType it; |
| 323 | CORINFO_CLASS_HANDLE vcTypeRet; |
| 324 | CORINFO_ARG_LIST_HANDLE argPtr = methInfo->args.args; |
| 325 | for (; k < numSigArgsPlusThis; k++) |
| 326 | { |
| 327 | CorInfoTypeWithMod argTypWithMod = comp->getArgType(&methInfo->args, argPtr, &vcTypeRet); |
| 328 | CorInfoType argType = strip(argTypWithMod); |
| 329 | switch (argType) |
| 330 | { |
| 331 | case CORINFO_TYPE_VALUECLASS: |
| 332 | case CORINFO_TYPE_REFANY: // Just a special case: vcTypeRet is handle for TypedReference in this case... |
| 333 | it = InterpreterType(comp, vcTypeRet); |
| 334 | break; |
| 335 | default: |
| 336 | // Everything else is just encoded as a shifted CorInfoType. |
| 337 | it = InterpreterType(argType); |
| 338 | break; |
| 339 | } |
| 340 | m_argDescs[k].m_type = it; |
| 341 | m_argDescs[k].m_typeStackNormal = it.StackNormalize(); |
| 342 | m_argDescs[k].m_nativeOffset = argOffsets_[k]; |
| 343 | // When invoking the interpreter directly, large value types are always passed by reference. |
| 344 | if (it.IsLargeStruct(comp)) |
| 345 | { |
| 346 | m_argDescs[k].m_directOffset = reinterpret_cast<short>(ArgSlotEndianessFixup(directOffset, sizeof(void*))); |
| 347 | } |
| 348 | else |
| 349 | { |
| 350 | m_argDescs[k].m_directOffset = reinterpret_cast<short>(ArgSlotEndianessFixup(directOffset, it.Size(comp))); |
| 351 | } |
| 352 | argPtr = comp->getArgNext(argPtr); |
| 353 | directOffset++; |
| 354 | } |
| 355 | |
| 356 | if (GetFlag<Flag_hasRetBuffArg>()) |
| 357 | { |
| 358 | // The generic type context is an unmanaged pointer (native int). |
| 359 | m_argDescs[k].m_type = InterpreterType(CORINFO_TYPE_BYREF); |
| 360 | m_argDescs[k].m_typeStackNormal = m_argDescs[k].m_type; |
| 361 | m_argDescs[k].m_nativeOffset = argOffsets_[k]; |
| 362 | m_argDescs[k].m_directOffset = directRetBuffOffset; |
| 363 | k++; |
| 364 | } |
| 365 | |
| 366 | if (GetFlag<Flag_hasGenericsContextArg>()) |
| 367 | { |
| 368 | // The vararg cookie is an unmanaged pointer (native int). |
| 369 | m_argDescs[k].m_type = InterpreterType(CORINFO_TYPE_NATIVEINT); |
| 370 | m_argDescs[k].m_typeStackNormal = m_argDescs[k].m_type; |
| 371 | m_argDescs[k].m_nativeOffset = argOffsets_[k]; |
| 372 | m_argDescs[k].m_directOffset = directTypeParamOffset; |
| 373 | directOffset++; |
| 374 | k++; |
| 375 | } |
| 376 | if (GetFlag<Flag_isVarArg>()) |
| 377 | { |
| 378 | // The generic type context is an unmanaged pointer (native int). |
| 379 | m_argDescs[k].m_type = InterpreterType(CORINFO_TYPE_NATIVEINT); |
| 380 | m_argDescs[k].m_typeStackNormal = m_argDescs[k].m_type; |
| 381 | m_argDescs[k].m_nativeOffset = argOffsets_[k]; |
| 382 | m_argDescs[k].m_directOffset = directVarArgOffset; |
| 383 | k++; |
| 384 | } |
| 385 | } |
| 386 | break; |
| 387 | |
| 388 | case CORINFO_CALLCONV_C: |
| 389 | NYI_INTERP("InterpreterMethodInfo::InitArgInfo -- CORINFO_CALLCONV_C" ); |
| 390 | break; |
| 391 | |
| 392 | case CORINFO_CALLCONV_STDCALL: |
| 393 | NYI_INTERP("InterpreterMethodInfo::InitArgInfo -- CORINFO_CALLCONV_STDCALL" ); |
| 394 | break; |
| 395 | |
| 396 | case CORINFO_CALLCONV_THISCALL: |
| 397 | NYI_INTERP("InterpreterMethodInfo::InitArgInfo -- CORINFO_CALLCONV_THISCALL" ); |
| 398 | break; |
| 399 | |
| 400 | case CORINFO_CALLCONV_FASTCALL: |
| 401 | NYI_INTERP("InterpreterMethodInfo::InitArgInfo -- CORINFO_CALLCONV_FASTCALL" ); |
| 402 | break; |
| 403 | |
| 404 | case CORINFO_CALLCONV_FIELD: |
| 405 | NYI_INTERP("InterpreterMethodInfo::InitArgInfo -- CORINFO_CALLCONV_FIELD" ); |
| 406 | break; |
| 407 | |
| 408 | case CORINFO_CALLCONV_LOCAL_SIG: |
| 409 | NYI_INTERP("InterpreterMethodInfo::InitArgInfo -- CORINFO_CALLCONV_LOCAL_SIG" ); |
| 410 | break; |
| 411 | |
| 412 | case CORINFO_CALLCONV_PROPERTY: |
| 413 | NYI_INTERP("InterpreterMethodInfo::InitArgInfo -- CORINFO_CALLCONV_PROPERTY" ); |
| 414 | break; |
| 415 | |
| 416 | case CORINFO_CALLCONV_NATIVEVARARG: |
| 417 | NYI_INTERP("InterpreterMethodInfo::InitArgInfo -- CORINFO_CALLCONV_NATIVEVARARG" ); |
| 418 | break; |
| 419 | |
| 420 | default: |
| 421 | _ASSERTE_ALL_BUILDS(__FILE__, false); // shouldn't get here |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | InterpreterMethodInfo::~InterpreterMethodInfo() |
| 426 | { |
| 427 | if (m_methodCache != NULL) |
| 428 | { |
| 429 | delete reinterpret_cast<ILOffsetToItemCache*>(m_methodCache); |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | void InterpreterMethodInfo::AllocPinningBitsIfNeeded() |
| 434 | { |
| 435 | if (m_localIsPinningRefBits != NULL) |
| 436 | return; |
| 437 | |
| 438 | unsigned numChars = (m_numLocals + 7) / 8; |
| 439 | m_localIsPinningRefBits = new char[numChars]; |
| 440 | for (unsigned i = 0; i < numChars; i++) |
| 441 | { |
| 442 | m_localIsPinningRefBits[i] = char(0); |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | |
| 447 | void InterpreterMethodInfo::SetPinningBit(unsigned locNum) |
| 448 | { |
| 449 | _ASSERTE_MSG(locNum < m_numLocals, "Precondition" ); |
| 450 | AllocPinningBitsIfNeeded(); |
| 451 | |
| 452 | unsigned ind = locNum / 8; |
| 453 | unsigned bitNum = locNum - (ind * 8); |
| 454 | m_localIsPinningRefBits[ind] |= (1 << bitNum); |
| 455 | } |
| 456 | |
| 457 | bool InterpreterMethodInfo::GetPinningBit(unsigned locNum) |
| 458 | { |
| 459 | _ASSERTE_MSG(locNum < m_numLocals, "Precondition" ); |
| 460 | if (m_localIsPinningRefBits == NULL) |
| 461 | return false; |
| 462 | |
| 463 | unsigned ind = locNum / 8; |
| 464 | unsigned bitNum = locNum - (ind * 8); |
| 465 | return (m_localIsPinningRefBits[ind] & (1 << bitNum)) != 0; |
| 466 | } |
| 467 | |
| 468 | void Interpreter::ArgState::AddArg(unsigned canonIndex, short numSlots, bool noReg, bool twoSlotAlign) |
| 469 | { |
| 470 | #if defined(_AMD64_) |
| 471 | assert(!noReg); |
| 472 | assert(!twoSlotAlign); |
| 473 | AddArgAmd64(canonIndex, numSlots, /*isFloatingType*/false); |
| 474 | #else // !_AMD64_ |
| 475 | #if defined(_X86_) || defined(_ARM64_) |
| 476 | assert(!twoSlotAlign); // Shouldn't use this flag on x86 (it wouldn't work right in the stack, at least). |
| 477 | #endif |
| 478 | // If the argument requires two-slot alignment, make sure we have it. This is the |
| 479 | // ARM model: both in regs and on the stack. |
| 480 | if (twoSlotAlign) |
| 481 | { |
| 482 | if (!noReg && numRegArgs < NumberOfIntegerRegArgs()) |
| 483 | { |
| 484 | if ((numRegArgs % 2) != 0) |
| 485 | { |
| 486 | numRegArgs++; |
| 487 | } |
| 488 | } |
| 489 | else |
| 490 | { |
| 491 | if ((callerArgStackSlots % 2) != 0) |
| 492 | { |
| 493 | callerArgStackSlots++; |
| 494 | } |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | #if defined(_ARM64_) |
| 499 | // On ARM64 we're not going to place an argument 'partially' on the stack |
| 500 | // if all slots fits into registers, they go into registers, otherwise they go into stack. |
| 501 | if (!noReg && numRegArgs+numSlots <= NumberOfIntegerRegArgs()) |
| 502 | #else |
| 503 | if (!noReg && numRegArgs < NumberOfIntegerRegArgs()) |
| 504 | #endif |
| 505 | { |
| 506 | argIsReg[canonIndex] = ARS_IntReg; |
| 507 | argOffsets[canonIndex] = numRegArgs * sizeof(void*); |
| 508 | numRegArgs += numSlots; |
| 509 | // If we overflowed the regs, we consume some stack arg space. |
| 510 | if (numRegArgs > NumberOfIntegerRegArgs()) |
| 511 | { |
| 512 | callerArgStackSlots += (numRegArgs - NumberOfIntegerRegArgs()); |
| 513 | } |
| 514 | } |
| 515 | else |
| 516 | { |
| 517 | #if defined(_X86_) |
| 518 | // On X86, stack args are pushed in order. We will add the total size of the arguments to this offset, |
| 519 | // so we set this to a negative number relative to the SP before the first arg push. |
| 520 | callerArgStackSlots += numSlots; |
| 521 | ClrSafeInt<short> offset(-callerArgStackSlots); |
| 522 | #elif defined(_ARM_) || defined(_ARM64_) |
| 523 | // On ARM, args are pushed in *reverse* order. So we will create an offset relative to the address |
| 524 | // of the first stack arg; later, we will add the size of the non-stack arguments. |
| 525 | ClrSafeInt<short> offset(callerArgStackSlots); |
| 526 | #endif |
| 527 | offset *= static_cast<short>(sizeof(void*)); |
| 528 | assert(!offset.IsOverflow()); |
| 529 | argOffsets[canonIndex] = offset.Value(); |
| 530 | #if defined(_ARM_) || defined(_ARM64_) |
| 531 | callerArgStackSlots += numSlots; |
| 532 | #endif |
| 533 | } |
| 534 | #endif // !_AMD64_ |
| 535 | } |
| 536 | |
| 537 | #if defined(_AMD64_) |
| 538 | // AMD64 calling convention allows any type that can be contained in 64 bits to be passed in registers, |
| 539 | // if not contained or they are of a size not a power of 2, then they are passed by reference on the stack. |
| 540 | // RCX, RDX, R8, R9 are the int arg registers. XMM0-3 overlap with the integer registers and are used |
| 541 | // for floating point arguments. |
| 542 | void Interpreter::ArgState::AddArgAmd64(unsigned canonIndex, unsigned short numSlots, bool isFloatingType) |
| 543 | { |
| 544 | // If floating type and there are slots use a float reg slot. |
| 545 | if (isFloatingType && (numFPRegArgSlots < MaxNumFPRegArgSlots)) |
| 546 | { |
| 547 | assert(numSlots == 1); |
| 548 | argIsReg[canonIndex] = ARS_FloatReg; |
| 549 | argOffsets[canonIndex] = numFPRegArgSlots * sizeof(void*); |
| 550 | fpArgsUsed |= (0x1 << (numFPRegArgSlots + 1)); |
| 551 | numFPRegArgSlots += 1; |
| 552 | numRegArgs += 1; // Increment int reg count due to shadowing. |
| 553 | return; |
| 554 | } |
| 555 | |
| 556 | // If we have an integer/aligned-struct arg or a reference of a struct that got copied on |
| 557 | // to the stack, it would go into a register or a stack slot. |
| 558 | if (numRegArgs != NumberOfIntegerRegArgs()) |
| 559 | { |
| 560 | argIsReg[canonIndex] = ARS_IntReg; |
| 561 | argOffsets[canonIndex] = numRegArgs * sizeof(void*); |
| 562 | numRegArgs += 1; |
| 563 | numFPRegArgSlots += 1; // Increment FP reg count due to shadowing. |
| 564 | } |
| 565 | else |
| 566 | { |
| 567 | argIsReg[canonIndex] = ARS_NotReg; |
| 568 | ClrSafeInt<short> offset(callerArgStackSlots * sizeof(void*)); |
| 569 | assert(!offset.IsOverflow()); |
| 570 | argOffsets[canonIndex] = offset.Value(); |
| 571 | callerArgStackSlots += 1; |
| 572 | } |
| 573 | } |
| 574 | #endif |
| 575 | |
| 576 | void Interpreter::ArgState::AddFPArg(unsigned canonIndex, unsigned short numSlots, bool twoSlotAlign) |
| 577 | { |
| 578 | #if defined(_AMD64_) |
| 579 | assert(!twoSlotAlign); |
| 580 | assert(numSlots == 1); |
| 581 | AddArgAmd64(canonIndex, numSlots, /*isFloatingType*/ true); |
| 582 | #elif defined(_X86_) |
| 583 | assert(false); // Don't call this on x86; we pass all FP on the stack. |
| 584 | #elif defined(_ARM_) |
| 585 | // We require "numSlots" alignment. |
| 586 | assert(numFPRegArgSlots + numSlots <= MaxNumFPRegArgSlots); |
| 587 | argIsReg[canonIndex] = ARS_FloatReg; |
| 588 | |
| 589 | if (twoSlotAlign) |
| 590 | { |
| 591 | // If we require two slot alignment, the number of slots must be a multiple of two. |
| 592 | assert((numSlots % 2) == 0); |
| 593 | |
| 594 | // Skip a slot if necessary. |
| 595 | if ((numFPRegArgSlots % 2) != 0) |
| 596 | { |
| 597 | numFPRegArgSlots++; |
| 598 | } |
| 599 | // We always use new slots for two slot aligned args precision... |
| 600 | argOffsets[canonIndex] = numFPRegArgSlots * sizeof(void*); |
| 601 | for (unsigned short i = 0; i < numSlots/2; i++) |
| 602 | { |
| 603 | fpArgsUsed |= (0x3 << (numFPRegArgSlots + i)); |
| 604 | } |
| 605 | numFPRegArgSlots += numSlots; |
| 606 | } |
| 607 | else |
| 608 | { |
| 609 | if (numSlots == 1) |
| 610 | { |
| 611 | // A single-precision (float) argument. We must do "back-filling" where possible, searching |
| 612 | // for previous unused registers. |
| 613 | unsigned slot = 0; |
| 614 | while (slot < 32 && (fpArgsUsed & (1 << slot))) slot++; |
| 615 | assert(slot < 32); // Search succeeded. |
| 616 | assert(slot <= numFPRegArgSlots); // No bits at or above numFPRegArgSlots are set (regs used). |
| 617 | argOffsets[canonIndex] = slot * sizeof(void*); |
| 618 | fpArgsUsed |= (0x1 << slot); |
| 619 | if (slot == numFPRegArgSlots) |
| 620 | numFPRegArgSlots += numSlots; |
| 621 | } |
| 622 | else |
| 623 | { |
| 624 | // We can always allocate at after the last used slot. |
| 625 | argOffsets[numFPRegArgSlots] = numFPRegArgSlots * sizeof(void*); |
| 626 | for (unsigned i = 0; i < numSlots; i++) |
| 627 | { |
| 628 | fpArgsUsed |= (0x1 << (numFPRegArgSlots + i)); |
| 629 | } |
| 630 | numFPRegArgSlots += numSlots; |
| 631 | } |
| 632 | } |
| 633 | #elif defined(_ARM64_) |
| 634 | |
| 635 | assert(numFPRegArgSlots + numSlots <= MaxNumFPRegArgSlots); |
| 636 | assert(!twoSlotAlign); |
| 637 | argIsReg[canonIndex] = ARS_FloatReg; |
| 638 | |
| 639 | argOffsets[canonIndex] = numFPRegArgSlots * sizeof(void*); |
| 640 | for (unsigned i = 0; i < numSlots; i++) |
| 641 | { |
| 642 | fpArgsUsed |= (0x1 << (numFPRegArgSlots + i)); |
| 643 | } |
| 644 | numFPRegArgSlots += numSlots; |
| 645 | |
| 646 | #else |
| 647 | #error "Unsupported architecture" |
| 648 | #endif |
| 649 | } |
| 650 | |
| 651 | |
| 652 | // static |
| 653 | CorJitResult Interpreter::GenerateInterpreterStub(CEEInfo* comp, |
| 654 | CORINFO_METHOD_INFO* info, |
| 655 | /*OUT*/ BYTE **nativeEntry, |
| 656 | /*OUT*/ ULONG *nativeSizeOfCode, |
| 657 | InterpreterMethodInfo** ppInterpMethodInfo, |
| 658 | bool jmpCall) |
| 659 | { |
| 660 | // |
| 661 | // First, ensure that the compiler-specific statics are initialized. |
| 662 | // |
| 663 | |
| 664 | InitializeCompilerStatics(comp); |
| 665 | |
| 666 | // |
| 667 | // Next, use switches and IL scanning to determine whether to interpret this method. |
| 668 | // |
| 669 | |
| 670 | #if INTERP_TRACING |
| 671 | #define TRACE_SKIPPED(cls, meth, reason) \ |
| 672 | if (s_DumpInterpreterStubsFlag.val(CLRConfig::INTERNAL_DumpInterpreterStubs)) { \ |
| 673 | fprintf(GetLogFile(), "Skipping %s:%s (%s).\n", cls, meth, reason); \ |
| 674 | } |
| 675 | #else |
| 676 | #define TRACE_SKIPPED(cls, meth, reason) |
| 677 | #endif |
| 678 | |
| 679 | |
| 680 | // If jmpCall, we only need to do computations involving method info. |
| 681 | if (!jmpCall) |
| 682 | { |
| 683 | const char* clsName; |
| 684 | const char* methName = comp->getMethodName(info->ftn, &clsName); |
| 685 | if ( !s_InterpretMeths.contains(methName, clsName, info->args.pSig) |
| 686 | || s_InterpretMethsExclude.contains(methName, clsName, info->args.pSig)) |
| 687 | { |
| 688 | TRACE_SKIPPED(clsName, methName, "not in set of methods to interpret" ); |
| 689 | return CORJIT_SKIPPED; |
| 690 | } |
| 691 | |
| 692 | unsigned methHash = comp->getMethodHash(info->ftn); |
| 693 | if ( methHash < s_InterpretMethHashMin.val(CLRConfig::INTERNAL_InterpreterMethHashMin) |
| 694 | || methHash > s_InterpretMethHashMax.val(CLRConfig::INTERNAL_InterpreterMethHashMax)) |
| 695 | { |
| 696 | TRACE_SKIPPED(clsName, methName, "hash not within range to interpret" ); |
| 697 | return CORJIT_SKIPPED; |
| 698 | } |
| 699 | |
| 700 | MethodDesc* pMD = reinterpret_cast<MethodDesc*>(info->ftn); |
| 701 | |
| 702 | #if !INTERP_ILSTUBS |
| 703 | if (pMD->IsILStub()) |
| 704 | { |
| 705 | TRACE_SKIPPED(clsName, methName, "interop stubs not supported" ); |
| 706 | return CORJIT_SKIPPED; |
| 707 | } |
| 708 | else |
| 709 | #endif // !INTERP_ILSTUBS |
| 710 | |
| 711 | if (!s_InterpreterDoLoopMethods && MethodMayHaveLoop(info->ILCode, info->ILCodeSize)) |
| 712 | { |
| 713 | TRACE_SKIPPED(clsName, methName, "has loop, not interpreting loop methods." ); |
| 714 | return CORJIT_SKIPPED; |
| 715 | } |
| 716 | |
| 717 | s_interpreterStubNum++; |
| 718 | |
| 719 | #if INTERP_TRACING |
| 720 | if (s_interpreterStubNum < s_InterpreterStubMin.val(CLRConfig::INTERNAL_InterpreterStubMin) |
| 721 | || s_interpreterStubNum > s_InterpreterStubMax.val(CLRConfig::INTERNAL_InterpreterStubMax)) |
| 722 | { |
| 723 | TRACE_SKIPPED(clsName, methName, "stub num not in range, not interpreting." ); |
| 724 | return CORJIT_SKIPPED; |
| 725 | } |
| 726 | |
| 727 | if (s_DumpInterpreterStubsFlag.val(CLRConfig::INTERNAL_DumpInterpreterStubs)) |
| 728 | { |
| 729 | unsigned hash = comp->getMethodHash(info->ftn); |
| 730 | fprintf(GetLogFile(), "Generating interpretation stub (# %d = 0x%x, hash = 0x%x) for %s:%s.\n" , |
| 731 | s_interpreterStubNum, s_interpreterStubNum, hash, clsName, methName); |
| 732 | fflush(GetLogFile()); |
| 733 | } |
| 734 | #endif |
| 735 | } |
| 736 | |
| 737 | // |
| 738 | // Finally, generate an interpreter entry-point stub. |
| 739 | // |
| 740 | |
| 741 | // @TODO: this structure clearly needs some sort of lifetime management. It is the moral equivalent |
| 742 | // of compiled code, and should be associated with an app domain. In addition, when I get to it, we should |
| 743 | // delete it when/if we actually compile the method. (Actually, that's complicated, since there may be |
| 744 | // VSD stubs still bound to the interpreter stub. The check there will get to the jitted code, but we want |
| 745 | // to eventually clean those up at some safe point...) |
| 746 | InterpreterMethodInfo* interpMethInfo = new InterpreterMethodInfo(comp, info); |
| 747 | if (ppInterpMethodInfo != nullptr) |
| 748 | { |
| 749 | *ppInterpMethodInfo = interpMethInfo; |
| 750 | } |
| 751 | interpMethInfo->m_stubNum = s_interpreterStubNum; |
| 752 | MethodDesc* methodDesc = reinterpret_cast<MethodDesc*>(info->ftn); |
| 753 | if (!jmpCall) |
| 754 | { |
| 755 | interpMethInfo = RecordInterpreterMethodInfoForMethodHandle(info->ftn, interpMethInfo); |
| 756 | } |
| 757 | |
| 758 | #if FEATURE_INTERPRETER_DEADSIMPLE_OPT |
| 759 | unsigned offsetOfLd; |
| 760 | if (IsDeadSimpleGetter(comp, methodDesc, &offsetOfLd)) |
| 761 | { |
| 762 | interpMethInfo->SetFlag<InterpreterMethodInfo::Flag_methIsDeadSimpleGetter>(true); |
| 763 | if (offsetOfLd == ILOffsetOfLdFldInDeadSimpleInstanceGetterDbg) |
| 764 | { |
| 765 | interpMethInfo->SetFlag<InterpreterMethodInfo::Flag_methIsDeadSimpleGetterIsDbgForm>(true); |
| 766 | } |
| 767 | else |
| 768 | { |
| 769 | assert(offsetOfLd == ILOffsetOfLdFldInDeadSimpleInstanceGetterOpt); |
| 770 | } |
| 771 | } |
| 772 | #endif // FEATURE_INTERPRETER_DEADSIMPLE_OPT |
| 773 | |
| 774 | // Used to initialize the arg offset information. |
| 775 | Stub* stub = NULL; |
| 776 | |
| 777 | // We assume that the stack contains (with addresses growing upwards, assuming a downwards-growing stack): |
| 778 | // |
| 779 | // [Non-reg arg N-1] |
| 780 | // ... |
| 781 | // [Non-reg arg <# of reg args>] |
| 782 | // [return PC] |
| 783 | // |
| 784 | // Then push the register args to get: |
| 785 | // |
| 786 | // [Non-reg arg N-1] |
| 787 | // ... |
| 788 | // [Non-reg arg <# of reg args>] |
| 789 | // [return PC] |
| 790 | // [reg arg <# of reg args>-1] |
| 791 | // ... |
| 792 | // [reg arg 0] |
| 793 | // |
| 794 | // Pass the address of this argument array, and the MethodDesc pointer for the method, as arguments to |
| 795 | // Interpret. |
| 796 | // |
| 797 | // So the structure of the code will look like this (in the non-ILstub case): |
| 798 | // |
| 799 | #if defined(_X86_) || defined(_AMD64_) |
| 800 | // push ebp |
| 801 | // mov ebp, esp |
| 802 | // [if there are register arguments in ecx or edx, push them] |
| 803 | // ecx := addr of InterpretMethodInfo for the method to be intepreted. |
| 804 | // edx = esp /*pointer to argument structure*/ |
| 805 | // call to Interpreter::InterpretMethod |
| 806 | // [if we pushed register arguments, increment esp by the right amount.] |
| 807 | // pop ebp |
| 808 | // ret <n> ; where <n> is the number of argument stack slots in the call to the stub. |
| 809 | #elif defined (_ARM_) |
| 810 | // TODO. |
| 811 | #endif |
| 812 | |
| 813 | // TODO: much of the interpreter stub code should be is shareable. In the non-IL stub case, |
| 814 | // at least, we could have a small per-method stub that puts the address of the method-specific |
| 815 | // InterpreterMethodInfo into eax, and then branches to a shared part. Probably we would want to |
| 816 | // always push all integer args on x86, as we do already on ARM. On ARM, we'd need several versions |
| 817 | // of the shared stub, for different numbers of floating point register args, cross different kinds of |
| 818 | // HFA return values. But these could still be shared, and the per-method stub would decide which of |
| 819 | // these to target. |
| 820 | // |
| 821 | // In the IL stub case, which uses eax, it would be problematic to do this sharing. |
| 822 | |
| 823 | StubLinkerCPU sl; |
| 824 | MethodDesc* pMD = reinterpret_cast<MethodDesc*>(info->ftn); |
| 825 | if (!jmpCall) |
| 826 | { |
| 827 | sl.Init(); |
| 828 | #if defined(_X86_) || defined(_AMD64_) |
| 829 | #if defined(_X86_) |
| 830 | sl.X86EmitPushReg(kEBP); |
| 831 | sl.X86EmitMovRegReg(kEBP, static_cast<X86Reg>(kESP_Unsafe)); |
| 832 | #endif |
| 833 | #elif defined(_ARM_) |
| 834 | // On ARM we use R12 as a "scratch" register -- callee-trashed, not used |
| 835 | // for arguments. |
| 836 | ThumbReg r11 = ThumbReg(11); |
| 837 | ThumbReg r12 = ThumbReg(12); |
| 838 | |
| 839 | #elif defined(_ARM64_) |
| 840 | // x8 through x15 are scratch registers on ARM64. |
| 841 | IntReg x8 = IntReg(8); |
| 842 | IntReg x9 = IntReg(9); |
| 843 | #else |
| 844 | #error unsupported platform |
| 845 | #endif |
| 846 | } |
| 847 | |
| 848 | MetaSig sig(methodDesc); |
| 849 | |
| 850 | unsigned totalArgs = info->args.numArgs; |
| 851 | unsigned sigArgsPlusThis = totalArgs; |
| 852 | bool hasThis = false; |
| 853 | bool hasRetBuff = false; |
| 854 | bool isVarArg = false; |
| 855 | bool hasGenericsContextArg = false; |
| 856 | |
| 857 | // Below, we will increment "totalArgs" for any of the "this" argument, |
| 858 | // a ret buff argument, and/or a generics context argument. |
| 859 | // |
| 860 | // There will be four arrays allocated below, each with this increased "totalArgs" elements: |
| 861 | // argOffsets, argIsReg, argPerm, and, later, m_argDescs. |
| 862 | // |
| 863 | // They will be indexed in the order (0-based, [] indicating optional) |
| 864 | // |
| 865 | // [this] sigArgs [retBuff] [VASigCookie] [genCtxt] |
| 866 | // |
| 867 | // We will call this "canonical order". It is architecture-independent, and |
| 868 | // does not necessarily correspond to the architecture-dependent physical order |
| 869 | // in which the registers are actually passed. (That's actually the purpose of |
| 870 | // "argPerm": to record the correspondence between canonical order and physical |
| 871 | // order.) We could have chosen any order for the first three of these, but it's |
| 872 | // simplest to let m_argDescs have all the passed IL arguments passed contiguously |
| 873 | // at the beginning, allowing it to be indexed by IL argument number. |
| 874 | |
| 875 | int genericsContextArgIndex = 0; |
| 876 | int retBuffArgIndex = 0; |
| 877 | int vaSigCookieIndex = 0; |
| 878 | |
| 879 | if (sig.HasThis()) |
| 880 | { |
| 881 | assert(info->args.callConv & CORINFO_CALLCONV_HASTHIS); |
| 882 | hasThis = true; |
| 883 | totalArgs++; sigArgsPlusThis++; |
| 884 | } |
| 885 | |
| 886 | if (methodDesc->HasRetBuffArg()) |
| 887 | { |
| 888 | hasRetBuff = true; |
| 889 | retBuffArgIndex = totalArgs; |
| 890 | totalArgs++; |
| 891 | } |
| 892 | |
| 893 | if (sig.GetCallingConventionInfo() & CORINFO_CALLCONV_VARARG) |
| 894 | { |
| 895 | isVarArg = true; |
| 896 | vaSigCookieIndex = totalArgs; |
| 897 | totalArgs++; |
| 898 | } |
| 899 | |
| 900 | if (sig.GetCallingConventionInfo() & CORINFO_CALLCONV_PARAMTYPE) |
| 901 | { |
| 902 | assert(info->args.callConv & CORINFO_CALLCONV_PARAMTYPE); |
| 903 | hasGenericsContextArg = true; |
| 904 | genericsContextArgIndex = totalArgs; |
| 905 | totalArgs++; |
| 906 | } |
| 907 | |
| 908 | // The non-this sig args have indices starting after these. |
| 909 | |
| 910 | // We will first encode the arg offsets as *negative* offsets from the address above the first |
| 911 | // stack arg, and later add in the total size of the stack args to get a positive offset. |
| 912 | // The first sigArgsPlusThis elements are the offsets of the IL-addressable arguments. After that, |
| 913 | // there may be up to two more: generics context arg, if present, and return buff pointer, if present. |
| 914 | // (Note that the latter is actually passed after the "this" pointer, or else first if no "this" pointer |
| 915 | // is present. We re-arrange to preserve the easy IL-addressability.) |
| 916 | ArgState argState(totalArgs); |
| 917 | |
| 918 | // This is the permutation that translates from an index in the argOffsets/argIsReg arrays to |
| 919 | // the platform-specific order in which the arguments are passed. |
| 920 | unsigned* argPerm = new unsigned[totalArgs]; |
| 921 | |
| 922 | // The number of register argument slots we end up pushing. |
| 923 | unsigned short regArgsFound = 0; |
| 924 | |
| 925 | unsigned physArgIndex = 0; |
| 926 | |
| 927 | #if defined(_ARM_) |
| 928 | // The stub linker has a weird little limitation: all stubs it's used |
| 929 | // for on ARM push some callee-saved register, so the unwind info |
| 930 | // code was written assuming at least one would be pushed. I don't know how to |
| 931 | // fix it, so I'm meeting this requirement, by pushing one callee-save. |
| 932 | #define STUB_LINK_EMIT_PROLOG_REQUIRES_CALLEE_SAVE_PUSH 1 |
| 933 | |
| 934 | #if STUB_LINK_EMIT_PROLOG_REQUIRES_CALLEE_SAVE_PUSH |
| 935 | const int NumberOfCalleeSaveRegsToPush = 1; |
| 936 | #else |
| 937 | const int NumberOfCalleeSaveRegsToPush = 0; |
| 938 | #endif |
| 939 | // The "1" here is for the return address. |
| 940 | const int NumberOfFixedPushes = 1 + NumberOfCalleeSaveRegsToPush; |
| 941 | #elif defined(_ARM64_) |
| 942 | // FP, LR |
| 943 | const int NumberOfFixedPushes = 2; |
| 944 | #endif |
| 945 | |
| 946 | #if defined(FEATURE_HFA) |
| 947 | #if defined(_ARM_) || defined(_ARM64_) |
| 948 | // On ARM, a non-retBuffArg method that returns a struct type might be an HFA return. Figure |
| 949 | // that out. |
| 950 | unsigned HFARetTypeSize = 0; |
| 951 | #endif |
| 952 | #if defined(_ARM64_) |
| 953 | unsigned cHFAVars = 0; |
| 954 | #endif |
| 955 | if (info->args.retType == CORINFO_TYPE_VALUECLASS |
| 956 | && CorInfoTypeIsFloatingPoint(comp->getHFAType(info->args.retTypeClass)) |
| 957 | && info->args.getCallConv() != CORINFO_CALLCONV_VARARG) |
| 958 | { |
| 959 | HFARetTypeSize = getClassSize(info->args.retTypeClass); |
| 960 | #if defined(_ARM_) |
| 961 | // Round up to a double boundary; |
| 962 | HFARetTypeSize = ((HFARetTypeSize+ sizeof(double) - 1) / sizeof(double)) * sizeof(double); |
| 963 | #elif defined(_ARM64_) |
| 964 | // We don't need to round it up to double. Unlike ARM, whether it's a float or a double each field will |
| 965 | // occupy one slot. We'll handle the stack alignment in the prolog where we have all the information about |
| 966 | // what is going to be pushed on the stack. |
| 967 | // Instead on ARM64 we'll need to know how many slots we'll need. |
| 968 | // for instance a VT with two float fields will have the same size as a VT with 1 double field. (ARM64TODO: Verify it) |
| 969 | // It works on ARM because the overlapping layout of the floating point registers |
| 970 | // but it won't work on ARM64. |
| 971 | cHFAVars = (comp->getHFAType(info->args.retTypeClass) == CORINFO_TYPE_FLOAT) ? HFARetTypeSize/sizeof(float) : HFARetTypeSize/sizeof(double); |
| 972 | #endif |
| 973 | } |
| 974 | |
| 975 | #endif // defined(FEATURE_HFA) |
| 976 | |
| 977 | _ASSERTE_MSG((info->args.callConv & (CORINFO_CALLCONV_EXPLICITTHIS)) == 0, |
| 978 | "Don't yet handle EXPLICITTHIS calling convention modifier." ); |
| 979 | |
| 980 | switch (info->args.callConv & CORINFO_CALLCONV_MASK) |
| 981 | { |
| 982 | case CORINFO_CALLCONV_DEFAULT: |
| 983 | case CORINFO_CALLCONV_VARARG: |
| 984 | { |
| 985 | unsigned firstSigArgIndex = 0; |
| 986 | if (hasThis) |
| 987 | { |
| 988 | argPerm[0] = physArgIndex; physArgIndex++; |
| 989 | argState.AddArg(0); |
| 990 | firstSigArgIndex++; |
| 991 | } |
| 992 | |
| 993 | if (hasRetBuff) |
| 994 | { |
| 995 | argPerm[retBuffArgIndex] = physArgIndex; physArgIndex++; |
| 996 | argState.AddArg(retBuffArgIndex); |
| 997 | } |
| 998 | |
| 999 | if (isVarArg) |
| 1000 | { |
| 1001 | argPerm[vaSigCookieIndex] = physArgIndex; physArgIndex++; |
| 1002 | interpMethInfo->m_varArgHandleArgNum = vaSigCookieIndex; |
| 1003 | argState.AddArg(vaSigCookieIndex); |
| 1004 | } |
| 1005 | |
| 1006 | #if defined(_ARM_) || defined(_AMD64_) || defined(_ARM64_) |
| 1007 | // Generics context comes before args on ARM. Would be better if I factored this out as a call, |
| 1008 | // to avoid large swatches of duplicate code. |
| 1009 | if (hasGenericsContextArg) |
| 1010 | { |
| 1011 | argPerm[genericsContextArgIndex] = physArgIndex; physArgIndex++; |
| 1012 | argState.AddArg(genericsContextArgIndex); |
| 1013 | } |
| 1014 | #endif // _ARM_ || _AMD64_ || _ARM64_ |
| 1015 | |
| 1016 | CORINFO_ARG_LIST_HANDLE argPtr = info->args.args; |
| 1017 | // Some arguments are have been passed in registers, some in memory. We must generate code that |
| 1018 | // moves the register arguments to memory, and determines a pointer into the stack from which all |
| 1019 | // the arguments can be accessed, according to the offsets in "argOffsets." |
| 1020 | // |
| 1021 | // In the first pass over the arguments, we will label and count the register arguments, and |
| 1022 | // initialize entries in "argOffsets" for the non-register arguments -- relative to the SP at the |
| 1023 | // time of the call. Then when we have counted the number of register arguments, we will adjust |
| 1024 | // the offsets for the non-register arguments to account for those. Then, in the second pass, we |
| 1025 | // will push the register arguments on the stack, and capture the final stack pointer value as |
| 1026 | // the argument vector pointer. |
| 1027 | CORINFO_CLASS_HANDLE vcTypeRet; |
| 1028 | // This iteration starts at the first signature argument, and iterates over all the |
| 1029 | // canonical indices for the signature arguments. |
| 1030 | for (unsigned k = firstSigArgIndex; k < sigArgsPlusThis; k++) |
| 1031 | { |
| 1032 | argPerm[k] = physArgIndex; physArgIndex++; |
| 1033 | |
| 1034 | CorInfoTypeWithMod argTypWithMod = comp->getArgType(&info->args, argPtr, &vcTypeRet); |
| 1035 | CorInfoType argType = strip(argTypWithMod); |
| 1036 | switch (argType) |
| 1037 | { |
| 1038 | case CORINFO_TYPE_UNDEF: |
| 1039 | case CORINFO_TYPE_VOID: |
| 1040 | case CORINFO_TYPE_VAR: |
| 1041 | _ASSERTE_ALL_BUILDS(__FILE__, false); // Should not happen; |
| 1042 | break; |
| 1043 | |
| 1044 | // One integer slot arguments: |
| 1045 | case CORINFO_TYPE_BOOL: |
| 1046 | case CORINFO_TYPE_CHAR: |
| 1047 | case CORINFO_TYPE_BYTE: |
| 1048 | case CORINFO_TYPE_UBYTE: |
| 1049 | case CORINFO_TYPE_SHORT: |
| 1050 | case CORINFO_TYPE_USHORT: |
| 1051 | case CORINFO_TYPE_INT: |
| 1052 | case CORINFO_TYPE_UINT: |
| 1053 | case CORINFO_TYPE_NATIVEINT: |
| 1054 | case CORINFO_TYPE_NATIVEUINT: |
| 1055 | case CORINFO_TYPE_BYREF: |
| 1056 | case CORINFO_TYPE_CLASS: |
| 1057 | case CORINFO_TYPE_STRING: |
| 1058 | case CORINFO_TYPE_PTR: |
| 1059 | argState.AddArg(k); |
| 1060 | break; |
| 1061 | |
| 1062 | // Two integer slot arguments. |
| 1063 | case CORINFO_TYPE_LONG: |
| 1064 | case CORINFO_TYPE_ULONG: |
| 1065 | #if defined(_X86_) |
| 1066 | // Longs are always passed on the stack -- with no obvious alignment. |
| 1067 | argState.AddArg(k, 2, /*noReg*/true); |
| 1068 | #elif defined(_ARM_) |
| 1069 | // LONGS have 2-reg alignment; inc reg if necessary. |
| 1070 | argState.AddArg(k, 2, /*noReg*/false, /*twoSlotAlign*/true); |
| 1071 | #elif defined(_AMD64_) || defined(_ARM64_) |
| 1072 | argState.AddArg(k); |
| 1073 | #else |
| 1074 | #error unknown platform |
| 1075 | #endif |
| 1076 | break; |
| 1077 | |
| 1078 | // One float slot args: |
| 1079 | case CORINFO_TYPE_FLOAT: |
| 1080 | #if defined(_X86_) |
| 1081 | argState.AddArg(k, 1, /*noReg*/true); |
| 1082 | #elif defined(_ARM_) |
| 1083 | argState.AddFPArg(k, 1, /*twoSlotAlign*/false); |
| 1084 | #elif defined(_AMD64_) || defined(_ARM64_) |
| 1085 | argState.AddFPArg(k, 1, false); |
| 1086 | #else |
| 1087 | #error unknown platform |
| 1088 | #endif |
| 1089 | break; |
| 1090 | |
| 1091 | // Two float slot args |
| 1092 | case CORINFO_TYPE_DOUBLE: |
| 1093 | #if defined(_X86_) |
| 1094 | argState.AddArg(k, 2, /*noReg*/true); |
| 1095 | #elif defined(_ARM_) |
| 1096 | argState.AddFPArg(k, 2, /*twoSlotAlign*/true); |
| 1097 | #elif defined(_AMD64_) || defined(_ARM64_) |
| 1098 | argState.AddFPArg(k, 1, false); |
| 1099 | #else |
| 1100 | #error unknown platform |
| 1101 | #endif |
| 1102 | break; |
| 1103 | |
| 1104 | // Value class args: |
| 1105 | case CORINFO_TYPE_VALUECLASS: |
| 1106 | case CORINFO_TYPE_REFANY: |
| 1107 | { |
| 1108 | unsigned sz = getClassSize(vcTypeRet); |
| 1109 | unsigned szSlots = max(1, sz / sizeof(void*)); |
| 1110 | #if defined(_X86_) |
| 1111 | argState.AddArg(k, static_cast<short>(szSlots), /*noReg*/true); |
| 1112 | #elif defined(_AMD64_) |
| 1113 | argState.AddArg(k, static_cast<short>(szSlots)); |
| 1114 | #elif defined(_ARM_) || defined(_ARM64_) |
| 1115 | CorInfoType hfaType = comp->getHFAType(vcTypeRet); |
| 1116 | if (CorInfoTypeIsFloatingPoint(hfaType)) |
| 1117 | { |
| 1118 | argState.AddFPArg(k, szSlots, |
| 1119 | #if defined(_ARM_) |
| 1120 | /*twoSlotAlign*/ (hfaType == CORINFO_TYPE_DOUBLE) |
| 1121 | #elif defined(_ARM64_) |
| 1122 | /*twoSlotAlign*/ false // unlike ARM32 FP args always consume 1 slot on ARM64 |
| 1123 | #endif |
| 1124 | ); |
| 1125 | } |
| 1126 | else |
| 1127 | { |
| 1128 | unsigned align = comp->getClassAlignmentRequirement(vcTypeRet, FALSE); |
| 1129 | argState.AddArg(k, static_cast<short>(szSlots), /*noReg*/false, |
| 1130 | #if defined(_ARM_) |
| 1131 | /*twoSlotAlign*/ (align == 8) |
| 1132 | #elif defined(_ARM64_) |
| 1133 | /*twoSlotAlign*/ false |
| 1134 | #endif |
| 1135 | ); |
| 1136 | } |
| 1137 | #else |
| 1138 | #error unknown platform |
| 1139 | #endif |
| 1140 | } |
| 1141 | break; |
| 1142 | |
| 1143 | |
| 1144 | default: |
| 1145 | _ASSERTE_MSG(false, "should not reach here, unknown arg type" ); |
| 1146 | } |
| 1147 | argPtr = comp->getArgNext(argPtr); |
| 1148 | } |
| 1149 | |
| 1150 | #if defined(_X86_) |
| 1151 | // Generics context comes last on _X86_. Would be better if I factored this out as a call, |
| 1152 | // to avoid large swatches of duplicate code. |
| 1153 | if (hasGenericsContextArg) |
| 1154 | { |
| 1155 | argPerm[genericsContextArgIndex] = physArgIndex; physArgIndex++; |
| 1156 | argState.AddArg(genericsContextArgIndex); |
| 1157 | } |
| 1158 | |
| 1159 | // Now we have counted the number of register arguments, so we can update the offsets for the |
| 1160 | // non-register arguments. "+ 2" below is to account for the return address from the call, and |
| 1161 | // pushing of EBP. |
| 1162 | unsigned short stackArgBaseOffset = (argState.numRegArgs + 2 + argState.callerArgStackSlots) * sizeof(void*); |
| 1163 | unsigned intRegArgBaseOffset = 0; |
| 1164 | |
| 1165 | #elif defined(_ARM_) |
| 1166 | |
| 1167 | // We're choosing to always push all arg regs on ARM -- this is the only option |
| 1168 | // that ThumbEmitProlog currently gives. |
| 1169 | argState.numRegArgs = 4; |
| 1170 | |
| 1171 | // On ARM, we push the (integer) arg regs before we push the return address, so we don't add an |
| 1172 | // extra constant. And the offset is the address of the last pushed argument, which is the first |
| 1173 | // stack argument in signature order. |
| 1174 | |
| 1175 | // Round up to a double boundary... |
| 1176 | unsigned fpStackSlots = ((argState.numFPRegArgSlots + 1) / 2) * 2; |
| 1177 | unsigned intRegArgBaseOffset = (fpStackSlots + NumberOfFixedPushes) * sizeof(void*); |
| 1178 | unsigned short stackArgBaseOffset = intRegArgBaseOffset + (argState.numRegArgs) * sizeof(void*); |
| 1179 | #elif defined(_ARM64_) |
| 1180 | |
| 1181 | // See StubLinkerCPU::EmitProlog for the layout of the stack |
| 1182 | unsigned intRegArgBaseOffset = (argState.numFPRegArgSlots) * sizeof(void*); |
| 1183 | unsigned short stackArgBaseOffset = (unsigned short) ((argState.numRegArgs + argState.numFPRegArgSlots) * sizeof(void*)); |
| 1184 | #elif defined(_AMD64_) |
| 1185 | unsigned short stackArgBaseOffset = (argState.numRegArgs) * sizeof(void*); |
| 1186 | #else |
| 1187 | #error unsupported platform |
| 1188 | #endif |
| 1189 | |
| 1190 | #if defined(_ARM_) |
| 1191 | WORD regArgMask = 0; |
| 1192 | #endif // defined(_ARM_) |
| 1193 | // argPerm maps from an index into the argOffsets/argIsReg arrays to |
| 1194 | // the order that the arguments are passed. |
| 1195 | unsigned* argPermInverse = new unsigned[totalArgs]; |
| 1196 | for (unsigned t = 0; t < totalArgs; t++) |
| 1197 | { |
| 1198 | argPermInverse[argPerm[t]] = t; |
| 1199 | } |
| 1200 | |
| 1201 | for (unsigned kk = 0; kk < totalArgs; kk++) |
| 1202 | { |
| 1203 | // Let "k" be the index of the kk'th input in the argOffsets and argIsReg arrays. |
| 1204 | // To compute "k" we need to invert argPerm permutation -- determine the "k" such |
| 1205 | // that argPerm[k] == kk. |
| 1206 | unsigned k = argPermInverse[kk]; |
| 1207 | |
| 1208 | assert(k < totalArgs); |
| 1209 | |
| 1210 | if (argState.argIsReg[k] == ArgState::ARS_IntReg) |
| 1211 | { |
| 1212 | regArgsFound++; |
| 1213 | // If any int reg args are used on ARM, we push them all (in ThumbEmitProlog) |
| 1214 | #if defined(_X86_) |
| 1215 | if (regArgsFound == 1) |
| 1216 | { |
| 1217 | if (!jmpCall) { sl.X86EmitPushReg(kECX); } |
| 1218 | argState.argOffsets[k] = (argState.numRegArgs - regArgsFound)*sizeof(void*); // General form, good for general # of reg args. |
| 1219 | } |
| 1220 | else |
| 1221 | { |
| 1222 | assert(regArgsFound == 2); |
| 1223 | if (!jmpCall) { sl.X86EmitPushReg(kEDX); } |
| 1224 | argState.argOffsets[k] = (argState.numRegArgs - regArgsFound)*sizeof(void*); |
| 1225 | } |
| 1226 | #elif defined(_ARM_) || defined(_ARM64_) |
| 1227 | argState.argOffsets[k] += intRegArgBaseOffset; |
| 1228 | #elif defined(_AMD64_) |
| 1229 | // First home the register arguments in the stack space allocated by the caller. |
| 1230 | // Refer to Stack Allocation on x64 [http://msdn.microsoft.com/en-US/library/ew5tede7(v=vs.80).aspx] |
| 1231 | X86Reg argRegs[] = { kECX, kEDX, kR8, kR9 }; |
| 1232 | if (!jmpCall) { sl.X86EmitIndexRegStoreRSP(regArgsFound * sizeof(void*), argRegs[regArgsFound - 1]); } |
| 1233 | argState.argOffsets[k] = (regArgsFound - 1) * sizeof(void*); |
| 1234 | #else |
| 1235 | #error unsupported platform |
| 1236 | #endif |
| 1237 | } |
| 1238 | #if defined(_AMD64_) |
| 1239 | else if (argState.argIsReg[k] == ArgState::ARS_FloatReg) |
| 1240 | { |
| 1241 | // Increment regArgsFound since float/int arguments have overlapping registers. |
| 1242 | regArgsFound++; |
| 1243 | // Home the float arguments. |
| 1244 | X86Reg argRegs[] = { kXMM0, kXMM1, kXMM2, kXMM3 }; |
| 1245 | if (!jmpCall) { sl.X64EmitMovSDToMem(argRegs[regArgsFound - 1], static_cast<X86Reg>(kESP_Unsafe), regArgsFound * sizeof(void*)); } |
| 1246 | argState.argOffsets[k] = (regArgsFound - 1) * sizeof(void*); |
| 1247 | } |
| 1248 | #endif |
| 1249 | else if (argState.argIsReg[k] == ArgState::ARS_NotReg) |
| 1250 | { |
| 1251 | argState.argOffsets[k] += stackArgBaseOffset; |
| 1252 | } |
| 1253 | // So far, x86 doesn't have any FP reg args, and ARM and ARM64 puts them at offset 0, so no |
| 1254 | // adjustment is necessary (yet) for arguments passed in those registers. |
| 1255 | } |
| 1256 | delete[] argPermInverse; |
| 1257 | } |
| 1258 | break; |
| 1259 | |
| 1260 | case CORINFO_CALLCONV_C: |
| 1261 | NYI_INTERP("GenerateInterpreterStub -- CORINFO_CALLCONV_C" ); |
| 1262 | break; |
| 1263 | |
| 1264 | case CORINFO_CALLCONV_STDCALL: |
| 1265 | NYI_INTERP("GenerateInterpreterStub -- CORINFO_CALLCONV_STDCALL" ); |
| 1266 | break; |
| 1267 | |
| 1268 | case CORINFO_CALLCONV_THISCALL: |
| 1269 | NYI_INTERP("GenerateInterpreterStub -- CORINFO_CALLCONV_THISCALL" ); |
| 1270 | break; |
| 1271 | |
| 1272 | case CORINFO_CALLCONV_FASTCALL: |
| 1273 | NYI_INTERP("GenerateInterpreterStub -- CORINFO_CALLCONV_FASTCALL" ); |
| 1274 | break; |
| 1275 | |
| 1276 | case CORINFO_CALLCONV_FIELD: |
| 1277 | NYI_INTERP("GenerateInterpreterStub -- CORINFO_CALLCONV_FIELD" ); |
| 1278 | break; |
| 1279 | |
| 1280 | case CORINFO_CALLCONV_LOCAL_SIG: |
| 1281 | NYI_INTERP("GenerateInterpreterStub -- CORINFO_CALLCONV_LOCAL_SIG" ); |
| 1282 | break; |
| 1283 | |
| 1284 | case CORINFO_CALLCONV_PROPERTY: |
| 1285 | NYI_INTERP("GenerateInterpreterStub -- CORINFO_CALLCONV_PROPERTY" ); |
| 1286 | break; |
| 1287 | |
| 1288 | case CORINFO_CALLCONV_NATIVEVARARG: |
| 1289 | NYI_INTERP("GenerateInterpreterStub -- CORINFO_CALLCONV_NATIVEVARARG" ); |
| 1290 | break; |
| 1291 | |
| 1292 | default: |
| 1293 | _ASSERTE_ALL_BUILDS(__FILE__, false); // shouldn't get here |
| 1294 | } |
| 1295 | |
| 1296 | delete[] argPerm; |
| 1297 | |
| 1298 | PCODE interpretMethodFunc; |
| 1299 | if (!jmpCall) |
| 1300 | { |
| 1301 | switch (info->args.retType) |
| 1302 | { |
| 1303 | case CORINFO_TYPE_FLOAT: |
| 1304 | interpretMethodFunc = reinterpret_cast<PCODE>(&InterpretMethodFloat); |
| 1305 | break; |
| 1306 | case CORINFO_TYPE_DOUBLE: |
| 1307 | interpretMethodFunc = reinterpret_cast<PCODE>(&InterpretMethodDouble); |
| 1308 | break; |
| 1309 | default: |
| 1310 | interpretMethodFunc = reinterpret_cast<PCODE>(&InterpretMethod); |
| 1311 | break; |
| 1312 | } |
| 1313 | // The argument registers have been pushed by now, so we can use them. |
| 1314 | #if defined(_X86_) |
| 1315 | // First arg is pointer to the base of the ILargs arr -- i.e., the current stack value. |
| 1316 | sl.X86EmitMovRegReg(kEDX, static_cast<X86Reg>(kESP_Unsafe)); |
| 1317 | // InterpretMethod uses F_CALL_CONV == __fastcall; pass 2 args in regs. |
| 1318 | #if INTERP_ILSTUBS |
| 1319 | if (pMD->IsILStub()) |
| 1320 | { |
| 1321 | // Third argument is stubcontext, in eax. |
| 1322 | sl.X86EmitPushReg(kEAX); |
| 1323 | } |
| 1324 | else |
| 1325 | #endif |
| 1326 | { |
| 1327 | // For a non-ILStub method, push NULL as the StubContext argument. |
| 1328 | sl.X86EmitZeroOutReg(kECX); |
| 1329 | sl.X86EmitPushReg(kECX); |
| 1330 | } |
| 1331 | // sl.X86EmitAddReg(kECX, reinterpret_cast<UINT>(interpMethInfo)); |
| 1332 | sl.X86EmitRegLoad(kECX, reinterpret_cast<UINT>(interpMethInfo)); |
| 1333 | sl.X86EmitCall(sl.NewExternalCodeLabel(interpretMethodFunc), 0); |
| 1334 | // Now we will deallocate the stack slots we pushed to hold register arguments. |
| 1335 | if (argState.numRegArgs > 0) |
| 1336 | { |
| 1337 | sl.X86EmitAddEsp(argState.numRegArgs * sizeof(void*)); |
| 1338 | } |
| 1339 | sl.X86EmitPopReg(kEBP); |
| 1340 | sl.X86EmitReturn(static_cast<WORD>(argState.callerArgStackSlots * sizeof(void*))); |
| 1341 | #elif defined(_AMD64_) |
| 1342 | // Pass "ilArgs", i.e. just the point where registers have been homed, as 2nd arg |
| 1343 | sl.X86EmitIndexLeaRSP(ARGUMENT_kREG2, static_cast<X86Reg>(kESP_Unsafe), 8); |
| 1344 | |
| 1345 | // Allocate space for homing callee's (InterpretMethod's) arguments. |
| 1346 | // Calling convention requires a default allocation space of 4, |
| 1347 | // but to double align the stack frame, we'd allocate 5. |
| 1348 | int interpMethodArgSize = 5 * sizeof(void*); |
| 1349 | sl.X86EmitSubEsp(interpMethodArgSize); |
| 1350 | |
| 1351 | // If we have IL stubs pass the stub context in R10 or else pass NULL. |
| 1352 | #if INTERP_ILSTUBS |
| 1353 | if (pMD->IsILStub()) |
| 1354 | { |
| 1355 | sl.X86EmitMovRegReg(kR8, kR10); |
| 1356 | } |
| 1357 | else |
| 1358 | #endif |
| 1359 | { |
| 1360 | // For a non-ILStub method, push NULL as the StubContext argument. |
| 1361 | sl.X86EmitZeroOutReg(ARGUMENT_kREG1); |
| 1362 | sl.X86EmitMovRegReg(kR8, ARGUMENT_kREG1); |
| 1363 | } |
| 1364 | sl.X86EmitRegLoad(ARGUMENT_kREG1, reinterpret_cast<UINT_PTR>(interpMethInfo)); |
| 1365 | sl.X86EmitCall(sl.NewExternalCodeLabel(interpretMethodFunc), 0); |
| 1366 | sl.X86EmitAddEsp(interpMethodArgSize); |
| 1367 | sl.X86EmitReturn(0); |
| 1368 | #elif defined(_ARM_) |
| 1369 | |
| 1370 | // We have to maintain 8-byte stack alignment. So if the number of |
| 1371 | // slots we would normally push is not a multiple of two, add a random |
| 1372 | // register. (We will not pop this register, but rather, increment |
| 1373 | // sp by an amount that includes it.) |
| 1374 | bool oddPushes = (((argState.numRegArgs + NumberOfFixedPushes) % 2) != 0); |
| 1375 | |
| 1376 | UINT stackFrameSize = 0; |
| 1377 | if (oddPushes) stackFrameSize = sizeof(void*); |
| 1378 | // Now, if any FP regs are used as arguments, we will copy those to the stack; reserve space for that here. |
| 1379 | // (We push doubles to keep the stack aligned...) |
| 1380 | unsigned short doublesToPush = (argState.numFPRegArgSlots + 1)/2; |
| 1381 | stackFrameSize += (doublesToPush*2*sizeof(void*)); |
| 1382 | |
| 1383 | // The last argument here causes this to generate code to push all int arg regs. |
| 1384 | sl.ThumbEmitProlog(/*cCalleeSavedRegs*/NumberOfCalleeSaveRegsToPush, /*cbStackFrame*/stackFrameSize, /*fPushArgRegs*/TRUE); |
| 1385 | |
| 1386 | // Now we will generate code to copy the floating point registers to the stack frame. |
| 1387 | if (doublesToPush > 0) |
| 1388 | { |
| 1389 | sl.ThumbEmitStoreMultipleVFPDoubleReg(ThumbVFPDoubleReg(0), thumbRegSp, doublesToPush*2); |
| 1390 | } |
| 1391 | |
| 1392 | #if INTERP_ILSTUBS |
| 1393 | if (pMD->IsILStub()) |
| 1394 | { |
| 1395 | // Third argument is stubcontext, in r12. |
| 1396 | sl.ThumbEmitMovRegReg(ThumbReg(2), ThumbReg(12)); |
| 1397 | } |
| 1398 | else |
| 1399 | #endif |
| 1400 | { |
| 1401 | // For a non-ILStub method, push NULL as the third StubContext argument. |
| 1402 | sl.ThumbEmitMovConstant(ThumbReg(2), 0); |
| 1403 | } |
| 1404 | // Second arg is pointer to the base of the ILargs arr -- i.e., the current stack value. |
| 1405 | sl.ThumbEmitMovRegReg(ThumbReg(1), thumbRegSp); |
| 1406 | |
| 1407 | // First arg is the pointer to the interpMethInfo structure. |
| 1408 | sl.ThumbEmitMovConstant(ThumbReg(0), reinterpret_cast<int>(interpMethInfo)); |
| 1409 | |
| 1410 | // If there's an HFA return, add space for that. |
| 1411 | if (HFARetTypeSize > 0) |
| 1412 | { |
| 1413 | sl.ThumbEmitSubSp(HFARetTypeSize); |
| 1414 | } |
| 1415 | |
| 1416 | // Now we can call the right method. |
| 1417 | // No "direct call" instruction, so load into register first. Can use R3. |
| 1418 | sl.ThumbEmitMovConstant(ThumbReg(3), static_cast<int>(interpretMethodFunc)); |
| 1419 | sl.ThumbEmitCallRegister(ThumbReg(3)); |
| 1420 | |
| 1421 | // If there's an HFA return, copy to FP regs, and deallocate the stack space. |
| 1422 | if (HFARetTypeSize > 0) |
| 1423 | { |
| 1424 | sl.ThumbEmitLoadMultipleVFPDoubleReg(ThumbVFPDoubleReg(0), thumbRegSp, HFARetTypeSize/sizeof(void*)); |
| 1425 | sl.ThumbEmitAddSp(HFARetTypeSize); |
| 1426 | } |
| 1427 | |
| 1428 | sl.ThumbEmitEpilog(); |
| 1429 | |
| 1430 | #elif defined(_ARM64_) |
| 1431 | |
| 1432 | UINT stackFrameSize = argState.numFPRegArgSlots; |
| 1433 | |
| 1434 | sl.EmitProlog(argState.numRegArgs, argState.numFPRegArgSlots, 0 /*cCalleeSavedRegs*/, static_cast<unsigned short>(cHFAVars*sizeof(void*))); |
| 1435 | |
| 1436 | #if INTERP_ILSTUBS |
| 1437 | if (pMD->IsILStub()) |
| 1438 | { |
| 1439 | // Third argument is stubcontext, in x12 (METHODDESC_REGISTER) |
| 1440 | sl.EmitMovReg(IntReg(2), IntReg(12)); |
| 1441 | } |
| 1442 | else |
| 1443 | #endif |
| 1444 | { |
| 1445 | // For a non-ILStub method, push NULL as the third stubContext argument |
| 1446 | sl.EmitMovConstant(IntReg(2), 0); |
| 1447 | } |
| 1448 | |
| 1449 | // Second arg is pointer to the basei of the ILArgs -- i.e., the current stack value |
| 1450 | sl.EmitAddImm(IntReg(1), RegSp, sl.GetSavedRegArgsOffset()); |
| 1451 | |
| 1452 | // First arg is the pointer to the interpMethodInfo structure |
| 1453 | #if INTERP_ILSTUBS |
| 1454 | if (!pMD->IsILStub()) |
| 1455 | #endif |
| 1456 | { |
| 1457 | // interpMethodInfo is already in x8, so copy it from x8 |
| 1458 | sl.EmitMovReg(IntReg(0), IntReg(8)); |
| 1459 | } |
| 1460 | #if INTERP_ILSTUBS |
| 1461 | else |
| 1462 | { |
| 1463 | // We didn't do the short-circuiting, therefore interpMethInfo is |
| 1464 | // not stored in a register (x8) before. so do it now. |
| 1465 | sl.EmitMovConstant(IntReg(0), reinterpret_cast<UINT64>(interpMethInfo)); |
| 1466 | } |
| 1467 | #endif |
| 1468 | |
| 1469 | sl.EmitCallLabel(sl.NewExternalCodeLabel((LPVOID)interpretMethodFunc), FALSE, FALSE); |
| 1470 | |
| 1471 | // If there's an HFA return, copy to FP regs |
| 1472 | if (cHFAVars > 0) |
| 1473 | { |
| 1474 | for (unsigned i=0; i<=(cHFAVars/2)*2;i+=2) |
| 1475 | sl.EmitLoadStoreRegPairImm(StubLinkerCPU::eLOAD, VecReg(i), VecReg(i+1), RegSp, i*sizeof(void*)); |
| 1476 | if ((cHFAVars % 2) == 1) |
| 1477 | sl.EmitLoadStoreRegImm(StubLinkerCPU::eLOAD,VecReg(cHFAVars-1), RegSp, cHFAVars*sizeof(void*)); |
| 1478 | |
| 1479 | } |
| 1480 | |
| 1481 | sl.EmitEpilog(); |
| 1482 | |
| 1483 | |
| 1484 | #else |
| 1485 | #error unsupported platform |
| 1486 | #endif |
| 1487 | stub = sl.Link(SystemDomain::GetGlobalLoaderAllocator()->GetStubHeap()); |
| 1488 | |
| 1489 | *nativeSizeOfCode = static_cast<ULONG>(stub->GetNumCodeBytes()); |
| 1490 | // TODO: manage reference count of interpreter stubs. Look for examples... |
| 1491 | *nativeEntry = dac_cast<BYTE*>(stub->GetEntryPoint()); |
| 1492 | } |
| 1493 | |
| 1494 | // Initialize the arg offset information. |
| 1495 | interpMethInfo->InitArgInfo(comp, info, argState.argOffsets); |
| 1496 | |
| 1497 | #ifdef _DEBUG |
| 1498 | AddInterpMethInfo(interpMethInfo); |
| 1499 | #endif // _DEBUG |
| 1500 | if (!jmpCall) |
| 1501 | { |
| 1502 | // Remember the mapping between code address and MethodDesc*. |
| 1503 | RecordInterpreterStubForMethodDesc(info->ftn, *nativeEntry); |
| 1504 | } |
| 1505 | |
| 1506 | return CORJIT_OK; |
| 1507 | #undef TRACE_SKIPPED |
| 1508 | } |
| 1509 | |
| 1510 | size_t Interpreter::GetFrameSize(InterpreterMethodInfo* interpMethInfo) |
| 1511 | { |
| 1512 | size_t sz = interpMethInfo->LocalMemSize(); |
| 1513 | #if COMBINE_OPSTACK_VAL_TYPE |
| 1514 | sz += (interpMethInfo->m_maxStack * sizeof(OpStackValAndType)); |
| 1515 | #else |
| 1516 | sz += (interpMethInfo->m_maxStack * (sizeof(INT64) + sizeof(InterpreterType*))); |
| 1517 | #endif |
| 1518 | return sz; |
| 1519 | } |
| 1520 | |
| 1521 | // static |
| 1522 | ARG_SLOT Interpreter::ExecuteMethodWrapper(struct InterpreterMethodInfo* interpMethInfo, bool directCall, BYTE* ilArgs, void* stubContext, __out bool* pDoJmpCall, CORINFO_RESOLVED_TOKEN* pResolvedToken) |
| 1523 | { |
| 1524 | #define INTERP_DYNAMIC_CONTRACTS 1 |
| 1525 | #if INTERP_DYNAMIC_CONTRACTS |
| 1526 | CONTRACTL { |
| 1527 | THROWS; |
| 1528 | GC_TRIGGERS; |
| 1529 | MODE_COOPERATIVE; |
| 1530 | } CONTRACTL_END; |
| 1531 | #else |
| 1532 | // Dynamic contract occupies too much stack. |
| 1533 | STATIC_CONTRACT_THROWS; |
| 1534 | STATIC_CONTRACT_GC_TRIGGERS; |
| 1535 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 1536 | #endif |
| 1537 | |
| 1538 | size_t sizeWithGS = GetFrameSize(interpMethInfo) + sizeof(GSCookie); |
| 1539 | BYTE* frameMemoryGS = static_cast<BYTE*>(_alloca(sizeWithGS)); |
| 1540 | |
| 1541 | ARG_SLOT retVal = 0; |
| 1542 | unsigned jmpCallToken = 0; |
| 1543 | |
| 1544 | Interpreter interp(interpMethInfo, directCall, ilArgs, stubContext, frameMemoryGS); |
| 1545 | |
| 1546 | // Make sure we can do a GC Scan properly. |
| 1547 | FrameWithCookie<InterpreterFrame> interpFrame(&interp); |
| 1548 | |
| 1549 | // Update the interpretation count. |
| 1550 | InterlockedIncrement(reinterpret_cast<LONG *>(&interpMethInfo->m_invocations)); |
| 1551 | |
| 1552 | // Need to wait until this point to do this JITting, since it may trigger a GC. |
| 1553 | JitMethodIfAppropriate(interpMethInfo); |
| 1554 | |
| 1555 | // Pass buffers to get jmpCall flag and the token, if necessary. |
| 1556 | interp.ExecuteMethod(&retVal, pDoJmpCall, &jmpCallToken); |
| 1557 | |
| 1558 | if (*pDoJmpCall) |
| 1559 | { |
| 1560 | GCX_PREEMP(); |
| 1561 | interp.ResolveToken(pResolvedToken, jmpCallToken, CORINFO_TOKENKIND_Method InterpTracingArg(RTK_Call)); |
| 1562 | } |
| 1563 | |
| 1564 | interpFrame.Pop(); |
| 1565 | return retVal; |
| 1566 | } |
| 1567 | |
| 1568 | // TODO: Add GSCookie checks |
| 1569 | |
| 1570 | // static |
| 1571 | inline ARG_SLOT Interpreter::InterpretMethodBody(struct InterpreterMethodInfo* interpMethInfo, bool directCall, BYTE* ilArgs, void* stubContext) |
| 1572 | { |
| 1573 | #if INTERP_DYNAMIC_CONTRACTS |
| 1574 | CONTRACTL { |
| 1575 | THROWS; |
| 1576 | GC_TRIGGERS; |
| 1577 | MODE_COOPERATIVE; |
| 1578 | } CONTRACTL_END; |
| 1579 | #else |
| 1580 | // Dynamic contract occupies too much stack. |
| 1581 | STATIC_CONTRACT_THROWS; |
| 1582 | STATIC_CONTRACT_GC_TRIGGERS; |
| 1583 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 1584 | #endif |
| 1585 | |
| 1586 | CEEInfo* jitInfo = NULL; |
| 1587 | for (bool doJmpCall = true; doJmpCall; ) |
| 1588 | { |
| 1589 | unsigned jmpCallToken = 0; |
| 1590 | CORINFO_RESOLVED_TOKEN methTokPtr; |
| 1591 | ARG_SLOT retVal = ExecuteMethodWrapper(interpMethInfo, directCall, ilArgs, stubContext, &doJmpCall, &methTokPtr); |
| 1592 | // Clear any allocated jitInfo. |
| 1593 | delete jitInfo; |
| 1594 | |
| 1595 | // Nothing to do if the recent method asks not to do a jmpCall. |
| 1596 | if (!doJmpCall) |
| 1597 | { |
| 1598 | return retVal; |
| 1599 | } |
| 1600 | |
| 1601 | // The recently executed method wants us to perform a jmpCall. |
| 1602 | MethodDesc* pMD = GetMethod(methTokPtr.hMethod); |
| 1603 | interpMethInfo = MethodHandleToInterpreterMethInfoPtr(CORINFO_METHOD_HANDLE(pMD)); |
| 1604 | |
| 1605 | // Allocate a new jitInfo and also a new interpMethInfo. |
| 1606 | if (interpMethInfo == NULL) |
| 1607 | { |
| 1608 | assert(doJmpCall); |
| 1609 | jitInfo = new CEEInfo(pMD, true); |
| 1610 | |
| 1611 | CORINFO_METHOD_INFO methInfo; |
| 1612 | |
| 1613 | GCX_PREEMP(); |
| 1614 | jitInfo->getMethodInfo(CORINFO_METHOD_HANDLE(pMD), &methInfo); |
| 1615 | GenerateInterpreterStub(jitInfo, &methInfo, NULL, 0, &interpMethInfo, true); |
| 1616 | } |
| 1617 | } |
| 1618 | UNREACHABLE(); |
| 1619 | } |
| 1620 | |
| 1621 | void Interpreter::JitMethodIfAppropriate(InterpreterMethodInfo* interpMethInfo, bool force) |
| 1622 | { |
| 1623 | CONTRACTL { |
| 1624 | THROWS; |
| 1625 | GC_TRIGGERS; |
| 1626 | MODE_COOPERATIVE; |
| 1627 | } CONTRACTL_END; |
| 1628 | |
| 1629 | unsigned int MaxInterpretCount = s_InterpreterJITThreshold.val(CLRConfig::INTERNAL_InterpreterJITThreshold); |
| 1630 | |
| 1631 | if (force || interpMethInfo->m_invocations > MaxInterpretCount) |
| 1632 | { |
| 1633 | GCX_PREEMP(); |
| 1634 | MethodDesc *md = reinterpret_cast<MethodDesc *>(interpMethInfo->m_method); |
| 1635 | PCODE stub = md->GetNativeCode(); |
| 1636 | |
| 1637 | if (InterpretationStubToMethodInfo(stub) == md) |
| 1638 | { |
| 1639 | #if INTERP_TRACING |
| 1640 | if (s_TraceInterpreterJITTransitionFlag.val(CLRConfig::INTERNAL_TraceInterpreterJITTransition)) |
| 1641 | { |
| 1642 | fprintf(GetLogFile(), "JITting method %s:%s.\n" , md->m_pszDebugClassName, md->m_pszDebugMethodName); |
| 1643 | } |
| 1644 | #endif // INTERP_TRACING |
| 1645 | CORJIT_FLAGS jitFlags(CORJIT_FLAGS::CORJIT_FLAG_MAKEFINALCODE); |
| 1646 | NewHolder<COR_ILMETHOD_DECODER> pDecoder(NULL); |
| 1647 | // Dynamic methods (e.g., IL stubs) do not have an IL decoder but may |
| 1648 | // require additional flags. Ordinary methods require the opposite. |
| 1649 | if (md->IsDynamicMethod()) |
| 1650 | { |
| 1651 | jitFlags.Add(md->AsDynamicMethodDesc()->GetILStubResolver()->GetJitFlags()); |
| 1652 | } |
| 1653 | else |
| 1654 | { |
