1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | |
5 | // |
6 | #include "common.h" |
7 | |
8 | #ifdef FEATURE_INTERPRETER |
9 | |
10 | #include "interpreter.h" |
11 | #include "interpreter.hpp" |
12 | #include "cgencpu.h" |
13 | #include "stublink.h" |
14 | #include "openum.h" |
15 | #include "fcall.h" |
16 | #include "frames.h" |
17 | #include "gcheaputilities.h" |
18 | #include <float.h> |
19 | #include "jitinterface.h" |
20 | #include "safemath.h" |
21 | #include "exceptmacros.h" |
22 | #include "runtimeexceptionkind.h" |
23 | #include "runtimehandles.h" |
24 | #include "vars.hpp" |
25 | #include "cycletimer.h" |
26 | |
27 | inline CORINFO_CALLINFO_FLAGS combine(CORINFO_CALLINFO_FLAGS flag1, CORINFO_CALLINFO_FLAGS flag2) |
28 | { |
29 | return (CORINFO_CALLINFO_FLAGS) (flag1 | flag2); |
30 | } |
31 | |
32 | static CorInfoType asCorInfoType(CORINFO_CLASS_HANDLE clsHnd) |
33 | { |
34 | TypeHandle typeHnd(clsHnd); |
35 | return CEEInfo::asCorInfoType(typeHnd.GetInternalCorElementType(), typeHnd, NULL); |
36 | } |
37 | |
38 | InterpreterMethodInfo::InterpreterMethodInfo(CEEInfo* comp, CORINFO_METHOD_INFO* methInfo) |
39 | : m_method(methInfo->ftn), |
40 | m_module(methInfo->scope), |
41 | m_ILCode(methInfo->ILCode), |
42 | m_ILCodeEnd(methInfo->ILCode + methInfo->ILCodeSize), |
43 | m_maxStack(methInfo->maxStack), |
44 | #if INTERP_PROFILE |
45 | m_totIlInstructionsExeced(0), |
46 | m_maxIlInstructionsExeced(0), |
47 | #endif |
48 | m_ehClauseCount(methInfo->EHcount), |
49 | m_varArgHandleArgNum(NO_VA_ARGNUM), |
50 | m_numArgs(methInfo->args.numArgs), |
51 | m_numLocals(methInfo->locals.numArgs), |
52 | m_flags(0), |
53 | m_argDescs(NULL), |
54 | m_returnType(methInfo->args.retType), |
55 | m_invocations(0), |
56 | m_methodCache(NULL) |
57 | { |
58 | // Overflow sanity check. (Can ILCodeSize ever be zero?) |
59 | assert(m_ILCode <= m_ILCodeEnd); |
60 | |
61 | // Does the calling convention indicate an implicit "this" (first arg) or generic type context arg (last arg)? |
62 | SetFlag<Flag_hasThisArg>((methInfo->args.callConv & CORINFO_CALLCONV_HASTHIS) != 0); |
63 | if (GetFlag<Flag_hasThisArg>()) |
64 | { |
65 | GCX_PREEMP(); |
66 | CORINFO_CLASS_HANDLE methClass = comp->getMethodClass(methInfo->ftn); |
67 | DWORD attribs = comp->getClassAttribs(methClass); |
68 | SetFlag<Flag_thisArgIsObjPtr>((attribs & CORINFO_FLG_VALUECLASS) == 0); |
69 | } |
70 | |
71 | #if INTERP_PROFILE || defined(_DEBUG) |
72 | { |
73 | const char* clsName; |
74 | #if defined(_DEBUG) |
75 | m_methName = ::eeGetMethodFullName(comp, methInfo->ftn, &clsName); |
76 | #else |
77 | m_methName = comp->getMethodName(methInfo->ftn, &clsName); |
78 | #endif |
79 | char* myClsName = new char[strlen(clsName) + 1]; |
80 | strcpy(myClsName, clsName); |
81 | m_clsName = myClsName; |
82 | } |
83 | #endif // INTERP_PROFILE |
84 | |
85 | // Do we have a ret buff? If its a struct or refany, then *maybe*, depending on architecture... |
86 | bool hasRetBuff = (methInfo->args.retType == CORINFO_TYPE_VALUECLASS || methInfo->args.retType == CORINFO_TYPE_REFANY); |
87 | #if defined(FEATURE_HFA) |
88 | // ... unless its an HFA type (and not varargs)... |
89 | if (hasRetBuff && CorInfoTypeIsFloatingPoint(comp->getHFAType(methInfo->args.retTypeClass)) && methInfo->args.getCallConv() != CORINFO_CALLCONV_VARARG) |
90 | { |
91 | hasRetBuff = false; |
92 | } |
93 | #endif |
94 | #if defined(_ARM_) || defined(_AMD64_)|| defined(_ARM64_) |
95 | // ...or it fits into one register. |
96 | if (hasRetBuff && getClassSize(methInfo->args.retTypeClass) <= sizeof(void*)) |
97 | { |
98 | hasRetBuff = false; |
99 | } |
100 | #endif |
101 | SetFlag<Flag_hasRetBuffArg>(hasRetBuff); |
102 | |
103 | MetaSig sig(reinterpret_cast<MethodDesc*>(methInfo->ftn)); |
104 | SetFlag<Flag_hasGenericsContextArg>((methInfo->args.callConv & CORINFO_CALLCONV_PARAMTYPE) != 0); |
105 | SetFlag<Flag_isVarArg>((methInfo->args.callConv & CORINFO_CALLCONV_VARARG) != 0); |
106 | SetFlag<Flag_typeHasGenericArgs>(methInfo->args.sigInst.classInstCount > 0); |
107 | SetFlag<Flag_methHasGenericArgs>(methInfo->args.sigInst.methInstCount > 0); |
108 | _ASSERTE_MSG(!GetFlag<Flag_hasGenericsContextArg>() |
109 | || ((GetFlag<Flag_typeHasGenericArgs>() & !(GetFlag<Flag_hasThisArg>() && GetFlag<Flag_thisArgIsObjPtr>())) || GetFlag<Flag_methHasGenericArgs>()), |
110 | "If the method takes a generic parameter, is a static method of generic class (or meth of a value class), and/or itself takes generic parameters" ); |
111 | |
112 | if (GetFlag<Flag_hasThisArg>()) |
113 | { |
114 | m_numArgs++; |
115 | } |
116 | if (GetFlag<Flag_hasRetBuffArg>()) |
117 | { |
118 | m_numArgs++; |
119 | } |
120 | if (GetFlag<Flag_isVarArg>()) |
121 | { |
122 | m_numArgs++; |
123 | } |
124 | if (GetFlag<Flag_hasGenericsContextArg>()) |
125 | { |
126 | m_numArgs++; |
127 | } |
128 | if (m_numArgs == 0) |
129 | { |
130 | m_argDescs = NULL; |
131 | } |
132 | else |
133 | { |
134 | m_argDescs = new ArgDesc[m_numArgs]; |
135 | } |
136 | |
137 | // Now we'll do the locals. |
138 | m_localDescs = new LocalDesc[m_numLocals]; |
139 | // Allocate space for the pinning reference bits (lazily). |
140 | m_localIsPinningRefBits = NULL; |
141 | |
142 | // Now look at each local. |
143 | CORINFO_ARG_LIST_HANDLE localsPtr = methInfo->locals.args; |
144 | CORINFO_CLASS_HANDLE vcTypeRet; |
145 | unsigned curLargeStructOffset = 0; |
146 | for (unsigned k = 0; k < methInfo->locals.numArgs; k++) |
147 | { |
148 | // TODO: if this optimization succeeds, the switch below on localType |
149 | // can become much simpler. |
150 | m_localDescs[k].m_offset = 0; |
151 | #ifdef _DEBUG |
152 | vcTypeRet = NULL; |
153 | #endif |
154 | CorInfoTypeWithMod localTypWithMod = comp->getArgType(&methInfo->locals, localsPtr, &vcTypeRet); |
155 | // If the local vars is a pinning reference, set the bit to indicate this. |
156 | if ((localTypWithMod & CORINFO_TYPE_MOD_PINNED) != 0) |
157 | { |
158 | SetPinningBit(k); |
159 | } |
160 | |
161 | CorInfoType localType = strip(localTypWithMod); |
162 | switch (localType) |
163 | { |
164 | case CORINFO_TYPE_VALUECLASS: |
165 | case CORINFO_TYPE_REFANY: // Just a special case: vcTypeRet is handle for TypedReference in this case... |
166 | { |
167 | InterpreterType tp = InterpreterType(comp, vcTypeRet); |
168 | unsigned size = static_cast<unsigned>(tp.Size(comp)); |
169 | size = max(size, sizeof(void*)); |
170 | m_localDescs[k].m_type = tp; |
171 | if (tp.IsLargeStruct(comp)) |
172 | { |
173 | m_localDescs[k].m_offset = curLargeStructOffset; |
174 | curLargeStructOffset += size; |
175 | } |
176 | } |
177 | break; |
178 | |
179 | case CORINFO_TYPE_VAR: |
180 | NYI_INTERP("argument of generic parameter type" ); // Should not happen; |
181 | break; |
182 | |
183 | default: |
184 | m_localDescs[k].m_type = InterpreterType(localType); |
185 | break; |
186 | } |
187 | m_localDescs[k].m_typeStackNormal = m_localDescs[k].m_type.StackNormalize(); |
188 | localsPtr = comp->getArgNext(localsPtr); |
189 | } |
190 | m_largeStructLocalSize = curLargeStructOffset; |
191 | } |
192 | |
193 | void InterpreterMethodInfo::InitArgInfo(CEEInfo* comp, CORINFO_METHOD_INFO* methInfo, short* argOffsets_) |
194 | { |
195 | unsigned numSigArgsPlusThis = methInfo->args.numArgs; |
196 | if (GetFlag<Flag_hasThisArg>()) |
197 | { |
198 | numSigArgsPlusThis++; |
199 | } |
200 | |
201 | // The m_argDescs array is constructed in the following "canonical" order: |
202 | // 1. 'this' pointer |
203 | // 2. signature arguments |
204 | // 3. return buffer |
205 | // 4. type parameter -or- vararg cookie |
206 | // |
207 | // argOffsets_ is passed in this order, and serves to establish the offsets to arguments |
208 | // when the interpreter is invoked using the native calling convention (i.e., not directly). |
209 | // |
210 | // When the interpreter is invoked directly, the arguments will appear in the same order |
211 | // and form as arguments passed to MethodDesc::CallDescr(). This ordering is as follows: |
212 | // 1. 'this' pointer |
213 | // 2. return buffer |
214 | // 3. signature arguments |
215 | // |
216 | // MethodDesc::CallDescr() does not support generic parameters or varargs functions. |
217 | |
218 | _ASSERTE_MSG((methInfo->args.callConv & (CORINFO_CALLCONV_EXPLICITTHIS)) == 0, |
219 | "Don't yet handle EXPLICITTHIS calling convention modifier." ); |
220 | switch (methInfo->args.callConv & CORINFO_CALLCONV_MASK) |
221 | { |
222 | case CORINFO_CALLCONV_DEFAULT: |
223 | case CORINFO_CALLCONV_VARARG: |
224 | { |
225 | unsigned k = 0; |