| 1655 | COR_ILMETHOD_DECODER::DecoderStatus status; |
| 1656 | pDecoder = new COR_ILMETHOD_DECODER(md->GetILHeader(TRUE), |
| 1657 | md->GetMDImport(), |
| 1658 | &status); |
| 1659 | } |
| 1660 | // This used to be a synchronous jit and could be made so again if desired, |
| 1661 | // but using ASP.Net MusicStore as an example scenario the performance is |
| 1662 | // better doing the JIT asynchronously. Given the not-on-by-default nature of the |
| 1663 | // interpreter I didn't wring my hands too much trying to determine the ideal |
| 1664 | // policy. |
| 1665 | #ifdef FEATURE_TIERED_COMPILATION |
| 1666 | GetAppDomain()->GetTieredCompilationManager()->AsyncPromoteMethodToTier1(md); |
| 1667 | #else |
| 1668 | #error FEATURE_INTERPRETER depends on FEATURE_TIERED_COMPILATION now |
| 1669 | #endif |
| 1670 | } |
| 1671 | } |
| 1672 | } |
| 1673 | |
| 1674 | // static |
| 1675 | HCIMPL3(float, InterpretMethodFloat, struct InterpreterMethodInfo* interpMethInfo, BYTE* ilArgs, void* stubContext) |
| 1676 | { |
| 1677 | FCALL_CONTRACT; |
| 1678 | |
| 1679 | ARG_SLOT retVal = 0; |
| 1680 | |
| 1681 | HELPER_METHOD_FRAME_BEGIN_RET_ATTRIB(Frame::FRAME_ATTR_EXACT_DEPTH|Frame::FRAME_ATTR_CAPTURE_DEPTH_2); |
| 1682 | retVal = (ARG_SLOT)Interpreter::InterpretMethodBody(interpMethInfo, false, ilArgs, stubContext); |
| 1683 | HELPER_METHOD_FRAME_END(); |
| 1684 | |
| 1685 | return *reinterpret_cast<float*>(ArgSlotEndianessFixup(&retVal, sizeof(float))); |
| 1686 | } |
| 1687 | HCIMPLEND |
| 1688 | |
| 1689 | // static |
| 1690 | HCIMPL3(double, InterpretMethodDouble, struct InterpreterMethodInfo* interpMethInfo, BYTE* ilArgs, void* stubContext) |
| 1691 | { |
| 1692 | FCALL_CONTRACT; |
| 1693 | |
| 1694 | ARG_SLOT retVal = 0; |
| 1695 | |
| 1696 | HELPER_METHOD_FRAME_BEGIN_RET_ATTRIB(Frame::FRAME_ATTR_EXACT_DEPTH|Frame::FRAME_ATTR_CAPTURE_DEPTH_2); |
| 1697 | retVal = Interpreter::InterpretMethodBody(interpMethInfo, false, ilArgs, stubContext); |
| 1698 | HELPER_METHOD_FRAME_END(); |
| 1699 | |
| 1700 | return *reinterpret_cast<double*>(ArgSlotEndianessFixup(&retVal, sizeof(double))); |
| 1701 | } |
| 1702 | HCIMPLEND |
| 1703 | |
| 1704 | // static |
| 1705 | HCIMPL3(INT64, InterpretMethod, struct InterpreterMethodInfo* interpMethInfo, BYTE* ilArgs, void* stubContext) |
| 1706 | { |
| 1707 | FCALL_CONTRACT; |
| 1708 | |
| 1709 | ARG_SLOT retVal = 0; |
| 1710 | |
| 1711 | HELPER_METHOD_FRAME_BEGIN_RET_ATTRIB(Frame::FRAME_ATTR_EXACT_DEPTH|Frame::FRAME_ATTR_CAPTURE_DEPTH_2); |
| 1712 | retVal = Interpreter::InterpretMethodBody(interpMethInfo, false, ilArgs, stubContext); |
| 1713 | HELPER_METHOD_FRAME_END(); |
| 1714 | |
| 1715 | return static_cast<INT64>(retVal); |
| 1716 | } |
| 1717 | HCIMPLEND |
| 1718 | |
| 1719 | bool Interpreter::IsInCalleesFrames(void* stackPtr) |
| 1720 | { |
| 1721 | // We assume a downwards_growing stack. |
| 1722 | return stackPtr < (m_localVarMemory - sizeof(GSCookie)); |
| 1723 | } |
| 1724 | |
| 1725 | // I want an enumeration with values for the second byte of 2-byte opcodes. |
| 1726 | enum OPCODE_2BYTE { |
| 1727 | #define OPDEF(c,s,pop,push,args,type,l,s1,s2,ctrl) TWOBYTE_##c = unsigned(s2), |
| 1728 | #include "opcode.def" |
| 1729 | #undef OPDEF |
| 1730 | }; |
| 1731 | |
| 1732 | // Optimize the interpreter loop for speed. |
| 1733 | #ifdef _MSC_VER |
| 1734 | #pragma optimize("t", on) |
| 1735 | #endif |
| 1736 | |
| 1737 | // Duplicating code from JitHelpers for MonEnter,MonExit,MonEnter_Static, |
| 1738 | // MonExit_Static because it sets up helper frame for the JIT. |
| 1739 | static void MonitorEnter(Object* obj, BYTE* pbLockTaken) |
| 1740 | { |
| 1741 | |
| 1742 | OBJECTREF objRef = ObjectToOBJECTREF(obj); |
| 1743 | |
| 1744 | |
| 1745 | if (objRef == NULL) |
| 1746 | COMPlusThrow(kArgumentNullException); |
| 1747 | |
| 1748 | GCPROTECT_BEGININTERIOR(pbLockTaken); |
| 1749 | |
| 1750 | #ifdef _DEBUG |
| 1751 | Thread *pThread = GetThread(); |
| 1752 | DWORD lockCount = pThread->m_dwLockCount; |
| 1753 | #endif |
| 1754 | if (GET_THREAD()->CatchAtSafePointOpportunistic()) |
| 1755 | { |
| 1756 | GET_THREAD()->PulseGCMode(); |
| 1757 | } |
| 1758 | objRef->EnterObjMonitor(); |
| 1759 | _ASSERTE ((objRef->GetSyncBlock()->GetMonitor()->GetRecursionLevel() == 1 && pThread->m_dwLockCount == lockCount + 1) || |
| 1760 | pThread->m_dwLockCount == lockCount); |
| 1761 | if (pbLockTaken != 0) *pbLockTaken = 1; |
| 1762 | |
| 1763 | GCPROTECT_END(); |
| 1764 | } |
| 1765 | |
| 1766 | static void MonitorExit(Object* obj, BYTE* pbLockTaken) |
| 1767 | { |
| 1768 | OBJECTREF objRef = ObjectToOBJECTREF(obj); |
| 1769 | |
| 1770 | if (objRef == NULL) |
| 1771 | COMPlusThrow(kArgumentNullException); |
| 1772 | |
| 1773 | if (!objRef->LeaveObjMonitor()) |
| 1774 | COMPlusThrow(kSynchronizationLockException); |
| 1775 | |
| 1776 | if (pbLockTaken != 0) *pbLockTaken = 0; |
| 1777 | |
| 1778 | TESTHOOKCALL(AppDomainCanBeUnloaded(GET_THREAD()->GetDomain()->GetId().m_dwId,FALSE)); |
| 1779 | |
| 1780 | if (GET_THREAD()->IsAbortRequested()) { |
| 1781 | GET_THREAD()->HandleThreadAbort(); |
| 1782 | } |
| 1783 | } |
| 1784 | |
| 1785 | static void MonitorEnterStatic(AwareLock *lock, BYTE* pbLockTaken) |
| 1786 | { |
| 1787 | lock->Enter(); |
| 1788 | MONHELPER_STATE(*pbLockTaken = 1;) |
| 1789 | } |
| 1790 | |
| 1791 | static void MonitorExitStatic(AwareLock *lock, BYTE* pbLockTaken) |
| 1792 | { |
| 1793 | // Error, yield or contention |
| 1794 | if (!lock->Leave()) |
| 1795 | COMPlusThrow(kSynchronizationLockException); |
| 1796 | |
| 1797 | TESTHOOKCALL(AppDomainCanBeUnloaded(GET_THREAD()->GetDomain()->GetId().m_dwId,FALSE)); |
| 1798 | if (GET_THREAD()->IsAbortRequested()) { |
| 1799 | GET_THREAD()->HandleThreadAbort(); |
| 1800 | } |
| 1801 | } |
| 1802 | |
| 1803 | |
| 1804 | AwareLock* Interpreter::GetMonitorForStaticMethod() |
| 1805 | { |
| 1806 | MethodDesc* pMD = reinterpret_cast<MethodDesc*>(m_methInfo->m_method); |
| 1807 | CORINFO_LOOKUP_KIND kind; |
| 1808 | { |
| 1809 | GCX_PREEMP(); |
| 1810 | kind = m_interpCeeInfo.getLocationOfThisType(m_methInfo->m_method); |
| 1811 | } |
| 1812 | if (!kind.needsRuntimeLookup) |
| 1813 | { |
| 1814 | OBJECTREF ref = pMD->GetMethodTable()->GetManagedClassObject(); |
| 1815 | return (AwareLock*) ref->GetSyncBlock()->GetMonitor(); |
| 1816 | } |
| 1817 | else |
| 1818 | { |
| 1819 | CORINFO_CLASS_HANDLE classHnd = nullptr; |
| 1820 | switch (kind.runtimeLookupKind) |
| 1821 | { |
| 1822 | case CORINFO_LOOKUP_CLASSPARAM: |
| 1823 | { |
| 1824 | classHnd = (CORINFO_CLASS_HANDLE) GetPreciseGenericsContext(); |
| 1825 | } |
| 1826 | break; |
| 1827 | case CORINFO_LOOKUP_METHODPARAM: |
| 1828 | { |
| 1829 | MethodDesc* pMD = (MethodDesc*) GetPreciseGenericsContext(); |
| 1830 | classHnd = (CORINFO_CLASS_HANDLE) pMD->GetMethodTable(); |
| 1831 | } |
| 1832 | break; |
| 1833 | default: |
| 1834 | NYI_INTERP("Unknown lookup for synchronized methods" ); |
| 1835 | break; |
| 1836 | } |
| 1837 | MethodTable* pMT = GetMethodTableFromClsHnd(classHnd); |
| 1838 | OBJECTREF ref = pMT->GetManagedClassObject(); |
| 1839 | ASSERT(ref); |
| 1840 | return (AwareLock*) ref->GetSyncBlock()->GetMonitor(); |
| 1841 | } |
| 1842 | } |
| 1843 | |
| 1844 | void Interpreter::DoMonitorEnterWork() |
| 1845 | { |
| 1846 | MethodDesc* pMD = reinterpret_cast<MethodDesc*>(m_methInfo->m_method); |
| 1847 | if (pMD->IsSynchronized()) |
| 1848 | { |
| 1849 | if (pMD->IsStatic()) |
| 1850 | { |
| 1851 | AwareLock* lock = GetMonitorForStaticMethod(); |
| 1852 | MonitorEnterStatic(lock, &m_monAcquired); |
| 1853 | } |
| 1854 | else |
| 1855 | { |
| 1856 | MonitorEnter((Object*) m_thisArg, &m_monAcquired); |
| 1857 | } |
| 1858 | } |
| 1859 | } |
| 1860 | |
| 1861 | void Interpreter::DoMonitorExitWork() |
| 1862 | { |
| 1863 | MethodDesc* pMD = reinterpret_cast<MethodDesc*>(m_methInfo->m_method); |
| 1864 | if (pMD->IsSynchronized()) |
| 1865 | { |
| 1866 | if (pMD->IsStatic()) |
| 1867 | { |
| 1868 | AwareLock* lock = GetMonitorForStaticMethod(); |
| 1869 | MonitorExitStatic(lock, &m_monAcquired); |
| 1870 | } |
| 1871 | else |
| 1872 | { |
| 1873 | MonitorExit((Object*) m_thisArg, &m_monAcquired); |
| 1874 | } |
| 1875 | } |
| 1876 | } |
| 1877 | |
| 1878 | |
| 1879 | void Interpreter::ExecuteMethod(ARG_SLOT* retVal, __out bool* pDoJmpCall, __out unsigned* pJmpCallToken) |
| 1880 | { |
| 1881 | #if INTERP_DYNAMIC_CONTRACTS |
| 1882 | CONTRACTL { |
| 1883 | THROWS; |
| 1884 | GC_TRIGGERS; |
| 1885 | MODE_COOPERATIVE; |
| 1886 | } CONTRACTL_END; |
| 1887 | #else |
| 1888 | // Dynamic contract occupies too much stack. |
| 1889 | STATIC_CONTRACT_THROWS; |
| 1890 | STATIC_CONTRACT_GC_TRIGGERS; |
| 1891 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 1892 | #endif |
| 1893 | |
| 1894 | *pDoJmpCall = false; |
| 1895 | |
| 1896 | // Normally I'd prefer to declare these in small case-block scopes, but most C++ compilers |
| 1897 | // do not realize that their lifetimes do not overlap, so that makes for a large stack frame. |
| 1898 | // So I avoid that by outside declarations (sigh). |
| 1899 | char offsetc, valc; |
| 1900 | unsigned char argNumc; |
| 1901 | unsigned short argNums; |
| 1902 | INT32 vali; |
| 1903 | INT64 vall; |
| 1904 | InterpreterType it; |
| 1905 | size_t sz; |
| 1906 | |
| 1907 | unsigned short ops; |
| 1908 | |
| 1909 | // Make sure that the .cctor for the current method's class has been run. |
| 1910 | MethodDesc* pMD = reinterpret_cast<MethodDesc*>(m_methInfo->m_method); |
| 1911 | EnsureClassInit(pMD->GetMethodTable()); |
| 1912 | |
| 1913 | #if INTERP_TRACING |
| 1914 | const char* methName = eeGetMethodFullName(m_methInfo->m_method); |
| 1915 | unsigned ilOffset = 0; |
| 1916 | |
| 1917 | unsigned curInvocation = InterlockedIncrement(&s_totalInvocations); |
| 1918 | if (s_TraceInterpreterEntriesFlag.val(CLRConfig::INTERNAL_TraceInterpreterEntries)) |
| 1919 | { |
| 1920 | fprintf(GetLogFile(), "Entering method #%d (= 0x%x): %s.\n" , curInvocation, curInvocation, methName); |
| 1921 | fprintf(GetLogFile(), " arguments:\n" ); |
| 1922 | PrintArgs(); |
| 1923 | } |
| 1924 | #endif // INTERP_TRACING |
| 1925 | |
| 1926 | #if LOOPS_VIA_INSTRS |
| 1927 | unsigned instrs = 0; |
| 1928 | #else |
| 1929 | #if INTERP_PROFILE |
| 1930 | unsigned instrs = 0; |
| 1931 | #endif |
| 1932 | #endif |
| 1933 | |
| 1934 | EvalLoop: |
| 1935 | GCX_ASSERT_COOP(); |
| 1936 | // Catch any exceptions raised. |
| 1937 | EX_TRY { |
| 1938 | // Optional features... |
| 1939 | #define INTERPRETER_CHECK_LARGE_STRUCT_STACK_HEIGHT 1 |
| 1940 | |
| 1941 | #if INTERP_ILCYCLE_PROFILE |
| 1942 | m_instr = CEE_COUNT; // Flag to indicate first instruction. |
| 1943 | m_exemptCycles = 0; |
| 1944 | #endif // INTERP_ILCYCLE_PROFILE |
| 1945 | |
| 1946 | DoMonitorEnterWork(); |
| 1947 | |
| 1948 | INTERPLOG("START %d, %s\n" , m_methInfo->m_stubNum, methName); |
| 1949 | for (;;) |
| 1950 | { |
| 1951 | // TODO: verify that m_ILCodePtr is legal, and we haven't walked off the end of the IL array? (i.e., bad IL). |
| 1952 | // Note that ExecuteBranch() should be called for every branch. That checks that we aren't either before or |
| 1953 | // after the IL range. Here, we would only need to check that we haven't gone past the end (not before the beginning) |
| 1954 | // because everything that doesn't call ExecuteBranch() should only add to m_ILCodePtr. |
| 1955 | |
| 1956 | #if INTERP_TRACING |
| 1957 | ilOffset = CurOffset(); |
| 1958 | #endif // _DEBUG |
| 1959 | #if INTERP_TRACING |
| 1960 | if (s_TraceInterpreterOstackFlag.val(CLRConfig::INTERNAL_TraceInterpreterOstack)) |
| 1961 | { |
| 1962 | PrintOStack(); |
| 1963 | } |
| 1964 | #if INTERPRETER_CHECK_LARGE_STRUCT_STACK_HEIGHT |
| 1965 | _ASSERTE_MSG(LargeStructStackHeightIsValid(), "Large structure stack height invariant violated." ); // Check the large struct stack invariant. |
| 1966 | #endif |
| 1967 | if (s_TraceInterpreterILFlag.val(CLRConfig::INTERNAL_TraceInterpreterIL)) |
| 1968 | { |
| 1969 | fprintf(GetLogFile(), " %#4x: %s\n" , ilOffset, ILOp(m_ILCodePtr)); |
| 1970 | fflush(GetLogFile()); |
| 1971 | } |
| 1972 | #endif // INTERP_TRACING |
| 1973 | #if LOOPS_VIA_INSTRS |
| 1974 | instrs++; |
| 1975 | #else |
| 1976 | #if INTERP_PROFILE |
| 1977 | instrs++; |
| 1978 | #endif |
| 1979 | #endif |
| 1980 | |
| 1981 | #if INTERP_ILINSTR_PROFILE |
| 1982 | #if INTERP_ILCYCLE_PROFILE |
| 1983 | UpdateCycleCount(); |
| 1984 | #endif // INTERP_ILCYCLE_PROFILE |
| 1985 | |
| 1986 | InterlockedIncrement(&s_ILInstrExecs[*m_ILCodePtr]); |
| 1987 | #endif // INTERP_ILINSTR_PROFILE |
| 1988 | |
| 1989 | switch (*m_ILCodePtr) |
| 1990 | { |
| 1991 | case CEE_NOP: |
| 1992 | m_ILCodePtr++; |
| 1993 | continue; |
| 1994 | case CEE_BREAK: // TODO: interact with the debugger? |
| 1995 | m_ILCodePtr++; |
| 1996 | continue; |
| 1997 | case CEE_LDARG_0: |
| 1998 | LdArg(0); |
| 1999 | break; |
| 2000 | case CEE_LDARG_1: |
| 2001 | LdArg(1); |
| 2002 | break; |
| 2003 | case CEE_LDARG_2: |
| 2004 | LdArg(2); |
| 2005 | break; |
| 2006 | case CEE_LDARG_3: |
| 2007 | LdArg(3); |
| 2008 | break; |
| 2009 | case CEE_LDLOC_0: |
| 2010 | LdLoc(0); |
| 2011 | m_ILCodePtr++; |
| 2012 | continue; |
| 2013 | case CEE_LDLOC_1: |
| 2014 | LdLoc(1); |
| 2015 | break; |
| 2016 | case CEE_LDLOC_2: |
| 2017 | LdLoc(2); |
| 2018 | break; |
| 2019 | case CEE_LDLOC_3: |
| 2020 | LdLoc(3); |
| 2021 | break; |
| 2022 | case CEE_STLOC_0: |
| 2023 | StLoc(0); |
| 2024 | break; |
| 2025 | case CEE_STLOC_1: |
| 2026 | StLoc(1); |
| 2027 | break; |
| 2028 | case CEE_STLOC_2: |
| 2029 | StLoc(2); |
| 2030 | break; |
| 2031 | case CEE_STLOC_3: |
| 2032 | StLoc(3); |
| 2033 | break; |
| 2034 | case CEE_LDARG_S: |
| 2035 | m_ILCodePtr++; |
| 2036 | argNumc = *m_ILCodePtr; |
| 2037 | LdArg(argNumc); |
| 2038 | break; |
| 2039 | case CEE_LDARGA_S: |
| 2040 | m_ILCodePtr++; |
| 2041 | argNumc = *m_ILCodePtr; |
| 2042 | LdArgA(argNumc); |
| 2043 | break; |
| 2044 | case CEE_STARG_S: |
| 2045 | m_ILCodePtr++; |
| 2046 | argNumc = *m_ILCodePtr; |
| 2047 | StArg(argNumc); |
| 2048 | break; |
| 2049 | case CEE_LDLOC_S: |
| 2050 | argNumc = *(m_ILCodePtr + 1); |
| 2051 | LdLoc(argNumc); |
| 2052 | m_ILCodePtr += 2; |
| 2053 | continue; |
| 2054 | case CEE_LDLOCA_S: |
| 2055 | m_ILCodePtr++; |
| 2056 | argNumc = *m_ILCodePtr; |
| 2057 | LdLocA(argNumc); |
| 2058 | break; |
| 2059 | case CEE_STLOC_S: |
| 2060 | argNumc = *(m_ILCodePtr + 1); |
| 2061 | StLoc(argNumc); |
| 2062 | m_ILCodePtr += 2; |
| 2063 | continue; |
| 2064 | case CEE_LDNULL: |
| 2065 | LdNull(); |
| 2066 | break; |
| 2067 | case CEE_LDC_I4_M1: |
| 2068 | LdIcon(-1); |
| 2069 | break; |
| 2070 | case CEE_LDC_I4_0: |
| 2071 | LdIcon(0); |
| 2072 | break; |
| 2073 | case CEE_LDC_I4_1: |
| 2074 | LdIcon(1); |
| 2075 | m_ILCodePtr++; |
| 2076 | continue; |
| 2077 | case CEE_LDC_I4_2: |
| 2078 | LdIcon(2); |
| 2079 | break; |
| 2080 | case CEE_LDC_I4_3: |
| 2081 | LdIcon(3); |
| 2082 | break; |
| 2083 | case CEE_LDC_I4_4: |
| 2084 | LdIcon(4); |
| 2085 | break; |
| 2086 | case CEE_LDC_I4_5: |
| 2087 | LdIcon(5); |
| 2088 | break; |
| 2089 | case CEE_LDC_I4_6: |
| 2090 | LdIcon(6); |
| 2091 | break; |
| 2092 | case CEE_LDC_I4_7: |
| 2093 | LdIcon(7); |
| 2094 | break; |
| 2095 | case CEE_LDC_I4_8: |
| 2096 | LdIcon(8); |
| 2097 | break; |
| 2098 | case CEE_LDC_I4_S: |
| 2099 | valc = getI1(m_ILCodePtr + 1); |
| 2100 | LdIcon(valc); |
| 2101 | m_ILCodePtr += 2; |
| 2102 | continue; |
| 2103 | case CEE_LDC_I4: |
| 2104 | vali = getI4LittleEndian(m_ILCodePtr + 1); |
| 2105 | LdIcon(vali); |
| 2106 | m_ILCodePtr += 5; |
| 2107 | continue; |
| 2108 | case CEE_LDC_I8: |
| 2109 | vall = getI8LittleEndian(m_ILCodePtr + 1); |
| 2110 | LdLcon(vall); |
| 2111 | m_ILCodePtr += 9; |
| 2112 | continue; |
| 2113 | case CEE_LDC_R4: |
| 2114 | // We use I4 here because we just care about the bit pattern. |
| 2115 | // LdR4Con will push the right InterpreterType. |
| 2116 | vali = getI4LittleEndian(m_ILCodePtr + 1); |
| 2117 | LdR4con(vali); |
| 2118 | m_ILCodePtr += 5; |
| 2119 | continue; |
| 2120 | case CEE_LDC_R8: |
| 2121 | // We use I4 here because we just care about the bit pattern. |
| 2122 | // LdR8Con will push the right InterpreterType. |
| 2123 | vall = getI8LittleEndian(m_ILCodePtr + 1); |
| 2124 | LdR8con(vall); |
| 2125 | m_ILCodePtr += 9; |
| 2126 | continue; |
| 2127 | case CEE_DUP: |
| 2128 | assert(m_curStackHt > 0); |
| 2129 | it = OpStackTypeGet(m_curStackHt - 1); |
| 2130 | OpStackTypeSet(m_curStackHt, it); |
| 2131 | if (it.IsLargeStruct(&m_interpCeeInfo)) |
| 2132 | { |
| 2133 | sz = it.Size(&m_interpCeeInfo); |
| 2134 | void* dest = LargeStructOperandStackPush(sz); |
| 2135 | memcpy(dest, OpStackGet<void*>(m_curStackHt - 1), sz); |
| 2136 | OpStackSet<void*>(m_curStackHt, dest); |
| 2137 | } |
| 2138 | else |
| 2139 | { |
| 2140 | OpStackSet<INT64>(m_curStackHt, OpStackGet<INT64>(m_curStackHt - 1)); |
| 2141 | } |
| 2142 | m_curStackHt++; |
| 2143 | break; |
| 2144 | case CEE_POP: |
| 2145 | assert(m_curStackHt > 0); |
| 2146 | m_curStackHt--; |
| 2147 | it = OpStackTypeGet(m_curStackHt); |
| 2148 | if (it.IsLargeStruct(&m_interpCeeInfo)) |
| 2149 | { |
| 2150 | LargeStructOperandStackPop(it.Size(&m_interpCeeInfo), OpStackGet<void*>(m_curStackHt)); |
| 2151 | } |
| 2152 | break; |
| 2153 | |
| 2154 | case CEE_JMP: |
| 2155 | *pJmpCallToken = getU4LittleEndian(m_ILCodePtr + sizeof(BYTE)); |
| 2156 | *pDoJmpCall = true; |
| 2157 | goto ExitEvalLoop; |
| 2158 | |
| 2159 | case CEE_CALL: |
| 2160 | DoCall(/*virtualCall*/false); |
| 2161 | #if INTERP_TRACING |
| 2162 | if (s_TraceInterpreterILFlag.val(CLRConfig::INTERNAL_TraceInterpreterIL)) |
| 2163 | { |
| 2164 | fprintf(GetLogFile(), " Returning to method %s, stub num %d.\n" , methName, m_methInfo->m_stubNum); |
| 2165 | } |
| 2166 | #endif // INTERP_TRACING |
| 2167 | continue; |
| 2168 | |
| 2169 | case CEE_CALLVIRT: |
| 2170 | DoCall(/*virtualCall*/true); |
| 2171 | #if INTERP_TRACING |
| 2172 | if (s_TraceInterpreterILFlag.val(CLRConfig::INTERNAL_TraceInterpreterIL)) |
| 2173 | { |
| 2174 | fprintf(GetLogFile(), " Returning to method %s, stub num %d.\n" , methName, m_methInfo->m_stubNum); |
| 2175 | } |
| 2176 | #endif // INTERP_TRACING |
| 2177 | continue; |
| 2178 | |
| 2179 | // HARD |
| 2180 | case CEE_CALLI: |
| 2181 | CallI(); |
| 2182 | continue; |
| 2183 | |
| 2184 | case CEE_RET: |
| 2185 | if (m_methInfo->m_returnType == CORINFO_TYPE_VOID) |
| 2186 | { |
| 2187 | assert(m_curStackHt == 0); |
| 2188 | } |
| 2189 | else |
| 2190 | { |
| 2191 | assert(m_curStackHt == 1); |
| 2192 | InterpreterType retValIt = OpStackTypeGet(0); |
| 2193 | bool looseInt = s_InterpreterLooseRules && |
| 2194 | CorInfoTypeIsIntegral(m_methInfo->m_returnType) && |
| 2195 | (CorInfoTypeIsIntegral(retValIt.ToCorInfoType()) || CorInfoTypeIsPointer(retValIt.ToCorInfoType())) && |
| 2196 | (m_methInfo->m_returnType != retValIt.ToCorInfoType()); |
| 2197 | |
| 2198 | bool looseFloat = s_InterpreterLooseRules && |
| 2199 | CorInfoTypeIsFloatingPoint(m_methInfo->m_returnType) && |
| 2200 | CorInfoTypeIsFloatingPoint(retValIt.ToCorInfoType()) && |
| 2201 | (m_methInfo->m_returnType != retValIt.ToCorInfoType()); |
| 2202 | |
| 2203 | // Make sure that the return value "matches" (which allows certain relaxations) the declared return type. |
| 2204 | assert((m_methInfo->m_returnType == CORINFO_TYPE_VALUECLASS && retValIt.ToCorInfoType() == CORINFO_TYPE_VALUECLASS) || |
| 2205 | (m_methInfo->m_returnType == CORINFO_TYPE_REFANY && retValIt.ToCorInfoType() == CORINFO_TYPE_VALUECLASS) || |
| 2206 | (m_methInfo->m_returnType == CORINFO_TYPE_REFANY && retValIt.ToCorInfoType() == CORINFO_TYPE_REFANY) || |
| 2207 | (looseInt || looseFloat) || |
| 2208 | InterpreterType(m_methInfo->m_returnType).StackNormalize().Matches(retValIt, &m_interpCeeInfo)); |
| 2209 | |
| 2210 | size_t sz = retValIt.Size(&m_interpCeeInfo); |
| 2211 | #if defined(FEATURE_HFA) |
| 2212 | CorInfoType cit = CORINFO_TYPE_UNDEF; |
| 2213 | { |
| 2214 | GCX_PREEMP(); |
| 2215 | if(m_methInfo->m_returnType == CORINFO_TYPE_VALUECLASS) |
| 2216 | cit = m_interpCeeInfo.getHFAType(retValIt.ToClassHandle()); |
| 2217 | } |
| 2218 | #endif |
| 2219 | if (m_methInfo->GetFlag<InterpreterMethodInfo::Flag_hasRetBuffArg>()) |
| 2220 | { |
| 2221 | assert((m_methInfo->m_returnType == CORINFO_TYPE_VALUECLASS && retValIt.ToCorInfoType() == CORINFO_TYPE_VALUECLASS) || |
| 2222 | (m_methInfo->m_returnType == CORINFO_TYPE_REFANY && retValIt.ToCorInfoType() == CORINFO_TYPE_VALUECLASS) || |
| 2223 | (m_methInfo->m_returnType == CORINFO_TYPE_REFANY && retValIt.ToCorInfoType() == CORINFO_TYPE_REFANY)); |
| 2224 | if (retValIt.ToCorInfoType() == CORINFO_TYPE_REFANY) |
| 2225 | { |
| 2226 | InterpreterType typedRefIT = GetTypedRefIT(&m_interpCeeInfo); |
| 2227 | TypedByRef* ptr = OpStackGet<TypedByRef*>(0); |
| 2228 | *((TypedByRef*) m_retBufArg) = *ptr; |
| 2229 | } |
| 2230 | else if (retValIt.IsLargeStruct(&m_interpCeeInfo)) |
| 2231 | { |
| 2232 | MethodTable* clsMt = GetMethodTableFromClsHnd(retValIt.ToClassHandle()); |
| 2233 | // The ostack value is a pointer to the struct value. |
| 2234 | CopyValueClassUnchecked(m_retBufArg, OpStackGet<void*>(0), clsMt); |
| 2235 | } |
| 2236 | else |
| 2237 | { |
| 2238 | MethodTable* clsMt = GetMethodTableFromClsHnd(retValIt.ToClassHandle()); |
| 2239 | // The ostack value *is* the struct value. |
| 2240 | CopyValueClassUnchecked(m_retBufArg, OpStackGetAddr(0, sz), clsMt); |
| 2241 | } |
| 2242 | } |
| 2243 | #if defined(FEATURE_HFA) |
| 2244 | // Is it an HFA? |
| 2245 | else if (m_methInfo->m_returnType == CORINFO_TYPE_VALUECLASS |
| 2246 | && CorInfoTypeIsFloatingPoint(cit) |
| 2247 | && (MetaSig(reinterpret_cast<MethodDesc*>(m_methInfo->m_method)).GetCallingConventionInfo() & CORINFO_CALLCONV_VARARG) == 0) |
| 2248 | { |
| 2249 | if (retValIt.IsLargeStruct(&m_interpCeeInfo)) |
| 2250 | { |
| 2251 | // The ostack value is a pointer to the struct value. |
| 2252 | memcpy(GetHFARetBuffAddr(static_cast<unsigned>(sz)), OpStackGet<void*>(0), sz); |
| 2253 | } |
| 2254 | else |
| 2255 | { |
| 2256 | // The ostack value *is* the struct value. |
| 2257 | memcpy(GetHFARetBuffAddr(static_cast<unsigned>(sz)), OpStackGetAddr(0, sz), sz); |
| 2258 | } |
| 2259 | } |
| 2260 | #endif |
| 2261 | else if (CorInfoTypeIsFloatingPoint(m_methInfo->m_returnType) && |
| 2262 | CorInfoTypeIsFloatingPoint(retValIt.ToCorInfoType())) |
| 2263 | { |
| 2264 | double val = (sz <= sizeof(INT32)) ? OpStackGet<float>(0) : OpStackGet<double>(0); |
| 2265 | if (m_methInfo->m_returnType == CORINFO_TYPE_DOUBLE) |
| 2266 | { |
| 2267 | memcpy(retVal, &val, sizeof(double)); |
| 2268 | } |
| 2269 | else |
| 2270 | { |
| 2271 | float val2 = (float) val; |
| 2272 | memcpy(retVal, &val2, sizeof(float)); |
| 2273 | } |
| 2274 | } |
| 2275 | else |
| 2276 | { |
| 2277 | if (sz <= sizeof(INT32)) |
| 2278 | { |
| 2279 | *retVal = OpStackGet<INT32>(0); |
| 2280 | } |
| 2281 | else |
| 2282 | { |
| 2283 | // If looseInt is true, we are relying on auto-downcast in case *retVal |
| 2284 | // is small (but this is guaranteed not to happen by def'n of ARG_SLOT.) |
| 2285 | // |
| 2286 | // Note structs of size 5, 6, 7 may be returned as 8 byte ints. |
| 2287 | assert(sz <= sizeof(INT64)); |
| 2288 | *retVal = OpStackGet<INT64>(0); |
| 2289 | } |
| 2290 | } |
| 2291 | } |
| 2292 | |
| 2293 | |
| 2294 | #if INTERP_PROFILE |
| 2295 | // We're not capturing instructions executed in a method that terminates via exception, |
| 2296 | // but that's OK... |
| 2297 | m_methInfo->RecordExecInstrs(instrs); |
| 2298 | #endif |
| 2299 | #if INTERP_TRACING |
| 2300 | // We keep this live until we leave. |
| 2301 | delete methName; |
| 2302 | #endif // INTERP_TRACING |
| 2303 | |
| 2304 | #if INTERP_ILCYCLE_PROFILE |
| 2305 | // Finish off accounting for the "RET" before we return |
| 2306 | UpdateCycleCount(); |
| 2307 | #endif // INTERP_ILCYCLE_PROFILE |
| 2308 | |
| 2309 | goto ExitEvalLoop; |
| 2310 | |
| 2311 | case CEE_BR_S: |
| 2312 | m_ILCodePtr++; |
| 2313 | offsetc = *m_ILCodePtr; |
| 2314 | // The offset is wrt the beginning of the following instruction, so the +1 is to get to that |
| 2315 | // m_ILCodePtr value before adding the offset. |
| 2316 | ExecuteBranch(m_ILCodePtr + offsetc + 1); |
| 2317 | continue; // Skip the default m_ILCodePtr++ at bottom of loop. |
| 2318 | |
| 2319 | case CEE_LEAVE_S: |
| 2320 | // LEAVE empties the operand stack. |
| 2321 | m_curStackHt = 0; |
| 2322 | m_largeStructOperandStackHt = 0; |
| 2323 | offsetc = getI1(m_ILCodePtr + 1); |
| 2324 | |
| 2325 | { |
| 2326 | // The offset is wrt the beginning of the following instruction, so the +2 is to get to that |
| 2327 | // m_ILCodePtr value before adding the offset. |
| 2328 | BYTE* leaveTarget = m_ILCodePtr + offsetc + 2; |
| 2329 | unsigned leaveOffset = CurOffset(); |
| 2330 | m_leaveInfoStack.Push(LeaveInfo(leaveOffset, leaveTarget)); |
| 2331 | if (!SearchForCoveringFinally()) |
| 2332 | { |
| 2333 | m_leaveInfoStack.Pop(); |
| 2334 | ExecuteBranch(leaveTarget); |
| 2335 | } |
| 2336 | } |
| 2337 | continue; // Skip the default m_ILCodePtr++ at bottom of loop. |
| 2338 | |
| 2339 | // Abstract the next pair out to something common with templates. |
| 2340 | case CEE_BRFALSE_S: |
| 2341 | BrOnValue<false, 1>(); |
| 2342 | continue; |
| 2343 | |
| 2344 | case CEE_BRTRUE_S: |
| 2345 | BrOnValue<true, 1>(); |
| 2346 | continue; |
| 2347 | |
| 2348 | case CEE_BEQ_S: |
| 2349 | BrOnComparison<CO_EQ, false, 1>(); |
| 2350 | continue; |
| 2351 | case CEE_BGE_S: |
| 2352 | assert(m_curStackHt >= 2); |
| 2353 | // ECMA spec gives different semantics for different operand types: |
| 2354 | switch (OpStackTypeGet(m_curStackHt-1).ToCorInfoType()) |
| 2355 | { |
| 2356 | case CORINFO_TYPE_FLOAT: |
| 2357 | case CORINFO_TYPE_DOUBLE: |
| 2358 | BrOnComparison<CO_LT_UN, true, 1>(); |
| 2359 | break; |
| 2360 | default: |
| 2361 | BrOnComparison<CO_LT, true, 1>(); |
| 2362 | break; |
| 2363 | } |
| 2364 | continue; |
| 2365 | case CEE_BGT_S: |
| 2366 | BrOnComparison<CO_GT, false, 1>(); |
| 2367 | continue; |
| 2368 | case CEE_BLE_S: |
| 2369 | assert(m_curStackHt >= 2); |
| 2370 | // ECMA spec gives different semantics for different operand types: |
| 2371 | switch (OpStackTypeGet(m_curStackHt-1).ToCorInfoType()) |
| 2372 | { |
| 2373 | case CORINFO_TYPE_FLOAT: |
| 2374 | case CORINFO_TYPE_DOUBLE: |
| 2375 | BrOnComparison<CO_GT_UN, true, 1>(); |
| 2376 | break; |
| 2377 | default: |
| 2378 | BrOnComparison<CO_GT, true, 1>(); |
| 2379 | break; |
| 2380 | } |
| 2381 | continue; |
| 2382 | case CEE_BLT_S: |
| 2383 | BrOnComparison<CO_LT, false, 1>(); |
| 2384 | continue; |
| 2385 | case CEE_BNE_UN_S: |
| 2386 | BrOnComparison<CO_EQ, true, 1>(); |
| 2387 | continue; |
| 2388 | case CEE_BGE_UN_S: |
| 2389 | assert(m_curStackHt >= 2); |
| 2390 | // ECMA spec gives different semantics for different operand types: |
| 2391 | switch (OpStackTypeGet(m_curStackHt-1).ToCorInfoType()) |
| 2392 | { |
| 2393 | case CORINFO_TYPE_FLOAT: |
| 2394 | case CORINFO_TYPE_DOUBLE: |
| 2395 | BrOnComparison<CO_LT, true, 1>(); |
| 2396 | break; |
| 2397 | default: |
| 2398 | BrOnComparison<CO_LT_UN, true, 1>(); |
| 2399 | break; |
| 2400 | } |
| 2401 | continue; |
| 2402 | case CEE_BGT_UN_S: |
| 2403 | BrOnComparison<CO_GT_UN, false, 1>(); |
| 2404 | continue; |
| 2405 | case CEE_BLE_UN_S: |
| 2406 | assert(m_curStackHt >= 2); |
| 2407 | // ECMA spec gives different semantics for different operand types: |
| 2408 | switch (OpStackTypeGet(m_curStackHt-1).ToCorInfoType()) |
| 2409 | { |
| 2410 | case CORINFO_TYPE_FLOAT: |
| 2411 | case CORINFO_TYPE_DOUBLE: |
| 2412 | BrOnComparison<CO_GT, true, 1>(); |
| 2413 | break; |
| 2414 | default: |
| 2415 | BrOnComparison<CO_GT_UN, true, 1>(); |
| 2416 | break; |
| 2417 | } |
| 2418 | continue; |
| 2419 | case CEE_BLT_UN_S: |
| 2420 | BrOnComparison<CO_LT_UN, false, 1>(); |
| 2421 | continue; |
| 2422 | |
| 2423 | case CEE_BR: |
| 2424 | m_ILCodePtr++; |
| 2425 | vali = getI4LittleEndian(m_ILCodePtr); |
| 2426 | vali += 4; // +4 for the length of the offset. |
| 2427 | ExecuteBranch(m_ILCodePtr + vali); |
| 2428 | if (vali < 0) |
| 2429 | { |
| 2430 | // Backwards branch -- enable caching. |
| 2431 | BackwardsBranchActions(vali); |
| 2432 | } |
| 2433 | |
| 2434 | continue; |
| 2435 | |
| 2436 | case CEE_LEAVE: |
| 2437 | // LEAVE empties the operand stack. |
| 2438 | m_curStackHt = 0; |
| 2439 | m_largeStructOperandStackHt = 0; |
| 2440 | vali = getI4LittleEndian(m_ILCodePtr + 1); |
| 2441 | |
| 2442 | { |
| 2443 | // The offset is wrt the beginning of the following instruction, so the +5 is to get to that |
| 2444 | // m_ILCodePtr value before adding the offset. |
| 2445 | BYTE* leaveTarget = m_ILCodePtr + (vali + 5); |
| 2446 | unsigned leaveOffset = CurOffset(); |
| 2447 | m_leaveInfoStack.Push(LeaveInfo(leaveOffset, leaveTarget)); |
| 2448 | if (!SearchForCoveringFinally()) |
| 2449 | { |
| 2450 | (void)m_leaveInfoStack.Pop(); |
| 2451 | if (vali < 0) |
| 2452 | { |
| 2453 | // Backwards branch -- enable caching. |
| 2454 | BackwardsBranchActions(vali); |
| 2455 | } |
| 2456 | ExecuteBranch(leaveTarget); |
| 2457 | } |
| 2458 | } |
| 2459 | continue; // Skip the default m_ILCodePtr++ at bottom of loop. |
| 2460 | |
| 2461 | case CEE_BRFALSE: |
| 2462 | BrOnValue<false, 4>(); |
| 2463 | continue; |
| 2464 | case CEE_BRTRUE: |
| 2465 | BrOnValue<true, 4>(); |
| 2466 | continue; |
| 2467 | |
| 2468 | case CEE_BEQ: |
| 2469 | BrOnComparison<CO_EQ, false, 4>(); |
| 2470 | continue; |
| 2471 | case CEE_BGE: |
| 2472 | assert(m_curStackHt >= 2); |
| 2473 | // ECMA spec gives different semantics for different operand types: |
| 2474 | switch (OpStackTypeGet(m_curStackHt-1).ToCorInfoType()) |
| 2475 | { |
| 2476 | case CORINFO_TYPE_FLOAT: |
| 2477 | case CORINFO_TYPE_DOUBLE: |
| 2478 | BrOnComparison<CO_LT_UN, true, 4>(); |
| 2479 | break; |
| 2480 | default: |
| 2481 | BrOnComparison<CO_LT, true, 4>(); |
| 2482 | break; |
| 2483 | } |
| 2484 | continue; |
| 2485 | case CEE_BGT: |
| 2486 | BrOnComparison<CO_GT, false, 4>(); |
| 2487 | continue; |
| 2488 | case CEE_BLE: |
| 2489 | assert(m_curStackHt >= 2); |
| 2490 | // ECMA spec gives different semantics for different operand types: |
| 2491 | switch (OpStackTypeGet(m_curStackHt-1).ToCorInfoType()) |
| 2492 | { |
| 2493 | case CORINFO_TYPE_FLOAT: |
| 2494 | case CORINFO_TYPE_DOUBLE: |
| 2495 | BrOnComparison<CO_GT_UN, true, 4>(); |
| 2496 | break; |
| 2497 | default: |
| 2498 | BrOnComparison<CO_GT, true, 4>(); |
| 2499 | break; |
| 2500 | } |
| 2501 | continue; |
| 2502 | case CEE_BLT: |
| 2503 | BrOnComparison<CO_LT, false, 4>(); |
| 2504 | continue; |
| 2505 | case CEE_BNE_UN: |
| 2506 | BrOnComparison<CO_EQ, true, 4>(); |
| 2507 | continue; |
| 2508 | case CEE_BGE_UN: |
| 2509 | assert(m_curStackHt >= 2); |
| 2510 | // ECMA spec gives different semantics for different operand types: |
| 2511 | switch (OpStackTypeGet(m_curStackHt-1).ToCorInfoType()) |
| 2512 | { |
| 2513 | case CORINFO_TYPE_FLOAT: |
| 2514 | case CORINFO_TYPE_DOUBLE: |
| 2515 | BrOnComparison<CO_LT, true, 4>(); |
| 2516 | break; |
| 2517 | default: |
| 2518 | BrOnComparison<CO_LT_UN, true, 4>(); |
| 2519 | break; |
| 2520 | } |
| 2521 | continue; |
| 2522 | case CEE_BGT_UN: |
| 2523 | BrOnComparison<CO_GT_UN, false, 4>(); |
| 2524 | continue; |
| 2525 | case CEE_BLE_UN: |
| 2526 | assert(m_curStackHt >= 2); |
| 2527 | // ECMA spec gives different semantics for different operand types: |
| 2528 | switch (OpStackTypeGet(m_curStackHt-1).ToCorInfoType()) |
| 2529 | { |
| 2530 | case CORINFO_TYPE_FLOAT: |
| 2531 | case CORINFO_TYPE_DOUBLE: |
| 2532 | BrOnComparison<CO_GT, true, 4>(); |
| 2533 | break; |
| 2534 | default: |
| 2535 | BrOnComparison<CO_GT_UN, true, 4>(); |
| 2536 | break; |
| 2537 | } |
| 2538 | continue; |
| 2539 | case CEE_BLT_UN: |
| 2540 | BrOnComparison<CO_LT_UN, false, 4>(); |
| 2541 | continue; |
| 2542 | |
| 2543 | case CEE_SWITCH: |
| 2544 | { |
| 2545 | assert(m_curStackHt > 0); |
| 2546 | m_curStackHt--; |
| 2547 | #if defined(_DEBUG) || defined(_AMD64_) |
| 2548 | CorInfoType cit = OpStackTypeGet(m_curStackHt).ToCorInfoType(); |
| 2549 | #endif // _DEBUG || _AMD64_ |
| 2550 | #ifdef _DEBUG |
| 2551 | assert(cit == CORINFO_TYPE_INT || cit == CORINFO_TYPE_UINT || cit == CORINFO_TYPE_NATIVEINT); |
| 2552 | #endif // _DEBUG |
| 2553 | #if defined(_AMD64_) |
| 2554 | UINT32 val = (cit == CORINFO_TYPE_NATIVEINT) ? (INT32) OpStackGet<NativeInt>(m_curStackHt) |
| 2555 | : OpStackGet<INT32>(m_curStackHt); |
| 2556 | #else |
| 2557 | UINT32 val = OpStackGet<INT32>(m_curStackHt); |
| 2558 | #endif |
| 2559 | UINT32 n = getU4LittleEndian(m_ILCodePtr + 1); |
| 2560 | UINT32 instrSize = 1 + (n + 1)*4; |
| 2561 | if (val < n) |
| 2562 | { |
| 2563 | vali = getI4LittleEndian(m_ILCodePtr + (5 + val * 4)); |
| 2564 | ExecuteBranch(m_ILCodePtr + instrSize + vali); |
| 2565 | } |
| 2566 | else |
| 2567 | { |
| 2568 | m_ILCodePtr += instrSize; |
| 2569 | } |
| 2570 | } |
| 2571 | continue; |
| 2572 | |
| 2573 | case CEE_LDIND_I1: |
| 2574 | LdIndShort<INT8, /*isUnsigned*/false>(); |
| 2575 | break; |
| 2576 | case CEE_LDIND_U1: |
| 2577 | LdIndShort<UINT8, /*isUnsigned*/true>(); |
| 2578 | break; |
| 2579 | case CEE_LDIND_I2: |
| 2580 | LdIndShort<INT16, /*isUnsigned*/false>(); |
| 2581 | break; |
| 2582 | case CEE_LDIND_U2: |
| 2583 | LdIndShort<UINT16, /*isUnsigned*/true>(); |
| 2584 | break; |
| 2585 | case CEE_LDIND_I4: |
| 2586 | LdInd<INT32, CORINFO_TYPE_INT>(); |
| 2587 | break; |
| 2588 | case CEE_LDIND_U4: |
| 2589 | LdInd<UINT32, CORINFO_TYPE_INT>(); |
| 2590 | break; |
| 2591 | case CEE_LDIND_I8: |
| 2592 | LdInd<INT64, CORINFO_TYPE_LONG>(); |
| 2593 | break; |
| 2594 | case CEE_LDIND_I: |
| 2595 | LdInd<NativeInt, CORINFO_TYPE_NATIVEINT>(); |
| 2596 | break; |
| 2597 | case CEE_LDIND_R4: |
| 2598 | LdInd<float, CORINFO_TYPE_FLOAT>(); |
| 2599 | break; |
| 2600 | case CEE_LDIND_R8: |
| 2601 | LdInd<double, CORINFO_TYPE_DOUBLE>(); |
| 2602 | break; |
| 2603 | case CEE_LDIND_REF: |
| 2604 | LdInd<Object*, CORINFO_TYPE_CLASS>(); |
| 2605 | break; |
| 2606 | case CEE_STIND_REF: |
| 2607 | StInd_Ref(); |
| 2608 | break; |
| 2609 | case CEE_STIND_I1: |
| 2610 | StInd<INT8>(); |
| 2611 | break; |
| 2612 | case CEE_STIND_I2: |
| 2613 | StInd<INT16>(); |
| 2614 | break; |
| 2615 | case CEE_STIND_I4: |
| 2616 | StInd<INT32>(); |
| 2617 | break; |
| 2618 | case CEE_STIND_I8: |
| 2619 | StInd<INT64>(); |
| 2620 | break; |
| 2621 | case CEE_STIND_R4: |
| 2622 | StInd<float>(); |
| 2623 | break; |
| 2624 | case CEE_STIND_R8: |
| 2625 | StInd<double>(); |
| 2626 | break; |
| 2627 | case CEE_ADD: |
| 2628 | BinaryArithOp<BA_Add>(); |
| 2629 | m_ILCodePtr++; |
| 2630 | continue; |
| 2631 | case CEE_SUB: |
| 2632 | BinaryArithOp<BA_Sub>(); |
| 2633 | break; |
| 2634 | case CEE_MUL: |
| 2635 | BinaryArithOp<BA_Mul>(); |
| 2636 | break; |
| 2637 | case CEE_DIV: |
| 2638 | BinaryArithOp<BA_Div>(); |
| 2639 | break; |
| 2640 | case CEE_DIV_UN: |
| 2641 | BinaryIntOp<BIO_DivUn>(); |
| 2642 | break; |
| 2643 | case CEE_REM: |
| 2644 | BinaryArithOp<BA_Rem>(); |
| 2645 | break; |
| 2646 | case CEE_REM_UN: |
| 2647 | BinaryIntOp<BIO_RemUn>(); |
| 2648 | break; |
| 2649 | case CEE_AND: |
| 2650 | BinaryIntOp<BIO_And>(); |
| 2651 | break; |
| 2652 | case CEE_OR: |
| 2653 | BinaryIntOp<BIO_Or>(); |
| 2654 | break; |
| 2655 | case CEE_XOR: |
| 2656 | BinaryIntOp<BIO_Xor>(); |
| 2657 | break; |
| 2658 | case CEE_SHL: |
| 2659 | ShiftOp<CEE_SHL>(); |
| 2660 | break; |
| 2661 | case CEE_SHR: |
| 2662 | ShiftOp<CEE_SHR>(); |
| 2663 | break; |
| 2664 | case CEE_SHR_UN: |
| 2665 | ShiftOp<CEE_SHR_UN>(); |
| 2666 | break; |
| 2667 | case CEE_NEG: |
| 2668 | Neg(); |
| 2669 | break; |
| 2670 | case CEE_NOT: |
| 2671 | Not(); |
| 2672 | break; |
| 2673 | case CEE_CONV_I1: |
| 2674 | Conv<INT8, /*TIsUnsigned*/false, /*TCanHoldPtr*/false, /*TIsShort*/true, CORINFO_TYPE_INT>(); |
| 2675 | break; |
| 2676 | case CEE_CONV_I2: |
| 2677 | Conv<INT16, /*TIsUnsigned*/false, /*TCanHoldPtr*/false, /*TIsShort*/true, CORINFO_TYPE_INT>(); |
| 2678 | break; |
| 2679 | case CEE_CONV_I4: |
| 2680 | Conv<INT32, /*TIsUnsigned*/false, /*TCanHoldPtr*/false, /*TIsShort*/false, CORINFO_TYPE_INT>(); |
| 2681 | break; |
| 2682 | case CEE_CONV_I8: |
| 2683 | Conv<INT64, /*TIsUnsigned*/false, /*TCanHoldPtr*/true, /*TIsShort*/false, CORINFO_TYPE_LONG>(); |
| 2684 | break; |
| 2685 | case CEE_CONV_R4: |
| 2686 | Conv<float, /*TIsUnsigned*/false, /*TCanHoldPtr*/false, /*TIsShort*/false, CORINFO_TYPE_FLOAT>(); |
| 2687 | break; |
| 2688 | case CEE_CONV_R8: |
| 2689 | Conv<double, /*TIsUnsigned*/false, /*TCanHoldPtr*/false, /*TIsShort*/false, CORINFO_TYPE_DOUBLE>(); |
| 2690 | break; |
| 2691 | case CEE_CONV_U4: |
| 2692 | Conv<UINT32, /*TIsUnsigned*/true, /*TCanHoldPtr*/false, /*TIsShort*/false, CORINFO_TYPE_INT>(); |
| 2693 | break; |
| 2694 | case CEE_CONV_U8: |
| 2695 | Conv<UINT64, /*TIsUnsigned*/true, /*TCanHoldPtr*/true, /*TIsShort*/false, CORINFO_TYPE_LONG>(); |
| 2696 | break; |
| 2697 | |
| 2698 | case CEE_CPOBJ: |
| 2699 | CpObj(); |
| 2700 | continue; |
| 2701 | case CEE_LDOBJ: |
| 2702 | LdObj(); |
| 2703 | continue; |
| 2704 | case CEE_LDSTR: |
| 2705 | LdStr(); |
| 2706 | continue; |
| 2707 | case CEE_NEWOBJ: |
| 2708 | NewObj(); |
| 2709 | #if INTERP_TRACING |
| 2710 | if (s_TraceInterpreterILFlag.val(CLRConfig::INTERNAL_TraceInterpreterIL)) |
| 2711 | { |
| 2712 | fprintf(GetLogFile(), " Returning to method %s, stub num %d.\n" , methName, m_methInfo->m_stubNum); |
| 2713 | } |
| 2714 | #endif // INTERP_TRACING |
| 2715 | continue; |
| 2716 | case CEE_CASTCLASS: |
| 2717 | CastClass(); |
| 2718 | continue; |
| 2719 | case CEE_ISINST: |
| 2720 | IsInst(); |
| 2721 | continue; |
| 2722 | case CEE_CONV_R_UN: |
| 2723 | ConvRUn(); |
| 2724 | break; |
| 2725 | case CEE_UNBOX: |
| 2726 | Unbox(); |
| 2727 | continue; |
| 2728 | case CEE_THROW: |
| 2729 | Throw(); |
| 2730 | break; |
| 2731 | case CEE_LDFLD: |
| 2732 | LdFld(); |
| 2733 | continue; |
| 2734 | case CEE_LDFLDA: |
| 2735 | LdFldA(); |
| 2736 | continue; |
| 2737 | case CEE_STFLD: |
| 2738 | StFld(); |
| 2739 | continue; |
| 2740 | case CEE_LDSFLD: |
| 2741 | LdSFld(); |
| 2742 | continue; |
| 2743 | case CEE_LDSFLDA: |
| 2744 | LdSFldA(); |
| 2745 | continue; |
| 2746 | case CEE_STSFLD: |
| 2747 | StSFld(); |
| 2748 | continue; |
| 2749 | case CEE_STOBJ: |
| 2750 | StObj(); |
| 2751 | continue; |
| 2752 | case CEE_CONV_OVF_I1_UN: |
| 2753 | ConvOvfUn<INT8, SCHAR_MIN, SCHAR_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
| 2754 | break; |
| 2755 | case CEE_CONV_OVF_I2_UN: |
| 2756 | ConvOvfUn<INT16, SHRT_MIN, SHRT_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
| 2757 | break; |
| 2758 | case CEE_CONV_OVF_I4_UN: |
| 2759 | ConvOvfUn<INT32, INT_MIN, INT_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
| 2760 | break; |
| 2761 | case CEE_CONV_OVF_I8_UN: |
| 2762 | ConvOvfUn<INT64, _I64_MIN, _I64_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_LONG>(); |
| 2763 | break; |
| 2764 | case CEE_CONV_OVF_U1_UN: |
| 2765 | ConvOvfUn<UINT8, 0, UCHAR_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
| 2766 | break; |
| 2767 | case CEE_CONV_OVF_U2_UN: |
| 2768 | ConvOvfUn<UINT16, 0, USHRT_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
| 2769 | break; |
| 2770 | case CEE_CONV_OVF_U4_UN: |
| 2771 | ConvOvfUn<UINT32, 0, UINT_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
| 2772 | break; |
| 2773 | case CEE_CONV_OVF_U8_UN: |
| 2774 | ConvOvfUn<UINT64, 0, _UI64_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_LONG>(); |
| 2775 | break; |
| 2776 | case CEE_CONV_OVF_I_UN: |
| 2777 | if (sizeof(NativeInt) == 4) |
| 2778 | { |
| 2779 | ConvOvfUn<NativeInt, INT_MIN, INT_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_NATIVEINT>(); |
| 2780 | } |
| 2781 | else |
| 2782 | { |
| 2783 | assert(sizeof(NativeInt) == 8); |
| 2784 | ConvOvfUn<NativeInt, _I64_MIN, _I64_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_NATIVEINT>(); |
| 2785 | } |
| 2786 | break; |
| 2787 | case CEE_CONV_OVF_U_UN: |
| 2788 | if (sizeof(NativeUInt) == 4) |
| 2789 | { |
| 2790 | ConvOvfUn<NativeUInt, 0, UINT_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_NATIVEINT>(); |
| 2791 | } |
| 2792 | else |
| 2793 | { |
| 2794 | assert(sizeof(NativeUInt) == 8); |
| 2795 | ConvOvfUn<NativeUInt, 0, _UI64_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_NATIVEINT>(); |
| 2796 | } |
| 2797 | break; |
| 2798 | case CEE_BOX: |
| 2799 | Box(); |
| 2800 | continue; |
| 2801 | case CEE_NEWARR: |
| 2802 | NewArr(); |
| 2803 | continue; |
| 2804 | case CEE_LDLEN: |
| 2805 | LdLen(); |
| 2806 | break; |
| 2807 | case CEE_LDELEMA: |
| 2808 | LdElem</*takeAddr*/true>(); |
| 2809 | continue; |
| 2810 | case CEE_LDELEM_I1: |
| 2811 | LdElemWithType<INT8, false, CORINFO_TYPE_INT>(); |
| 2812 | break; |
| 2813 | case CEE_LDELEM_U1: |
| 2814 | LdElemWithType<UINT8, false, CORINFO_TYPE_INT>(); |
| 2815 | break; |
| 2816 | case CEE_LDELEM_I2: |
| 2817 | LdElemWithType<INT16, false, CORINFO_TYPE_INT>(); |
| 2818 | break; |
| 2819 | case CEE_LDELEM_U2: |
| 2820 | LdElemWithType<UINT16, false, CORINFO_TYPE_INT>(); |
| 2821 | break; |
| 2822 | case CEE_LDELEM_I4: |
| 2823 | LdElemWithType<INT32, false, CORINFO_TYPE_INT>(); |
| 2824 | break; |
| 2825 | case CEE_LDELEM_U4: |
| 2826 | LdElemWithType<UINT32, false, CORINFO_TYPE_INT>(); |
| 2827 | break; |
| 2828 | case CEE_LDELEM_I8: |
| 2829 | LdElemWithType<INT64, false, CORINFO_TYPE_LONG>(); |
| 2830 | break; |
| 2831 | // Note that the ECMA spec defines a "LDELEM_U8", but it is the same instruction number as LDELEM_I8 (since |
| 2832 | // when loading to the widest width, signed/unsigned doesn't matter). |
| 2833 | case CEE_LDELEM_I: |
| 2834 | LdElemWithType<NativeInt, false, CORINFO_TYPE_NATIVEINT>(); |
| 2835 | break; |
| 2836 | case CEE_LDELEM_R4: |
| 2837 | LdElemWithType<float, false, CORINFO_TYPE_FLOAT>(); |
| 2838 | break; |
| 2839 | case CEE_LDELEM_R8: |
| 2840 | LdElemWithType<double, false, CORINFO_TYPE_DOUBLE>(); |
| 2841 | break; |
| 2842 | case CEE_LDELEM_REF: |
| 2843 | LdElemWithType<Object*, true, CORINFO_TYPE_CLASS>(); |
| 2844 | break; |
| 2845 | case CEE_STELEM_I: |
| 2846 | StElemWithType<NativeInt, false>(); |
| 2847 | break; |
| 2848 | case CEE_STELEM_I1: |
| 2849 | StElemWithType<INT8, false>(); |
| 2850 | break; |
| 2851 | case CEE_STELEM_I2: |
| 2852 | StElemWithType<INT16, false>(); |
| 2853 | break; |
| 2854 | case CEE_STELEM_I4: |
| 2855 | StElemWithType<INT32, false>(); |
| 2856 | break; |
| 2857 | case CEE_STELEM_I8: |
| 2858 | StElemWithType<INT64, false>(); |
| 2859 | break; |
| 2860 | case CEE_STELEM_R4: |
| 2861 | StElemWithType<float, false>(); |
| 2862 | break; |
| 2863 | case CEE_STELEM_R8: |
| 2864 | StElemWithType<double, false>(); |
| 2865 | break; |
| 2866 | case CEE_STELEM_REF: |
| 2867 | StElemWithType<Object*, true>(); |
| 2868 | break; |
| 2869 | case CEE_LDELEM: |
| 2870 | LdElem</*takeAddr*/false>(); |
| 2871 | continue; |
| 2872 | case CEE_STELEM: |
| 2873 | StElem(); |
| 2874 | continue; |
| 2875 | case CEE_UNBOX_ANY: |
| 2876 | UnboxAny(); |
| 2877 | continue; |
| 2878 | case CEE_CONV_OVF_I1: |
| 2879 | ConvOvf<INT8, SCHAR_MIN, SCHAR_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
| 2880 | break; |
| 2881 | case CEE_CONV_OVF_U1: |
| 2882 | ConvOvf<UINT8, 0, UCHAR_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
| 2883 | break; |
| 2884 | case CEE_CONV_OVF_I2: |
| 2885 | ConvOvf<INT16, SHRT_MIN, SHRT_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
| 2886 | break; |
| 2887 | case CEE_CONV_OVF_U2: |
| 2888 | ConvOvf<UINT16, 0, USHRT_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
| 2889 | break; |
| 2890 | case CEE_CONV_OVF_I4: |
| 2891 | ConvOvf<INT32, INT_MIN, INT_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
| 2892 | break; |
| 2893 | case CEE_CONV_OVF_U4: |
| 2894 | ConvOvf<UINT32, 0, UINT_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
| 2895 | break; |
| 2896 | case CEE_CONV_OVF_I8: |
| 2897 | ConvOvf<INT64, _I64_MIN, _I64_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_LONG>(); |
| 2898 | break; |
| 2899 | case CEE_CONV_OVF_U8: |
| 2900 | ConvOvf<UINT64, 0, _UI64_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_LONG>(); |
| 2901 | break; |
| 2902 | case CEE_REFANYVAL: |
| 2903 | RefanyVal(); |
| 2904 | continue; |
| 2905 | case CEE_CKFINITE: |
| 2906 | CkFinite(); |
| 2907 | break; |
| 2908 | case CEE_MKREFANY: |
| 2909 | MkRefany(); |
| 2910 | continue; |
| 2911 | case CEE_LDTOKEN: |
| 2912 | LdToken(); |
| 2913 | continue; |
| 2914 | case CEE_CONV_U2: |
| 2915 | Conv<UINT16, /*TIsUnsigned*/true, /*TCanHoldPtr*/false, /*TIsShort*/true, CORINFO_TYPE_INT>(); |
| 2916 | break; |
| 2917 | case CEE_CONV_U1: |
| 2918 | Conv<UINT8, /*TIsUnsigned*/true, /*TCanHoldPtr*/false, /*TIsShort*/true, CORINFO_TYPE_INT>(); |
| 2919 | break; |
| 2920 | case CEE_CONV_I: |
| 2921 | Conv<NativeInt, /*TIsUnsigned*/false, /*TCanHoldPtr*/true, /*TIsShort*/false, CORINFO_TYPE_NATIVEINT>(); |
| 2922 | break; |
| 2923 | case CEE_CONV_OVF_I: |
| 2924 | if (sizeof(NativeInt) == 4) |
| 2925 | { |
| 2926 | ConvOvf<NativeInt, INT_MIN, INT_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_NATIVEINT>(); |
| 2927 | } |
| 2928 | else |
| 2929 | { |
| 2930 | assert(sizeof(NativeInt) == 8); |
| 2931 | ConvOvf<NativeInt, _I64_MIN, _I64_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_NATIVEINT>(); |
| 2932 | } |
| 2933 | break; |
| 2934 | case CEE_CONV_OVF_U: |
| 2935 | if (sizeof(NativeUInt) == 4) |
| 2936 | { |
| 2937 | ConvOvf<NativeUInt, 0, UINT_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_NATIVEINT>(); |
| 2938 | } |
| 2939 | else |
| 2940 | { |
| 2941 | assert(sizeof(NativeUInt) == 8); |
| 2942 | ConvOvf<NativeUInt, 0, _UI64_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_NATIVEINT>(); |
| 2943 | } |
| 2944 | break; |
| 2945 | case CEE_ADD_OVF: |
| 2946 | BinaryArithOvfOp<BA_Add, /*asUnsigned*/false>(); |
| 2947 | break; |
| 2948 | case CEE_ADD_OVF_UN: |
| 2949 | BinaryArithOvfOp<BA_Add, /*asUnsigned*/true>(); |
| 2950 | break; |
| 2951 | case CEE_MUL_OVF: |
| 2952 | BinaryArithOvfOp<BA_Mul, /*asUnsigned*/false>(); |
| 2953 | break; |
| 2954 | case CEE_MUL_OVF_UN: |
| 2955 | BinaryArithOvfOp<BA_Mul, /*asUnsigned*/true>(); |
| 2956 | break; |
| 2957 | case CEE_SUB_OVF: |
| 2958 | BinaryArithOvfOp<BA_Sub, /*asUnsigned*/false>(); |
| 2959 | break; |
| 2960 | case CEE_SUB_OVF_UN: |
| 2961 | BinaryArithOvfOp<BA_Sub, /*asUnsigned*/true>(); |
| 2962 | break; |
| 2963 | case CEE_ENDFINALLY: |
| 2964 | // We have just ended a finally. |
| 2965 | // If we were called during exception dispatch, |
| 2966 | // rethrow the exception on our way out. |
| 2967 | if (m_leaveInfoStack.IsEmpty()) |
| 2968 | { |
| 2969 | Object* finallyException = NULL; |
| 2970 | |
| 2971 | { |
| 2972 | GCX_FORBID(); |
| 2973 | assert(m_inFlightException != NULL); |
| 2974 | finallyException = m_inFlightException; |
| 2975 | INTERPLOG("endfinally handling for %s, %p, %p\n" , methName, m_methInfo, finallyException); |
| 2976 | m_inFlightException = NULL; |
| 2977 | } |
| 2978 | |
| 2979 | COMPlusThrow(ObjectToOBJECTREF(finallyException)); |
| 2980 | UNREACHABLE(); |
| 2981 | } |
| 2982 | // Otherwise, see if there's another finally block to |
| 2983 | // execute as part of processing the current LEAVE... |
| 2984 | else if (!SearchForCoveringFinally()) |
| 2985 | { |
| 2986 | // No, there isn't -- go to the leave target. |
| 2987 | assert(!m_leaveInfoStack.IsEmpty()); |
| 2988 | LeaveInfo li = m_leaveInfoStack.Pop(); |
| 2989 | ExecuteBranch(li.m_target); |
| 2990 | } |
| 2991 | // Yes, there, is, and SearchForCoveringFinally set us up to start executing it. |
| 2992 | continue; // Skip the default m_ILCodePtr++ at bottom of loop. |
| 2993 | |
| 2994 | case CEE_STIND_I: |
| 2995 | StInd<NativeInt>(); |
| 2996 | break; |
| 2997 | case CEE_CONV_U: |
| 2998 | Conv<NativeUInt, /*TIsUnsigned*/true, /*TCanHoldPtr*/true, /*TIsShort*/false, CORINFO_TYPE_NATIVEINT>(); |
| 2999 | break; |
| 3000 | case CEE_PREFIX7: |
| 3001 | NYI_INTERP("Unimplemented opcode: CEE_PREFIX7" ); |
| 3002 | break; |
| 3003 | case CEE_PREFIX6: |
| 3004 | NYI_INTERP("Unimplemented opcode: CEE_PREFIX6" ); |
| 3005 | break; |
| 3006 | case CEE_PREFIX5: |
| 3007 | NYI_INTERP("Unimplemented opcode: CEE_PREFIX5" ); |
| 3008 | break; |
| 3009 | case CEE_PREFIX4: |
| 3010 | NYI_INTERP("Unimplemented opcode: CEE_PREFIX4" ); |
| 3011 | break; |
| 3012 | case CEE_PREFIX3: |
| 3013 | NYI_INTERP("Unimplemented opcode: CEE_PREFIX3" ); |
| 3014 | break; |
| 3015 | case CEE_PREFIX2: |
| 3016 | NYI_INTERP("Unimplemented opcode: CEE_PREFIX2" ); |
| 3017 | break; |
| 3018 | case CEE_PREFIX1: |
| 3019 | // This is the prefix for all the 2-byte opcodes. |
| 3020 | // Figure out the second byte of the 2-byte opcode. |
| 3021 | ops = *(m_ILCodePtr + 1); |
| 3022 | #if INTERP_ILINSTR_PROFILE |
| 3023 | // Take one away from PREFIX1, which we won't count. |
| 3024 | InterlockedDecrement(&s_ILInstrExecs[CEE_PREFIX1]); |
| 3025 | // Credit instead to the 2-byte instruction index. |
| 3026 | InterlockedIncrement(&s_ILInstr2ByteExecs[ops]); |
| 3027 | #endif // INTERP_ILINSTR_PROFILE |
| 3028 | switch (ops) |
| 3029 | { |
| 3030 | case TWOBYTE_CEE_ARGLIST: |
| 3031 | // NYI_INTERP("Unimplemented opcode: TWOBYTE_CEE_ARGLIST"); |
| 3032 | assert(m_methInfo->m_varArgHandleArgNum != NO_VA_ARGNUM); |
| 3033 | LdArgA(m_methInfo->m_varArgHandleArgNum); |
| 3034 | m_ILCodePtr += 2; |
| 3035 | break; |
| 3036 | |
| 3037 | case TWOBYTE_CEE_CEQ: |
| 3038 | CompareOp<CO_EQ>(); |
| 3039 | m_ILCodePtr += 2; |
| 3040 | break; |
| 3041 | case TWOBYTE_CEE_CGT: |
| 3042 | CompareOp<CO_GT>(); |
| 3043 | m_ILCodePtr += 2; |
| 3044 | break; |
| 3045 | case TWOBYTE_CEE_CGT_UN: |
| 3046 | CompareOp<CO_GT_UN>(); |
| 3047 | m_ILCodePtr += 2; |
| 3048 | break; |
| 3049 | case TWOBYTE_CEE_CLT: |
| 3050 | CompareOp<CO_LT>(); |
| 3051 | m_ILCodePtr += 2; |
| 3052 | break; |
| 3053 | case TWOBYTE_CEE_CLT_UN: |
| 3054 | CompareOp<CO_LT_UN>(); |
| 3055 | m_ILCodePtr += 2; |
| 3056 | break; |
| 3057 | |
| 3058 | case TWOBYTE_CEE_LDARG: |
| 3059 | m_ILCodePtr += 2; |
| 3060 | argNums = getU2LittleEndian(m_ILCodePtr); |
| 3061 | LdArg(argNums); |
| 3062 | m_ILCodePtr += 2; |
| 3063 | break; |
| 3064 | case TWOBYTE_CEE_LDARGA: |
| 3065 | m_ILCodePtr += 2; |
| 3066 | argNums = getU2LittleEndian(m_ILCodePtr); |
| 3067 | LdArgA(argNums); |
| 3068 | m_ILCodePtr += 2; |
| 3069 | break; |
| 3070 | case TWOBYTE_CEE_STARG: |
| 3071 | m_ILCodePtr += 2; |
| 3072 | argNums = getU2LittleEndian(m_ILCodePtr); |
| 3073 | StArg(argNums); |
| 3074 | m_ILCodePtr += 2; |
| 3075 | break; |
| 3076 | |
| 3077 | case TWOBYTE_CEE_LDLOC: |
| 3078 | m_ILCodePtr += 2; |
| 3079 | argNums = getU2LittleEndian(m_ILCodePtr); |
| 3080 | LdLoc(argNums); |
| 3081 | m_ILCodePtr += 2; |
| 3082 | break; |
| 3083 | case TWOBYTE_CEE_LDLOCA: |
| 3084 | m_ILCodePtr += 2; |
| 3085 | argNums = getU2LittleEndian(m_ILCodePtr); |
| 3086 | LdLocA(argNums); |
| 3087 | m_ILCodePtr += 2; |
| 3088 | break; |
| 3089 | case TWOBYTE_CEE_STLOC: |
| 3090 | m_ILCodePtr += 2; |
| 3091 | argNums = getU2LittleEndian(m_ILCodePtr); |
| 3092 | StLoc(argNums); |
| 3093 | m_ILCodePtr += 2; |
| 3094 | break; |
| 3095 | |
| 3096 | case TWOBYTE_CEE_CONSTRAINED: |
| 3097 | RecordConstrainedCall(); |
| 3098 | break; |
| 3099 | |
| 3100 | case TWOBYTE_CEE_VOLATILE: |
| 3101 | // Set a flag that causes a memory barrier to be associated with the next load or store. |
| 3102 | m_volatileFlag = true; |
| 3103 | m_ILCodePtr += 2; |
| 3104 | break; |
| 3105 | |
| 3106 | case TWOBYTE_CEE_LDFTN: |
| 3107 | LdFtn(); |
| 3108 | break; |
| 3109 | |
| 3110 | case TWOBYTE_CEE_INITOBJ: |
| 3111 | InitObj(); |
| 3112 | break; |
| 3113 | |
| 3114 | case TWOBYTE_CEE_LOCALLOC: |
| 3115 | LocAlloc(); |
| 3116 | m_ILCodePtr += 2; |
| 3117 | break; |
| 3118 | |
| 3119 | case TWOBYTE_CEE_LDVIRTFTN: |
| 3120 | LdVirtFtn(); |
| 3121 | break; |
| 3122 | |
| 3123 | case TWOBYTE_CEE_SIZEOF: |
| 3124 | Sizeof(); |
| 3125 | break; |
| 3126 | |
| 3127 | case TWOBYTE_CEE_RETHROW: |
| 3128 | Rethrow(); |
| 3129 | break; |
| 3130 | |
| 3131 | case TWOBYTE_CEE_READONLY: |
| 3132 | m_readonlyFlag = true; |
| 3133 | m_ILCodePtr += 2; |
| 3134 | // A comment in importer.cpp indicates that READONLY may also apply to calls. We'll see. |
| 3135 | _ASSERTE_MSG(*m_ILCodePtr == CEE_LDELEMA, "According to the ECMA spec, READONLY may only precede LDELEMA" ); |
| 3136 | break; |
| 3137 | |
| 3138 | case TWOBYTE_CEE_INITBLK: |
| 3139 | InitBlk(); |
| 3140 | break; |
| 3141 | |
| 3142 | case TWOBYTE_CEE_CPBLK: |
| 3143 | CpBlk(); |
| 3144 | break; |
| 3145 | |
| 3146 | case TWOBYTE_CEE_ENDFILTER: |
| 3147 | EndFilter(); |
| 3148 | break; |
| 3149 | |
| 3150 | case TWOBYTE_CEE_UNALIGNED: |
| 3151 | // Nothing to do here. |
| 3152 | m_ILCodePtr += 3; |
| 3153 | break; |
| 3154 | |
| 3155 | case TWOBYTE_CEE_TAILCALL: |
| 3156 | // TODO: Needs revisiting when implementing tail call. |
| 3157 | // NYI_INTERP("Unimplemented opcode: TWOBYTE_CEE_TAILCALL"); |
| 3158 | m_ILCodePtr += 2; |
| 3159 | break; |
| 3160 | |
| 3161 | case TWOBYTE_CEE_REFANYTYPE: |
| 3162 | RefanyType(); |
| 3163 | break; |
| 3164 | |
| 3165 | default: |
| 3166 | UNREACHABLE(); |
| 3167 | break; |
| 3168 | } |
| 3169 | continue; |
| 3170 | |
| 3171 | case CEE_PREFIXREF: |
| 3172 | NYI_INTERP("Unimplemented opcode: CEE_PREFIXREF" ); |
| 3173 | m_ILCodePtr++; |
| 3174 | continue; |
| 3175 | |
| 3176 | default: |
| 3177 | UNREACHABLE(); |
| 3178 | continue; |
| 3179 | } |
| 3180 | m_ILCodePtr++; |
| 3181 | } |
| 3182 | ExitEvalLoop:; |
| 3183 | INTERPLOG("DONE %d, %s\n" , m_methInfo->m_stubNum, m_methInfo->m_methName); |
| 3184 | } |
| 3185 | EX_CATCH |
| 3186 | { |
| 3187 | INTERPLOG("EXCEPTION %d (throw), %s\n" , m_methInfo->m_stubNum, m_methInfo->m_methName); |
| 3188 | |
| 3189 | bool handleException = false; |
| 3190 | OBJECTREF orThrowable = NULL; |
| 3191 | GCX_COOP_NO_DTOR(); |
| 3192 | |
| 3193 | orThrowable = GET_THROWABLE(); |
| 3194 | |
| 3195 | if (m_filterNextScan != 0) |
| 3196 | { |
| 3197 | // We are in the middle of a filter scan and an exception is thrown inside |
| 3198 | // a filter. We are supposed to swallow it and assume the filter did not |
| 3199 | // handle the exception. |
| 3200 | m_curStackHt = 0; |
| 3201 | m_largeStructOperandStackHt = 0; |
| 3202 | LdIcon(0); |
| 3203 | EndFilter(); |
| 3204 | handleException = true; |
| 3205 | } |
| 3206 | else |
| 3207 | { |
| 3208 | // orThrowable must be protected. MethodHandlesException() will place orThrowable |
| 3209 | // into the operand stack (a permanently protected area) if it returns true. |
| 3210 | GCPROTECT_BEGIN(orThrowable); |
| 3211 | handleException = MethodHandlesException(orThrowable); |
| 3212 | GCPROTECT_END(); |
| 3213 | } |
| 3214 | |
| 3215 | if (handleException) |
| 3216 | { |
| 3217 | GetThread()->SafeSetThrowables(orThrowable |
| 3218 | DEBUG_ARG(ThreadExceptionState::STEC_CurrentTrackerEqualNullOkForInterpreter)); |
| 3219 | goto EvalLoop; |
| 3220 | } |
| 3221 | else |
| 3222 | { |
| 3223 | INTERPLOG("EXCEPTION %d (rethrow), %s\n" , m_methInfo->m_stubNum, m_methInfo->m_methName); |
| 3224 | EX_RETHROW; |
| 3225 | } |
| 3226 | } |
| 3227 | EX_END_CATCH(RethrowTransientExceptions) |
| 3228 | } |
| 3229 | |
| 3230 | #ifdef _MSC_VER |
| 3231 | #pragma optimize("", on) |
| 3232 | #endif |
| 3233 | |
| 3234 | void Interpreter::EndFilter() |
| 3235 | { |
| 3236 | unsigned handles = OpStackGet<unsigned>(0); |
| 3237 | // If the filter decides to handle the exception, then go to the handler offset. |
| 3238 | if (handles) |
| 3239 | { |
| 3240 | // We decided to handle the exception, so give all EH entries a chance to |
| 3241 | // handle future exceptions. Clear scan. |
| 3242 | m_filterNextScan = 0; |
| 3243 | ExecuteBranch(m_methInfo->m_ILCode + m_filterHandlerOffset); |
| 3244 | } |