226 | ARG_SLOT* directOffset = NULL; |
227 | short directRetBuffOffset = 0; |
228 | short directVarArgOffset = 0; |
229 | short directTypeParamOffset = 0; |
230 | |
231 | // If there's a "this" argument, handle it. |
232 | if (GetFlag<Flag_hasThisArg>()) |
233 | { |
234 | m_argDescs[k].m_type = InterpreterType(CORINFO_TYPE_UNDEF); |
235 | #ifdef FEATURE_STUBS_AS_IL |
236 | MethodDesc *pMD = reinterpret_cast<MethodDesc*>(methInfo->ftn); |
237 | // The signature of the ILStubs may be misleading. |
238 | // If a StubTarget is ever set, we'll find the correct type by inspecting the |
239 | // target, rather than the stub. |
240 | if (pMD->IsILStub()) |
241 | { |
242 | |
243 | if (pMD->AsDynamicMethodDesc()->IsUnboxingILStub()) |
244 | { |
245 | // This is an unboxing stub where the thisptr is passed as a boxed VT. |
246 | m_argDescs[k].m_type = InterpreterType(CORINFO_TYPE_CLASS); |
247 | } |
248 | else |
249 | { |
250 | MethodDesc *pTargetMD = pMD->AsDynamicMethodDesc()->GetILStubResolver()->GetStubTargetMethodDesc(); |
251 | if (pTargetMD != NULL) |
252 | { |
253 | if (pTargetMD->GetMethodTable()->IsValueType()) |
254 | { |
255 | m_argDescs[k].m_type = InterpreterType(CORINFO_TYPE_BYREF); |
256 | } |
257 | else |
258 | { |
259 | m_argDescs[k].m_type = InterpreterType(CORINFO_TYPE_CLASS); |
260 | } |
261 | |
262 | } |
263 | } |
264 | } |
265 | |
266 | #endif // FEATURE_STUBS_AS_IL |
267 | if (m_argDescs[k].m_type == InterpreterType(CORINFO_TYPE_UNDEF)) |
268 | { |
269 | CORINFO_CLASS_HANDLE cls = comp->getMethodClass(methInfo->ftn); |
270 | DWORD attribs = comp->getClassAttribs(cls); |
271 | if (attribs & CORINFO_FLG_VALUECLASS) |
272 | { |
273 | m_argDescs[k].m_type = InterpreterType(CORINFO_TYPE_BYREF); |
274 | } |
275 | else |
276 | { |
277 | m_argDescs[k].m_type = InterpreterType(CORINFO_TYPE_CLASS); |
278 | } |
279 | } |
280 | m_argDescs[k].m_typeStackNormal = m_argDescs[k].m_type; |
281 | m_argDescs[k].m_nativeOffset = argOffsets_[k]; |
282 | m_argDescs[k].m_directOffset = reinterpret_cast<short>(ArgSlotEndianessFixup(directOffset, sizeof(void*))); |
283 | directOffset++; |
284 | k++; |
285 | } |
286 | |
287 | // If there is a return buffer, it will appear next in the arguments list for a direct call. |
288 | // Reserve its offset now, for use after the explicit arguments. |
289 | #if defined(_ARM_) |
290 | // On ARM, for direct calls we always treat HFA return types as having ret buffs. |
291 | // So figure out if we have an HFA return type. |
292 | bool hasHFARetType = |
293 | methInfo->args.retType == CORINFO_TYPE_VALUECLASS |
294 | && CorInfoTypeIsFloatingPoint(comp->getHFAType(methInfo->args.retTypeClass)) |
295 | && methInfo->args.getCallConv() != CORINFO_CALLCONV_VARARG; |
296 | #endif // defined(_ARM_) |
297 | |
298 | if (GetFlag<Flag_hasRetBuffArg>() |
299 | #if defined(_ARM_) |
300 | // On ARM, for direct calls we always treat HFA return types as having ret buffs. |
301 | || hasHFARetType |
302 | #endif // defined(_ARM_) |
303 | ) |
304 | { |
305 | directRetBuffOffset = reinterpret_cast<short>(ArgSlotEndianessFixup(directOffset, sizeof(void*))); |
306 | directOffset++; |
307 | } |
308 | #if defined(_AMD64_) |
309 | if (GetFlag<Flag_isVarArg>()) |
310 | { |
311 | directVarArgOffset = reinterpret_cast<short>(ArgSlotEndianessFixup(directOffset, sizeof(void*))); |
312 | directOffset++; |
313 | } |
314 | if (GetFlag<Flag_hasGenericsContextArg>()) |
315 | { |
316 | directTypeParamOffset = reinterpret_cast<short>(ArgSlotEndianessFixup(directOffset, sizeof(void*))); |
317 | directOffset++; |
318 | } |
319 | #endif |
320 | |
321 | // Now record the argument types for the rest of the arguments. |
322 | InterpreterType it; |
323 | CORINFO_CLASS_HANDLE vcTypeRet; |
324 | CORINFO_ARG_LIST_HANDLE argPtr = methInfo->args.args; |
325 | for (; k < numSigArgsPlusThis; k++) |
326 | { |
327 | CorInfoTypeWithMod argTypWithMod = comp->getArgType(&methInfo->args, argPtr, &vcTypeRet); |
328 | CorInfoType argType = strip(argTypWithMod); |
329 | switch (argType) |
330 | { |
331 | case CORINFO_TYPE_VALUECLASS: |
332 | case CORINFO_TYPE_REFANY: // Just a special case: vcTypeRet is handle for TypedReference in this case... |
333 | it = InterpreterType(comp, vcTypeRet); |
334 | break; |
335 | default: |
336 | // Everything else is just encoded as a shifted CorInfoType. |
337 | it = InterpreterType(argType); |
338 | break; |
339 | } |
340 | m_argDescs[k].m_type = it; |
341 | m_argDescs[k].m_typeStackNormal = it.StackNormalize(); |
342 | m_argDescs[k].m_nativeOffset = argOffsets_[k]; |
343 | // When invoking the interpreter directly, large value types are always passed by reference. |
344 | if (it.IsLargeStruct(comp)) |
345 | { |
346 | m_argDescs[k].m_directOffset = reinterpret_cast<short>(ArgSlotEndianessFixup(directOffset, sizeof(void*))); |
347 | } |
348 | else |
349 | { |
350 | m_argDescs[k].m_directOffset = reinterpret_cast<short>(ArgSlotEndianessFixup(directOffset, it.Size(comp))); |
351 | } |
352 | argPtr = comp->getArgNext(argPtr); |
353 | directOffset++; |
354 | } |
355 | |
356 | if (GetFlag<Flag_hasRetBuffArg>()) |
357 | { |
358 | // The generic type context is an unmanaged pointer (native int). |
359 | m_argDescs[k].m_type = InterpreterType(CORINFO_TYPE_BYREF); |
360 | m_argDescs[k].m_typeStackNormal = m_argDescs[k].m_type; |
361 | m_argDescs[k].m_nativeOffset = argOffsets_[k]; |
362 | m_argDescs[k].m_directOffset = directRetBuffOffset; |
363 | k++; |
364 | } |
365 | |
366 | if (GetFlag<Flag_hasGenericsContextArg>()) |
367 | { |
368 | // The vararg cookie is an unmanaged pointer (native int). |
369 | m_argDescs[k].m_type = InterpreterType(CORINFO_TYPE_NATIVEINT); |
370 | m_argDescs[k].m_typeStackNormal = m_argDescs[k].m_type; |
371 | m_argDescs[k].m_nativeOffset = argOffsets_[k]; |
372 | m_argDescs[k].m_directOffset = directTypeParamOffset; |
373 | directOffset++; |
374 | k++; |
375 | } |
376 | if (GetFlag<Flag_isVarArg>()) |
377 | { |
378 | // The generic type context is an unmanaged pointer (native int). |
379 | m_argDescs[k].m_type = InterpreterType(CORINFO_TYPE_NATIVEINT); |
380 | m_argDescs[k].m_typeStackNormal = m_argDescs[k].m_type; |
381 | m_argDescs[k].m_nativeOffset = argOffsets_[k]; |
382 | m_argDescs[k].m_directOffset = directVarArgOffset; |
383 | k++; |
384 | } |
385 | } |
386 | break; |
387 | |
388 | case CORINFO_CALLCONV_C: |
389 | NYI_INTERP("InterpreterMethodInfo::InitArgInfo -- CORINFO_CALLCONV_C" ); |
390 | break; |
391 | |
392 | case CORINFO_CALLCONV_STDCALL: |
393 | NYI_INTERP("InterpreterMethodInfo::InitArgInfo -- CORINFO_CALLCONV_STDCALL" ); |
394 | break; |
395 | |
396 | case CORINFO_CALLCONV_THISCALL: |
397 | NYI_INTERP("InterpreterMethodInfo::InitArgInfo -- CORINFO_CALLCONV_THISCALL" ); |
398 | break; |
399 | |
400 | case CORINFO_CALLCONV_FASTCALL: |
401 | NYI_INTERP("InterpreterMethodInfo::InitArgInfo -- CORINFO_CALLCONV_FASTCALL" ); |
402 | break; |
403 | |
404 | case CORINFO_CALLCONV_FIELD: |
405 | NYI_INTERP("InterpreterMethodInfo::InitArgInfo -- CORINFO_CALLCONV_FIELD" ); |
406 | break; |
407 | |
408 | case CORINFO_CALLCONV_LOCAL_SIG: |
409 | NYI_INTERP("InterpreterMethodInfo::InitArgInfo -- CORINFO_CALLCONV_LOCAL_SIG" ); |
410 | break; |
411 | |
412 | case CORINFO_CALLCONV_PROPERTY: |
413 | NYI_INTERP("InterpreterMethodInfo::InitArgInfo -- CORINFO_CALLCONV_PROPERTY" ); |
414 | break; |
415 | |
416 | case CORINFO_CALLCONV_NATIVEVARARG: |
417 | NYI_INTERP("InterpreterMethodInfo::InitArgInfo -- CORINFO_CALLCONV_NATIVEVARARG" ); |
418 | break; |
419 | |
420 | default: |
421 | _ASSERTE_ALL_BUILDS(__FILE__, false); // shouldn't get here |
422 | } |
423 | } |
424 | |
425 | InterpreterMethodInfo::~InterpreterMethodInfo() |
426 | { |
427 | if (m_methodCache != NULL) |
428 | { |
429 | delete reinterpret_cast<ILOffsetToItemCache*>(m_methodCache); |
430 | } |
431 | } |
432 | |
433 | void InterpreterMethodInfo::AllocPinningBitsIfNeeded() |
434 | { |
435 | if (m_localIsPinningRefBits != NULL) |
436 | return; |
437 | |
438 | unsigned numChars = (m_numLocals + 7) / 8; |
439 | m_localIsPinningRefBits = new char[numChars]; |
440 | for (unsigned i = 0; i < numChars; i++) |
441 | { |
442 | m_localIsPinningRefBits[i] = char(0); |
443 | } |
444 | } |
445 | |
446 | |
447 | void InterpreterMethodInfo::SetPinningBit(unsigned locNum) |
448 | { |
449 | _ASSERTE_MSG(locNum < m_numLocals, "Precondition" ); |
450 | AllocPinningBitsIfNeeded(); |
451 | |
452 | unsigned ind = locNum / 8; |
453 | unsigned bitNum = locNum - (ind * 8); |
454 | m_localIsPinningRefBits[ind] |= (1 << bitNum); |
455 | } |
456 | |
457 | bool InterpreterMethodInfo::GetPinningBit(unsigned locNum) |
458 | { |
459 | _ASSERTE_MSG(locNum < m_numLocals, "Precondition" ); |
460 | if (m_localIsPinningRefBits == NULL) |
461 | return false; |
462 | |
463 | unsigned ind = locNum / 8; |
464 | unsigned bitNum = locNum - (ind * 8); |
465 | return (m_localIsPinningRefBits[ind] & (1 << bitNum)) != 0; |
466 | } |
467 | |
468 | void Interpreter::ArgState::AddArg(unsigned canonIndex, short numSlots, bool noReg, bool twoSlotAlign) |
469 | { |
470 | #if defined(_AMD64_) |
471 | assert(!noReg); |
472 | assert(!twoSlotAlign); |
473 | AddArgAmd64(canonIndex, numSlots, /*isFloatingType*/false); |
474 | #else // !_AMD64_ |
475 | #if defined(_X86_) || defined(_ARM64_) |
476 | assert(!twoSlotAlign); // Shouldn't use this flag on x86 (it wouldn't work right in the stack, at least). |
477 | #endif |
478 | // If the argument requires two-slot alignment, make sure we have it. This is the |
479 | // ARM model: both in regs and on the stack. |
480 | if (twoSlotAlign) |
481 | { |
482 | if (!noReg && numRegArgs < NumberOfIntegerRegArgs()) |
483 | { |
484 | if ((numRegArgs % 2) != 0) |
485 | { |
486 | numRegArgs++; |
487 | } |
488 | } |
489 | else |
490 | { |
491 | if ((callerArgStackSlots % 2) != 0) |
492 | { |
493 | callerArgStackSlots++; |
494 | } |
495 | } |
496 | } |
497 | |
498 | #if defined(_ARM64_) |
499 | // On ARM64 we're not going to place an argument 'partially' on the stack |
500 | // if all slots fits into registers, they go into registers, otherwise they go into stack. |
501 | if (!noReg && numRegArgs+numSlots <= NumberOfIntegerRegArgs()) |
502 | #else |
503 | if (!noReg && numRegArgs < NumberOfIntegerRegArgs()) |
504 | #endif |
505 | { |
506 | argIsReg[canonIndex] = ARS_IntReg; |
507 | argOffsets[canonIndex] = numRegArgs * sizeof(void*); |
508 | numRegArgs += numSlots; |
509 | // If we overflowed the regs, we consume some stack arg space. |
510 | if (numRegArgs > NumberOfIntegerRegArgs()) |
511 | { |
512 | callerArgStackSlots += (numRegArgs - NumberOfIntegerRegArgs()); |
513 | } |
514 | } |
515 | else |
516 | { |
517 | #if defined(_X86_) |
518 | // On X86, stack args are pushed in order. We will add the total size of the arguments to this offset, |
519 | // so we set this to a negative number relative to the SP before the first arg push. |
520 | callerArgStackSlots += numSlots; |
521 | ClrSafeInt<short> offset(-callerArgStackSlots); |
522 | #elif defined(_ARM_) || defined(_ARM64_) |
523 | // On ARM, args are pushed in *reverse* order. So we will create an offset relative to the address |
524 | // of the first stack arg; later, we will add the size of the non-stack arguments. |
525 | ClrSafeInt<short> offset(callerArgStackSlots); |
526 | #endif |
527 | offset *= static_cast<short>(sizeof(void*)); |
528 | assert(!offset.IsOverflow()); |
529 | argOffsets[canonIndex] = offset.Value(); |
530 | #if defined(_ARM_) || defined(_ARM64_) |
531 | callerArgStackSlots += numSlots; |
532 | #endif |
533 | } |
534 | #endif // !_AMD64_ |
535 | } |
536 | |
537 | #if defined(_AMD64_) |
538 | // AMD64 calling convention allows any type that can be contained in 64 bits to be passed in registers, |
539 | // if not contained or they are of a size not a power of 2, then they are passed by reference on the stack. |
540 | // RCX, RDX, R8, R9 are the int arg registers. XMM0-3 overlap with the integer registers and are used |
541 | // for floating point arguments. |
542 | void Interpreter::ArgState::AddArgAmd64(unsigned canonIndex, unsigned short numSlots, bool isFloatingType) |
543 | { |
544 | // If floating type and there are slots use a float reg slot. |
545 | if (isFloatingType && (numFPRegArgSlots < MaxNumFPRegArgSlots)) |
546 | { |
547 | assert(numSlots == 1); |
548 | argIsReg[canonIndex] = ARS_FloatReg; |
549 | argOffsets[canonIndex] = numFPRegArgSlots * sizeof(void*); |
550 | fpArgsUsed |= (0x1 << (numFPRegArgSlots + 1)); |
551 | numFPRegArgSlots += 1; |
552 | numRegArgs += 1; // Increment int reg count due to shadowing. |
553 | return; |
554 | } |
555 | |
556 | // If we have an integer/aligned-struct arg or a reference of a struct that got copied on |
557 | // to the stack, it would go into a register or a stack slot. |
558 | if (numRegArgs != NumberOfIntegerRegArgs()) |
559 | { |
560 | argIsReg[canonIndex] = ARS_IntReg; |
561 | argOffsets[canonIndex] = numRegArgs * sizeof(void*); |
562 | numRegArgs += 1; |
563 | numFPRegArgSlots += 1; // Increment FP reg count due to shadowing. |
564 | } |
565 | else |
566 | { |
567 | argIsReg[canonIndex] = ARS_NotReg; |
568 | ClrSafeInt<short> offset(callerArgStackSlots * sizeof(void*)); |
569 | assert(!offset.IsOverflow()); |
570 | argOffsets[canonIndex] = offset.Value(); |
571 | callerArgStackSlots += 1; |
572 | } |
573 | } |
574 | #endif |
575 | |
576 | void Interpreter::ArgState::AddFPArg(unsigned canonIndex, unsigned short numSlots, bool twoSlotAlign) |
577 | { |
578 | #if defined(_AMD64_) |
579 | assert(!twoSlotAlign); |
580 | assert(numSlots == 1); |
581 | AddArgAmd64(canonIndex, numSlots, /*isFloatingType*/ true); |
582 | #elif defined(_X86_) |
583 | assert(false); // Don't call this on x86; we pass all FP on the stack. |
584 | #elif defined(_ARM_) |
585 | // We require "numSlots" alignment. |
586 | assert(numFPRegArgSlots + numSlots <= MaxNumFPRegArgSlots); |
587 | argIsReg[canonIndex] = ARS_FloatReg; |
588 | |
589 | if (twoSlotAlign) |
590 | { |
591 | // If we require two slot alignment, the number of slots must be a multiple of two. |
592 | assert((numSlots % 2) == 0); |
593 | |
594 | // Skip a slot if necessary. |
595 | if ((numFPRegArgSlots % 2) != 0) |
596 | { |
597 | numFPRegArgSlots++; |
598 | } |
599 | // We always use new slots for two slot aligned args precision... |
600 | argOffsets[canonIndex] = numFPRegArgSlots * sizeof(void*); |
601 | for (unsigned short i = 0; i < numSlots/2; i++) |
602 | { |
603 | fpArgsUsed |= (0x3 << (numFPRegArgSlots + i)); |
604 | } |
605 | numFPRegArgSlots += numSlots; |
606 | } |
607 | else |
608 | { |
609 | if (numSlots == 1) |
610 | { |
611 | // A single-precision (float) argument. We must do "back-filling" where possible, searching |
612 | // for previous unused registers. |
613 | unsigned slot = 0; |
614 | while (slot < 32 && (fpArgsUsed & (1 << slot))) slot++; |
615 | assert(slot < 32); // Search succeeded. |
616 | assert(slot <= numFPRegArgSlots); // No bits at or above numFPRegArgSlots are set (regs used). |
617 | argOffsets[canonIndex] = slot * sizeof(void*); |
618 | fpArgsUsed |= (0x1 << slot); |
619 | if (slot == numFPRegArgSlots) |
620 | numFPRegArgSlots += numSlots; |
621 | } |
622 | else |
623 | { |
624 | // We can always allocate at after the last used slot. |
625 | argOffsets[numFPRegArgSlots] = numFPRegArgSlots * sizeof(void*); |
626 | for (unsigned i = 0; i < numSlots; i++) |
627 | { |
628 | fpArgsUsed |= (0x1 << (numFPRegArgSlots + i)); |
629 | } |
630 | numFPRegArgSlots += numSlots; |
631 | } |
632 | } |
633 | #elif defined(_ARM64_) |
634 | |
635 | assert(numFPRegArgSlots + numSlots <= MaxNumFPRegArgSlots); |
636 | assert(!twoSlotAlign); |
637 | argIsReg[canonIndex] = ARS_FloatReg; |
638 | |
639 | argOffsets[canonIndex] = numFPRegArgSlots * sizeof(void*); |
640 | for (unsigned i = 0; i < numSlots; i++) |
641 | { |
642 | fpArgsUsed |= (0x1 << (numFPRegArgSlots + i)); |
643 | } |
644 | numFPRegArgSlots += numSlots; |
645 | |
646 | #else |
647 | #error "Unsupported architecture" |
648 | #endif |
649 | } |
650 | |
651 | |
652 | // static |
653 | CorJitResult Interpreter::GenerateInterpreterStub(CEEInfo* comp, |
654 | CORINFO_METHOD_INFO* info, |
655 | /*OUT*/ BYTE **nativeEntry, |
656 | /*OUT*/ ULONG *nativeSizeOfCode, |
657 | InterpreterMethodInfo** ppInterpMethodInfo, |
658 | bool jmpCall) |
659 | { |
660 | // |
661 | // First, ensure that the compiler-specific statics are initialized. |
662 | // |
663 | |
664 | InitializeCompilerStatics(comp); |
665 | |
666 | // |
667 | // Next, use switches and IL scanning to determine whether to interpret this method. |
668 | // |
669 | |
670 | #if INTERP_TRACING |
671 | #define TRACE_SKIPPED(cls, meth, reason) \ |
672 | if (s_DumpInterpreterStubsFlag.val(CLRConfig::INTERNAL_DumpInterpreterStubs)) { \ |
673 | fprintf(GetLogFile(), "Skipping %s:%s (%s).\n", cls, meth, reason); \ |
674 | } |
675 | #else |
676 | #define TRACE_SKIPPED(cls, meth, reason) |
677 | #endif |
678 | |
679 | |
680 | // If jmpCall, we only need to do computations involving method info. |
681 | if (!jmpCall) |
682 | { |
683 | const char* clsName; |