| 3245 | // The filter decided not to handle the exception, ask if there is some other filter |
| 3246 | // lined up to try to handle it or some other catch/finally handlers will handle it. |
| 3247 | // If no one handles the exception, rethrow and be done with it. |
| 3248 | else |
| 3249 | { |
| 3250 | bool handlesEx = false; |
| 3251 | { |
| 3252 | OBJECTREF orThrowable = ObjectToOBJECTREF(m_inFlightException); |
| 3253 | GCPROTECT_BEGIN(orThrowable); |
| 3254 | handlesEx = MethodHandlesException(orThrowable); |
| 3255 | GCPROTECT_END(); |
| 3256 | } |
| 3257 | if (!handlesEx) |
| 3258 | { |
| 3259 | // Just clear scan before rethrowing to give any EH entry a chance to handle |
| 3260 | // the "rethrow". |
| 3261 | m_filterNextScan = 0; |
| 3262 | Object* filterException = NULL; |
| 3263 | { |
| 3264 | GCX_FORBID(); |
| 3265 | assert(m_inFlightException != NULL); |
| 3266 | filterException = m_inFlightException; |
| 3267 | INTERPLOG("endfilter handling for %s, %p, %p\n" , m_methInfo->m_methName, m_methInfo, filterException); |
| 3268 | m_inFlightException = NULL; |
| 3269 | } |
| 3270 | |
| 3271 | COMPlusThrow(ObjectToOBJECTREF(filterException)); |
| 3272 | UNREACHABLE(); |
| 3273 | } |
| 3274 | else |
| 3275 | { |
| 3276 | // Let it do another round of filter:end-filter or handler block. |
| 3277 | // During the next end filter, we will reuse m_filterNextScan and |
| 3278 | // continue searching where we left off. Note however, while searching, |
| 3279 | // any of the filters could throw an exception. But this is supposed to |
| 3280 | // be swallowed and endfilter should be called with a value of 0 on the |
| 3281 | // stack. |
| 3282 | } |
| 3283 | } |
| 3284 | } |
| 3285 | |
| 3286 | bool Interpreter::MethodHandlesException(OBJECTREF orThrowable) |
| 3287 | { |
| 3288 | CONTRACTL { |
| 3289 | SO_TOLERANT; |
| 3290 | THROWS; |
| 3291 | GC_TRIGGERS; |
| 3292 | MODE_COOPERATIVE; |
| 3293 | } CONTRACTL_END; |
| 3294 | |
| 3295 | bool handlesEx = false; |
| 3296 | |
| 3297 | if (orThrowable != NULL) |
| 3298 | { |
| 3299 | PTR_Thread pCurThread = GetThread(); |
| 3300 | |
| 3301 | // Don't catch ThreadAbort and other uncatchable exceptions |
| 3302 | if (!IsUncatchable(&orThrowable)) |
| 3303 | { |
| 3304 | // Does the current method catch this? The clauses are defined by offsets, so get that. |
| 3305 | // However, if we are in the middle of a filter scan, make sure we get the offset of the |
| 3306 | // excepting code, rather than the offset of the filter body. |
| 3307 | DWORD curOffset = (m_filterNextScan != 0) ? m_filterExcILOffset : CurOffset(); |
| 3308 | TypeHandle orThrowableTH = TypeHandle(orThrowable->GetMethodTable()); |
| 3309 | |
| 3310 | GCPROTECT_BEGIN(orThrowable); |
| 3311 | GCX_PREEMP(); |
| 3312 | |
| 3313 | // Perform a filter scan or regular walk of the EH Table. Filter scan is performed when |
| 3314 | // we are evaluating a series of filters to handle the exception until the first handler |
| 3315 | // (filter's or otherwise) that will handle the exception. |
| 3316 | for (unsigned XTnum = m_filterNextScan; XTnum < m_methInfo->m_ehClauseCount; XTnum++) |
| 3317 | { |
| 3318 | CORINFO_EH_CLAUSE clause; |
| 3319 | m_interpCeeInfo.getEHinfo(m_methInfo->m_method, XTnum, &clause); |
| 3320 | assert(clause.HandlerLength != (unsigned)-1); // @DEPRECATED |
| 3321 | |
| 3322 | // First, is the current offset in the try block? |
| 3323 | if (clause.TryOffset <= curOffset && curOffset < clause.TryOffset + clause.TryLength) |
| 3324 | { |
| 3325 | unsigned handlerOffset = 0; |
| 3326 | // CORINFO_EH_CLAUSE_NONE represents 'catch' blocks |
| 3327 | if (clause.Flags == CORINFO_EH_CLAUSE_NONE) |
| 3328 | { |
| 3329 | // Now, does the catch block handle the thrown exception type? |
| 3330 | CORINFO_CLASS_HANDLE excType = FindClass(clause.ClassToken InterpTracingArg(RTK_CheckHandlesException)); |
| 3331 | if (ExceptionIsOfRightType(TypeHandle::FromPtr(excType), orThrowableTH)) |
| 3332 | { |
| 3333 | GCX_COOP(); |
| 3334 | // Push the exception object onto the operand stack. |
| 3335 | OpStackSet<OBJECTREF>(0, orThrowable); |
| 3336 | OpStackTypeSet(0, InterpreterType(CORINFO_TYPE_CLASS)); |
| 3337 | m_curStackHt = 1; |
| 3338 | m_largeStructOperandStackHt = 0; |
| 3339 | handlerOffset = clause.HandlerOffset; |
| 3340 | handlesEx = true; |
| 3341 | m_filterNextScan = 0; |
| 3342 | } |
| 3343 | else |
| 3344 | { |
| 3345 | GCX_COOP(); |
| 3346 | // Handle a wrapped exception. |
| 3347 | OBJECTREF orUnwrapped = PossiblyUnwrapThrowable(orThrowable, GetMethodDesc()->GetAssembly()); |
| 3348 | if (ExceptionIsOfRightType(TypeHandle::FromPtr(excType), orUnwrapped->GetTrueTypeHandle())) |
| 3349 | { |
| 3350 | // Push the exception object onto the operand stack. |
| 3351 | OpStackSet<OBJECTREF>(0, orUnwrapped); |
| 3352 | OpStackTypeSet(0, InterpreterType(CORINFO_TYPE_CLASS)); |
| 3353 | m_curStackHt = 1; |
| 3354 | m_largeStructOperandStackHt = 0; |
| 3355 | handlerOffset = clause.HandlerOffset; |
| 3356 | handlesEx = true; |
| 3357 | m_filterNextScan = 0; |
| 3358 | } |
| 3359 | } |
| 3360 | } |
| 3361 | else if (clause.Flags == CORINFO_EH_CLAUSE_FILTER) |
| 3362 | { |
| 3363 | GCX_COOP(); |
| 3364 | // Push the exception object onto the operand stack. |
| 3365 | OpStackSet<OBJECTREF>(0, orThrowable); |
| 3366 | OpStackTypeSet(0, InterpreterType(CORINFO_TYPE_CLASS)); |
| 3367 | m_curStackHt = 1; |
| 3368 | m_largeStructOperandStackHt = 0; |
| 3369 | handlerOffset = clause.FilterOffset; |
| 3370 | m_inFlightException = OBJECTREFToObject(orThrowable); |
| 3371 | handlesEx = true; |
| 3372 | m_filterHandlerOffset = clause.HandlerOffset; |
| 3373 | m_filterNextScan = XTnum + 1; |
| 3374 | m_filterExcILOffset = curOffset; |
| 3375 | } |
| 3376 | else if (clause.Flags == CORINFO_EH_CLAUSE_FAULT || |
| 3377 | clause.Flags == CORINFO_EH_CLAUSE_FINALLY) |
| 3378 | { |
| 3379 | GCX_COOP(); |
| 3380 | // Save the exception object to rethrow. |
| 3381 | m_inFlightException = OBJECTREFToObject(orThrowable); |
| 3382 | // Empty the operand stack. |
| 3383 | m_curStackHt = 0; |
| 3384 | m_largeStructOperandStackHt = 0; |
| 3385 | handlerOffset = clause.HandlerOffset; |
| 3386 | handlesEx = true; |
| 3387 | m_filterNextScan = 0; |
| 3388 | } |
| 3389 | |
| 3390 | // Reset the interpreter loop in preparation of calling the handler. |
| 3391 | if (handlesEx) |
| 3392 | { |
| 3393 | // Set the IL offset of the handler. |
| 3394 | ExecuteBranch(m_methInfo->m_ILCode + handlerOffset); |
| 3395 | |
| 3396 | // If an exception occurs while attempting to leave a protected scope, |
| 3397 | // we empty the 'leave' info stack upon entering the handler. |
| 3398 | while (!m_leaveInfoStack.IsEmpty()) |
| 3399 | { |
| 3400 | m_leaveInfoStack.Pop(); |
| 3401 | } |
| 3402 | |
| 3403 | // Some things are set up before a call, and must be cleared on an exception caught be the caller. |
| 3404 | // A method that returns a struct allocates local space for the return value, and "registers" that |
| 3405 | // space and the type so that it's scanned if a GC happens. "Unregister" it if we throw an exception |
| 3406 | // in the call, and handle it in the caller. (If it's not handled by the caller, the Interpreter is |
| 3407 | // deallocated, so it's value doesn't matter.) |
| 3408 | m_structRetValITPtr = NULL; |
| 3409 | m_callThisArg = NULL; |
| 3410 | m_argsSize = 0; |
| 3411 | |
| 3412 | break; |
| 3413 | } |
| 3414 | } |
| 3415 | } |
| 3416 | GCPROTECT_END(); |
| 3417 | } |
| 3418 | if (!handlesEx) |
| 3419 | { |
| 3420 | DoMonitorExitWork(); |
| 3421 | } |
| 3422 | } |
| 3423 | return handlesEx; |
| 3424 | } |
| 3425 | |
| 3426 | static unsigned OpFormatExtraSize(opcode_format_t format) { |
| 3427 | switch (format) |
| 3428 | { |
| 3429 | case InlineNone: |
| 3430 | return 0; |
| 3431 | case InlineVar: |
| 3432 | return 2; |
| 3433 | case InlineI: |
| 3434 | case InlineBrTarget: |
| 3435 | case InlineMethod: |
| 3436 | case InlineField: |
| 3437 | case InlineType: |
| 3438 | case InlineString: |
| 3439 | case InlineSig: |
| 3440 | case InlineRVA: |
| 3441 | case InlineTok: |
| 3442 | case ShortInlineR: |
| 3443 | return 4; |
| 3444 | |
| 3445 | case InlineR: |
| 3446 | case InlineI8: |
| 3447 | return 8; |
| 3448 | |
| 3449 | case InlineSwitch: |
| 3450 | return 0; // We'll handle this specially. |
| 3451 | |
| 3452 | case ShortInlineVar: |
| 3453 | case ShortInlineI: |
| 3454 | case ShortInlineBrTarget: |
| 3455 | return 1; |
| 3456 | |
| 3457 | default: |
| 3458 | assert(false); |
| 3459 | return 0; |
| 3460 | } |
| 3461 | } |
| 3462 | |
| 3463 | |
| 3464 | |
| 3465 | static unsigned opSizes1Byte[CEE_COUNT]; |
| 3466 | static bool opSizes1ByteInit = false; |
| 3467 | |
| 3468 | static void OpSizes1ByteInit() |
| 3469 | { |
| 3470 | if (opSizes1ByteInit) return; |
| 3471 | #define OPDEF(name, stringname, stackpop, stackpush, params, kind, len, byte1, byte2, ctrl) \ |
| 3472 | opSizes1Byte[name] = len + OpFormatExtraSize(params); |
| 3473 | #include "opcode.def" |
| 3474 | #undef OPDEF |
| 3475 | opSizes1ByteInit = true; |
| 3476 | }; |
| 3477 | |
| 3478 | // static |
| 3479 | bool Interpreter::MethodMayHaveLoop(BYTE* ilCode, unsigned codeSize) |
| 3480 | { |
| 3481 | OpSizes1ByteInit(); |
| 3482 | int delta; |
| 3483 | BYTE* ilCodeLim = ilCode + codeSize; |
| 3484 | while (ilCode < ilCodeLim) |
| 3485 | { |
| 3486 | unsigned op = *ilCode; |
| 3487 | switch (op) |
| 3488 | { |
| 3489 | case CEE_BR_S: case CEE_BRFALSE_S: case CEE_BRTRUE_S: |
| 3490 | case CEE_BEQ_S: case CEE_BGE_S: case CEE_BGT_S: case CEE_BLE_S: case CEE_BLT_S: |
| 3491 | case CEE_BNE_UN_S: case CEE_BGE_UN_S: case CEE_BGT_UN_S: case CEE_BLE_UN_S: case CEE_BLT_UN_S: |
| 3492 | case CEE_LEAVE_S: |
| 3493 | delta = getI1(ilCode + 1); |
| 3494 | if (delta < 0) return true; |
| 3495 | ilCode += 2; |
| 3496 | break; |
| 3497 | |
| 3498 | case CEE_BR: case CEE_BRFALSE: case CEE_BRTRUE: |
| 3499 | case CEE_BEQ: case CEE_BGE: case CEE_BGT: case CEE_BLE: case CEE_BLT: |
| 3500 | case CEE_BNE_UN: case CEE_BGE_UN: case CEE_BGT_UN: case CEE_BLE_UN: case CEE_BLT_UN: |
| 3501 | case CEE_LEAVE: |
| 3502 | delta = getI4LittleEndian(ilCode + 1); |
| 3503 | if (delta < 0) return true; |
| 3504 | ilCode += 5; |
| 3505 | break; |
| 3506 | |
| 3507 | case CEE_SWITCH: |
| 3508 | { |
| 3509 | UINT32 n = getU4LittleEndian(ilCode + 1); |
| 3510 | UINT32 instrSize = 1 + (n + 1)*4; |
| 3511 | for (unsigned i = 0; i < n; i++) { |
| 3512 | delta = getI4LittleEndian(ilCode + (5 + i * 4)); |
| 3513 | if (delta < 0) return true; |
| 3514 | } |
| 3515 | ilCode += instrSize; |
| 3516 | break; |
| 3517 | } |
| 3518 | |
| 3519 | case CEE_PREFIX1: |
| 3520 | op = *(ilCode + 1) + 0x100; |
| 3521 | assert(op < CEE_COUNT); // Bounds check for below. |
| 3522 | // deliberate fall-through here. |
| 3523 | default: |
| 3524 | // For the rest of the 1-byte instructions, we'll use a table-driven approach. |
| 3525 | ilCode += opSizes1Byte[op]; |
| 3526 | break; |
| 3527 | } |
| 3528 | } |
| 3529 | return false; |
| 3530 | |
| 3531 | } |
| 3532 | |
| 3533 | void Interpreter::BackwardsBranchActions(int offset) |
| 3534 | { |
| 3535 | // TODO: Figure out how to do a GC poll. |
| 3536 | } |
| 3537 | |
| 3538 | bool Interpreter::SearchForCoveringFinally() |
| 3539 | { |
| 3540 | CONTRACTL { |
| 3541 | SO_TOLERANT; |
| 3542 | THROWS; |
| 3543 | GC_TRIGGERS; |
| 3544 | MODE_ANY; |
| 3545 | } CONTRACTL_END; |
| 3546 | |
| 3547 | _ASSERTE_MSG(!m_leaveInfoStack.IsEmpty(), "precondition" ); |
| 3548 | |
| 3549 | LeaveInfo& li = m_leaveInfoStack.PeekRef(); |
| 3550 | |
| 3551 | GCX_PREEMP(); |
| 3552 | |
| 3553 | for (unsigned XTnum = li.m_nextEHIndex; XTnum < m_methInfo->m_ehClauseCount; XTnum++) |
| 3554 | { |
| 3555 | CORINFO_EH_CLAUSE clause; |
| 3556 | m_interpCeeInfo.getEHinfo(m_methInfo->m_method, XTnum, &clause); |
| 3557 | assert(clause.HandlerLength != (unsigned)-1); // @DEPRECATED |
| 3558 | |
| 3559 | // First, is the offset of the leave instruction in the try block? |
| 3560 | unsigned tryEndOffset = clause.TryOffset + clause.TryLength; |
| 3561 | if (clause.TryOffset <= li.m_offset && li.m_offset < tryEndOffset) |
| 3562 | { |
| 3563 | // Yes: is it a finally, and is its target outside the try block? |
| 3564 | size_t targOffset = (li.m_target - m_methInfo->m_ILCode); |
| 3565 | if (clause.Flags == CORINFO_EH_CLAUSE_FINALLY |
| 3566 | && !(clause.TryOffset <= targOffset && targOffset < tryEndOffset)) |
| 3567 | { |
| 3568 | m_ILCodePtr = m_methInfo->m_ILCode + clause.HandlerOffset; |
| 3569 | li.m_nextEHIndex = XTnum + 1; |
| 3570 | return true; |
| 3571 | } |
| 3572 | } |
| 3573 | } |
| 3574 | |
| 3575 | // Caller will handle popping the leave info stack. |
| 3576 | return false; |
| 3577 | } |
| 3578 | |
| 3579 | // static |
| 3580 | void Interpreter::GCScanRoots(promote_func* pf, ScanContext* sc, void* interp0) |
| 3581 | { |
| 3582 | Interpreter* interp = reinterpret_cast<Interpreter*>(interp0); |
| 3583 | interp->GCScanRoots(pf, sc); |
| 3584 | } |
| 3585 | |
| 3586 | void Interpreter::GCScanRoots(promote_func* pf, ScanContext* sc) |
| 3587 | { |
| 3588 | // Report inbound arguments, if the interpreter has not been invoked directly. |
| 3589 | // (In the latter case, the arguments are reported by the calling method.) |
| 3590 | if (!m_directCall) |
| 3591 | { |
| 3592 | for (unsigned i = 0; i < m_methInfo->m_numArgs; i++) |
| 3593 | { |
| 3594 | GCScanRootAtLoc(reinterpret_cast<Object**>(GetArgAddr(i)), GetArgType(i), pf, sc); |
| 3595 | } |
| 3596 | } |
| 3597 | |
| 3598 | if (m_methInfo->GetFlag<InterpreterMethodInfo::Flag_hasThisArg>()) |
| 3599 | { |
| 3600 | if (m_methInfo->GetFlag<InterpreterMethodInfo::Flag_thisArgIsObjPtr>()) |
| 3601 | { |
| 3602 | GCScanRootAtLoc(&m_thisArg, InterpreterType(CORINFO_TYPE_CLASS), pf, sc); |
| 3603 | } |
| 3604 | else |
| 3605 | { |
| 3606 | GCScanRootAtLoc(&m_thisArg, InterpreterType(CORINFO_TYPE_BYREF), pf, sc); |
| 3607 | } |
| 3608 | } |
| 3609 | |
| 3610 | // This is the "this" argument passed in to DoCallWork. (Note that we treat this as a byref; it |
| 3611 | // might be, for a struct instance method, and this covers the object pointer case as well.) |
| 3612 | GCScanRootAtLoc(reinterpret_cast<Object**>(&m_callThisArg), InterpreterType(CORINFO_TYPE_BYREF), pf, sc); |
| 3613 | |
| 3614 | // Scan the exception object that we'll rethrow at the end of the finally block. |
| 3615 | GCScanRootAtLoc(reinterpret_cast<Object**>(&m_inFlightException), InterpreterType(CORINFO_TYPE_CLASS), pf, sc); |
| 3616 | |
| 3617 | // A retBufArg, may, in some cases, be a byref into the heap. |
| 3618 | if (m_retBufArg != NULL) |
| 3619 | { |
| 3620 | GCScanRootAtLoc(reinterpret_cast<Object**>(&m_retBufArg), InterpreterType(CORINFO_TYPE_BYREF), pf, sc); |
| 3621 | } |
| 3622 | |
| 3623 | if (m_structRetValITPtr != NULL) |
| 3624 | { |
| 3625 | GCScanRootAtLoc(reinterpret_cast<Object**>(m_structRetValTempSpace), *m_structRetValITPtr, pf, sc); |
| 3626 | } |
| 3627 | |
| 3628 | // We'll conservatively assume that we might have a security object. |
| 3629 | GCScanRootAtLoc(reinterpret_cast<Object**>(&m_securityObject), InterpreterType(CORINFO_TYPE_CLASS), pf, sc); |
| 3630 | |
| 3631 | // Do locals. |
| 3632 | for (unsigned i = 0; i < m_methInfo->m_numLocals; i++) |
| 3633 | { |
| 3634 | InterpreterType it = m_methInfo->m_localDescs[i].m_type; |
| 3635 | void* localPtr = NULL; |
| 3636 | if (it.IsLargeStruct(&m_interpCeeInfo)) |
| 3637 | { |
| 3638 | void* structPtr = ArgSlotEndianessFixup(reinterpret_cast<ARG_SLOT*>(FixedSizeLocalSlot(i)), sizeof(void**)); |
| 3639 | localPtr = *reinterpret_cast<void**>(structPtr); |
| 3640 | } |
| 3641 | else |
| 3642 | { |
| 3643 | localPtr = ArgSlotEndianessFixup(reinterpret_cast<ARG_SLOT*>(FixedSizeLocalSlot(i)), it.Size(&m_interpCeeInfo)); |
| 3644 | } |
| 3645 | GCScanRootAtLoc(reinterpret_cast<Object**>(localPtr), it, pf, sc, m_methInfo->GetPinningBit(i)); |
| 3646 | } |
| 3647 | |
| 3648 | // Do current ostack. |
| 3649 | for (unsigned i = 0; i < m_curStackHt; i++) |
| 3650 | { |
| 3651 | InterpreterType it = OpStackTypeGet(i); |
| 3652 | if (it.IsLargeStruct(&m_interpCeeInfo)) |
| 3653 | { |
| 3654 | Object** structPtr = reinterpret_cast<Object**>(OpStackGet<void*>(i)); |
| 3655 | // If the ostack value is a pointer to a local var value, don't scan, since we already |
| 3656 | // scanned the variable value above. |
| 3657 | if (!IsInLargeStructLocalArea(structPtr)) |
| 3658 | { |
| 3659 | GCScanRootAtLoc(structPtr, it, pf, sc); |
| 3660 | } |
| 3661 | } |
| 3662 | else |
| 3663 | { |
| 3664 | void* stackPtr = OpStackGetAddr(i, it.Size(&m_interpCeeInfo)); |
| 3665 | GCScanRootAtLoc(reinterpret_cast<Object**>(stackPtr), it, pf, sc); |
| 3666 | } |
| 3667 | } |
| 3668 | |
| 3669 | // Any outgoing arguments for a call in progress. |
| 3670 | for (unsigned i = 0; i < m_argsSize; i++) |
| 3671 | { |
| 3672 | // If a call has a large struct argument, we'll have pushed a pointer to the entry for that argument on the |
| 3673 | // largeStructStack of the current Interpreter. That will be scanned by the code above, so just skip it. |
| 3674 | InterpreterType undef(CORINFO_TYPE_UNDEF); |
| 3675 | InterpreterType it = m_argTypes[i]; |
| 3676 | if (it != undef && !it.IsLargeStruct(&m_interpCeeInfo)) |
| 3677 | { |
| 3678 | BYTE* argPtr = ArgSlotEndianessFixup(&m_args[i], it.Size(&m_interpCeeInfo)); |
| 3679 | GCScanRootAtLoc(reinterpret_cast<Object**>(argPtr), it, pf, sc); |
| 3680 | } |
| 3681 | } |
| 3682 | } |
| 3683 | |
| 3684 | void Interpreter::GCScanRootAtLoc(Object** loc, InterpreterType it, promote_func* pf, ScanContext* sc, bool pinningRef) |
| 3685 | { |
| 3686 | switch (it.ToCorInfoType()) |
| 3687 | { |
| 3688 | case CORINFO_TYPE_CLASS: |
| 3689 | case CORINFO_TYPE_STRING: |
| 3690 | { |
| 3691 | DWORD flags = 0; |
| 3692 | if (pinningRef) flags |= GC_CALL_PINNED; |
| 3693 | (*pf)(loc, sc, flags); |
| 3694 | } |
| 3695 | break; |
| 3696 | |
| 3697 | case CORINFO_TYPE_BYREF: |
| 3698 | case CORINFO_TYPE_REFANY: |
| 3699 | { |
| 3700 | DWORD flags = GC_CALL_INTERIOR; |
| 3701 | if (pinningRef) flags |= GC_CALL_PINNED; |
| 3702 | (*pf)(loc, sc, flags); |
| 3703 | } |
| 3704 | break; |
| 3705 | |
| 3706 | case CORINFO_TYPE_VALUECLASS: |
| 3707 | assert(!pinningRef); |
| 3708 | GCScanValueClassRootAtLoc(loc, it.ToClassHandle(), pf, sc); |
| 3709 | break; |
| 3710 | |
| 3711 | default: |
| 3712 | assert(!pinningRef); |
| 3713 | break; |
| 3714 | } |
| 3715 | } |
| 3716 | |
| 3717 | void Interpreter::GCScanValueClassRootAtLoc(Object** loc, CORINFO_CLASS_HANDLE valueClsHnd, promote_func* pf, ScanContext* sc) |
| 3718 | { |
| 3719 | MethodTable* valClsMT = GetMethodTableFromClsHnd(valueClsHnd); |
| 3720 | ReportPointersFromValueType(pf, sc, valClsMT, loc); |
| 3721 | } |
| 3722 | |
| 3723 | // Returns "true" iff "cit" is "stack-normal": all integer types with byte size less than 4 |
| 3724 | // are folded to CORINFO_TYPE_INT; all remaining unsigned types are folded to their signed counterparts. |
| 3725 | bool IsStackNormalType(CorInfoType cit) |
| 3726 | { |
| 3727 | LIMITED_METHOD_CONTRACT; |
| 3728 | |
| 3729 | switch (cit) |
| 3730 | { |
| 3731 | case CORINFO_TYPE_UNDEF: |
| 3732 | case CORINFO_TYPE_VOID: |
| 3733 | case CORINFO_TYPE_BOOL: |
| 3734 | case CORINFO_TYPE_CHAR: |
| 3735 | case CORINFO_TYPE_BYTE: |
| 3736 | case CORINFO_TYPE_UBYTE: |
| 3737 | case CORINFO_TYPE_SHORT: |
| 3738 | case CORINFO_TYPE_USHORT: |
| 3739 | case CORINFO_TYPE_UINT: |
| 3740 | case CORINFO_TYPE_NATIVEUINT: |
| 3741 | case CORINFO_TYPE_ULONG: |
| 3742 | case CORINFO_TYPE_VAR: |
| 3743 | case CORINFO_TYPE_STRING: |
| 3744 | case CORINFO_TYPE_PTR: |
| 3745 | return false; |
| 3746 | |
| 3747 | case CORINFO_TYPE_INT: |
| 3748 | case CORINFO_TYPE_NATIVEINT: |
| 3749 | case CORINFO_TYPE_BYREF: |
| 3750 | case CORINFO_TYPE_CLASS: |
| 3751 | case CORINFO_TYPE_LONG: |
| 3752 | case CORINFO_TYPE_VALUECLASS: |
| 3753 | case CORINFO_TYPE_REFANY: |
| 3754 | // I chose to consider both float and double stack-normal; together these comprise |
| 3755 | // the "F" type of the ECMA spec. This means I have to consider these to freely |
| 3756 | // interconvert. |
| 3757 | case CORINFO_TYPE_FLOAT: |
| 3758 | case CORINFO_TYPE_DOUBLE: |
| 3759 | return true; |
| 3760 | |
| 3761 | default: |
| 3762 | UNREACHABLE(); |
| 3763 | } |
| 3764 | } |
| 3765 | |
| 3766 | CorInfoType CorInfoTypeStackNormalize(CorInfoType cit) |
| 3767 | { |
| 3768 | LIMITED_METHOD_CONTRACT; |
| 3769 | |
| 3770 | switch (cit) |
| 3771 | { |
| 3772 | case CORINFO_TYPE_UNDEF: |
| 3773 | return CORINFO_TYPE_UNDEF; |
| 3774 | |
| 3775 | case CORINFO_TYPE_VOID: |
| 3776 | case CORINFO_TYPE_VAR: |
| 3777 | _ASSERTE_MSG(false, "Type that cannot be on the ostack." ); |
| 3778 | return CORINFO_TYPE_UNDEF; |
| 3779 | |
| 3780 | case CORINFO_TYPE_BOOL: |
| 3781 | case CORINFO_TYPE_CHAR: |
| 3782 | case CORINFO_TYPE_BYTE: |
| 3783 | case CORINFO_TYPE_UBYTE: |
| 3784 | case CORINFO_TYPE_SHORT: |
| 3785 | case CORINFO_TYPE_USHORT: |
| 3786 | case CORINFO_TYPE_UINT: |
| 3787 | return CORINFO_TYPE_INT; |
| 3788 | |
| 3789 | case CORINFO_TYPE_NATIVEUINT: |
| 3790 | case CORINFO_TYPE_PTR: |
| 3791 | return CORINFO_TYPE_NATIVEINT; |
| 3792 | |
| 3793 | case CORINFO_TYPE_ULONG: |
| 3794 | return CORINFO_TYPE_LONG; |
| 3795 | |
| 3796 | case CORINFO_TYPE_STRING: |
| 3797 | return CORINFO_TYPE_CLASS; |
| 3798 | |
| 3799 | case CORINFO_TYPE_INT: |
| 3800 | case CORINFO_TYPE_NATIVEINT: |
| 3801 | case CORINFO_TYPE_BYREF: |
| 3802 | case CORINFO_TYPE_CLASS: |
| 3803 | case CORINFO_TYPE_LONG: |
| 3804 | case CORINFO_TYPE_VALUECLASS: |
| 3805 | case CORINFO_TYPE_REFANY: |
| 3806 | // I chose to consider both float and double stack-normal; together these comprise |
| 3807 | // the "F" type of the ECMA spec. This means I have to consider these to freely |
| 3808 | // interconvert. |
| 3809 | case CORINFO_TYPE_FLOAT: |
| 3810 | case CORINFO_TYPE_DOUBLE: |
| 3811 | assert(IsStackNormalType(cit)); |
| 3812 | return cit; |
| 3813 | |
| 3814 | default: |
| 3815 | UNREACHABLE(); |
| 3816 | } |
| 3817 | } |
| 3818 | |
| 3819 | InterpreterType InterpreterType::StackNormalize() const |
| 3820 | { |
| 3821 | LIMITED_METHOD_CONTRACT; |
| 3822 | |
| 3823 | switch (ToCorInfoType()) |
| 3824 | { |
| 3825 | case CORINFO_TYPE_BOOL: |
| 3826 | case CORINFO_TYPE_CHAR: |
| 3827 | case CORINFO_TYPE_BYTE: |
| 3828 | case CORINFO_TYPE_UBYTE: |
| 3829 | case CORINFO_TYPE_SHORT: |
| 3830 | case CORINFO_TYPE_USHORT: |
| 3831 | case CORINFO_TYPE_UINT: |
| 3832 | return InterpreterType(CORINFO_TYPE_INT); |
| 3833 | |
| 3834 | case CORINFO_TYPE_NATIVEUINT: |
| 3835 | case CORINFO_TYPE_PTR: |
| 3836 | return InterpreterType(CORINFO_TYPE_NATIVEINT); |
| 3837 | |
| 3838 | case CORINFO_TYPE_ULONG: |
| 3839 | return InterpreterType(CORINFO_TYPE_LONG); |
| 3840 | |
| 3841 | case CORINFO_TYPE_STRING: |
| 3842 | return InterpreterType(CORINFO_TYPE_CLASS); |
| 3843 | |
| 3844 | case CORINFO_TYPE_INT: |
| 3845 | case CORINFO_TYPE_NATIVEINT: |
| 3846 | case CORINFO_TYPE_BYREF: |
| 3847 | case CORINFO_TYPE_CLASS: |
| 3848 | case CORINFO_TYPE_LONG: |
| 3849 | case CORINFO_TYPE_VALUECLASS: |
| 3850 | case CORINFO_TYPE_REFANY: |
| 3851 | case CORINFO_TYPE_FLOAT: |
| 3852 | case CORINFO_TYPE_DOUBLE: |
| 3853 | return *const_cast<InterpreterType*>(this); |
| 3854 | |
| 3855 | case CORINFO_TYPE_UNDEF: |
| 3856 | case CORINFO_TYPE_VOID: |
| 3857 | case CORINFO_TYPE_VAR: |
| 3858 | default: |
| 3859 | _ASSERTE_MSG(false, "should not reach here" ); |
| 3860 | return *const_cast<InterpreterType*>(this); |
| 3861 | } |
| 3862 | } |
| 3863 | |
| 3864 | #ifdef _DEBUG |
| 3865 | bool InterpreterType::MatchesWork(const InterpreterType it2, CEEInfo* info) const |
| 3866 | { |
| 3867 | CONTRACTL { |
| 3868 | THROWS; |
| 3869 | GC_TRIGGERS; |
| 3870 | MODE_COOPERATIVE; |
| 3871 | } CONTRACTL_END; |
| 3872 | |
| 3873 | if (*this == it2) return true; |
| 3874 | |
| 3875 | // Otherwise... |
| 3876 | CorInfoType cit1 = ToCorInfoType(); |
| 3877 | CorInfoType cit2 = it2.ToCorInfoType(); |
| 3878 | |
| 3879 | GCX_PREEMP(); |
| 3880 | |
| 3881 | // An approximation: valueclasses of the same size match. |
| 3882 | if (cit1 == CORINFO_TYPE_VALUECLASS && |
| 3883 | cit2 == CORINFO_TYPE_VALUECLASS && |
| 3884 | Size(info) == it2.Size(info)) |
| 3885 | { |
| 3886 | return true; |
| 3887 | } |
| 3888 | |
| 3889 | // NativeInt matches byref. (In unsafe code). |
| 3890 | if ((cit1 == CORINFO_TYPE_BYREF && cit2 == CORINFO_TYPE_NATIVEINT)) |
| 3891 | return true; |
| 3892 | |
| 3893 | // apparently the VM may do the optimization of reporting the return type of a method that |
| 3894 | // returns a struct of a single nativeint field *as* nativeint; and similarly with at least some other primitive types. |
| 3895 | // So weaken this check to allow that. |
| 3896 | // (The check is actually a little weaker still, since I don't want to crack the return type and make sure |
| 3897 | // that it has only a single nativeint member -- so I just ensure that the total size is correct). |
| 3898 | switch (cit1) |
| 3899 | { |
| 3900 | case CORINFO_TYPE_NATIVEINT: |
| 3901 | case CORINFO_TYPE_NATIVEUINT: |
| 3902 | assert(sizeof(NativeInt) == sizeof(NativeUInt)); |
| 3903 | if (it2.Size(info) == sizeof(NativeInt)) |
| 3904 | return true; |
| 3905 | break; |
| 3906 | |
| 3907 | case CORINFO_TYPE_INT: |
| 3908 | case CORINFO_TYPE_UINT: |
| 3909 | assert(sizeof(INT32) == sizeof(UINT32)); |
| 3910 | if (it2.Size(info) == sizeof(INT32)) |
| 3911 | return true; |
| 3912 | break; |
| 3913 | |
| 3914 | default: |
| 3915 | break; |
| 3916 | } |
| 3917 | |
| 3918 | // See if the second is a value type synonym for a primitive. |
| 3919 | if (cit2 == CORINFO_TYPE_VALUECLASS) |
| 3920 | { |
| 3921 | CorInfoType cit2prim = info->getTypeForPrimitiveValueClass(it2.ToClassHandle()); |
| 3922 | if (cit2prim != CORINFO_TYPE_UNDEF) |
| 3923 | { |
| 3924 | InterpreterType it2prim(cit2prim); |
| 3925 | if (*this == it2prim.StackNormalize()) |
| 3926 | return true; |
| 3927 | } |
| 3928 | } |
| 3929 | |
| 3930 | // Otherwise... |
| 3931 | return false; |
| 3932 | } |
| 3933 | #endif // _DEBUG |
| 3934 | |
| 3935 | // Static |
| 3936 | size_t CorInfoTypeSizeArray[] = |
| 3937 | { |
| 3938 | /*CORINFO_TYPE_UNDEF = 0x0*/0, |
| 3939 | /*CORINFO_TYPE_VOID = 0x1*/0, |
| 3940 | /*CORINFO_TYPE_BOOL = 0x2*/1, |
| 3941 | /*CORINFO_TYPE_CHAR = 0x3*/2, |
| 3942 | /*CORINFO_TYPE_BYTE = 0x4*/1, |
| 3943 | /*CORINFO_TYPE_UBYTE = 0x5*/1, |
| 3944 | /*CORINFO_TYPE_SHORT = 0x6*/2, |
| 3945 | /*CORINFO_TYPE_USHORT = 0x7*/2, |
| 3946 | /*CORINFO_TYPE_INT = 0x8*/4, |
| 3947 | /*CORINFO_TYPE_UINT = 0x9*/4, |
| 3948 | /*CORINFO_TYPE_LONG = 0xa*/8, |
| 3949 | /*CORINFO_TYPE_ULONG = 0xb*/8, |
| 3950 | /*CORINFO_TYPE_NATIVEINT = 0xc*/sizeof(void*), |
| 3951 | /*CORINFO_TYPE_NATIVEUINT = 0xd*/sizeof(void*), |
| 3952 | /*CORINFO_TYPE_FLOAT = 0xe*/4, |
| 3953 | /*CORINFO_TYPE_DOUBLE = 0xf*/8, |
| 3954 | /*CORINFO_TYPE_STRING = 0x10*/sizeof(void*), |
| 3955 | /*CORINFO_TYPE_PTR = 0x11*/sizeof(void*), |
| 3956 | /*CORINFO_TYPE_BYREF = 0x12*/sizeof(void*), |
| 3957 | /*CORINFO_TYPE_VALUECLASS = 0x13*/0, |
| 3958 | /*CORINFO_TYPE_CLASS = 0x14*/sizeof(void*), |
| 3959 | /*CORINFO_TYPE_REFANY = 0x15*/sizeof(void*)*2, |
| 3960 | /*CORINFO_TYPE_VAR = 0x16*/0, |
| 3961 | }; |
| 3962 | |
| 3963 | bool CorInfoTypeIsUnsigned(CorInfoType cit) |
| 3964 | { |
| 3965 | LIMITED_METHOD_CONTRACT; |
| 3966 | |
| 3967 | switch (cit) |
| 3968 | { |
| 3969 | case CORINFO_TYPE_UINT: |
| 3970 | case CORINFO_TYPE_NATIVEUINT: |
| 3971 | case CORINFO_TYPE_ULONG: |
| 3972 | case CORINFO_TYPE_UBYTE: |
| 3973 | case CORINFO_TYPE_USHORT: |
| 3974 | case CORINFO_TYPE_CHAR: |
| 3975 | return true; |
| 3976 | |
| 3977 | default: |
| 3978 | return false; |
| 3979 | } |
| 3980 | } |
| 3981 | |
| 3982 | bool CorInfoTypeIsIntegral(CorInfoType cit) |
| 3983 | { |
| 3984 | LIMITED_METHOD_CONTRACT; |
| 3985 | |
| 3986 | switch (cit) |
| 3987 | { |
| 3988 | case CORINFO_TYPE_UINT: |
| 3989 | case CORINFO_TYPE_NATIVEUINT: |
| 3990 | case CORINFO_TYPE_ULONG: |
| 3991 | case CORINFO_TYPE_UBYTE: |
| 3992 | case CORINFO_TYPE_USHORT: |
| 3993 | case CORINFO_TYPE_INT: |
| 3994 | case CORINFO_TYPE_NATIVEINT: |
| 3995 | case CORINFO_TYPE_LONG: |
| 3996 | case CORINFO_TYPE_BYTE: |
| 3997 | case CORINFO_TYPE_BOOL: |
| 3998 | case CORINFO_TYPE_SHORT: |
| 3999 | return true; |
| 4000 | |
| 4001 | default: |
| 4002 | return false; |
| 4003 | } |
| 4004 | } |
| 4005 | |
| 4006 | bool CorInfoTypeIsFloatingPoint(CorInfoType cit) |
| 4007 | { |
| 4008 | return cit == CORINFO_TYPE_FLOAT || cit == CORINFO_TYPE_DOUBLE; |
| 4009 | } |
| 4010 | |
| 4011 | |
| 4012 | bool CorElemTypeIsUnsigned(CorElementType cet) |
| 4013 | { |
| 4014 | LIMITED_METHOD_CONTRACT; |
| 4015 | |
| 4016 | switch (cet) |
| 4017 | { |
| 4018 | case ELEMENT_TYPE_U1: |
| 4019 | case ELEMENT_TYPE_U2: |
| 4020 | case ELEMENT_TYPE_U4: |
| 4021 | case ELEMENT_TYPE_U8: |
| 4022 | case ELEMENT_TYPE_U: |
| 4023 | return true; |
| 4024 | |
| 4025 | default: |
| 4026 | return false; |
| 4027 | } |
| 4028 | } |
| 4029 | |
| 4030 | bool CorInfoTypeIsPointer(CorInfoType cit) |
| 4031 | { |
| 4032 | LIMITED_METHOD_CONTRACT; |
| 4033 | switch (cit) |
| 4034 | { |
| 4035 | case CORINFO_TYPE_PTR: |
| 4036 | case CORINFO_TYPE_BYREF: |
| 4037 | case CORINFO_TYPE_NATIVEINT: |
| 4038 | case CORINFO_TYPE_NATIVEUINT: |
| 4039 | return true; |
| 4040 | |
| 4041 | // It seems like the ECMA spec doesn't allow this, but (at least) the managed C++ |
| 4042 | // compiler expects the explicitly-sized pointer type of the platform pointer size to work: |
| 4043 | case CORINFO_TYPE_INT: |
| 4044 | case CORINFO_TYPE_UINT: |
| 4045 | return sizeof(NativeInt) == sizeof(INT32); |
| 4046 | case CORINFO_TYPE_LONG: |
| 4047 | case CORINFO_TYPE_ULONG: |
| 4048 | return sizeof(NativeInt) == sizeof(INT64); |
| 4049 | |
| 4050 | default: |
| 4051 | return false; |
| 4052 | } |
| 4053 | } |
| 4054 | |
| 4055 | void Interpreter::LdArg(int argNum) |
| 4056 | { |
| 4057 | CONTRACTL { |
| 4058 | SO_TOLERANT; |
| 4059 | THROWS; |
| 4060 | GC_TRIGGERS; |
| 4061 | MODE_COOPERATIVE; |
| 4062 | } CONTRACTL_END; |
| 4063 | |
| 4064 | LdFromMemAddr(GetArgAddr(argNum), GetArgType(argNum)); |
| 4065 | } |
| 4066 | |
| 4067 | void Interpreter::LdArgA(int argNum) |
| 4068 | { |
| 4069 | CONTRACTL { |
| 4070 | SO_TOLERANT; |
| 4071 | NOTHROW; |
| 4072 | GC_NOTRIGGER; |
| 4073 | MODE_COOPERATIVE; |
| 4074 | } CONTRACTL_END; |
| 4075 | |
| 4076 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_BYREF)); |
| 4077 | OpStackSet<void*>(m_curStackHt, reinterpret_cast<void*>(GetArgAddr(argNum))); |
| 4078 | m_curStackHt++; |
| 4079 | } |
| 4080 | |
| 4081 | void Interpreter::StArg(int argNum) |
| 4082 | { |
| 4083 | CONTRACTL { |
| 4084 | SO_TOLERANT; |
| 4085 | THROWS; |
| 4086 | GC_TRIGGERS; |
| 4087 | MODE_COOPERATIVE; |
| 4088 | } CONTRACTL_END; |
| 4089 | |
| 4090 | StToLocalMemAddr(GetArgAddr(argNum), GetArgType(argNum)); |
| 4091 | } |
| 4092 | |
| 4093 | |
| 4094 | void Interpreter::LdLocA(int locNum) |
| 4095 | { |
| 4096 | CONTRACTL { |
| 4097 | SO_TOLERANT; |
| 4098 | NOTHROW; |
| 4099 | GC_NOTRIGGER; |
| 4100 | MODE_COOPERATIVE; |
| 4101 | } CONTRACTL_END; |
| 4102 | |
| 4103 | InterpreterType tp = m_methInfo->m_localDescs[locNum].m_type; |
| 4104 | void* addr; |
| 4105 | if (tp.IsLargeStruct(&m_interpCeeInfo)) |
| 4106 | { |
| 4107 | void* structPtr = ArgSlotEndianessFixup(reinterpret_cast<ARG_SLOT*>(FixedSizeLocalSlot(locNum)), sizeof(void**)); |
| 4108 | addr = *reinterpret_cast<void**>(structPtr); |
| 4109 | } |
| 4110 | else |
| 4111 | { |
| 4112 | addr = ArgSlotEndianessFixup(reinterpret_cast<ARG_SLOT*>(FixedSizeLocalSlot(locNum)), tp.Size(&m_interpCeeInfo)); |
| 4113 | } |
| 4114 | // The "addr" above, while a byref, is never a heap pointer, so we're robust if |
| 4115 | // any of these were to cause a GC. |
| 4116 | OpStackSet<void*>(m_curStackHt, addr); |
| 4117 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_BYREF)); |
| 4118 | m_curStackHt++; |
| 4119 | } |
| 4120 | |
| 4121 | void Interpreter::LdIcon(INT32 c) |
| 4122 | { |
| 4123 | CONTRACTL { |
| 4124 | SO_TOLERANT; |
| 4125 | NOTHROW; |
| 4126 | GC_NOTRIGGER; |
| 4127 | MODE_COOPERATIVE; |
| 4128 | } CONTRACTL_END; |
| 4129 | |
| 4130 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_INT)); |
| 4131 | OpStackSet<INT32>(m_curStackHt, c); |
| 4132 | m_curStackHt++; |
| 4133 | } |
| 4134 | |
| 4135 | void Interpreter::LdR4con(INT32 c) |
| 4136 | { |
| 4137 | CONTRACTL { |
| 4138 | SO_TOLERANT; |
| 4139 | NOTHROW; |
| 4140 | GC_NOTRIGGER; |
| 4141 | MODE_COOPERATIVE; |
| 4142 | } CONTRACTL_END; |
| 4143 | |
| 4144 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_FLOAT)); |
| 4145 | OpStackSet<INT32>(m_curStackHt, c); |
| 4146 | m_curStackHt++; |
| 4147 | } |
| 4148 | |
| 4149 | void Interpreter::LdLcon(INT64 c) |
| 4150 | { |
| 4151 | CONTRACTL { |
| 4152 | SO_TOLERANT; |
| 4153 | NOTHROW; |
| 4154 | GC_NOTRIGGER; |
| 4155 | MODE_COOPERATIVE; |
| 4156 | } CONTRACTL_END; |
| 4157 | |
| 4158 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_LONG)); |
| 4159 | OpStackSet<INT64>(m_curStackHt, c); |
| 4160 | m_curStackHt++; |
| 4161 | } |
| 4162 | |
| 4163 | void Interpreter::LdR8con(INT64 c) |
| 4164 | { |
| 4165 | CONTRACTL { |
| 4166 | SO_TOLERANT; |
| 4167 | NOTHROW; |
| 4168 | GC_NOTRIGGER; |
| 4169 | MODE_COOPERATIVE; |
| 4170 | } CONTRACTL_END; |
| 4171 | |
| 4172 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_DOUBLE)); |
| 4173 | OpStackSet<INT64>(m_curStackHt, c); |
| 4174 | m_curStackHt++; |
| 4175 | } |
| 4176 | |
| 4177 | void Interpreter::LdNull() |
| 4178 | { |
| 4179 | CONTRACTL { |
| 4180 | SO_TOLERANT; |
| 4181 | NOTHROW; |
| 4182 | GC_NOTRIGGER; |
| 4183 | MODE_COOPERATIVE; |
| 4184 | } CONTRACTL_END; |
| 4185 | |
| 4186 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_CLASS)); |
| 4187 | OpStackSet<void*>(m_curStackHt, NULL); |
| 4188 | m_curStackHt++; |
| 4189 | } |
| 4190 | |
| 4191 | template<typename T, CorInfoType cit> |
| 4192 | void Interpreter::LdInd() |
| 4193 | { |
| 4194 | assert(TOSIsPtr()); |
| 4195 | assert(IsStackNormalType(cit)); |
| 4196 | unsigned curStackInd = m_curStackHt-1; |
| 4197 | T* ptr = OpStackGet<T*>(curStackInd); |
| 4198 | ThrowOnInvalidPointer(ptr); |
| 4199 | OpStackSet<T>(curStackInd, *ptr); |
| 4200 | OpStackTypeSet(curStackInd, InterpreterType(cit)); |
| 4201 | BarrierIfVolatile(); |
| 4202 | } |
| 4203 | |
| 4204 | template<typename T, bool isUnsigned> |
| 4205 | void Interpreter::LdIndShort() |
| 4206 | { |
| 4207 | assert(TOSIsPtr()); |
| 4208 | assert(sizeof(T) < 4); |
| 4209 | unsigned curStackInd = m_curStackHt-1; |
| 4210 | T* ptr = OpStackGet<T*>(curStackInd); |
| 4211 | ThrowOnInvalidPointer(ptr); |
| 4212 | if (isUnsigned) |
| 4213 | { |
| 4214 | OpStackSet<UINT32>(curStackInd, *ptr); |
| 4215 | } |
| 4216 | else |
| 4217 | { |
| 4218 | OpStackSet<INT32>(curStackInd, *ptr); |
| 4219 | } |
| 4220 | // All short integers are normalized to INT as their stack type. |
| 4221 | OpStackTypeSet(curStackInd, InterpreterType(CORINFO_TYPE_INT)); |
| 4222 | BarrierIfVolatile(); |
| 4223 | } |
| 4224 | |
| 4225 | template<typename T> |
| 4226 | void Interpreter::StInd() |
| 4227 | { |
| 4228 | assert(m_curStackHt >= 2); |
| 4229 | assert(CorInfoTypeIsPointer(OpStackTypeGet(m_curStackHt-2).ToCorInfoType())); |
| 4230 | BarrierIfVolatile(); |
| 4231 | unsigned stackInd0 = m_curStackHt-2; |
| 4232 | unsigned stackInd1 = m_curStackHt-1; |
| 4233 | T val = OpStackGet<T>(stackInd1); |
| 4234 | T* ptr = OpStackGet<T*>(stackInd0); |
| 4235 | ThrowOnInvalidPointer(ptr); |
| 4236 | *ptr = val; |
| 4237 | m_curStackHt -= 2; |
| 4238 | |
| 4239 | #if INTERP_TRACING |
| 4240 | if (s_TraceInterpreterILFlag.val(CLRConfig::INTERNAL_TraceInterpreterIL) && |
| 4241 | IsInLocalArea(ptr)) |
| 4242 | { |
| 4243 | PrintLocals(); |
| 4244 | } |
| 4245 | #endif // INTERP_TRACING |
| 4246 | } |
| 4247 | |
| 4248 | void Interpreter::StInd_Ref() |
| 4249 | { |
| 4250 | assert(m_curStackHt >= 2); |
| 4251 | assert(CorInfoTypeIsPointer(OpStackTypeGet(m_curStackHt-2).ToCorInfoType())); |
| 4252 | BarrierIfVolatile(); |
| 4253 | unsigned stackInd0 = m_curStackHt-2; |
| 4254 | unsigned stackInd1 = m_curStackHt-1; |
| 4255 | OBJECTREF val = ObjectToOBJECTREF(OpStackGet<Object*>(stackInd1)); |
| 4256 | OBJECTREF* ptr = OpStackGet<OBJECTREF*>(stackInd0); |
| 4257 | ThrowOnInvalidPointer(ptr); |
| 4258 | SetObjectReferenceUnchecked(ptr, val); |
| 4259 | m_curStackHt -= 2; |
| 4260 | |
| 4261 | #if INTERP_TRACING |
| 4262 | if (s_TraceInterpreterILFlag.val(CLRConfig::INTERNAL_TraceInterpreterIL) && |
| 4263 | IsInLocalArea(ptr)) |
| 4264 | { |
| 4265 | PrintLocals(); |
| 4266 | } |
| 4267 | #endif // INTERP_TRACING |
| 4268 | } |
| 4269 | |
| 4270 | |
| 4271 | template<int op> |
| 4272 | void Interpreter::BinaryArithOp() |
| 4273 | { |
| 4274 | CONTRACTL { |
| 4275 | SO_TOLERANT; |
| 4276 | THROWS; |
| 4277 | GC_TRIGGERS; |
| 4278 | MODE_COOPERATIVE; |
| 4279 | } CONTRACTL_END; |
| 4280 | |
| 4281 | assert(m_curStackHt >= 2); |
| 4282 | unsigned op1idx = m_curStackHt - 2; |
| 4283 | unsigned op2idx = m_curStackHt - 1; |
| 4284 | InterpreterType t1 = OpStackTypeGet(op1idx); |
| 4285 | assert(IsStackNormalType(t1.ToCorInfoType())); |
| 4286 | // Looking at the generated code, it does seem to save some instructions to use the "shifted |
| 4287 | // types," though the effect on end-to-end time is variable. So I'll leave it set. |
| 4288 | InterpreterType t2 = OpStackTypeGet(op2idx); |
| 4289 | assert(IsStackNormalType(t2.ToCorInfoType())); |
| 4290 | |
| 4291 | // In all cases belows, since "op" is compile-time constant, "if" chains on it should fold away. |
| 4292 | switch (t1.ToCorInfoTypeShifted()) |
| 4293 | { |
| 4294 | case CORINFO_TYPE_SHIFTED_INT: |
| 4295 | if (t1 == t2) |
| 4296 | { |
| 4297 | // Int op Int = Int |
| 4298 | INT32 val1 = OpStackGet<INT32>(op1idx); |
| 4299 | INT32 val2 = OpStackGet<INT32>(op2idx); |
| 4300 | BinaryArithOpWork<op, INT32, /*IsIntType*/true, CORINFO_TYPE_INT, /*TypeIsUnchanged*/true>(val1, val2); |
| 4301 | } |
| 4302 | else |
| 4303 | { |
| 4304 | CorInfoTypeShifted cits2 = t2.ToCorInfoTypeShifted(); |
| 4305 | if (cits2 == CORINFO_TYPE_SHIFTED_NATIVEINT) |
| 4306 | { |
| 4307 | // Int op NativeInt = NativeInt |
| 4308 | NativeInt val1 = static_cast<NativeInt>(OpStackGet<INT32>(op1idx)); |
| 4309 | NativeInt val2 = OpStackGet<NativeInt>(op2idx); |
| 4310 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/false>(val1, val2); |
| 4311 | } |
| 4312 | else if (s_InterpreterLooseRules && cits2 == CORINFO_TYPE_SHIFTED_LONG) |
| 4313 | { |
| 4314 | // Int op Long = Long |
| 4315 | INT64 val1 = static_cast<INT64>(OpStackGet<INT32>(op1idx)); |
| 4316 | INT64 val2 = OpStackGet<INT64>(op2idx); |
| 4317 | BinaryArithOpWork<op, INT64, /*IsIntType*/true, CORINFO_TYPE_LONG, /*TypeIsUnchanged*/false>(val1, val2); |
| 4318 | } |
| 4319 | else if (cits2 == CORINFO_TYPE_SHIFTED_BYREF) |
| 4320 | { |
| 4321 | if (op == BA_Add || (s_InterpreterLooseRules && op == BA_Sub)) |
| 4322 | { |
| 4323 | // Int + ByRef = ByRef |
| 4324 | NativeInt val1 = static_cast<NativeInt>(OpStackGet<INT32>(op1idx)); |
| 4325 | NativeInt val2 = OpStackGet<NativeInt>(op2idx); |
| 4326 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_BYREF, /*TypeIsUnchanged*/false>(val1, val2); |
| 4327 | } |
| 4328 | else |
| 4329 | { |
| 4330 | VerificationError("Operation not permitted on int and managed pointer." ); |
| 4331 | } |
| 4332 | } |
| 4333 | else |
| 4334 | { |
| 4335 | VerificationError("Binary arithmetic operation type mismatch (int and ?)" ); |
| 4336 | } |
| 4337 | } |
| 4338 | break; |
| 4339 | |
| 4340 | case CORINFO_TYPE_SHIFTED_NATIVEINT: |
| 4341 | { |
| 4342 | NativeInt val1 = OpStackGet<NativeInt>(op1idx); |
| 4343 | if (t1 == t2) |
| 4344 | { |
| 4345 | // NativeInt op NativeInt = NativeInt |
| 4346 | NativeInt val2 = OpStackGet<NativeInt>(op2idx); |
| 4347 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
| 4348 | } |
| 4349 | else |
| 4350 | { |
| 4351 | CorInfoTypeShifted cits2 = t2.ToCorInfoTypeShifted(); |
| 4352 | if (cits2 == CORINFO_TYPE_SHIFTED_INT) |
| 4353 | { |
| 4354 | // NativeInt op Int = NativeInt |
| 4355 | NativeInt val2 = static_cast<NativeInt>(OpStackGet<INT32>(op2idx)); |
| 4356 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
| 4357 | } |
| 4358 | // CLI spec does not allow adding a native int and an int64. So use loose rules. |
| 4359 | else if (s_InterpreterLooseRules && cits2 == CORINFO_TYPE_SHIFTED_LONG) |
| 4360 | { |
| 4361 | // NativeInt op Int = NativeInt |
| 4362 | NativeInt val2 = static_cast<NativeInt>(OpStackGet<INT64>(op2idx)); |
| 4363 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
| 4364 | } |
| 4365 | else if (cits2 == CORINFO_TYPE_SHIFTED_BYREF) |
| 4366 | { |
| 4367 | if (op == BA_Add || (s_InterpreterLooseRules && op == BA_Sub)) |
| 4368 | { |
| 4369 | // NativeInt + ByRef = ByRef |
| 4370 | NativeInt val2 = OpStackGet<NativeInt>(op2idx); |
| 4371 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_BYREF, /*TypeIsUnchanged*/false>(val1, val2); |
| 4372 | } |
| 4373 | else |
| 4374 | { |
| 4375 | VerificationError("Operation not permitted on native int and managed pointer." ); |
| 4376 | } |
| 4377 | } |
| 4378 | else |
| 4379 | { |
| 4380 | VerificationError("Binary arithmetic operation type mismatch (native int and ?)" ); |
| 4381 | } |
| 4382 | } |
| 4383 | } |
| 4384 | break; |
| 4385 | |
| 4386 | case CORINFO_TYPE_SHIFTED_LONG: |
| 4387 | { |
| 4388 | bool looseLong = false; |
| 4389 | #if defined(_AMD64_) |
| 4390 | looseLong = (s_InterpreterLooseRules && (t2.ToCorInfoType() == CORINFO_TYPE_NATIVEINT || |
| 4391 | t2.ToCorInfoType() == CORINFO_TYPE_BYREF)); |
| 4392 | #endif |
| 4393 | if (t1 == t2 || looseLong) |
| 4394 | { |
| 4395 | // Long op Long = Long |
| 4396 | INT64 val1 = OpStackGet<INT64>(op1idx); |
| 4397 | INT64 val2 = OpStackGet<INT64>(op2idx); |
| 4398 | BinaryArithOpWork<op, INT64, /*IsIntType*/true, CORINFO_TYPE_LONG, /*TypeIsUnchanged*/true>(val1, val2); |
| 4399 | } |
| 4400 | else |
| 4401 | { |
| 4402 | VerificationError("Binary arithmetic operation type mismatch (long and ?)" ); |
| 4403 | } |
| 4404 | } |
| 4405 | break; |
| 4406 | |
| 4407 | case CORINFO_TYPE_SHIFTED_FLOAT: |
| 4408 | { |
| 4409 | if (t1 == t2) |
| 4410 | { |
| 4411 | // Float op Float = Float |
| 4412 | float val1 = OpStackGet<float>(op1idx); |
| 4413 | float val2 = OpStackGet<float>(op2idx); |
| 4414 | BinaryArithOpWork<op, float, /*IsIntType*/false, CORINFO_TYPE_FLOAT, /*TypeIsUnchanged*/true>(val1, val2); |
| 4415 | } |
| 4416 | else |
| 4417 | { |
| 4418 | CorInfoTypeShifted cits2 = t2.ToCorInfoTypeShifted(); |
| 4419 | if (cits2 == CORINFO_TYPE_SHIFTED_DOUBLE) |
| 4420 | { |
| 4421 | // Float op Double = Double |
| 4422 | double val1 = static_cast<double>(OpStackGet<float>(op1idx)); |
| 4423 | double val2 = OpStackGet<double>(op2idx); |
| 4424 | BinaryArithOpWork<op, double, /*IsIntType*/false, CORINFO_TYPE_DOUBLE, /*TypeIsUnchanged*/false>(val1, val2); |
| 4425 | } |
| 4426 | else |
| 4427 | { |
| 4428 | VerificationError("Binary arithmetic operation type mismatch (float and ?)" ); |
| 4429 | } |
| 4430 | } |
| 4431 | } |
| 4432 | break; |
| 4433 | |
| 4434 | case CORINFO_TYPE_SHIFTED_DOUBLE: |
| 4435 | { |
| 4436 | if (t1 == t2) |
| 4437 | { |
| 4438 | // Double op Double = Double |
| 4439 | double val1 = OpStackGet<double>(op1idx); |
| 4440 | double val2 = OpStackGet<double>(op2idx); |
| 4441 | BinaryArithOpWork<op, double, /*IsIntType*/false, CORINFO_TYPE_DOUBLE, /*TypeIsUnchanged*/true>(val1, val2); |
| 4442 | } |
| 4443 | else |
| 4444 | { |
| 4445 | CorInfoTypeShifted cits2 = t2.ToCorInfoTypeShifted(); |
| 4446 | if (cits2 == CORINFO_TYPE_SHIFTED_FLOAT) |
| 4447 | { |
| 4448 | // Double op Float = Double |
| 4449 | double val1 = OpStackGet<double>(op1idx); |
| 4450 | double val2 = static_cast<double>(OpStackGet<float>(op2idx)); |
| 4451 | BinaryArithOpWork<op, double, /*IsIntType*/false, CORINFO_TYPE_DOUBLE, /*TypeIsUnchanged*/true>(val1, val2); |
| 4452 | } |
| 4453 | else |
| 4454 | { |
| 4455 | VerificationError("Binary arithmetic operation type mismatch (double and ?)" ); |
| 4456 | } |
| 4457 | } |
| 4458 | } |
| 4459 | break; |
| 4460 | |
| 4461 | case CORINFO_TYPE_SHIFTED_BYREF: |
| 4462 | { |
| 4463 | NativeInt val1 = OpStackGet<NativeInt>(op1idx); |
| 4464 | CorInfoTypeShifted cits2 = t2.ToCorInfoTypeShifted(); |
| 4465 | if (cits2 == CORINFO_TYPE_SHIFTED_INT) |
| 4466 | { |
| 4467 | if (op == BA_Add || op == BA_Sub) |
| 4468 | { |
| 4469 | // ByRef +- Int = ByRef |
| 4470 | NativeInt val2 = static_cast<NativeInt>(OpStackGet<INT32>(op2idx)); |
| 4471 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_BYREF, /*TypeIsUnchanged*/true>(val1, val2); |
| 4472 | } |
| 4473 | else |
| 4474 | { |
| 4475 | VerificationError("May only add/subtract managed pointer and integral value." ); |
| 4476 | } |
| 4477 | } |
| 4478 | else if (cits2 == CORINFO_TYPE_SHIFTED_NATIVEINT) |
| 4479 | { |
| 4480 | if (op == BA_Add || op == BA_Sub) |
| 4481 | { |
| 4482 | // ByRef +- NativeInt = ByRef |
| 4483 | NativeInt val2 = OpStackGet<NativeInt>(op2idx); |
| 4484 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_BYREF, /*TypeIsUnchanged*/true>(val1, val2); |
| 4485 | } |
| 4486 | else |
| 4487 | { |
| 4488 | VerificationError("May only add/subtract managed pointer and integral value." ); |
| 4489 | } |
| 4490 | } |
| 4491 | else if (cits2 == CORINFO_TYPE_SHIFTED_BYREF) |
| 4492 | { |
| 4493 | if (op == BA_Sub) |
| 4494 | { |
| 4495 | // ByRef - ByRef = NativeInt |
| 4496 | NativeInt val2 = OpStackGet<NativeInt>(op2idx); |
| 4497 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/false>(val1, val2); |
| 4498 | } |
| 4499 | else |
| 4500 | { |
| 4501 | VerificationError("May only subtract managed pointer values." ); |
| 4502 | } |
| 4503 | } |
| 4504 | // CLI spec does not allow adding a native int and an int64. So use loose rules. |
| 4505 | else if (s_InterpreterLooseRules && cits2 == CORINFO_TYPE_SHIFTED_LONG) |
| 4506 | { |
| 4507 | // NativeInt op Int = NativeInt |
| 4508 | NativeInt val2 = static_cast<NativeInt>(OpStackGet<INT64>(op2idx)); |
| 4509 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
| 4510 | } |
| 4511 | else |
| 4512 | { |
| 4513 | VerificationError("Binary arithmetic operation not permitted on byref" ); |
| 4514 | } |
| 4515 | } |
| 4516 | break; |
| 4517 | |
| 4518 | case CORINFO_TYPE_SHIFTED_CLASS: |
| 4519 | VerificationError("Can't do binary arithmetic on object references." ); |
| 4520 | break; |
| 4521 | |
| 4522 | default: |
| 4523 | _ASSERTE_MSG(false, "Non-stack-normal type on stack." ); |
| 4524 | } |
| 4525 | |
| 4526 | // In all cases: |
| 4527 | m_curStackHt--; |
| 4528 | } |
| 4529 | |
| 4530 | template<int op, bool asUnsigned> |
| 4531 | void Interpreter::BinaryArithOvfOp() |
| 4532 | { |
| 4533 | CONTRACTL { |
| 4534 | SO_TOLERANT; |
| 4535 | THROWS; |
| 4536 | GC_TRIGGERS; |
| 4537 | MODE_COOPERATIVE; |
| 4538 | } CONTRACTL_END; |
| 4539 | |
| 4540 | assert(m_curStackHt >= 2); |
| 4541 | unsigned op1idx = m_curStackHt - 2; |
| 4542 | unsigned op2idx = m_curStackHt - 1; |
| 4543 | |
| 4544 | InterpreterType t1 = OpStackTypeGet(op1idx); |
| 4545 | CorInfoType cit1 = t1.ToCorInfoType(); |
| 4546 | assert(IsStackNormalType(cit1)); |
| 4547 | |
| 4548 | InterpreterType t2 = OpStackTypeGet(op2idx); |
| 4549 | CorInfoType cit2 = t2.ToCorInfoType(); |
| 4550 | assert(IsStackNormalType(cit2)); |
| 4551 | |
| 4552 | // In all cases belows, since "op" is compile-time constant, "if" chains on it should fold away. |
| 4553 | switch (cit1) |
| 4554 | { |
| 4555 | case CORINFO_TYPE_INT: |
| 4556 | if (cit2 == CORINFO_TYPE_INT) |
| 4557 | { |
| 4558 | if (asUnsigned) |
| 4559 | { |
| 4560 | // UnsignedInt op UnsignedInt = UnsignedInt |
| 4561 | UINT32 val1 = OpStackGet<UINT32>(op1idx); |
| 4562 | UINT32 val2 = OpStackGet<UINT32>(op2idx); |
| 4563 | BinaryArithOvfOpWork<op, UINT32, CORINFO_TYPE_INT, /*TypeIsUnchanged*/true>(val1, val2); |
| 4564 | } |
| 4565 | else |
| 4566 | { |
| 4567 | // Int op Int = Int |
| 4568 | INT32 val1 = OpStackGet<INT32>(op1idx); |
| 4569 | INT32 val2 = OpStackGet<INT32>(op2idx); |
| 4570 | BinaryArithOvfOpWork<op, INT32, CORINFO_TYPE_INT, /*TypeIsUnchanged*/true>(val1, val2); |
| 4571 | } |
| 4572 | } |
| 4573 | else if (cit2 == CORINFO_TYPE_NATIVEINT) |
| 4574 | { |
| 4575 | if (asUnsigned) |
| 4576 | { |
| 4577 | // UnsignedInt op UnsignedNativeInt = UnsignedNativeInt |
| 4578 | NativeUInt val1 = static_cast<NativeUInt>(OpStackGet<UINT32>(op1idx)); |
| 4579 | NativeUInt val2 = OpStackGet<NativeUInt>(op2idx); |
| 4580 | BinaryArithOvfOpWork<op, NativeUInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/false>(val1, val2); |
| 4581 | } |
| 4582 | else |
| 4583 | { |
| 4584 | // Int op NativeInt = NativeInt |
| 4585 | NativeInt val1 = static_cast<NativeInt>(OpStackGet<INT32>(op1idx)); |
| 4586 | NativeInt val2 = OpStackGet<NativeInt>(op2idx); |
| 4587 | BinaryArithOvfOpWork<op, NativeInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/false>(val1, val2); |
| 4588 | } |
| 4589 | } |
| 4590 | else if (cit2 == CORINFO_TYPE_BYREF) |
| 4591 | { |
| 4592 | if (asUnsigned && op == BA_Add) |
| 4593 | { |
| 4594 | // UnsignedInt + ByRef = ByRef |
| 4595 | NativeUInt val1 = static_cast<NativeUInt>(OpStackGet<UINT32>(op1idx)); |
| 4596 | NativeUInt val2 = OpStackGet<NativeUInt>(op2idx); |
| 4597 | BinaryArithOvfOpWork<op, NativeUInt, CORINFO_TYPE_BYREF, /*TypeIsUnchanged*/false>(val1, val2); |
| 4598 | } |
| 4599 | else |
| 4600 | { |
| 4601 | VerificationError("Illegal arithmetic overflow operation for int and byref." ); |
| 4602 | } |
| 4603 | } |
| 4604 | else |
| 4605 | { |
| 4606 | VerificationError("Binary arithmetic overflow operation type mismatch (int and ?)" ); |
| 4607 | } |
| 4608 | break; |
| 4609 | |
| 4610 | case CORINFO_TYPE_NATIVEINT: |
| 4611 | if (cit2 == CORINFO_TYPE_INT) |
| 4612 | { |
| 4613 | if (asUnsigned) |
| 4614 | { |
| 4615 | // UnsignedNativeInt op UnsignedInt = UnsignedNativeInt |
| 4616 | NativeUInt val1 = OpStackGet<NativeUInt>(op1idx); |
| 4617 | NativeUInt val2 = static_cast<NativeUInt>(OpStackGet<UINT32>(op2idx)); |
| 4618 | BinaryArithOvfOpWork<op, NativeUInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
| 4619 | } |
| 4620 | else |
| 4621 | { |
| 4622 | // NativeInt op Int = NativeInt |
| 4623 | NativeInt val1 = OpStackGet<NativeInt>(op1idx); |
| 4624 | NativeInt val2 = static_cast<NativeInt>(OpStackGet<INT32>(op2idx)); |
| 4625 | BinaryArithOvfOpWork<op, NativeInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
| 4626 | } |
| 4627 | } |
| 4628 | else if (cit2 == CORINFO_TYPE_NATIVEINT) |
| 4629 | { |
| 4630 | if (asUnsigned) |
| 4631 | { |
| 4632 | // UnsignedNativeInt op UnsignedNativeInt = UnsignedNativeInt |
| 4633 | NativeUInt val1 = OpStackGet<NativeUInt>(op1idx); |
| 4634 | NativeUInt val2 = OpStackGet<NativeUInt>(op2idx); |
| 4635 | BinaryArithOvfOpWork<op, NativeUInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
| 4636 | } |
| 4637 | else |
| 4638 | { |
| 4639 | // NativeInt op NativeInt = NativeInt |
| 4640 | NativeInt val1 = OpStackGet<NativeInt>(op1idx); |
| 4641 | NativeInt val2 = OpStackGet<NativeInt>(op2idx); |
| 4642 | BinaryArithOvfOpWork<op, NativeInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
| 4643 | } |
| 4644 | } |
| 4645 | else if (cit2 == CORINFO_TYPE_BYREF) |
| 4646 | { |
| 4647 | if (asUnsigned && op == BA_Add) |
| 4648 | { |
| 4649 | // UnsignedNativeInt op ByRef = ByRef |
| 4650 | NativeUInt val1 = OpStackGet<UINT32>(op1idx); |
| 4651 | NativeUInt val2 = OpStackGet<NativeUInt>(op2idx); |
| 4652 | BinaryArithOvfOpWork<op, NativeUInt, CORINFO_TYPE_BYREF, /*TypeIsUnchanged*/false>(val1, val2); |
| 4653 | } |
| 4654 | else |
| 4655 | { |
| 4656 | VerificationError("Illegal arithmetic overflow operation for native int and byref." ); |
| 4657 | } |
| 4658 | } |
| 4659 | else |
| 4660 | { |
| 4661 | VerificationError("Binary arithmetic overflow operation type mismatch (native int and ?)" ); |
| 4662 | } |
| 4663 | break; |
| 4664 | |
| 4665 | case CORINFO_TYPE_LONG: |
| 4666 | if (cit2 == CORINFO_TYPE_LONG || (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_NATIVEINT)) |
| 4667 | { |
| 4668 | if (asUnsigned) |
| 4669 | { |
| 4670 | // UnsignedLong op UnsignedLong = UnsignedLong |
| 4671 | UINT64 val1 = OpStackGet<UINT64>(op1idx); |
| 4672 | UINT64 val2 = OpStackGet<UINT64>(op2idx); |
| 4673 | BinaryArithOvfOpWork<op, UINT64, CORINFO_TYPE_LONG, /*TypeIsUnchanged*/true>(val1, val2); |
| 4674 | } |
| 4675 | else |
| 4676 | { |
| 4677 | // Long op Long = Long |
| 4678 | INT64 val1 = OpStackGet<INT64>(op1idx); |
| 4679 | INT64 val2 = OpStackGet<INT64>(op2idx); |
| 4680 | BinaryArithOvfOpWork<op, INT64, CORINFO_TYPE_LONG, /*TypeIsUnchanged*/true>(val1, val2); |
| 4681 | } |
| 4682 | } |
| 4683 | else |
| 4684 | { |
| 4685 | VerificationError("Binary arithmetic overflow operation type mismatch (long and ?)" ); |
| 4686 | } |
| 4687 | break; |
| 4688 | |
| 4689 | case CORINFO_TYPE_BYREF: |
| 4690 | if (asUnsigned && (op == BA_Add || op == BA_Sub)) |
| 4691 | { |
| 4692 | NativeUInt val1 = OpStackGet<NativeUInt>(op1idx); |
| 4693 | if (cit2 == CORINFO_TYPE_INT) |
| 4694 | { |
| 4695 | // ByRef +- UnsignedInt = ByRef |
| 4696 | NativeUInt val2 = static_cast<NativeUInt>(OpStackGet<INT32>(op2idx)); |
| 4697 | BinaryArithOvfOpWork<op, NativeUInt, CORINFO_TYPE_BYREF, /*TypeIsUnchanged*/true>(val1, val2); |
| 4698 | } |
| 4699 | else if (cit2 == CORINFO_TYPE_NATIVEINT) |
| 4700 | { |
| 4701 | // ByRef +- UnsignedNativeInt = ByRef |
| 4702 | NativeUInt val2 = OpStackGet<NativeUInt>(op2idx); |
| 4703 | BinaryArithOvfOpWork<op, NativeUInt, CORINFO_TYPE_BYREF, /*TypeIsUnchanged*/true>(val1, val2); |
| 4704 | } |
| 4705 | else if (cit2 == CORINFO_TYPE_BYREF) |
| 4706 | { |
| 4707 | if (op == BA_Sub) |
| 4708 | { |
| 4709 | // ByRef - ByRef = UnsignedNativeInt |
| 4710 | NativeUInt val2 = OpStackGet<NativeUInt>(op2idx); |
| 4711 | BinaryArithOvfOpWork<op, NativeUInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/false>(val1, val2); |
| 4712 | } |
| 4713 | else |
| 4714 | { |
| 4715 | VerificationError("Illegal arithmetic overflow operation for byref and byref: may only subtract managed pointer values." ); |
| 4716 | } |
| 4717 | } |
| 4718 | else |
| 4719 | { |
| 4720 | VerificationError("Binary arithmetic overflow operation not permitted on byref" ); |
| 4721 | } |
| 4722 | } |
| 4723 | else |
| 4724 | { |
| 4725 | if (!asUnsigned) |
| 4726 | { |
| 4727 | VerificationError("Signed binary arithmetic overflow operation not permitted on managed pointer values." ); |
| 4728 | } |
| 4729 | else |
| 4730 | { |
| 4731 | _ASSERTE_MSG(op == BA_Mul, "Must be an overflow operation; tested for Add || Sub above." ); |
| 4732 | VerificationError("Cannot multiply managed pointer values." ); |
| 4733 | } |
| 4734 | } |
| 4735 | break; |
| 4736 | |
| 4737 | default: |
| 4738 | _ASSERTE_MSG(false, "Non-stack-normal type on stack." ); |
| 4739 | } |
| 4740 | |
| 4741 | // In all cases: |
| 4742 | m_curStackHt--; |
| 4743 | } |
| 4744 | |
| 4745 | template<int op, typename T, CorInfoType cit, bool TypeIsUnchanged> |
| 4746 | void Interpreter::BinaryArithOvfOpWork(T val1, T val2) |
| 4747 | { |
| 4748 | CONTRACTL { |
| 4749 | SO_TOLERANT; |
| 4750 | THROWS; |
| 4751 | GC_TRIGGERS; |
| 4752 | MODE_COOPERATIVE; |
| 4753 | } CONTRACTL_END; |
| 4754 | |
| 4755 | ClrSafeInt<T> res; |
| 4756 | ClrSafeInt<T> safeV1(val1); |
| 4757 | ClrSafeInt<T> safeV2(val2); |
| 4758 | if (op == BA_Add) |
| 4759 | { |
| 4760 | res = safeV1 + safeV2; |
| 4761 | } |
| 4762 | else if (op == BA_Sub) |
| 4763 | { |
| 4764 | res = safeV1 - safeV2; |
| 4765 | } |
| 4766 | else if (op == BA_Mul) |
| 4767 | { |
| 4768 | res = safeV1 * safeV2; |
| 4769 | } |
| 4770 | else |
| 4771 | { |
| 4772 | _ASSERTE_MSG(false, "op should be one of the overflow ops..." ); |