684 | const char* methName = comp->getMethodName(info->ftn, &clsName); |
685 | if ( !s_InterpretMeths.contains(methName, clsName, info->args.pSig) |
686 | || s_InterpretMethsExclude.contains(methName, clsName, info->args.pSig)) |
687 | { |
688 | TRACE_SKIPPED(clsName, methName, "not in set of methods to interpret" ); |
689 | return CORJIT_SKIPPED; |
690 | } |
691 | |
692 | unsigned methHash = comp->getMethodHash(info->ftn); |
693 | if ( methHash < s_InterpretMethHashMin.val(CLRConfig::INTERNAL_InterpreterMethHashMin) |
694 | || methHash > s_InterpretMethHashMax.val(CLRConfig::INTERNAL_InterpreterMethHashMax)) |
695 | { |
696 | TRACE_SKIPPED(clsName, methName, "hash not within range to interpret" ); |
697 | return CORJIT_SKIPPED; |
698 | } |
699 | |
700 | MethodDesc* pMD = reinterpret_cast<MethodDesc*>(info->ftn); |
701 | |
702 | #if !INTERP_ILSTUBS |
703 | if (pMD->IsILStub()) |
704 | { |
705 | TRACE_SKIPPED(clsName, methName, "interop stubs not supported" ); |
706 | return CORJIT_SKIPPED; |
707 | } |
708 | else |
709 | #endif // !INTERP_ILSTUBS |
710 | |
711 | if (!s_InterpreterDoLoopMethods && MethodMayHaveLoop(info->ILCode, info->ILCodeSize)) |
712 | { |
713 | TRACE_SKIPPED(clsName, methName, "has loop, not interpreting loop methods." ); |
714 | return CORJIT_SKIPPED; |
715 | } |
716 | |
717 | s_interpreterStubNum++; |
718 | |
719 | #if INTERP_TRACING |
720 | if (s_interpreterStubNum < s_InterpreterStubMin.val(CLRConfig::INTERNAL_InterpreterStubMin) |
721 | || s_interpreterStubNum > s_InterpreterStubMax.val(CLRConfig::INTERNAL_InterpreterStubMax)) |
722 | { |
723 | TRACE_SKIPPED(clsName, methName, "stub num not in range, not interpreting." ); |
724 | return CORJIT_SKIPPED; |
725 | } |
726 | |
727 | if (s_DumpInterpreterStubsFlag.val(CLRConfig::INTERNAL_DumpInterpreterStubs)) |
728 | { |
729 | unsigned hash = comp->getMethodHash(info->ftn); |
730 | fprintf(GetLogFile(), "Generating interpretation stub (# %d = 0x%x, hash = 0x%x) for %s:%s.\n" , |
731 | s_interpreterStubNum, s_interpreterStubNum, hash, clsName, methName); |
732 | fflush(GetLogFile()); |
733 | } |
734 | #endif |
735 | } |
736 | |
737 | // |
738 | // Finally, generate an interpreter entry-point stub. |
739 | // |
740 | |
741 | // @TODO: this structure clearly needs some sort of lifetime management. It is the moral equivalent |
742 | // of compiled code, and should be associated with an app domain. In addition, when I get to it, we should |
743 | // delete it when/if we actually compile the method. (Actually, that's complicated, since there may be |
744 | // VSD stubs still bound to the interpreter stub. The check there will get to the jitted code, but we want |
745 | // to eventually clean those up at some safe point...) |
746 | InterpreterMethodInfo* interpMethInfo = new InterpreterMethodInfo(comp, info); |
747 | if (ppInterpMethodInfo != nullptr) |
748 | { |
749 | *ppInterpMethodInfo = interpMethInfo; |
750 | } |
751 | interpMethInfo->m_stubNum = s_interpreterStubNum; |
752 | MethodDesc* methodDesc = reinterpret_cast<MethodDesc*>(info->ftn); |
753 | if (!jmpCall) |
754 | { |
755 | interpMethInfo = RecordInterpreterMethodInfoForMethodHandle(info->ftn, interpMethInfo); |
756 | } |
757 | |
758 | #if FEATURE_INTERPRETER_DEADSIMPLE_OPT |
759 | unsigned offsetOfLd; |
760 | if (IsDeadSimpleGetter(comp, methodDesc, &offsetOfLd)) |
761 | { |
762 | interpMethInfo->SetFlag<InterpreterMethodInfo::Flag_methIsDeadSimpleGetter>(true); |
763 | if (offsetOfLd == ILOffsetOfLdFldInDeadSimpleInstanceGetterDbg) |
764 | { |
765 | interpMethInfo->SetFlag<InterpreterMethodInfo::Flag_methIsDeadSimpleGetterIsDbgForm>(true); |
766 | } |
767 | else |
768 | { |
769 | assert(offsetOfLd == ILOffsetOfLdFldInDeadSimpleInstanceGetterOpt); |
770 | } |
771 | } |
772 | #endif // FEATURE_INTERPRETER_DEADSIMPLE_OPT |
773 | |
774 | // Used to initialize the arg offset information. |
775 | Stub* stub = NULL; |
776 | |
777 | // We assume that the stack contains (with addresses growing upwards, assuming a downwards-growing stack): |
778 | // |
779 | // [Non-reg arg N-1] |
780 | // ... |
781 | // [Non-reg arg <# of reg args>] |
782 | // [return PC] |
783 | // |
784 | // Then push the register args to get: |
785 | // |
786 | // [Non-reg arg N-1] |
787 | // ... |
788 | // [Non-reg arg <# of reg args>] |
789 | // [return PC] |
790 | // [reg arg <# of reg args>-1] |
791 | // ... |
792 | // [reg arg 0] |
793 | // |
794 | // Pass the address of this argument array, and the MethodDesc pointer for the method, as arguments to |
795 | // Interpret. |
796 | // |
797 | // So the structure of the code will look like this (in the non-ILstub case): |
798 | // |
799 | #if defined(_X86_) || defined(_AMD64_) |
800 | // push ebp |
801 | // mov ebp, esp |
802 | // [if there are register arguments in ecx or edx, push them] |
803 | // ecx := addr of InterpretMethodInfo for the method to be intepreted. |
804 | // edx = esp /*pointer to argument structure*/ |
805 | // call to Interpreter::InterpretMethod |
806 | // [if we pushed register arguments, increment esp by the right amount.] |
807 | // pop ebp |
808 | // ret <n> ; where <n> is the number of argument stack slots in the call to the stub. |
809 | #elif defined (_ARM_) |
810 | // TODO. |
811 | #endif |
812 | |
813 | // TODO: much of the interpreter stub code should be is shareable. In the non-IL stub case, |
814 | // at least, we could have a small per-method stub that puts the address of the method-specific |
815 | // InterpreterMethodInfo into eax, and then branches to a shared part. Probably we would want to |
816 | // always push all integer args on x86, as we do already on ARM. On ARM, we'd need several versions |
817 | // of the shared stub, for different numbers of floating point register args, cross different kinds of |
818 | // HFA return values. But these could still be shared, and the per-method stub would decide which of |
819 | // these to target. |
820 | // |
821 | // In the IL stub case, which uses eax, it would be problematic to do this sharing. |
822 | |
823 | StubLinkerCPU sl; |
824 | MethodDesc* pMD = reinterpret_cast<MethodDesc*>(info->ftn); |
825 | if (!jmpCall) |
826 | { |
827 | sl.Init(); |
828 | #if defined(_X86_) || defined(_AMD64_) |
829 | #if defined(_X86_) |
830 | sl.X86EmitPushReg(kEBP); |
831 | sl.X86EmitMovRegReg(kEBP, static_cast<X86Reg>(kESP_Unsafe)); |
832 | #endif |
833 | #elif defined(_ARM_) |
834 | // On ARM we use R12 as a "scratch" register -- callee-trashed, not used |
835 | // for arguments. |
836 | ThumbReg r11 = ThumbReg(11); |
837 | ThumbReg r12 = ThumbReg(12); |
838 | |
839 | #elif defined(_ARM64_) |
840 | // x8 through x15 are scratch registers on ARM64. |
841 | IntReg x8 = IntReg(8); |
842 | IntReg x9 = IntReg(9); |
843 | #else |
844 | #error unsupported platform |
845 | #endif |
846 | } |
847 | |
848 | MetaSig sig(methodDesc); |
849 | |
850 | unsigned totalArgs = info->args.numArgs; |
851 | unsigned sigArgsPlusThis = totalArgs; |
852 | bool hasThis = false; |
853 | bool hasRetBuff = false; |
854 | bool isVarArg = false; |
855 | bool hasGenericsContextArg = false; |
856 | |
857 | // Below, we will increment "totalArgs" for any of the "this" argument, |
858 | // a ret buff argument, and/or a generics context argument. |
859 | // |
860 | // There will be four arrays allocated below, each with this increased "totalArgs" elements: |
861 | // argOffsets, argIsReg, argPerm, and, later, m_argDescs. |
862 | // |
863 | // They will be indexed in the order (0-based, [] indicating optional) |
864 | // |
865 | // [this] sigArgs [retBuff] [VASigCookie] [genCtxt] |
866 | // |
867 | // We will call this "canonical order". It is architecture-independent, and |
868 | // does not necessarily correspond to the architecture-dependent physical order |
869 | // in which the registers are actually passed. (That's actually the purpose of |
870 | // "argPerm": to record the correspondence between canonical order and physical |
871 | // order.) We could have chosen any order for the first three of these, but it's |
872 | // simplest to let m_argDescs have all the passed IL arguments passed contiguously |
873 | // at the beginning, allowing it to be indexed by IL argument number. |
874 | |
875 | int genericsContextArgIndex = 0; |
876 | int retBuffArgIndex = 0; |
877 | int vaSigCookieIndex = 0; |
878 | |
879 | if (sig.HasThis()) |
880 | { |
881 | assert(info->args.callConv & CORINFO_CALLCONV_HASTHIS); |
882 | hasThis = true; |
883 | totalArgs++; sigArgsPlusThis++; |
884 | } |
885 | |
886 | if (methodDesc->HasRetBuffArg()) |
887 | { |
888 | hasRetBuff = true; |
889 | retBuffArgIndex = totalArgs; |
890 | totalArgs++; |
891 | } |
892 | |
893 | if (sig.GetCallingConventionInfo() & CORINFO_CALLCONV_VARARG) |
894 | { |
895 | isVarArg = true; |
896 | vaSigCookieIndex = totalArgs; |
897 | totalArgs++; |
898 | } |
899 | |
900 | if (sig.GetCallingConventionInfo() & CORINFO_CALLCONV_PARAMTYPE) |
901 | { |
902 | assert(info->args.callConv & CORINFO_CALLCONV_PARAMTYPE); |
903 | hasGenericsContextArg = true; |
904 | genericsContextArgIndex = totalArgs; |
905 | totalArgs++; |
906 | } |
907 | |
908 | // The non-this sig args have indices starting after these. |
909 | |
910 | // We will first encode the arg offsets as *negative* offsets from the address above the first |
911 | // stack arg, and later add in the total size of the stack args to get a positive offset. |
912 | // The first sigArgsPlusThis elements are the offsets of the IL-addressable arguments. After that, |
913 | // there may be up to two more: generics context arg, if present, and return buff pointer, if present. |
914 | // (Note that the latter is actually passed after the "this" pointer, or else first if no "this" pointer |
915 | // is present. We re-arrange to preserve the easy IL-addressability.) |
916 | ArgState argState(totalArgs); |
917 | |
918 | // This is the permutation that translates from an index in the argOffsets/argIsReg arrays to |
919 | // the platform-specific order in which the arguments are passed. |
920 | unsigned* argPerm = new unsigned[totalArgs]; |
921 | |
922 | // The number of register argument slots we end up pushing. |
923 | unsigned short regArgsFound = 0; |
924 | |
925 | unsigned physArgIndex = 0; |
926 | |
927 | #if defined(_ARM_) |
928 | // The stub linker has a weird little limitation: all stubs it's used |
929 | // for on ARM push some callee-saved register, so the unwind info |
930 | // code was written assuming at least one would be pushed. I don't know how to |
931 | // fix it, so I'm meeting this requirement, by pushing one callee-save. |
932 | #define STUB_LINK_EMIT_PROLOG_REQUIRES_CALLEE_SAVE_PUSH 1 |
933 | |
934 | #if STUB_LINK_EMIT_PROLOG_REQUIRES_CALLEE_SAVE_PUSH |
935 | const int NumberOfCalleeSaveRegsToPush = 1; |
936 | #else |
937 | const int NumberOfCalleeSaveRegsToPush = 0; |
938 | #endif |
939 | // The "1" here is for the return address. |
940 | const int NumberOfFixedPushes = 1 + NumberOfCalleeSaveRegsToPush; |
941 | #elif defined(_ARM64_) |
942 | // FP, LR |
943 | const int NumberOfFixedPushes = 2; |
944 | #endif |
945 | |
946 | #if defined(FEATURE_HFA) |
947 | #if defined(_ARM_) || defined(_ARM64_) |
948 | // On ARM, a non-retBuffArg method that returns a struct type might be an HFA return. Figure |
949 | // that out. |
950 | unsigned HFARetTypeSize = 0; |
951 | #endif |
952 | #if defined(_ARM64_) |
953 | unsigned cHFAVars = 0; |
954 | #endif |
955 | if (info->args.retType == CORINFO_TYPE_VALUECLASS |
956 | && CorInfoTypeIsFloatingPoint(comp->getHFAType(info->args.retTypeClass)) |
957 | && info->args.getCallConv() != CORINFO_CALLCONV_VARARG) |
958 | { |
959 | HFARetTypeSize = getClassSize(info->args.retTypeClass); |
960 | #if defined(_ARM_) |
961 | // Round up to a double boundary; |
962 | HFARetTypeSize = ((HFARetTypeSize+ sizeof(double) - 1) / sizeof(double)) * sizeof(double); |
963 | #elif defined(_ARM64_) |
964 | // We don't need to round it up to double. Unlike ARM, whether it's a float or a double each field will |
965 | // occupy one slot. We'll handle the stack alignment in the prolog where we have all the information about |
966 | // what is going to be pushed on the stack. |
967 | // Instead on ARM64 we'll need to know how many slots we'll need. |
968 | // for instance a VT with two float fields will have the same size as a VT with 1 double field. (ARM64TODO: Verify it) |
969 | // It works on ARM because the overlapping layout of the floating point registers |
970 | // but it won't work on ARM64. |
971 | cHFAVars = (comp->getHFAType(info->args.retTypeClass) == CORINFO_TYPE_FLOAT) ? HFARetTypeSize/sizeof(float) : HFARetTypeSize/sizeof(double); |
972 | #endif |
973 | } |
974 | |
975 | #endif // defined(FEATURE_HFA) |
976 | |
977 | _ASSERTE_MSG((info->args.callConv & (CORINFO_CALLCONV_EXPLICITTHIS)) == 0, |
978 | "Don't yet handle EXPLICITTHIS calling convention modifier." ); |
979 | |
980 | switch (info->args.callConv & CORINFO_CALLCONV_MASK) |
981 | { |
982 | case CORINFO_CALLCONV_DEFAULT: |
983 | case CORINFO_CALLCONV_VARARG: |
984 | { |
985 | unsigned firstSigArgIndex = 0; |
986 | if (hasThis) |
987 | { |
988 | argPerm[0] = physArgIndex; physArgIndex++; |
989 | argState.AddArg(0); |
990 | firstSigArgIndex++; |
991 | } |
992 | |
993 | if (hasRetBuff) |
994 | { |
995 | argPerm[retBuffArgIndex] = physArgIndex; physArgIndex++; |
996 | argState.AddArg(retBuffArgIndex); |
997 | } |
998 | |
999 | if (isVarArg) |
1000 | { |
1001 | argPerm[vaSigCookieIndex] = physArgIndex; physArgIndex++; |
1002 | interpMethInfo->m_varArgHandleArgNum = vaSigCookieIndex; |
1003 | argState.AddArg(vaSigCookieIndex); |
1004 | } |
1005 | |
1006 | #if defined(_ARM_) || defined(_AMD64_) || defined(_ARM64_) |
1007 | // Generics context comes before args on ARM. Would be better if I factored this out as a call, |
1008 | // to avoid large swatches of duplicate code. |
1009 | if (hasGenericsContextArg) |
1010 | { |
1011 | argPerm[genericsContextArgIndex] = physArgIndex; physArgIndex++; |
1012 | argState.AddArg(genericsContextArgIndex); |
1013 | } |
1014 | #endif // _ARM_ || _AMD64_ || _ARM64_ |
1015 | |
1016 | CORINFO_ARG_LIST_HANDLE argPtr = info->args.args; |
1017 | // Some arguments are have been passed in registers, some in memory. We must generate code that |
1018 | // moves the register arguments to memory, and determines a pointer into the stack from which all |
1019 | // the arguments can be accessed, according to the offsets in "argOffsets." |
1020 | // |
1021 | // In the first pass over the arguments, we will label and count the register arguments, and |
1022 | // initialize entries in "argOffsets" for the non-register arguments -- relative to the SP at the |
1023 | // time of the call. Then when we have counted the number of register arguments, we will adjust |
1024 | // the offsets for the non-register arguments to account for those. Then, in the second pass, we |
1025 | // will push the register arguments on the stack, and capture the final stack pointer value as |
1026 | // the argument vector pointer. |
1027 | CORINFO_CLASS_HANDLE vcTypeRet; |
1028 | // This iteration starts at the first signature argument, and iterates over all the |
1029 | // canonical indices for the signature arguments. |
1030 | for (unsigned k = firstSigArgIndex; k < sigArgsPlusThis; k++) |
1031 | { |
1032 | argPerm[k] = physArgIndex; physArgIndex++; |
1033 | |
1034 | CorInfoTypeWithMod argTypWithMod = comp->getArgType(&info->args, argPtr, &vcTypeRet); |
1035 | CorInfoType argType = strip(argTypWithMod); |
1036 | switch (argType) |
1037 | { |
1038 | case CORINFO_TYPE_UNDEF: |
1039 | case CORINFO_TYPE_VOID: |
1040 | case CORINFO_TYPE_VAR: |
1041 | _ASSERTE_ALL_BUILDS(__FILE__, false); // Should not happen; |
1042 | break; |
1043 | |
1044 | // One integer slot arguments: |
1045 | case CORINFO_TYPE_BOOL: |
1046 | case CORINFO_TYPE_CHAR: |
1047 | case CORINFO_TYPE_BYTE: |
1048 | case CORINFO_TYPE_UBYTE: |
1049 | case CORINFO_TYPE_SHORT: |
1050 | case CORINFO_TYPE_USHORT: |
1051 | case CORINFO_TYPE_INT: |
1052 | case CORINFO_TYPE_UINT: |
1053 | case CORINFO_TYPE_NATIVEINT: |
1054 | case CORINFO_TYPE_NATIVEUINT: |
1055 | case CORINFO_TYPE_BYREF: |
1056 | case CORINFO_TYPE_CLASS: |
1057 | case CORINFO_TYPE_STRING: |
1058 | case CORINFO_TYPE_PTR: |
1059 | argState.AddArg(k); |
1060 | break; |
1061 | |
1062 | // Two integer slot arguments. |
1063 | case CORINFO_TYPE_LONG: |
1064 | case CORINFO_TYPE_ULONG: |
1065 | #if defined(_X86_) |
1066 | // Longs are always passed on the stack -- with no obvious alignment. |
1067 | argState.AddArg(k, 2, /*noReg*/true); |
1068 | #elif defined(_ARM_) |
1069 | // LONGS have 2-reg alignment; inc reg if necessary. |
1070 | argState.AddArg(k, 2, /*noReg*/false, /*twoSlotAlign*/true); |
1071 | #elif defined(_AMD64_) || defined(_ARM64_) |
1072 | argState.AddArg(k); |
1073 | #else |
1074 | #error unknown platform |
1075 | #endif |
1076 | break; |
1077 | |
1078 | // One float slot args: |
1079 | case CORINFO_TYPE_FLOAT: |
1080 | #if defined(_X86_) |
1081 | argState.AddArg(k, 1, /*noReg*/true); |
1082 | #elif defined(_ARM_) |