| 4773 | } |
| 4774 | |
| 4775 | if (res.IsOverflow()) |
| 4776 | { |
| 4777 | ThrowOverflowException(); |
| 4778 | } |
| 4779 | |
| 4780 | unsigned residx = m_curStackHt - 2; |
| 4781 | OpStackSet<T>(residx, res.Value()); |
| 4782 | if (!TypeIsUnchanged) |
| 4783 | { |
| 4784 | OpStackTypeSet(residx, InterpreterType(cit)); |
| 4785 | } |
| 4786 | } |
| 4787 | |
| 4788 | template<int op> |
| 4789 | void Interpreter::BinaryIntOp() |
| 4790 | { |
| 4791 | CONTRACTL { |
| 4792 | SO_TOLERANT; |
| 4793 | THROWS; |
| 4794 | GC_TRIGGERS; |
| 4795 | MODE_COOPERATIVE; |
| 4796 | } CONTRACTL_END; |
| 4797 | |
| 4798 | assert(m_curStackHt >= 2); |
| 4799 | unsigned op1idx = m_curStackHt - 2; |
| 4800 | unsigned op2idx = m_curStackHt - 1; |
| 4801 | |
| 4802 | InterpreterType t1 = OpStackTypeGet(op1idx); |
| 4803 | CorInfoType cit1 = t1.ToCorInfoType(); |
| 4804 | assert(IsStackNormalType(cit1)); |
| 4805 | |
| 4806 | InterpreterType t2 = OpStackTypeGet(op2idx); |
| 4807 | CorInfoType cit2 = t2.ToCorInfoType(); |
| 4808 | assert(IsStackNormalType(cit2)); |
| 4809 | |
| 4810 | // In all cases belows, since "op" is compile-time constant, "if" chains on it should fold away. |
| 4811 | switch (cit1) |
| 4812 | { |
| 4813 | case CORINFO_TYPE_INT: |
| 4814 | if (cit2 == CORINFO_TYPE_INT) |
| 4815 | { |
| 4816 | // Int op Int = Int |
| 4817 | UINT32 val1 = OpStackGet<UINT32>(op1idx); |
| 4818 | UINT32 val2 = OpStackGet<UINT32>(op2idx); |
| 4819 | BinaryIntOpWork<op, UINT32, CORINFO_TYPE_INT, /*TypeIsUnchanged*/true>(val1, val2); |
| 4820 | } |
| 4821 | else if (cit2 == CORINFO_TYPE_NATIVEINT) |
| 4822 | { |
| 4823 | // Int op NativeInt = NativeInt |
| 4824 | NativeUInt val1 = static_cast<NativeUInt>(OpStackGet<INT32>(op1idx)); |
| 4825 | NativeUInt val2 = OpStackGet<NativeUInt>(op2idx); |
| 4826 | BinaryIntOpWork<op, NativeUInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/false>(val1, val2); |
| 4827 | } |
| 4828 | else if (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_BYREF) |
| 4829 | { |
| 4830 | // Int op NativeUInt = NativeUInt |
| 4831 | NativeUInt val1 = static_cast<NativeUInt>(OpStackGet<INT32>(op1idx)); |
| 4832 | NativeUInt val2 = OpStackGet<NativeUInt>(op2idx); |
| 4833 | BinaryIntOpWork<op, NativeUInt, CORINFO_TYPE_BYREF, /*TypeIsUnchanged*/false>(val1, val2); |
| 4834 | } |
| 4835 | else |
| 4836 | { |
| 4837 | VerificationError("Binary arithmetic operation type mismatch (int and ?)" ); |
| 4838 | } |
| 4839 | break; |
| 4840 | |
| 4841 | case CORINFO_TYPE_NATIVEINT: |
| 4842 | if (cit2 == CORINFO_TYPE_NATIVEINT) |
| 4843 | { |
| 4844 | // NativeInt op NativeInt = NativeInt |
| 4845 | NativeUInt val1 = OpStackGet<NativeUInt>(op1idx); |
| 4846 | NativeUInt val2 = OpStackGet<NativeUInt>(op2idx); |
| 4847 | BinaryIntOpWork<op, NativeUInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
| 4848 | } |
| 4849 | else if (cit2 == CORINFO_TYPE_INT) |
| 4850 | { |
| 4851 | // NativeInt op Int = NativeInt |
| 4852 | NativeUInt val1 = OpStackGet<NativeUInt>(op1idx); |
| 4853 | NativeUInt val2 = static_cast<NativeUInt>(OpStackGet<INT32>(op2idx)); |
| 4854 | BinaryIntOpWork<op, NativeUInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
| 4855 | } |
| 4856 | // CLI spec does not allow adding a native int and an int64. So use loose rules. |
| 4857 | else if (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_LONG) |
| 4858 | { |
| 4859 | // NativeInt op Int = NativeInt |
| 4860 | NativeUInt val1 = OpStackGet<NativeUInt>(op1idx); |
| 4861 | NativeUInt val2 = static_cast<NativeUInt>(OpStackGet<INT64>(op2idx)); |
| 4862 | BinaryIntOpWork<op, NativeUInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
| 4863 | } |
| 4864 | else |
| 4865 | { |
| 4866 | VerificationError("Binary arithmetic operation type mismatch (native int and ?)" ); |
| 4867 | } |
| 4868 | break; |
| 4869 | |
| 4870 | case CORINFO_TYPE_LONG: |
| 4871 | if (cit2 == CORINFO_TYPE_LONG || (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_NATIVEINT)) |
| 4872 | { |
| 4873 | // Long op Long = Long |
| 4874 | UINT64 val1 = OpStackGet<UINT64>(op1idx); |
| 4875 | UINT64 val2 = OpStackGet<UINT64>(op2idx); |
| 4876 | BinaryIntOpWork<op, UINT64, CORINFO_TYPE_LONG, /*TypeIsUnchanged*/true>(val1, val2); |
| 4877 | } |
| 4878 | else |
| 4879 | { |
| 4880 | VerificationError("Binary arithmetic operation type mismatch (long and ?)" ); |
| 4881 | } |
| 4882 | break; |
| 4883 | |
| 4884 | default: |
| 4885 | VerificationError("Illegal operation for non-integral data type." ); |
| 4886 | } |
| 4887 | |
| 4888 | // In all cases: |
| 4889 | m_curStackHt--; |
| 4890 | } |
| 4891 | |
| 4892 | template<int op, typename T, CorInfoType cit, bool TypeIsUnchanged> |
| 4893 | void Interpreter::BinaryIntOpWork(T val1, T val2) |
| 4894 | { |
| 4895 | T res; |
| 4896 | if (op == BIO_And) |
| 4897 | { |
| 4898 | res = val1 & val2; |
| 4899 | } |
| 4900 | else if (op == BIO_Or) |
| 4901 | { |
| 4902 | res = val1 | val2; |
| 4903 | } |
| 4904 | else if (op == BIO_Xor) |
| 4905 | { |
| 4906 | res = val1 ^ val2; |
| 4907 | } |
| 4908 | else |
| 4909 | { |
| 4910 | assert(op == BIO_DivUn || op == BIO_RemUn); |
| 4911 | if (val2 == 0) |
| 4912 | { |
| 4913 | ThrowDivideByZero(); |
| 4914 | } |
| 4915 | else if (val2 == -1 && val1 == static_cast<T>(((UINT64)1) << (sizeof(T)*8 - 1))) // min int / -1 is not representable. |
| 4916 | { |
| 4917 | ThrowSysArithException(); |
| 4918 | } |
| 4919 | // Otherwise... |
| 4920 | if (op == BIO_DivUn) |
| 4921 | { |
| 4922 | res = val1 / val2; |
| 4923 | } |
| 4924 | else |
| 4925 | { |
| 4926 | res = val1 % val2; |
| 4927 | } |
| 4928 | } |
| 4929 | |
| 4930 | unsigned residx = m_curStackHt - 2; |
| 4931 | OpStackSet<T>(residx, res); |
| 4932 | if (!TypeIsUnchanged) |
| 4933 | { |
| 4934 | OpStackTypeSet(residx, InterpreterType(cit)); |
| 4935 | } |
| 4936 | } |
| 4937 | |
| 4938 | template<int op> |
| 4939 | void Interpreter::ShiftOp() |
| 4940 | { |
| 4941 | CONTRACTL { |
| 4942 | SO_TOLERANT; |
| 4943 | NOTHROW; |
| 4944 | GC_NOTRIGGER; |
| 4945 | MODE_COOPERATIVE; |
| 4946 | } CONTRACTL_END; |
| 4947 | |
| 4948 | assert(m_curStackHt >= 2); |
| 4949 | unsigned op1idx = m_curStackHt - 2; |
| 4950 | unsigned op2idx = m_curStackHt - 1; |
| 4951 | |
| 4952 | InterpreterType t1 = OpStackTypeGet(op1idx); |
| 4953 | CorInfoType cit1 = t1.ToCorInfoType(); |
| 4954 | assert(IsStackNormalType(cit1)); |
| 4955 | |
| 4956 | InterpreterType t2 = OpStackTypeGet(op2idx); |
| 4957 | CorInfoType cit2 = t2.ToCorInfoType(); |
| 4958 | assert(IsStackNormalType(cit2)); |
| 4959 | |
| 4960 | // In all cases belows, since "op" is compile-time constant, "if" chains on it should fold away. |
| 4961 | switch (cit1) |
| 4962 | { |
| 4963 | case CORINFO_TYPE_INT: |
| 4964 | ShiftOpWork<op, INT32, UINT32>(op1idx, cit2); |
| 4965 | break; |
| 4966 | |
| 4967 | case CORINFO_TYPE_NATIVEINT: |
| 4968 | ShiftOpWork<op, NativeInt, NativeUInt>(op1idx, cit2); |
| 4969 | break; |
| 4970 | |
| 4971 | case CORINFO_TYPE_LONG: |
| 4972 | ShiftOpWork<op, INT64, UINT64>(op1idx, cit2); |
| 4973 | break; |
| 4974 | |
| 4975 | default: |
| 4976 | VerificationError("Illegal value type for shift operation." ); |
| 4977 | break; |
| 4978 | } |
| 4979 | |
| 4980 | m_curStackHt--; |
| 4981 | } |
| 4982 | |
| 4983 | template<int op, typename T, typename UT> |
| 4984 | void Interpreter::ShiftOpWork(unsigned op1idx, CorInfoType cit2) |
| 4985 | { |
| 4986 | T val = OpStackGet<T>(op1idx); |
| 4987 | unsigned op2idx = op1idx + 1; |
| 4988 | T res = 0; |
| 4989 | |
| 4990 | if (cit2 == CORINFO_TYPE_INT) |
| 4991 | { |
| 4992 | INT32 shiftAmt = OpStackGet<INT32>(op2idx); |
| 4993 | if (op == CEE_SHL) |
| 4994 | { |
| 4995 | res = val << shiftAmt; // TODO: Check that C++ semantics matches IL. |
| 4996 | } |
| 4997 | else if (op == CEE_SHR) |
| 4998 | { |
| 4999 | res = val >> shiftAmt; |
| 5000 | } |
| 5001 | else |
| 5002 | { |
| 5003 | assert(op == CEE_SHR_UN); |
| 5004 | res = (static_cast<UT>(val)) >> shiftAmt; |
| 5005 | } |
| 5006 | } |
| 5007 | else if (cit2 == CORINFO_TYPE_NATIVEINT) |
| 5008 | { |
| 5009 | NativeInt shiftAmt = OpStackGet<NativeInt>(op2idx); |
| 5010 | if (op == CEE_SHL) |
| 5011 | { |
| 5012 | res = val << shiftAmt; // TODO: Check that C++ semantics matches IL. |
| 5013 | } |
| 5014 | else if (op == CEE_SHR) |
| 5015 | { |
| 5016 | res = val >> shiftAmt; |
| 5017 | } |
| 5018 | else |
| 5019 | { |
| 5020 | assert(op == CEE_SHR_UN); |
| 5021 | res = (static_cast<UT>(val)) >> shiftAmt; |
| 5022 | } |
| 5023 | } |
| 5024 | else |
| 5025 | { |
| 5026 | VerificationError("Operand type mismatch for shift operator." ); |
| 5027 | } |
| 5028 | OpStackSet<T>(op1idx, res); |
| 5029 | } |
| 5030 | |
| 5031 | |
| 5032 | void Interpreter::Neg() |
| 5033 | { |
| 5034 | CONTRACTL { |
| 5035 | SO_TOLERANT; |
| 5036 | NOTHROW; |
| 5037 | GC_NOTRIGGER; |
| 5038 | MODE_COOPERATIVE; |
| 5039 | } CONTRACTL_END; |
| 5040 | |
| 5041 | assert(m_curStackHt >= 1); |
| 5042 | unsigned opidx = m_curStackHt - 1; |
| 5043 | |
| 5044 | InterpreterType t1 = OpStackTypeGet(opidx); |
| 5045 | CorInfoType cit1 = t1.ToCorInfoType(); |
| 5046 | assert(IsStackNormalType(cit1)); |
| 5047 | |
| 5048 | switch (cit1) |
| 5049 | { |
| 5050 | case CORINFO_TYPE_INT: |
| 5051 | OpStackSet<INT32>(opidx, -OpStackGet<INT32>(opidx)); |
| 5052 | break; |
| 5053 | |
| 5054 | case CORINFO_TYPE_NATIVEINT: |
| 5055 | OpStackSet<NativeInt>(opidx, -OpStackGet<NativeInt>(opidx)); |
| 5056 | break; |
| 5057 | |
| 5058 | case CORINFO_TYPE_LONG: |
| 5059 | OpStackSet<INT64>(opidx, -OpStackGet<INT64>(opidx)); |
| 5060 | break; |
| 5061 | |
| 5062 | case CORINFO_TYPE_FLOAT: |
| 5063 | OpStackSet<float>(opidx, -OpStackGet<float>(opidx)); |
| 5064 | break; |
| 5065 | |
| 5066 | case CORINFO_TYPE_DOUBLE: |
| 5067 | OpStackSet<double>(opidx, -OpStackGet<double>(opidx)); |
| 5068 | break; |
| 5069 | |
| 5070 | default: |
| 5071 | VerificationError("Illegal operand type for Neg operation." ); |
| 5072 | } |
| 5073 | } |
| 5074 | |
| 5075 | void Interpreter::Not() |
| 5076 | { |
| 5077 | CONTRACTL { |
| 5078 | SO_TOLERANT; |
| 5079 | NOTHROW; |
| 5080 | GC_NOTRIGGER; |
| 5081 | MODE_COOPERATIVE; |
| 5082 | } CONTRACTL_END; |
| 5083 | |
| 5084 | assert(m_curStackHt >= 1); |
| 5085 | unsigned opidx = m_curStackHt - 1; |
| 5086 | |
| 5087 | InterpreterType t1 = OpStackTypeGet(opidx); |
| 5088 | CorInfoType cit1 = t1.ToCorInfoType(); |
| 5089 | assert(IsStackNormalType(cit1)); |
| 5090 | |
| 5091 | switch (cit1) |
| 5092 | { |
| 5093 | case CORINFO_TYPE_INT: |
| 5094 | OpStackSet<INT32>(opidx, ~OpStackGet<INT32>(opidx)); |
| 5095 | break; |
| 5096 | |
| 5097 | case CORINFO_TYPE_NATIVEINT: |
| 5098 | OpStackSet<NativeInt>(opidx, ~OpStackGet<NativeInt>(opidx)); |
| 5099 | break; |
| 5100 | |
| 5101 | case CORINFO_TYPE_LONG: |
| 5102 | OpStackSet<INT64>(opidx, ~OpStackGet<INT64>(opidx)); |
| 5103 | break; |
| 5104 | |
| 5105 | default: |
| 5106 | VerificationError("Illegal operand type for Not operation." ); |
| 5107 | } |
| 5108 | } |
| 5109 | |
| 5110 | template<typename T, bool TIsUnsigned, bool TCanHoldPtr, bool TIsShort, CorInfoType cit> |
| 5111 | void Interpreter::Conv() |
| 5112 | { |
| 5113 | CONTRACTL { |
| 5114 | SO_TOLERANT; |
| 5115 | NOTHROW; |
| 5116 | GC_NOTRIGGER; |
| 5117 | MODE_COOPERATIVE; |
| 5118 | } CONTRACTL_END; |
| 5119 | |
| 5120 | assert(m_curStackHt >= 1); |
| 5121 | unsigned opidx = m_curStackHt - 1; |
| 5122 | |
| 5123 | InterpreterType t1 = OpStackTypeGet(opidx); |
| 5124 | CorInfoType cit1 = t1.ToCorInfoType(); |
| 5125 | assert(IsStackNormalType(cit1)); |
| 5126 | |
| 5127 | T val; |
| 5128 | switch (cit1) |
| 5129 | { |
| 5130 | case CORINFO_TYPE_INT: |
| 5131 | if (TIsUnsigned) |
| 5132 | { |
| 5133 | // Must convert the 32 bit value to unsigned first, so that we zero-extend if necessary. |
| 5134 | val = static_cast<T>(static_cast<UINT32>(OpStackGet<INT32>(opidx))); |
| 5135 | } |
| 5136 | else |
| 5137 | { |
| 5138 | val = static_cast<T>(OpStackGet<INT32>(opidx)); |
| 5139 | } |
| 5140 | break; |
| 5141 | |
| 5142 | case CORINFO_TYPE_NATIVEINT: |
| 5143 | if (TIsUnsigned) |
| 5144 | { |
| 5145 | // NativeInt might be 32 bits, so convert to unsigned before possibly widening. |
| 5146 | val = static_cast<T>(static_cast<NativeUInt>(OpStackGet<NativeInt>(opidx))); |
| 5147 | } |
| 5148 | else |
| 5149 | { |
| 5150 | val = static_cast<T>(OpStackGet<NativeInt>(opidx)); |
| 5151 | } |
| 5152 | break; |
| 5153 | |
| 5154 | case CORINFO_TYPE_LONG: |
| 5155 | val = static_cast<T>(OpStackGet<INT64>(opidx)); |
| 5156 | break; |
| 5157 | |
| 5158 | // TODO: Make sure that the C++ conversions do the right thing (truncate to zero...) |
| 5159 | case CORINFO_TYPE_FLOAT: |
| 5160 | val = static_cast<T>(OpStackGet<float>(opidx)); |
| 5161 | break; |
| 5162 | |
| 5163 | case CORINFO_TYPE_DOUBLE: |
| 5164 | val = static_cast<T>(OpStackGet<double>(opidx)); |
| 5165 | break; |
| 5166 | |
| 5167 | case CORINFO_TYPE_BYREF: |
| 5168 | case CORINFO_TYPE_CLASS: |
| 5169 | case CORINFO_TYPE_STRING: |
| 5170 | if (!TCanHoldPtr && !s_InterpreterLooseRules) |
| 5171 | { |
| 5172 | VerificationError("Conversion of pointer value to type that can't hold its value." ); |
| 5173 | } |
| 5174 | |
| 5175 | // Otherwise... |
| 5176 | // (Must first convert to NativeInt, because the compiler believes this might be applied for T = |
| 5177 | // float or double. It won't, by the test above, and the extra cast shouldn't generate any code...) |
| 5178 | val = static_cast<T>(reinterpret_cast<NativeInt>(OpStackGet<void*>(opidx))); |
| 5179 | break; |
| 5180 | |
| 5181 | default: |
| 5182 | VerificationError("Illegal operand type for conv.* operation." ); |
| 5183 | UNREACHABLE(); |
| 5184 | } |
| 5185 | |
| 5186 | if (TIsShort) |
| 5187 | { |
| 5188 | OpStackSet<INT32>(opidx, static_cast<INT32>(val)); |
| 5189 | } |
| 5190 | else |
| 5191 | { |
| 5192 | OpStackSet<T>(opidx, val); |
| 5193 | } |
| 5194 | |
| 5195 | OpStackTypeSet(opidx, InterpreterType(cit)); |
| 5196 | } |
| 5197 | |
| 5198 | |
| 5199 | void Interpreter::ConvRUn() |
| 5200 | { |
| 5201 | CONTRACTL { |
| 5202 | SO_TOLERANT; |
| 5203 | NOTHROW; |
| 5204 | GC_NOTRIGGER; |
| 5205 | MODE_COOPERATIVE; |
| 5206 | } CONTRACTL_END; |
| 5207 | |
| 5208 | assert(m_curStackHt >= 1); |
| 5209 | unsigned opidx = m_curStackHt - 1; |
| 5210 | |
| 5211 | InterpreterType t1 = OpStackTypeGet(opidx); |
| 5212 | CorInfoType cit1 = t1.ToCorInfoType(); |
| 5213 | assert(IsStackNormalType(cit1)); |
| 5214 | |
| 5215 | switch (cit1) |
| 5216 | { |
| 5217 | case CORINFO_TYPE_INT: |
| 5218 | OpStackSet<double>(opidx, static_cast<double>(OpStackGet<UINT32>(opidx))); |
| 5219 | break; |
| 5220 | |
| 5221 | case CORINFO_TYPE_NATIVEINT: |
| 5222 | OpStackSet<double>(opidx, static_cast<double>(OpStackGet<NativeUInt>(opidx))); |
| 5223 | break; |
| 5224 | |
| 5225 | case CORINFO_TYPE_LONG: |
| 5226 | OpStackSet<double>(opidx, static_cast<double>(OpStackGet<UINT64>(opidx))); |
| 5227 | break; |
| 5228 | |
| 5229 | case CORINFO_TYPE_DOUBLE: |
| 5230 | return; |
| 5231 | |
| 5232 | default: |
| 5233 | VerificationError("Illegal operand type for conv.r.un operation." ); |
| 5234 | } |
| 5235 | |
| 5236 | OpStackTypeSet(opidx, InterpreterType(CORINFO_TYPE_DOUBLE)); |
| 5237 | } |
| 5238 | |
| 5239 | template<typename T, INT64 TMin, UINT64 TMax, bool TCanHoldPtr, CorInfoType cit> |
| 5240 | void Interpreter::ConvOvf() |
| 5241 | { |
| 5242 | CONTRACTL { |
| 5243 | SO_TOLERANT; |
| 5244 | THROWS; |
| 5245 | GC_TRIGGERS; |
| 5246 | MODE_COOPERATIVE; |
| 5247 | } CONTRACTL_END; |
| 5248 | |
| 5249 | assert(m_curStackHt >= 1); |
| 5250 | unsigned opidx = m_curStackHt - 1; |
| 5251 | |
| 5252 | InterpreterType t1 = OpStackTypeGet(opidx); |
| 5253 | CorInfoType cit1 = t1.ToCorInfoType(); |
| 5254 | assert(IsStackNormalType(cit1)); |
| 5255 | |
| 5256 | switch (cit1) |
| 5257 | { |
| 5258 | case CORINFO_TYPE_INT: |
| 5259 | { |
| 5260 | INT32 i4 = OpStackGet<INT32>(opidx); |
| 5261 | if (!FitsIn<T>(i4)) |
| 5262 | { |
| 5263 | ThrowOverflowException(); |
| 5264 | } |
| 5265 | OpStackSet<T>(opidx, static_cast<T>(i4)); |
| 5266 | } |
| 5267 | break; |
| 5268 | |
| 5269 | case CORINFO_TYPE_NATIVEINT: |
| 5270 | { |
| 5271 | NativeInt i = OpStackGet<NativeInt>(opidx); |
| 5272 | if (!FitsIn<T>(i)) |
| 5273 | { |
| 5274 | ThrowOverflowException(); |
| 5275 | } |
| 5276 | OpStackSet<T>(opidx, static_cast<T>(i)); |
| 5277 | } |
| 5278 | break; |
| 5279 | |
| 5280 | case CORINFO_TYPE_LONG: |
| 5281 | { |
| 5282 | INT64 i8 = OpStackGet<INT64>(opidx); |
| 5283 | if (!FitsIn<T>(i8)) |
| 5284 | { |
| 5285 | ThrowOverflowException(); |
| 5286 | } |
| 5287 | OpStackSet<T>(opidx, static_cast<T>(i8)); |
| 5288 | } |
| 5289 | break; |
| 5290 | |
| 5291 | // Make sure that the C++ conversions do the right thing (truncate to zero...) |
| 5292 | case CORINFO_TYPE_FLOAT: |
| 5293 | { |
| 5294 | float f = OpStackGet<float>(opidx); |
| 5295 | if (!FloatFitsInIntType<TMin, TMax>(f)) |
| 5296 | { |
| 5297 | ThrowOverflowException(); |
| 5298 | } |
| 5299 | OpStackSet<T>(opidx, static_cast<T>(f)); |
| 5300 | } |
| 5301 | break; |
| 5302 | |
| 5303 | case CORINFO_TYPE_DOUBLE: |
| 5304 | { |
| 5305 | double d = OpStackGet<double>(opidx); |
| 5306 | if (!DoubleFitsInIntType<TMin, TMax>(d)) |
| 5307 | { |
| 5308 | ThrowOverflowException(); |
| 5309 | } |
| 5310 | OpStackSet<T>(opidx, static_cast<T>(d)); |
| 5311 | } |
| 5312 | break; |
| 5313 | |
| 5314 | case CORINFO_TYPE_BYREF: |
| 5315 | case CORINFO_TYPE_CLASS: |
| 5316 | case CORINFO_TYPE_STRING: |
| 5317 | if (!TCanHoldPtr) |
| 5318 | { |
| 5319 | VerificationError("Conversion of pointer value to type that can't hold its value." ); |
| 5320 | } |
| 5321 | |
| 5322 | // Otherwise... |
| 5323 | // (Must first convert to NativeInt, because the compiler believes this might be applied for T = |
| 5324 | // float or double. It won't, by the test above, and the extra cast shouldn't generate any code... |
| 5325 | OpStackSet<T>(opidx, static_cast<T>(reinterpret_cast<NativeInt>(OpStackGet<void*>(opidx)))); |
| 5326 | break; |
| 5327 | |
| 5328 | default: |
| 5329 | VerificationError("Illegal operand type for conv.ovf.* operation." ); |
| 5330 | } |
| 5331 | |
| 5332 | _ASSERTE_MSG(IsStackNormalType(cit), "Precondition." ); |
| 5333 | OpStackTypeSet(opidx, InterpreterType(cit)); |
| 5334 | } |
| 5335 | |
| 5336 | template<typename T, INT64 TMin, UINT64 TMax, bool TCanHoldPtr, CorInfoType cit> |
| 5337 | void Interpreter::ConvOvfUn() |
| 5338 | { |
| 5339 | CONTRACTL { |
| 5340 | SO_TOLERANT; |
| 5341 | THROWS; |
| 5342 | GC_TRIGGERS; |
| 5343 | MODE_COOPERATIVE; |
| 5344 | } CONTRACTL_END; |
| 5345 | |
| 5346 | assert(m_curStackHt >= 1); |
| 5347 | unsigned opidx = m_curStackHt - 1; |
| 5348 | |
| 5349 | InterpreterType t1 = OpStackTypeGet(opidx); |
| 5350 | CorInfoType cit1 = t1.ToCorInfoType(); |
| 5351 | assert(IsStackNormalType(cit1)); |
| 5352 | |
| 5353 | switch (cit1) |
| 5354 | { |
| 5355 | case CORINFO_TYPE_INT: |
| 5356 | { |
| 5357 | UINT32 ui4 = OpStackGet<UINT32>(opidx); |
| 5358 | if (!FitsIn<T>(ui4)) |
| 5359 | { |
| 5360 | ThrowOverflowException(); |
| 5361 | } |
| 5362 | OpStackSet<T>(opidx, static_cast<T>(ui4)); |
| 5363 | } |
| 5364 | break; |
| 5365 | |
| 5366 | case CORINFO_TYPE_NATIVEINT: |
| 5367 | { |
| 5368 | NativeUInt ui = OpStackGet<NativeUInt>(opidx); |
| 5369 | if (!FitsIn<T>(ui)) |
| 5370 | { |
| 5371 | ThrowOverflowException(); |
| 5372 | } |
| 5373 | OpStackSet<T>(opidx, static_cast<T>(ui)); |
| 5374 | } |
| 5375 | break; |
| 5376 | |
| 5377 | case CORINFO_TYPE_LONG: |
| 5378 | { |
| 5379 | UINT64 ui8 = OpStackGet<UINT64>(opidx); |
| 5380 | if (!FitsIn<T>(ui8)) |
| 5381 | { |
| 5382 | ThrowOverflowException(); |
| 5383 | } |
| 5384 | OpStackSet<T>(opidx, static_cast<T>(ui8)); |
| 5385 | } |
| 5386 | break; |
| 5387 | |
| 5388 | // Make sure that the C++ conversions do the right thing (truncate to zero...) |
| 5389 | case CORINFO_TYPE_FLOAT: |
| 5390 | { |
| 5391 | float f = OpStackGet<float>(opidx); |
| 5392 | if (!FloatFitsInIntType<TMin, TMax>(f)) |
| 5393 | { |
| 5394 | ThrowOverflowException(); |
| 5395 | } |
| 5396 | OpStackSet<T>(opidx, static_cast<T>(f)); |
| 5397 | } |
| 5398 | break; |
| 5399 | |
| 5400 | case CORINFO_TYPE_DOUBLE: |
| 5401 | { |
| 5402 | double d = OpStackGet<double>(opidx); |
| 5403 | if (!DoubleFitsInIntType<TMin, TMax>(d)) |
| 5404 | { |
| 5405 | ThrowOverflowException(); |
| 5406 | } |
| 5407 | OpStackSet<T>(opidx, static_cast<T>(d)); |
| 5408 | } |
| 5409 | break; |
| 5410 | |
| 5411 | case CORINFO_TYPE_BYREF: |
| 5412 | case CORINFO_TYPE_CLASS: |
| 5413 | case CORINFO_TYPE_STRING: |
| 5414 | if (!TCanHoldPtr) |
| 5415 | { |
| 5416 | VerificationError("Conversion of pointer value to type that can't hold its value." ); |
| 5417 | } |
| 5418 | |
| 5419 | // Otherwise... |
| 5420 | // (Must first convert to NativeInt, because the compiler believes this might be applied for T = |
| 5421 | // float or double. It won't, by the test above, and the extra cast shouldn't generate any code... |
| 5422 | OpStackSet<T>(opidx, static_cast<T>(reinterpret_cast<NativeInt>(OpStackGet<void*>(opidx)))); |
| 5423 | break; |
| 5424 | |
| 5425 | default: |
| 5426 | VerificationError("Illegal operand type for conv.ovf.*.un operation." ); |
| 5427 | } |
| 5428 | |
| 5429 | _ASSERTE_MSG(IsStackNormalType(cit), "Precondition." ); |
| 5430 | OpStackTypeSet(opidx, InterpreterType(cit)); |
| 5431 | } |
| 5432 | |
| 5433 | void Interpreter::LdObj() |
| 5434 | { |
| 5435 | CONTRACTL { |
| 5436 | SO_TOLERANT; |
| 5437 | THROWS; |
| 5438 | GC_TRIGGERS; |
| 5439 | MODE_COOPERATIVE; |
| 5440 | } CONTRACTL_END; |
| 5441 | |
| 5442 | BarrierIfVolatile(); |
| 5443 | |
| 5444 | assert(m_curStackHt > 0); |
| 5445 | unsigned ind = m_curStackHt - 1; |
| 5446 | |
| 5447 | #ifdef _DEBUG |
| 5448 | CorInfoType cit = OpStackTypeGet(ind).ToCorInfoType(); |
| 5449 | _ASSERTE_MSG(IsValidPointerType(cit), "Expect pointer on stack" ); |
| 5450 | #endif // _DEBUG |
| 5451 | |
| 5452 | #if INTERP_TRACING |
| 5453 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_LdObj]); |
| 5454 | #endif // INTERP_TRACING |
| 5455 | |
| 5456 | // TODO: GetTypeFromToken also uses GCX_PREEMP(); can we merge it with the getClassAttribs() block below, and do it just once? |
| 5457 | CORINFO_CLASS_HANDLE clsHnd = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_LdObj)); |
| 5458 | DWORD clsAttribs; |
| 5459 | { |
| 5460 | GCX_PREEMP(); |
| 5461 | clsAttribs = m_interpCeeInfo.getClassAttribs(clsHnd); |
| 5462 | } |
| 5463 | |
| 5464 | void* src = OpStackGet<void*>(ind); |
| 5465 | ThrowOnInvalidPointer(src); |
| 5466 | |
| 5467 | if (clsAttribs & CORINFO_FLG_VALUECLASS) |
| 5468 | { |
| 5469 | LdObjValueClassWork(clsHnd, ind, src); |
| 5470 | } |
| 5471 | else |
| 5472 | { |
| 5473 | OpStackSet<void*>(ind, *reinterpret_cast<void**>(src)); |
| 5474 | OpStackTypeSet(ind, InterpreterType(CORINFO_TYPE_CLASS)); |
| 5475 | } |
| 5476 | m_ILCodePtr += 5; |
| 5477 | } |
| 5478 | |
| 5479 | void Interpreter::LdObjValueClassWork(CORINFO_CLASS_HANDLE valueClsHnd, unsigned ind, void* src) |
| 5480 | { |
| 5481 | CONTRACTL { |
| 5482 | SO_TOLERANT; |
| 5483 | THROWS; |
| 5484 | GC_TRIGGERS; |
| 5485 | MODE_COOPERATIVE; |
| 5486 | } CONTRACTL_END; |
| 5487 | |
| 5488 | // "src" is a byref, which may be into an object. GCPROTECT for the call below. |
| 5489 | GCPROTECT_BEGININTERIOR(src); |
| 5490 | |
| 5491 | InterpreterType it = InterpreterType(&m_interpCeeInfo, valueClsHnd); |
| 5492 | size_t sz = it.Size(&m_interpCeeInfo); |
| 5493 | // Note that the memcpy's below are permissible because the destination is in the operand stack. |
| 5494 | if (sz > sizeof(INT64)) |
| 5495 | { |
| 5496 | void* dest = LargeStructOperandStackPush(sz); |
| 5497 | memcpy(dest, src, sz); |
| 5498 | OpStackSet<void*>(ind, dest); |
| 5499 | } |
| 5500 | else |
| 5501 | { |
| 5502 | OpStackSet<INT64>(ind, GetSmallStructValue(src, sz)); |
| 5503 | } |
| 5504 | |
| 5505 | OpStackTypeSet(ind, it.StackNormalize()); |
| 5506 | |
| 5507 | GCPROTECT_END(); |
| 5508 | } |
| 5509 | |
| 5510 | CORINFO_CLASS_HANDLE Interpreter::GetTypeFromToken(BYTE* codePtr, CorInfoTokenKind tokKind InterpTracingArg(ResolveTokenKind rtk)) |
| 5511 | { |
| 5512 | CONTRACTL { |
| 5513 | SO_TOLERANT; |
| 5514 | THROWS; |
| 5515 | GC_TRIGGERS; |
| 5516 | MODE_COOPERATIVE; |
| 5517 | } CONTRACTL_END; |
| 5518 | |
| 5519 | GCX_PREEMP(); |
| 5520 | |
| 5521 | CORINFO_RESOLVED_TOKEN typeTok; |
| 5522 | ResolveToken(&typeTok, getU4LittleEndian(codePtr), tokKind InterpTracingArg(rtk)); |
| 5523 | return typeTok.hClass; |
| 5524 | } |
| 5525 | |
| 5526 | bool Interpreter::IsValidPointerType(CorInfoType cit) |
| 5527 | { |
| 5528 | bool isValid = (cit == CORINFO_TYPE_NATIVEINT || cit == CORINFO_TYPE_BYREF); |
| 5529 | #if defined(_AMD64_) |
| 5530 | isValid = isValid || (s_InterpreterLooseRules && cit == CORINFO_TYPE_LONG); |
| 5531 | #endif |
| 5532 | return isValid; |
| 5533 | } |
| 5534 | |
| 5535 | void Interpreter::CpObj() |
| 5536 | { |
| 5537 | CONTRACTL { |
| 5538 | SO_TOLERANT; |
| 5539 | THROWS; |
| 5540 | GC_TRIGGERS; |
| 5541 | MODE_COOPERATIVE; |
| 5542 | } CONTRACTL_END; |
| 5543 | |
| 5544 | assert(m_curStackHt >= 2); |
| 5545 | unsigned destInd = m_curStackHt - 2; |
| 5546 | unsigned srcInd = m_curStackHt - 1; |
| 5547 | |
| 5548 | #ifdef _DEBUG |
| 5549 | // Check that src and dest are both pointer types. |
| 5550 | CorInfoType cit = OpStackTypeGet(destInd).ToCorInfoType(); |
| 5551 | _ASSERTE_MSG(IsValidPointerType(cit), "Expect pointer on stack for dest of cpobj" ); |
| 5552 | |
| 5553 | cit = OpStackTypeGet(srcInd).ToCorInfoType(); |
| 5554 | _ASSERTE_MSG(IsValidPointerType(cit), "Expect pointer on stack for src of cpobj" ); |
| 5555 | #endif // _DEBUG |
| 5556 | |
| 5557 | #if INTERP_TRACING |
| 5558 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_CpObj]); |
| 5559 | #endif // INTERP_TRACING |
| 5560 | |
| 5561 | CORINFO_CLASS_HANDLE clsHnd = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_CpObj)); |
| 5562 | DWORD clsAttribs; |
| 5563 | { |
| 5564 | GCX_PREEMP(); |
| 5565 | clsAttribs = m_interpCeeInfo.getClassAttribs(clsHnd); |
| 5566 | } |
| 5567 | |
| 5568 | void* dest = OpStackGet<void*>(destInd); |
| 5569 | void* src = OpStackGet<void*>(srcInd); |
| 5570 | |
| 5571 | ThrowOnInvalidPointer(dest); |
| 5572 | ThrowOnInvalidPointer(src); |
| 5573 | |
| 5574 | // dest and src are vulnerable byrefs. |
| 5575 | GCX_FORBID(); |
| 5576 | |
| 5577 | if (clsAttribs & CORINFO_FLG_VALUECLASS) |
| 5578 | { |
| 5579 | CopyValueClassUnchecked(dest, src, GetMethodTableFromClsHnd(clsHnd)); |
| 5580 | } |
| 5581 | else |
| 5582 | { |
| 5583 | OBJECTREF val = *reinterpret_cast<OBJECTREF*>(src); |
| 5584 | SetObjectReferenceUnchecked(reinterpret_cast<OBJECTREF*>(dest), val); |
| 5585 | } |
| 5586 | m_curStackHt -= 2; |
| 5587 | m_ILCodePtr += 5; |
| 5588 | } |
| 5589 | |
| 5590 | void Interpreter::StObj() |
| 5591 | { |
| 5592 | CONTRACTL { |
| 5593 | SO_TOLERANT; |
| 5594 | THROWS; |
| 5595 | GC_TRIGGERS; |
| 5596 | MODE_COOPERATIVE; |
| 5597 | } CONTRACTL_END; |
| 5598 | |
| 5599 | assert(m_curStackHt >= 2); |
| 5600 | unsigned destInd = m_curStackHt - 2; |
| 5601 | unsigned valInd = m_curStackHt - 1; |
| 5602 | |
| 5603 | #ifdef _DEBUG |
| 5604 | // Check that dest is a pointer type. |
| 5605 | CorInfoType cit = OpStackTypeGet(destInd).ToCorInfoType(); |
| 5606 | _ASSERTE_MSG(IsValidPointerType(cit), "Expect pointer on stack for dest of stobj" ); |
| 5607 | #endif // _DEBUG |
| 5608 | |
| 5609 | #if INTERP_TRACING |
| 5610 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_StObj]); |
| 5611 | #endif // INTERP_TRACING |
| 5612 | |
| 5613 | CORINFO_CLASS_HANDLE clsHnd = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_StObj)); |
| 5614 | DWORD clsAttribs; |
| 5615 | { |
| 5616 | GCX_PREEMP(); |
| 5617 | clsAttribs = m_interpCeeInfo.getClassAttribs(clsHnd); |
| 5618 | } |
| 5619 | |
| 5620 | if (clsAttribs & CORINFO_FLG_VALUECLASS) |
| 5621 | { |
| 5622 | MethodTable* clsMT = GetMethodTableFromClsHnd(clsHnd); |
| 5623 | size_t sz; |
| 5624 | { |
| 5625 | GCX_PREEMP(); |
| 5626 | sz = getClassSize(clsHnd); |
| 5627 | } |
| 5628 | |
| 5629 | // Note that "dest" might be a pointer into the heap. It is therefore important |
| 5630 | // to calculate it *after* any PREEMP transitions at which we might do a GC. |
| 5631 | void* dest = OpStackGet<void*>(destInd); |
| 5632 | ThrowOnInvalidPointer(dest); |
| 5633 | |
| 5634 | #ifdef _DEBUG |
| 5635 | // Try and validate types |
| 5636 | InterpreterType vit = OpStackTypeGet(valInd); |
| 5637 | CorInfoType vitc = vit.ToCorInfoType(); |
| 5638 | |
| 5639 | if (vitc == CORINFO_TYPE_VALUECLASS) |
| 5640 | { |
| 5641 | CORINFO_CLASS_HANDLE vClsHnd = vit.ToClassHandle(); |
| 5642 | const bool isClass = (vClsHnd == clsHnd); |
| 5643 | const bool isPrim = (vitc == CorInfoTypeStackNormalize(GetTypeForPrimitiveValueClass(clsHnd))); |
| 5644 | bool isShared = false; |
| 5645 | |
| 5646 | // If operand type is shared we need a more complex check; |
| 5647 | // the IL type may not be shared |
| 5648 | if (!isPrim && !isClass) |
| 5649 | { |
| 5650 | DWORD vClsAttribs; |
| 5651 | { |
| 5652 | GCX_PREEMP(); |
| 5653 | vClsAttribs = m_interpCeeInfo.getClassAttribs(vClsHnd); |
| 5654 | } |
| 5655 | |
| 5656 | if ((vClsAttribs & CORINFO_FLG_SHAREDINST) != 0) |
| 5657 | { |
| 5658 | MethodTable* clsMT2 = clsMT->GetCanonicalMethodTable(); |
| 5659 | if (((CORINFO_CLASS_HANDLE) clsMT2) == vClsHnd) |
| 5660 | { |
| 5661 | isShared = true; |
| 5662 | } |
| 5663 | } |
| 5664 | } |
| 5665 | |
| 5666 | assert(isClass || isPrim || isShared); |
| 5667 | } |
| 5668 | else |
| 5669 | { |
| 5670 | const bool isSz = s_InterpreterLooseRules && sz <= sizeof(dest); |
| 5671 | assert(isSz); |
| 5672 | } |
| 5673 | |
| 5674 | #endif // _DEBUG |
| 5675 | |
| 5676 | GCX_FORBID(); |
| 5677 | |
| 5678 | if (sz > sizeof(INT64)) |
| 5679 | { |
| 5680 | // Large struct case -- ostack entry is pointer. |
| 5681 | void* src = OpStackGet<void*>(valInd); |
| 5682 | CopyValueClassUnchecked(dest, src, clsMT); |
| 5683 | LargeStructOperandStackPop(sz, src); |
| 5684 | } |
| 5685 | else |
| 5686 | { |
| 5687 | // The ostack entry contains the struct value. |
| 5688 | CopyValueClassUnchecked(dest, OpStackGetAddr(valInd, sz), clsMT); |
| 5689 | } |
| 5690 | } |
| 5691 | else |
| 5692 | { |
| 5693 | // The ostack entry is an object reference. |
| 5694 | assert(OpStackTypeGet(valInd).ToCorInfoType() == CORINFO_TYPE_CLASS); |
| 5695 | |
| 5696 | // Note that "dest" might be a pointer into the heap. It is therefore important |
| 5697 | // to calculate it *after* any PREEMP transitions at which we might do a GC. (Thus, |
| 5698 | // we have to duplicate this code with the case above. |
| 5699 | void* dest = OpStackGet<void*>(destInd); |
| 5700 | ThrowOnInvalidPointer(dest); |
| 5701 | |
| 5702 | GCX_FORBID(); |
| 5703 | |
| 5704 | OBJECTREF val = ObjectToOBJECTREF(OpStackGet<Object*>(valInd)); |
| 5705 | SetObjectReferenceUnchecked(reinterpret_cast<OBJECTREF*>(dest), val); |
| 5706 | } |
| 5707 | |
| 5708 | m_curStackHt -= 2; |
| 5709 | m_ILCodePtr += 5; |
| 5710 | |
| 5711 | BarrierIfVolatile(); |
| 5712 | } |
| 5713 | |
| 5714 | void Interpreter::InitObj() |
| 5715 | { |
| 5716 | CONTRACTL { |
| 5717 | SO_TOLERANT; |
| 5718 | THROWS; |
| 5719 | GC_TRIGGERS; |
| 5720 | MODE_COOPERATIVE; |
| 5721 | } CONTRACTL_END; |
| 5722 | |
| 5723 | assert(m_curStackHt >= 1); |
| 5724 | unsigned destInd = m_curStackHt - 1; |
| 5725 | #ifdef _DEBUG |
| 5726 | // Check that src and dest are both pointer types. |
| 5727 | CorInfoType cit = OpStackTypeGet(destInd).ToCorInfoType(); |
| 5728 | _ASSERTE_MSG(IsValidPointerType(cit), "Expect pointer on stack" ); |
| 5729 | #endif // _DEBUG |
| 5730 | |
| 5731 | #if INTERP_TRACING |
| 5732 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_InitObj]); |
| 5733 | #endif // INTERP_TRACING |
| 5734 | |
| 5735 | CORINFO_CLASS_HANDLE clsHnd = GetTypeFromToken(m_ILCodePtr + 2, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_InitObj)); |
| 5736 | size_t valueClassSz = 0; |
| 5737 | |
| 5738 | DWORD clsAttribs; |
| 5739 | { |
| 5740 | GCX_PREEMP(); |
| 5741 | clsAttribs = m_interpCeeInfo.getClassAttribs(clsHnd); |
| 5742 | if (clsAttribs & CORINFO_FLG_VALUECLASS) |
| 5743 | { |
| 5744 | valueClassSz = getClassSize(clsHnd); |
| 5745 | } |
| 5746 | } |
| 5747 | |
| 5748 | void* dest = OpStackGet<void*>(destInd); |
| 5749 | ThrowOnInvalidPointer(dest); |
| 5750 | |
| 5751 | // dest is a vulnerable byref. |
| 5752 | GCX_FORBID(); |
| 5753 | |
| 5754 | if (clsAttribs & CORINFO_FLG_VALUECLASS) |
| 5755 | { |
| 5756 | memset(dest, 0, valueClassSz); |
| 5757 | } |
| 5758 | else |
| 5759 | { |
| 5760 | // The ostack entry is an object reference. |
| 5761 | SetObjectReferenceUnchecked(reinterpret_cast<OBJECTREF*>(dest), NULL); |
| 5762 | } |
| 5763 | m_curStackHt -= 1; |
| 5764 | m_ILCodePtr += 6; |
| 5765 | } |
| 5766 | |
| 5767 | void Interpreter::LdStr() |
| 5768 | { |
| 5769 | CONTRACTL { |
| 5770 | SO_TOLERANT; |
| 5771 | THROWS; |
| 5772 | GC_TRIGGERS; |
| 5773 | MODE_COOPERATIVE; |
| 5774 | } CONTRACTL_END; |
| 5775 | |
| 5776 | OBJECTHANDLE res = ConstructStringLiteral(m_methInfo->m_module, getU4LittleEndian(m_ILCodePtr + 1)); |
| 5777 | { |
| 5778 | GCX_FORBID(); |
| 5779 | OpStackSet<Object*>(m_curStackHt, *reinterpret_cast<Object**>(res)); |
| 5780 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_CLASS)); // Stack-normal type for "string" |
| 5781 | m_curStackHt++; |
| 5782 | } |
| 5783 | m_ILCodePtr += 5; |
| 5784 | } |
| 5785 | |
| 5786 | void Interpreter::NewObj() |
| 5787 | { |
| 5788 | #if INTERP_DYNAMIC_CONTRACTS |
| 5789 | CONTRACTL { |
| 5790 | SO_TOLERANT; |
| 5791 | THROWS; |
| 5792 | GC_TRIGGERS; |
| 5793 | MODE_COOPERATIVE; |
| 5794 | } CONTRACTL_END; |
| 5795 | #else |
| 5796 | // Dynamic contract occupies too much stack. |
| 5797 | STATIC_CONTRACT_SO_TOLERANT; |
| 5798 | STATIC_CONTRACT_THROWS; |
| 5799 | STATIC_CONTRACT_GC_TRIGGERS; |
| 5800 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 5801 | #endif |
| 5802 | |
| 5803 | unsigned ctorTok = getU4LittleEndian(m_ILCodePtr + 1); |
| 5804 | |
| 5805 | #if INTERP_TRACING |
| 5806 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_NewObj]); |
| 5807 | #endif // INTERP_TRACING |
| 5808 | |
| 5809 | CORINFO_CALL_INFO callInfo; |
| 5810 | CORINFO_RESOLVED_TOKEN methTok; |
| 5811 | |
| 5812 | { |
| 5813 | GCX_PREEMP(); |
| 5814 | ResolveToken(&methTok, ctorTok, CORINFO_TOKENKIND_Ldtoken InterpTracingArg(RTK_NewObj)); |
| 5815 | m_interpCeeInfo.getCallInfo(&methTok, NULL, |
| 5816 | m_methInfo->m_method, |
| 5817 | CORINFO_CALLINFO_FLAGS(0), |
| 5818 | &callInfo); |
| 5819 | } |
| 5820 | |
| 5821 | unsigned mflags = callInfo.methodFlags; |
| 5822 | |
| 5823 | if ((mflags & (CORINFO_FLG_STATIC|CORINFO_FLG_ABSTRACT)) != 0) |
| 5824 | { |
| 5825 | VerificationError("newobj on static or abstract method" ); |
| 5826 | } |
| 5827 | |
| 5828 | unsigned clsFlags = callInfo.classFlags; |
| 5829 | |
| 5830 | #ifdef _DEBUG |
| 5831 | // What class are we allocating? |
| 5832 | const char* clsName; |
| 5833 | |
| 5834 | { |
| 5835 | GCX_PREEMP(); |
| 5836 | clsName = m_interpCeeInfo.getClassName(methTok.hClass); |
| 5837 | } |
| 5838 | #endif // _DEBUG |
| 5839 | |
| 5840 | // There are four cases: |
| 5841 | // 1) Value types (ordinary constructor, resulting VALUECLASS pushed) |
| 5842 | // 2) String (var-args constructor, result automatically pushed) |
| 5843 | // 3) MDArray (var-args constructor, resulting OBJECTREF pushed) |
| 5844 | // 4) Reference types (ordinary constructor, resulting OBJECTREF pushed) |
| 5845 | if (clsFlags & CORINFO_FLG_VALUECLASS) |
| 5846 | { |
| 5847 | void* tempDest; |
| 5848 | INT64 smallTempDest = 0; |
| 5849 | size_t sz = 0; |
| 5850 | { |
| 5851 | GCX_PREEMP(); |
| 5852 | sz = getClassSize(methTok.hClass); |
| 5853 | } |
| 5854 | if (sz > sizeof(INT64)) |
| 5855 | { |
| 5856 | // TODO: Make sure this is deleted in the face of exceptions. |
| 5857 | tempDest = new BYTE[sz]; |
| 5858 | } |
| 5859 | else |
| 5860 | { |
| 5861 | tempDest = &smallTempDest; |
| 5862 | } |
| 5863 | memset(tempDest, 0, sz); |
| 5864 | InterpreterType structValRetIT(&m_interpCeeInfo, methTok.hClass); |
| 5865 | m_structRetValITPtr = &structValRetIT; |
| 5866 | m_structRetValTempSpace = tempDest; |
| 5867 | |
| 5868 | DoCallWork(/*virtCall*/false, tempDest, &methTok, &callInfo); |
| 5869 | |
| 5870 | if (sz > sizeof(INT64)) |
| 5871 | { |
| 5872 | void* dest = LargeStructOperandStackPush(sz); |
| 5873 | memcpy(dest, tempDest, sz); |
| 5874 | delete[] reinterpret_cast<BYTE*>(tempDest); |
| 5875 | OpStackSet<void*>(m_curStackHt, dest); |
| 5876 | } |
| 5877 | else |
| 5878 | { |
| 5879 | OpStackSet<INT64>(m_curStackHt, GetSmallStructValue(tempDest, sz)); |
| 5880 | } |
| 5881 | if (m_structRetValITPtr->IsStruct()) |
| 5882 | { |
| 5883 | OpStackTypeSet(m_curStackHt, *m_structRetValITPtr); |
| 5884 | } |
| 5885 | else |
| 5886 | { |
| 5887 | // Must stack-normalize primitive types. |
| 5888 | OpStackTypeSet(m_curStackHt, m_structRetValITPtr->StackNormalize()); |
| 5889 | } |
| 5890 | // "Unregister" the temp space for GC scanning... |
| 5891 | m_structRetValITPtr = NULL; |
| 5892 | m_curStackHt++; |
| 5893 | } |
| 5894 | else if ((clsFlags & CORINFO_FLG_VAROBJSIZE) && !(clsFlags & CORINFO_FLG_ARRAY)) |
| 5895 | { |
| 5896 | // For a VAROBJSIZE class (currently == String), pass NULL as this to "pseudo-constructor." |
| 5897 | void* specialFlagArg = reinterpret_cast<void*>(0x1); // Special value for "thisArg" argument of "DoCallWork": push NULL that's not on op stack. |
| 5898 | DoCallWork(/*virtCall*/false, specialFlagArg, &methTok, &callInfo); // pushes result automatically |
| 5899 | } |
| 5900 | else |
| 5901 | { |
| 5902 | OBJECTREF thisArgObj = NULL; |
| 5903 | GCPROTECT_BEGIN(thisArgObj); |
| 5904 | |
| 5905 | if (clsFlags & CORINFO_FLG_ARRAY) |
| 5906 | { |
| 5907 | assert(clsFlags & CORINFO_FLG_VAROBJSIZE); |
| 5908 | |
| 5909 | MethodDesc* methDesc = GetMethod(methTok.hMethod); |
| 5910 | |
| 5911 | PCCOR_SIGNATURE pSig; |
| 5912 | DWORD cbSigSize; |
| 5913 | methDesc->GetSig(&pSig, &cbSigSize); |
| 5914 | MetaSig msig(pSig, cbSigSize, methDesc->GetModule(), NULL); |
| 5915 | |
| 5916 | unsigned dwNumArgs = msig.NumFixedArgs(); |
| 5917 | assert(m_curStackHt >= dwNumArgs); |
| 5918 | m_curStackHt -= dwNumArgs; |
| 5919 | |
| 5920 | INT32* args = (INT32*)_alloca(dwNumArgs * sizeof(INT32)); |
| 5921 | |
| 5922 | unsigned dwArg; |
| 5923 | for (dwArg = 0; dwArg < dwNumArgs; dwArg++) |
| 5924 | { |
| 5925 | unsigned stkInd = m_curStackHt + dwArg; |
| 5926 | bool loose = s_InterpreterLooseRules && (OpStackTypeGet(stkInd).ToCorInfoType() == CORINFO_TYPE_NATIVEINT); |
| 5927 | if (OpStackTypeGet(stkInd).ToCorInfoType() != CORINFO_TYPE_INT && !loose) |
| 5928 | { |
| 5929 | VerificationError("MD array dimension bounds and sizes must be int." ); |
| 5930 | } |
| 5931 | args[dwArg] = loose ? (INT32) OpStackGet<NativeInt>(stkInd) : OpStackGet<INT32>(stkInd); |
| 5932 | } |
| 5933 | |
| 5934 | thisArgObj = AllocateArrayEx(TypeHandle(methTok.hClass), args, dwNumArgs); |
| 5935 | } |
| 5936 | else |
| 5937 | { |
| 5938 | CorInfoHelpFunc newHelper; |
| 5939 | { |
| 5940 | GCX_PREEMP(); |
| 5941 | newHelper = m_interpCeeInfo.getNewHelper(&methTok, m_methInfo->m_method); |
| 5942 | } |
| 5943 | |
| 5944 | MethodTable * pNewObjMT = GetMethodTableFromClsHnd(methTok.hClass); |
| 5945 | switch (newHelper) |
| 5946 | { |
| 5947 | case CORINFO_HELP_NEWFAST: |
| 5948 | default: |
| 5949 | thisArgObj = AllocateObject(pNewObjMT); |
| 5950 | break; |
| 5951 | } |
| 5952 | |
| 5953 | DoCallWork(/*virtCall*/false, OBJECTREFToObject(thisArgObj), &methTok, &callInfo); |
| 5954 | } |
| 5955 | |
| 5956 | { |
| 5957 | GCX_FORBID(); |
| 5958 | OpStackSet<Object*>(m_curStackHt, OBJECTREFToObject(thisArgObj)); |
| 5959 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_CLASS)); |
| 5960 | m_curStackHt++; |
| 5961 | } |
| 5962 | GCPROTECT_END(); // For "thisArgObj" |
| 5963 | } |
| 5964 | |
| 5965 | m_ILCodePtr += 5; |
| 5966 | } |
| 5967 | |
| 5968 | void Interpreter::NewArr() |
| 5969 | { |
| 5970 | CONTRACTL { |
| 5971 | SO_TOLERANT; |
| 5972 | THROWS; |
| 5973 | GC_TRIGGERS; |
| 5974 | MODE_COOPERATIVE; |
| 5975 | } CONTRACTL_END; |
| 5976 | |
| 5977 | assert(m_curStackHt > 0); |
| 5978 | unsigned stkInd = m_curStackHt-1; |
| 5979 | CorInfoType cit = OpStackTypeGet(stkInd).ToCorInfoType(); |
| 5980 | NativeInt sz = 0; |
| 5981 | switch (cit) |
| 5982 | { |
| 5983 | case CORINFO_TYPE_INT: |
| 5984 | sz = static_cast<NativeInt>(OpStackGet<INT32>(stkInd)); |
| 5985 | break; |
| 5986 | case CORINFO_TYPE_NATIVEINT: |
| 5987 | sz = OpStackGet<NativeInt>(stkInd); |
| 5988 | break; |
| 5989 | default: |
| 5990 | VerificationError("Size operand of 'newarr' must be int or native int." ); |
| 5991 | } |
| 5992 | |
| 5993 | unsigned elemTypeTok = getU4LittleEndian(m_ILCodePtr + 1); |
| 5994 | |
| 5995 | CORINFO_CLASS_HANDLE elemClsHnd; |
| 5996 | |
| 5997 | #if INTERP_TRACING |
| 5998 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_NewArr]); |
| 5999 | #endif // INTERP_TRACING |
| 6000 | |
| 6001 | CORINFO_RESOLVED_TOKEN elemTypeResolvedTok; |
| 6002 | |
| 6003 | { |
| 6004 | GCX_PREEMP(); |
| 6005 | ResolveToken(&elemTypeResolvedTok, elemTypeTok, CORINFO_TOKENKIND_Newarr InterpTracingArg(RTK_NewArr)); |
| 6006 | elemClsHnd = elemTypeResolvedTok.hClass; |
| 6007 | } |
| 6008 | |
| 6009 | { |
| 6010 | if (sz < 0) |
| 6011 | { |
| 6012 | COMPlusThrow(kOverflowException); |
| 6013 | } |
| 6014 | |
| 6015 | #ifdef _WIN64 |
| 6016 | // Even though ECMA allows using a native int as the argument to newarr instruction |
| 6017 | // (therefore size is INT_PTR), ArrayBase::m_NumComponents is 32-bit, so even on 64-bit |
| 6018 | // platforms we can't create an array whose size exceeds 32 bits. |
| 6019 | if (sz > INT_MAX) |
| 6020 | { |
| 6021 | EX_THROW(EEMessageException, (kOverflowException, IDS_EE_ARRAY_DIMENSIONS_EXCEEDED)); |
| 6022 | } |
| 6023 | #endif |
| 6024 | |
| 6025 | TypeHandle th(elemClsHnd); |
| 6026 | MethodTable* pArrayMT = th.GetMethodTable(); |
| 6027 | pArrayMT->CheckRunClassInitThrowing(); |
| 6028 | |
| 6029 | INT32 size32 = (INT32)sz; |
| 6030 | Object* newarray = OBJECTREFToObject(AllocateArrayEx(pArrayMT, &size32, 1)); |
| 6031 | |
| 6032 | GCX_FORBID(); |
| 6033 | OpStackTypeSet(stkInd, InterpreterType(CORINFO_TYPE_CLASS)); |
| 6034 | OpStackSet<Object*>(stkInd, newarray); |
| 6035 | } |
| 6036 | |
| 6037 | m_ILCodePtr += 5; |
| 6038 | } |
| 6039 | |
| 6040 | void Interpreter::IsInst() |
| 6041 | { |
| 6042 | CONTRACTL { |
| 6043 | SO_TOLERANT; |
| 6044 | THROWS; |
| 6045 | GC_TRIGGERS; |
| 6046 | MODE_COOPERATIVE; |
| 6047 | } CONTRACTL_END; |
| 6048 | |
| 6049 | #if INTERP_TRACING |
| 6050 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_IsInst]); |
| 6051 | #endif // INTERP_TRACING |
| 6052 | |
| 6053 | CORINFO_CLASS_HANDLE cls = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Casting InterpTracingArg(RTK_IsInst)); |
| 6054 | |
| 6055 | assert(m_curStackHt >= 1); |
| 6056 | unsigned idx = m_curStackHt - 1; |
| 6057 | #ifdef _DEBUG |
| 6058 | CorInfoType cit = OpStackTypeGet(idx).ToCorInfoType(); |
| 6059 | assert(cit == CORINFO_TYPE_CLASS || cit == CORINFO_TYPE_STRING); |
| 6060 | #endif // DEBUG |
| 6061 | |
| 6062 | Object * pObj = OpStackGet<Object*>(idx); |
| 6063 | if (pObj != NULL) |
| 6064 | { |
| 6065 | if (!ObjIsInstanceOf(pObj, TypeHandle(cls))) |
| 6066 | OpStackSet<Object*>(idx, NULL); |
| 6067 | } |
| 6068 | |
| 6069 | // Type stack stays unmodified. |
| 6070 | |
| 6071 | m_ILCodePtr += 5; |
| 6072 | } |
| 6073 | |
| 6074 | void Interpreter::CastClass() |
| 6075 | { |
| 6076 | CONTRACTL { |
| 6077 | SO_TOLERANT; |
| 6078 | THROWS; |
| 6079 | GC_TRIGGERS; |
| 6080 | MODE_COOPERATIVE; |
| 6081 | } CONTRACTL_END; |
| 6082 | |
| 6083 | #if INTERP_TRACING |
| 6084 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_CastClass]); |
| 6085 | #endif // INTERP_TRACING |
| 6086 | |
| 6087 | CORINFO_CLASS_HANDLE cls = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Casting InterpTracingArg(RTK_CastClass)); |
| 6088 | |
| 6089 | assert(m_curStackHt >= 1); |
| 6090 | unsigned idx = m_curStackHt - 1; |
| 6091 | #ifdef _DEBUG |
| 6092 | CorInfoType cit = OpStackTypeGet(idx).ToCorInfoType(); |
| 6093 | assert(cit == CORINFO_TYPE_CLASS || cit == CORINFO_TYPE_STRING); |
| 6094 | #endif // _DEBUG |
| 6095 | |
| 6096 | Object * pObj = OpStackGet<Object*>(idx); |
| 6097 | if (pObj != NULL) |
| 6098 | { |
| 6099 | if (!ObjIsInstanceOf(pObj, TypeHandle(cls), TRUE)) |
| 6100 | { |
| 6101 | UNREACHABLE(); //ObjIsInstanceOf will throw if cast can't be done |
| 6102 | } |
| 6103 | } |
| 6104 | |
| 6105 | |
| 6106 | // Type stack stays unmodified. |
| 6107 | |
| 6108 | m_ILCodePtr += 5; |
| 6109 | } |
| 6110 | |
| 6111 | void Interpreter::LocAlloc() |
| 6112 | { |
| 6113 | CONTRACTL { |
| 6114 | SO_TOLERANT; |
| 6115 | THROWS; |
| 6116 | GC_TRIGGERS; |
| 6117 | MODE_COOPERATIVE; |
| 6118 | } CONTRACTL_END; |
| 6119 | |
| 6120 | assert(m_curStackHt >= 1); |
| 6121 | unsigned idx = m_curStackHt - 1; |
| 6122 | CorInfoType cit = OpStackTypeGet(idx).ToCorInfoType(); |
| 6123 | NativeUInt sz = 0; |
| 6124 | if (cit == CORINFO_TYPE_INT || cit == CORINFO_TYPE_UINT) |
| 6125 | { |
| 6126 | sz = static_cast<NativeUInt>(OpStackGet<UINT32>(idx)); |
| 6127 | } |
| 6128 | else if (cit == CORINFO_TYPE_NATIVEINT || cit == CORINFO_TYPE_NATIVEUINT) |
| 6129 | { |
| 6130 | sz = OpStackGet<NativeUInt>(idx); |
| 6131 | } |
| 6132 | else if (s_InterpreterLooseRules && cit == CORINFO_TYPE_LONG) |
| 6133 | { |
| 6134 | sz = (NativeUInt) OpStackGet<INT64>(idx); |
| 6135 | } |
| 6136 | else |
| 6137 | { |
| 6138 | VerificationError("localloc requires int or nativeint argument." ); |
| 6139 | } |
| 6140 | if (sz == 0) |
| 6141 | { |
| 6142 | OpStackSet<void*>(idx, NULL); |
| 6143 | } |
| 6144 | else |
| 6145 | { |
| 6146 | void* res = GetLocAllocData()->Alloc(sz); |
| 6147 | if (res == NULL) ThrowStackOverflow(); |
| 6148 | OpStackSet<void*>(idx, res); |
| 6149 | } |
| 6150 | OpStackTypeSet(idx, InterpreterType(CORINFO_TYPE_NATIVEINT)); |
| 6151 | } |
| 6152 | |
| 6153 | void Interpreter::MkRefany() |
| 6154 | { |
| 6155 | CONTRACTL { |
| 6156 | SO_TOLERANT; |
| 6157 | THROWS; |
| 6158 | GC_TRIGGERS; |
| 6159 | MODE_COOPERATIVE; |
| 6160 | } CONTRACTL_END; |
| 6161 | |
| 6162 | #if INTERP_TRACING |
| 6163 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_MkRefAny]); |
| 6164 | #endif // INTERP_TRACING |
| 6165 | |
| 6166 | CORINFO_CLASS_HANDLE cls = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_MkRefAny)); |
| 6167 | assert(m_curStackHt >= 1); |
| 6168 | unsigned idx = m_curStackHt - 1; |
| 6169 | |
| 6170 | CorInfoType cit = OpStackTypeGet(idx).ToCorInfoType(); |
| 6171 | if (!(cit == CORINFO_TYPE_BYREF || cit == CORINFO_TYPE_NATIVEINT)) |
| 6172 | VerificationError("MkRefany requires byref or native int (pointer) on the stack." ); |
| 6173 | |
| 6174 | void* ptr = OpStackGet<void*>(idx); |
| 6175 | |
| 6176 | InterpreterType typedRefIT = GetTypedRefIT(&m_interpCeeInfo); |
| 6177 | TypedByRef* tbr; |
| 6178 | #if defined(_AMD64_) |
| 6179 | assert(typedRefIT.IsLargeStruct(&m_interpCeeInfo)); |
| 6180 | tbr = (TypedByRef*) LargeStructOperandStackPush(GetTypedRefSize(&m_interpCeeInfo)); |
| 6181 | OpStackSet<void*>(idx, tbr); |
| 6182 | #elif defined(_X86_) || defined(_ARM_) |
| 6183 | assert(!typedRefIT.IsLargeStruct(&m_interpCeeInfo)); |
| 6184 | tbr = OpStackGetAddr<TypedByRef>(idx); |
| 6185 | #elif defined(_ARM64_) |
| 6186 | tbr = NULL; |
| 6187 | NYI_INTERP("Unimplemented code: MkRefAny" ); |
| 6188 | #else |
| 6189 | #error "unsupported platform" |
| 6190 | #endif |
| 6191 | tbr->data = ptr; |
| 6192 | tbr->type = TypeHandle(cls); |
| 6193 | OpStackTypeSet(idx, typedRefIT); |
| 6194 | |
| 6195 | m_ILCodePtr += 5; |
| 6196 | } |
| 6197 | |
| 6198 | void Interpreter::RefanyType() |
| 6199 | { |
| 6200 | CONTRACTL { |
| 6201 | SO_TOLERANT; |
| 6202 | THROWS; |
| 6203 | GC_TRIGGERS; |
| 6204 | MODE_COOPERATIVE; |
| 6205 | } CONTRACTL_END; |
| 6206 | |
| 6207 | assert(m_curStackHt > 0); |
| 6208 | unsigned idx = m_curStackHt - 1; |
| 6209 | |
| 6210 | if (OpStackTypeGet(idx) != GetTypedRefIT(&m_interpCeeInfo)) |
| 6211 | VerificationError("RefAnyVal requires a TypedRef on the stack." ); |
| 6212 | |
| 6213 | TypedByRef* ptbr = OpStackGet<TypedByRef*>(idx); |
| 6214 | LargeStructOperandStackPop(sizeof(TypedByRef), ptbr); |
| 6215 | |
| 6216 | TypeHandle* pth = &ptbr->type; |
| 6217 | |
| 6218 | { |
| 6219 | OBJECTREF classobj = TypeHandleToTypeRef(pth); |
| 6220 | GCX_FORBID(); |
| 6221 | OpStackSet<Object*>(idx, OBJECTREFToObject(classobj)); |
| 6222 | OpStackTypeSet(idx, InterpreterType(CORINFO_TYPE_CLASS)); |
| 6223 | } |
| 6224 | m_ILCodePtr += 2; |
| 6225 | } |
| 6226 | |
| 6227 | // This (unfortunately) duplicates code in JIT_GetRuntimeTypeHandle, which |
| 6228 | // isn't callable because it sets up a Helper Method Frame. |
| 6229 | OBJECTREF Interpreter::TypeHandleToTypeRef(TypeHandle* pth) |
| 6230 | { |
| 6231 | OBJECTREF typePtr = NULL; |
| 6232 | if (!pth->IsTypeDesc()) |
| 6233 | { |
| 6234 | // Most common... and fastest case |
| 6235 | typePtr = pth->AsMethodTable()->GetManagedClassObjectIfExists(); |
| 6236 | if (typePtr == NULL) |
| 6237 | { |
| 6238 | typePtr = pth->GetManagedClassObject(); |
| 6239 | } |
| 6240 | } |
| 6241 | else |
| 6242 | { |
| 6243 | typePtr = pth->GetManagedClassObject(); |
| 6244 | } |
| 6245 | return typePtr; |
| 6246 | } |
| 6247 | |
| 6248 | CorInfoType Interpreter::GetTypeForPrimitiveValueClass(CORINFO_CLASS_HANDLE clsHnd) |
| 6249 | { |
| 6250 | CONTRACTL { |
| 6251 | SO_TOLERANT; |
| 6252 | THROWS; |
| 6253 | GC_TRIGGERS; |
| 6254 | MODE_COOPERATIVE; |
| 6255 | } CONTRACTL_END; |
| 6256 | |
| 6257 | GCX_PREEMP(); |
| 6258 | |
| 6259 | return m_interpCeeInfo.getTypeForPrimitiveValueClass(clsHnd); |
| 6260 | } |
| 6261 | |
| 6262 | void Interpreter::RefanyVal() |
| 6263 | { |
| 6264 | CONTRACTL { |
| 6265 | SO_TOLERANT; |
| 6266 | THROWS; |
| 6267 | GC_TRIGGERS; |
| 6268 | MODE_COOPERATIVE; |
| 6269 | } CONTRACTL_END; |
| 6270 | |
| 6271 | assert(m_curStackHt > 0); |
| 6272 | unsigned idx = m_curStackHt - 1; |
| 6273 | |
| 6274 | if (OpStackTypeGet(idx) != GetTypedRefIT(&m_interpCeeInfo)) |
| 6275 | VerificationError("RefAnyVal requires a TypedRef on the stack." ); |
| 6276 | |
| 6277 | #if INTERP_TRACING |
| 6278 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_RefAnyVal]); |
| 6279 | #endif // INTERP_TRACING |
| 6280 | |
| 6281 | CORINFO_CLASS_HANDLE cls = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_RefAnyVal)); |
| 6282 | TypeHandle expected(cls); |
| 6283 | |
| 6284 | TypedByRef* ptbr = OpStackGet<TypedByRef*>(idx); |
| 6285 | LargeStructOperandStackPop(sizeof(TypedByRef), ptbr); |
| 6286 | if (expected != ptbr->type) ThrowInvalidCastException(); |
| 6287 | |
| 6288 | OpStackSet<void*>(idx, static_cast<void*>(ptbr->data)); |
| 6289 | OpStackTypeSet(idx, InterpreterType(CORINFO_TYPE_BYREF)); |
| 6290 | |
| 6291 | m_ILCodePtr += 5; |
| 6292 | } |
| 6293 | |
| 6294 | void Interpreter::CkFinite() |
| 6295 | { |
| 6296 | CONTRACTL { |
| 6297 | SO_TOLERANT; |
| 6298 | THROWS; |
| 6299 | GC_TRIGGERS; |
| 6300 | MODE_COOPERATIVE; |
| 6301 | } CONTRACTL_END; |
| 6302 | |
| 6303 | assert(m_curStackHt > 0); |
| 6304 | unsigned idx = m_curStackHt - 1; |
| 6305 | |
| 6306 | CorInfoType cit = OpStackTypeGet(idx).ToCorInfoType(); |
| 6307 | double val = 0.0; |
| 6308 | |
| 6309 | switch (cit) |
| 6310 | { |
| 6311 | case CORINFO_TYPE_FLOAT: |
| 6312 | val = (double)OpStackGet<float>(idx); |
| 6313 | break; |
| 6314 | case CORINFO_TYPE_DOUBLE: |
| 6315 | val = OpStackGet<double>(idx); |
| 6316 | break; |
| 6317 | default: |
| 6318 | VerificationError("CkFinite requires a floating-point value on the stack." ); |
| 6319 | break; |
| 6320 | } |
| 6321 | |
| 6322 | if (!_finite(val)) |
| 6323 | ThrowSysArithException(); |
| 6324 | } |
| 6325 | |
| 6326 | void Interpreter::LdToken() |
| 6327 | { |
| 6328 | CONTRACTL { |
| 6329 | SO_TOLERANT; |
| 6330 | THROWS; |
| 6331 | GC_TRIGGERS; |
| 6332 | MODE_COOPERATIVE; |
| 6333 | } CONTRACTL_END; |
| 6334 | |
| 6335 | unsigned tokVal = getU4LittleEndian(m_ILCodePtr + 1); |
| 6336 | |
| 6337 | #if INTERP_TRACING |
| 6338 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_LdToken]); |
| 6339 | #endif // INTERP_TRACING |
| 6340 | |
| 6341 | |
| 6342 | CORINFO_RESOLVED_TOKEN tok; |
| 6343 | { |
| 6344 | GCX_PREEMP(); |
| 6345 | ResolveToken(&tok, tokVal, CORINFO_TOKENKIND_Ldtoken InterpTracingArg(RTK_LdToken)); |
| 6346 | } |
| 6347 | |
| 6348 | // To save duplication of the factored code at the bottom, I don't do GCX_FORBID for |
| 6349 | // these Object* values, but this comment documents the intent. |
| 6350 | if (tok.hMethod != NULL) |
| 6351 | { |
| 6352 | MethodDesc* pMethod = (MethodDesc*)tok.hMethod; |
| 6353 | Object* objPtr = OBJECTREFToObject((OBJECTREF)pMethod->GetStubMethodInfo()); |
| 6354 | OpStackSet<Object*>(m_curStackHt, objPtr); |
| 6355 | } |
| 6356 | else if (tok.hField != NULL) |
| 6357 | { |
| 6358 | FieldDesc * pField = (FieldDesc *)tok.hField; |
| 6359 | Object* objPtr = OBJECTREFToObject((OBJECTREF)pField->GetStubFieldInfo()); |
| 6360 | OpStackSet<Object*>(m_curStackHt, objPtr); |
| 6361 | } |
| 6362 | else |
| 6363 | { |
| 6364 | TypeHandle th(tok.hClass); |
| 6365 | Object* objPtr = OBJECTREFToObject(th.GetManagedClassObject()); |
| 6366 | OpStackSet<Object*>(m_curStackHt, objPtr); |
| 6367 | } |
| 6368 | |
| 6369 | { |
| 6370 | GCX_FORBID(); |
| 6371 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_CLASS)); |
| 6372 | m_curStackHt++; |
| 6373 | } |
| 6374 | |
| 6375 | m_ILCodePtr += 5; |
| 6376 | } |
| 6377 | |
| 6378 | void Interpreter::LdFtn() |
| 6379 | { |
| 6380 | CONTRACTL { |
| 6381 | SO_TOLERANT; |
| 6382 | THROWS; |
| 6383 | GC_TRIGGERS; |
| 6384 | MODE_COOPERATIVE; |
| 6385 | } CONTRACTL_END; |
| 6386 | |
| 6387 | unsigned tokVal = getU4LittleEndian(m_ILCodePtr + 2); |
| 6388 | |
| 6389 | #if INTERP_TRACING |
| 6390 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_LdFtn]); |
| 6391 | #endif // INTERP_TRACING |
| 6392 | |
| 6393 | CORINFO_RESOLVED_TOKEN tok; |
| 6394 | CORINFO_CALL_INFO callInfo; |
| 6395 | { |
| 6396 | GCX_PREEMP(); |
| 6397 | ResolveToken(&tok, tokVal, CORINFO_TOKENKIND_Method InterpTracingArg(RTK_LdFtn)); |
| 6398 | m_interpCeeInfo.getCallInfo(&tok, NULL, m_methInfo->m_method, |
| 6399 | combine(CORINFO_CALLINFO_SECURITYCHECKS,CORINFO_CALLINFO_LDFTN), |
| 6400 | &callInfo); |
| 6401 | } |
| 6402 | |
| 6403 | switch (callInfo.kind) |
| 6404 | { |
| 6405 | case CORINFO_CALL: |
| 6406 | { |
| 6407 | PCODE pCode = ((MethodDesc *)callInfo.hMethod)->GetMultiCallableAddrOfCode(); |
| 6408 | OpStackSet<void*>(m_curStackHt, (void *)pCode); |
| 6409 | GetFunctionPointerStack()[m_curStackHt] = callInfo.hMethod; |
| 6410 | } |
| 6411 | break; |
| 6412 | case CORINFO_CALL_CODE_POINTER: |
| 6413 | NYI_INTERP("Indirect code pointer." ); |
| 6414 | break; |
| 6415 | default: |
| 6416 | _ASSERTE_MSG(false, "Should not reach here: unknown call kind." ); |
| 6417 | break; |
| 6418 | } |
| 6419 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_NATIVEINT)); |
| 6420 | m_curStackHt++; |
| 6421 | m_ILCodePtr += 6; |
| 6422 | } |
| 6423 | |
| 6424 | void Interpreter::LdVirtFtn() |
| 6425 | { |
| 6426 | CONTRACTL { |
| 6427 | SO_TOLERANT; |
| 6428 | THROWS; |
| 6429 | GC_TRIGGERS; |
| 6430 | MODE_COOPERATIVE; |
| 6431 | } CONTRACTL_END; |
| 6432 | |
| 6433 | assert(m_curStackHt >= 1); |
| 6434 | unsigned ind = m_curStackHt - 1; |
| 6435 | |
| 6436 | unsigned tokVal = getU4LittleEndian(m_ILCodePtr + 2); |
| 6437 | |
| 6438 | #if INTERP_TRACING |
| 6439 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_LdVirtFtn]); |