1083 | argState.AddFPArg(k, 1, /*twoSlotAlign*/false); |
1084 | #elif defined(_AMD64_) || defined(_ARM64_) |
1085 | argState.AddFPArg(k, 1, false); |
1086 | #else |
1087 | #error unknown platform |
1088 | #endif |
1089 | break; |
1090 | |
1091 | // Two float slot args |
1092 | case CORINFO_TYPE_DOUBLE: |
1093 | #if defined(_X86_) |
1094 | argState.AddArg(k, 2, /*noReg*/true); |
1095 | #elif defined(_ARM_) |
1096 | argState.AddFPArg(k, 2, /*twoSlotAlign*/true); |
1097 | #elif defined(_AMD64_) || defined(_ARM64_) |
1098 | argState.AddFPArg(k, 1, false); |
1099 | #else |
1100 | #error unknown platform |
1101 | #endif |
1102 | break; |
1103 | |
1104 | // Value class args: |
1105 | case CORINFO_TYPE_VALUECLASS: |
1106 | case CORINFO_TYPE_REFANY: |
1107 | { |
1108 | unsigned sz = getClassSize(vcTypeRet); |
1109 | unsigned szSlots = max(1, sz / sizeof(void*)); |
1110 | #if defined(_X86_) |
1111 | argState.AddArg(k, static_cast<short>(szSlots), /*noReg*/true); |
1112 | #elif defined(_AMD64_) |
1113 | argState.AddArg(k, static_cast<short>(szSlots)); |
1114 | #elif defined(_ARM_) || defined(_ARM64_) |
1115 | CorInfoType hfaType = comp->getHFAType(vcTypeRet); |
1116 | if (CorInfoTypeIsFloatingPoint(hfaType)) |
1117 | { |
1118 | argState.AddFPArg(k, szSlots, |
1119 | #if defined(_ARM_) |
1120 | /*twoSlotAlign*/ (hfaType == CORINFO_TYPE_DOUBLE) |
1121 | #elif defined(_ARM64_) |
1122 | /*twoSlotAlign*/ false // unlike ARM32 FP args always consume 1 slot on ARM64 |
1123 | #endif |
1124 | ); |
1125 | } |
1126 | else |
1127 | { |
1128 | unsigned align = comp->getClassAlignmentRequirement(vcTypeRet, FALSE); |
1129 | argState.AddArg(k, static_cast<short>(szSlots), /*noReg*/false, |
1130 | #if defined(_ARM_) |
1131 | /*twoSlotAlign*/ (align == 8) |
1132 | #elif defined(_ARM64_) |
1133 | /*twoSlotAlign*/ false |
1134 | #endif |
1135 | ); |
1136 | } |
1137 | #else |
1138 | #error unknown platform |
1139 | #endif |
1140 | } |
1141 | break; |
1142 | |
1143 | |
1144 | default: |
1145 | _ASSERTE_MSG(false, "should not reach here, unknown arg type" ); |
1146 | } |
1147 | argPtr = comp->getArgNext(argPtr); |
1148 | } |
1149 | |
1150 | #if defined(_X86_) |
1151 | // Generics context comes last on _X86_. Would be better if I factored this out as a call, |
1152 | // to avoid large swatches of duplicate code. |
1153 | if (hasGenericsContextArg) |
1154 | { |
1155 | argPerm[genericsContextArgIndex] = physArgIndex; physArgIndex++; |
1156 | argState.AddArg(genericsContextArgIndex); |
1157 | } |
1158 | |
1159 | // Now we have counted the number of register arguments, so we can update the offsets for the |
1160 | // non-register arguments. "+ 2" below is to account for the return address from the call, and |
1161 | // pushing of EBP. |
1162 | unsigned short stackArgBaseOffset = (argState.numRegArgs + 2 + argState.callerArgStackSlots) * sizeof(void*); |
1163 | unsigned intRegArgBaseOffset = 0; |
1164 | |
1165 | #elif defined(_ARM_) |
1166 | |
1167 | // We're choosing to always push all arg regs on ARM -- this is the only option |
1168 | // that ThumbEmitProlog currently gives. |
1169 | argState.numRegArgs = 4; |
1170 | |
1171 | // On ARM, we push the (integer) arg regs before we push the return address, so we don't add an |
1172 | // extra constant. And the offset is the address of the last pushed argument, which is the first |
1173 | // stack argument in signature order. |
1174 | |
1175 | // Round up to a double boundary... |
1176 | unsigned fpStackSlots = ((argState.numFPRegArgSlots + 1) / 2) * 2; |
1177 | unsigned intRegArgBaseOffset = (fpStackSlots + NumberOfFixedPushes) * sizeof(void*); |
1178 | unsigned short stackArgBaseOffset = intRegArgBaseOffset + (argState.numRegArgs) * sizeof(void*); |
1179 | #elif defined(_ARM64_) |
1180 | |
1181 | // See StubLinkerCPU::EmitProlog for the layout of the stack |
1182 | unsigned intRegArgBaseOffset = (argState.numFPRegArgSlots) * sizeof(void*); |
1183 | unsigned short stackArgBaseOffset = (unsigned short) ((argState.numRegArgs + argState.numFPRegArgSlots) * sizeof(void*)); |
1184 | #elif defined(_AMD64_) |
1185 | unsigned short stackArgBaseOffset = (argState.numRegArgs) * sizeof(void*); |
1186 | #else |
1187 | #error unsupported platform |
1188 | #endif |
1189 | |
1190 | #if defined(_ARM_) |
1191 | WORD regArgMask = 0; |
1192 | #endif // defined(_ARM_) |
1193 | // argPerm maps from an index into the argOffsets/argIsReg arrays to |
1194 | // the order that the arguments are passed. |
1195 | unsigned* argPermInverse = new unsigned[totalArgs]; |
1196 | for (unsigned t = 0; t < totalArgs; t++) |
1197 | { |
1198 | argPermInverse[argPerm[t]] = t; |
1199 | } |
1200 | |
1201 | for (unsigned kk = 0; kk < totalArgs; kk++) |
1202 | { |
1203 | // Let "k" be the index of the kk'th input in the argOffsets and argIsReg arrays. |
1204 | // To compute "k" we need to invert argPerm permutation -- determine the "k" such |
1205 | // that argPerm[k] == kk. |
1206 | unsigned k = argPermInverse[kk]; |
1207 | |
1208 | assert(k < totalArgs); |
1209 | |
1210 | if (argState.argIsReg[k] == ArgState::ARS_IntReg) |
1211 | { |
1212 | regArgsFound++; |
1213 | // If any int reg args are used on ARM, we push them all (in ThumbEmitProlog) |
1214 | #if defined(_X86_) |
1215 | if (regArgsFound == 1) |
1216 | { |
1217 | if (!jmpCall) { sl.X86EmitPushReg(kECX); } |
1218 | argState.argOffsets[k] = (argState.numRegArgs - regArgsFound)*sizeof(void*); // General form, good for general # of reg args. |
1219 | } |
1220 | else |
1221 | { |
1222 | assert(regArgsFound == 2); |
1223 | if (!jmpCall) { sl.X86EmitPushReg(kEDX); } |
1224 | argState.argOffsets[k] = (argState.numRegArgs - regArgsFound)*sizeof(void*); |
1225 | } |
1226 | #elif defined(_ARM_) || defined(_ARM64_) |
1227 | argState.argOffsets[k] += intRegArgBaseOffset; |
1228 | #elif defined(_AMD64_) |
1229 | // First home the register arguments in the stack space allocated by the caller. |
1230 | // Refer to Stack Allocation on x64 [http://msdn.microsoft.com/en-US/library/ew5tede7(v=vs.80).aspx] |
1231 | X86Reg argRegs[] = { kECX, kEDX, kR8, kR9 }; |
1232 | if (!jmpCall) { sl.X86EmitIndexRegStoreRSP(regArgsFound * sizeof(void*), argRegs[regArgsFound - 1]); } |
1233 | argState.argOffsets[k] = (regArgsFound - 1) * sizeof(void*); |
1234 | #else |
1235 | #error unsupported platform |
1236 | #endif |
1237 | } |
1238 | #if defined(_AMD64_) |
1239 | else if (argState.argIsReg[k] == ArgState::ARS_FloatReg) |
1240 | { |
1241 | // Increment regArgsFound since float/int arguments have overlapping registers. |
1242 | regArgsFound++; |
1243 | // Home the float arguments. |
1244 | X86Reg argRegs[] = { kXMM0, kXMM1, kXMM2, kXMM3 }; |
1245 | if (!jmpCall) { sl.X64EmitMovSDToMem(argRegs[regArgsFound - 1], static_cast<X86Reg>(kESP_Unsafe), regArgsFound * sizeof(void*)); } |
1246 | argState.argOffsets[k] = (regArgsFound - 1) * sizeof(void*); |
1247 | } |
1248 | #endif |
1249 | else if (argState.argIsReg[k] == ArgState::ARS_NotReg) |
1250 | { |
1251 | argState.argOffsets[k] += stackArgBaseOffset; |
1252 | } |
1253 | // So far, x86 doesn't have any FP reg args, and ARM and ARM64 puts them at offset 0, so no |
1254 | // adjustment is necessary (yet) for arguments passed in those registers. |
1255 | } |
1256 | delete[] argPermInverse; |
1257 | } |
1258 | break; |
1259 | |
1260 | case CORINFO_CALLCONV_C: |
1261 | NYI_INTERP("GenerateInterpreterStub -- CORINFO_CALLCONV_C" ); |
1262 | break; |
1263 | |
1264 | case CORINFO_CALLCONV_STDCALL: |
1265 | NYI_INTERP("GenerateInterpreterStub -- CORINFO_CALLCONV_STDCALL" ); |
1266 | break; |
1267 | |
1268 | case CORINFO_CALLCONV_THISCALL: |
1269 | NYI_INTERP("GenerateInterpreterStub -- CORINFO_CALLCONV_THISCALL" ); |
1270 | break; |
1271 | |
1272 | case CORINFO_CALLCONV_FASTCALL: |
1273 | NYI_INTERP("GenerateInterpreterStub -- CORINFO_CALLCONV_FASTCALL" ); |
1274 | break; |
1275 | |
1276 | case CORINFO_CALLCONV_FIELD: |
1277 | NYI_INTERP("GenerateInterpreterStub -- CORINFO_CALLCONV_FIELD" ); |
1278 | break; |
1279 | |
1280 | case CORINFO_CALLCONV_LOCAL_SIG: |
1281 | NYI_INTERP("GenerateInterpreterStub -- CORINFO_CALLCONV_LOCAL_SIG" ); |
1282 | break; |
1283 | |
1284 | case CORINFO_CALLCONV_PROPERTY: |
1285 | NYI_INTERP("GenerateInterpreterStub -- CORINFO_CALLCONV_PROPERTY" ); |
1286 | break; |
1287 | |
1288 | case CORINFO_CALLCONV_NATIVEVARARG: |
1289 | NYI_INTERP("GenerateInterpreterStub -- CORINFO_CALLCONV_NATIVEVARARG" ); |
1290 | break; |
1291 | |
1292 | default: |
1293 | _ASSERTE_ALL_BUILDS(__FILE__, false); // shouldn't get here |
1294 | } |
1295 | |
1296 | delete[] argPerm; |