| 6440 | #endif // INTERP_TRACING |
| 6441 | |
| 6442 | CORINFO_RESOLVED_TOKEN tok; |
| 6443 | CORINFO_CALL_INFO callInfo; |
| 6444 | CORINFO_CLASS_HANDLE classHnd; |
| 6445 | CORINFO_METHOD_HANDLE methodHnd; |
| 6446 | { |
| 6447 | GCX_PREEMP(); |
| 6448 | ResolveToken(&tok, tokVal, CORINFO_TOKENKIND_Method InterpTracingArg(RTK_LdVirtFtn)); |
| 6449 | m_interpCeeInfo.getCallInfo(&tok, NULL, m_methInfo->m_method, |
| 6450 | combine(CORINFO_CALLINFO_SECURITYCHECKS,CORINFO_CALLINFO_LDFTN), |
| 6451 | &callInfo); |
| 6452 | |
| 6453 | |
| 6454 | classHnd = tok.hClass; |
| 6455 | methodHnd = tok.hMethod; |
| 6456 | } |
| 6457 | |
| 6458 | MethodDesc * pMD = (MethodDesc *)methodHnd; |
| 6459 | PCODE pCode; |
| 6460 | if (pMD->IsVtableMethod()) |
| 6461 | { |
| 6462 | Object* obj = OpStackGet<Object*>(ind); |
| 6463 | ThrowOnInvalidPointer(obj); |
| 6464 | |
| 6465 | OBJECTREF objRef = ObjectToOBJECTREF(obj); |
| 6466 | GCPROTECT_BEGIN(objRef); |
| 6467 | pCode = pMD->GetMultiCallableAddrOfVirtualizedCode(&objRef, TypeHandle(classHnd)); |
| 6468 | GCPROTECT_END(); |
| 6469 | |
| 6470 | pMD = Entry2MethodDesc(pCode, TypeHandle(classHnd).GetMethodTable()); |
| 6471 | } |
| 6472 | else |
| 6473 | { |
| 6474 | pCode = pMD->GetMultiCallableAddrOfCode(); |
| 6475 | } |
| 6476 | OpStackSet<void*>(ind, (void *)pCode); |
| 6477 | GetFunctionPointerStack()[ind] = (CORINFO_METHOD_HANDLE)pMD; |
| 6478 | |
| 6479 | OpStackTypeSet(ind, InterpreterType(CORINFO_TYPE_NATIVEINT)); |
| 6480 | m_ILCodePtr += 6; |
| 6481 | } |
| 6482 | |
| 6483 | void Interpreter::Sizeof() |
| 6484 | { |
| 6485 | CONTRACTL { |
| 6486 | SO_TOLERANT; |
| 6487 | THROWS; |
| 6488 | GC_TRIGGERS; |
| 6489 | MODE_COOPERATIVE; |
| 6490 | } CONTRACTL_END; |
| 6491 | |
| 6492 | #if INTERP_TRACING |
| 6493 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_Sizeof]); |
| 6494 | #endif // INTERP_TRACING |
| 6495 | |
| 6496 | CORINFO_CLASS_HANDLE cls = GetTypeFromToken(m_ILCodePtr + 2, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_Sizeof)); |
| 6497 | unsigned sz; |
| 6498 | { |
| 6499 | GCX_PREEMP(); |
| 6500 | CorInfoType cit = ::asCorInfoType(cls); |
| 6501 | // For class types, the ECMA spec says to return the size of the object reference, not the referent |
| 6502 | // object. Everything else should be a value type, for which we can just return the size as reported |
| 6503 | // by the EE. |
| 6504 | switch (cit) |
| 6505 | { |
| 6506 | case CORINFO_TYPE_CLASS: |
| 6507 | sz = sizeof(Object*); |
| 6508 | break; |
| 6509 | default: |
| 6510 | sz = getClassSize(cls); |
| 6511 | break; |
| 6512 | } |
| 6513 | } |
| 6514 | |
| 6515 | OpStackSet<UINT32>(m_curStackHt, sz); |
| 6516 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_INT)); |
| 6517 | m_curStackHt++; |
| 6518 | m_ILCodePtr += 6; |
| 6519 | } |
| 6520 | |
| 6521 | |
| 6522 | // static: |
| 6523 | bool Interpreter::s_initialized = false; |
| 6524 | bool Interpreter::s_compilerStaticsInitialized = false; |
| 6525 | size_t Interpreter::s_TypedRefSize; |
| 6526 | CORINFO_CLASS_HANDLE Interpreter::s_TypedRefClsHnd; |
| 6527 | InterpreterType Interpreter::s_TypedRefIT; |
| 6528 | |
| 6529 | // Must call GetTypedRefIT |
| 6530 | size_t Interpreter::GetTypedRefSize(CEEInfo* info) |
| 6531 | { |
| 6532 | _ASSERTE_MSG(s_compilerStaticsInitialized, "Precondition" ); |
| 6533 | return s_TypedRefSize; |
| 6534 | } |
| 6535 | |
| 6536 | InterpreterType Interpreter::GetTypedRefIT(CEEInfo* info) |
| 6537 | { |
| 6538 | _ASSERTE_MSG(s_compilerStaticsInitialized, "Precondition" ); |
| 6539 | return s_TypedRefIT; |
| 6540 | } |
| 6541 | |
| 6542 | CORINFO_CLASS_HANDLE Interpreter::GetTypedRefClsHnd(CEEInfo* info) |
| 6543 | { |
| 6544 | _ASSERTE_MSG(s_compilerStaticsInitialized, "Precondition" ); |
| 6545 | return s_TypedRefClsHnd; |
| 6546 | } |
| 6547 | |
| 6548 | void Interpreter::Initialize() |
| 6549 | { |
| 6550 | assert(!s_initialized); |
| 6551 | |
| 6552 | s_InterpretMeths.ensureInit(CLRConfig::INTERNAL_Interpret); |
| 6553 | s_InterpretMethsExclude.ensureInit(CLRConfig::INTERNAL_InterpretExclude); |
| 6554 | s_InterpreterUseCaching = (s_InterpreterUseCachingFlag.val(CLRConfig::INTERNAL_InterpreterUseCaching) != 0); |
| 6555 | s_InterpreterLooseRules = (s_InterpreterLooseRulesFlag.val(CLRConfig::INTERNAL_InterpreterLooseRules) != 0); |
| 6556 | s_InterpreterDoLoopMethods = (s_InterpreterDoLoopMethodsFlag.val(CLRConfig::INTERNAL_InterpreterDoLoopMethods) != 0); |
| 6557 | |
| 6558 | // Initialize the lock used to protect method locks. |
| 6559 | // TODO: it would be better if this were a reader/writer lock. |
| 6560 | s_methodCacheLock.Init(CrstLeafLock, CRST_DEFAULT); |
| 6561 | |
| 6562 | // Similarly, initialize the lock used to protect the map from |
| 6563 | // interpreter stub addresses to their method descs. |
| 6564 | s_interpStubToMDMapLock.Init(CrstLeafLock, CRST_DEFAULT); |
| 6565 | |
| 6566 | s_initialized = true; |
| 6567 | |
| 6568 | #if INTERP_ILINSTR_PROFILE |
| 6569 | SetILInstrCategories(); |
| 6570 | #endif // INTERP_ILINSTR_PROFILE |
| 6571 | } |
| 6572 | |
| 6573 | void Interpreter::InitializeCompilerStatics(CEEInfo* info) |
| 6574 | { |
| 6575 | if (!s_compilerStaticsInitialized) |
| 6576 | { |
| 6577 | // TODO: I believe I need no synchronization around this on x86, but I do |
| 6578 | // on more permissive memory models. (Why it's OK on x86: each thread executes this |
| 6579 | // before any access to the initialized static variables; if several threads do |
| 6580 | // so, they perform idempotent initializing writes to the statics. |
| 6581 | GCX_PREEMP(); |
| 6582 | s_TypedRefClsHnd = info->getBuiltinClass(CLASSID_TYPED_BYREF); |
| 6583 | s_TypedRefIT = InterpreterType(info, s_TypedRefClsHnd); |
| 6584 | s_TypedRefSize = getClassSize(s_TypedRefClsHnd); |
| 6585 | s_compilerStaticsInitialized = true; |
| 6586 | // TODO: Need store-store memory barrier here. |
| 6587 | } |
| 6588 | } |
| 6589 | |
| 6590 | void Interpreter::Terminate() |
| 6591 | { |
| 6592 | if (s_initialized) |
| 6593 | { |
| 6594 | s_methodCacheLock.Destroy(); |
| 6595 | s_interpStubToMDMapLock.Destroy(); |
| 6596 | s_initialized = false; |
| 6597 | } |
| 6598 | } |
| 6599 | |
| 6600 | #if INTERP_ILINSTR_PROFILE |
| 6601 | void Interpreter::SetILInstrCategories() |
| 6602 | { |
| 6603 | // Start with the indentity maps |
| 6604 | for (unsigned short instr = 0; instr < 512; instr++) s_ILInstrCategories[instr] = instr; |
| 6605 | // Now make exceptions. |
| 6606 | for (unsigned instr = CEE_LDARG_0; instr <= CEE_LDARG_3; instr++) s_ILInstrCategories[instr] = CEE_LDARG; |
| 6607 | s_ILInstrCategories[CEE_LDARG_S] = CEE_LDARG; |
| 6608 | |
| 6609 | for (unsigned instr = CEE_LDLOC_0; instr <= CEE_LDLOC_3; instr++) s_ILInstrCategories[instr] = CEE_LDLOC; |
| 6610 | s_ILInstrCategories[CEE_LDLOC_S] = CEE_LDLOC; |
| 6611 | |
| 6612 | for (unsigned instr = CEE_STLOC_0; instr <= CEE_STLOC_3; instr++) s_ILInstrCategories[instr] = CEE_STLOC; |
| 6613 | s_ILInstrCategories[CEE_STLOC_S] = CEE_STLOC; |
| 6614 | |
| 6615 | s_ILInstrCategories[CEE_LDLOCA_S] = CEE_LDLOCA; |
| 6616 | |
| 6617 | for (unsigned instr = CEE_LDC_I4_M1; instr <= CEE_LDC_I4_S; instr++) s_ILInstrCategories[instr] = CEE_LDC_I4; |
| 6618 | |
| 6619 | for (unsigned instr = CEE_BR_S; instr <= CEE_BLT_UN; instr++) s_ILInstrCategories[instr] = CEE_BR; |
| 6620 | |
| 6621 | for (unsigned instr = CEE_LDIND_I1; instr <= CEE_LDIND_REF; instr++) s_ILInstrCategories[instr] = CEE_LDIND_I; |
| 6622 | |
| 6623 | for (unsigned instr = CEE_STIND_REF; instr <= CEE_STIND_R8; instr++) s_ILInstrCategories[instr] = CEE_STIND_I; |
| 6624 | |
| 6625 | for (unsigned instr = CEE_ADD; instr <= CEE_REM_UN; instr++) s_ILInstrCategories[instr] = CEE_ADD; |
| 6626 | |
| 6627 | for (unsigned instr = CEE_AND; instr <= CEE_NOT; instr++) s_ILInstrCategories[instr] = CEE_AND; |
| 6628 | |
| 6629 | for (unsigned instr = CEE_CONV_I1; instr <= CEE_CONV_U8; instr++) s_ILInstrCategories[instr] = CEE_CONV_I; |
| 6630 | for (unsigned instr = CEE_CONV_OVF_I1_UN; instr <= CEE_CONV_OVF_U_UN; instr++) s_ILInstrCategories[instr] = CEE_CONV_I; |
| 6631 | |
| 6632 | for (unsigned instr = CEE_LDELEM_I1; instr <= CEE_LDELEM_REF; instr++) s_ILInstrCategories[instr] = CEE_LDELEM; |
| 6633 | for (unsigned instr = CEE_STELEM_I; instr <= CEE_STELEM_REF; instr++) s_ILInstrCategories[instr] = CEE_STELEM; |
| 6634 | |
| 6635 | for (unsigned instr = CEE_CONV_OVF_I1; instr <= CEE_CONV_OVF_U8; instr++) s_ILInstrCategories[instr] = CEE_CONV_I; |
| 6636 | for (unsigned instr = CEE_CONV_U2; instr <= CEE_CONV_U1; instr++) s_ILInstrCategories[instr] = CEE_CONV_I; |
| 6637 | for (unsigned instr = CEE_CONV_OVF_I; instr <= CEE_CONV_OVF_U; instr++) s_ILInstrCategories[instr] = CEE_CONV_I; |
| 6638 | |
| 6639 | for (unsigned instr = CEE_ADD_OVF; instr <= CEE_SUB_OVF; instr++) s_ILInstrCategories[instr] = CEE_ADD_OVF; |
| 6640 | |
| 6641 | s_ILInstrCategories[CEE_LEAVE_S] = CEE_LEAVE; |
| 6642 | s_ILInstrCategories[CEE_CONV_U] = CEE_CONV_I; |
| 6643 | } |
| 6644 | #endif // INTERP_ILINSTR_PROFILE |
| 6645 | |
| 6646 | |
| 6647 | template<int op> |
| 6648 | void Interpreter::CompareOp() |
| 6649 | { |
| 6650 | CONTRACTL { |
| 6651 | SO_TOLERANT; |
| 6652 | THROWS; |
| 6653 | GC_TRIGGERS; |
| 6654 | MODE_COOPERATIVE; |
| 6655 | } CONTRACTL_END; |
| 6656 | |
| 6657 | assert(m_curStackHt >= 2); |
| 6658 | unsigned op1idx = m_curStackHt - 2; |
| 6659 | INT32 res = CompareOpRes<op>(op1idx); |
| 6660 | OpStackSet<INT32>(op1idx, res); |
| 6661 | OpStackTypeSet(op1idx, InterpreterType(CORINFO_TYPE_INT)); |
| 6662 | m_curStackHt--; |
| 6663 | } |
| 6664 | |
| 6665 | template<int op> |
| 6666 | INT32 Interpreter::CompareOpRes(unsigned op1idx) |
| 6667 | { |
| 6668 | CONTRACTL { |
| 6669 | SO_TOLERANT; |
| 6670 | THROWS; |
| 6671 | GC_TRIGGERS; |
| 6672 | MODE_COOPERATIVE; |
| 6673 | } CONTRACTL_END; |
| 6674 | |
| 6675 | assert(m_curStackHt >= op1idx + 2); |
| 6676 | unsigned op2idx = op1idx + 1; |
| 6677 | InterpreterType t1 = OpStackTypeGet(op1idx); |
| 6678 | CorInfoType cit1 = t1.ToCorInfoType(); |
| 6679 | assert(IsStackNormalType(cit1)); |
| 6680 | InterpreterType t2 = OpStackTypeGet(op2idx); |
| 6681 | CorInfoType cit2 = t2.ToCorInfoType(); |
| 6682 | assert(IsStackNormalType(cit2)); |
| 6683 | INT32 res = 0; |
| 6684 | |
| 6685 | switch (cit1) |
| 6686 | { |
| 6687 | case CORINFO_TYPE_INT: |
| 6688 | if (cit2 == CORINFO_TYPE_INT) |
| 6689 | { |
| 6690 | INT32 val1 = OpStackGet<INT32>(op1idx); |
| 6691 | INT32 val2 = OpStackGet<INT32>(op2idx); |
| 6692 | if (op == CO_EQ) |
| 6693 | { |
| 6694 | if (val1 == val2) res = 1; |
| 6695 | } |
| 6696 | else if (op == CO_GT) |
| 6697 | { |
| 6698 | if (val1 > val2) res = 1; |
| 6699 | } |
| 6700 | else if (op == CO_GT_UN) |
| 6701 | { |
| 6702 | if (static_cast<UINT32>(val1) > static_cast<UINT32>(val2)) res = 1; |
| 6703 | } |
| 6704 | else if (op == CO_LT) |
| 6705 | { |
| 6706 | if (val1 < val2) res = 1; |
| 6707 | } |
| 6708 | else |
| 6709 | { |
| 6710 | assert(op == CO_LT_UN); |
| 6711 | if (static_cast<UINT32>(val1) < static_cast<UINT32>(val2)) res = 1; |
| 6712 | } |
| 6713 | } |
| 6714 | else if (cit2 == CORINFO_TYPE_NATIVEINT || |
| 6715 | (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_BYREF) || |
| 6716 | (cit2 == CORINFO_TYPE_VALUECLASS |
| 6717 | && CorInfoTypeStackNormalize(GetTypeForPrimitiveValueClass(t2.ToClassHandle())) == CORINFO_TYPE_NATIVEINT)) |
| 6718 | { |
| 6719 | NativeInt val1 = OpStackGet<NativeInt>(op1idx); |
| 6720 | NativeInt val2 = OpStackGet<NativeInt>(op2idx); |
| 6721 | if (op == CO_EQ) |
| 6722 | { |
| 6723 | if (val1 == val2) res = 1; |
| 6724 | } |
| 6725 | else if (op == CO_GT) |
| 6726 | { |
| 6727 | if (val1 > val2) res = 1; |
| 6728 | } |
| 6729 | else if (op == CO_GT_UN) |
| 6730 | { |
| 6731 | if (static_cast<NativeUInt>(val1) > static_cast<NativeUInt>(val2)) res = 1; |
| 6732 | } |
| 6733 | else if (op == CO_LT) |
| 6734 | { |
| 6735 | if (val1 < val2) res = 1; |
| 6736 | } |
| 6737 | else |
| 6738 | { |
| 6739 | assert(op == CO_LT_UN); |
| 6740 | if (static_cast<NativeUInt>(val1) < static_cast<NativeUInt>(val2)) res = 1; |
| 6741 | } |
| 6742 | } |
| 6743 | else if (cit2 == CORINFO_TYPE_VALUECLASS) |
| 6744 | { |
| 6745 | cit2 = GetTypeForPrimitiveValueClass(t2.ToClassHandle()); |
| 6746 | INT32 val1 = OpStackGet<INT32>(op1idx); |
| 6747 | INT32 val2 = 0; |
| 6748 | if (CorInfoTypeStackNormalize(cit2) == CORINFO_TYPE_INT) |
| 6749 | { |
| 6750 | |
| 6751 | size_t sz = t2.Size(&m_interpCeeInfo); |
| 6752 | switch (sz) |
| 6753 | { |
| 6754 | case 1: |
| 6755 | if (CorInfoTypeIsUnsigned(cit2)) |
| 6756 | { |
| 6757 | val2 = OpStackGet<UINT8>(op2idx); |
| 6758 | } |
| 6759 | else |
| 6760 | { |
| 6761 | val2 = OpStackGet<INT8>(op2idx); |
| 6762 | } |
| 6763 | break; |
| 6764 | case 2: |
| 6765 | if (CorInfoTypeIsUnsigned(cit2)) |
| 6766 | { |
| 6767 | val2 = OpStackGet<UINT16>(op2idx); |
| 6768 | } |
| 6769 | else |
| 6770 | { |
| 6771 | val2 = OpStackGet<INT16>(op2idx); |
| 6772 | } |
| 6773 | break; |
| 6774 | case 4: |
| 6775 | val2 = OpStackGet<INT32>(op2idx); |
| 6776 | break; |
| 6777 | default: |
| 6778 | UNREACHABLE(); |
| 6779 | } |
| 6780 | } |
| 6781 | else |
| 6782 | { |
| 6783 | VerificationError("Can't compare with struct type." ); |
| 6784 | } |
| 6785 | if (op == CO_EQ) |
| 6786 | { |
| 6787 | if (val1 == val2) res = 1; |
| 6788 | } |
| 6789 | else if (op == CO_GT) |
| 6790 | { |
| 6791 | if (val1 > val2) res = 1; |
| 6792 | } |
| 6793 | else if (op == CO_GT_UN) |
| 6794 | { |
| 6795 | if (static_cast<UINT32>(val1) > static_cast<UINT32>(val2)) res = 1; |
| 6796 | } |
| 6797 | else if (op == CO_LT) |
| 6798 | { |
| 6799 | if (val1 < val2) res = 1; |
| 6800 | } |
| 6801 | else |
| 6802 | { |
| 6803 | assert(op == CO_LT_UN); |
| 6804 | if (static_cast<UINT32>(val1) < static_cast<UINT32>(val2)) res = 1; |
| 6805 | } |
| 6806 | } |
| 6807 | else |
| 6808 | { |
| 6809 | VerificationError("Binary comparision operation: type mismatch." ); |
| 6810 | } |
| 6811 | break; |
| 6812 | case CORINFO_TYPE_NATIVEINT: |
| 6813 | if (cit2 == CORINFO_TYPE_NATIVEINT || cit2 == CORINFO_TYPE_INT |
| 6814 | || (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_LONG) |
| 6815 | || (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_BYREF) |
| 6816 | || (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_CLASS && OpStackGet<void*>(op2idx) == 0)) |
| 6817 | { |
| 6818 | NativeInt val1 = OpStackGet<NativeInt>(op1idx); |
| 6819 | NativeInt val2; |
| 6820 | if (cit2 == CORINFO_TYPE_NATIVEINT) |
| 6821 | { |
| 6822 | val2 = OpStackGet<NativeInt>(op2idx); |
| 6823 | } |
| 6824 | else if (cit2 == CORINFO_TYPE_INT) |
| 6825 | { |
| 6826 | val2 = static_cast<NativeInt>(OpStackGet<INT32>(op2idx)); |
| 6827 | } |
| 6828 | else if (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_LONG) |
| 6829 | { |
| 6830 | val2 = static_cast<NativeInt>(OpStackGet<INT64>(op2idx)); |
| 6831 | } |
| 6832 | else if (cit2 == CORINFO_TYPE_CLASS) |
| 6833 | { |
| 6834 | assert(OpStackGet<void*>(op2idx) == 0); |
| 6835 | val2 = 0; |
| 6836 | } |
| 6837 | else |
| 6838 | { |
| 6839 | assert(s_InterpreterLooseRules && cit2 == CORINFO_TYPE_BYREF); |
| 6840 | val2 = reinterpret_cast<NativeInt>(OpStackGet<void*>(op2idx)); |
| 6841 | } |
| 6842 | if (op == CO_EQ) |
| 6843 | { |
| 6844 | if (val1 == val2) res = 1; |
| 6845 | } |
| 6846 | else if (op == CO_GT) |
| 6847 | { |
| 6848 | if (val1 > val2) res = 1; |
| 6849 | } |
| 6850 | else if (op == CO_GT_UN) |
| 6851 | { |
| 6852 | if (static_cast<NativeUInt>(val1) > static_cast<NativeUInt>(val2)) res = 1; |
| 6853 | } |
| 6854 | else if (op == CO_LT) |
| 6855 | { |
| 6856 | if (val1 < val2) res = 1; |
| 6857 | } |
| 6858 | else |
| 6859 | { |
| 6860 | assert(op == CO_LT_UN); |
| 6861 | if (static_cast<NativeUInt>(val1) < static_cast<NativeUInt>(val2)) res = 1; |
| 6862 | } |
| 6863 | } |
| 6864 | else |
| 6865 | { |
| 6866 | VerificationError("Binary comparision operation: type mismatch." ); |
| 6867 | } |
| 6868 | break; |
| 6869 | case CORINFO_TYPE_LONG: |
| 6870 | { |
| 6871 | bool looseLong = false; |
| 6872 | #if defined(_AMD64_) |
| 6873 | looseLong = s_InterpreterLooseRules && (cit2 == CORINFO_TYPE_NATIVEINT || cit2 == CORINFO_TYPE_BYREF); |
| 6874 | #endif |
| 6875 | if (cit2 == CORINFO_TYPE_LONG || looseLong) |
| 6876 | { |
| 6877 | INT64 val1 = OpStackGet<INT64>(op1idx); |
| 6878 | INT64 val2 = OpStackGet<INT64>(op2idx); |
| 6879 | if (op == CO_EQ) |
| 6880 | { |
| 6881 | if (val1 == val2) res = 1; |
| 6882 | } |
| 6883 | else if (op == CO_GT) |
| 6884 | { |
| 6885 | if (val1 > val2) res = 1; |
| 6886 | } |
| 6887 | else if (op == CO_GT_UN) |
| 6888 | { |
| 6889 | if (static_cast<UINT64>(val1) > static_cast<UINT64>(val2)) res = 1; |
| 6890 | } |
| 6891 | else if (op == CO_LT) |
| 6892 | { |
| 6893 | if (val1 < val2) res = 1; |
| 6894 | } |
| 6895 | else |
| 6896 | { |
| 6897 | assert(op == CO_LT_UN); |
| 6898 | if (static_cast<UINT64>(val1) < static_cast<UINT64>(val2)) res = 1; |
| 6899 | } |
| 6900 | } |
| 6901 | else |
| 6902 | { |
| 6903 | VerificationError("Binary comparision operation: type mismatch." ); |
| 6904 | } |
| 6905 | } |
| 6906 | break; |
| 6907 | |
| 6908 | case CORINFO_TYPE_CLASS: |
| 6909 | case CORINFO_TYPE_STRING: |
| 6910 | if (cit2 == CORINFO_TYPE_CLASS || cit2 == CORINFO_TYPE_STRING) |
| 6911 | { |
| 6912 | GCX_FORBID(); |
| 6913 | Object* val1 = OpStackGet<Object*>(op1idx); |
| 6914 | Object* val2 = OpStackGet<Object*>(op2idx); |
| 6915 | if (op == CO_EQ) |
| 6916 | { |
| 6917 | if (val1 == val2) res = 1; |
| 6918 | } |
| 6919 | else if (op == CO_GT_UN) |
| 6920 | { |
| 6921 | if (val1 != val2) res = 1; |
| 6922 | } |
| 6923 | else |
| 6924 | { |
| 6925 | VerificationError("Binary comparision operation: type mismatch." ); |
| 6926 | } |
| 6927 | } |
| 6928 | else |
| 6929 | { |
| 6930 | VerificationError("Binary comparision operation: type mismatch." ); |
| 6931 | } |
| 6932 | break; |
| 6933 | |
| 6934 | |
| 6935 | case CORINFO_TYPE_FLOAT: |
| 6936 | { |
| 6937 | bool isDouble = (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_DOUBLE); |
| 6938 | if (cit2 == CORINFO_TYPE_FLOAT || isDouble) |
| 6939 | { |
| 6940 | float val1 = OpStackGet<float>(op1idx); |
| 6941 | float val2 = (isDouble) ? (float) OpStackGet<double>(op2idx) : OpStackGet<float>(op2idx); |
| 6942 | if (op == CO_EQ) |
| 6943 | { |
| 6944 | // I'm assuming IEEE math here, so that if at least one is a NAN, the comparison will fail... |
| 6945 | if (val1 == val2) res = 1; |
| 6946 | } |
| 6947 | else if (op == CO_GT) |
| 6948 | { |
| 6949 | // I'm assuming that C++ arithmetic does the right thing here with infinities and NANs. |
| 6950 | if (val1 > val2) res = 1; |
| 6951 | } |
| 6952 | else if (op == CO_GT_UN) |
| 6953 | { |
| 6954 | // Check for NAN's here: if either is a NAN, they're unordered, so this comparison returns true. |
| 6955 | if (_isnan(val1) || _isnan(val2)) res = 1; |
| 6956 | else if (val1 > val2) res = 1; |
| 6957 | } |
| 6958 | else if (op == CO_LT) |
| 6959 | { |
| 6960 | if (val1 < val2) res = 1; |
| 6961 | } |
| 6962 | else |
| 6963 | { |
| 6964 | assert(op == CO_LT_UN); |
| 6965 | // Check for NAN's here: if either is a NAN, they're unordered, so this comparison returns true. |
| 6966 | if (_isnan(val1) || _isnan(val2)) res = 1; |
| 6967 | else if (val1 < val2) res = 1; |
| 6968 | } |
| 6969 | } |
| 6970 | else |
| 6971 | { |
| 6972 | VerificationError("Binary comparision operation: type mismatch." ); |
| 6973 | } |
| 6974 | } |
| 6975 | break; |
| 6976 | |
| 6977 | case CORINFO_TYPE_DOUBLE: |
| 6978 | { |
| 6979 | bool isFloat = (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_FLOAT); |
| 6980 | if (cit2 == CORINFO_TYPE_DOUBLE || isFloat) |
| 6981 | { |
| 6982 | double val1 = OpStackGet<double>(op1idx); |
| 6983 | double val2 = (isFloat) ? (double) OpStackGet<float>(op2idx) : OpStackGet<double>(op2idx); |
| 6984 | if (op == CO_EQ) |
| 6985 | { |
| 6986 | // I'm assuming IEEE math here, so that if at least one is a NAN, the comparison will fail... |
| 6987 | if (val1 == val2) res = 1; |
| 6988 | } |
| 6989 | else if (op == CO_GT) |
| 6990 | { |
| 6991 | // I'm assuming that C++ arithmetic does the right thing here with infinities and NANs. |
| 6992 | if (val1 > val2) res = 1; |
| 6993 | } |
| 6994 | else if (op == CO_GT_UN) |
| 6995 | { |
| 6996 | // Check for NAN's here: if either is a NAN, they're unordered, so this comparison returns true. |
| 6997 | if (_isnan(val1) || _isnan(val2)) res = 1; |
| 6998 | else if (val1 > val2) res = 1; |
| 6999 | } |
| 7000 | else if (op == CO_LT) |
| 7001 | { |
| 7002 | if (val1 < val2) res = 1; |
| 7003 | } |
| 7004 | else |
| 7005 | { |
| 7006 | assert(op == CO_LT_UN); |
| 7007 | // Check for NAN's here: if either is a NAN, they're unordered, so this comparison returns true. |
| 7008 | if (_isnan(val1) || _isnan(val2)) res = 1; |
| 7009 | else if (val1 < val2) res = 1; |
| 7010 | } |
| 7011 | } |
| 7012 | else |
| 7013 | { |
| 7014 | VerificationError("Binary comparision operation: type mismatch." ); |
| 7015 | } |
| 7016 | } |
| 7017 | break; |
| 7018 | |
| 7019 | case CORINFO_TYPE_BYREF: |
| 7020 | if (cit2 == CORINFO_TYPE_BYREF || (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_NATIVEINT)) |
| 7021 | { |
| 7022 | NativeInt val1 = reinterpret_cast<NativeInt>(OpStackGet<void*>(op1idx)); |
| 7023 | NativeInt val2; |
| 7024 | if (cit2 == CORINFO_TYPE_BYREF) |
| 7025 | { |
| 7026 | val2 = reinterpret_cast<NativeInt>(OpStackGet<void*>(op2idx)); |
| 7027 | } |
| 7028 | else |
| 7029 | { |
| 7030 | assert(s_InterpreterLooseRules && cit2 == CORINFO_TYPE_NATIVEINT); |
| 7031 | val2 = OpStackGet<NativeInt>(op2idx); |
| 7032 | } |
| 7033 | if (op == CO_EQ) |
| 7034 | { |
| 7035 | if (val1 == val2) res = 1; |
| 7036 | } |
| 7037 | else if (op == CO_GT) |
| 7038 | { |
| 7039 | if (val1 > val2) res = 1; |
| 7040 | } |
| 7041 | else if (op == CO_GT_UN) |
| 7042 | { |
| 7043 | if (static_cast<NativeUInt>(val1) > static_cast<NativeUInt>(val2)) res = 1; |
| 7044 | } |
| 7045 | else if (op == CO_LT) |
| 7046 | { |
| 7047 | if (val1 < val2) res = 1; |
| 7048 | } |
| 7049 | else |
| 7050 | { |
| 7051 | assert(op == CO_LT_UN); |
| 7052 | if (static_cast<NativeUInt>(val1) < static_cast<NativeUInt>(val2)) res = 1; |
| 7053 | } |
| 7054 | } |
| 7055 | else |
| 7056 | { |
| 7057 | VerificationError("Binary comparision operation: type mismatch." ); |
| 7058 | } |
| 7059 | break; |
| 7060 | |
| 7061 | case CORINFO_TYPE_VALUECLASS: |
| 7062 | { |
| 7063 | CorInfoType newCit1 = GetTypeForPrimitiveValueClass(t1.ToClassHandle()); |
| 7064 | if (newCit1 == CORINFO_TYPE_UNDEF) |
| 7065 | { |
| 7066 | VerificationError("Can't compare a value class." ); |
| 7067 | } |
| 7068 | else |
| 7069 | { |
| 7070 | NYI_INTERP("Must eliminate 'punning' value classes from the ostack." ); |
| 7071 | } |
| 7072 | } |
| 7073 | break; |
| 7074 | |
| 7075 | default: |
| 7076 | assert(false); // Should not be here if the type is stack-normal. |
| 7077 | } |
| 7078 | |
| 7079 | return res; |
| 7080 | } |
| 7081 | |
| 7082 | template<bool val, int targetLen> |
| 7083 | void Interpreter::BrOnValue() |
| 7084 | { |
| 7085 | assert(targetLen == 1 || targetLen == 4); |
| 7086 | assert(m_curStackHt > 0); |
| 7087 | unsigned stackInd = m_curStackHt - 1; |
| 7088 | InterpreterType it = OpStackTypeGet(stackInd); |
| 7089 | |
| 7090 | // It shouldn't be a value class, unless it's a punning name for a primitive integral type. |
| 7091 | if (it.ToCorInfoType() == CORINFO_TYPE_VALUECLASS) |
| 7092 | { |
| 7093 | GCX_PREEMP(); |
| 7094 | CorInfoType cit = m_interpCeeInfo.getTypeForPrimitiveValueClass(it.ToClassHandle()); |
| 7095 | if (CorInfoTypeIsIntegral(cit)) |
| 7096 | { |
| 7097 | it = InterpreterType(cit); |
| 7098 | } |
| 7099 | else |
| 7100 | { |
| 7101 | VerificationError("Can't branch on the value of a value type that is not a primitive type." ); |
| 7102 | } |
| 7103 | } |
| 7104 | |
| 7105 | #ifdef _DEBUG |
| 7106 | switch (it.ToCorInfoType()) |
| 7107 | { |
| 7108 | case CORINFO_TYPE_FLOAT: |
| 7109 | case CORINFO_TYPE_DOUBLE: |
| 7110 | VerificationError("Can't branch on the value of a float or double." ); |
| 7111 | break; |
| 7112 | default: |
| 7113 | break; |
| 7114 | } |
| 7115 | #endif // _DEBUG |
| 7116 | |
| 7117 | switch (it.SizeNotStruct()) |
| 7118 | { |
| 7119 | case 4: |
| 7120 | { |
| 7121 | INT32 branchVal = OpStackGet<INT32>(stackInd); |
| 7122 | BrOnValueTakeBranch((branchVal != 0) == val, targetLen); |
| 7123 | } |
| 7124 | break; |
| 7125 | case 8: |
| 7126 | { |
| 7127 | INT64 branchVal = OpStackGet<INT64>(stackInd); |
| 7128 | BrOnValueTakeBranch((branchVal != 0) == val, targetLen); |
| 7129 | } |
| 7130 | break; |
| 7131 | |
| 7132 | // The value-class case handled above makes sizes 1 and 2 possible. |
| 7133 | case 1: |
| 7134 | { |
| 7135 | INT8 branchVal = OpStackGet<INT8>(stackInd); |
| 7136 | BrOnValueTakeBranch((branchVal != 0) == val, targetLen); |
| 7137 | } |
| 7138 | break; |
| 7139 | case 2: |
| 7140 | { |
| 7141 | INT16 branchVal = OpStackGet<INT16>(stackInd); |
| 7142 | BrOnValueTakeBranch((branchVal != 0) == val, targetLen); |
| 7143 | } |
| 7144 | break; |
| 7145 | default: |
| 7146 | UNREACHABLE(); |
| 7147 | break; |
| 7148 | } |
| 7149 | m_curStackHt = stackInd; |
| 7150 | } |
| 7151 | |
| 7152 | // compOp is a member of the BranchComparisonOp enumeration. |
| 7153 | template<int compOp, bool reverse, int targetLen> |
| 7154 | void Interpreter::BrOnComparison() |
| 7155 | { |
| 7156 | CONTRACTL { |
| 7157 | SO_TOLERANT; |
| 7158 | THROWS; |
| 7159 | GC_TRIGGERS; |
| 7160 | MODE_COOPERATIVE; |
| 7161 | } CONTRACTL_END; |
| 7162 | |
| 7163 | assert(targetLen == 1 || targetLen == 4); |
| 7164 | assert(m_curStackHt >= 2); |
| 7165 | unsigned v1Ind = m_curStackHt - 2; |
| 7166 | |
| 7167 | INT32 res = CompareOpRes<compOp>(v1Ind); |
| 7168 | if (reverse) |
| 7169 | { |
| 7170 | res = (res == 0) ? 1 : 0; |
| 7171 | } |
| 7172 | |
| 7173 | if (res) |
| 7174 | { |
| 7175 | int offset; |
| 7176 | if (targetLen == 1) |
| 7177 | { |
| 7178 | // BYTE is unsigned... |
| 7179 | offset = getI1(m_ILCodePtr + 1); |
| 7180 | } |
| 7181 | else |
| 7182 | { |
| 7183 | offset = getI4LittleEndian(m_ILCodePtr + 1); |
| 7184 | } |
| 7185 | // 1 is the size of the current instruction; offset is relative to start of next. |
| 7186 | if (offset < 0) |
| 7187 | { |
| 7188 | // Backwards branch; enable caching. |
| 7189 | BackwardsBranchActions(offset); |
| 7190 | } |
| 7191 | ExecuteBranch(m_ILCodePtr + 1 + targetLen + offset); |
| 7192 | } |
| 7193 | else |
| 7194 | { |
| 7195 | m_ILCodePtr += targetLen + 1; |
| 7196 | } |
| 7197 | m_curStackHt -= 2; |
| 7198 | } |
| 7199 | |
| 7200 | void Interpreter::LdFld(FieldDesc* fldIn) |
| 7201 | { |
| 7202 | CONTRACTL { |
| 7203 | SO_TOLERANT; |
| 7204 | THROWS; |
| 7205 | GC_TRIGGERS; |
| 7206 | MODE_COOPERATIVE; |
| 7207 | } CONTRACTL_END; |
| 7208 | |
| 7209 | BarrierIfVolatile(); |
| 7210 | |
| 7211 | FieldDesc* fld = fldIn; |
| 7212 | CORINFO_CLASS_HANDLE valClsHnd = NULL; |
| 7213 | DWORD fldOffset; |
| 7214 | { |
| 7215 | GCX_PREEMP(); |
| 7216 | unsigned ilOffset = CurOffset(); |
| 7217 | if (fld == NULL && s_InterpreterUseCaching) |
| 7218 | { |
| 7219 | #if INTERP_TRACING |
| 7220 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_LdFld]); |
| 7221 | #endif // INTERP_TRACING |
| 7222 | fld = GetCachedInstanceField(ilOffset); |
| 7223 | } |
| 7224 | if (fld == NULL) |
| 7225 | { |
| 7226 | unsigned tok = getU4LittleEndian(m_ILCodePtr + sizeof(BYTE)); |
| 7227 | fld = FindField(tok InterpTracingArg(RTK_LdFld)); |
| 7228 | assert(fld != NULL); |
| 7229 | |
| 7230 | fldOffset = fld->GetOffset(); |
| 7231 | if (s_InterpreterUseCaching && fldOffset < FIELD_OFFSET_LAST_REAL_OFFSET) |
| 7232 | CacheInstanceField(ilOffset, fld); |
| 7233 | } |
| 7234 | else |
| 7235 | { |
| 7236 | fldOffset = fld->GetOffset(); |
| 7237 | } |
| 7238 | } |
| 7239 | CorInfoType valCit = CEEInfo::asCorInfoType(fld->GetFieldType()); |
| 7240 | |
| 7241 | // If "fldIn" is non-NULL, it's not a "real" LdFld -- the caller should handle updating the instruction pointer. |
| 7242 | if (fldIn == NULL) |
| 7243 | m_ILCodePtr += 5; // Last use above, so update now. |
| 7244 | |
| 7245 | // We need to construct the interpreter type for a struct type before we try to do coordinated |
| 7246 | // pushes of the value and type on the opstacks -- these must be atomic wrt GC, and constructing |
| 7247 | // a struct InterpreterType transitions to preemptive mode. |
| 7248 | InterpreterType structValIT; |
| 7249 | if (valCit == CORINFO_TYPE_VALUECLASS) |
| 7250 | { |
| 7251 | GCX_PREEMP(); |
| 7252 | valCit = m_interpCeeInfo.getFieldType(CORINFO_FIELD_HANDLE(fld), &valClsHnd); |
| 7253 | structValIT = InterpreterType(&m_interpCeeInfo, valClsHnd); |
| 7254 | } |
| 7255 | |
| 7256 | UINT sz = fld->GetSize(); |
| 7257 | |
| 7258 | // Live vars: valCit, structValIt |
| 7259 | assert(m_curStackHt > 0); |
| 7260 | unsigned stackInd = m_curStackHt - 1; |
| 7261 | InterpreterType addrIt = OpStackTypeGet(stackInd); |
| 7262 | CorInfoType addrCit = addrIt.ToCorInfoType(); |
| 7263 | bool isUnsigned; |
| 7264 | |
| 7265 | if (addrCit == CORINFO_TYPE_CLASS) |
| 7266 | { |
| 7267 | OBJECTREF obj = OBJECTREF(OpStackGet<Object*>(stackInd)); |
| 7268 | ThrowOnInvalidPointer(OBJECTREFToObject(obj)); |
| 7269 | if (valCit == CORINFO_TYPE_VALUECLASS) |
| 7270 | { |
| 7271 | void* srcPtr = fld->GetInstanceAddress(obj); |
| 7272 | |
| 7273 | // srcPtr is now vulnerable. |
| 7274 | GCX_FORBID(); |
| 7275 | |
| 7276 | MethodTable* valClsMT = GetMethodTableFromClsHnd(valClsHnd); |
| 7277 | if (sz > sizeof(INT64)) |
| 7278 | { |
| 7279 | // Large struct case: allocate space on the large struct operand stack. |
| 7280 | void* destPtr = LargeStructOperandStackPush(sz); |
| 7281 | OpStackSet<void*>(stackInd, destPtr); |
| 7282 | CopyValueClass(destPtr, srcPtr, valClsMT, obj->GetAppDomain()); |
| 7283 | } |
| 7284 | else |
| 7285 | { |
| 7286 | // Small struct case -- is inline in operand stack. |
| 7287 | OpStackSet<INT64>(stackInd, GetSmallStructValue(srcPtr, sz)); |
| 7288 | } |
| 7289 | } |
| 7290 | else |
| 7291 | { |
| 7292 | BYTE* fldStart = dac_cast<PTR_BYTE>(OBJECTREFToObject(obj)) + sizeof(Object) + fldOffset; |
| 7293 | // fldStart is now a vulnerable byref |
| 7294 | GCX_FORBID(); |
| 7295 | |
| 7296 | switch (sz) |
| 7297 | { |
| 7298 | case 1: |
| 7299 | isUnsigned = CorInfoTypeIsUnsigned(valCit); |
| 7300 | if (isUnsigned) |
| 7301 | { |
| 7302 | OpStackSet<UINT32>(stackInd, *reinterpret_cast<UINT8*>(fldStart)); |
| 7303 | } |
| 7304 | else |
| 7305 | { |
| 7306 | OpStackSet<INT32>(stackInd, *reinterpret_cast<INT8*>(fldStart)); |
| 7307 | } |
| 7308 | break; |
| 7309 | case 2: |
| 7310 | isUnsigned = CorInfoTypeIsUnsigned(valCit); |
| 7311 | if (isUnsigned) |
| 7312 | { |
| 7313 | OpStackSet<UINT32>(stackInd, *reinterpret_cast<UINT16*>(fldStart)); |
| 7314 | } |
| 7315 | else |
| 7316 | { |
| 7317 | OpStackSet<INT32>(stackInd, *reinterpret_cast<INT16*>(fldStart)); |
| 7318 | } |
| 7319 | break; |
| 7320 | case 4: |
| 7321 | OpStackSet<INT32>(stackInd, *reinterpret_cast<INT32*>(fldStart)); |
| 7322 | break; |
| 7323 | case 8: |
| 7324 | OpStackSet<INT64>(stackInd, *reinterpret_cast<INT64*>(fldStart)); |
| 7325 | break; |
| 7326 | default: |
| 7327 | _ASSERTE_MSG(false, "Should not reach here." ); |
| 7328 | break; |
| 7329 | } |
| 7330 | } |
| 7331 | } |
| 7332 | else |
| 7333 | { |
| 7334 | INT8* ptr = NULL; |
| 7335 | if (addrCit == CORINFO_TYPE_VALUECLASS) |
| 7336 | { |
| 7337 | size_t addrSize = addrIt.Size(&m_interpCeeInfo); |
| 7338 | // The ECMA spec allows ldfld to be applied to "an instance of a value type." |
| 7339 | // We will take the address of the ostack entry. |
| 7340 | if (addrIt.IsLargeStruct(&m_interpCeeInfo)) |
| 7341 | { |
| 7342 | ptr = reinterpret_cast<INT8*>(OpStackGet<void*>(stackInd)); |
| 7343 | // This is delicate. I'm going to pop the large struct off the large-struct stack |
| 7344 | // now, even though the field value we push may go back on the large object stack. |
| 7345 | // We rely on the fact that this instruction doesn't do any other pushing, and |
| 7346 | // we assume that LargeStructOperandStackPop does not actually deallocate any memory, |
| 7347 | // and we rely on memcpy properly handling possibly-overlapping regions being copied. |
| 7348 | // Finally (wow, this really *is* delicate), we rely on the property that the large-struct |
| 7349 | // stack pop operation doesn't deallocate memory (the size of the allocated memory for the |
| 7350 | // large-struct stack only grows in a method execution), and that if we push the field value |
| 7351 | // on the large struct stack below, the size of the pushed item is at most the size of the |
| 7352 | // popped item, so the stack won't grow (which would allow a dealloc/realloc). |
| 7353 | // (All in all, maybe it would be better to just copy the value elsewhere then pop...but |
| 7354 | // that wouldn't be very aggressive.) |
| 7355 | LargeStructOperandStackPop(addrSize, ptr); |
| 7356 | } |
| 7357 | else |
| 7358 | { |
| 7359 | ptr = reinterpret_cast<INT8*>(OpStackGetAddr(stackInd, addrSize)); |
| 7360 | } |
| 7361 | } |
| 7362 | else |
| 7363 | { |
| 7364 | assert(CorInfoTypeIsPointer(addrCit)); |
| 7365 | ptr = OpStackGet<INT8*>(stackInd); |
| 7366 | ThrowOnInvalidPointer(ptr); |
| 7367 | } |
| 7368 | |
| 7369 | assert(ptr != NULL); |
| 7370 | ptr += fldOffset; |
| 7371 | |
| 7372 | if (valCit == CORINFO_TYPE_VALUECLASS) |
| 7373 | { |
| 7374 | if (sz > sizeof(INT64)) |
| 7375 | { |
| 7376 | // Large struct case. |
| 7377 | void* dstPtr = LargeStructOperandStackPush(sz); |
| 7378 | memcpy(dstPtr, ptr, sz); |
| 7379 | OpStackSet<void*>(stackInd, dstPtr); |
| 7380 | } |
| 7381 | else |
| 7382 | { |
| 7383 | // Small struct case -- is inline in operand stack. |
| 7384 | OpStackSet<INT64>(stackInd, GetSmallStructValue(ptr, sz)); |
| 7385 | } |
| 7386 | OpStackTypeSet(stackInd, structValIT.StackNormalize()); |
| 7387 | return; |
| 7388 | } |
| 7389 | // Otherwise... |
| 7390 | switch (sz) |
| 7391 | { |
| 7392 | case 1: |
| 7393 | isUnsigned = CorInfoTypeIsUnsigned(valCit); |
| 7394 | if (isUnsigned) |
| 7395 | { |
| 7396 | OpStackSet<UINT32>(stackInd, *reinterpret_cast<UINT8*>(ptr)); |
| 7397 | } |
| 7398 | else |
| 7399 | { |
| 7400 | OpStackSet<INT32>(stackInd, *reinterpret_cast<INT8*>(ptr)); |
| 7401 | } |
| 7402 | break; |
| 7403 | case 2: |
| 7404 | isUnsigned = CorInfoTypeIsUnsigned(valCit); |
| 7405 | if (isUnsigned) |
| 7406 | { |
| 7407 | OpStackSet<UINT32>(stackInd, *reinterpret_cast<UINT16*>(ptr)); |
| 7408 | } |
| 7409 | else |
| 7410 | { |
| 7411 | OpStackSet<INT32>(stackInd, *reinterpret_cast<INT16*>(ptr)); |
| 7412 | } |
| 7413 | break; |
| 7414 | case 4: |
| 7415 | OpStackSet<INT32>(stackInd, *reinterpret_cast<INT32*>(ptr)); |
| 7416 | break; |
| 7417 | case 8: |
| 7418 | OpStackSet<INT64>(stackInd, *reinterpret_cast<INT64*>(ptr)); |
| 7419 | break; |
| 7420 | } |
| 7421 | } |
| 7422 | if (valCit == CORINFO_TYPE_VALUECLASS) |
| 7423 | { |
| 7424 | OpStackTypeSet(stackInd, structValIT.StackNormalize()); |
| 7425 | } |
| 7426 | else |
| 7427 | { |
| 7428 | OpStackTypeSet(stackInd, InterpreterType(valCit).StackNormalize()); |
| 7429 | } |
| 7430 | } |
| 7431 | |
| 7432 | void Interpreter::LdFldA() |
| 7433 | { |
| 7434 | CONTRACTL { |
| 7435 | SO_TOLERANT; |
| 7436 | THROWS; |
| 7437 | GC_TRIGGERS; |
| 7438 | MODE_COOPERATIVE; |
| 7439 | } CONTRACTL_END; |
| 7440 | |
| 7441 | unsigned tok = getU4LittleEndian(m_ILCodePtr + sizeof(BYTE)); |
| 7442 | |
| 7443 | #if INTERP_TRACING |
| 7444 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_LdFldA]); |
| 7445 | #endif // INTERP_TRACING |
| 7446 | |
| 7447 | unsigned offset = CurOffset(); |
| 7448 | m_ILCodePtr += 5; // Last use above, so update now. |
| 7449 | |
| 7450 | FieldDesc* fld = NULL; |
| 7451 | if (s_InterpreterUseCaching) fld = GetCachedInstanceField(offset); |
| 7452 | if (fld == NULL) |
| 7453 | { |
| 7454 | GCX_PREEMP(); |
| 7455 | fld = FindField(tok InterpTracingArg(RTK_LdFldA)); |
| 7456 | if (s_InterpreterUseCaching) CacheInstanceField(offset, fld); |
| 7457 | } |
| 7458 | assert(m_curStackHt > 0); |
| 7459 | unsigned stackInd = m_curStackHt - 1; |
| 7460 | CorInfoType addrCit = OpStackTypeGet(stackInd).ToCorInfoType(); |
| 7461 | if (addrCit == CORINFO_TYPE_BYREF || addrCit == CORINFO_TYPE_CLASS || addrCit == CORINFO_TYPE_NATIVEINT) |
| 7462 | { |
| 7463 | NativeInt ptr = OpStackGet<NativeInt>(stackInd); |
| 7464 | ThrowOnInvalidPointer((void*)ptr); |
| 7465 | // The "offset" below does not include the Object (i.e., the MethodTable pointer) for object pointers, so add that in first. |
| 7466 | if (addrCit == CORINFO_TYPE_CLASS) ptr += sizeof(Object); |
| 7467 | // Now add the offset. |
| 7468 | ptr += fld->GetOffset(); |
| 7469 | OpStackSet<NativeInt>(stackInd, ptr); |
| 7470 | if (addrCit == CORINFO_TYPE_NATIVEINT) |
| 7471 | { |
| 7472 | OpStackTypeSet(stackInd, InterpreterType(CORINFO_TYPE_NATIVEINT)); |
| 7473 | } |
| 7474 | else |
| 7475 | { |
| 7476 | OpStackTypeSet(stackInd, InterpreterType(CORINFO_TYPE_BYREF)); |
| 7477 | } |
| 7478 | } |
| 7479 | else |
| 7480 | { |
| 7481 | VerificationError("LdfldA requires object reference, managed or unmanaged pointer type." ); |
| 7482 | } |
| 7483 | } |
| 7484 | |
| 7485 | void Interpreter::StFld() |
| 7486 | { |
| 7487 | CONTRACTL { |
| 7488 | SO_TOLERANT; |
| 7489 | THROWS; |
| 7490 | GC_TRIGGERS; |
| 7491 | MODE_COOPERATIVE; |
| 7492 | } CONTRACTL_END; |
| 7493 | |
| 7494 | #if INTERP_TRACING |
| 7495 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_StFld]); |
| 7496 | #endif // INTERP_TRACING |
| 7497 | |
| 7498 | FieldDesc* fld = NULL; |
| 7499 | DWORD fldOffset; |
| 7500 | { |
| 7501 | unsigned ilOffset = CurOffset(); |
| 7502 | if (s_InterpreterUseCaching) fld = GetCachedInstanceField(ilOffset); |
| 7503 | if (fld == NULL) |
| 7504 | { |
| 7505 | unsigned tok = getU4LittleEndian(m_ILCodePtr + sizeof(BYTE)); |
| 7506 | GCX_PREEMP(); |
| 7507 | fld = FindField(tok InterpTracingArg(RTK_StFld)); |
| 7508 | assert(fld != NULL); |
| 7509 | fldOffset = fld->GetOffset(); |
| 7510 | if (s_InterpreterUseCaching && fldOffset < FIELD_OFFSET_LAST_REAL_OFFSET) |
| 7511 | CacheInstanceField(ilOffset, fld); |
| 7512 | } |
| 7513 | else |
| 7514 | { |
| 7515 | fldOffset = fld->GetOffset(); |
| 7516 | } |
| 7517 | } |
| 7518 | m_ILCodePtr += 5; // Last use above, so update now. |
| 7519 | |
| 7520 | UINT sz = fld->GetSize(); |
| 7521 | assert(m_curStackHt >= 2); |
| 7522 | unsigned addrInd = m_curStackHt - 2; |
| 7523 | CorInfoType addrCit = OpStackTypeGet(addrInd).ToCorInfoType(); |
| 7524 | unsigned valInd = m_curStackHt - 1; |
| 7525 | CorInfoType valCit = OpStackTypeGet(valInd).ToCorInfoType(); |
| 7526 | assert(IsStackNormalType(addrCit) && IsStackNormalType(valCit)); |
| 7527 | |
| 7528 | m_curStackHt -= 2; |
| 7529 | |
| 7530 | if (addrCit == CORINFO_TYPE_CLASS) |
| 7531 | { |
| 7532 | OBJECTREF obj = OBJECTREF(OpStackGet<Object*>(addrInd)); |
| 7533 | ThrowOnInvalidPointer(OBJECTREFToObject(obj)); |
| 7534 | |
| 7535 | if (valCit == CORINFO_TYPE_CLASS) |
| 7536 | { |
| 7537 | fld->SetRefValue(obj, ObjectToOBJECTREF(OpStackGet<Object*>(valInd))); |
| 7538 | } |
| 7539 | else if (valCit == CORINFO_TYPE_VALUECLASS) |
| 7540 | { |
| 7541 | MethodTable* valClsMT = GetMethodTableFromClsHnd(OpStackTypeGet(valInd).ToClassHandle()); |
| 7542 | void* destPtr = fld->GetInstanceAddress(obj); |
| 7543 | |
| 7544 | // destPtr is now a vulnerable byref, so can't do GC. |
| 7545 | GCX_FORBID(); |
| 7546 | |
| 7547 | // I use GCSafeMemCpy below to ensure that write barriers happen for the case in which |
| 7548 | // the value class contains GC pointers. We could do better... |
| 7549 | if (sz > sizeof(INT64)) |
| 7550 | { |
| 7551 | // Large struct case: stack slot contains pointer... |
| 7552 | void* srcPtr = OpStackGet<void*>(valInd); |
| 7553 | CopyValueClassUnchecked(destPtr, srcPtr, valClsMT); |
| 7554 | LargeStructOperandStackPop(sz, srcPtr); |
| 7555 | } |
| 7556 | else |
| 7557 | { |
| 7558 | // Small struct case -- is inline in operand stack. |
| 7559 | CopyValueClassUnchecked(destPtr, OpStackGetAddr(valInd, sz), valClsMT); |
| 7560 | } |
| 7561 | BarrierIfVolatile(); |
| 7562 | return; |
| 7563 | } |
| 7564 | else |
| 7565 | { |
| 7566 | BYTE* fldStart = dac_cast<PTR_BYTE>(OBJECTREFToObject(obj)) + sizeof(Object) + fldOffset; |
| 7567 | // fldStart is now a vulnerable byref |
| 7568 | GCX_FORBID(); |
| 7569 | |
| 7570 | switch (sz) |
| 7571 | { |
| 7572 | case 1: |
| 7573 | *reinterpret_cast<INT8*>(fldStart) = OpStackGet<INT8>(valInd); |
| 7574 | break; |
| 7575 | case 2: |
| 7576 | *reinterpret_cast<INT16*>(fldStart) = OpStackGet<INT16>(valInd); |
| 7577 | break; |
| 7578 | case 4: |
| 7579 | *reinterpret_cast<INT32*>(fldStart) = OpStackGet<INT32>(valInd); |
| 7580 | break; |
| 7581 | case 8: |
| 7582 | *reinterpret_cast<INT64*>(fldStart) = OpStackGet<INT64>(valInd); |
| 7583 | break; |
| 7584 | } |
| 7585 | } |
| 7586 | } |
| 7587 | else |
| 7588 | { |
| 7589 | assert(addrCit == CORINFO_TYPE_BYREF || addrCit == CORINFO_TYPE_NATIVEINT); |
| 7590 | |
| 7591 | INT8* destPtr = OpStackGet<INT8*>(addrInd); |
| 7592 | ThrowOnInvalidPointer(destPtr); |
| 7593 | destPtr += fldOffset; |
| 7594 | |
| 7595 | if (valCit == CORINFO_TYPE_VALUECLASS) |
| 7596 | { |
| 7597 | MethodTable* valClsMT = GetMethodTableFromClsHnd(OpStackTypeGet(valInd).ToClassHandle()); |
| 7598 | // I use GCSafeMemCpy below to ensure that write barriers happen for the case in which |
| 7599 | // the value class contains GC pointers. We could do better... |
| 7600 | if (sz > sizeof(INT64)) |
| 7601 | { |
| 7602 | // Large struct case: stack slot contains pointer... |
| 7603 | void* srcPtr = OpStackGet<void*>(valInd); |
| 7604 | CopyValueClassUnchecked(destPtr, srcPtr, valClsMT); |
| 7605 | LargeStructOperandStackPop(sz, srcPtr); |
| 7606 | } |
| 7607 | else |
| 7608 | { |
| 7609 | // Small struct case -- is inline in operand stack. |
| 7610 | CopyValueClassUnchecked(destPtr, OpStackGetAddr(valInd, sz), valClsMT); |
| 7611 | } |
| 7612 | BarrierIfVolatile(); |
| 7613 | return; |
| 7614 | } |
| 7615 | else if (valCit == CORINFO_TYPE_CLASS) |
| 7616 | { |
| 7617 | OBJECTREF val = ObjectToOBJECTREF(OpStackGet<Object*>(valInd)); |
| 7618 | SetObjectReferenceUnchecked(reinterpret_cast<OBJECTREF*>(destPtr), val); |
| 7619 | } |
| 7620 | else |
| 7621 | { |
| 7622 | switch (sz) |
| 7623 | { |
| 7624 | case 1: |
| 7625 | *reinterpret_cast<INT8*>(destPtr) = OpStackGet<INT8>(valInd); |
| 7626 | break; |
| 7627 | case 2: |
| 7628 | *reinterpret_cast<INT16*>(destPtr) = OpStackGet<INT16>(valInd); |
| 7629 | break; |
| 7630 | case 4: |
| 7631 | *reinterpret_cast<INT32*>(destPtr) = OpStackGet<INT32>(valInd); |
| 7632 | break; |
| 7633 | case 8: |
| 7634 | *reinterpret_cast<INT64*>(destPtr) = OpStackGet<INT64>(valInd); |
| 7635 | break; |
| 7636 | } |
| 7637 | } |
| 7638 | } |
| 7639 | BarrierIfVolatile(); |
| 7640 | } |
| 7641 | |
| 7642 | bool Interpreter::StaticFldAddrWork(CORINFO_ACCESS_FLAGS accessFlgs, /*out (byref)*/void** pStaticFieldAddr, /*out*/InterpreterType* pit, /*out*/UINT* pFldSize, /*out*/bool* pManagedMem) |
| 7643 | { |
| 7644 | CONTRACTL { |
| 7645 | SO_TOLERANT; |
| 7646 | THROWS; |
| 7647 | GC_TRIGGERS; |
| 7648 | MODE_COOPERATIVE; |
| 7649 | } CONTRACTL_END; |
| 7650 | |
| 7651 | bool isCacheable = true; |
| 7652 | *pManagedMem = true; // Default result. |
| 7653 | |
| 7654 | unsigned tok = getU4LittleEndian(m_ILCodePtr + sizeof(BYTE)); |
| 7655 | m_ILCodePtr += 5; // Above is last use of m_ILCodePtr in this method, so update now. |
| 7656 | |
| 7657 | FieldDesc* fld; |
| 7658 | CORINFO_FIELD_INFO fldInfo; |
| 7659 | CORINFO_RESOLVED_TOKEN fldTok; |
| 7660 | |
| 7661 | void* pFldAddr = NULL; |
| 7662 | { |
| 7663 | { |
| 7664 | GCX_PREEMP(); |
| 7665 | |
| 7666 | ResolveToken(&fldTok, tok, CORINFO_TOKENKIND_Field InterpTracingArg(RTK_SFldAddr)); |
| 7667 | fld = reinterpret_cast<FieldDesc*>(fldTok.hField); |
| 7668 | |
| 7669 | m_interpCeeInfo.getFieldInfo(&fldTok, m_methInfo->m_method, accessFlgs, &fldInfo); |
| 7670 | } |
| 7671 | |
| 7672 | EnsureClassInit(GetMethodTableFromClsHnd(fldTok.hClass)); |
| 7673 | |
| 7674 | if (fldInfo.fieldAccessor == CORINFO_FIELD_STATIC_TLS) |
| 7675 | { |
| 7676 | NYI_INTERP("Thread-local static." ); |
| 7677 | } |
| 7678 | else if (fldInfo.fieldAccessor == CORINFO_FIELD_STATIC_SHARED_STATIC_HELPER |
| 7679 | || fldInfo.fieldAccessor == CORINFO_FIELD_STATIC_GENERICS_STATIC_HELPER) |
| 7680 | { |
| 7681 | *pStaticFieldAddr = fld->GetCurrentStaticAddress(); |
| 7682 | isCacheable = false; |
| 7683 | } |
| 7684 | else |
| 7685 | { |
| 7686 | *pStaticFieldAddr = fld->GetCurrentStaticAddress(); |
| 7687 | } |
| 7688 | } |
| 7689 | if (fldInfo.structType != NULL && fldInfo.fieldType != CORINFO_TYPE_CLASS && fldInfo.fieldType != CORINFO_TYPE_PTR) |
| 7690 | { |
| 7691 | *pit = InterpreterType(&m_interpCeeInfo, fldInfo.structType); |
| 7692 | |
| 7693 | if ((fldInfo.fieldFlags & CORINFO_FLG_FIELD_UNMANAGED) == 0) |
| 7694 | { |
| 7695 | // For valuetypes in managed memory, the address returned contains a pointer into the heap, to a boxed version of the |
| 7696 | // static variable; return a pointer to the boxed struct. |
| 7697 | isCacheable = false; |
| 7698 | } |
| 7699 | else |
| 7700 | { |
| 7701 | *pManagedMem = false; |
| 7702 | } |
| 7703 | } |
| 7704 | else |
| 7705 | { |
| 7706 | *pit = InterpreterType(fldInfo.fieldType); |
| 7707 | } |
| 7708 | *pFldSize = fld->GetSize(); |
| 7709 | |
| 7710 | return isCacheable; |
| 7711 | } |
| 7712 | |
| 7713 | void Interpreter::LdSFld() |
| 7714 | { |
| 7715 | CONTRACTL { |
| 7716 | SO_TOLERANT; |
| 7717 | THROWS; |
| 7718 | GC_TRIGGERS; |
| 7719 | MODE_COOPERATIVE; |
| 7720 | } CONTRACTL_END; |
| 7721 | |
| 7722 | InterpreterType fldIt; |
| 7723 | UINT sz; |
| 7724 | bool managedMem; |
| 7725 | void* srcPtr = NULL; |
| 7726 | |
| 7727 | BarrierIfVolatile(); |
| 7728 | |
| 7729 | GCPROTECT_BEGININTERIOR(srcPtr); |
| 7730 | |
| 7731 | StaticFldAddr(CORINFO_ACCESS_GET, &srcPtr, &fldIt, &sz, &managedMem); |
| 7732 | |
| 7733 | bool isUnsigned; |
| 7734 | |
| 7735 | if (fldIt.IsStruct()) |
| 7736 | { |
| 7737 | // Large struct case. |
| 7738 | CORINFO_CLASS_HANDLE sh = fldIt.ToClassHandle(); |
| 7739 | // This call is GC_TRIGGERS, so do it before we copy the value: no GC after this, |
| 7740 | // until the op stacks and ht are consistent. |
| 7741 | OpStackTypeSet(m_curStackHt, InterpreterType(&m_interpCeeInfo, sh).StackNormalize()); |
| 7742 | if (fldIt.IsLargeStruct(&m_interpCeeInfo)) |
| 7743 | { |
| 7744 | void* dstPtr = LargeStructOperandStackPush(sz); |
| 7745 | memcpy(dstPtr, srcPtr, sz); |
| 7746 | OpStackSet<void*>(m_curStackHt, dstPtr); |
| 7747 | } |
| 7748 | else |
| 7749 | { |
| 7750 | OpStackSet<INT64>(m_curStackHt, GetSmallStructValue(srcPtr, sz)); |
| 7751 | } |
| 7752 | } |
| 7753 | else |
| 7754 | { |
| 7755 | CorInfoType valCit = fldIt.ToCorInfoType(); |
| 7756 | switch (sz) |
| 7757 | { |
| 7758 | case 1: |
| 7759 | isUnsigned = CorInfoTypeIsUnsigned(valCit); |
| 7760 | if (isUnsigned) |
| 7761 | { |
| 7762 | OpStackSet<UINT32>(m_curStackHt, *reinterpret_cast<UINT8*>(srcPtr)); |
| 7763 | } |
| 7764 | else |
| 7765 | { |
| 7766 | OpStackSet<INT32>(m_curStackHt, *reinterpret_cast<INT8*>(srcPtr)); |
| 7767 | } |
| 7768 | break; |
| 7769 | case 2: |
| 7770 | isUnsigned = CorInfoTypeIsUnsigned(valCit); |
| 7771 | if (isUnsigned) |
| 7772 | { |
| 7773 | OpStackSet<UINT32>(m_curStackHt, *reinterpret_cast<UINT16*>(srcPtr)); |
| 7774 | } |
| 7775 | else |
| 7776 | { |
| 7777 | OpStackSet<INT32>(m_curStackHt, *reinterpret_cast<INT16*>(srcPtr)); |
| 7778 | } |
| 7779 | break; |
| 7780 | case 4: |
| 7781 | OpStackSet<INT32>(m_curStackHt, *reinterpret_cast<INT32*>(srcPtr)); |
| 7782 | break; |
| 7783 | case 8: |
| 7784 | OpStackSet<INT64>(m_curStackHt, *reinterpret_cast<INT64*>(srcPtr)); |
| 7785 | break; |
| 7786 | default: |
| 7787 | _ASSERTE_MSG(false, "LdSFld: this should have exhausted all the possible sizes." ); |
| 7788 | break; |
| 7789 | } |
| 7790 | OpStackTypeSet(m_curStackHt, fldIt.StackNormalize()); |
| 7791 | } |
| 7792 | m_curStackHt++; |
| 7793 | GCPROTECT_END(); |
| 7794 | } |
| 7795 | |
| 7796 | void Interpreter::EnsureClassInit(MethodTable* pMT) |
| 7797 | { |
| 7798 | if (!pMT->IsClassInited()) |
| 7799 | { |
| 7800 | pMT->CheckRestore(); |
| 7801 | // This is tantamount to a call, so exempt it from the cycle count. |
| 7802 | #if INTERP_ILCYCLE_PROFILE |
| 7803 | unsigned __int64 startCycles; |
| 7804 | bool b = CycleTimer::GetThreadCyclesS(&startCycles); assert(b); |
| 7805 | #endif // INTERP_ILCYCLE_PROFILE |
| 7806 | |
| 7807 | pMT->CheckRunClassInitThrowing(); |
| 7808 | |
| 7809 | #if INTERP_ILCYCLE_PROFILE |
| 7810 | unsigned __int64 endCycles; |
| 7811 | b = CycleTimer::GetThreadCyclesS(&endCycles); assert(b); |
| 7812 | m_exemptCycles += (endCycles - startCycles); |
| 7813 | #endif // INTERP_ILCYCLE_PROFILE |
| 7814 | } |
| 7815 | } |
| 7816 | |
| 7817 | void Interpreter::LdSFldA() |
| 7818 | { |
| 7819 | CONTRACTL { |
| 7820 | SO_TOLERANT; |
| 7821 | THROWS; |
| 7822 | GC_TRIGGERS; |
| 7823 | MODE_COOPERATIVE; |
| 7824 | } CONTRACTL_END; |
| 7825 | |
| 7826 | InterpreterType fldIt; |
| 7827 | UINT fldSz; |
| 7828 | bool managedMem; |
| 7829 | void* srcPtr = NULL; |
| 7830 | GCPROTECT_BEGININTERIOR(srcPtr); |
| 7831 | |
| 7832 | StaticFldAddr(CORINFO_ACCESS_ADDRESS, &srcPtr, &fldIt, &fldSz, &managedMem); |
| 7833 | |
| 7834 | OpStackSet<void*>(m_curStackHt, srcPtr); |
| 7835 | if (managedMem) |
| 7836 | { |
| 7837 | // Static variable in managed memory... |
| 7838 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_BYREF)); |
| 7839 | } |
| 7840 | else |
| 7841 | { |
| 7842 | // RVA is in unmanaged memory. |
| 7843 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_NATIVEINT)); |
| 7844 | } |
| 7845 | m_curStackHt++; |
| 7846 | |
| 7847 | GCPROTECT_END(); |
| 7848 | } |
| 7849 | |
| 7850 | void Interpreter::StSFld() |
| 7851 | { |
| 7852 | CONTRACTL { |
| 7853 | SO_TOLERANT; |
| 7854 | THROWS; |
| 7855 | GC_TRIGGERS; |
| 7856 | MODE_COOPERATIVE; |
| 7857 | } CONTRACTL_END; |
| 7858 | InterpreterType fldIt; |
| 7859 | UINT sz; |
| 7860 | bool managedMem; |
| 7861 | void* dstPtr = NULL; |
| 7862 | GCPROTECT_BEGININTERIOR(dstPtr); |
| 7863 | |
| 7864 | StaticFldAddr(CORINFO_ACCESS_SET, &dstPtr, &fldIt, &sz, &managedMem); |
| 7865 | |
| 7866 | m_curStackHt--; |
| 7867 | InterpreterType valIt = OpStackTypeGet(m_curStackHt); |
| 7868 | CorInfoType valCit = valIt.ToCorInfoType(); |
| 7869 | |
| 7870 | if (valCit == CORINFO_TYPE_VALUECLASS) |
| 7871 | { |
| 7872 | MethodTable* valClsMT = GetMethodTableFromClsHnd(valIt.ToClassHandle()); |
| 7873 | if (sz > sizeof(INT64)) |
| 7874 | { |
| 7875 | // Large struct case: value in operand stack is indirect pointer. |
| 7876 | void* srcPtr = OpStackGet<void*>(m_curStackHt); |
| 7877 | CopyValueClassUnchecked(dstPtr, srcPtr, valClsMT); |
| 7878 | LargeStructOperandStackPop(sz, srcPtr); |
| 7879 | } |
| 7880 | else |
| 7881 | { |
| 7882 | // Struct value is inline in the operand stack. |
| 7883 | CopyValueClassUnchecked(dstPtr, OpStackGetAddr(m_curStackHt, sz), valClsMT); |
| 7884 | } |
| 7885 | } |
| 7886 | else if (valCit == CORINFO_TYPE_CLASS) |
| 7887 | { |
| 7888 | SetObjectReferenceUnchecked(reinterpret_cast<OBJECTREF*>(dstPtr), ObjectToOBJECTREF(OpStackGet<Object*>(m_curStackHt))); |
| 7889 | } |
| 7890 | else |
| 7891 | { |
| 7892 | switch (sz) |
| 7893 | { |
| 7894 | case 1: |
| 7895 | *reinterpret_cast<UINT8*>(dstPtr) = OpStackGet<UINT8>(m_curStackHt); |
| 7896 | break; |
| 7897 | case 2: |
| 7898 | *reinterpret_cast<UINT16*>(dstPtr) = OpStackGet<UINT16>(m_curStackHt); |
| 7899 | break; |
| 7900 | case 4: |
| 7901 | *reinterpret_cast<UINT32*>(dstPtr) = OpStackGet<UINT32>(m_curStackHt); |
| 7902 | break; |
| 7903 | case 8: |
| 7904 | *reinterpret_cast<UINT64*>(dstPtr) = OpStackGet<UINT64>(m_curStackHt); |
| 7905 | break; |
| 7906 | default: |
| 7907 | _ASSERTE_MSG(false, "This should have exhausted all the possible sizes." ); |
| 7908 | break; |
| 7909 | } |
| 7910 | } |
| 7911 | GCPROTECT_END(); |
| 7912 | |
| 7913 | BarrierIfVolatile(); |
| 7914 | } |
| 7915 | |
| 7916 | template<typename T, bool IsObjType, CorInfoType cit> |
| 7917 | void Interpreter::LdElemWithType() |
| 7918 | { |
| 7919 | CONTRACTL { |
| 7920 | SO_TOLERANT; |
| 7921 | THROWS; |
| 7922 | GC_TRIGGERS; |
| 7923 | MODE_COOPERATIVE; |
| 7924 | } CONTRACTL_END; |
| 7925 | |
| 7926 | assert(m_curStackHt >= 2); |
| 7927 | unsigned arrInd = m_curStackHt - 2; |
| 7928 | unsigned indexInd = m_curStackHt - 1; |
| 7929 | |
| 7930 | assert(OpStackTypeGet(arrInd).ToCorInfoType() == CORINFO_TYPE_CLASS); |
| 7931 | |
| 7932 | ArrayBase* a = OpStackGet<ArrayBase*>(arrInd); |
| 7933 | ThrowOnInvalidPointer(a); |
| 7934 | int len = a->GetNumComponents(); |
| 7935 | |
| 7936 | CorInfoType indexCit = OpStackTypeGet(indexInd).ToCorInfoType(); |
| 7937 | if (indexCit == CORINFO_TYPE_INT) |
| 7938 | { |
| 7939 | int index = OpStackGet<INT32>(indexInd); |
| 7940 | if (index < 0 || index >= len) ThrowArrayBoundsException(); |
| 7941 | |
| 7942 | GCX_FORBID(); |
| 7943 | |
| 7944 | if (IsObjType) |
| 7945 | { |
| 7946 | OBJECTREF res = reinterpret_cast<PtrArray*>(a)->GetAt(index); |
| 7947 | OpStackSet<OBJECTREF>(arrInd, res); |
| 7948 | } |
| 7949 | else |
| 7950 | { |
| 7951 | T res = reinterpret_cast<Array<T>*>(a)->GetDirectConstPointerToNonObjectElements()[index]; |
| 7952 | if (cit == CORINFO_TYPE_INT) |
| 7953 | { |
| 7954 | // Widen narrow types. |
| 7955 | int ires = (int)res; |
| 7956 | OpStackSet<int>(arrInd, ires); |
| 7957 | } |
| 7958 | else |
| 7959 | { |
| 7960 | OpStackSet<T>(arrInd, res); |
| 7961 | } |
| 7962 | } |
| 7963 | } |
| 7964 | else |
| 7965 | { |
| 7966 | assert(indexCit == CORINFO_TYPE_NATIVEINT); |
| 7967 | NativeInt index = OpStackGet<NativeInt>(indexInd); |
| 7968 | if (index < 0 || index >= NativeInt(len)) ThrowArrayBoundsException(); |
| 7969 | |
| 7970 | GCX_FORBID(); |
| 7971 | |
| 7972 | if (IsObjType) |
| 7973 | { |
| 7974 | OBJECTREF res = reinterpret_cast<PtrArray*>(a)->GetAt(index); |
| 7975 | OpStackSet<OBJECTREF>(arrInd, res); |
| 7976 | } |
| 7977 | else |
| 7978 | { |
| 7979 | T res = reinterpret_cast<Array<T>*>(a)->GetDirectConstPointerToNonObjectElements()[index]; |
| 7980 | OpStackSet<T>(arrInd, res); |
| 7981 | } |
| 7982 | } |
| 7983 | |
| 7984 | OpStackTypeSet(arrInd, InterpreterType(cit)); |
| 7985 | m_curStackHt--; |
| 7986 | } |
| 7987 | |
| 7988 | template<typename T, bool IsObjType> |
| 7989 | void Interpreter::StElemWithType() |
| 7990 | { |
| 7991 | CONTRACTL { |
| 7992 | SO_TOLERANT; |
| 7993 | THROWS; |
| 7994 | GC_TRIGGERS; |
| 7995 | MODE_COOPERATIVE; |
| 7996 | } CONTRACTL_END; |
| 7997 | |
| 7998 | |
| 7999 | assert(m_curStackHt >= 3); |
| 8000 | unsigned arrInd = m_curStackHt - 3; |
| 8001 | unsigned indexInd = m_curStackHt - 2; |
| 8002 | unsigned valInd = m_curStackHt - 1; |
| 8003 | |
| 8004 | assert(OpStackTypeGet(arrInd).ToCorInfoType() == CORINFO_TYPE_CLASS); |
| 8005 | |
| 8006 | ArrayBase* a = OpStackGet<ArrayBase*>(arrInd); |
| 8007 | ThrowOnInvalidPointer(a); |
| 8008 | int len = a->GetNumComponents(); |
| 8009 | |
| 8010 | CorInfoType indexCit = OpStackTypeGet(indexInd).ToCorInfoType(); |
| 8011 | if (indexCit == CORINFO_TYPE_INT) |
| 8012 | { |
| 8013 | int index = OpStackGet<INT32>(indexInd); |
| 8014 | if (index < 0 || index >= len) ThrowArrayBoundsException(); |
| 8015 | if (IsObjType) |
| 8016 | { |
| 8017 | struct _gc { |
| 8018 | OBJECTREF val; |
| 8019 | OBJECTREF a; |
| 8020 | } gc; |
| 8021 | gc.val = ObjectToOBJECTREF(OpStackGet<Object*>(valInd)); |
| 8022 | gc.a = ObjectToOBJECTREF(a); |
| 8023 | GCPROTECT_BEGIN(gc); |
| 8024 | if (gc.val != NULL && |
| 8025 | !ObjIsInstanceOf(OBJECTREFToObject(gc.val), reinterpret_cast<PtrArray*>(a)->GetArrayElementTypeHandle())) |
| 8026 | COMPlusThrow(kArrayTypeMismatchException); |
| 8027 | reinterpret_cast<PtrArray*>(OBJECTREFToObject(gc.a))->SetAt(index, gc.val); |
| 8028 | GCPROTECT_END(); |
| 8029 | } |
| 8030 | else |
| 8031 | { |
| 8032 | GCX_FORBID(); |
| 8033 | T val = OpStackGet<T>(valInd); |
| 8034 | reinterpret_cast<Array<T>*>(a)->GetDirectPointerToNonObjectElements()[index] = val; |
| 8035 | } |
| 8036 | } |
| 8037 | else |
| 8038 | { |
| 8039 | assert(indexCit == CORINFO_TYPE_NATIVEINT); |
| 8040 | NativeInt index = OpStackGet<NativeInt>(indexInd); |
| 8041 | if (index < 0 || index >= NativeInt(len)) ThrowArrayBoundsException(); |
| 8042 | if (IsObjType) |
| 8043 | { |
| 8044 | struct _gc { |
| 8045 | OBJECTREF val; |
| 8046 | OBJECTREF a; |
| 8047 | } gc; |
| 8048 | gc.val = ObjectToOBJECTREF(OpStackGet<Object*>(valInd)); |
| 8049 | gc.a = ObjectToOBJECTREF(a); |
| 8050 | GCPROTECT_BEGIN(gc); |
| 8051 | if (gc.val != NULL && |
| 8052 | !ObjIsInstanceOf(OBJECTREFToObject(gc.val), reinterpret_cast<PtrArray*>(a)->GetArrayElementTypeHandle())) |
| 8053 | COMPlusThrow(kArrayTypeMismatchException); |
| 8054 | reinterpret_cast<PtrArray*>(OBJECTREFToObject(gc.a))->SetAt(index, gc.val); |
| 8055 | GCPROTECT_END(); |
| 8056 | } |
| 8057 | else |
| 8058 | { |
| 8059 | GCX_FORBID(); |
| 8060 | T val = OpStackGet<T>(valInd); |
| 8061 | reinterpret_cast<Array<T>*>(a)->GetDirectPointerToNonObjectElements()[index] = val; |
| 8062 | } |
| 8063 | } |
| 8064 | |
| 8065 | m_curStackHt -= 3; |
| 8066 | } |
| 8067 | |
| 8068 | template<bool takeAddress> |
| 8069 | void Interpreter::LdElem() |
| 8070 | { |
| 8071 | CONTRACTL { |
| 8072 | SO_TOLERANT; |
| 8073 | THROWS; |
| 8074 | GC_TRIGGERS; |
| 8075 | MODE_COOPERATIVE; |
| 8076 | } CONTRACTL_END; |
| 8077 | |
| 8078 | assert(m_curStackHt >= 2); |
| 8079 | unsigned arrInd = m_curStackHt - 2; |
| 8080 | unsigned indexInd = m_curStackHt - 1; |
| 8081 | |
| 8082 | unsigned elemTypeTok = getU4LittleEndian(m_ILCodePtr + 1); |
| 8083 | |
| 8084 | #if INTERP_TRACING |
| 8085 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_LdElem]); |
| 8086 | #endif // INTERP_TRACING |
| 8087 | |
| 8088 | unsigned ilOffset = CurOffset(); |
| 8089 | CORINFO_CLASS_HANDLE clsHnd = NULL; |
| 8090 | if (s_InterpreterUseCaching) clsHnd = GetCachedClassHandle(ilOffset); |
| 8091 | |
| 8092 | if (clsHnd == NULL) |
| 8093 | { |
| 8094 | |
| 8095 | CORINFO_RESOLVED_TOKEN elemTypeResolvedTok; |
| 8096 | { |
| 8097 | GCX_PREEMP(); |
| 8098 | ResolveToken(&elemTypeResolvedTok, elemTypeTok, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_LdElem)); |
| 8099 | clsHnd = elemTypeResolvedTok.hClass; |
| 8100 | } |
| 8101 | if (s_InterpreterUseCaching) CacheClassHandle(ilOffset, clsHnd); |
| 8102 | } |
| 8103 | |
| 8104 | CorInfoType elemCit = ::asCorInfoType(clsHnd); |
| 8105 | |
| 8106 | m_ILCodePtr += 5; |
| 8107 | |
| 8108 | |
| 8109 | InterpreterType elemIt; |
| 8110 | if (elemCit == CORINFO_TYPE_VALUECLASS) |
| 8111 | { |
| 8112 | elemIt = InterpreterType(&m_interpCeeInfo, clsHnd); |
| 8113 | } |
| 8114 | else |
| 8115 | { |
| 8116 | elemIt = InterpreterType(elemCit); |
| 8117 | } |
| 8118 | |
| 8119 | assert(OpStackTypeGet(arrInd).ToCorInfoType() == CORINFO_TYPE_CLASS); |
| 8120 | |
| 8121 | |
| 8122 | ArrayBase* a = OpStackGet<ArrayBase*>(arrInd); |
| 8123 | ThrowOnInvalidPointer(a); |
| 8124 | int len = a->GetNumComponents(); |
| 8125 | |
| 8126 | NativeInt index; |
| 8127 | { |
| 8128 | GCX_FORBID(); |
| 8129 | |
| 8130 | CorInfoType indexCit = OpStackTypeGet(indexInd).ToCorInfoType(); |
| 8131 | if (indexCit == CORINFO_TYPE_INT) |
| 8132 | { |
| 8133 | index = static_cast<NativeInt>(OpStackGet<INT32>(indexInd)); |
| 8134 | } |
| 8135 | else |
| 8136 | { |
| 8137 | assert(indexCit == CORINFO_TYPE_NATIVEINT); |
| 8138 | index = OpStackGet<NativeInt>(indexInd); |
| 8139 | } |
| 8140 | } |
| 8141 | if (index < 0 || index >= len) ThrowArrayBoundsException(); |
| 8142 | |
| 8143 | bool throwTypeMismatch = NULL; |
| 8144 | { |
| 8145 | void* elemPtr = a->GetDataPtr() + a->GetComponentSize() * index; |
| 8146 | // elemPtr is now a vulnerable byref. |
| 8147 | GCX_FORBID(); |
| 8148 | |
| 8149 | if (takeAddress) |
| 8150 | { |
| 8151 | // If the element type is a class type, may have to do a type check. |
| 8152 | if (elemCit == CORINFO_TYPE_CLASS) |
| 8153 | { |
| 8154 | // Unless there was a readonly prefix, which removes the need to |
| 8155 | // do the (dynamic) type check. |
| 8156 | if (m_readonlyFlag) |
| 8157 | { |
| 8158 | // Consume the readonly prefix, and don't do the type check below. |
| 8159 | m_readonlyFlag = false; |
| 8160 | } |
| 8161 | else |
| 8162 | { |
| 8163 | PtrArray* pa = reinterpret_cast<PtrArray*>(a); |
| 8164 | // The element array type must be exactly the referent type of the managed |
| 8165 | // pointer we'll be creating. |
| 8166 | if (pa->GetArrayElementTypeHandle() != TypeHandle(clsHnd)) |
| 8167 | { |
| 8168 | throwTypeMismatch = true; |
| 8169 | } |
| 8170 | } |
| 8171 | } |
| 8172 | if (!throwTypeMismatch) |
| 8173 | { |
| 8174 | // If we're not going to throw the exception, we can take the address. |
| 8175 | OpStackSet<void*>(arrInd, elemPtr); |
| 8176 | OpStackTypeSet(arrInd, InterpreterType(CORINFO_TYPE_BYREF)); |
| 8177 | m_curStackHt--; |
| 8178 | } |
| 8179 | } |
| 8180 | else |
| 8181 | { |
| 8182 | m_curStackHt -= 2; |
| 8183 | LdFromMemAddr(elemPtr, elemIt); |
| 8184 | return; |
| 8185 | } |
| 8186 | } |
| 8187 | |
| 8188 | // If we're going to throw, we do the throw outside the GCX_FORBID region above, since it requires GC_TRIGGERS. |
| 8189 | if (throwTypeMismatch) |
| 8190 | { |
| 8191 | COMPlusThrow(kArrayTypeMismatchException); |
| 8192 | } |
| 8193 | } |
| 8194 | |
| 8195 | void Interpreter::StElem() |
| 8196 | { |
| 8197 | CONTRACTL { |
| 8198 | SO_TOLERANT; |
| 8199 | THROWS; |
| 8200 | GC_TRIGGERS; |
| 8201 | MODE_COOPERATIVE; |
| 8202 | } CONTRACTL_END; |
| 8203 | |
| 8204 | assert(m_curStackHt >= 3); |
| 8205 | unsigned arrInd = m_curStackHt - 3; |
| 8206 | unsigned indexInd = m_curStackHt - 2; |
| 8207 | unsigned valInd = m_curStackHt - 1; |
| 8208 | |
| 8209 | CorInfoType valCit = OpStackTypeGet(valInd).ToCorInfoType(); |
| 8210 | |
| 8211 | #if INTERP_TRACING |
| 8212 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_StElem]); |
| 8213 | #endif // INTERP_TRACING |
| 8214 | |
| 8215 | CORINFO_CLASS_HANDLE typeFromTok = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_StElem)); |
| 8216 | |
| 8217 | m_ILCodePtr += 5; |
| 8218 | |
| 8219 | CorInfoType typeFromTokCit; |
| 8220 | { |
| 8221 | GCX_PREEMP(); |
| 8222 | typeFromTokCit = ::asCorInfoType(typeFromTok); |
| 8223 | } |
| 8224 | size_t sz; |
| 8225 | |
| 8226 | #ifdef _DEBUG |
| 8227 | InterpreterType typeFromTokIt; |
| 8228 | #endif // _DEBUG |
| 8229 | |
| 8230 | if (typeFromTokCit == CORINFO_TYPE_VALUECLASS) |
| 8231 | { |
| 8232 | GCX_PREEMP(); |
| 8233 | sz = getClassSize(typeFromTok); |
| 8234 | #ifdef _DEBUG |
| 8235 | typeFromTokIt = InterpreterType(&m_interpCeeInfo, typeFromTok); |
| 8236 | #endif // _DEBUG |
| 8237 | } |
| 8238 | else |
| 8239 | { |
| 8240 | sz = CorInfoTypeSize(typeFromTokCit); |
| 8241 | #ifdef _DEBUG |
| 8242 | typeFromTokIt = InterpreterType(typeFromTokCit); |
| 8243 | #endif // _DEBUG |
| 8244 | } |
| 8245 | |
| 8246 | #ifdef _DEBUG |
| 8247 | // Instead of debug, I need to parameterize the interpreter at the top level over whether |
| 8248 | // to do checks corresponding to verification. |
| 8249 | if (typeFromTokIt.StackNormalize().ToCorInfoType() != valCit) |
| 8250 | { |
| 8251 | // This is obviously only a partial test of the required condition. |
| 8252 | VerificationError("Value in stelem does not have the required type." ); |
| 8253 | } |
| 8254 | #endif // _DEBUG |
| 8255 | |
| 8256 | assert(OpStackTypeGet(arrInd).ToCorInfoType() == CORINFO_TYPE_CLASS); |
| 8257 | |
| 8258 | ArrayBase* a = OpStackGet<ArrayBase*>(arrInd); |
| 8259 | ThrowOnInvalidPointer(a); |
| 8260 | int len = a->GetNumComponents(); |
| 8261 | |
| 8262 | CorInfoType indexCit = OpStackTypeGet(indexInd).ToCorInfoType(); |
| 8263 | NativeInt index = 0; |
| 8264 | if (indexCit == CORINFO_TYPE_INT) |
| 8265 | { |
| 8266 | index = static_cast<NativeInt>(OpStackGet<INT32>(indexInd)); |
| 8267 | } |
| 8268 | else |
| 8269 | { |
| 8270 | index = OpStackGet<NativeInt>(indexInd); |
| 8271 | } |
| 8272 | |
| 8273 | if (index < 0 || index >= len) ThrowArrayBoundsException(); |
| 8274 | |
| 8275 | if (typeFromTokCit == CORINFO_TYPE_CLASS) |
| 8276 | { |
| 8277 | struct _gc { |
| 8278 | OBJECTREF val; |
| 8279 | OBJECTREF a; |
| 8280 | } gc; |
| 8281 | gc.val = ObjectToOBJECTREF(OpStackGet<Object*>(valInd)); |
| 8282 | gc.a = ObjectToOBJECTREF(a); |
| 8283 | GCPROTECT_BEGIN(gc); |
| 8284 | if (gc.val != NULL && |
| 8285 | !ObjIsInstanceOf(OBJECTREFToObject(gc.val), reinterpret_cast<PtrArray*>(a)->GetArrayElementTypeHandle())) |
| 8286 | COMPlusThrow(kArrayTypeMismatchException); |
| 8287 | reinterpret_cast<PtrArray*>(OBJECTREFToObject(gc.a))->SetAt(index, gc.val); |
| 8288 | GCPROTECT_END(); |
| 8289 | } |
| 8290 | else |
| 8291 | { |
| 8292 | GCX_FORBID(); |
| 8293 | |
| 8294 | void* destPtr = a->GetDataPtr() + index * sz;; |
| 8295 | |
| 8296 | if (typeFromTokCit == CORINFO_TYPE_VALUECLASS) |
| 8297 | { |
| 8298 | MethodTable* valClsMT = GetMethodTableFromClsHnd(OpStackTypeGet(valInd).ToClassHandle()); |
| 8299 | // I use GCSafeMemCpy below to ensure that write barriers happen for the case in which |
| 8300 | // the value class contains GC pointers. We could do better... |
| 8301 | if (sz > sizeof(UINT64)) |
| 8302 | { |
| 8303 | // Large struct case: stack slot contains pointer... |
| 8304 | void* src = OpStackGet<void*>(valInd); |
| 8305 | CopyValueClassUnchecked(destPtr, src, valClsMT); |
| 8306 | LargeStructOperandStackPop(sz, src); |
| 8307 | } |
| 8308 | else |
| 8309 | { |
| 8310 | // Small struct case -- is inline in operand stack. |
| 8311 | CopyValueClassUnchecked(destPtr, OpStackGetAddr(valInd, sz), valClsMT); |
| 8312 | } |
| 8313 | } |
| 8314 | else |
| 8315 | { |
| 8316 | switch (sz) |
| 8317 | { |
| 8318 | case 1: |
| 8319 | *reinterpret_cast<INT8*>(destPtr) = OpStackGet<INT8>(valInd); |
| 8320 | break; |
| 8321 | case 2: |
| 8322 | *reinterpret_cast<INT16*>(destPtr) = OpStackGet<INT16>(valInd); |
| 8323 | break; |
| 8324 | case 4: |
| 8325 | *reinterpret_cast<INT32*>(destPtr) = OpStackGet<INT32>(valInd); |
| 8326 | break; |
| 8327 | case 8: |
| 8328 | *reinterpret_cast<INT64*>(destPtr) = OpStackGet<INT64>(valInd); |
| 8329 | break; |
| 8330 | } |
| 8331 | } |
| 8332 | } |
| 8333 | |
| 8334 | m_curStackHt -= 3; |
| 8335 | } |
| 8336 | |
| 8337 | void Interpreter::InitBlk() |
| 8338 | { |
| 8339 | CONTRACTL { |
| 8340 | SO_TOLERANT; |
| 8341 | THROWS; |
| 8342 | GC_TRIGGERS; |
| 8343 | MODE_COOPERATIVE; |
| 8344 | } CONTRACTL_END; |
| 8345 | |
| 8346 | assert(m_curStackHt >= 3); |
| 8347 | unsigned addrInd = m_curStackHt - 3; |
| 8348 | unsigned valInd = m_curStackHt - 2; |
| 8349 | unsigned sizeInd = m_curStackHt - 1; |
| 8350 | |
| 8351 | #ifdef _DEBUG |
| 8352 | CorInfoType addrCIT = OpStackTypeGet(addrInd).ToCorInfoType(); |
| 8353 | bool addrValidType = (addrCIT == CORINFO_TYPE_NATIVEINT || addrCIT == CORINFO_TYPE_BYREF); |
| 8354 | #if defined(_AMD64_) |
| 8355 | if (s_InterpreterLooseRules && addrCIT == CORINFO_TYPE_LONG) |
| 8356 | addrValidType = true; |
| 8357 | #endif |
| 8358 | if (!addrValidType) |
| 8359 | VerificationError("Addr of InitBlk must be native int or &." ); |
| 8360 | |
| 8361 | CorInfoType valCIT = OpStackTypeGet(valInd).ToCorInfoType(); |
| 8362 | if (valCIT != CORINFO_TYPE_INT) |
| 8363 | VerificationError("Value of InitBlk must be int" ); |
| 8364 | |
| 8365 | #endif // _DEBUG |
| 8366 | |
| 8367 | CorInfoType sizeCIT = OpStackTypeGet(sizeInd).ToCorInfoType(); |
| 8368 | bool isLong = s_InterpreterLooseRules && (sizeCIT == CORINFO_TYPE_LONG); |
| 8369 | |
| 8370 | #ifdef _DEBUG |
| 8371 | if (sizeCIT != CORINFO_TYPE_INT && !isLong) |
| 8372 | VerificationError("Size of InitBlk must be int" ); |
| 8373 | #endif // _DEBUG |
| 8374 | |
| 8375 | void* addr = OpStackGet<void*>(addrInd); |
| 8376 | ThrowOnInvalidPointer(addr); |
| 8377 | GCX_FORBID(); // addr is a potentially vulnerable byref. |
| 8378 | INT8 val = OpStackGet<INT8>(valInd); |
| 8379 | size_t size = (size_t) ((isLong) ? OpStackGet<UINT64>(sizeInd) : OpStackGet<UINT32>(sizeInd)); |
| 8380 | memset(addr, val, size); |
| 8381 | |
| 8382 | m_curStackHt = addrInd; |
| 8383 | m_ILCodePtr += 2; |
| 8384 | |
| 8385 | BarrierIfVolatile(); |
| 8386 | } |
| 8387 | |
| 8388 | void Interpreter::CpBlk() |
| 8389 | { |
| 8390 | CONTRACTL { |
| 8391 | SO_TOLERANT; |
| 8392 | THROWS; |
| 8393 | GC_TRIGGERS; |
| 8394 | MODE_COOPERATIVE; |
| 8395 | } CONTRACTL_END; |
| 8396 | |
| 8397 | assert(m_curStackHt >= 3); |
| 8398 | unsigned destInd = m_curStackHt - 3; |
| 8399 | unsigned srcInd = m_curStackHt - 2; |
| 8400 | unsigned sizeInd = m_curStackHt - 1; |
| 8401 | |
| 8402 | #ifdef _DEBUG |
| 8403 | CorInfoType destCIT = OpStackTypeGet(destInd).ToCorInfoType(); |
| 8404 | bool destValidType = (destCIT == CORINFO_TYPE_NATIVEINT || destCIT == CORINFO_TYPE_BYREF); |
| 8405 | #if defined(_AMD64_) |
| 8406 | if (s_InterpreterLooseRules && destCIT == CORINFO_TYPE_LONG) |
| 8407 | destValidType = true; |
| 8408 | #endif |
| 8409 | if (!destValidType) |
| 8410 | { |
| 8411 | VerificationError("Dest addr of CpBlk must be native int or &." ); |
| 8412 | } |
| 8413 | CorInfoType srcCIT = OpStackTypeGet(srcInd).ToCorInfoType(); |
| 8414 | bool srcValidType = (srcCIT == CORINFO_TYPE_NATIVEINT || srcCIT == CORINFO_TYPE_BYREF); |
| 8415 | #if defined(_AMD64_) |
| 8416 | if (s_InterpreterLooseRules && srcCIT == CORINFO_TYPE_LONG) |
| 8417 | srcValidType = true; |
| 8418 | #endif |
| 8419 | if (!srcValidType) |
| 8420 | VerificationError("Src addr of CpBlk must be native int or &." ); |
| 8421 | #endif // _DEBUG |
| 8422 | |
| 8423 | CorInfoType sizeCIT = OpStackTypeGet(sizeInd).ToCorInfoType(); |
| 8424 | bool isLong = s_InterpreterLooseRules && (sizeCIT == CORINFO_TYPE_LONG); |
| 8425 | |
| 8426 | #ifdef _DEBUG |
| 8427 | if (sizeCIT != CORINFO_TYPE_INT && !isLong) |
| 8428 | VerificationError("Size of CpBlk must be int" ); |
| 8429 | #endif // _DEBUG |
| 8430 | |
| 8431 | |
| 8432 | void* destAddr = OpStackGet<void*>(destInd); |
| 8433 | void* srcAddr = OpStackGet<void*>(srcInd); |
| 8434 | ThrowOnInvalidPointer(destAddr); |
| 8435 | ThrowOnInvalidPointer(srcAddr); |
| 8436 | GCX_FORBID(); // destAddr & srcAddr are potentially vulnerable byrefs. |
| 8437 | size_t size = (size_t)((isLong) ? OpStackGet<UINT64>(sizeInd) : OpStackGet<UINT32>(sizeInd)); |
| 8438 | memcpyNoGCRefs(destAddr, srcAddr, size); |
| 8439 | |
| 8440 | m_curStackHt = destInd; |
| 8441 | m_ILCodePtr += 2; |
| 8442 | |
| 8443 | BarrierIfVolatile(); |
| 8444 | } |
| 8445 | |
| 8446 | void Interpreter::Box() |
| 8447 | { |
| 8448 | CONTRACTL { |
| 8449 | SO_TOLERANT; |
| 8450 | THROWS; |
| 8451 | GC_TRIGGERS; |
| 8452 | MODE_COOPERATIVE; |
| 8453 | } CONTRACTL_END; |
| 8454 | |
| 8455 | assert(m_curStackHt >= 1); |
| 8456 | unsigned ind = m_curStackHt - 1; |
| 8457 | |
| 8458 | DWORD boxTypeAttribs = 0; |
| 8459 | |
| 8460 | #if INTERP_TRACING |
| 8461 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_Box]); |
| 8462 | #endif // INTERP_TRACING |
| 8463 | |
| 8464 | CORINFO_CLASS_HANDLE boxTypeClsHnd = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_Box)); |
| 8465 | |
| 8466 | { |
| 8467 | GCX_PREEMP(); |
| 8468 | boxTypeAttribs = m_interpCeeInfo.getClassAttribs(boxTypeClsHnd); |
| 8469 | } |
| 8470 | |
| 8471 | m_ILCodePtr += 5; |
| 8472 | |
| 8473 | if (boxTypeAttribs & CORINFO_FLG_VALUECLASS) |
| 8474 | { |
| 8475 | InterpreterType valIt = OpStackTypeGet(ind); |
| 8476 | |
| 8477 | void* valPtr; |
| 8478 | if (valIt.IsLargeStruct(&m_interpCeeInfo)) |
| 8479 | { |
| 8480 | // Operand stack entry is pointer to the data. |
| 8481 | valPtr = OpStackGet<void*>(ind); |
| 8482 | } |
| 8483 | else |
| 8484 | { |
| 8485 | // Operand stack entry *is* the data. |
| 8486 | size_t classSize = getClassSize(boxTypeClsHnd); |
| 8487 | valPtr = OpStackGetAddr(ind, classSize); |
| 8488 | } |
| 8489 | |
| 8490 | TypeHandle th(boxTypeClsHnd); |
| 8491 | if (th.IsTypeDesc()) |
| 8492 | { |
| 8493 | COMPlusThrow(kInvalidOperationException, W("InvalidOperation_TypeCannotBeBoxed" )); |
| 8494 | } |
| 8495 | |
| 8496 | MethodTable* pMT = th.AsMethodTable(); |
| 8497 | |
| 8498 | { |
| 8499 | Object* res = OBJECTREFToObject(pMT->Box(valPtr)); |
| 8500 | |
| 8501 | GCX_FORBID(); |
| 8502 | |
| 8503 | // If we're popping a large struct off the operand stack, make sure we clean up. |
| 8504 | if (valIt.IsLargeStruct(&m_interpCeeInfo)) |
| 8505 | { |
| 8506 | LargeStructOperandStackPop(valIt.Size(&m_interpCeeInfo), valPtr); |
| 8507 | } |
| 8508 | OpStackSet<Object*>(ind, res); |
| 8509 | OpStackTypeSet(ind, InterpreterType(CORINFO_TYPE_CLASS)); |
| 8510 | } |
| 8511 | } |
| 8512 | } |
| 8513 | |
| 8514 | void Interpreter::BoxStructRefAt(unsigned ind, CORINFO_CLASS_HANDLE valCls) |
| 8515 | { |
| 8516 | CONTRACTL { |
| 8517 | SO_TOLERANT; |
| 8518 | THROWS; |
| 8519 | GC_TRIGGERS; |
| 8520 | MODE_COOPERATIVE; |
| 8521 | } CONTRACTL_END; |
| 8522 | |
| 8523 | _ASSERTE_MSG(ind < m_curStackHt, "Precondition" ); |
| 8524 | { |
| 8525 | GCX_PREEMP(); |
| 8526 | _ASSERTE_MSG(m_interpCeeInfo.getClassAttribs(valCls) & CORINFO_FLG_VALUECLASS, "Precondition" ); |
| 8527 | } |
| 8528 | _ASSERTE_MSG(OpStackTypeGet(ind).ToCorInfoType() == CORINFO_TYPE_BYREF, "Precondition" ); |
| 8529 | |
| 8530 | InterpreterType valIt = InterpreterType(&m_interpCeeInfo, valCls); |
| 8531 | |
| 8532 | void* valPtr = OpStackGet<void*>(ind); |
| 8533 | |
| 8534 | TypeHandle th(valCls); |
| 8535 | if (th.IsTypeDesc()) |
| 8536 | COMPlusThrow(kInvalidOperationException,W("InvalidOperation_TypeCannotBeBoxed" )); |
| 8537 | |
| 8538 | MethodTable* pMT = th.AsMethodTable(); |
| 8539 | |
| 8540 | { |
| 8541 | Object* res = OBJECTREFToObject(pMT->Box(valPtr)); |
| 8542 | |
| 8543 | GCX_FORBID(); |
| 8544 | |
| 8545 | OpStackSet<Object*>(ind, res); |
| 8546 | OpStackTypeSet(ind, InterpreterType(CORINFO_TYPE_CLASS)); |
| 8547 | } |
| 8548 | } |
| 8549 | |
| 8550 | |
| 8551 | void Interpreter::Unbox() |
| 8552 | { |
| 8553 | CONTRACTL { |
| 8554 | SO_TOLERANT; |
| 8555 | THROWS; |
| 8556 | GC_TRIGGERS; |
| 8557 | MODE_COOPERATIVE; |
| 8558 | } CONTRACTL_END |
| 8559 | |
| 8560 | assert(m_curStackHt > 0); |
| 8561 | unsigned tos = m_curStackHt - 1; |
| 8562 | |
| 8563 | #ifdef _DEBUG |
| 8564 | CorInfoType tosCIT = OpStackTypeGet(tos).ToCorInfoType(); |
| 8565 | if (tosCIT != CORINFO_TYPE_CLASS) |
| 8566 | VerificationError("Unbox requires that TOS is an object pointer." ); |
| 8567 | #endif // _DEBUG |
| 8568 | |
| 8569 | #if INTERP_TRACING |
| 8570 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_Unbox]); |
| 8571 | #endif // INTERP_TRACING |
| 8572 | |
| 8573 | CORINFO_CLASS_HANDLE boxTypeClsHnd = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_Unbox)); |
| 8574 | |
| 8575 | CorInfoHelpFunc unboxHelper; |
| 8576 | |
| 8577 | { |
| 8578 | GCX_PREEMP(); |
| 8579 | unboxHelper = m_interpCeeInfo.getUnBoxHelper(boxTypeClsHnd); |
| 8580 | } |
| 8581 | |
| 8582 | void* res = NULL; |
| 8583 | Object* obj = OpStackGet<Object*>(tos); |
| 8584 | |
| 8585 | switch (unboxHelper) |
| 8586 | { |
| 8587 | case CORINFO_HELP_UNBOX: |
| 8588 | { |
| 8589 | ThrowOnInvalidPointer(obj); |
| 8590 | |
| 8591 | MethodTable* pMT1 = (MethodTable*)boxTypeClsHnd; |
| 8592 | MethodTable* pMT2 = obj->GetMethodTable(); |
| 8593 | |
| 8594 | if (pMT1->IsEquivalentTo(pMT2)) |
| 8595 | { |
| 8596 | res = OpStackGet<Object*>(tos)->UnBox(); |
| 8597 | } |
| 8598 | else |
| 8599 | { |
| 8600 | CorElementType type1 = pMT1->GetInternalCorElementType(); |
| 8601 | CorElementType type2 = pMT2->GetInternalCorElementType(); |
| 8602 | |
| 8603 | // we allow enums and their primtive type to be interchangable |
| 8604 | if (type1 == type2) |
| 8605 | { |
| 8606 | if ((pMT1->IsEnum() || pMT1->IsTruePrimitive()) && |
| 8607 | (pMT2->IsEnum() || pMT2->IsTruePrimitive())) |
| 8608 | { |
| 8609 | res = OpStackGet<Object*>(tos)->UnBox(); |
| 8610 | } |
| 8611 | } |
| 8612 | } |
| 8613 | |
| 8614 | if (res == NULL) |
| 8615 | { |
| 8616 | COMPlusThrow(kInvalidCastException); |
| 8617 | } |
| 8618 | } |
| 8619 | break; |
| 8620 | |
| 8621 | case CORINFO_HELP_UNBOX_NULLABLE: |
| 8622 | { |
| 8623 | // For "unbox Nullable<T>", we need to create a new object (maybe in some temporary local |
| 8624 | // space (that we reuse every time we hit this IL instruction?), that gets reported to the GC, |
| 8625 | // maybe in the GC heap itself). That object will contain an embedded Nullable<T>. Then, we need to |
| 8626 | // get a byref to the data within the object. |
| 8627 | |
| 8628 | NYI_INTERP("Unhandled 'unbox' of Nullable<T>." ); |
| 8629 | } |
| 8630 | break; |
| 8631 | |
| 8632 | default: |
| 8633 | NYI_INTERP("Unhandled 'unbox' helper." ); |
| 8634 | } |
| 8635 | |
| 8636 | { |
| 8637 | GCX_FORBID(); |
| 8638 | OpStackSet<void*>(tos, res); |
| 8639 | OpStackTypeSet(tos, InterpreterType(CORINFO_TYPE_BYREF)); |
| 8640 | } |
| 8641 | |
| 8642 | m_ILCodePtr += 5; |
| 8643 | } |
| 8644 | |
| 8645 | |
| 8646 | void Interpreter::Throw() |
| 8647 | { |
| 8648 | CONTRACTL { |
| 8649 | SO_TOLERANT; |
| 8650 | THROWS; |
| 8651 | GC_TRIGGERS; |
| 8652 | MODE_COOPERATIVE; |
| 8653 | } CONTRACTL_END |
| 8654 | |
| 8655 | assert(m_curStackHt >= 1); |
| 8656 | |
| 8657 | // Note that we can't decrement the stack height here, since the operand stack |
| 8658 | // protects the thrown object. Nor do we need to, since the ostack will be cleared on |
| 8659 | // any catch within this method. |
| 8660 | unsigned exInd = m_curStackHt - 1; |
| 8661 | |
| 8662 | #ifdef _DEBUG |
| 8663 | CorInfoType exCIT = OpStackTypeGet(exInd).ToCorInfoType(); |
| 8664 | if (exCIT != CORINFO_TYPE_CLASS) |
| 8665 | { |
| 8666 | VerificationError("Can only throw an object." ); |
| 8667 | } |
| 8668 | #endif // _DEBUG |
| 8669 | |
| 8670 | Object* obj = OpStackGet<Object*>(exInd); |
| 8671 | ThrowOnInvalidPointer(obj); |
| 8672 | |
| 8673 | OBJECTREF oref = ObjectToOBJECTREF(obj); |
| 8674 | if (!IsException(oref->GetMethodTable())) |
| 8675 | { |
| 8676 | GCPROTECT_BEGIN(oref); |
| 8677 | WrapNonCompliantException(&oref); |
| 8678 | GCPROTECT_END(); |
| 8679 | } |
| 8680 | COMPlusThrow(oref); |
| 8681 | } |
| 8682 | |
| 8683 | void Interpreter::Rethrow() |
| 8684 | { |
| 8685 | CONTRACTL { |
| 8686 | SO_TOLERANT; |
| 8687 | THROWS; |
| 8688 | GC_TRIGGERS; |
| 8689 | MODE_COOPERATIVE; |
| 8690 | } CONTRACTL_END |
| 8691 | |
| 8692 | OBJECTREF throwable = GetThread()->LastThrownObject(); |
| 8693 | COMPlusThrow(throwable); |
| 8694 | } |
| 8695 | |
| 8696 | void Interpreter::UnboxAny() |
| 8697 | { |
| 8698 | CONTRACTL { |
| 8699 | SO_TOLERANT; |
| 8700 | THROWS; |
| 8701 | GC_TRIGGERS; |
| 8702 | MODE_COOPERATIVE; |
| 8703 | } CONTRACTL_END; |
| 8704 | |
| 8705 | assert(m_curStackHt > 0); |
| 8706 | unsigned tos = m_curStackHt - 1; |
| 8707 | |
| 8708 | unsigned boxTypeTok = getU4LittleEndian(m_ILCodePtr + 1); |
| 8709 | m_ILCodePtr += 5; |
| 8710 | |
| 8711 | #if INTERP_TRACING |
| 8712 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_UnboxAny]); |
| 8713 | #endif // INTERP_TRACING |
| 8714 | |
| 8715 | CORINFO_RESOLVED_TOKEN boxTypeResolvedTok; |
| 8716 | CORINFO_CLASS_HANDLE boxTypeClsHnd; |
| 8717 | DWORD boxTypeAttribs = 0; |
| 8718 | |
| 8719 | { |
| 8720 | GCX_PREEMP(); |
| 8721 | ResolveToken(&boxTypeResolvedTok, boxTypeTok, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_UnboxAny)); |
| 8722 | boxTypeClsHnd = boxTypeResolvedTok.hClass; |
| 8723 | boxTypeAttribs = m_interpCeeInfo.getClassAttribs(boxTypeClsHnd); |
| 8724 | } |
| 8725 | |
| 8726 | CorInfoType unboxCIT = OpStackTypeGet(tos).ToCorInfoType(); |
| 8727 | if (unboxCIT != CORINFO_TYPE_CLASS) |
| 8728 | VerificationError("Type mismatch in UNBOXANY." ); |
| 8729 | |
| 8730 | if ((boxTypeAttribs & CORINFO_FLG_VALUECLASS) == 0) |
| 8731 | { |
| 8732 | Object* obj = OpStackGet<Object*>(tos); |
| 8733 | if (obj != NULL && !ObjIsInstanceOf(obj, TypeHandle(boxTypeClsHnd), TRUE)) |
| 8734 | { |
| 8735 | UNREACHABLE(); //ObjIsInstanceOf will throw if cast can't be done |
| 8736 | } |
| 8737 | } |
| 8738 | else |
| 8739 | { |
| 8740 | CorInfoHelpFunc unboxHelper; |
| 8741 | |
| 8742 | { |
| 8743 | GCX_PREEMP(); |
| 8744 | unboxHelper = m_interpCeeInfo.getUnBoxHelper(boxTypeClsHnd); |
| 8745 | } |
| 8746 | |
| 8747 | // Important that this *not* be factored out with the identical statement in the "if" branch: |
| 8748 | // delay read from GC-protected operand stack until after COOP-->PREEMP transition above. |
| 8749 | Object* obj = OpStackGet<Object*>(tos); |
| 8750 | |
| 8751 | switch (unboxHelper) |
| 8752 | { |
| 8753 | case CORINFO_HELP_UNBOX: |
| 8754 | { |
| 8755 | ThrowOnInvalidPointer(obj); |
| 8756 | |
| 8757 | MethodTable* pMT1 = (MethodTable*)boxTypeClsHnd; |
| 8758 | MethodTable* pMT2 = obj->GetMethodTable(); |
| 8759 | |
| 8760 | void* res = NULL; |
| 8761 | if (pMT1->IsEquivalentTo(pMT2)) |
| 8762 | { |
| 8763 | res = OpStackGet<Object*>(tos)->UnBox(); |
| 8764 | } |
| 8765 | else |
| 8766 | { |
| 8767 | CorElementType type1 = pMT1->GetInternalCorElementType(); |
| 8768 | CorElementType type2 = pMT2->GetInternalCorElementType(); |
| 8769 | |
| 8770 | // we allow enums and their primtive type to be interchangable |
| 8771 | if (type1 == type2) |
| 8772 | { |
| 8773 | if ((pMT1->IsEnum() || pMT1->IsTruePrimitive()) && |
| 8774 | (pMT2->IsEnum() || pMT2->IsTruePrimitive())) |
| 8775 | { |
| 8776 | res = OpStackGet<Object*>(tos)->UnBox(); |
| 8777 | } |
| 8778 | } |
| 8779 | } |
| 8780 | |
| 8781 | if (res == NULL) |
| 8782 | { |
| 8783 | COMPlusThrow(kInvalidCastException); |
| 8784 | } |
| 8785 | |
| 8786 | // As the ECMA spec says, the rest is like a "ldobj". |
| 8787 | LdObjValueClassWork(boxTypeClsHnd, tos, res); |
| 8788 | } |
| 8789 | break; |
| 8790 | |
| 8791 | case CORINFO_HELP_UNBOX_NULLABLE: |
| 8792 | { |
| 8793 | InterpreterType it = InterpreterType(&m_interpCeeInfo, boxTypeClsHnd); |
| 8794 | size_t sz = it.Size(&m_interpCeeInfo); |
| 8795 | if (sz > sizeof(INT64)) |
| 8796 | { |
| 8797 | void* destPtr = LargeStructOperandStackPush(sz); |
| 8798 | if (!Nullable::UnBox(destPtr, ObjectToOBJECTREF(obj), (MethodTable*)boxTypeClsHnd)) |
| 8799 | { |
| 8800 | COMPlusThrow(kInvalidCastException); |
| 8801 | } |
| 8802 | OpStackSet<void*>(tos, destPtr); |
| 8803 | } |
| 8804 | else |
| 8805 | { |
| 8806 | INT64 dest = 0; |
| 8807 | if (!Nullable::UnBox(&dest, ObjectToOBJECTREF(obj), (MethodTable*)boxTypeClsHnd)) |
| 8808 | { |
| 8809 | COMPlusThrow(kInvalidCastException); |
| 8810 | } |
| 8811 | OpStackSet<INT64>(tos, dest); |
| 8812 | } |
| 8813 | OpStackTypeSet(tos, it.StackNormalize()); |
| 8814 | } |
| 8815 | break; |
| 8816 | |
| 8817 | default: |
| 8818 | NYI_INTERP("Unhandled 'unbox.any' helper." ); |
| 8819 | } |
| 8820 | } |
| 8821 | } |
| 8822 | |
| 8823 | void Interpreter::LdLen() |
| 8824 | { |
| 8825 | CONTRACTL { |
| 8826 | SO_TOLERANT; |
| 8827 | THROWS; |
| 8828 | GC_TRIGGERS; |
| 8829 | MODE_COOPERATIVE; |
| 8830 | } CONTRACTL_END; |
| 8831 | |
| 8832 | assert(m_curStackHt >= 1); |
| 8833 | unsigned arrInd = m_curStackHt - 1; |
| 8834 | |
| 8835 | assert(OpStackTypeGet(arrInd).ToCorInfoType() == CORINFO_TYPE_CLASS); |
| 8836 | |
| 8837 | GCX_FORBID(); |
| 8838 | |
| 8839 | ArrayBase* a = OpStackGet<ArrayBase*>(arrInd); |
| 8840 | ThrowOnInvalidPointer(a); |
| 8841 | int len = a->GetNumComponents(); |
| 8842 | |
| 8843 | OpStackSet<NativeUInt>(arrInd, NativeUInt(len)); |
| 8844 | // The ECMA spec says that the type of the length value is NATIVEUINT, but this |
| 8845 | // doesn't make any sense -- unsigned types are not stack-normalized. So I'm |
| 8846 | // using NATIVEINT, to get the width right. |
| 8847 | OpStackTypeSet(arrInd, InterpreterType(CORINFO_TYPE_NATIVEINT)); |
| 8848 | } |
| 8849 | |
| 8850 | |
| 8851 | void Interpreter::DoCall(bool virtualCall) |
| 8852 | { |
| 8853 | #if INTERP_DYNAMIC_CONTRACTS |
| 8854 | CONTRACTL { |
| 8855 | SO_TOLERANT; |
| 8856 | THROWS; |
| 8857 | GC_TRIGGERS; |
| 8858 | MODE_COOPERATIVE; |
| 8859 | } CONTRACTL_END; |
| 8860 | #else |
| 8861 | // Dynamic contract occupies too much stack. |
| 8862 | STATIC_CONTRACT_SO_TOLERANT; |
| 8863 | STATIC_CONTRACT_THROWS; |
| 8864 | STATIC_CONTRACT_GC_TRIGGERS; |
| 8865 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 8866 | #endif |
| 8867 | |
| 8868 | #if INTERP_TRACING |
| 8869 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_Call]); |
| 8870 | #endif // INTERP_TRACING |
| 8871 | |
| 8872 | DoCallWork(virtualCall); |
| 8873 | |
| 8874 | m_ILCodePtr += 5; |
| 8875 | } |
| 8876 | |
| 8877 | CORINFO_CONTEXT_HANDLE InterpreterMethodInfo::GetPreciseGenericsContext(Object* thisArg, void* genericsCtxtArg) |
| 8878 | { |
| 8879 | // If the caller has a generic argument, then we need to get the exact methodContext. |
| 8880 | // There are several possibilities that lead to a generic argument: |
| 8881 | // 1) Static method of generic class: generic argument is the method table of the class. |
| 8882 | // 2) generic method of a class: generic argument is the precise MethodDesc* of the method. |
| 8883 | if (GetFlag<InterpreterMethodInfo::Flag_hasGenericsContextArg>()) |
| 8884 | { |
| 8885 | assert(GetFlag<InterpreterMethodInfo::Flag_methHasGenericArgs>() || GetFlag<InterpreterMethodInfo::Flag_typeHasGenericArgs>()); |
| 8886 | if (GetFlag<InterpreterMethodInfo::Flag_methHasGenericArgs>()) |
| 8887 | { |
| 8888 | return MAKE_METHODCONTEXT(reinterpret_cast<CORINFO_METHOD_HANDLE>(genericsCtxtArg)); |
| 8889 | } |
| 8890 | else |
| 8891 | { |
| 8892 | MethodTable* methodClass = reinterpret_cast<MethodDesc*>(m_method)->GetMethodTable(); |
| 8893 | MethodTable* contextClass = reinterpret_cast<MethodTable*>(genericsCtxtArg)->GetMethodTableMatchingParentClass(methodClass); |
| 8894 | return MAKE_CLASSCONTEXT(contextClass); |
| 8895 | } |
| 8896 | } |
| 8897 | // TODO: This condition isn't quite right. If the actual class is a subtype of the declaring type of the method, |
| 8898 | // then it might be in another module, the scope and context won't agree. |
| 8899 | else if (GetFlag<InterpreterMethodInfo::Flag_typeHasGenericArgs>() |
| 8900 | && !GetFlag<InterpreterMethodInfo::Flag_methHasGenericArgs>() |
| 8901 | && GetFlag<InterpreterMethodInfo::Flag_hasThisArg>() |
| 8902 | && GetFlag<InterpreterMethodInfo::Flag_thisArgIsObjPtr>() && thisArg != NULL) |
| 8903 | { |
| 8904 | MethodTable* methodClass = reinterpret_cast<MethodDesc*>(m_method)->GetMethodTable(); |
| 8905 | MethodTable* contextClass = thisArg->GetMethodTable()->GetMethodTableMatchingParentClass(methodClass); |
| 8906 | return MAKE_CLASSCONTEXT(contextClass); |
| 8907 | } |
| 8908 | else |
| 8909 | { |
| 8910 | return MAKE_METHODCONTEXT(m_method); |
| 8911 | } |
| 8912 | } |
| 8913 | |
| 8914 | void Interpreter::DoCallWork(bool virtualCall, void* thisArg, CORINFO_RESOLVED_TOKEN* methTokPtr, CORINFO_CALL_INFO* callInfoPtr) |
| 8915 | { |
| 8916 | #if INTERP_DYNAMIC_CONTRACTS |
| 8917 | CONTRACTL { |
| 8918 | SO_TOLERANT; |
| 8919 | THROWS; |
| 8920 | GC_TRIGGERS; |
| 8921 | MODE_COOPERATIVE; |
| 8922 | } CONTRACTL_END; |
| 8923 | #else |
| 8924 | // Dynamic contract occupies too much stack. |
| 8925 | STATIC_CONTRACT_SO_TOLERANT; |
| 8926 | STATIC_CONTRACT_THROWS; |
| 8927 | STATIC_CONTRACT_GC_TRIGGERS; |
| 8928 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 8929 | #endif |
| 8930 | |
| 8931 | #if INTERP_ILCYCLE_PROFILE |
| 8932 | #if 0 |
| 8933 | // XXX |
| 8934 | unsigned __int64 callStartCycles; |
| 8935 | bool b = CycleTimer::GetThreadCyclesS(&callStartCycles); assert(b); |
| 8936 | unsigned __int64 callStartExemptCycles = m_exemptCycles; |
| 8937 | #endif |
| 8938 | #endif // INTERP_ILCYCLE_PROFILE |
| 8939 | |
| 8940 | #if INTERP_TRACING |
| 8941 | InterlockedIncrement(&s_totalInterpCalls); |
| 8942 | #endif // INTERP_TRACING |
| 8943 | unsigned tok = getU4LittleEndian(m_ILCodePtr + sizeof(BYTE)); |
| 8944 | |
| 8945 | // It's possible for an IL method to push a capital-F Frame. If so, we pop it and save it; |
| 8946 | // we'll push it back on after our GCPROTECT frame is popped. |
| 8947 | Frame* ilPushedFrame = NULL; |
| 8948 | |
| 8949 | // We can't protect "thisArg" with a GCPROTECT, because this pushes a Frame, and there |
| 8950 | // exist managed methods that push (and pop) Frames -- so that the Frame chain does not return |
| 8951 | // to its original state after a call. Therefore, we can't have a Frame on the stack over the duration |
| 8952 | // of a call. (I assume that any method that calls a Frame-pushing IL method performs a matching |
| 8953 | // call to pop that Frame before the caller method completes. If this were not true, if one method could push |
| 8954 | // a Frame, but defer the pop to its caller, then we could *never* use a Frame in the interpreter, and |
| 8955 | // our implementation plan would be doomed.) |
| 8956 | assert(m_callThisArg == NULL); |
| 8957 | m_callThisArg = thisArg; |
| 8958 | |
| 8959 | // Have we already cached a MethodDescCallSite for this call? (We do this only in loops |
| 8960 | // in the current execution). |
| 8961 | unsigned iloffset = CurOffset(); |
| 8962 | CallSiteCacheData* pCscd = NULL; |
| 8963 | if (s_InterpreterUseCaching) pCscd = GetCachedCallInfo(iloffset); |
| 8964 | |
| 8965 | // If this is true, then we should not cache this call site. |
| 8966 | bool doNotCache; |
| 8967 | |
| 8968 | CORINFO_RESOLVED_TOKEN methTok; |
| 8969 | CORINFO_CALL_INFO callInfo; |
| 8970 | MethodDesc* methToCall = NULL; |
| 8971 | CORINFO_CLASS_HANDLE exactClass = NULL; |
| 8972 | CORINFO_SIG_INFO_SMALL sigInfo; |
| 8973 | if (pCscd != NULL) |
| 8974 | { |
| 8975 | GCX_PREEMP(); |
| 8976 | methToCall = pCscd->m_pMD; |
| 8977 | sigInfo = pCscd->m_sigInfo; |
| 8978 | |
| 8979 | doNotCache = true; // We already have a cache entry. |
| 8980 | } |
| 8981 | else |
| 8982 | { |
| 8983 | doNotCache = false; // Until we determine otherwise. |
| 8984 | if (callInfoPtr == NULL) |
| 8985 | { |
| 8986 | GCX_PREEMP(); |
| 8987 | |
| 8988 | // callInfoPtr and methTokPtr must either both be NULL, or neither. |
| 8989 | assert(methTokPtr == NULL); |
| 8990 | |
| 8991 | methTokPtr = &methTok; |
| 8992 | ResolveToken(methTokPtr, tok, CORINFO_TOKENKIND_Method InterpTracingArg(RTK_Call)); |
| 8993 | OPCODE opcode = (OPCODE)(*m_ILCodePtr); |
| 8994 | |
| 8995 | m_interpCeeInfo.getCallInfo(methTokPtr, |
| 8996 | m_constrainedFlag ? & m_constrainedResolvedToken : NULL, |
| 8997 | m_methInfo->m_method, |
| 8998 | //this is how impImportCall invokes getCallInfo |
| 8999 | combine(combine(CORINFO_CALLINFO_ALLOWINSTPARAM, |
| 9000 | CORINFO_CALLINFO_SECURITYCHECKS), |
| 9001 | (opcode == CEE_CALLVIRT) ? CORINFO_CALLINFO_CALLVIRT |
| 9002 | : CORINFO_CALLINFO_NONE), |
| 9003 | &callInfo); |
| 9004 | #if INTERP_ILCYCLE_PROFILE |
| 9005 | #if 0 |
| 9006 | if (virtualCall) |
| 9007 | { |
| 9008 | unsigned __int64 callEndCycles; |
| 9009 | b = CycleTimer::GetThreadCyclesS(&callEndCycles); assert(b); |
| 9010 | unsigned __int64 delta = (callEndCycles - callStartCycles); |
| 9011 | delta -= (m_exemptCycles - callStartExemptCycles); |
| 9012 | s_callCycles += delta; |
| 9013 | s_calls++; |
| 9014 | } |
| 9015 | #endif |
| 9016 | #endif // INTERP_ILCYCLE_PROFILE |
| 9017 | |
| 9018 | callInfoPtr = &callInfo; |
| 9019 | |
| 9020 | assert(!callInfoPtr->exactContextNeedsRuntimeLookup); |
| 9021 | |
| 9022 | methToCall = reinterpret_cast<MethodDesc*>(methTok.hMethod); |
| 9023 | exactClass = methTok.hClass; |
| 9024 | } |
| 9025 | else |
| 9026 | { |
| 9027 | // callInfoPtr and methTokPtr must either both be NULL, or neither. |
| 9028 | assert(methTokPtr != NULL); |
| 9029 | |
| 9030 | assert(!callInfoPtr->exactContextNeedsRuntimeLookup); |
| 9031 | |
| 9032 | methToCall = reinterpret_cast<MethodDesc*>(callInfoPtr->hMethod); |
| 9033 | exactClass = methTokPtr->hClass; |
| 9034 | } |
| 9035 | |
| 9036 | // We used to take the sigInfo from the callInfo here, but that isn't precise, since |
| 9037 | // we may have made "methToCall" more precise wrt generics than the method handle in |
| 9038 | // the callinfo. So look up th emore precise signature. |
| 9039 | GCX_PREEMP(); |
| 9040 | |
| 9041 | CORINFO_SIG_INFO sigInfoFull; |
| 9042 | m_interpCeeInfo.getMethodSig(CORINFO_METHOD_HANDLE(methToCall), &sigInfoFull); |
| 9043 | sigInfo.retTypeClass = sigInfoFull.retTypeClass; |
| 9044 | sigInfo.numArgs = sigInfoFull.numArgs; |
| 9045 | sigInfo.callConv = sigInfoFull.callConv; |
| 9046 | sigInfo.retType = sigInfoFull.retType; |
| 9047 | } |
| 9048 | |
| 9049 | // Point A in our cycle count. |
| 9050 | |
| 9051 | |
| 9052 | // Is the method an intrinsic? If so, and if it's one we've written special-case code for |
| 9053 | // handle intrinsically. |
| 9054 | CorInfoIntrinsics intrinsicId; |
| 9055 | { |
| 9056 | GCX_PREEMP(); |
| 9057 | intrinsicId = m_interpCeeInfo.getIntrinsicID(CORINFO_METHOD_HANDLE(methToCall)); |
| 9058 | } |
| 9059 | |
| 9060 | #if INTERP_TRACING |
| 9061 | if (intrinsicId != CORINFO_INTRINSIC_Illegal) |
| 9062 | InterlockedIncrement(&s_totalInterpCallsToIntrinsics); |
| 9063 | #endif // INTERP_TRACING |
| 9064 | bool didIntrinsic = false; |
| 9065 | if (!m_constrainedFlag) |
| 9066 | { |
| 9067 | switch (intrinsicId) |
| 9068 | { |
| 9069 | case CORINFO_INTRINSIC_StringLength: |
| 9070 | DoStringLength(); didIntrinsic = true; |
| 9071 | break; |
| 9072 | case CORINFO_INTRINSIC_StringGetChar: |
| 9073 | DoStringGetChar(); didIntrinsic = true; |
| 9074 | break; |
| 9075 | case CORINFO_INTRINSIC_GetTypeFromHandle: |
| 9076 | // This is an identity transformation. (At least until I change LdToken to |
| 9077 | // return a RuntimeTypeHandle struct...which is a TODO.) |
| 9078 | DoGetTypeFromHandle(); |
| 9079 | didIntrinsic = true; |
| 9080 | break; |
| 9081 | case CORINFO_INTRINSIC_ByReference_Ctor: |
| 9082 | DoByReferenceCtor(); |
| 9083 | didIntrinsic = true; |
| 9084 | break; |
| 9085 | case CORINFO_INTRINSIC_ByReference_Value: |
| 9086 | DoByReferenceValue(); |
| 9087 | didIntrinsic = true; |
| 9088 | break; |
| 9089 | #if INTERP_ILSTUBS |
| 9090 | case CORINFO_INTRINSIC_StubHelpers_GetStubContext: |
| 9091 | OpStackSet<void*>(m_curStackHt, GetStubContext()); |
| 9092 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_NATIVEINT)); |
| 9093 | m_curStackHt++; didIntrinsic = true; |
| 9094 | break; |
| 9095 | case CORINFO_INTRINSIC_StubHelpers_GetStubContextAddr: |
| 9096 | OpStackSet<void*>(m_curStackHt, GetStubContextAddr()); |
| 9097 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_NATIVEINT)); |
| 9098 | m_curStackHt++; didIntrinsic = true; |
| 9099 | break; |
| 9100 | #endif // INTERP_ILSTUBS |
| 9101 | default: |
| 9102 | #if INTERP_TRACING |
| 9103 | InterlockedIncrement(&s_totalInterpCallsToIntrinsicsUnhandled); |
| 9104 | #endif // INTERP_TRACING |
| 9105 | break; |
| 9106 | } |
| 9107 | |
| 9108 | // Plus some other calls that we're going to treat "like" intrinsics... |
| 9109 | if (methToCall == MscorlibBinder::GetMethod(METHOD__STUBHELPERS__SET_LAST_ERROR)) |
| 9110 | { |
| 9111 | // If we're interpreting a method that calls "SetLastError", it's very likely that the call(i) whose |
| 9112 | // error we're trying to capture was performed with MethodDescCallSite machinery that itself trashes |
| 9113 | // the last error. We solve this by saving the last error in a special interpreter-specific field of |
| 9114 | // "Thread" in that case, and essentially implement SetLastError here, taking that field as the |
| 9115 | // source for the last error. |
| 9116 | Thread* thrd = GetThread(); |
| 9117 | thrd->m_dwLastError = thrd->m_dwLastErrorInterp; |
| 9118 | didIntrinsic = true; |
| 9119 | } |
| 9120 | |
| 9121 | #if FEATURE_SIMD |
| 9122 | if (fFeatureSIMD.val(CLRConfig::EXTERNAL_FeatureSIMD) != 0) |
| 9123 | { |
| 9124 | // Check for the simd class... |
| 9125 | assert(exactClass != NULL); |
| 9126 | GCX_PREEMP(); |
| 9127 | bool isSIMD = m_interpCeeInfo.isInSIMDModule(exactClass); |
| 9128 | |
| 9129 | if (isSIMD) |
| 9130 | { |
| 9131 | // SIMD intrinsics are recognized by name. |
| 9132 | const char* namespaceName = NULL; |
| 9133 | const char* className = NULL; |
| 9134 | const char* methodName = m_interpCeeInfo.getMethodNameFromMetadata((CORINFO_METHOD_HANDLE)methToCall, &className, &namespaceName, NULL); |
| 9135 | if (strcmp(methodName, "get_IsHardwareAccelerated" ) == 0) |
| 9136 | { |
| 9137 | GCX_COOP(); |
| 9138 | DoSIMDHwAccelerated(); |
| 9139 | didIntrinsic = true; |
| 9140 | } |
| 9141 | } |
| 9142 | |
| 9143 | if (didIntrinsic) |
| 9144 | { |
| 9145 | // Must block caching or we lose easy access to the class |
| 9146 | doNotCache = true; |
| 9147 | } |
| 9148 | } |
| 9149 | #endif // FEATURE_SIMD |
| 9150 | |
| 9151 | } |
| 9152 | |
| 9153 | if (didIntrinsic) |
| 9154 | { |
| 9155 | if (s_InterpreterUseCaching && !doNotCache) |
| 9156 | { |
| 9157 | // Cache the token resolution result... |
| 9158 | pCscd = new CallSiteCacheData(methToCall, sigInfo); |
| 9159 | CacheCallInfo(iloffset, pCscd); |
| 9160 | } |
| 9161 | // Now we can return. |
| 9162 | return; |
| 9163 | } |
| 9164 | |
| 9165 | // Handle other simple special cases: |
| 9166 | |
| 9167 | #if FEATURE_INTERPRETER_DEADSIMPLE_OPT |
| 9168 | #ifndef DACCESS_COMPILE |
| 9169 | // Dead simple static getters. |
| 9170 | InterpreterMethodInfo* calleeInterpMethInfo; |
| 9171 | if (GetMethodHandleToInterpMethInfoPtrMap()->Lookup(CORINFO_METHOD_HANDLE(methToCall), &calleeInterpMethInfo)) |
| 9172 | { |
| 9173 | if (calleeInterpMethInfo->GetFlag<InterpreterMethodInfo::Flag_methIsDeadSimpleGetter>()) |
| 9174 | { |
| 9175 | if (methToCall->IsStatic()) |
| 9176 | { |
| 9177 | // TODO |
| 9178 | } |
| 9179 | else |
| 9180 | { |
| 9181 | ILOffsetToItemCache* calleeCache; |
| 9182 | { |
| 9183 | Object* thisArg = OpStackGet<Object*>(m_curStackHt-1); |
| 9184 | GCX_FORBID(); |
| 9185 | // We pass NULL for the generic context arg, because a dead simple getter takes none, by definition. |
| 9186 | calleeCache = calleeInterpMethInfo->GetCacheForCall(thisArg, /*genericsContextArg*/NULL); |
| 9187 | } |
| 9188 | // We've interpreted the getter at least once, so the cache for *some* generics context is populated -- but maybe not |
| 9189 | // this one. We're hoping that it usually is. |
| 9190 | if (calleeCache != NULL) |
| 9191 | { |
| 9192 | CachedItem cachedItem; |
| 9193 | unsigned offsetOfLd; |
| 9194 | if (calleeInterpMethInfo->GetFlag<InterpreterMethodInfo::Flag_methIsDeadSimpleGetterIsDbgForm>()) |
| 9195 | offsetOfLd = ILOffsetOfLdFldInDeadSimpleInstanceGetterOpt; |
| 9196 | else |
| 9197 | offsetOfLd = ILOffsetOfLdFldInDeadSimpleInstanceGetterOpt; |
| 9198 | |
| 9199 | bool b = calleeCache->GetItem(offsetOfLd, cachedItem); |
| 9200 | _ASSERTE_MSG(b, "If the cache exists for this generic context, it should an entry for the LdFld." ); |
| 9201 | _ASSERTE_MSG(cachedItem.m_tag == CIK_InstanceField, "If it's there, it should be an instance field cache." ); |
| 9202 | LdFld(cachedItem.m_value.m_instanceField); |
| 9203 | #if INTERP_TRACING |
| 9204 | InterlockedIncrement(&s_totalInterpCallsToDeadSimpleGetters); |
| 9205 | InterlockedIncrement(&s_totalInterpCallsToDeadSimpleGettersShortCircuited); |
| 9206 | #endif // INTERP_TRACING |
| 9207 | return; |
| 9208 | } |
| 9209 | } |
| 9210 | } |
| 9211 | } |
| 9212 | #endif // DACCESS_COMPILE |
| 9213 | #endif // FEATURE_INTERPRETER_DEADSIMPLE_OPT |
| 9214 | |
| 9215 | unsigned totalSigArgs; |
| 9216 | CORINFO_VARARGS_HANDLE vaSigCookie = nullptr; |
| 9217 | if ((sigInfo.callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG || |
| 9218 | (sigInfo.callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_NATIVEVARARG) |
| 9219 | { |
| 9220 | GCX_PREEMP(); |
| 9221 | CORINFO_SIG_INFO sig; |
| 9222 | m_interpCeeInfo.findCallSiteSig(m_methInfo->m_module, methTokPtr->token, MAKE_METHODCONTEXT(m_methInfo->m_method), &sig); |
| 9223 | sigInfo.retTypeClass = sig.retTypeClass; |
| 9224 | sigInfo.numArgs = sig.numArgs; |
| 9225 | sigInfo.callConv = sig.callConv; |
| 9226 | sigInfo.retType = sig.retType; |
| 9227 | // Adding 'this' pointer because, numArgs doesn't include the this pointer. |
| 9228 | totalSigArgs = sigInfo.numArgs + sigInfo.hasThis(); |
| 9229 | |
| 9230 | if ((sigInfo.callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG) |
| 9231 | { |
| 9232 | Module* module = GetModule(sig.scope); |
| 9233 | vaSigCookie = CORINFO_VARARGS_HANDLE(module->GetVASigCookie(Signature(sig.pSig, sig.cbSig))); |
| 9234 | } |
| 9235 | doNotCache = true; |
| 9236 | } |
| 9237 | else |
| 9238 | { |
| 9239 | totalSigArgs = sigInfo.totalILArgs(); |
| 9240 | } |
| 9241 | |
| 9242 | // Note that "totalNativeArgs()" includes space for ret buff arg. |
| 9243 | unsigned nSlots = totalSigArgs + 1; |
| 9244 | if (sigInfo.hasTypeArg()) nSlots++; |
| 9245 | if (sigInfo.isVarArg()) nSlots++; |
| 9246 | |
| 9247 | DelegateCtorArgs ctorData; |
| 9248 | // If any of these are non-null, they will be pushed as extra arguments (see the code below). |
| 9249 | ctorData.pArg3 = NULL; |
| 9250 | ctorData.pArg4 = NULL; |
| 9251 | ctorData.pArg5 = NULL; |
| 9252 | |
| 9253 | // Since we make "doNotCache" true below, well never have a non-null "pCscd" for a delegate |
| 9254 | // constructor. But we have to check for a cached method first, since callInfoPtr may be null in the cached case. |
| 9255 | if (pCscd == NULL && callInfoPtr->classFlags & CORINFO_FLG_DELEGATE && callInfoPtr->methodFlags & CORINFO_FLG_CONSTRUCTOR) |
| 9256 | { |
| 9257 | // We won't cache this case. |
| 9258 | doNotCache = true; |
| 9259 | |
| 9260 | _ASSERTE_MSG(!sigInfo.hasTypeArg(), "I assume that this isn't possible." ); |
| 9261 | GCX_PREEMP(); |
| 9262 | |
| 9263 | ctorData.pMethod = methToCall; |
| 9264 | |
| 9265 | // Second argument to delegate constructor will be code address of the function the delegate wraps. |
| 9266 | assert(TOSIsPtr() && OpStackTypeGet(m_curStackHt-1).ToCorInfoType() != CORINFO_TYPE_BYREF); |
| 9267 | CORINFO_METHOD_HANDLE targetMethodHnd = GetFunctionPointerStack()[m_curStackHt-1]; |
| 9268 | assert(targetMethodHnd != NULL); |
| 9269 | CORINFO_METHOD_HANDLE alternateCtorHnd = m_interpCeeInfo.GetDelegateCtor(reinterpret_cast<CORINFO_METHOD_HANDLE>(methToCall), methTokPtr->hClass, targetMethodHnd, &ctorData); |
| 9270 | MethodDesc* alternateCtor = reinterpret_cast<MethodDesc*>(alternateCtorHnd); |
| 9271 | if (alternateCtor != methToCall) |
| 9272 | { |
| 9273 | methToCall = alternateCtor; |
| 9274 | |
| 9275 | // Translate the method address argument from a method handle to the actual callable code address. |
| 9276 | void* val = (void *)((MethodDesc *)targetMethodHnd)->GetMultiCallableAddrOfCode(); |
| 9277 | // Change the method argument to the code pointer. |
| 9278 | OpStackSet<void*>(m_curStackHt-1, val); |
| 9279 | |
| 9280 | // Now if there are extra arguments, add them to the number of slots; we'll push them on the |
| 9281 | // arg list later. |
| 9282 | if (ctorData.pArg3) nSlots++; |
| 9283 | if (ctorData.pArg4) nSlots++; |
| 9284 | if (ctorData.pArg5) nSlots++; |
| 9285 | } |
| 9286 | } |
| 9287 | |
| 9288 | // Make sure that the operand stack has the required number of arguments. |
| 9289 | // (Note that this is IL args, not native.) |
| 9290 | // |
| 9291 | |
| 9292 | // The total number of arguments on the IL stack. Initially we assume that all the IL arguments |
| 9293 | // the callee expects are on the stack, but may be adjusted downwards if the "this" argument |
| 9294 | // is provided by an allocation (the call is to a constructor). |
| 9295 | unsigned totalArgsOnILStack = totalSigArgs; |
| 9296 | if (m_callThisArg != NULL) |
| 9297 | { |
| 9298 | assert(totalArgsOnILStack > 0); |
| 9299 | totalArgsOnILStack--; |
| 9300 | } |
| 9301 | |
| 9302 | #if defined(FEATURE_HFA) |
| 9303 | // Does the callee have an HFA return type? |
| 9304 | unsigned HFAReturnArgSlots = 0; |
| 9305 | { |
| 9306 | GCX_PREEMP(); |
| 9307 | |
| 9308 | if (sigInfo.retType == CORINFO_TYPE_VALUECLASS |
| 9309 | && CorInfoTypeIsFloatingPoint(m_interpCeeInfo.getHFAType(sigInfo.retTypeClass)) |
| 9310 | && (sigInfo.getCallConv() & CORINFO_CALLCONV_VARARG) == 0) |
| 9311 | { |
| 9312 | HFAReturnArgSlots = getClassSize(sigInfo.retTypeClass); |
| 9313 | // Round up to a multiple of double size. |
| 9314 | HFAReturnArgSlots = (HFAReturnArgSlots + sizeof(ARG_SLOT) - 1) / sizeof(ARG_SLOT); |
| 9315 | } |
| 9316 | } |
| 9317 | #endif |
| 9318 | |
| 9319 | // Point B |
| 9320 | |
| 9321 | const unsigned LOCAL_ARG_SLOTS = 8; |
| 9322 | ARG_SLOT localArgs[LOCAL_ARG_SLOTS]; |
| 9323 | InterpreterType localArgTypes[LOCAL_ARG_SLOTS]; |
| 9324 | |
| 9325 | ARG_SLOT* args; |
| 9326 | InterpreterType* argTypes; |
| 9327 | #if defined(_X86_) |
| 9328 | unsigned totalArgSlots = nSlots; |
| 9329 | #elif defined(_ARM_) || defined(_ARM64_) |
| 9330 | // ARM64TODO: Verify that the following statement is correct for ARM64. |
| 9331 | unsigned totalArgSlots = nSlots + HFAReturnArgSlots; |
| 9332 | #elif defined(_AMD64_) |
| 9333 | unsigned totalArgSlots = nSlots; |
| 9334 | #else |
| 9335 | #error "unsupported platform" |
| 9336 | #endif |
| 9337 | |
| 9338 | if (totalArgSlots <= LOCAL_ARG_SLOTS) |
| 9339 | { |
| 9340 | args = &localArgs[0]; |
| 9341 | argTypes = &localArgTypes[0]; |
| 9342 | } |
| 9343 | else |
| 9344 | { |
| 9345 | args = (ARG_SLOT*)_alloca(totalArgSlots * sizeof(ARG_SLOT)); |
| 9346 | #if defined(_ARM_) |
| 9347 | // The HFA return buffer, if any, is assumed to be at a negative |
| 9348 | // offset from the IL arg pointer, so adjust that pointer upward. |
| 9349 | args = args + HFAReturnArgSlots; |
| 9350 | #endif // defined(_ARM_) |
| 9351 | argTypes = (InterpreterType*)_alloca(nSlots * sizeof(InterpreterType)); |
| 9352 | } |
| 9353 | // Make sure that we don't scan any of these until we overwrite them with |
| 9354 | // the real types of the arguments. |
| 9355 | InterpreterType undefIt(CORINFO_TYPE_UNDEF); |
| 9356 | for (unsigned i = 0; i < nSlots; i++) argTypes[i] = undefIt; |
| 9357 | |
| 9358 | // GC-protect the argument array (as byrefs). |
| 9359 | m_args = args; m_argsSize = nSlots; m_argTypes = argTypes; |
| 9360 | |
| 9361 | // This is the index into the "args" array (where we copy the value to). |
| 9362 | int curArgSlot = 0; |
| 9363 | |
| 9364 | // The operand stack index of the first IL argument. |
| 9365 | assert(m_curStackHt >= totalArgsOnILStack); |
| 9366 | int argsBase = m_curStackHt - totalArgsOnILStack; |
| 9367 | |
| 9368 | // Current on-stack argument index. |
| 9369 | unsigned arg = 0; |
| 9370 | |
| 9371 | // We do "this" -- in the case of a constructor, we "shuffle" the "m_callThisArg" argument in as the first |
| 9372 | // argument -- it isn't on the IL operand stack. |
| 9373 | |
| 9374 | if (m_constrainedFlag) |
| 9375 | { |
| 9376 | _ASSERT(m_callThisArg == NULL); // "m_callThisArg" non-null only for .ctor, which are not callvirts. |
| 9377 | |
| 9378 | CorInfoType argCIT = OpStackTypeGet(argsBase + arg).ToCorInfoType(); |
| 9379 | if (argCIT != CORINFO_TYPE_BYREF) |
| 9380 | VerificationError("This arg of constrained call must be managed pointer." ); |
| 9381 | |
| 9382 | // We only cache for the CORINFO_NO_THIS_TRANSFORM case, so we may assume that if we have a cached call site, |
| 9383 | // there's no thisTransform to perform. |
| 9384 | if (pCscd == NULL) |
| 9385 | { |
| 9386 | switch (callInfoPtr->thisTransform) |
| 9387 | { |
| 9388 | case CORINFO_NO_THIS_TRANSFORM: |
| 9389 | // It is a constrained call on a method implemented by a value type; this is already the proper managed pointer. |
| 9390 | break; |
| 9391 | |
| 9392 | case CORINFO_DEREF_THIS: |
| 9393 | #ifdef _DEBUG |
| 9394 | { |
| 9395 | GCX_PREEMP(); |
| 9396 | DWORD clsAttribs = m_interpCeeInfo.getClassAttribs(m_constrainedResolvedToken.hClass); |
| 9397 | assert((clsAttribs & CORINFO_FLG_VALUECLASS) == 0); |
| 9398 | } |
| 9399 | #endif // _DEBUG |
| 9400 | { |
| 9401 | // As per the spec, dereference the byref to the "this" pointer, and substitute it as the new "this" pointer. |
| 9402 | GCX_FORBID(); |
| 9403 | Object** objPtrPtr = OpStackGet<Object**>(argsBase + arg); |
| 9404 | OpStackSet<Object*>(argsBase + arg, *objPtrPtr); |
| 9405 | OpStackTypeSet(argsBase + arg, InterpreterType(CORINFO_TYPE_CLASS)); |
| 9406 | } |
| 9407 | doNotCache = true; |
| 9408 | break; |
| 9409 | |
| 9410 | case CORINFO_BOX_THIS: |
| 9411 | // This is the case where the call is to a virtual method of Object the given |
| 9412 | // struct class does not override -- the struct must be boxed, so that the |
| 9413 | // method can be invoked as a virtual. |
| 9414 | BoxStructRefAt(argsBase + arg, m_constrainedResolvedToken.hClass); |
| 9415 | doNotCache = true; |
| 9416 | break; |
| 9417 | } |
| 9418 | |
| 9419 | exactClass = m_constrainedResolvedToken.hClass; |
| 9420 | { |
| 9421 | GCX_PREEMP(); |
| 9422 | DWORD exactClassAttribs = m_interpCeeInfo.getClassAttribs(exactClass); |
| 9423 | // If the constraint type is a value class, then it is the exact class (which will be the |
| 9424 | // "owner type" in the MDCS below.) If it is not, leave it as the (precise) interface method. |
| 9425 | if (exactClassAttribs & CORINFO_FLG_VALUECLASS) |
| 9426 | { |
| 9427 | MethodTable* exactClassMT = GetMethodTableFromClsHnd(exactClass); |
| 9428 | // Find the method on exactClass corresponding to methToCall. |
| 9429 | methToCall = MethodDesc::FindOrCreateAssociatedMethodDesc( |
| 9430 | reinterpret_cast<MethodDesc*>(callInfoPtr->hMethod), // pPrimaryMD |
| 9431 | exactClassMT, // pExactMT |
| 9432 | FALSE, // forceBoxedEntryPoint |
| 9433 | methToCall->GetMethodInstantiation(), // methodInst |
| 9434 | FALSE); // allowInstParam |
| 9435 | } |
| 9436 | else |
| 9437 | { |
| 9438 | exactClass = methTokPtr->hClass; |
| 9439 | } |
| 9440 | } |
| 9441 | } |
| 9442 | |
| 9443 | // We've consumed the constraint, so reset the flag. |
| 9444 | m_constrainedFlag = false; |
| 9445 | } |
| 9446 | |
| 9447 | if (pCscd == NULL) |
| 9448 | { |
| 9449 | if (callInfoPtr->methodFlags & CORINFO_FLG_STATIC) |
| 9450 | { |
| 9451 | MethodDesc* pMD = reinterpret_cast<MethodDesc*>(callInfoPtr->hMethod); |
| 9452 | EnsureClassInit(pMD->GetMethodTable()); |
| 9453 | } |
| 9454 | } |
| 9455 | |
| 9456 | // Point C |
| 9457 | |
| 9458 | // We must do anything that might make a COOP->PREEMP transition before copying arguments out of the |
| 9459 | // operand stack (where they are GC-protected) into the args array (where they are not). |
| 9460 | #ifdef _DEBUG |
| 9461 | const char* clsOfMethToCallName;; |
| 9462 | const char* methToCallName = NULL; |
| 9463 | { |
| 9464 | GCX_PREEMP(); |
| 9465 | methToCallName = m_interpCeeInfo.getMethodName(CORINFO_METHOD_HANDLE(methToCall), &clsOfMethToCallName); |
| 9466 | } |
| 9467 | #if INTERP_TRACING |
| 9468 | if (strncmp(methToCallName, "get_" , 4) == 0) |
| 9469 | { |
| 9470 | InterlockedIncrement(&s_totalInterpCallsToGetters); |
| 9471 | size_t offsetOfLd; |
| 9472 | if (IsDeadSimpleGetter(&m_interpCeeInfo, methToCall, &offsetOfLd)) |
| 9473 | { |
| 9474 | InterlockedIncrement(&s_totalInterpCallsToDeadSimpleGetters); |
| 9475 | } |
| 9476 | } |
| 9477 | else if (strncmp(methToCallName, "set_" , 4) == 0) |
| 9478 | { |
| 9479 | InterlockedIncrement(&s_totalInterpCallsToSetters); |
| 9480 | } |
| 9481 | #endif // INTERP_TRACING |
| 9482 | |
| 9483 | // Only do this check on the first call, since it should be the same each time. |
| 9484 | if (pCscd == NULL) |
| 9485 | { |