1297 | |
1298 | PCODE interpretMethodFunc; |
1299 | if (!jmpCall) |
1300 | { |
1301 | switch (info->args.retType) |
1302 | { |
1303 | case CORINFO_TYPE_FLOAT: |
1304 | interpretMethodFunc = reinterpret_cast<PCODE>(&InterpretMethodFloat); |
1305 | break; |
1306 | case CORINFO_TYPE_DOUBLE: |
1307 | interpretMethodFunc = reinterpret_cast<PCODE>(&InterpretMethodDouble); |
1308 | break; |
1309 | default: |
1310 | interpretMethodFunc = reinterpret_cast<PCODE>(&InterpretMethod); |
1311 | break; |
1312 | } |
1313 | // The argument registers have been pushed by now, so we can use them. |
1314 | #if defined(_X86_) |
1315 | // First arg is pointer to the base of the ILargs arr -- i.e., the current stack value. |
1316 | sl.X86EmitMovRegReg(kEDX, static_cast<X86Reg>(kESP_Unsafe)); |
1317 | // InterpretMethod uses F_CALL_CONV == __fastcall; pass 2 args in regs. |
1318 | #if INTERP_ILSTUBS |
1319 | if (pMD->IsILStub()) |
1320 | { |
1321 | // Third argument is stubcontext, in eax. |
1322 | sl.X86EmitPushReg(kEAX); |
1323 | } |
1324 | else |
1325 | #endif |
1326 | { |
1327 | // For a non-ILStub method, push NULL as the StubContext argument. |
1328 | sl.X86EmitZeroOutReg(kECX); |
1329 | sl.X86EmitPushReg(kECX); |
1330 | } |
1331 | // sl.X86EmitAddReg(kECX, reinterpret_cast<UINT>(interpMethInfo)); |
1332 | sl.X86EmitRegLoad(kECX, reinterpret_cast<UINT>(interpMethInfo)); |
1333 | sl.X86EmitCall(sl.NewExternalCodeLabel(interpretMethodFunc), 0); |
1334 | // Now we will deallocate the stack slots we pushed to hold register arguments. |
1335 | if (argState.numRegArgs > 0) |
1336 | { |
1337 | sl.X86EmitAddEsp(argState.numRegArgs * sizeof(void*)); |
1338 | } |
1339 | sl.X86EmitPopReg(kEBP); |
1340 | sl.X86EmitReturn(static_cast<WORD>(argState.callerArgStackSlots * sizeof(void*))); |
1341 | #elif defined(_AMD64_) |
1342 | // Pass "ilArgs", i.e. just the point where registers have been homed, as 2nd arg |
1343 | sl.X86EmitIndexLeaRSP(ARGUMENT_kREG2, static_cast<X86Reg>(kESP_Unsafe), 8); |
1344 | |
1345 | // Allocate space for homing callee's (InterpretMethod's) arguments. |
1346 | // Calling convention requires a default allocation space of 4, |
1347 | // but to double align the stack frame, we'd allocate 5. |
1348 | int interpMethodArgSize = 5 * sizeof(void*); |
1349 | sl.X86EmitSubEsp(interpMethodArgSize); |
1350 | |
1351 | // If we have IL stubs pass the stub context in R10 or else pass NULL. |
1352 | #if INTERP_ILSTUBS |
1353 | if (pMD->IsILStub()) |
1354 | { |
1355 | sl.X86EmitMovRegReg(kR8, kR10); |
1356 | } |
1357 | else |
1358 | #endif |
1359 | { |
1360 | // For a non-ILStub method, push NULL as the StubContext argument. |
1361 | sl.X86EmitZeroOutReg(ARGUMENT_kREG1); |
1362 | sl.X86EmitMovRegReg(kR8, ARGUMENT_kREG1); |
1363 | } |
1364 | sl.X86EmitRegLoad(ARGUMENT_kREG1, reinterpret_cast<UINT_PTR>(interpMethInfo)); |
1365 | sl.X86EmitCall(sl.NewExternalCodeLabel(interpretMethodFunc), 0); |
1366 | sl.X86EmitAddEsp(interpMethodArgSize); |
1367 | sl.X86EmitReturn(0); |
1368 | #elif defined(_ARM_) |
1369 | |
1370 | // We have to maintain 8-byte stack alignment. So if the number of |
1371 | // slots we would normally push is not a multiple of two, add a random |
1372 | // register. (We will not pop this register, but rather, increment |
1373 | // sp by an amount that includes it.) |
1374 | bool oddPushes = (((argState.numRegArgs + NumberOfFixedPushes) % 2) != 0); |
1375 | |
1376 | UINT stackFrameSize = 0; |
1377 | if (oddPushes) stackFrameSize = sizeof(void*); |
1378 | // Now, if any FP regs are used as arguments, we will copy those to the stack; reserve space for that here. |
1379 | // (We push doubles to keep the stack aligned...) |
1380 | unsigned short doublesToPush = (argState.numFPRegArgSlots + 1)/2; |
1381 | stackFrameSize += (doublesToPush*2*sizeof(void*)); |
1382 | |
1383 | // The last argument here causes this to generate code to push all int arg regs. |
1384 | sl.ThumbEmitProlog(/*cCalleeSavedRegs*/NumberOfCalleeSaveRegsToPush, /*cbStackFrame*/stackFrameSize, /*fPushArgRegs*/TRUE); |
1385 | |
1386 | // Now we will generate code to copy the floating point registers to the stack frame. |
1387 | if (doublesToPush > 0) |
1388 | { |
1389 | sl.ThumbEmitStoreMultipleVFPDoubleReg(ThumbVFPDoubleReg(0), thumbRegSp, doublesToPush*2); |
1390 | } |
1391 | |
1392 | #if INTERP_ILSTUBS |
1393 | if (pMD->IsILStub()) |
1394 | { |
1395 | // Third argument is stubcontext, in r12. |
1396 | sl.ThumbEmitMovRegReg(ThumbReg(2), ThumbReg(12)); |
1397 | } |
1398 | else |
1399 | #endif |
1400 | { |
1401 | // For a non-ILStub method, push NULL as the third StubContext argument. |
1402 | sl.ThumbEmitMovConstant(ThumbReg(2), 0); |
1403 | } |
1404 | // Second arg is pointer to the base of the ILargs arr -- i.e., the current stack value. |
1405 | sl.ThumbEmitMovRegReg(ThumbReg(1), thumbRegSp); |
1406 | |
1407 | // First arg is the pointer to the interpMethInfo structure. |
1408 | sl.ThumbEmitMovConstant(ThumbReg(0), reinterpret_cast<int>(interpMethInfo)); |
1409 | |
1410 | // If there's an HFA return, add space for that. |
1411 | if (HFARetTypeSize > 0) |
1412 | { |
1413 | sl.ThumbEmitSubSp(HFARetTypeSize); |
1414 | } |
1415 | |
1416 | // Now we can call the right method. |
1417 | // No "direct call" instruction, so load into register first. Can use R3. |
1418 | sl.ThumbEmitMovConstant(ThumbReg(3), static_cast<int>(interpretMethodFunc)); |
1419 | sl.ThumbEmitCallRegister(ThumbReg(3)); |
1420 | |
1421 | // If there's an HFA return, copy to FP regs, and deallocate the stack space. |
1422 | if (HFARetTypeSize > 0) |
1423 | { |
1424 | sl.ThumbEmitLoadMultipleVFPDoubleReg(ThumbVFPDoubleReg(0), thumbRegSp, HFARetTypeSize/sizeof(void*)); |
1425 | sl.ThumbEmitAddSp(HFARetTypeSize); |
1426 | } |
1427 | |
1428 | sl.ThumbEmitEpilog(); |
1429 | |
1430 | #elif defined(_ARM64_) |
1431 | |
1432 | UINT stackFrameSize = argState.numFPRegArgSlots; |
1433 | |
1434 | sl.EmitProlog(argState.numRegArgs, argState.numFPRegArgSlots, 0 /*cCalleeSavedRegs*/, static_cast<unsigned short>(cHFAVars*sizeof(void*))); |
1435 | |
1436 | #if INTERP_ILSTUBS |
1437 | if (pMD->IsILStub()) |
1438 | { |
1439 | // Third argument is stubcontext, in x12 (METHODDESC_REGISTER) |
1440 | sl.EmitMovReg(IntReg(2), IntReg(12)); |
1441 | } |
1442 | else |
1443 | #endif |
1444 | { |
1445 | // For a non-ILStub method, push NULL as the third stubContext argument |
1446 | sl.EmitMovConstant(IntReg(2), 0); |
1447 | } |
1448 | |
1449 | // Second arg is pointer to the basei of the ILArgs -- i.e., the current stack value |
1450 | sl.EmitAddImm(IntReg(1), RegSp, sl.GetSavedRegArgsOffset()); |
1451 | |
1452 | // First arg is the pointer to the interpMethodInfo structure |
1453 | #if INTERP_ILSTUBS |
1454 | if (!pMD->IsILStub()) |
1455 | #endif |
1456 | { |
1457 | // interpMethodInfo is already in x8, so copy it from x8 |
1458 | sl.EmitMovReg(IntReg(0), IntReg(8)); |
1459 | } |
1460 | #if INTERP_ILSTUBS |
1461 | else |
1462 | { |
1463 | // We didn't do the short-circuiting, therefore interpMethInfo is |
1464 | // not stored in a register (x8) before. so do it now. |
1465 | sl.EmitMovConstant(IntReg(0), reinterpret_cast<UINT64>(interpMethInfo)); |
1466 | } |
1467 | #endif |
1468 | |
1469 | sl.EmitCallLabel(sl.NewExternalCodeLabel((LPVOID)interpretMethodFunc), FALSE, FALSE); |
1470 | |
1471 | // If there's an HFA return, copy to FP regs |
1472 | if (cHFAVars > 0) |
1473 | { |
1474 | for (unsigned i=0; i<=(cHFAVars/2)*2;i+=2) |
1475 | sl.EmitLoadStoreRegPairImm(StubLinkerCPU::eLOAD, VecReg(i), VecReg(i+1), RegSp, i*sizeof(void*)); |
1476 | if ((cHFAVars % 2) == 1) |
1477 | sl.EmitLoadStoreRegImm(StubLinkerCPU::eLOAD,VecReg(cHFAVars-1), RegSp, cHFAVars*sizeof(void*)); |
1478 | |
1479 | } |
1480 | |
1481 | sl.EmitEpilog(); |
1482 | |
1483 | |
1484 | #else |
1485 | #error unsupported platform |
1486 | #endif |
1487 | stub = sl.Link(SystemDomain::GetGlobalLoaderAllocator()->GetStubHeap()); |
1488 | |
1489 | *nativeSizeOfCode = static_cast<ULONG>(stub->GetNumCodeBytes()); |
1490 | // TODO: manage reference count of interpreter stubs. Look for examples... |
1491 | *nativeEntry = dac_cast<BYTE*>(stub->GetEntryPoint()); |
1492 | } |
1493 | |
1494 | // Initialize the arg offset information. |
1495 | interpMethInfo->InitArgInfo(comp, info, argState.argOffsets); |
1496 | |
1497 | #ifdef _DEBUG |
1498 | AddInterpMethInfo(interpMethInfo); |
1499 | #endif // _DEBUG |
1500 | if (!jmpCall) |
1501 | { |
1502 | // Remember the mapping between code address and MethodDesc*. |
1503 | RecordInterpreterStubForMethodDesc(info->ftn, *nativeEntry); |