| 9486 | // Ensure that any value types used as argument types are loaded. This property is checked |
| 9487 | // by the MethodDescCall site mechanisms. Since enums are freely convertible with their underlying |
| 9488 | // integer type, this is at least one case where a caller may push a value convertible to a value type |
| 9489 | // without any code having caused the value type to be loaded. This is DEBUG-only because if the callee |
| 9490 | // the integer-type value as the enum value type, it will have loaded the value type. |
| 9491 | MetaSig ms(methToCall); |
| 9492 | CorElementType argType; |
| 9493 | while ((argType = ms.NextArg()) != ELEMENT_TYPE_END) |
| 9494 | { |
| 9495 | if (argType == ELEMENT_TYPE_VALUETYPE) |
| 9496 | { |
| 9497 | TypeHandle th = ms.GetLastTypeHandleThrowing(ClassLoader::LoadTypes); |
| 9498 | CONSISTENCY_CHECK(th.CheckFullyLoaded()); |
| 9499 | CONSISTENCY_CHECK(th.IsRestored_NoLogging()); |
| 9500 | } |
| 9501 | } |
| 9502 | } |
| 9503 | #endif |
| 9504 | |
| 9505 | // CYCLE PROFILE: BEFORE ARG PROCESSING. |
| 9506 | |
| 9507 | if (sigInfo.hasThis()) |
| 9508 | { |
| 9509 | if (m_callThisArg != NULL) |
| 9510 | { |
| 9511 | if (size_t(m_callThisArg) == 0x1) |
| 9512 | { |
| 9513 | args[curArgSlot] = NULL; |
| 9514 | } |
| 9515 | else |
| 9516 | { |
| 9517 | args[curArgSlot] = PtrToArgSlot(m_callThisArg); |
| 9518 | } |
| 9519 | argTypes[curArgSlot] = InterpreterType(CORINFO_TYPE_BYREF); |
| 9520 | } |
| 9521 | else |
| 9522 | { |
| 9523 | args[curArgSlot] = PtrToArgSlot(OpStackGet<void*>(argsBase + arg)); |
| 9524 | argTypes[curArgSlot] = OpStackTypeGet(argsBase + arg); |
| 9525 | arg++; |
| 9526 | } |
| 9527 | // AV -> NullRef translation is NYI for the interpreter, |
| 9528 | // so we should manually check and throw the correct exception. |
| 9529 | if (args[curArgSlot] == NULL) |
| 9530 | { |
| 9531 | // If we're calling a constructor, we bypass this check since the runtime |
| 9532 | // should have thrown OOM if it was unable to allocate an instance. |
| 9533 | if (m_callThisArg == NULL) |
| 9534 | { |
| 9535 | assert(!methToCall->IsStatic()); |
| 9536 | ThrowNullPointerException(); |
| 9537 | } |
| 9538 | // ...except in the case of strings, which are both |
| 9539 | // allocated and initialized by their special constructor. |
| 9540 | else |
| 9541 | { |
| 9542 | assert(methToCall->IsCtor() && methToCall->GetMethodTable()->IsString()); |
| 9543 | } |
| 9544 | } |
| 9545 | curArgSlot++; |
| 9546 | } |
| 9547 | |
| 9548 | // This is the argument slot that will be used to hold the return value. |
| 9549 | ARG_SLOT retVal = 0; |
| 9550 | #if !defined(_ARM_) && !defined(UNIX_AMD64_ABI) |
| 9551 | _ASSERTE (NUMBER_RETURNVALUE_SLOTS == 1); |
| 9552 | #endif |
| 9553 | |
| 9554 | // If the return type is a structure, then these will be initialized. |
| 9555 | CORINFO_CLASS_HANDLE retTypeClsHnd = NULL; |
| 9556 | InterpreterType retTypeIt; |
| 9557 | size_t retTypeSz = 0; |
| 9558 | |
| 9559 | // If non-null, space allocated to hold a large struct return value. Should be deleted later. |
| 9560 | // (I could probably optimize this pop all the arguments first, then allocate space for the return value |
| 9561 | // on the large structure operand stack, and pass a pointer directly to that space, avoiding the extra |
| 9562 | // copy we have below. But this seemed more expedient, and this should be a pretty rare case.) |
| 9563 | BYTE* pLargeStructRetVal = NULL; |
| 9564 | |
| 9565 | // If there's a "GetFlag<Flag_hasRetBuffArg>()" struct return value, it will be stored in this variable if it fits, |
| 9566 | // otherwise, we'll dynamically allocate memory for it. |
| 9567 | ARG_SLOT smallStructRetVal = 0; |
| 9568 | |
| 9569 | // We should have no return buffer temp space registered here...unless this is a constructor, in which |
| 9570 | // case it will return void. In particular, if the return type VALUE_CLASS, then this should be NULL. |
| 9571 | _ASSERTE_MSG((pCscd != NULL) || sigInfo.retType == CORINFO_TYPE_VOID || m_structRetValITPtr == NULL, "Invariant." ); |
| 9572 | |
| 9573 | // Is it the return value a struct with a ret buff? |
| 9574 | _ASSERTE_MSG(methToCall != NULL, "assumption" ); |
| 9575 | bool hasRetBuffArg = false; |
| 9576 | if (sigInfo.retType == CORINFO_TYPE_VALUECLASS || sigInfo.retType == CORINFO_TYPE_REFANY) |
| 9577 | { |
| 9578 | hasRetBuffArg = !!methToCall->HasRetBuffArg(); |
| 9579 | retTypeClsHnd = sigInfo.retTypeClass; |
| 9580 | |
| 9581 | MetaSig ms(methToCall); |
| 9582 | |
| 9583 | |
| 9584 | // On ARM, if there's an HFA return type, we must also allocate a return buffer, since the |
| 9585 | // MDCS calling convention requires it. |
| 9586 | if (hasRetBuffArg |
| 9587 | #if defined(_ARM_) |
| 9588 | || HFAReturnArgSlots > 0 |
| 9589 | #endif // defined(_ARM_) |
| 9590 | ) |
| 9591 | { |
| 9592 | assert(retTypeClsHnd != NULL); |
| 9593 | retTypeIt = InterpreterType(&m_interpCeeInfo, retTypeClsHnd); |
| 9594 | retTypeSz = retTypeIt.Size(&m_interpCeeInfo); |
| 9595 | |
| 9596 | #if defined(_ARM_) |
| 9597 | if (HFAReturnArgSlots > 0) |
| 9598 | { |
| 9599 | args[curArgSlot] = PtrToArgSlot(args - HFAReturnArgSlots); |
| 9600 | } |
| 9601 | else |
| 9602 | #endif // defined(_ARM_) |
| 9603 | |
| 9604 | if (retTypeIt.IsLargeStruct(&m_interpCeeInfo)) |
| 9605 | { |
| 9606 | size_t retBuffSize = retTypeSz; |
| 9607 | // If the target architecture can sometimes return a struct in several registers, |
| 9608 | // MethodDescCallSite will reserve a return value array big enough to hold the maximum. |
| 9609 | // It will then copy *all* of this into the return buffer area we allocate. So make sure |
| 9610 | // we allocate at least that much. |
| 9611 | #ifdef ENREGISTERED_RETURNTYPE_MAXSIZE |
| 9612 | retBuffSize = max(retTypeSz, ENREGISTERED_RETURNTYPE_MAXSIZE); |
| 9613 | #endif // ENREGISTERED_RETURNTYPE_MAXSIZE |
| 9614 | pLargeStructRetVal = (BYTE*)_alloca(retBuffSize); |
| 9615 | // Clear this in case a GC happens. |
| 9616 | for (unsigned i = 0; i < retTypeSz; i++) pLargeStructRetVal[i] = 0; |
| 9617 | // Register this as location needing GC. |
| 9618 | m_structRetValTempSpace = pLargeStructRetVal; |
| 9619 | // Set it as the return buffer. |
| 9620 | args[curArgSlot] = PtrToArgSlot(pLargeStructRetVal); |
| 9621 | } |
| 9622 | else |
| 9623 | { |
| 9624 | // Clear this in case a GC happens. |
| 9625 | smallStructRetVal = 0; |
| 9626 | // Register this as location needing GC. |
| 9627 | m_structRetValTempSpace = &smallStructRetVal; |
| 9628 | // Set it as the return buffer. |
| 9629 | args[curArgSlot] = PtrToArgSlot(&smallStructRetVal); |
| 9630 | } |
| 9631 | m_structRetValITPtr = &retTypeIt; |
| 9632 | argTypes[curArgSlot] = InterpreterType(CORINFO_TYPE_NATIVEINT); |
| 9633 | curArgSlot++; |
| 9634 | } |
| 9635 | else |
| 9636 | { |
| 9637 | // The struct type might "normalize" to a primitive type. |
| 9638 | if (retTypeClsHnd == NULL) |
| 9639 | { |
| 9640 | retTypeIt = InterpreterType(CEEInfo::asCorInfoType(ms.GetReturnTypeNormalized())); |
| 9641 | } |
| 9642 | else |
| 9643 | { |
| 9644 | retTypeIt = InterpreterType(&m_interpCeeInfo, retTypeClsHnd); |
| 9645 | } |
| 9646 | } |
| 9647 | } |
| 9648 | |
| 9649 | if (((sigInfo.callConv & CORINFO_CALLCONV_VARARG) != 0) && sigInfo.isVarArg()) |
| 9650 | { |
| 9651 | assert(vaSigCookie != nullptr); |
| 9652 | args[curArgSlot] = PtrToArgSlot(vaSigCookie); |
| 9653 | argTypes[curArgSlot] = InterpreterType(CORINFO_TYPE_NATIVEINT); |
| 9654 | curArgSlot++; |
| 9655 | } |
| 9656 | |
| 9657 | if (pCscd == NULL) |
| 9658 | { |
| 9659 | if (sigInfo.hasTypeArg()) |
| 9660 | { |
| 9661 | GCX_PREEMP(); |
| 9662 | // We will find the instantiating stub for the method, and call that instead. |
| 9663 | CORINFO_SIG_INFO sigInfoFull; |
| 9664 | Instantiation methodInst = methToCall->GetMethodInstantiation(); |
| 9665 | BOOL fNeedUnboxingStub = virtualCall && TypeHandle(exactClass).IsValueType() && methToCall->IsVirtual(); |
| 9666 | methToCall = MethodDesc::FindOrCreateAssociatedMethodDesc(methToCall, |
| 9667 | TypeHandle(exactClass).GetMethodTable(), fNeedUnboxingStub, methodInst, FALSE, TRUE); |
| 9668 | m_interpCeeInfo.getMethodSig(CORINFO_METHOD_HANDLE(methToCall), &sigInfoFull); |
| 9669 | sigInfo.retTypeClass = sigInfoFull.retTypeClass; |
| 9670 | sigInfo.numArgs = sigInfoFull.numArgs; |
| 9671 | sigInfo.callConv = sigInfoFull.callConv; |
| 9672 | sigInfo.retType = sigInfoFull.retType; |
| 9673 | } |
| 9674 | |
| 9675 | if (sigInfo.hasTypeArg()) |
| 9676 | { |
| 9677 | // If we still have a type argument, we're calling an ArrayOpStub and need to pass the array TypeHandle. |
| 9678 | assert(methToCall->IsArray()); |
| 9679 | doNotCache = true; |
| 9680 | args[curArgSlot] = PtrToArgSlot(exactClass); |
| 9681 | argTypes[curArgSlot] = InterpreterType(CORINFO_TYPE_NATIVEINT); |
| 9682 | curArgSlot++; |
| 9683 | } |
| 9684 | } |
| 9685 | |
| 9686 | // Now we do the non-this arguments. |
| 9687 | size_t largeStructSpaceToPop = 0; |
| 9688 | for (; arg < totalArgsOnILStack; arg++) |
| 9689 | { |
| 9690 | InterpreterType argIt = OpStackTypeGet(argsBase + arg); |
| 9691 | size_t sz = OpStackTypeGet(argsBase + arg).Size(&m_interpCeeInfo); |
| 9692 | switch (sz) |
| 9693 | { |
| 9694 | case 1: |
| 9695 | args[curArgSlot] = OpStackGet<INT8>(argsBase + arg); |
| 9696 | break; |
| 9697 | case 2: |
| 9698 | args[curArgSlot] = OpStackGet<INT16>(argsBase + arg); |
| 9699 | break; |
| 9700 | case 4: |
| 9701 | args[curArgSlot] = OpStackGet<INT32>(argsBase + arg); |
| 9702 | break; |
| 9703 | case 8: |
| 9704 | default: |
| 9705 | if (sz > 8) |
| 9706 | { |
| 9707 | void* srcPtr = OpStackGet<void*>(argsBase + arg); |
| 9708 | args[curArgSlot] = PtrToArgSlot(srcPtr); |
| 9709 | if (!IsInLargeStructLocalArea(srcPtr)) |
| 9710 | largeStructSpaceToPop += sz; |
| 9711 | } |
| 9712 | else |
| 9713 | { |
| 9714 | args[curArgSlot] = OpStackGet<INT64>(argsBase + arg); |
| 9715 | } |
| 9716 | break; |
| 9717 | } |
| 9718 | argTypes[curArgSlot] = argIt; |
| 9719 | curArgSlot++; |
| 9720 | } |
| 9721 | |
| 9722 | if (ctorData.pArg3) |
| 9723 | { |
| 9724 | args[curArgSlot] = PtrToArgSlot(ctorData.pArg3); |
| 9725 | argTypes[curArgSlot] = InterpreterType(CORINFO_TYPE_NATIVEINT); |
| 9726 | curArgSlot++; |
| 9727 | } |
| 9728 | if (ctorData.pArg4) |
| 9729 | { |
| 9730 | args[curArgSlot] = PtrToArgSlot(ctorData.pArg4); |
| 9731 | argTypes[curArgSlot] = InterpreterType(CORINFO_TYPE_NATIVEINT); |
| 9732 | curArgSlot++; |
| 9733 | } |
| 9734 | if (ctorData.pArg5) |
| 9735 | { |
| 9736 | args[curArgSlot] = PtrToArgSlot(ctorData.pArg5); |
| 9737 | argTypes[curArgSlot] = InterpreterType(CORINFO_TYPE_NATIVEINT); |
| 9738 | curArgSlot++; |
| 9739 | } |
| 9740 | |
| 9741 | // CYCLE PROFILE: AFTER ARG PROCESSING. |
| 9742 | { |
| 9743 | Thread* thr = GetThread(); |
| 9744 | |
| 9745 | Object** thisArgHnd = NULL; |
| 9746 | ARG_SLOT nullThisArg = NULL; |
| 9747 | if (sigInfo.hasThis()) |
| 9748 | { |
| 9749 | if (m_callThisArg != NULL) |
| 9750 | { |
| 9751 | if (size_t(m_callThisArg) == 0x1) |
| 9752 | { |
| 9753 | thisArgHnd = reinterpret_cast<Object**>(&nullThisArg); |
| 9754 | } |
| 9755 | else |
| 9756 | { |
| 9757 | thisArgHnd = reinterpret_cast<Object**>(&m_callThisArg); |
| 9758 | } |
| 9759 | } |
| 9760 | else |
| 9761 | { |
| 9762 | thisArgHnd = OpStackGetAddr<Object*>(argsBase); |
| 9763 | } |
| 9764 | } |
| 9765 | |
| 9766 | Frame* topFrameBefore = thr->GetFrame(); |
| 9767 | |
| 9768 | #if INTERP_ILCYCLE_PROFILE |
| 9769 | unsigned __int64 startCycles; |
| 9770 | #endif // INTERP_ILCYCLE_PROFILE |
| 9771 | |
| 9772 | // CYCLE PROFILE: BEFORE MDCS CREATION. |
| 9773 | |
| 9774 | PCODE target = NULL; |
| 9775 | MethodDesc *exactMethToCall = methToCall; |
| 9776 | |
| 9777 | // Determine the target of virtual calls. |
| 9778 | if (virtualCall && methToCall->IsVtableMethod()) |
| 9779 | { |
| 9780 | PCODE pCode; |
| 9781 | |
| 9782 | assert(thisArgHnd != NULL); |
| 9783 | OBJECTREF objRef = ObjectToOBJECTREF(*thisArgHnd); |
| 9784 | GCPROTECT_BEGIN(objRef); |
| 9785 | pCode = methToCall->GetMultiCallableAddrOfVirtualizedCode(&objRef, methToCall->GetMethodTable()); |
| 9786 | GCPROTECT_END(); |
| 9787 | |
| 9788 | exactMethToCall = Entry2MethodDesc(pCode, objRef->GetMethodTable()); |
| 9789 | } |
| 9790 | |
| 9791 | // Compile the target in advance of calling. |
| 9792 | if (exactMethToCall->IsPointingToPrestub()) |
| 9793 | { |
| 9794 | MethodTable* dispatchingMT = NULL; |
| 9795 | if (exactMethToCall->IsVtableMethod()) |
| 9796 | { |
| 9797 | assert(thisArgHnd != NULL); |
| 9798 | dispatchingMT = (*thisArgHnd)->GetMethodTable(); |
| 9799 | } |
| 9800 | GCX_PREEMP(); |
| 9801 | target = exactMethToCall->DoPrestub(dispatchingMT); |
| 9802 | } |
| 9803 | else |
| 9804 | { |
| 9805 | target = exactMethToCall->GetMethodEntryPoint(); |
| 9806 | } |
| 9807 | |
| 9808 | // If we're interpreting the method, simply call it directly. |
| 9809 | if (InterpretationStubToMethodInfo(target) == exactMethToCall) |
| 9810 | { |
| 9811 | assert(!exactMethToCall->IsILStub()); |
| 9812 | InterpreterMethodInfo* methInfo = MethodHandleToInterpreterMethInfoPtr(CORINFO_METHOD_HANDLE(exactMethToCall)); |
| 9813 | assert(methInfo != NULL); |
| 9814 | #if INTERP_ILCYCLE_PROFILE |
| 9815 | bool b = CycleTimer::GetThreadCyclesS(&startCycles); assert(b); |
| 9816 | #endif // INTERP_ILCYCLE_PROFILE |
| 9817 | retVal = InterpretMethodBody(methInfo, true, reinterpret_cast<BYTE*>(args), NULL); |
| 9818 | pCscd = NULL; // Nothing to cache. |
| 9819 | } |
| 9820 | else |
| 9821 | { |
| 9822 | MetaSig msig(exactMethToCall); |
| 9823 | // We've already resolved the virtual call target above, so there is no need to do it again. |
| 9824 | MethodDescCallSite mdcs(exactMethToCall, &msig, target); |
| 9825 | #if INTERP_ILCYCLE_PROFILE |
| 9826 | bool b = CycleTimer::GetThreadCyclesS(&startCycles); assert(b); |
| 9827 | #endif // INTERP_ILCYCLE_PROFILE |
| 9828 | mdcs.CallTargetWorker(args, &retVal, sizeof(retVal)); |
| 9829 | |
| 9830 | if (pCscd != NULL) |
| 9831 | { |
| 9832 | // We will do a check at the end to determine whether to cache pCscd, to set |
| 9833 | // to NULL here to make sure we don't. |
| 9834 | pCscd = NULL; |
| 9835 | } |
| 9836 | else |
| 9837 | { |
| 9838 | // For now, we won't cache virtual calls to virtual methods. |
| 9839 | // TODO: fix this somehow. |
| 9840 | if (virtualCall && (callInfoPtr->methodFlags & CORINFO_FLG_VIRTUAL)) doNotCache = true; |
| 9841 | |
| 9842 | if (s_InterpreterUseCaching && !doNotCache) |
| 9843 | { |
| 9844 | // We will add this to the cache later; the locking provokes a GC, |
| 9845 | // and "retVal" is vulnerable. |
| 9846 | pCscd = new CallSiteCacheData(exactMethToCall, sigInfo); |
| 9847 | } |
| 9848 | } |
| 9849 | } |
| 9850 | #if INTERP_ILCYCLE_PROFILE |
| 9851 | unsigned __int64 endCycles; |
| 9852 | bool b = CycleTimer::GetThreadCyclesS(&endCycles); assert(b); |
| 9853 | m_exemptCycles += (endCycles - startCycles); |
| 9854 | #endif // INTERP_ILCYCLE_PROFILE |
| 9855 | |
| 9856 | // retVal is now vulnerable. |
| 9857 | GCX_FORBID(); |
| 9858 | |
| 9859 | // Some managed methods, believe it or not, can push capital-F Frames on the Frame chain. |
| 9860 | // If this happens, executing the EX_CATCH below will pop it, which is bad. |
| 9861 | // So detect that case, pop the explicitly-pushed frame, and push it again after the EX_CATCH. |
| 9862 | // (Asserting that there is only 1 such frame!) |
| 9863 | if (thr->GetFrame() != topFrameBefore) |
| 9864 | { |
| 9865 | ilPushedFrame = thr->GetFrame(); |
| 9866 | if (ilPushedFrame != NULL) |
| 9867 | { |
| 9868 | ilPushedFrame->Pop(thr); |
| 9869 | if (thr->GetFrame() != topFrameBefore) |
| 9870 | { |
| 9871 | // This wasn't an IL-pushed frame, so restore. |
| 9872 | ilPushedFrame->Push(thr); |
| 9873 | ilPushedFrame = NULL; |
| 9874 | } |
| 9875 | } |
| 9876 | } |
| 9877 | } |
| 9878 | |
| 9879 | // retVal is still vulnerable. |
| 9880 | { |
| 9881 | GCX_FORBID(); |
| 9882 | m_argsSize = 0; |
| 9883 | |
| 9884 | // At this point, the call has happened successfully. We can delete the arguments from the operand stack. |
| 9885 | m_curStackHt -= totalArgsOnILStack; |
| 9886 | // We've already checked that "largeStructSpaceToPop |
| 9887 | LargeStructOperandStackPop(largeStructSpaceToPop, NULL); |
| 9888 | |
| 9889 | if (size_t(m_callThisArg) == 0x1) |
| 9890 | { |
| 9891 | _ASSERTE_MSG(sigInfo.retType == CORINFO_TYPE_VOID, "Constructor for var-sized object becomes factory method that returns result." ); |
| 9892 | OpStackSet<Object*>(m_curStackHt, reinterpret_cast<Object*>(retVal)); |
| 9893 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_CLASS)); |
| 9894 | m_curStackHt++; |
| 9895 | } |
| 9896 | else if (sigInfo.retType != CORINFO_TYPE_VOID) |
| 9897 | { |
| 9898 | switch (sigInfo.retType) |
| 9899 | { |
| 9900 | case CORINFO_TYPE_BOOL: |
| 9901 | case CORINFO_TYPE_BYTE: |
| 9902 | OpStackSet<INT32>(m_curStackHt, static_cast<INT8>(retVal)); |
| 9903 | break; |
| 9904 | case CORINFO_TYPE_UBYTE: |
| 9905 | OpStackSet<UINT32>(m_curStackHt, static_cast<UINT8>(retVal)); |
| 9906 | break; |
| 9907 | case CORINFO_TYPE_SHORT: |
| 9908 | OpStackSet<INT32>(m_curStackHt, static_cast<INT16>(retVal)); |
| 9909 | break; |
| 9910 | case CORINFO_TYPE_USHORT: |
| 9911 | case CORINFO_TYPE_CHAR: |
| 9912 | OpStackSet<UINT32>(m_curStackHt, static_cast<UINT16>(retVal)); |
| 9913 | break; |
| 9914 | case CORINFO_TYPE_INT: |
| 9915 | case CORINFO_TYPE_UINT: |
| 9916 | case CORINFO_TYPE_FLOAT: |
| 9917 | OpStackSet<INT32>(m_curStackHt, static_cast<INT32>(retVal)); |
| 9918 | break; |
| 9919 | case CORINFO_TYPE_LONG: |
| 9920 | case CORINFO_TYPE_ULONG: |
| 9921 | case CORINFO_TYPE_DOUBLE: |
| 9922 | OpStackSet<INT64>(m_curStackHt, static_cast<INT64>(retVal)); |
| 9923 | break; |
| 9924 | case CORINFO_TYPE_NATIVEINT: |
| 9925 | case CORINFO_TYPE_NATIVEUINT: |
| 9926 | case CORINFO_TYPE_PTR: |
| 9927 | OpStackSet<NativeInt>(m_curStackHt, static_cast<NativeInt>(retVal)); |
| 9928 | break; |
| 9929 | case CORINFO_TYPE_CLASS: |
| 9930 | OpStackSet<Object*>(m_curStackHt, reinterpret_cast<Object*>(retVal)); |
| 9931 | break; |
| 9932 | case CORINFO_TYPE_BYREF: |
| 9933 | OpStackSet<void*>(m_curStackHt, reinterpret_cast<void*>(retVal)); |
| 9934 | break; |
| 9935 | case CORINFO_TYPE_VALUECLASS: |
| 9936 | case CORINFO_TYPE_REFANY: |
| 9937 | { |
| 9938 | // We must be careful here to write the value, the type, and update the stack height in one |
| 9939 | // sequence that has no COOP->PREEMP transitions in it, so no GC's happen until the value |
| 9940 | // is protected by being fully "on" the operandStack. |
| 9941 | #if defined(_ARM_) |
| 9942 | // Is the return type an HFA? |
| 9943 | if (HFAReturnArgSlots > 0) |
| 9944 | { |
| 9945 | ARG_SLOT* hfaRetBuff = args - HFAReturnArgSlots; |
| 9946 | if (retTypeIt.IsLargeStruct(&m_interpCeeInfo)) |
| 9947 | { |
| 9948 | void* dst = LargeStructOperandStackPush(retTypeSz); |
| 9949 | memcpy(dst, hfaRetBuff, retTypeSz); |
| 9950 | OpStackSet<void*>(m_curStackHt, dst); |
| 9951 | } |
| 9952 | else |
| 9953 | { |
| 9954 | memcpy(OpStackGetAddr<UINT64>(m_curStackHt), hfaRetBuff, retTypeSz); |
| 9955 | } |
| 9956 | } |
| 9957 | else |
| 9958 | #endif // defined(_ARM_) |
| 9959 | if (pLargeStructRetVal != NULL) |
| 9960 | { |
| 9961 | assert(hasRetBuffArg); |
| 9962 | void* dst = LargeStructOperandStackPush(retTypeSz); |
| 9963 | CopyValueClassUnchecked(dst, pLargeStructRetVal, GetMethodTableFromClsHnd(retTypeClsHnd)); |
| 9964 | OpStackSet<void*>(m_curStackHt, dst); |
| 9965 | } |
| 9966 | else if (hasRetBuffArg) |
| 9967 | { |
| 9968 | OpStackSet<INT64>(m_curStackHt, GetSmallStructValue(&smallStructRetVal, retTypeSz)); |
| 9969 | } |
| 9970 | else |
| 9971 | { |
| 9972 | OpStackSet<UINT64>(m_curStackHt, retVal); |
| 9973 | } |
| 9974 | // We already created this interpreter type, so use it. |
| 9975 | OpStackTypeSet(m_curStackHt, retTypeIt.StackNormalize()); |
| 9976 | m_curStackHt++; |
| 9977 | |
| 9978 | |
| 9979 | // In the value-class case, the call might have used a ret buff, which we would have registered for GC scanning. |
| 9980 | // Make sure it's unregistered. |
| 9981 | m_structRetValITPtr = NULL; |
| 9982 | } |
| 9983 | break; |
| 9984 | default: |
| 9985 | NYI_INTERP("Unhandled return type" ); |
| 9986 | break; |
| 9987 | } |
| 9988 | _ASSERTE_MSG(m_structRetValITPtr == NULL, "Invariant." ); |
| 9989 | |
| 9990 | // The valueclass case is handled fully in the switch above. |
| 9991 | if (sigInfo.retType != CORINFO_TYPE_VALUECLASS && |
| 9992 | sigInfo.retType != CORINFO_TYPE_REFANY) |
| 9993 | { |
| 9994 | OpStackTypeSet(m_curStackHt, InterpreterType(sigInfo.retType).StackNormalize()); |
| 9995 | m_curStackHt++; |
| 9996 | } |
| 9997 | } |
| 9998 | } |
| 9999 | |
| 10000 | // Originally, this assertion was in the ValueClass case above, but it does a COOP->PREEMP |
| 10001 | // transition, and therefore causes a GC, and we're GCX_FORBIDden from doing a GC while retVal |
| 10002 | // is vulnerable. So, for completeness, do it here. |
| 10003 | assert(sigInfo.retType != CORINFO_TYPE_VALUECLASS || retTypeIt == InterpreterType(&m_interpCeeInfo, retTypeClsHnd)); |
| 10004 | |
| 10005 | // If we created a cached call site, cache it now (when it's safe to take a GC). |
| 10006 | if (pCscd != NULL && !doNotCache) |
| 10007 | { |
| 10008 | CacheCallInfo(iloffset, pCscd); |
| 10009 | } |
| 10010 | |
| 10011 | m_callThisArg = NULL; |
| 10012 | |
| 10013 | // If the call we just made pushed a Frame, we popped it above, so re-push it. |
| 10014 | if (ilPushedFrame != NULL) ilPushedFrame->Push(); |
| 10015 | } |
| 10016 | |
| 10017 | #include "metadata.h" |
| 10018 | |
| 10019 | void Interpreter::CallI() |
| 10020 | { |
| 10021 | #if INTERP_DYNAMIC_CONTRACTS |
| 10022 | CONTRACTL { |
| 10023 | SO_TOLERANT; |
| 10024 | THROWS; |
| 10025 | GC_TRIGGERS; |
| 10026 | MODE_COOPERATIVE; |
| 10027 | } CONTRACTL_END; |
| 10028 | #else |
| 10029 | // Dynamic contract occupies too much stack. |
| 10030 | STATIC_CONTRACT_SO_TOLERANT; |
| 10031 | STATIC_CONTRACT_THROWS; |
| 10032 | STATIC_CONTRACT_GC_TRIGGERS; |
| 10033 | STATIC_CONTRACT_MODE_COOPERATIVE; |
| 10034 | #endif |
| 10035 | |
| 10036 | #if INTERP_TRACING |
| 10037 | InterlockedIncrement(&s_totalInterpCalls); |
| 10038 | #endif // INTERP_TRACING |
| 10039 | |
| 10040 | unsigned tok = getU4LittleEndian(m_ILCodePtr + sizeof(BYTE)); |
| 10041 | |
| 10042 | CORINFO_SIG_INFO sigInfo; |
| 10043 | |
| 10044 | { |
| 10045 | GCX_PREEMP(); |
| 10046 | m_interpCeeInfo.findSig(m_methInfo->m_module, tok, GetPreciseGenericsContext(), &sigInfo); |
| 10047 | } |
| 10048 | |
| 10049 | // I'm assuming that a calli can't depend on the generics context, so the simple form of type |
| 10050 | // context should suffice? |
| 10051 | MethodDesc* pMD = reinterpret_cast<MethodDesc*>(m_methInfo->m_method); |
| 10052 | SigTypeContext sigTypeCtxt(pMD); |
| 10053 | MetaSig mSig(sigInfo.pSig, sigInfo.cbSig, GetModule(sigInfo.scope), &sigTypeCtxt); |
| 10054 | |
| 10055 | unsigned totalSigArgs = sigInfo.totalILArgs(); |
| 10056 | |
| 10057 | // Note that "totalNativeArgs()" includes space for ret buff arg. |
| 10058 | unsigned nSlots = totalSigArgs + 1; |
| 10059 | if ((sigInfo.callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG) |
| 10060 | { |
| 10061 | nSlots++; |
| 10062 | } |
| 10063 | |
| 10064 | // Make sure that the operand stack has the required number of arguments. |
| 10065 | // (Note that this is IL args, not native.) |
| 10066 | // |
| 10067 | |
| 10068 | // The total number of arguments on the IL stack. Initially we assume that all the IL arguments |
| 10069 | // the callee expects are on the stack, but may be adjusted downwards if the "this" argument |
| 10070 | // is provided by an allocation (the call is to a constructor). |
| 10071 | unsigned totalArgsOnILStack = totalSigArgs; |
| 10072 | |
| 10073 | const unsigned LOCAL_ARG_SLOTS = 8; |
| 10074 | ARG_SLOT localArgs[LOCAL_ARG_SLOTS]; |
| 10075 | InterpreterType localArgTypes[LOCAL_ARG_SLOTS]; |
| 10076 | |
| 10077 | ARG_SLOT* args; |
| 10078 | InterpreterType* argTypes; |
| 10079 | if (nSlots <= LOCAL_ARG_SLOTS) |
| 10080 | { |
| 10081 | args = &localArgs[0]; |
| 10082 | argTypes = &localArgTypes[0]; |
| 10083 | } |
| 10084 | else |
| 10085 | { |
| 10086 | args = (ARG_SLOT*)_alloca(nSlots * sizeof(ARG_SLOT)); |
| 10087 | argTypes = (InterpreterType*)_alloca(nSlots * sizeof(InterpreterType)); |
| 10088 | } |
| 10089 | // Make sure that we don't scan any of these until we overwrite them with |
| 10090 | // the real types of the arguments. |
| 10091 | InterpreterType undefIt(CORINFO_TYPE_UNDEF); |
| 10092 | for (unsigned i = 0; i < nSlots; i++) |
| 10093 | { |
| 10094 | argTypes[i] = undefIt; |
| 10095 | } |
| 10096 | |
| 10097 | // GC-protect the argument array (as byrefs). |
| 10098 | m_args = args; |
| 10099 | m_argsSize = nSlots; |
| 10100 | m_argTypes = argTypes; |
| 10101 | |
| 10102 | // This is the index into the "args" array (where we copy the value to). |
| 10103 | int curArgSlot = 0; |
| 10104 | |
| 10105 | // The operand stack index of the first IL argument. |
| 10106 | unsigned totalArgPositions = totalArgsOnILStack + 1; // + 1 for the ftn argument. |
| 10107 | assert(m_curStackHt >= totalArgPositions); |
| 10108 | int argsBase = m_curStackHt - totalArgPositions; |
| 10109 | |
| 10110 | // Current on-stack argument index. |
| 10111 | unsigned arg = 0; |
| 10112 | |
| 10113 | if (sigInfo.hasThis()) |
| 10114 | { |
| 10115 | args[curArgSlot] = PtrToArgSlot(OpStackGet<void*>(argsBase + arg)); |
| 10116 | argTypes[curArgSlot] = OpStackTypeGet(argsBase + arg); |
| 10117 | // AV -> NullRef translation is NYI for the interpreter, |
| 10118 | // so we should manually check and throw the correct exception. |
| 10119 | ThrowOnInvalidPointer((void*)args[curArgSlot]); |
| 10120 | arg++; |
| 10121 | curArgSlot++; |
| 10122 | } |
| 10123 | |
| 10124 | // This is the argument slot that will be used to hold the return value. |
| 10125 | ARG_SLOT retVal = 0; |
| 10126 | |
| 10127 | // If the return type is a structure, then these will be initialized. |
| 10128 | CORINFO_CLASS_HANDLE retTypeClsHnd = NULL; |
| 10129 | InterpreterType retTypeIt; |
| 10130 | size_t retTypeSz = 0; |
| 10131 | |
| 10132 | // If non-null, space allocated to hold a large struct return value. Should be deleted later. |
| 10133 | // (I could probably optimize this pop all the arguments first, then allocate space for the return value |
| 10134 | // on the large structure operand stack, and pass a pointer directly to that space, avoiding the extra |
| 10135 | // copy we have below. But this seemed more expedient, and this should be a pretty rare case.) |
| 10136 | BYTE* pLargeStructRetVal = NULL; |
| 10137 | |
| 10138 | // If there's a "GetFlag<Flag_hasRetBuffArg>()" struct return value, it will be stored in this variable if it fits, |
| 10139 | // otherwise, we'll dynamically allocate memory for it. |
| 10140 | ARG_SLOT smallStructRetVal = 0; |
| 10141 | |
| 10142 | // We should have no return buffer temp space registered here...unless this is a constructor, in which |
| 10143 | // case it will return void. In particular, if the return type VALUE_CLASS, then this should be NULL. |
| 10144 | _ASSERTE_MSG(sigInfo.retType == CORINFO_TYPE_VOID || m_structRetValITPtr == NULL, "Invariant." ); |
| 10145 | |
| 10146 | // Is it the return value a struct with a ret buff? |
| 10147 | bool hasRetBuffArg = false; |
| 10148 | if (sigInfo.retType == CORINFO_TYPE_VALUECLASS) |
| 10149 | { |
| 10150 | retTypeClsHnd = sigInfo.retTypeClass; |
| 10151 | retTypeIt = InterpreterType(&m_interpCeeInfo, retTypeClsHnd); |
| 10152 | retTypeSz = retTypeIt.Size(&m_interpCeeInfo); |
| 10153 | #if defined(_AMD64_) |
| 10154 | // TODO: Investigate why HasRetBuffArg can't be used. pMD is a hacked up MD for the |
| 10155 | // calli because it belongs to the current method. Doing what the JIT does. |
| 10156 | hasRetBuffArg = (retTypeSz > sizeof(void*)) || ((retTypeSz & (retTypeSz - 1)) != 0); |
| 10157 | #else |
| 10158 | hasRetBuffArg = !!pMD->HasRetBuffArg(); |
| 10159 | #endif |
| 10160 | if (hasRetBuffArg) |
| 10161 | { |
| 10162 | if (retTypeIt.IsLargeStruct(&m_interpCeeInfo)) |
| 10163 | { |
| 10164 | size_t retBuffSize = retTypeSz; |
| 10165 | // If the target architecture can sometimes return a struct in several registers, |
| 10166 | // MethodDescCallSite will reserve a return value array big enough to hold the maximum. |
| 10167 | // It will then copy *all* of this into the return buffer area we allocate. So make sure |
| 10168 | // we allocate at least that much. |
| 10169 | #ifdef ENREGISTERED_RETURNTYPE_MAXSIZE |
| 10170 | retBuffSize = max(retTypeSz, ENREGISTERED_RETURNTYPE_MAXSIZE); |
| 10171 | #endif // ENREGISTERED_RETURNTYPE_MAXSIZE |
| 10172 | pLargeStructRetVal = (BYTE*)_alloca(retBuffSize); |
| 10173 | |
| 10174 | // Clear this in case a GC happens. |
| 10175 | for (unsigned i = 0; i < retTypeSz; i++) |
| 10176 | { |
| 10177 | pLargeStructRetVal[i] = 0; |
| 10178 | } |
| 10179 | |
| 10180 | // Register this as location needing GC. |
| 10181 | m_structRetValTempSpace = pLargeStructRetVal; |
| 10182 | |
| 10183 | // Set it as the return buffer. |
| 10184 | args[curArgSlot] = PtrToArgSlot(pLargeStructRetVal); |
| 10185 | } |
| 10186 | else |
| 10187 | { |
| 10188 | // Clear this in case a GC happens. |
| 10189 | smallStructRetVal = 0; |
| 10190 | |
| 10191 | // Register this as location needing GC. |
| 10192 | m_structRetValTempSpace = &smallStructRetVal; |
| 10193 | |
| 10194 | // Set it as the return buffer. |
| 10195 | args[curArgSlot] = PtrToArgSlot(&smallStructRetVal); |
| 10196 | } |
| 10197 | m_structRetValITPtr = &retTypeIt; |
| 10198 | argTypes[curArgSlot] = InterpreterType(CORINFO_TYPE_NATIVEINT); |
| 10199 | curArgSlot++; |
| 10200 | } |
| 10201 | } |
| 10202 | |
| 10203 | if ((sigInfo.callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG) |
| 10204 | { |
| 10205 | Module* module = GetModule(sigInfo.scope); |
| 10206 | CORINFO_VARARGS_HANDLE handle = CORINFO_VARARGS_HANDLE(module->GetVASigCookie(Signature(sigInfo.pSig, sigInfo.cbSig))); |
| 10207 | args[curArgSlot] = PtrToArgSlot(handle); |
| 10208 | argTypes[curArgSlot] = InterpreterType(CORINFO_TYPE_NATIVEINT); |
| 10209 | curArgSlot++; |
| 10210 | } |
| 10211 | |
| 10212 | // Now we do the non-this arguments. |
| 10213 | size_t largeStructSpaceToPop = 0; |
| 10214 | for (; arg < totalArgsOnILStack; arg++) |
| 10215 | { |
| 10216 | InterpreterType argIt = OpStackTypeGet(argsBase + arg); |
| 10217 | size_t sz = OpStackTypeGet(argsBase + arg).Size(&m_interpCeeInfo); |
| 10218 | switch (sz) |
| 10219 | { |
| 10220 | case 1: |
| 10221 | args[curArgSlot] = OpStackGet<INT8>(argsBase + arg); |
| 10222 | break; |
| 10223 | case 2: |
| 10224 | args[curArgSlot] = OpStackGet<INT16>(argsBase + arg); |
| 10225 | break; |
| 10226 | case 4: |
| 10227 | args[curArgSlot] = OpStackGet<INT32>(argsBase + arg); |
| 10228 | break; |
| 10229 | case 8: |
| 10230 | default: |
| 10231 | if (sz > 8) |
| 10232 | { |
| 10233 | void* srcPtr = OpStackGet<void*>(argsBase + arg); |
| 10234 | args[curArgSlot] = PtrToArgSlot(srcPtr); |
| 10235 | if (!IsInLargeStructLocalArea(srcPtr)) |
| 10236 | { |
| 10237 | largeStructSpaceToPop += sz; |
| 10238 | } |
| 10239 | } |
| 10240 | else |
| 10241 | { |
| 10242 | args[curArgSlot] = OpStackGet<INT64>(argsBase + arg); |
| 10243 | } |
| 10244 | break; |
| 10245 | } |
| 10246 | argTypes[curArgSlot] = argIt; |
| 10247 | curArgSlot++; |
| 10248 | } |
| 10249 | |
| 10250 | // Finally, we get the code pointer. |
| 10251 | unsigned ftnInd = m_curStackHt - 1; |
| 10252 | #ifdef _DEBUG |
| 10253 | CorInfoType ftnType = OpStackTypeGet(ftnInd).ToCorInfoType(); |
| 10254 | assert(ftnType == CORINFO_TYPE_NATIVEINT |
| 10255 | || ftnType == CORINFO_TYPE_INT |
| 10256 | || ftnType == CORINFO_TYPE_LONG); |
| 10257 | #endif // DEBUG |
| 10258 | |
| 10259 | PCODE ftnPtr = OpStackGet<PCODE>(ftnInd); |
| 10260 | |
| 10261 | { |
| 10262 | MethodDesc* methToCall; |
| 10263 | // If we're interpreting the target, simply call it directly. |
| 10264 | if ((methToCall = InterpretationStubToMethodInfo((PCODE)ftnPtr)) != NULL) |
| 10265 | { |
| 10266 | InterpreterMethodInfo* methInfo = MethodHandleToInterpreterMethInfoPtr(CORINFO_METHOD_HANDLE(methToCall)); |
| 10267 | assert(methInfo != NULL); |
| 10268 | #if INTERP_ILCYCLE_PROFILE |
| 10269 | bool b = CycleTimer::GetThreadCyclesS(&startCycles); assert(b); |
| 10270 | #endif // INTERP_ILCYCLE_PROFILE |
| 10271 | retVal = InterpretMethodBody(methInfo, true, reinterpret_cast<BYTE*>(args), NULL); |
| 10272 | } |
| 10273 | else |
| 10274 | { |
| 10275 | // This is not a great workaround. For the most part, we really don't care what method desc we're using, since |
| 10276 | // we're providing the signature and function pointer -- other than that it's well-formed and "activated." |
| 10277 | // And also, one more thing: whether it is static or not. Which is actually determined by the signature. |
| 10278 | // So we query the signature we have to determine whether we need a static or instance MethodDesc, and then |
| 10279 | // use one of the appropriate staticness that happens to be sitting around in global variables. For static |
| 10280 | // we use "RuntimeHelpers.PrepareConstrainedRegions", for instance we use the default constructor of "Object." |
| 10281 | // TODO: make this cleaner -- maybe invent a couple of empty methods with instructive names, just for this purpose. |
| 10282 | MethodDesc* pMD; |
| 10283 | if (mSig.HasThis()) |
| 10284 | { |
| 10285 | pMD = g_pObjectFinalizerMD; |
| 10286 | } |
| 10287 | else |
| 10288 | { |
| 10289 | pMD = g_pExecuteBackoutCodeHelperMethod; // A random static method. |
| 10290 | } |
| 10291 | MethodDescCallSite mdcs(pMD, &mSig, ftnPtr); |
| 10292 | #if 0 |
| 10293 | // If the current method being interpreted is an IL stub, we're calling native code, so |
| 10294 | // change the GC mode. (We'll only do this at the call if the calling convention turns out |
| 10295 | // to be a managed calling convention.) |
| 10296 | MethodDesc* pStubContextMD = reinterpret_cast<MethodDesc*>(m_stubContext); |
| 10297 | bool transitionToPreemptive = (pStubContextMD != NULL && !pStubContextMD->IsIL()); |
| 10298 | mdcs.CallTargetWorker(args, &retVal, sizeof(retVal), transitionToPreemptive); |
| 10299 | #else |
| 10300 | // TODO The code above triggers assertion at threads.cpp:6861: |
| 10301 | // _ASSERTE(thread->PreemptiveGCDisabled()); // Should have been in managed code |
| 10302 | // The workaround will likely break more things than what it is fixing: |
| 10303 | // just do not make transition to preemptive GC for now. |
| 10304 | mdcs.CallTargetWorker(args, &retVal, sizeof(retVal)); |
| 10305 | #endif |
| 10306 | } |
| 10307 | // retVal is now vulnerable. |
| 10308 | GCX_FORBID(); |
| 10309 | } |
| 10310 | |
| 10311 | // retVal is still vulnerable. |
| 10312 | { |
| 10313 | GCX_FORBID(); |
| 10314 | m_argsSize = 0; |
| 10315 | |
| 10316 | // At this point, the call has happened successfully. We can delete the arguments from the operand stack. |
| 10317 | m_curStackHt -= totalArgPositions; |
| 10318 | |
| 10319 | // We've already checked that "largeStructSpaceToPop |
| 10320 | LargeStructOperandStackPop(largeStructSpaceToPop, NULL); |
| 10321 | |
| 10322 | if (size_t(m_callThisArg) == 0x1) |
| 10323 | { |
| 10324 | _ASSERTE_MSG(sigInfo.retType == CORINFO_TYPE_VOID, "Constructor for var-sized object becomes factory method that returns result." ); |
| 10325 | OpStackSet<Object*>(m_curStackHt, reinterpret_cast<Object*>(retVal)); |
| 10326 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_CLASS)); |
| 10327 | m_curStackHt++; |
| 10328 | } |
| 10329 | else if (sigInfo.retType != CORINFO_TYPE_VOID) |
| 10330 | { |
| 10331 | switch (sigInfo.retType) |
| 10332 | { |
| 10333 | case CORINFO_TYPE_BOOL: |
| 10334 | case CORINFO_TYPE_BYTE: |
| 10335 | OpStackSet<INT32>(m_curStackHt, static_cast<INT8>(retVal)); |
| 10336 | break; |
| 10337 | case CORINFO_TYPE_UBYTE: |
| 10338 | OpStackSet<UINT32>(m_curStackHt, static_cast<UINT8>(retVal)); |
| 10339 | break; |
| 10340 | case CORINFO_TYPE_SHORT: |
| 10341 | OpStackSet<INT32>(m_curStackHt, static_cast<INT16>(retVal)); |
| 10342 | break; |
| 10343 | case CORINFO_TYPE_USHORT: |
| 10344 | case CORINFO_TYPE_CHAR: |
| 10345 | OpStackSet<UINT32>(m_curStackHt, static_cast<UINT16>(retVal)); |
| 10346 | break; |
| 10347 | case CORINFO_TYPE_INT: |
| 10348 | case CORINFO_TYPE_UINT: |
| 10349 | case CORINFO_TYPE_FLOAT: |
| 10350 | OpStackSet<INT32>(m_curStackHt, static_cast<INT32>(retVal)); |
| 10351 | break; |
| 10352 | case CORINFO_TYPE_LONG: |
| 10353 | case CORINFO_TYPE_ULONG: |
| 10354 | case CORINFO_TYPE_DOUBLE: |
| 10355 | OpStackSet<INT64>(m_curStackHt, static_cast<INT64>(retVal)); |
| 10356 | break; |
| 10357 | case CORINFO_TYPE_NATIVEINT: |
| 10358 | case CORINFO_TYPE_NATIVEUINT: |
| 10359 | case CORINFO_TYPE_PTR: |
| 10360 | OpStackSet<NativeInt>(m_curStackHt, static_cast<NativeInt>(retVal)); |
| 10361 | break; |
| 10362 | case CORINFO_TYPE_CLASS: |
| 10363 | OpStackSet<Object*>(m_curStackHt, reinterpret_cast<Object*>(retVal)); |
| 10364 | break; |
| 10365 | case CORINFO_TYPE_VALUECLASS: |
| 10366 | { |
| 10367 | // We must be careful here to write the value, the type, and update the stack height in one |
| 10368 | // sequence that has no COOP->PREEMP transitions in it, so no GC's happen until the value |
| 10369 | // is protected by being fully "on" the operandStack. |
| 10370 | if (pLargeStructRetVal != NULL) |
| 10371 | { |
| 10372 | assert(hasRetBuffArg); |
| 10373 | void* dst = LargeStructOperandStackPush(retTypeSz); |
| 10374 | CopyValueClassUnchecked(dst, pLargeStructRetVal, GetMethodTableFromClsHnd(retTypeClsHnd)); |
| 10375 | OpStackSet<void*>(m_curStackHt, dst); |
| 10376 | } |
| 10377 | else if (hasRetBuffArg) |
| 10378 | { |
| 10379 | OpStackSet<INT64>(m_curStackHt, GetSmallStructValue(&smallStructRetVal, retTypeSz)); |
| 10380 | } |
| 10381 | else |
| 10382 | { |
| 10383 | OpStackSet<UINT64>(m_curStackHt, retVal); |
| 10384 | } |
| 10385 | // We already created this interpreter type, so use it. |
| 10386 | OpStackTypeSet(m_curStackHt, retTypeIt.StackNormalize()); |
| 10387 | m_curStackHt++; |
| 10388 | |
| 10389 | // In the value-class case, the call might have used a ret buff, which we would have registered for GC scanning. |
| 10390 | // Make sure it's unregistered. |
| 10391 | m_structRetValITPtr = NULL; |
| 10392 | } |
| 10393 | break; |
| 10394 | default: |
| 10395 | NYI_INTERP("Unhandled return type" ); |
| 10396 | break; |
| 10397 | } |
| 10398 | _ASSERTE_MSG(m_structRetValITPtr == NULL, "Invariant." ); |
| 10399 | |
| 10400 | // The valueclass case is handled fully in the switch above. |
| 10401 | if (sigInfo.retType != CORINFO_TYPE_VALUECLASS) |
| 10402 | { |
| 10403 | OpStackTypeSet(m_curStackHt, InterpreterType(sigInfo.retType).StackNormalize()); |
| 10404 | m_curStackHt++; |
| 10405 | } |
| 10406 | } |
| 10407 | } |
| 10408 | |
| 10409 | // Originally, this assertion was in the ValueClass case above, but it does a COOP->PREEMP |
| 10410 | // transition, and therefore causes a GC, and we're GCX_FORBIDden from doing a GC while retVal |
| 10411 | // is vulnerable. So, for completeness, do it here. |
| 10412 | assert(sigInfo.retType != CORINFO_TYPE_VALUECLASS || retTypeIt == InterpreterType(&m_interpCeeInfo, retTypeClsHnd)); |
| 10413 | |
| 10414 | m_ILCodePtr += 5; |
| 10415 | } |
| 10416 | |
| 10417 | // static |
| 10418 | bool Interpreter::IsDeadSimpleGetter(CEEInfo* info, MethodDesc* pMD, size_t* offsetOfLd) |
| 10419 | { |
| 10420 | CONTRACTL { |
| 10421 | SO_TOLERANT; |
| 10422 | THROWS; |
| 10423 | GC_TRIGGERS; |
| 10424 | MODE_ANY; |
| 10425 | } CONTRACTL_END; |
| 10426 | |
| 10427 | DWORD flags = pMD->GetAttrs(); |
| 10428 | CORINFO_METHOD_INFO methInfo; |
| 10429 | { |
| 10430 | GCX_PREEMP(); |
| 10431 | bool b = info->getMethodInfo(CORINFO_METHOD_HANDLE(pMD), &methInfo); |
| 10432 | if (!b) return false; |
| 10433 | } |
| 10434 | |
| 10435 | // If the method takes a generic type argument, it's not dead simple... |
| 10436 | if (methInfo.args.callConv & CORINFO_CALLCONV_PARAMTYPE) return false; |
| 10437 | |
| 10438 | BYTE* codePtr = methInfo.ILCode; |
| 10439 | |
| 10440 | if (flags & CORINFO_FLG_STATIC) |
| 10441 | { |
| 10442 | if (methInfo.ILCodeSize != 6) |
| 10443 | return false; |
| 10444 | if (*codePtr != CEE_LDSFLD) |
| 10445 | return false; |
| 10446 | assert(ILOffsetOfLdSFldInDeadSimpleStaticGetter == 0); |
| 10447 | *offsetOfLd = 0; |
| 10448 | codePtr += 5; |
| 10449 | return (*codePtr == CEE_RET); |
| 10450 | } |
| 10451 | else |
| 10452 | { |
| 10453 | // We handle two forms, one for DBG IL, and one for OPT IL. |
| 10454 | bool dbg = false; |
| 10455 | if (methInfo.ILCodeSize == 0xc) |
| 10456 | dbg = true; |
| 10457 | else if (methInfo.ILCodeSize != 7) |
| 10458 | return false; |
| 10459 | |
| 10460 | if (dbg) |
| 10461 | { |
| 10462 | if (*codePtr != CEE_NOP) |
| 10463 | return false; |
| 10464 | codePtr += 1; |
| 10465 | } |
| 10466 | if (*codePtr != CEE_LDARG_0) |
| 10467 | return false; |
| 10468 | codePtr += 1; |
| 10469 | if (*codePtr != CEE_LDFLD) |
| 10470 | return false; |
| 10471 | *offsetOfLd = codePtr - methInfo.ILCode; |
| 10472 | assert((dbg && ILOffsetOfLdFldInDeadSimpleInstanceGetterDbg == *offsetOfLd) |
| 10473 | || (!dbg && ILOffsetOfLdFldInDeadSimpleInstanceGetterOpt == *offsetOfLd)); |
| 10474 | codePtr += 5; |
| 10475 | if (dbg) |
| 10476 | { |
| 10477 | if (*codePtr != CEE_STLOC_0) |
| 10478 | return false; |
| 10479 | codePtr += 1; |
| 10480 | if (*codePtr != CEE_BR) |
| 10481 | return false; |
| 10482 | if (getU4LittleEndian(codePtr + 1) != 0) |
| 10483 | return false; |
| 10484 | codePtr += 5; |
| 10485 | if (*codePtr != CEE_LDLOC_0) |
| 10486 | return false; |
| 10487 | } |
| 10488 | return (*codePtr == CEE_RET); |
| 10489 | } |
| 10490 | } |
| 10491 | |
| 10492 | void Interpreter::DoStringLength() |
| 10493 | { |
| 10494 | CONTRACTL { |
| 10495 | SO_TOLERANT; |
| 10496 | THROWS; |
| 10497 | GC_TRIGGERS; |
| 10498 | MODE_COOPERATIVE; |
| 10499 | } CONTRACTL_END; |
| 10500 | |
| 10501 | assert(m_curStackHt > 0); |
| 10502 | unsigned ind = m_curStackHt - 1; |
| 10503 | |
| 10504 | #ifdef _DEBUG |
| 10505 | CorInfoType stringCIT = OpStackTypeGet(ind).ToCorInfoType(); |
| 10506 | if (stringCIT != CORINFO_TYPE_CLASS) |
| 10507 | { |
| 10508 | VerificationError("StringLength called on non-string." ); |
| 10509 | } |
| 10510 | #endif // _DEBUG |
| 10511 | |
| 10512 | Object* obj = OpStackGet<Object*>(ind); |
| 10513 | |
| 10514 | if (obj == NULL) |
| 10515 | { |
| 10516 | ThrowNullPointerException(); |
| 10517 | } |
| 10518 | |
| 10519 | #ifdef _DEBUG |
| 10520 | if (obj->GetMethodTable() != g_pStringClass) |
| 10521 | { |
| 10522 | VerificationError("StringLength called on non-string." ); |
| 10523 | } |
| 10524 | #endif // _DEBUG |
| 10525 | |
| 10526 | StringObject* str = reinterpret_cast<StringObject*>(obj); |
| 10527 | INT32 len = str->GetStringLength(); |
| 10528 | OpStackSet<INT32>(ind, len); |
| 10529 | OpStackTypeSet(ind, InterpreterType(CORINFO_TYPE_INT)); |
| 10530 | } |
| 10531 | |
| 10532 | void Interpreter::DoStringGetChar() |
| 10533 | { |
| 10534 | CONTRACTL { |
| 10535 | SO_TOLERANT; |
| 10536 | THROWS; |
| 10537 | GC_TRIGGERS; |
| 10538 | MODE_COOPERATIVE; |
| 10539 | } CONTRACTL_END; |
| 10540 | |
| 10541 | assert(m_curStackHt >= 2); |
| 10542 | unsigned strInd = m_curStackHt - 2; |
| 10543 | unsigned indexInd = strInd + 1; |
| 10544 | |
| 10545 | #ifdef _DEBUG |
| 10546 | CorInfoType stringCIT = OpStackTypeGet(strInd).ToCorInfoType(); |
| 10547 | if (stringCIT != CORINFO_TYPE_CLASS) |
| 10548 | { |
| 10549 | VerificationError("StringGetChar called on non-string." ); |
| 10550 | } |
| 10551 | #endif // _DEBUG |
| 10552 | |
| 10553 | Object* obj = OpStackGet<Object*>(strInd); |
| 10554 | |
| 10555 | if (obj == NULL) |
| 10556 | { |
| 10557 | ThrowNullPointerException(); |
| 10558 | } |
| 10559 | |
| 10560 | #ifdef _DEBUG |
| 10561 | if (obj->GetMethodTable() != g_pStringClass) |
| 10562 | { |
| 10563 | VerificationError("StringGetChar called on non-string." ); |
| 10564 | } |
| 10565 | #endif // _DEBUG |
| 10566 | |
| 10567 | StringObject* str = reinterpret_cast<StringObject*>(obj); |
| 10568 | |
| 10569 | #ifdef _DEBUG |
| 10570 | CorInfoType indexCIT = OpStackTypeGet(indexInd).ToCorInfoType(); |
| 10571 | if (indexCIT != CORINFO_TYPE_INT) |
| 10572 | { |
| 10573 | VerificationError("StringGetChar needs integer index." ); |
| 10574 | } |
| 10575 | #endif // _DEBUG |
| 10576 | |
| 10577 | INT32 ind = OpStackGet<INT32>(indexInd); |
| 10578 | if (ind < 0) |
| 10579 | ThrowArrayBoundsException(); |
| 10580 | UINT32 uind = static_cast<UINT32>(ind); |
| 10581 | if (uind >= str->GetStringLength()) |
| 10582 | ThrowArrayBoundsException(); |
| 10583 | |
| 10584 | // Otherwise... |
| 10585 | GCX_FORBID(); // str is vulnerable. |
| 10586 | UINT16* dataPtr = reinterpret_cast<UINT16*>(reinterpret_cast<INT8*>(str) + StringObject::GetBufferOffset()); |
| 10587 | UINT32 filledChar = dataPtr[ind]; |
| 10588 | OpStackSet<UINT32>(strInd, filledChar); |
| 10589 | OpStackTypeSet(strInd, InterpreterType(CORINFO_TYPE_INT)); |
| 10590 | m_curStackHt = indexInd; |
| 10591 | } |
| 10592 | |
| 10593 | void Interpreter::DoGetTypeFromHandle() |
| 10594 | { |
| 10595 | CONTRACTL { |
| 10596 | SO_TOLERANT; |
| 10597 | THROWS; |
| 10598 | GC_TRIGGERS; |
| 10599 | MODE_COOPERATIVE; |
| 10600 | } CONTRACTL_END; |
| 10601 | |
| 10602 | assert(m_curStackHt > 0); |
| 10603 | unsigned ind = m_curStackHt - 1; |
| 10604 | |
| 10605 | #ifdef _DEBUG |
| 10606 | CorInfoType handleCIT = OpStackTypeGet(ind).ToCorInfoType(); |
| 10607 | if (handleCIT != CORINFO_TYPE_VALUECLASS && handleCIT != CORINFO_TYPE_CLASS) |
| 10608 | { |
| 10609 | VerificationError("HandleGetTypeFromHandle called on non-RuntimeTypeHandle/non-RuntimeType." ); |
| 10610 | } |
| 10611 | Object* obj = OpStackGet<Object*>(ind); |
| 10612 | if (obj->GetMethodTable() != g_pRuntimeTypeClass) |
| 10613 | { |
| 10614 | VerificationError("HandleGetTypeFromHandle called on non-RuntimeTypeHandle/non-RuntimeType." ); |
| 10615 | } |
| 10616 | #endif // _DEBUG |
| 10617 | |
| 10618 | OpStackTypeSet(ind, InterpreterType(CORINFO_TYPE_CLASS)); |
| 10619 | } |
| 10620 | |
| 10621 | void Interpreter::DoByReferenceCtor() |
| 10622 | { |
| 10623 | CONTRACTL { |
| 10624 | SO_TOLERANT; |
| 10625 | THROWS; |
| 10626 | GC_TRIGGERS; |
| 10627 | MODE_COOPERATIVE; |
| 10628 | } CONTRACTL_END; |
| 10629 | |
| 10630 | // Note 'this' is not passed on the operand stack... |
| 10631 | assert(m_curStackHt > 0); |
| 10632 | assert(m_callThisArg != NULL); |
| 10633 | unsigned valInd = m_curStackHt - 1; |
| 10634 | CorInfoType valCit = OpStackTypeGet(valInd).ToCorInfoType(); |
| 10635 | |
| 10636 | #ifdef _DEBUG |
| 10637 | if (valCit != CORINFO_TYPE_BYREF) |
| 10638 | { |
| 10639 | VerificationError("ByReference<T>.ctor called with non-byref value." ); |
| 10640 | } |
| 10641 | #endif // _DEBUG |
| 10642 | |
| 10643 | #if INTERP_TRACING |
| 10644 | if (s_TraceInterpreterILFlag.val(CLRConfig::INTERNAL_TraceInterpreterIL)) |
| 10645 | { |
| 10646 | fprintf(GetLogFile(), " ByReference<T>.ctor -- intrinsic\n" ); |
| 10647 | } |
| 10648 | #endif // INTERP_TRACING |
| 10649 | |
| 10650 | GCX_FORBID(); |
| 10651 | void** thisPtr = reinterpret_cast<void**>(m_callThisArg); |
| 10652 | void* val = OpStackGet<void*>(valInd); |
| 10653 | *thisPtr = val; |
| 10654 | m_curStackHt--; |
| 10655 | } |
| 10656 | |
| 10657 | void Interpreter::DoByReferenceValue() |
| 10658 | { |
| 10659 | CONTRACTL { |
| 10660 | SO_TOLERANT; |
| 10661 | THROWS; |
| 10662 | GC_TRIGGERS; |
| 10663 | MODE_COOPERATIVE; |
| 10664 | } CONTRACTL_END; |
| 10665 | |
| 10666 | assert(m_curStackHt > 0); |
| 10667 | unsigned slot = m_curStackHt - 1; |
| 10668 | CorInfoType thisCit = OpStackTypeGet(slot).ToCorInfoType(); |
| 10669 | |
| 10670 | #ifdef _DEBUG |
| 10671 | if (thisCit != CORINFO_TYPE_BYREF) |
| 10672 | { |
| 10673 | VerificationError("ByReference<T>.get_Value called with non-byref this" ); |
| 10674 | } |
| 10675 | #endif // _DEBUG |
| 10676 | |
| 10677 | #if INTERP_TRACING |
| 10678 | if (s_TraceInterpreterILFlag.val(CLRConfig::INTERNAL_TraceInterpreterIL)) |
| 10679 | { |
| 10680 | fprintf(GetLogFile(), " ByReference<T>.getValue -- intrinsic\n" ); |
| 10681 | } |
| 10682 | #endif // INTERP_TRACING |
| 10683 | |
| 10684 | GCX_FORBID(); |
| 10685 | void** thisPtr = OpStackGet<void**>(slot); |
| 10686 | void* value = *thisPtr; |
| 10687 | OpStackSet<void*>(slot, value); |
| 10688 | OpStackTypeSet(slot, InterpreterType(CORINFO_TYPE_BYREF)); |
| 10689 | } |
| 10690 | |
| 10691 | void Interpreter::DoSIMDHwAccelerated() |
| 10692 | { |
| 10693 | CONTRACTL { |
| 10694 | SO_TOLERANT; |
| 10695 | THROWS; |
| 10696 | GC_TRIGGERS; |
| 10697 | MODE_COOPERATIVE; |
| 10698 | } CONTRACTL_END; |
| 10699 | |
| 10700 | #if INTERP_TRACING |
| 10701 | if (s_TraceInterpreterILFlag.val(CLRConfig::INTERNAL_TraceInterpreterIL)) |
| 10702 | { |
| 10703 | fprintf(GetLogFile(), " System.Numerics.Vector.IsHardwareAccelerated -- intrinsic\n" ); |
| 10704 | } |
| 10705 | #endif // INTERP_TRACING |
| 10706 | |
| 10707 | LdIcon(1); |
| 10708 | } |
| 10709 | |
| 10710 | void Interpreter::RecordConstrainedCall() |
| 10711 | { |
| 10712 | CONTRACTL { |
| 10713 | SO_TOLERANT; |
| 10714 | THROWS; |
| 10715 | GC_TRIGGERS; |
| 10716 | MODE_COOPERATIVE; |
| 10717 | } CONTRACTL_END; |
| 10718 | |
| 10719 | #if INTERP_TRACING |
| 10720 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_Constrained]); |
| 10721 | #endif // INTERP_TRACING |
| 10722 | |
| 10723 | { |
| 10724 | GCX_PREEMP(); |
| 10725 | ResolveToken(&m_constrainedResolvedToken, getU4LittleEndian(m_ILCodePtr + 2), CORINFO_TOKENKIND_Constrained InterpTracingArg(RTK_Constrained)); |
| 10726 | } |
| 10727 | |
| 10728 | m_constrainedFlag = true; |
| 10729 | |
| 10730 | m_ILCodePtr += 6; |
| 10731 | } |
| 10732 | |
| 10733 | void Interpreter::LargeStructOperandStackEnsureCanPush(size_t sz) |
| 10734 | { |
| 10735 | size_t remaining = m_largeStructOperandStackAllocSize - m_largeStructOperandStackHt; |
| 10736 | if (remaining < sz) |
| 10737 | { |
| 10738 | size_t newAllocSize = max(m_largeStructOperandStackAllocSize + sz * 4, m_largeStructOperandStackAllocSize * 2); |
| 10739 | BYTE* newStack = new BYTE[newAllocSize]; |
| 10740 | m_largeStructOperandStackAllocSize = newAllocSize; |
| 10741 | if (m_largeStructOperandStack != NULL) |
| 10742 | { |
| 10743 | memcpy(newStack, m_largeStructOperandStack, m_largeStructOperandStackHt); |
| 10744 | delete[] m_largeStructOperandStack; |
| 10745 | } |
| 10746 | m_largeStructOperandStack = newStack; |
| 10747 | } |
| 10748 | } |
| 10749 | |
| 10750 | void* Interpreter::LargeStructOperandStackPush(size_t sz) |
| 10751 | { |
| 10752 | LargeStructOperandStackEnsureCanPush(sz); |
| 10753 | assert(m_largeStructOperandStackAllocSize >= m_largeStructOperandStackHt + sz); |
| 10754 | void* res = &m_largeStructOperandStack[m_largeStructOperandStackHt]; |
| 10755 | m_largeStructOperandStackHt += sz; |
| 10756 | return res; |
| 10757 | } |
| 10758 | |
| 10759 | void Interpreter::LargeStructOperandStackPop(size_t sz, void* fromAddr) |
| 10760 | { |
| 10761 | if (!IsInLargeStructLocalArea(fromAddr)) |
| 10762 | { |
| 10763 | assert(m_largeStructOperandStackHt >= sz); |
| 10764 | m_largeStructOperandStackHt -= sz; |
| 10765 | } |
| 10766 | } |
| 10767 | |
| 10768 | #ifdef _DEBUG |
| 10769 | bool Interpreter::LargeStructStackHeightIsValid() |
| 10770 | { |
| 10771 | size_t sz2 = 0; |
| 10772 | for (unsigned k = 0; k < m_curStackHt; k++) |
| 10773 | { |
| 10774 | if (OpStackTypeGet(k).IsLargeStruct(&m_interpCeeInfo) && !IsInLargeStructLocalArea(OpStackGet<void*>(k))) |
| 10775 | { |
| 10776 | sz2 += OpStackTypeGet(k).Size(&m_interpCeeInfo); |
| 10777 | } |
| 10778 | } |
| 10779 | assert(sz2 == m_largeStructOperandStackHt); |
| 10780 | return sz2 == m_largeStructOperandStackHt; |
| 10781 | } |
| 10782 | #endif // _DEBUG |
| 10783 | |
| 10784 | void Interpreter::VerificationError(const char* msg) |
| 10785 | { |
| 10786 | // TODO: Should raise an exception eventually; for now: |
| 10787 | const char* const msgPrefix = "Verification Error: " ; |
| 10788 | size_t len = strlen(msgPrefix) + strlen(msg) + 1; |
| 10789 | char* msgFinal = (char*)_alloca(len); |
| 10790 | strcpy_s(msgFinal, len, msgPrefix); |
| 10791 | strcat_s(msgFinal, len, msg); |
| 10792 | _ASSERTE_MSG(false, msgFinal); |
| 10793 | } |
| 10794 | |
| 10795 | void Interpreter::ThrowDivideByZero() |
| 10796 | { |
| 10797 | CONTRACTL { |
| 10798 | SO_TOLERANT; |
| 10799 | THROWS; |
| 10800 | GC_TRIGGERS; |
| 10801 | MODE_COOPERATIVE; |
| 10802 | } CONTRACTL_END; |
| 10803 | |
| 10804 | COMPlusThrow(kDivideByZeroException); |
| 10805 | } |
| 10806 | |
| 10807 | void Interpreter::ThrowSysArithException() |
| 10808 | { |
| 10809 | CONTRACTL { |
| 10810 | SO_TOLERANT; |
| 10811 | THROWS; |
| 10812 | GC_TRIGGERS; |
| 10813 | MODE_COOPERATIVE; |
| 10814 | } CONTRACTL_END; |
| 10815 | |
| 10816 | // According to the ECMA spec, this should be an ArithmeticException; however, |
| 10817 | // the JITs throw an OverflowException and consistency is top priority... |
| 10818 | COMPlusThrow(kOverflowException); |
| 10819 | } |
| 10820 | |
| 10821 | void Interpreter::ThrowNullPointerException() |
| 10822 | { |
| 10823 | CONTRACTL { |
| 10824 | SO_TOLERANT; |
| 10825 | THROWS; |
| 10826 | GC_TRIGGERS; |
| 10827 | MODE_COOPERATIVE; |
| 10828 | } CONTRACTL_END; |
| 10829 | |
| 10830 | COMPlusThrow(kNullReferenceException); |
| 10831 | } |
| 10832 | |
| 10833 | void Interpreter::ThrowOverflowException() |
| 10834 | { |
| 10835 | CONTRACTL { |
| 10836 | SO_TOLERANT; |
| 10837 | THROWS; |
| 10838 | GC_TRIGGERS; |
| 10839 | MODE_COOPERATIVE; |
| 10840 | } CONTRACTL_END; |
| 10841 | |
| 10842 | COMPlusThrow(kOverflowException); |
| 10843 | } |
| 10844 | |
| 10845 | void Interpreter::ThrowArrayBoundsException() |
| 10846 | { |
| 10847 | CONTRACTL { |
| 10848 | SO_TOLERANT; |
| 10849 | THROWS; |
| 10850 | GC_TRIGGERS; |
| 10851 | MODE_COOPERATIVE; |
| 10852 | } CONTRACTL_END; |
| 10853 | |
| 10854 | COMPlusThrow(kIndexOutOfRangeException); |
| 10855 | } |
| 10856 | |
| 10857 | void Interpreter::ThrowInvalidCastException() |
| 10858 | { |
| 10859 | CONTRACTL { |
| 10860 | SO_TOLERANT; |
| 10861 | THROWS; |
| 10862 | GC_TRIGGERS; |
| 10863 | MODE_COOPERATIVE; |
| 10864 | } CONTRACTL_END; |
| 10865 | |
| 10866 | COMPlusThrow(kInvalidCastException); |
| 10867 | } |
| 10868 | |
| 10869 | void Interpreter::ThrowStackOverflow() |
| 10870 | { |
| 10871 | CONTRACTL { |
| 10872 | SO_TOLERANT; |
| 10873 | THROWS; |
| 10874 | GC_TRIGGERS; |
| 10875 | MODE_COOPERATIVE; |
| 10876 | } CONTRACTL_END; |
| 10877 | |
| 10878 | COMPlusThrow(kStackOverflowException); |
| 10879 | } |
| 10880 | |
| 10881 | float Interpreter::RemFunc(float v1, float v2) |
| 10882 | { |
| 10883 | return fmodf(v1, v2); |
| 10884 | } |
| 10885 | |
| 10886 | double Interpreter::RemFunc(double v1, double v2) |
| 10887 | { |
| 10888 | return fmod(v1, v2); |
| 10889 | } |
| 10890 | |
| 10891 | // Static members and methods. |
| 10892 | Interpreter::AddrToMDMap* Interpreter::s_addrToMDMap = NULL; |
| 10893 | |
| 10894 | unsigned Interpreter::s_interpreterStubNum = 0; |
| 10895 | |
| 10896 | // TODO: contracts and synchronization for the AddrToMDMap methods. |
| 10897 | // Requires caller to hold "s_interpStubToMDMapLock". |
| 10898 | Interpreter::AddrToMDMap* Interpreter::GetAddrToMdMap() |
| 10899 | { |
| 10900 | #if 0 |
| 10901 | CONTRACTL { |
| 10902 | SO_TOLERANT; |
| 10903 | THROWS; |
| 10904 | GC_NOTRIGGER; |
| 10905 | } CONTRACTL_END; |
| 10906 | #endif |
| 10907 | |
| 10908 | if (s_addrToMDMap == NULL) |
| 10909 | { |
| 10910 | s_addrToMDMap = new AddrToMDMap(); |
| 10911 | } |
| 10912 | return s_addrToMDMap; |
| 10913 | } |
| 10914 | |
| 10915 | void Interpreter::RecordInterpreterStubForMethodDesc(CORINFO_METHOD_HANDLE md, void* addr) |
| 10916 | { |
| 10917 | #if 0 |
| 10918 | CONTRACTL { |
| 10919 | SO_TOLERANT; |
| 10920 | NOTHROW; |
| 10921 | GC_NOTRIGGER; |
| 10922 | } CONTRACTL_END; |
| 10923 | #endif |
| 10924 | |
| 10925 | CrstHolder ch(&s_interpStubToMDMapLock); |
| 10926 | |
| 10927 | AddrToMDMap* map = Interpreter::GetAddrToMdMap(); |
| 10928 | #ifdef _DEBUG |
| 10929 | CORINFO_METHOD_HANDLE dummy; |
| 10930 | assert(!map->Lookup(addr, &dummy)); |
| 10931 | #endif // DEBUG |
| 10932 | map->AddOrReplace(KeyValuePair<void*,CORINFO_METHOD_HANDLE>(addr, md)); |
| 10933 | } |
| 10934 | |
| 10935 | MethodDesc* Interpreter::InterpretationStubToMethodInfo(PCODE addr) |
| 10936 | { |
| 10937 | CONTRACTL { |
| 10938 | SO_TOLERANT; |
| 10939 | NOTHROW; |
| 10940 | GC_NOTRIGGER; |
| 10941 | } CONTRACTL_END; |
| 10942 | |
| 10943 | |
| 10944 | // This query function will never allocate the table... |
| 10945 | if (s_addrToMDMap == NULL) |
| 10946 | return NULL; |
| 10947 | |
| 10948 | // Otherwise...if we observe s_addrToMdMap non-null, the lock below must be initialized. |
| 10949 | // CrstHolder ch(&s_interpStubToMDMapLock); |
| 10950 | |
| 10951 | AddrToMDMap* map = Interpreter::GetAddrToMdMap(); |
| 10952 | CORINFO_METHOD_HANDLE result = NULL; |
| 10953 | (void)map->Lookup((void*)addr, &result); |
| 10954 | return (MethodDesc*)result; |
| 10955 | } |
| 10956 | |
| 10957 | Interpreter::MethodHandleToInterpMethInfoPtrMap* Interpreter::s_methodHandleToInterpMethInfoPtrMap = NULL; |
| 10958 | |
| 10959 | // Requires caller to hold "s_interpStubToMDMapLock". |
| 10960 | Interpreter::MethodHandleToInterpMethInfoPtrMap* Interpreter::GetMethodHandleToInterpMethInfoPtrMap() |
| 10961 | { |
| 10962 | #if 0 |
| 10963 | CONTRACTL { |
| 10964 | SO_TOLERANT; |
| 10965 | THROWS; |
| 10966 | GC_NOTRIGGER; |
| 10967 | } CONTRACTL_END; |
| 10968 | #endif |
| 10969 | |
| 10970 | if (s_methodHandleToInterpMethInfoPtrMap == NULL) |
| 10971 | { |
| 10972 | s_methodHandleToInterpMethInfoPtrMap = new MethodHandleToInterpMethInfoPtrMap(); |
| 10973 | } |
| 10974 | return s_methodHandleToInterpMethInfoPtrMap; |
| 10975 | } |
| 10976 | |
| 10977 | InterpreterMethodInfo* Interpreter::RecordInterpreterMethodInfoForMethodHandle(CORINFO_METHOD_HANDLE md, InterpreterMethodInfo* methInfo) |
| 10978 | { |
| 10979 | #if 0 |
| 10980 | CONTRACTL { |
| 10981 | SO_TOLERANT; |
| 10982 | NOTHROW; |
| 10983 | GC_NOTRIGGER; |
| 10984 | } CONTRACTL_END; |
| 10985 | #endif |
| 10986 | |
| 10987 | CrstHolder ch(&s_interpStubToMDMapLock); |
| 10988 | |
| 10989 | MethodHandleToInterpMethInfoPtrMap* map = Interpreter::GetMethodHandleToInterpMethInfoPtrMap(); |
| 10990 | |
| 10991 | MethInfo mi; |
| 10992 | if (map->Lookup(md, &mi)) |
| 10993 | { |
| 10994 | // If there's already an entry, make sure it was created by another thread -- the same thread shouldn't create two |
| 10995 | // of these. |
| 10996 | _ASSERTE_MSG(mi.m_thread != GetThread(), "Two InterpMethInfo's for same meth by same thread." ); |
| 10997 | // If we were creating an interpreter stub at the same time as another thread, and we lost the race to |
| 10998 | // insert it, use the already-existing one, and delete this one. |
| 10999 | delete methInfo; |
| 11000 | return mi.m_info; |
| 11001 | } |
| 11002 | |
| 11003 | mi.m_info = methInfo; |
| 11004 | #ifdef _DEBUG |
| 11005 | mi.m_thread = GetThread(); |
| 11006 | #endif |
| 11007 | |
| 11008 | _ASSERTE_MSG(map->LookupPtr(md) == NULL, "Multiple InterpMethInfos for method desc." ); |
| 11009 | map->Add(md, mi); |
| 11010 | return methInfo; |
| 11011 | } |
| 11012 | |
| 11013 | InterpreterMethodInfo* Interpreter::MethodHandleToInterpreterMethInfoPtr(CORINFO_METHOD_HANDLE md) |
| 11014 | { |
| 11015 | CONTRACTL { |
| 11016 | SO_TOLERANT; |
| 11017 | NOTHROW; |
| 11018 | GC_TRIGGERS; |
| 11019 | } CONTRACTL_END; |
| 11020 | |
| 11021 | // This query function will never allocate the table... |
| 11022 | if (s_methodHandleToInterpMethInfoPtrMap == NULL) |
| 11023 | return NULL; |
| 11024 | |
| 11025 | // Otherwise...if we observe s_addrToMdMap non-null, the lock below must be initialized. |
| 11026 | CrstHolder ch(&s_interpStubToMDMapLock); |
| 11027 | |
| 11028 | MethodHandleToInterpMethInfoPtrMap* map = Interpreter::GetMethodHandleToInterpMethInfoPtrMap(); |
| 11029 | |
| 11030 | MethInfo mi; |
| 11031 | mi.m_info = NULL; |
| 11032 | (void)map->Lookup(md, &mi); |
| 11033 | return mi.m_info; |
| 11034 | } |
| 11035 | |
| 11036 | |
| 11037 | #ifndef DACCESS_COMPILE |
| 11038 | |
| 11039 | // Requires that the current thread holds "s_methodCacheLock." |
| 11040 | ILOffsetToItemCache* InterpreterMethodInfo::GetCacheForCall(Object* thisArg, void* genericsCtxtArg, bool alloc) |
| 11041 | { |
| 11042 | // First, does the current method have dynamic generic information, and, if so, |
| 11043 | // what kind? |
| 11044 | CORINFO_CONTEXT_HANDLE context = GetPreciseGenericsContext(thisArg, genericsCtxtArg); |
| 11045 | if (context == MAKE_METHODCONTEXT(m_method)) |
| 11046 | { |
| 11047 | // No dynamic generics context information. The caching field in "m_methInfo" is the |
| 11048 | // ILoffset->Item cache directly. |
| 11049 | // First, ensure that it's allocated. |
| 11050 | if (m_methodCache == NULL && alloc) |
| 11051 | { |
| 11052 | // Lazy init via compare-exchange. |
| 11053 | ILOffsetToItemCache* cache = new ILOffsetToItemCache(); |
| 11054 | void* prev = InterlockedCompareExchangeT<void*>(&m_methodCache, cache, NULL); |
| 11055 | if (prev != NULL) delete cache; |
| 11056 | } |
| 11057 | return reinterpret_cast<ILOffsetToItemCache*>(m_methodCache); |
| 11058 | } |
| 11059 | else |
| 11060 | { |
| 11061 | // Otherwise, it does have generic info, so find the right cache. |
| 11062 | // First ensure that the top-level generics-context --> cache cache exists. |
| 11063 | GenericContextToInnerCache* outerCache = reinterpret_cast<GenericContextToInnerCache*>(m_methodCache); |
| 11064 | if (outerCache == NULL) |
| 11065 | { |
| 11066 | if (alloc) |
| 11067 | { |
| 11068 | // Lazy init via compare-exchange. |
| 11069 | outerCache = new GenericContextToInnerCache(); |
| 11070 | void* prev = InterlockedCompareExchangeT<void*>(&m_methodCache, outerCache, NULL); |
| 11071 | if (prev != NULL) |
| 11072 | { |
| 11073 | delete outerCache; |
| 11074 | outerCache = reinterpret_cast<GenericContextToInnerCache*>(prev); |
| 11075 | } |
| 11076 | } |
| 11077 | else |
| 11078 | { |
| 11079 | return NULL; |
| 11080 | } |
| 11081 | } |
| 11082 | // Does the outerCache already have an entry for this instantiation? |
| 11083 | ILOffsetToItemCache* innerCache = NULL; |
| 11084 | if (!outerCache->GetItem(size_t(context), innerCache) && alloc) |
| 11085 | { |
| 11086 | innerCache = new ILOffsetToItemCache(); |
| 11087 | outerCache->AddItem(size_t(context), innerCache); |
| 11088 | } |
| 11089 | return innerCache; |
| 11090 | } |
| 11091 | } |
| 11092 | |
| 11093 | void Interpreter::CacheCallInfo(unsigned iloffset, CallSiteCacheData* callInfo) |
| 11094 | { |
| 11095 | CrstHolder ch(&s_methodCacheLock); |
| 11096 | |
| 11097 | ILOffsetToItemCache* cache = GetThisExecCache(true); |
| 11098 | // Insert, but if the item is already there, delete "mdcs" (which would have been owned |
| 11099 | // by the cache). |
| 11100 | // (Duplicate entries can happen because of recursive calls -- F makes a recursive call to F, and when it |
| 11101 | // returns wants to cache it, but the recursive call makes a furher recursive call, and caches that, so the |
| 11102 | // first call finds the iloffset already occupied.) |
| 11103 | if (!cache->AddItem(iloffset, CachedItem(callInfo))) |
| 11104 | { |
| 11105 | delete callInfo; |
| 11106 | } |
| 11107 | } |
| 11108 | |
| 11109 | CallSiteCacheData* Interpreter::GetCachedCallInfo(unsigned iloffset) |
| 11110 | { |
| 11111 | CrstHolder ch(&s_methodCacheLock); |
| 11112 | |
| 11113 | ILOffsetToItemCache* cache = GetThisExecCache(false); |
| 11114 | if (cache == NULL) return NULL; |
| 11115 | // Otherwise... |
| 11116 | CachedItem item; |
| 11117 | if (cache->GetItem(iloffset, item)) |
| 11118 | { |
| 11119 | _ASSERTE_MSG(item.m_tag == CIK_CallSite, "Wrong cached item tag." ); |
| 11120 | return item.m_value.m_callSiteInfo; |
| 11121 | } |
| 11122 | else |
| 11123 | { |
| 11124 | return NULL; |
| 11125 | } |
| 11126 | } |
| 11127 | |
| 11128 | void Interpreter::CacheInstanceField(unsigned iloffset, FieldDesc* fld) |
| 11129 | { |
| 11130 | CrstHolder ch(&s_methodCacheLock); |
| 11131 | |
| 11132 | ILOffsetToItemCache* cache = GetThisExecCache(true); |
| 11133 | cache->AddItem(iloffset, CachedItem(fld)); |
| 11134 | } |
| 11135 | |
| 11136 | FieldDesc* Interpreter::GetCachedInstanceField(unsigned iloffset) |
| 11137 | { |
| 11138 | CrstHolder ch(&s_methodCacheLock); |
| 11139 | |
| 11140 | ILOffsetToItemCache* cache = GetThisExecCache(false); |
| 11141 | if (cache == NULL) return NULL; |
| 11142 | // Otherwise... |
| 11143 | CachedItem item; |
| 11144 | if (cache->GetItem(iloffset, item)) |
| 11145 | { |
| 11146 | _ASSERTE_MSG(item.m_tag == CIK_InstanceField, "Wrong cached item tag." ); |
| 11147 | return item.m_value.m_instanceField; |
| 11148 | } |
| 11149 | else |
| 11150 | { |
| 11151 | return NULL; |
| 11152 | } |
| 11153 | } |
| 11154 | |
| 11155 | void Interpreter::CacheStaticField(unsigned iloffset, StaticFieldCacheEntry* pEntry) |
| 11156 | { |
| 11157 | CrstHolder ch(&s_methodCacheLock); |
| 11158 | |
| 11159 | ILOffsetToItemCache* cache = GetThisExecCache(true); |
| 11160 | // If (say) a concurrent thread has beaten us to this, delete the entry (which otherwise would have |
| 11161 | // been owned by the cache). |
| 11162 | if (!cache->AddItem(iloffset, CachedItem(pEntry))) |
| 11163 | { |
| 11164 | delete pEntry; |
| 11165 | } |
| 11166 | } |
| 11167 | |
| 11168 | StaticFieldCacheEntry* Interpreter::GetCachedStaticField(unsigned iloffset) |
| 11169 | { |
| 11170 | CrstHolder ch(&s_methodCacheLock); |
| 11171 | |
| 11172 | ILOffsetToItemCache* cache = GetThisExecCache(false); |
| 11173 | if (cache == NULL) |
| 11174 | return NULL; |
| 11175 | |
| 11176 | // Otherwise... |
| 11177 | CachedItem item; |
| 11178 | if (cache->GetItem(iloffset, item)) |
| 11179 | { |
| 11180 | _ASSERTE_MSG(item.m_tag == CIK_StaticField, "Wrong cached item tag." ); |
| 11181 | return item.m_value.m_staticFieldAddr; |
| 11182 | } |
| 11183 | else |
| 11184 | { |
| 11185 | return NULL; |
| 11186 | } |
| 11187 | } |
| 11188 | |
| 11189 | |
| 11190 | void Interpreter::CacheClassHandle(unsigned iloffset, CORINFO_CLASS_HANDLE clsHnd) |
| 11191 | { |
| 11192 | CrstHolder ch(&s_methodCacheLock); |
| 11193 | |
| 11194 | ILOffsetToItemCache* cache = GetThisExecCache(true); |
| 11195 | cache->AddItem(iloffset, CachedItem(clsHnd)); |
| 11196 | } |
| 11197 | |
| 11198 | CORINFO_CLASS_HANDLE Interpreter::GetCachedClassHandle(unsigned iloffset) |
| 11199 | { |
| 11200 | CrstHolder ch(&s_methodCacheLock); |
| 11201 | |
| 11202 | ILOffsetToItemCache* cache = GetThisExecCache(false); |
| 11203 | if (cache == NULL) |
| 11204 | return NULL; |
| 11205 | |
| 11206 | // Otherwise... |
| 11207 | CachedItem item; |
| 11208 | if (cache->GetItem(iloffset, item)) |
| 11209 | { |
| 11210 | _ASSERTE_MSG(item.m_tag == CIK_ClassHandle, "Wrong cached item tag." ); |
| 11211 | return item.m_value.m_clsHnd; |
| 11212 | } |
| 11213 | else |
| 11214 | { |
| 11215 | return NULL; |
| 11216 | } |
| 11217 | } |
| 11218 | #endif // DACCESS_COMPILE |
| 11219 | |
| 11220 | // Statics |
| 11221 | |
| 11222 | // Theses are not debug-only. |
| 11223 | ConfigMethodSet Interpreter::s_InterpretMeths; |
| 11224 | ConfigMethodSet Interpreter::s_InterpretMethsExclude; |
| 11225 | ConfigDWORD Interpreter::s_InterpretMethHashMin; |
| 11226 | ConfigDWORD Interpreter::s_InterpretMethHashMax; |
| 11227 | ConfigDWORD Interpreter::s_InterpreterJITThreshold; |
| 11228 | ConfigDWORD Interpreter::s_InterpreterDoLoopMethodsFlag; |
| 11229 | ConfigDWORD Interpreter::s_InterpreterUseCachingFlag; |
| 11230 | ConfigDWORD Interpreter::s_InterpreterLooseRulesFlag; |
| 11231 | |
| 11232 | bool Interpreter::s_InterpreterDoLoopMethods; |
| 11233 | bool Interpreter::s_InterpreterUseCaching; |
| 11234 | bool Interpreter::s_InterpreterLooseRules; |
| 11235 | |
| 11236 | CrstExplicitInit Interpreter::s_methodCacheLock; |
| 11237 | CrstExplicitInit Interpreter::s_interpStubToMDMapLock; |
| 11238 | |
| 11239 | // The static variables below are debug-only. |
| 11240 | #if INTERP_TRACING |
| 11241 | LONG Interpreter::s_totalInvocations = 0; |
| 11242 | LONG Interpreter::s_totalInterpCalls = 0; |
| 11243 | LONG Interpreter::s_totalInterpCallsToGetters = 0; |
| 11244 | LONG Interpreter::s_totalInterpCallsToDeadSimpleGetters = 0; |
| 11245 | LONG Interpreter::s_totalInterpCallsToDeadSimpleGettersShortCircuited = 0; |
| 11246 | LONG Interpreter::s_totalInterpCallsToSetters = 0; |
| 11247 | LONG Interpreter::s_totalInterpCallsToIntrinsics = 0; |
| 11248 | LONG Interpreter::s_totalInterpCallsToIntrinsicsUnhandled = 0; |
| 11249 | |
| 11250 | LONG Interpreter::s_tokenResolutionOpportunities[RTK_Count] = {0, }; |
| 11251 | LONG Interpreter::s_tokenResolutionCalls[RTK_Count] = {0, }; |
| 11252 | const char* Interpreter::s_tokenResolutionKindNames[RTK_Count] = |
| 11253 | { |
| 11254 | "Undefined" , |
| 11255 | "Constrained" , |
| 11256 | "NewObj" , |
| 11257 | "NewArr" , |
| 11258 | "LdToken" , |
| 11259 | "LdFtn" , |
| 11260 | "LdVirtFtn" , |
| 11261 | "SFldAddr" , |
| 11262 | "LdElem" , |
| 11263 | "Call" , |
| 11264 | "LdObj" , |
| 11265 | "StObj" , |
| 11266 | "CpObj" , |
| 11267 | "InitObj" , |
| 11268 | "IsInst" , |
| 11269 | "CastClass" , |
| 11270 | "MkRefAny" , |
| 11271 | "RefAnyVal" , |
| 11272 | "Sizeof" , |
| 11273 | "StElem" , |
| 11274 | "Box" , |
| 11275 | "Unbox" , |
| 11276 | "UnboxAny" , |
| 11277 | "LdFld" , |
| 11278 | "LdFldA" , |
| 11279 | "StFld" , |
| 11280 | "FindClass" , |
| 11281 | "Exception" , |
| 11282 | }; |
| 11283 | |
| 11284 | FILE* Interpreter::s_InterpreterLogFile = NULL; |
| 11285 | ConfigDWORD Interpreter::s_DumpInterpreterStubsFlag; |
| 11286 | ConfigDWORD Interpreter::s_TraceInterpreterEntriesFlag; |
| 11287 | ConfigDWORD Interpreter::s_TraceInterpreterILFlag; |
| 11288 | ConfigDWORD Interpreter::s_TraceInterpreterOstackFlag; |
| 11289 | ConfigDWORD Interpreter::s_TraceInterpreterVerboseFlag; |
| 11290 | ConfigDWORD Interpreter::s_TraceInterpreterJITTransitionFlag; |
| 11291 | ConfigDWORD Interpreter::s_InterpreterStubMin; |
| 11292 | ConfigDWORD Interpreter::s_InterpreterStubMax; |
| 11293 | #endif // INTERP_TRACING |
| 11294 | |
| 11295 | #if INTERP_ILINSTR_PROFILE |
| 11296 | unsigned short Interpreter::s_ILInstrCategories[512]; |
| 11297 | |
| 11298 | int Interpreter::s_ILInstrExecs[256] = {0, }; |
| 11299 | int Interpreter::s_ILInstrExecsByCategory[512] = {0, }; |
| 11300 | int Interpreter::s_ILInstr2ByteExecs[Interpreter::CountIlInstr2Byte] = {0, }; |
| 11301 | #if INTERP_ILCYCLE_PROFILE |
| 11302 | unsigned __int64 Interpreter::s_ILInstrCycles[512] = { 0, }; |
| 11303 | unsigned __int64 Interpreter::s_ILInstrCyclesByCategory[512] = { 0, }; |
| 11304 | // XXX |
| 11305 | unsigned __int64 Interpreter::s_callCycles = 0; |
| 11306 | unsigned Interpreter::s_calls = 0; |
| 11307 | |
| 11308 | void Interpreter::UpdateCycleCount() |
| 11309 | { |
| 11310 | unsigned __int64 endCycles; |
| 11311 | bool b = CycleTimer::GetThreadCyclesS(&endCycles); assert(b); |
| 11312 | if (m_instr != CEE_COUNT) |
| 11313 | { |
| 11314 | unsigned __int64 delta = (endCycles - m_startCycles); |
| 11315 | if (m_exemptCycles > 0) |
| 11316 | { |
| 11317 | delta = delta - m_exemptCycles; |
| 11318 | m_exemptCycles = 0; |
| 11319 | } |
| 11320 | CycleTimer::InterlockedAddU64(&s_ILInstrCycles[m_instr], delta); |
| 11321 | } |
| 11322 | // In any case, set the instruction to the current one, and record it's start time. |
| 11323 | m_instr = (*m_ILCodePtr); |
| 11324 | if (m_instr == CEE_PREFIX1) { |
| 11325 | m_instr = *(m_ILCodePtr + 1) + 0x100; |
| 11326 | } |
| 11327 | b = CycleTimer::GetThreadCyclesS(&m_startCycles); assert(b); |
| 11328 | } |
| 11329 | |
| 11330 | #endif // INTERP_ILCYCLE_PROFILE |
| 11331 | #endif // INTERP_ILINSTR_PROFILE |
| 11332 | |
| 11333 | #ifdef _DEBUG |
| 11334 | InterpreterMethodInfo** Interpreter::s_interpMethInfos = NULL; |
| 11335 | unsigned Interpreter::s_interpMethInfosAllocSize = 0; |
| 11336 | unsigned Interpreter::s_interpMethInfosCount = 0; |
| 11337 | |
| 11338 | bool Interpreter::TOSIsPtr() |
| 11339 | { |
| 11340 | if (m_curStackHt == 0) |
| 11341 | return false; |
| 11342 | |
| 11343 | return CorInfoTypeIsPointer(OpStackTypeGet(m_curStackHt - 1).ToCorInfoType()); |
| 11344 | } |
| 11345 | #endif // DEBUG |
| 11346 | |
| 11347 | ConfigDWORD Interpreter::s_PrintPostMortemFlag; |
| 11348 | |
| 11349 | // InterpreterCache. |
| 11350 | template<typename Key, typename Val> |
| 11351 | InterpreterCache<Key,Val>::InterpreterCache() : m_pairs(NULL), m_allocSize(0), m_count(0) |
| 11352 | { |
| 11353 | #ifdef _DEBUG |
| 11354 | AddAllocBytes(sizeof(*this)); |
| 11355 | #endif |
| 11356 | } |
| 11357 | |
| 11358 | #ifdef _DEBUG |
| 11359 | // static |
| 11360 | static unsigned InterpreterCacheAllocBytes = 0; |
| 11361 | const unsigned KBYTE = 1024; |
| 11362 | const unsigned MBYTE = KBYTE*KBYTE; |
| 11363 | const unsigned InterpreterCacheAllocBytesIncrement = 16*KBYTE; |
| 11364 | static unsigned InterpreterCacheAllocBytesNextTarget = InterpreterCacheAllocBytesIncrement; |
| 11365 | |
| 11366 | template<typename Key, typename Val> |
| 11367 | void InterpreterCache<Key,Val>::AddAllocBytes(unsigned bytes) |
| 11368 | { |
| 11369 | // Reinstate this code if you want to track bytes attributable to caching. |
| 11370 | #if 0 |
| 11371 | InterpreterCacheAllocBytes += bytes; |
| 11372 | if (InterpreterCacheAllocBytes > InterpreterCacheAllocBytesNextTarget) |
| 11373 | { |
| 11374 | printf("Total cache alloc = %d bytes.\n" , InterpreterCacheAllocBytes); |
| 11375 | fflush(stdout); |
| 11376 | InterpreterCacheAllocBytesNextTarget += InterpreterCacheAllocBytesIncrement; |
| 11377 | } |
| 11378 | #endif |
| 11379 | } |
| 11380 | #endif // _DEBUG |
| 11381 | |
| 11382 | template<typename Key, typename Val> |
| 11383 | void InterpreterCache<Key,Val>::EnsureCanInsert() |
| 11384 | { |
| 11385 | if (m_count < m_allocSize) |
| 11386 | return; |
| 11387 | |
| 11388 | // Otherwise, must make room. |
| 11389 | if (m_allocSize == 0) |
| 11390 | { |
| 11391 | assert(m_count == 0); |
| 11392 | m_pairs = new KeyValPair[InitSize]; |
| 11393 | m_allocSize = InitSize; |
| 11394 | #ifdef _DEBUG |
| 11395 | AddAllocBytes(m_allocSize * sizeof(KeyValPair)); |
| 11396 | #endif |
| 11397 | } |
| 11398 | else |
| 11399 | { |
| 11400 | unsigned short newSize = min(m_allocSize * 2, USHRT_MAX); |
| 11401 | |
| 11402 | KeyValPair* newPairs = new KeyValPair[newSize]; |
| 11403 | memcpy(newPairs, m_pairs, m_count * sizeof(KeyValPair)); |
| 11404 | delete[] m_pairs; |
| 11405 | m_pairs = newPairs; |
| 11406 | #ifdef _DEBUG |
| 11407 | AddAllocBytes((newSize - m_allocSize) * sizeof(KeyValPair)); |
| 11408 | #endif |
| 11409 | m_allocSize = newSize; |
| 11410 | } |
| 11411 | } |
| 11412 | |
| 11413 | template<typename Key, typename Val> |
| 11414 | bool InterpreterCache<Key,Val>::AddItem(Key key, Val val) |
| 11415 | { |
| 11416 | EnsureCanInsert(); |
| 11417 | // Find the index to insert before. |
| 11418 | unsigned firstGreaterOrEqual = 0; |
| 11419 | for (; firstGreaterOrEqual < m_count; firstGreaterOrEqual++) |
| 11420 | { |
| 11421 | if (m_pairs[firstGreaterOrEqual].m_key >= key) |
| 11422 | break; |
| 11423 | } |
| 11424 | if (firstGreaterOrEqual < m_count && m_pairs[firstGreaterOrEqual].m_key == key) |
| 11425 | { |
| 11426 | assert(m_pairs[firstGreaterOrEqual].m_val == val); |
| 11427 | return false; |
| 11428 | } |
| 11429 | // Move everything starting at firstGreater up one index (if necessary) |
| 11430 | if (m_count > 0) |
| 11431 | { |
| 11432 | for (unsigned k = m_count-1; k >= firstGreaterOrEqual; k--) |
| 11433 | { |
| 11434 | m_pairs[k + 1] = m_pairs[k]; |
| 11435 | if (k == 0) |
| 11436 | break; |
| 11437 | } |
| 11438 | } |
| 11439 | // Now we can insert the new element. |
| 11440 | m_pairs[firstGreaterOrEqual].m_key = key; |
| 11441 | m_pairs[firstGreaterOrEqual].m_val = val; |
| 11442 | m_count++; |
| 11443 | return true; |
| 11444 | } |
| 11445 | |
| 11446 | template<typename Key, typename Val> |
| 11447 | bool InterpreterCache<Key,Val>::GetItem(Key key, Val& v) |
| 11448 | { |
| 11449 | unsigned lo = 0; |
| 11450 | unsigned hi = m_count; |
| 11451 | // Invariant: we've determined that the pair for "iloffset", if present, |
| 11452 | // is in the index interval [lo, hi). |
| 11453 | while (lo < hi) |
| 11454 | { |
| 11455 | unsigned mid = (hi + lo)/2; |
| 11456 | Key midKey = m_pairs[mid].m_key; |
| 11457 | if (key == midKey) |
| 11458 | { |
| 11459 | v = m_pairs[mid].m_val; |
| 11460 | return true; |
| 11461 | } |
| 11462 | else if (key < midKey) |
| 11463 | { |
| 11464 | hi = mid; |
| 11465 | } |
| 11466 | else |
| 11467 | { |
| 11468 | assert(key > midKey); |
| 11469 | lo = mid + 1; |
| 11470 | } |
| 11471 | } |
| 11472 | // If we reach here without returning, it's not here. |
| 11473 | return false; |
| 11474 | } |
| 11475 | |
| 11476 | // TODO: add a header comment here describing this function. |
| 11477 | void Interpreter::OpStackNormalize() |
| 11478 | { |
| 11479 | size_t largeStructStackOffset = 0; |
| 11480 | // Yes, I've written a quadratic algorithm here. I don't think it will matter in practice. |
| 11481 | for (unsigned i = 0; i < m_curStackHt; i++) |
| 11482 | { |
| 11483 | InterpreterType tp = OpStackTypeGet(i); |
| 11484 | if (tp.IsLargeStruct(&m_interpCeeInfo)) |
| 11485 | { |
| 11486 | size_t sz = tp.Size(&m_interpCeeInfo); |
| 11487 | |
| 11488 | void* addr = OpStackGet<void*>(i); |
| 11489 | if (IsInLargeStructLocalArea(addr)) |
| 11490 | { |
| 11491 | // We're going to allocate space at the top for the new value, then copy everything above the current slot |
| 11492 | // up into that new space, then copy the value into the vacated space. |
| 11493 | // How much will we have to copy? |
| 11494 | size_t toCopy = m_largeStructOperandStackHt - largeStructStackOffset; |
| 11495 | |
| 11496 | // Allocate space for the new value. |
| 11497 | void* dummy = LargeStructOperandStackPush(sz); |
| 11498 | |
| 11499 | // Remember where we're going to write to. |
| 11500 | BYTE* fromAddr = m_largeStructOperandStack + largeStructStackOffset; |
| 11501 | BYTE* toAddr = fromAddr + sz; |
| 11502 | memcpy(toAddr, fromAddr, toCopy); |
| 11503 | |
| 11504 | // Now copy the local variable value. |
| 11505 | memcpy(fromAddr, addr, sz); |
| 11506 | OpStackSet<void*>(i, fromAddr); |
| 11507 | } |
| 11508 | largeStructStackOffset += sz; |
| 11509 | } |
| 11510 | } |
| 11511 | // When we've normalized the stack, it contains no pointers to locals. |
| 11512 | m_orOfPushedInterpreterTypes = 0; |
| 11513 | } |
| 11514 | |
| 11515 | #if INTERP_TRACING |
| 11516 | |
| 11517 | // Code copied from eeinterface.cpp in "compiler". Should be common... |
| 11518 | |
| 11519 | static const char* CorInfoTypeNames[] = { |
| 11520 | "undef" , |
| 11521 | "void" , |
| 11522 | "bool" , |
| 11523 | "char" , |
| 11524 | "byte" , |
| 11525 | "ubyte" , |
| 11526 | "short" , |
| 11527 | "ushort" , |
| 11528 | "int" , |
| 11529 | "uint" , |
| 11530 | "long" , |
| 11531 | "ulong" , |
| 11532 | "nativeint" , |
| 11533 | "nativeuint" , |
| 11534 | "float" , |
| 11535 | "double" , |
| 11536 | "string" , |
| 11537 | "ptr" , |
| 11538 | "byref" , |
| 11539 | "valueclass" , |
| 11540 | "class" , |
| 11541 | "refany" , |
| 11542 | "var" |
| 11543 | }; |
| 11544 | |
| 11545 | const char* eeGetMethodFullName(CEEInfo* info, CORINFO_METHOD_HANDLE hnd, const char** clsName) |
| 11546 | { |
| 11547 | CONTRACTL { |
| 11548 | SO_TOLERANT; |
| 11549 | THROWS; |
| 11550 | GC_TRIGGERS; |
| 11551 | MODE_ANY; |
| 11552 | } CONTRACTL_END; |
| 11553 | |
| 11554 | GCX_PREEMP(); |
| 11555 | |
| 11556 | const char* returnType = NULL; |
| 11557 | |
| 11558 | const char* className; |
| 11559 | const char* methodName = info->getMethodName(hnd, &className); |
| 11560 | if (clsName != NULL) |
| 11561 | { |
| 11562 | *clsName = className; |
| 11563 | } |
| 11564 | |
| 11565 | size_t length = 0; |
| 11566 | unsigned i; |
| 11567 | |
| 11568 | /* Generating the full signature is a two-pass process. First we have to walk |
| 11569 | the components in order to assess the total size, then we allocate the buffer |
| 11570 | and copy the elements into it. |
| 11571 | */ |
| 11572 | |
| 11573 | /* Right now there is a race-condition in the EE, className can be NULL */ |
| 11574 | |
| 11575 | /* initialize length with length of className and '.' */ |
| 11576 | |
| 11577 | if (className) |
| 11578 | { |
| 11579 | length = strlen(className) + 1; |
| 11580 | } |
| 11581 | else |
| 11582 | { |
| 11583 | assert(strlen("<NULL>." ) == 7); |
| 11584 | length = 7; |
| 11585 | } |
| 11586 | |
| 11587 | /* add length of methodName and opening bracket */ |
| 11588 | length += strlen(methodName) + 1; |
| 11589 | |
| 11590 | CORINFO_SIG_INFO sig; |
| 11591 | info->getMethodSig(hnd, &sig); |
| 11592 | CORINFO_ARG_LIST_HANDLE argLst = sig.args; |
| 11593 | |
| 11594 | CORINFO_CLASS_HANDLE dummyCls; |
| 11595 | for (i = 0; i < sig.numArgs; i++) |
| 11596 | { |
| 11597 | CorInfoType type = strip(info->getArgType(&sig, argLst, &dummyCls)); |
| 11598 | |
| 11599 | length += strlen(CorInfoTypeNames[type]); |
| 11600 | argLst = info->getArgNext(argLst); |
| 11601 | } |
| 11602 | |
| 11603 | /* add ',' if there is more than one argument */ |
| 11604 | |
| 11605 | if (sig.numArgs > 1) |
| 11606 | { |
| 11607 | length += (sig.numArgs - 1); |
| 11608 | } |
| 11609 | |
| 11610 | if (sig.retType != CORINFO_TYPE_VOID) |
| 11611 | { |
| 11612 | returnType = CorInfoTypeNames[sig.retType]; |
| 11613 | length += strlen(returnType) + 1; // don't forget the delimiter ':' |
| 11614 | } |
| 11615 | |
| 11616 | /* add closing bracket and null terminator */ |
| 11617 | |
| 11618 | length += 2; |
| 11619 | |
| 11620 | char* retName = new char[length]; |
| 11621 | |
| 11622 | /* Now generate the full signature string in the allocated buffer */ |
| 11623 | |
| 11624 | if (className) |
| 11625 | { |
| 11626 | strcpy_s(retName, length, className); |
| 11627 | strcat_s(retName, length, ":" ); |
| 11628 | } |
| 11629 | else |
| 11630 | { |
| 11631 | strcpy_s(retName, length, "<NULL>." ); |
| 11632 | } |
| 11633 | |
| 11634 | strcat_s(retName, length, methodName); |
| 11635 | |
| 11636 | // append the signature |
| 11637 | strcat_s(retName, length, "(" ); |
| 11638 | |
| 11639 | argLst = sig.args; |
| 11640 | |
| 11641 | for (i = 0; i < sig.numArgs; i++) |
| 11642 | { |
| 11643 | CorInfoType type = strip(info->getArgType(&sig, argLst, &dummyCls)); |
| 11644 | strcat_s(retName, length, CorInfoTypeNames[type]); |
| 11645 | |
| 11646 | argLst = info->getArgNext(argLst); |
| 11647 | if (i + 1 < sig.numArgs) |
| 11648 | { |
| 11649 | strcat_s(retName, length, "," ); |
| 11650 | } |
| 11651 | } |
| 11652 | |
| 11653 | strcat_s(retName, length, ")" ); |
| 11654 | |
| 11655 | if (returnType) |
| 11656 | { |
| 11657 | strcat_s(retName, length, ":" ); |
| 11658 | strcat_s(retName, length, returnType); |
| 11659 | } |
| 11660 | |
| 11661 | assert(strlen(retName) == length - 1); |
| 11662 | |
| 11663 | return(retName); |
| 11664 | } |
| 11665 | |
| 11666 | const char* Interpreter::eeGetMethodFullName(CORINFO_METHOD_HANDLE hnd) |
| 11667 | { |
| 11668 | return ::eeGetMethodFullName(&m_interpCeeInfo, hnd); |
| 11669 | } |
| 11670 | |
| 11671 | const char* ILOpNames[256*2]; |
| 11672 | bool ILOpNamesInited = false; |
| 11673 | |
| 11674 | void InitILOpNames() |
| 11675 | { |
| 11676 | if (!ILOpNamesInited) |
| 11677 | { |
| 11678 | // Initialize the array. |
| 11679 | #define OPDEF(c,s,pop,push,args,type,l,s1,s2,ctrl) if (s1 == 0xfe || s1 == 0xff) { int ind ((unsigned(s1) << 8) + unsigned(s2)); ind -= 0xfe00; ILOpNames[ind] = s; } |
| 11680 | #include "opcode.def" |
| 11681 | #undef OPDEF |
| 11682 | ILOpNamesInited = true; |
| 11683 | } |
| 11684 | }; |
| 11685 | const char* Interpreter::ILOp(BYTE* m_ILCodePtr) |
| 11686 | { |
| 11687 | InitILOpNames(); |
| 11688 | BYTE b = *m_ILCodePtr; |
| 11689 | if (b == 0xfe) |
| 11690 | { |
| 11691 | return ILOpNames[*(m_ILCodePtr + 1)]; |
| 11692 | } |
| 11693 | else |
| 11694 | { |
| 11695 | return ILOpNames[(0x1 << 8) + b]; |
| 11696 | } |
| 11697 | } |
| 11698 | const char* Interpreter::ILOp1Byte(unsigned short ilInstrVal) |
| 11699 | { |
| 11700 | InitILOpNames(); |
| 11701 | return ILOpNames[(0x1 << 8) + ilInstrVal]; |
| 11702 | } |
| 11703 | const char* Interpreter::ILOp2Byte(unsigned short ilInstrVal) |
| 11704 | { |
| 11705 | InitILOpNames(); |
| 11706 | return ILOpNames[ilInstrVal]; |
| 11707 | } |
| 11708 | |
| 11709 | void Interpreter::PrintOStack() |
| 11710 | { |
| 11711 | if (m_curStackHt == 0) |
| 11712 | { |
| 11713 | fprintf(GetLogFile(), " <empty>\n" ); |
| 11714 | } |
| 11715 | else |
| 11716 | { |
| 11717 | for (unsigned k = 0; k < m_curStackHt; k++) |
| 11718 | { |
| 11719 | CorInfoType cit = OpStackTypeGet(k).ToCorInfoType(); |
| 11720 | assert(IsStackNormalType(cit)); |
| 11721 | fprintf(GetLogFile(), " %4d: %10s: " , k, CorInfoTypeNames[cit]); |
| 11722 | PrintOStackValue(k); |
| 11723 | fprintf(GetLogFile(), "\n" ); |
| 11724 | } |
| 11725 | } |
| 11726 | fflush(GetLogFile()); |
| 11727 | } |
| 11728 | |
| 11729 | void Interpreter::PrintOStackValue(unsigned index) |
| 11730 | { |
| 11731 | _ASSERTE_MSG(index < m_curStackHt, "precondition" ); |
| 11732 | InterpreterType it = OpStackTypeGet(index); |
| 11733 | if (it.IsLargeStruct(&m_interpCeeInfo)) |
| 11734 | { |
| 11735 | PrintValue(it, OpStackGet<BYTE*>(index)); |
| 11736 | } |
| 11737 | else |
| 11738 | { |
| 11739 | PrintValue(it, reinterpret_cast<BYTE*>(OpStackGetAddr(index, it.Size(&m_interpCeeInfo)))); |
| 11740 | } |
| 11741 | } |
| 11742 | |
| 11743 | void Interpreter::PrintLocals() |
| 11744 | { |
| 11745 | if (m_methInfo->m_numLocals == 0) |
| 11746 | { |
| 11747 | fprintf(GetLogFile(), " <no locals>\n" ); |
| 11748 | } |
| 11749 | else |
| 11750 | { |
| 11751 | for (unsigned i = 0; i < m_methInfo->m_numLocals; i++) |
| 11752 | { |
| 11753 | InterpreterType it = m_methInfo->m_localDescs[i].m_type; |
| 11754 | CorInfoType cit = it.ToCorInfoType(); |
| 11755 | void* localPtr = NULL; |
| 11756 | if (it.IsLargeStruct(&m_interpCeeInfo)) |
| 11757 | { |
| 11758 | void* structPtr = ArgSlotEndianessFixup(reinterpret_cast<ARG_SLOT*>(FixedSizeLocalSlot(i)), sizeof(void**)); |
| 11759 | localPtr = *reinterpret_cast<void**>(structPtr); |
| 11760 | } |
| 11761 | else |
| 11762 | { |
| 11763 | localPtr = ArgSlotEndianessFixup(reinterpret_cast<ARG_SLOT*>(FixedSizeLocalSlot(i)), it.Size(&m_interpCeeInfo)); |
| 11764 | } |
| 11765 | fprintf(GetLogFile(), " loc%-4d: %10s: " , i, CorInfoTypeNames[cit]); |
| 11766 | PrintValue(it, reinterpret_cast<BYTE*>(localPtr)); |
| 11767 | fprintf(GetLogFile(), "\n" ); |
| 11768 | } |
| 11769 | } |
| 11770 | fflush(GetLogFile()); |
| 11771 | } |
| 11772 | |
| 11773 | void Interpreter::PrintArgs() |
| 11774 | { |
| 11775 | for (unsigned k = 0; k < m_methInfo->m_numArgs; k++) |
| 11776 | { |
| 11777 | CorInfoType cit = GetArgType(k).ToCorInfoType(); |
| 11778 | fprintf(GetLogFile(), " %4d: %10s: " , k, CorInfoTypeNames[cit]); |
| 11779 | PrintArgValue(k); |
| 11780 | fprintf(GetLogFile(), "\n" ); |
| 11781 | } |
| 11782 | fprintf(GetLogFile(), "\n" ); |
| 11783 | fflush(GetLogFile()); |
| 11784 | } |
| 11785 | |
| 11786 | void Interpreter::PrintArgValue(unsigned argNum) |
| 11787 | { |
| 11788 | _ASSERTE_MSG(argNum < m_methInfo->m_numArgs, "precondition" ); |
| 11789 | InterpreterType it = GetArgType(argNum); |
| 11790 | PrintValue(it, GetArgAddr(argNum)); |
| 11791 | } |
| 11792 | |
| 11793 | // Note that this is used to print non-stack-normal values, so |
| 11794 | // it must handle all cases. |
| 11795 | void Interpreter::PrintValue(InterpreterType it, BYTE* valAddr) |
| 11796 | { |
| 11797 | switch (it.ToCorInfoType()) |
| 11798 | { |
| 11799 | case CORINFO_TYPE_BOOL: |
| 11800 | fprintf(GetLogFile(), "%s" , ((*reinterpret_cast<INT8*>(valAddr)) ? "true" : "false" )); |
| 11801 | break; |
| 11802 | case CORINFO_TYPE_BYTE: |
| 11803 | fprintf(GetLogFile(), "%d" , *reinterpret_cast<INT8*>(valAddr)); |
| 11804 | break; |
| 11805 | case CORINFO_TYPE_UBYTE: |
| 11806 | fprintf(GetLogFile(), "%u" , *reinterpret_cast<UINT8*>(valAddr)); |
| 11807 | break; |
| 11808 | |
| 11809 | case CORINFO_TYPE_SHORT: |
| 11810 | fprintf(GetLogFile(), "%d" , *reinterpret_cast<INT16*>(valAddr)); |
| 11811 | break; |
| 11812 | case CORINFO_TYPE_USHORT: case CORINFO_TYPE_CHAR: |
| 11813 | fprintf(GetLogFile(), "%u" , *reinterpret_cast<UINT16*>(valAddr)); |
| 11814 | break; |
| 11815 | |
| 11816 | case CORINFO_TYPE_INT: |
| 11817 | fprintf(GetLogFile(), "%d" , *reinterpret_cast<INT32*>(valAddr)); |
| 11818 | break; |
| 11819 | case CORINFO_TYPE_UINT: |
| 11820 | fprintf(GetLogFile(), "%u" , *reinterpret_cast<UINT32*>(valAddr)); |
| 11821 | break; |
| 11822 | |
| 11823 | case CORINFO_TYPE_NATIVEINT: |
| 11824 | { |
| 11825 | INT64 val = static_cast<INT64>(*reinterpret_cast<NativeInt*>(valAddr)); |
| 11826 | fprintf(GetLogFile(), "%lld (= 0x%llx)" , val, val); |
| 11827 | } |
| 11828 | break; |
| 11829 | case CORINFO_TYPE_NATIVEUINT: |
| 11830 | { |
| 11831 | UINT64 val = static_cast<UINT64>(*reinterpret_cast<NativeUInt*>(valAddr)); |
| 11832 | fprintf(GetLogFile(), "%lld (= 0x%llx)" , val, val); |
| 11833 | } |
| 11834 | break; |
| 11835 | |
| 11836 | case CORINFO_TYPE_BYREF: |
| 11837 | fprintf(GetLogFile(), "0x%p" , *reinterpret_cast<void**>(valAddr)); |
| 11838 | break; |
| 11839 | |
| 11840 | case CORINFO_TYPE_LONG: |
| 11841 | { |
| 11842 | INT64 val = *reinterpret_cast<INT64*>(valAddr); |
| 11843 | fprintf(GetLogFile(), "%lld (= 0x%llx)" , val, val); |
| 11844 | } |
| 11845 | break; |
| 11846 | case CORINFO_TYPE_ULONG: |
| 11847 | fprintf(GetLogFile(), "%lld" , *reinterpret_cast<UINT64*>(valAddr)); |
| 11848 | break; |
| 11849 | |
| 11850 | case CORINFO_TYPE_CLASS: |
| 11851 | { |
| 11852 | Object* obj = *reinterpret_cast<Object**>(valAddr); |
| 11853 | if (obj == NULL) |
| 11854 | { |
| 11855 | fprintf(GetLogFile(), "null" ); |
| 11856 | } |
| 11857 | else |
| 11858 | { |
| 11859 | #ifdef _DEBUG |
| 11860 | fprintf(GetLogFile(), "0x%p (%s) [" , obj, obj->GetMethodTable()->GetDebugClassName()); |
| 11861 | #else |
| 11862 | fprintf(GetLogFile(), "0x%p (MT=0x%p) [" , obj, obj->GetMethodTable()); |
| 11863 | #endif |
| 11864 | unsigned sz = obj->GetMethodTable()->GetBaseSize(); |
| 11865 | BYTE* objBytes = reinterpret_cast<BYTE*>(obj); |
| 11866 | for (unsigned i = 0; i < sz; i++) |
| 11867 | { |
| 11868 | if (i > 0) |
| 11869 | { |
| 11870 | fprintf(GetLogFile(), " " ); |
| 11871 | } |
| 11872 | fprintf(GetLogFile(), "0x%x" , objBytes[i]); |
| 11873 | } |
| 11874 | fprintf(GetLogFile(), "]" ); |
| 11875 | } |
| 11876 | } |
| 11877 | break; |
| 11878 | case CORINFO_TYPE_VALUECLASS: |
| 11879 | { |
| 11880 | GCX_PREEMP(); |
| 11881 | fprintf(GetLogFile(), "<%s>: [" , m_interpCeeInfo.getClassName(it.ToClassHandle())); |
| 11882 | unsigned sz = getClassSize(it.ToClassHandle()); |
| 11883 | for (unsigned i = 0; i < sz; i++) |
| 11884 | { |
| 11885 | if (i > 0) |
| 11886 | { |
| 11887 | fprintf(GetLogFile(), " " ); |
| 11888 | } |
| 11889 | fprintf(GetLogFile(), "0x%02x" , valAddr[i]); |
| 11890 | } |
| 11891 | fprintf(GetLogFile(), "]" ); |
| 11892 | } |
| 11893 | break; |
| 11894 | case CORINFO_TYPE_REFANY: |
| 11895 | fprintf(GetLogFile(), "<refany>" ); |
| 11896 | break; |
| 11897 | case CORINFO_TYPE_FLOAT: |
| 11898 | fprintf(GetLogFile(), "%f" , *reinterpret_cast<float*>(valAddr)); |
| 11899 | break; |
| 11900 | case CORINFO_TYPE_DOUBLE: |
| 11901 | fprintf(GetLogFile(), "%g" , *reinterpret_cast<double*>(valAddr)); |
| 11902 | break; |
| 11903 | case CORINFO_TYPE_PTR: |
| 11904 | fprintf(GetLogFile(), "0x%p" , *reinterpret_cast<void**>(valAddr)); |
| 11905 | break; |
| 11906 | default: |
| 11907 | _ASSERTE_MSG(false, "Unknown type in PrintValue." ); |
| 11908 | break; |
| 11909 | } |
| 11910 | } |
| 11911 | #endif // INTERP_TRACING |
| 11912 | |
| 11913 | #ifdef _DEBUG |
| 11914 | void Interpreter::AddInterpMethInfo(InterpreterMethodInfo* methInfo) |
| 11915 | { |
| 11916 | typedef InterpreterMethodInfo* InterpreterMethodInfoPtr; |
| 11917 | // TODO: this requires synchronization. |
| 11918 | const unsigned InitSize = 128; |
| 11919 | if (s_interpMethInfos == NULL) |
| 11920 | { |
| 11921 | s_interpMethInfos = new InterpreterMethodInfoPtr[InitSize]; |
| 11922 | s_interpMethInfosAllocSize = InitSize; |
| 11923 | } |
| 11924 | if (s_interpMethInfosAllocSize == s_interpMethInfosCount) |
| 11925 | { |
| 11926 | unsigned newSize = s_interpMethInfosAllocSize * 2; |
| 11927 | InterpreterMethodInfoPtr* tmp = new InterpreterMethodInfoPtr[newSize]; |
| 11928 | memcpy(tmp, s_interpMethInfos, s_interpMethInfosCount * sizeof(InterpreterMethodInfoPtr)); |
| 11929 | delete[] s_interpMethInfos; |
| 11930 | s_interpMethInfos = tmp; |
| 11931 | s_interpMethInfosAllocSize = newSize; |
| 11932 | } |
| 11933 | s_interpMethInfos[s_interpMethInfosCount] = methInfo; |
| 11934 | s_interpMethInfosCount++; |
| 11935 | } |
| 11936 | |
| 11937 | int _cdecl Interpreter::CompareMethInfosByInvocations(const void* mi0in, const void* mi1in) |
| 11938 | { |
| 11939 | const InterpreterMethodInfo* mi0 = *((const InterpreterMethodInfo**)mi0in); |
| 11940 | const InterpreterMethodInfo* mi1 = *((const InterpreterMethodInfo**)mi1in); |
| 11941 | if (mi0->m_invocations < mi1->m_invocations) |
| 11942 | { |
| 11943 | return -1; |
| 11944 | } |
| 11945 | else if (mi0->m_invocations == mi1->m_invocations) |
| 11946 | { |
| 11947 | return 0; |
| 11948 | } |
| 11949 | else |
| 11950 | { |
| 11951 | assert(mi0->m_invocations > mi1->m_invocations); |
| 11952 | return 1; |
| 11953 | } |
| 11954 | } |
| 11955 | |
| 11956 | #if INTERP_PROFILE |
| 11957 | int _cdecl Interpreter::CompareMethInfosByILInstrs(const void* mi0in, const void* mi1in) |
| 11958 | { |
| 11959 | const InterpreterMethodInfo* mi0 = *((const InterpreterMethodInfo**)mi0in); |
| 11960 | const InterpreterMethodInfo* mi1 = *((const InterpreterMethodInfo**)mi1in); |
| 11961 | if (mi0->m_totIlInstructionsExeced < mi1->m_totIlInstructionsExeced) return 1; |
| 11962 | else if (mi0->m_totIlInstructionsExeced == mi1->m_totIlInstructionsExeced) return 0; |
| 11963 | else |
| 11964 | { |
| 11965 | assert(mi0->m_totIlInstructionsExeced > mi1->m_totIlInstructionsExeced); |
| 11966 | return -1; |
| 11967 | } |
| 11968 | } |
| 11969 | #endif // INTERP_PROFILE |
| 11970 | #endif // _DEBUG |
| 11971 | |
| 11972 | const int MIL = 1000000; |
| 11973 | |
| 11974 | // Leaving this disabled for now. |
| 11975 | #if 0 |
| 11976 | unsigned __int64 ForceSigWalkCycles = 0; |
| 11977 | #endif |
| 11978 | |
| 11979 | void Interpreter::PrintPostMortemData() |
| 11980 | { |
| 11981 | if (s_PrintPostMortemFlag.val(CLRConfig::INTERNAL_InterpreterPrintPostMortem) == 0) |
| 11982 | return; |
| 11983 | |
| 11984 | // Otherwise... |
| 11985 | |
| 11986 | #if INTERP_TRACING |
| 11987 | // Let's print two things: the number of methods that are 0-10, or more, and |
| 11988 | // For each 10% of methods, cumulative % of invocations they represent. By 1% for last 10%. |
| 11989 | |
| 11990 | // First one doesn't require any sorting. |
| 11991 | const unsigned HistoMax = 11; |
| 11992 | unsigned histo[HistoMax]; |
| 11993 | unsigned numExecs[HistoMax]; |
| 11994 | for (unsigned k = 0; k < HistoMax; k++) |
| 11995 | { |
| 11996 | histo[k] = 0; numExecs[k] = 0; |
| 11997 | } |
| 11998 | for (unsigned k = 0; k < s_interpMethInfosCount; k++) |
| 11999 | { |
| 12000 | unsigned invokes = s_interpMethInfos[k]->m_invocations; |
| 12001 | if (invokes > HistoMax - 1) |
| 12002 | { |
| 12003 | invokes = HistoMax - 1; |
| 12004 | } |
| 12005 | histo[invokes]++; |
| 12006 | numExecs[invokes] += s_interpMethInfos[k]->m_invocations; |
| 12007 | } |
| 12008 | |
| 12009 | fprintf(GetLogFile(), "Histogram of method executions:\n" ); |
| 12010 | fprintf(GetLogFile(), " # of execs | # meths (%%) | cum %% | %% cum execs\n" ); |
| 12011 | fprintf(GetLogFile(), " -------------------------------------------------------\n" ); |
| 12012 | float fTotMeths = float(s_interpMethInfosCount); |
| 12013 | float fTotExecs = float(s_totalInvocations); |
| 12014 | float numPct = 0.0f; |
| 12015 | float numExecPct = 0.0f; |
| 12016 | for (unsigned k = 0; k < HistoMax; k++) |
| 12017 | { |
| 12018 | fprintf(GetLogFile(), " %10d" , k); |
| 12019 | if (k == HistoMax) |
| 12020 | { |
| 12021 | fprintf(GetLogFile(), "+ " ); |
| 12022 | } |
| 12023 | else |
| 12024 | { |
| 12025 | fprintf(GetLogFile(), " " ); |
| 12026 | } |
| 12027 | float pct = float(histo[k])*100.0f/fTotMeths; |
| 12028 | numPct += pct; |
| 12029 | float execPct = float(numExecs[k])*100.0f/fTotExecs; |
| 12030 | numExecPct += execPct; |
| 12031 | fprintf(GetLogFile(), "| %7d (%5.2f%%) | %6.2f%% | %6.2f%%\n" , histo[k], pct, numPct, numExecPct); |
| 12032 | } |
| 12033 | |
| 12034 | // This sorts them in ascending order of number of invocations. |
| 12035 | qsort(&s_interpMethInfos[0], s_interpMethInfosCount, sizeof(InterpreterMethodInfo*), &CompareMethInfosByInvocations); |
| 12036 | |
| 12037 | fprintf(GetLogFile(), "\nFor methods sorted in ascending # of executions order, cumulative %% of executions:\n" ); |
| 12038 | if (s_totalInvocations > 0) |
| 12039 | { |
| 12040 | fprintf(GetLogFile(), " %% of methods | max execs | cum %% of execs\n" ); |
| 12041 | fprintf(GetLogFile(), " ------------------------------------------\n" ); |
| 12042 | unsigned methNum = 0; |
| 12043 | unsigned nNumExecs = 0; |
| 12044 | float totExecsF = float(s_totalInvocations); |
| 12045 | for (unsigned k = 10; k < 100; k += 10) |
| 12046 | { |
| 12047 | unsigned targ = unsigned((float(k)/100.0f)*float(s_interpMethInfosCount)); |
| 12048 | unsigned targLess1 = (targ > 0 ? targ - 1 : 0); |
| 12049 | while (methNum < targ) |
| 12050 | { |
| 12051 | nNumExecs += s_interpMethInfos[methNum]->m_invocations; |
| 12052 | methNum++; |
| 12053 | } |
| 12054 | float pctExecs = float(nNumExecs) * 100.0f / totExecsF; |
| 12055 | |
| 12056 | fprintf(GetLogFile(), " %8d%% | %9d | %8.2f%%\n" , k, s_interpMethInfos[targLess1]->m_invocations, pctExecs); |
| 12057 | |
| 12058 | if (k == 90) |
| 12059 | { |
| 12060 | k++; |
| 12061 | for (; k < 100; k++) |
| 12062 | { |
| 12063 | unsigned targ = unsigned((float(k)/100.0f)*float(s_interpMethInfosCount)); |
| 12064 | while (methNum < targ) |
| 12065 | { |
| 12066 | nNumExecs += s_interpMethInfos[methNum]->m_invocations; |
| 12067 | methNum++; |
| 12068 | } |
| 12069 | pctExecs = float(nNumExecs) * 100.0f / totExecsF; |
| 12070 | |
| 12071 | fprintf(GetLogFile(), " %8d%% | %9d | %8.2f%%\n" , k, s_interpMethInfos[targLess1]->m_invocations, pctExecs); |
| 12072 | } |
| 12073 | |
| 12074 | // Now do 100%. |
| 12075 | targ = s_interpMethInfosCount; |
| 12076 | while (methNum < targ) |
| 12077 | { |
| 12078 | nNumExecs += s_interpMethInfos[methNum]->m_invocations; |
| 12079 | methNum++; |
| 12080 | } |
| 12081 | pctExecs = float(nNumExecs) * 100.0f / totExecsF; |
| 12082 | fprintf(GetLogFile(), " %8d%% | %9d | %8.2f%%\n" , k, s_interpMethInfos[targLess1]->m_invocations, pctExecs); |
| 12083 | } |
| 12084 | } |
| 12085 | } |
| 12086 | |
| 12087 | fprintf(GetLogFile(), "\nTotal number of calls from interpreted code: %d.\n" , s_totalInterpCalls); |
| 12088 | fprintf(GetLogFile(), " Also, %d are intrinsics; %d of these are not currently handled intrinsically.\n" , |
| 12089 | s_totalInterpCallsToIntrinsics, s_totalInterpCallsToIntrinsicsUnhandled); |
| 12090 | fprintf(GetLogFile(), " Of these, %d to potential property getters (%d of these dead simple), %d to setters.\n" , |
| 12091 | s_totalInterpCallsToGetters, s_totalInterpCallsToDeadSimpleGetters, s_totalInterpCallsToSetters); |
| 12092 | fprintf(GetLogFile(), " Of the dead simple getter calls, %d have been short-circuited.\n" , |
| 12093 | s_totalInterpCallsToDeadSimpleGettersShortCircuited); |
| 12094 | |
| 12095 | fprintf(GetLogFile(), "\nToken resolutions by category:\n" ); |
| 12096 | fprintf(GetLogFile(), "Category | opportunities | calls | %%\n" ); |
| 12097 | fprintf(GetLogFile(), "---------------------------------------------------\n" ); |
| 12098 | for (unsigned i = RTK_Undefined; i < RTK_Count; i++) |
| 12099 | { |
| 12100 | float pct = 0.0; |
| 12101 | if (s_tokenResolutionOpportunities[i] > 0) |
| 12102 | pct = 100.0f * float(s_tokenResolutionCalls[i]) / float(s_tokenResolutionOpportunities[i]); |
| 12103 | fprintf(GetLogFile(), "%12s | %15d | %9d | %6.2f%%\n" , |
| 12104 | s_tokenResolutionKindNames[i], s_tokenResolutionOpportunities[i], s_tokenResolutionCalls[i], pct); |
| 12105 | } |
| 12106 | |
| 12107 | #if INTERP_PROFILE |
| 12108 | fprintf(GetLogFile(), "Information on num of execs:\n" ); |
| 12109 | |
| 12110 | UINT64 totILInstrs = 0; |
| 12111 | for (unsigned i = 0; i < s_interpMethInfosCount; i++) totILInstrs += s_interpMethInfos[i]->m_totIlInstructionsExeced; |
| 12112 | |
| 12113 | float totILInstrsF = float(totILInstrs); |
| 12114 | |
| 12115 | fprintf(GetLogFile(), "\nTotal instructions = %lld.\n" , totILInstrs); |
| 12116 | fprintf(GetLogFile(), "\nTop <=10 methods by # of IL instructions executed.\n" ); |
| 12117 | fprintf(GetLogFile(), "%10s | %9s | %10s | %10s | %8s | %s\n" , "tot execs" , "# invokes" , "code size" , "ratio" , "% of tot" , "Method" ); |
| 12118 | fprintf(GetLogFile(), "----------------------------------------------------------------------------\n" ); |
| 12119 | |
| 12120 | qsort(&s_interpMethInfos[0], s_interpMethInfosCount, sizeof(InterpreterMethodInfo*), &CompareMethInfosByILInstrs); |
| 12121 | |
| 12122 | for (unsigned i = 0; i < min(10, s_interpMethInfosCount); i++) |
| 12123 | { |
| 12124 | unsigned ilCodeSize = unsigned(s_interpMethInfos[i]->m_ILCodeEnd - s_interpMethInfos[i]->m_ILCode); |
| 12125 | fprintf(GetLogFile(), "%10lld | %9d | %10d | %10.2f | %8.2f%% | %s:%s\n" , |
| 12126 | s_interpMethInfos[i]->m_totIlInstructionsExeced, |
| 12127 | s_interpMethInfos[i]->m_invocations, |
| 12128 | ilCodeSize, |
| 12129 | float(s_interpMethInfos[i]->m_totIlInstructionsExeced) / float(ilCodeSize), |
| 12130 | float(s_interpMethInfos[i]->m_totIlInstructionsExeced) * 100.0f / totILInstrsF, |
| 12131 | s_interpMethInfos[i]->m_clsName, |
| 12132 | s_interpMethInfos[i]->m_methName); |
| 12133 | } |
| 12134 | #endif // INTERP_PROFILE |
| 12135 | #endif // _DEBUG |
| 12136 | |
| 12137 | #if INTERP_ILINSTR_PROFILE |
| 12138 | fprintf(GetLogFile(), "\nIL instruction profiling:\n" ); |
| 12139 | // First, classify by categories. |
| 12140 | unsigned totInstrs = 0; |
| 12141 | #if INTERP_ILCYCLE_PROFILE |
| 12142 | unsigned __int64 totCycles = 0; |
| 12143 | unsigned __int64 perMeasurementOverhead = CycleTimer::QueryOverhead(); |
| 12144 | #endif // INTERP_ILCYCLE_PROFILE |
| 12145 | for (unsigned i = 0; i < 256; i++) |
| 12146 | { |
| 12147 | s_ILInstrExecsByCategory[s_ILInstrCategories[i]] += s_ILInstrExecs[i]; |
| 12148 | totInstrs += s_ILInstrExecs[i]; |
| 12149 | #if INTERP_ILCYCLE_PROFILE |
| 12150 | unsigned __int64 cycles = s_ILInstrCycles[i]; |
| 12151 | if (cycles > s_ILInstrExecs[i] * perMeasurementOverhead) cycles -= s_ILInstrExecs[i] * perMeasurementOverhead; |
| 12152 | else cycles = 0; |
| 12153 | s_ILInstrCycles[i] = cycles; |
| 12154 | s_ILInstrCyclesByCategory[s_ILInstrCategories[i]] += cycles; |
| 12155 | totCycles += cycles; |
| 12156 | #endif // INTERP_ILCYCLE_PROFILE |
| 12157 | } |
| 12158 | unsigned totInstrs2Byte = 0; |
| 12159 | #if INTERP_ILCYCLE_PROFILE |
| 12160 | unsigned __int64 totCycles2Byte = 0; |
| 12161 | #endif // INTERP_ILCYCLE_PROFILE |
| 12162 | for (unsigned i = 0; i < CountIlInstr2Byte; i++) |
| 12163 | { |
| 12164 | unsigned ind = 0x100 + i; |
| 12165 | s_ILInstrExecsByCategory[s_ILInstrCategories[ind]] += s_ILInstr2ByteExecs[i]; |
| 12166 | totInstrs += s_ILInstr2ByteExecs[i]; |
| 12167 | totInstrs2Byte += s_ILInstr2ByteExecs[i]; |
| 12168 | #if INTERP_ILCYCLE_PROFILE |
| 12169 | unsigned __int64 cycles = s_ILInstrCycles[ind]; |
| 12170 | if (cycles > s_ILInstrExecs[ind] * perMeasurementOverhead) cycles -= s_ILInstrExecs[ind] * perMeasurementOverhead; |
| 12171 | else cycles = 0; |
| 12172 | s_ILInstrCycles[i] = cycles; |
| 12173 | s_ILInstrCyclesByCategory[s_ILInstrCategories[ind]] += cycles; |
| 12174 | totCycles += cycles; |
| 12175 | totCycles2Byte += cycles; |
| 12176 | #endif // INTERP_ILCYCLE_PROFILE |
| 12177 | } |
| 12178 | |
| 12179 | // Now sort the categories by # of occurrences. |
| 12180 | |
| 12181 | InstrExecRecord ieps[256 + CountIlInstr2Byte]; |
| 12182 | for (unsigned short i = 0; i < 256; i++) |
| 12183 | { |
| 12184 | ieps[i].m_instr = i; ieps[i].m_is2byte = false; ieps[i].m_execs = s_ILInstrExecs[i]; |
| 12185 | #if INTERP_ILCYCLE_PROFILE |
| 12186 | if (i == CEE_BREAK) |
| 12187 | { |
| 12188 | ieps[i].m_cycles = 0; |
| 12189 | continue; // Don't count these if they occur... |
| 12190 | } |
| 12191 | ieps[i].m_cycles = s_ILInstrCycles[i]; |
| 12192 | assert((ieps[i].m_execs != 0) || (ieps[i].m_cycles == 0)); // Cycles can be zero for non-zero execs because of measurement correction. |
| 12193 | #endif // INTERP_ILCYCLE_PROFILE |
| 12194 | } |
| 12195 | for (unsigned short i = 0; i < CountIlInstr2Byte; i++) |
| 12196 | { |
| 12197 | int ind = 256 + i; |
| 12198 | ieps[ind].m_instr = i; ieps[ind].m_is2byte = true; ieps[ind].m_execs = s_ILInstr2ByteExecs[i]; |
| 12199 | #if INTERP_ILCYCLE_PROFILE |
| 12200 | ieps[ind].m_cycles = s_ILInstrCycles[ind]; |
| 12201 | assert((ieps[i].m_execs != 0) || (ieps[i].m_cycles == 0)); // Cycles can be zero for non-zero execs because of measurement correction. |
| 12202 | #endif // INTERP_ILCYCLE_PROFILE |
| 12203 | } |
| 12204 | |
| 12205 | qsort(&ieps[0], 256 + CountIlInstr2Byte, sizeof(InstrExecRecord), &InstrExecRecord::Compare); |
| 12206 | |
| 12207 | fprintf(GetLogFile(), "\nInstructions (%d total, %d 1-byte):\n" , totInstrs, totInstrs - totInstrs2Byte); |
| 12208 | #if INTERP_ILCYCLE_PROFILE |
| 12209 | if (s_callCycles > s_calls * perMeasurementOverhead) s_callCycles -= s_calls * perMeasurementOverhead; |
| 12210 | else s_callCycles = 0; |
| 12211 | fprintf(GetLogFile(), " MCycles (%lld total, %lld 1-byte, %lld calls (%d calls, %10.2f cyc/call):\n" , |
| 12212 | totCycles/MIL, (totCycles - totCycles2Byte)/MIL, s_callCycles/MIL, s_calls, float(s_callCycles)/float(s_calls)); |
| 12213 | #if 0 |
| 12214 | extern unsigned __int64 MetaSigCtor1Cycles; |
| 12215 | fprintf(GetLogFile(), " MetaSig(MethodDesc, TypeHandle) ctor: %lld MCycles.\n" , |
| 12216 | MetaSigCtor1Cycles/MIL); |
| 12217 | fprintf(GetLogFile(), " ForceSigWalk: %lld MCycles.\n" , |
| 12218 | ForceSigWalkCycles/MIL); |
| 12219 | #endif |
| 12220 | #endif // INTERP_ILCYCLE_PROFILE |
| 12221 | |
| 12222 | PrintILProfile(&ieps[0], totInstrs |
| 12223 | #if INTERP_ILCYCLE_PROFILE |
| 12224 | , totCycles |
| 12225 | #endif // INTERP_ILCYCLE_PROFILE |
| 12226 | ); |
| 12227 | |
| 12228 | fprintf(GetLogFile(), "\nInstructions grouped by category: (%d total, %d 1-byte):\n" , totInstrs, totInstrs - totInstrs2Byte); |
| 12229 | #if INTERP_ILCYCLE_PROFILE |
| 12230 | fprintf(GetLogFile(), " MCycles (%lld total, %lld 1-byte):\n" , |
| 12231 | totCycles/MIL, (totCycles - totCycles2Byte)/MIL); |
| 12232 | #endif // INTERP_ILCYCLE_PROFILE |
| 12233 | for (unsigned short i = 0; i < 256 + CountIlInstr2Byte; i++) |
| 12234 | { |
| 12235 | if (i < 256) |
| 12236 | { |
| 12237 | ieps[i].m_instr = i; ieps[i].m_is2byte = false; |
| 12238 | } |
| 12239 | else |
| 12240 | { |
| 12241 | ieps[i].m_instr = i - 256; ieps[i].m_is2byte = true; |
| 12242 | } |
| 12243 | ieps[i].m_execs = s_ILInstrExecsByCategory[i]; |
| 12244 | #if INTERP_ILCYCLE_PROFILE |
| 12245 | ieps[i].m_cycles = s_ILInstrCyclesByCategory[i]; |
| 12246 | #endif // INTERP_ILCYCLE_PROFILE |
| 12247 | } |
| 12248 | qsort(&ieps[0], 256 + CountIlInstr2Byte, sizeof(InstrExecRecord), &InstrExecRecord::Compare); |
| 12249 | PrintILProfile(&ieps[0], totInstrs |
| 12250 | #if INTERP_ILCYCLE_PROFILE |
| 12251 | , totCycles |
| 12252 | #endif // INTERP_ILCYCLE_PROFILE |
| 12253 | ); |
| 12254 | |
| 12255 | #if 0 |
| 12256 | // Early debugging code. |
| 12257 | fprintf(GetLogFile(), "\nInstructions grouped category mapping:\n" , totInstrs, totInstrs - totInstrs2Byte); |
| 12258 | for (unsigned short i = 0; i < 256; i++) |
| 12259 | { |
| 12260 | unsigned short cat = s_ILInstrCategories[i]; |
| 12261 | if (cat < 256) { |
| 12262 | fprintf(GetLogFile(), "Instr: %12s ==> %12s.\n" , ILOp1Byte(i), ILOp1Byte(cat)); |
| 12263 | } else { |
| 12264 | fprintf(GetLogFile(), "Instr: %12s ==> %12s.\n" , ILOp1Byte(i), ILOp2Byte(cat - 256)); |
| 12265 | } |
| 12266 | } |
| 12267 | for (unsigned short i = 0; i < CountIlInstr2Byte; i++) |
| 12268 | { |
| 12269 | unsigned ind = 256 + i; |
| 12270 | unsigned short cat = s_ILInstrCategories[ind]; |
| 12271 | if (cat < 256) { |
| 12272 | fprintf(GetLogFile(), "Instr: %12s ==> %12s.\n" , ILOp2Byte(i), ILOp1Byte(cat)); |
| 12273 | } else { |
| 12274 | fprintf(GetLogFile(), "Instr: %12s ==> %12s.\n" , ILOp2Byte(i), ILOp2Byte(cat - 256)); |
| 12275 | } |
| 12276 | } |
| 12277 | #endif |
| 12278 | #endif // INTERP_ILINSTR_PROFILE |
| 12279 | } |
| 12280 | |
| 12281 | #if INTERP_ILINSTR_PROFILE |
| 12282 | |
| 12283 | const int K = 1000; |
| 12284 | |
| 12285 | // static |
| 12286 | void Interpreter::PrintILProfile(Interpreter::InstrExecRecord *recs, unsigned int totInstrs |
| 12287 | #if INTERP_ILCYCLE_PROFILE |
| 12288 | , unsigned __int64 totCycles |
| 12289 | #endif // INTERP_ILCYCLE_PROFILE |
| 12290 | ) |
| 12291 | { |
| 12292 | float fTotInstrs = float(totInstrs); |
| 12293 | fprintf(GetLogFile(), "Instruction | execs | %% | cum %%" ); |
| 12294 | #if INTERP_ILCYCLE_PROFILE |
| 12295 | float fTotCycles = float(totCycles); |
| 12296 | fprintf(GetLogFile(), "| KCycles | %% | cum %% | cyc/inst\n" ); |
| 12297 | fprintf(GetLogFile(), "--------------------------------------------------" |
| 12298 | "-----------------------------------------\n" ); |
| 12299 | #else |
| 12300 | fprintf(GetLogFile(), "\n-------------------------------------------\n" ); |
| 12301 | #endif |
| 12302 | float numPct = 0.0f; |
| 12303 | #if INTERP_ILCYCLE_PROFILE |
| 12304 | float numCyclePct = 0.0f; |
| 12305 | #endif // INTERP_ILCYCLE_PROFILE |
| 12306 | for (unsigned i = 0; i < 256 + CountIlInstr2Byte; i++) |
| 12307 | { |
| 12308 | float pct = 0.0f; |
| 12309 | if (totInstrs > 0) pct = float(recs[i].m_execs) * 100.0f / fTotInstrs; |
| 12310 | numPct += pct; |
| 12311 | if (recs[i].m_execs > 0) |
| 12312 | { |
| 12313 | fprintf(GetLogFile(), "%12s | %9d | %6.2f%% | %6.2f%%" , |
| 12314 | (recs[i].m_is2byte ? ILOp2Byte(recs[i].m_instr) : ILOp1Byte(recs[i].m_instr)), recs[i].m_execs, |
| 12315 | pct, numPct); |
| 12316 | #if INTERP_ILCYCLE_PROFILE |
| 12317 | pct = 0.0f; |
| 12318 | if (totCycles > 0) pct = float(recs[i].m_cycles) * 100.0f / fTotCycles; |
| 12319 | numCyclePct += pct; |
| 12320 | float cyclesPerInst = float(recs[i].m_cycles) / float(recs[i].m_execs); |
| 12321 | fprintf(GetLogFile(), "| %12llu | %6.2f%% | %6.2f%% | %11.2f" , |
| 12322 | recs[i].m_cycles/K, pct, numCyclePct, cyclesPerInst); |
| 12323 | #endif // INTERP_ILCYCLE_PROFILE |
| 12324 | fprintf(GetLogFile(), "\n" ); |
| 12325 | } |
| 12326 | } |
| 12327 | } |
| 12328 | #endif // INTERP_ILINSTR_PROFILE |
| 12329 | |
| 12330 | #endif // FEATURE_INTERPRETER |
| 12331 | |