1504 | } |
1505 | |
1506 | return CORJIT_OK; |
1507 | #undef TRACE_SKIPPED |
1508 | } |
1509 | |
1510 | size_t Interpreter::GetFrameSize(InterpreterMethodInfo* interpMethInfo) |
1511 | { |
1512 | size_t sz = interpMethInfo->LocalMemSize(); |
1513 | #if COMBINE_OPSTACK_VAL_TYPE |
1514 | sz += (interpMethInfo->m_maxStack * sizeof(OpStackValAndType)); |
1515 | #else |
1516 | sz += (interpMethInfo->m_maxStack * (sizeof(INT64) + sizeof(InterpreterType*))); |
1517 | #endif |
1518 | return sz; |
1519 | } |
1520 | |
1521 | // static |
1522 | ARG_SLOT Interpreter::ExecuteMethodWrapper(struct InterpreterMethodInfo* interpMethInfo, bool directCall, BYTE* ilArgs, void* stubContext, __out bool* pDoJmpCall, CORINFO_RESOLVED_TOKEN* pResolvedToken) |
1523 | { |
1524 | #define INTERP_DYNAMIC_CONTRACTS 1 |
1525 | #if INTERP_DYNAMIC_CONTRACTS |
1526 | CONTRACTL { |
1527 | THROWS; |
1528 | GC_TRIGGERS; |
1529 | MODE_COOPERATIVE; |
1530 | } CONTRACTL_END; |
1531 | #else |
1532 | // Dynamic contract occupies too much stack. |
1533 | STATIC_CONTRACT_THROWS; |
1534 | STATIC_CONTRACT_GC_TRIGGERS; |
1535 | STATIC_CONTRACT_MODE_COOPERATIVE; |
1536 | #endif |
1537 | |
1538 | size_t sizeWithGS = GetFrameSize(interpMethInfo) + sizeof(GSCookie); |
1539 | BYTE* frameMemoryGS = static_cast<BYTE*>(_alloca(sizeWithGS)); |
1540 | |
1541 | ARG_SLOT retVal = 0; |
1542 | unsigned jmpCallToken = 0; |
1543 | |
1544 | Interpreter interp(interpMethInfo, directCall, ilArgs, stubContext, frameMemoryGS); |
1545 | |
1546 | // Make sure we can do a GC Scan properly. |
1547 | FrameWithCookie<InterpreterFrame> interpFrame(&interp); |
1548 | |
1549 | // Update the interpretation count. |
1550 | InterlockedIncrement(reinterpret_cast<LONG *>(&interpMethInfo->m_invocations)); |
1551 | |
1552 | // Need to wait until this point to do this JITting, since it may trigger a GC. |
1553 | JitMethodIfAppropriate(interpMethInfo); |
1554 | |
1555 | // Pass buffers to get jmpCall flag and the token, if necessary. |
1556 | interp.ExecuteMethod(&retVal, pDoJmpCall, &jmpCallToken); |
1557 | |
1558 | if (*pDoJmpCall) |
1559 | { |
1560 | GCX_PREEMP(); |
1561 | interp.ResolveToken(pResolvedToken, jmpCallToken, CORINFO_TOKENKIND_Method InterpTracingArg(RTK_Call)); |
1562 | } |
1563 | |
1564 | interpFrame.Pop(); |
1565 | return retVal; |
1566 | } |
1567 | |
1568 | // TODO: Add GSCookie checks |
1569 | |
1570 | // static |
1571 | inline ARG_SLOT Interpreter::InterpretMethodBody(struct InterpreterMethodInfo* interpMethInfo, bool directCall, BYTE* ilArgs, void* stubContext) |
1572 | { |
1573 | #if INTERP_DYNAMIC_CONTRACTS |
1574 | CONTRACTL { |
1575 | THROWS; |
1576 | GC_TRIGGERS; |
1577 | MODE_COOPERATIVE; |
1578 | } CONTRACTL_END; |
1579 | #else |
1580 | // Dynamic contract occupies too much stack. |
1581 | STATIC_CONTRACT_THROWS; |
1582 | STATIC_CONTRACT_GC_TRIGGERS; |
1583 | STATIC_CONTRACT_MODE_COOPERATIVE; |
1584 | #endif |
1585 | |
1586 | CEEInfo* jitInfo = NULL; |
1587 | for (bool doJmpCall = true; doJmpCall; ) |
1588 | { |
1589 | unsigned jmpCallToken = 0; |
1590 | CORINFO_RESOLVED_TOKEN methTokPtr; |
1591 | ARG_SLOT retVal = ExecuteMethodWrapper(interpMethInfo, directCall, ilArgs, stubContext, &doJmpCall, &methTokPtr); |
1592 | // Clear any allocated jitInfo. |
1593 | delete jitInfo; |
1594 | |
1595 | // Nothing to do if the recent method asks not to do a jmpCall. |
1596 | if (!doJmpCall) |
1597 | { |
1598 | return retVal; |
1599 | } |
1600 | |
1601 | // The recently executed method wants us to perform a jmpCall. |
1602 | MethodDesc* pMD = GetMethod(methTokPtr.hMethod); |
1603 | interpMethInfo = MethodHandleToInterpreterMethInfoPtr(CORINFO_METHOD_HANDLE(pMD)); |
1604 | |
1605 | // Allocate a new jitInfo and also a new interpMethInfo. |
1606 | if (interpMethInfo == NULL) |
1607 | { |
1608 | assert(doJmpCall); |
1609 | jitInfo = new CEEInfo(pMD, true); |
1610 | |
1611 | CORINFO_METHOD_INFO methInfo; |
1612 | |
1613 | GCX_PREEMP(); |
1614 | jitInfo->getMethodInfo(CORINFO_METHOD_HANDLE(pMD), &methInfo); |
1615 | GenerateInterpreterStub(jitInfo, &methInfo, NULL, 0, &interpMethInfo, true); |
1616 | } |
1617 | } |
1618 | UNREACHABLE(); |
1619 | } |
1620 | |
1621 | void Interpreter::JitMethodIfAppropriate(InterpreterMethodInfo* interpMethInfo, bool force) |
1622 | { |
1623 | CONTRACTL { |
1624 | THROWS; |
1625 | GC_TRIGGERS; |
1626 | MODE_COOPERATIVE; |
1627 | } CONTRACTL_END; |
1628 | |
1629 | unsigned int MaxInterpretCount = s_InterpreterJITThreshold.val(CLRConfig::INTERNAL_InterpreterJITThreshold); |
1630 | |
1631 | if (force || interpMethInfo->m_invocations > MaxInterpretCount) |
1632 | { |
1633 | GCX_PREEMP(); |
1634 | MethodDesc *md = reinterpret_cast<MethodDesc *>(interpMethInfo->m_method); |
1635 | PCODE stub = md->GetNativeCode(); |
1636 | |
1637 | if (InterpretationStubToMethodInfo(stub) == md) |
1638 | { |
1639 | #if INTERP_TRACING |
1640 | if (s_TraceInterpreterJITTransitionFlag.val(CLRConfig::INTERNAL_TraceInterpreterJITTransition)) |
1641 | { |
1642 | fprintf(GetLogFile(), "JITting method %s:%s.\n" , md->m_pszDebugClassName, md->m_pszDebugMethodName); |
1643 | } |
1644 | #endif // INTERP_TRACING |
1645 | CORJIT_FLAGS jitFlags(CORJIT_FLAGS::CORJIT_FLAG_MAKEFINALCODE); |
1646 | NewHolder<COR_ILMETHOD_DECODER> pDecoder(NULL); |
1647 | // Dynamic methods (e.g., IL stubs) do not have an IL decoder but may |
1648 | // require additional flags. Ordinary methods require the opposite. |
1649 | if (md->IsDynamicMethod()) |
1650 | { |
1651 | jitFlags.Add(md->AsDynamicMethodDesc()->GetILStubResolver()->GetJitFlags()); |
1652 | } |
1653 | else |
1654 | { |
1655 | COR_ILMETHOD_DECODER::DecoderStatus status; |
1656 | pDecoder = new COR_ILMETHOD_DECODER(md->GetILHeader(TRUE), |
1657 | md->GetMDImport(), |
1658 | &status); |
1659 | } |
1660 | // This used to be a synchronous jit and could be made so again if desired, |
1661 | // but using ASP.Net MusicStore as an example scenario the performance is |
1662 | // better doing the JIT asynchronously. Given the not-on-by-default nature of the |
1663 | // interpreter I didn't wring my hands too much trying to determine the ideal |
1664 | // policy. |
1665 | #ifdef FEATURE_TIERED_COMPILATION |
1666 | GetAppDomain()->GetTieredCompilationManager()->AsyncPromoteMethodToTier1(md); |
1667 | #else |
1668 | #error FEATURE_INTERPRETER depends on FEATURE_TIERED_COMPILATION now |
1669 | #endif |
1670 | } |
1671 | } |
1672 | } |
1673 | |
1674 | // static |
1675 | HCIMPL3(float, InterpretMethodFloat, struct InterpreterMethodInfo* interpMethInfo, BYTE* ilArgs, void* stubContext) |
1676 | { |
1677 | FCALL_CONTRACT; |
1678 | |
1679 | ARG_SLOT retVal = 0; |
1680 | |
1681 | HELPER_METHOD_FRAME_BEGIN_RET_ATTRIB(Frame::FRAME_ATTR_EXACT_DEPTH|Frame::FRAME_ATTR_CAPTURE_DEPTH_2); |
1682 | retVal = (ARG_SLOT)Interpreter::InterpretMethodBody(interpMethInfo, false, ilArgs, stubContext); |
1683 | HELPER_METHOD_FRAME_END(); |
1684 | |
1685 | return *reinterpret_cast<float*>(ArgSlotEndianessFixup(&retVal, sizeof(float))); |
1686 | } |
1687 | HCIMPLEND |
1688 | |
1689 | // static |
1690 | HCIMPL3(double, InterpretMethodDouble, struct InterpreterMethodInfo* interpMethInfo, BYTE* ilArgs, void* stubContext) |
1691 | { |
1692 | FCALL_CONTRACT; |
1693 | |
1694 | ARG_SLOT retVal = 0; |
1695 | |
1696 | HELPER_METHOD_FRAME_BEGIN_RET_ATTRIB(Frame::FRAME_ATTR_EXACT_DEPTH|Frame::FRAME_ATTR_CAPTURE_DEPTH_2); |
1697 | retVal = Interpreter::InterpretMethodBody(interpMethInfo, false, ilArgs, stubContext); |
1698 | HELPER_METHOD_FRAME_END(); |
1699 | |
1700 | return *reinterpret_cast<double*>(ArgSlotEndianessFixup(&retVal, sizeof(double))); |
1701 | } |
1702 | HCIMPLEND |
1703 | |
1704 | // static |
1705 | HCIMPL3(INT64, InterpretMethod, struct InterpreterMethodInfo* interpMethInfo, BYTE* ilArgs, void* stubContext) |
1706 | { |
1707 | FCALL_CONTRACT; |
1708 | |
1709 | ARG_SLOT retVal = 0; |
1710 | |
1711 | HELPER_METHOD_FRAME_BEGIN_RET_ATTRIB(Frame::FRAME_ATTR_EXACT_DEPTH|Frame::FRAME_ATTR_CAPTURE_DEPTH_2); |
1712 | retVal = Interpreter::InterpretMethodBody(interpMethInfo, false, ilArgs, stubContext); |
1713 | HELPER_METHOD_FRAME_END(); |
1714 | |
1715 | return static_cast<INT64>(retVal); |
1716 | } |
1717 | HCIMPLEND |
1718 | |
1719 | bool Interpreter::IsInCalleesFrames(void* stackPtr) |
1720 | { |
1721 | // We assume a downwards_growing stack. |
1722 | return stackPtr < (m_localVarMemory - sizeof(GSCookie)); |
1723 | } |
1724 | |
1725 | // I want an enumeration with values for the second byte of 2-byte opcodes. |
1726 | enum OPCODE_2BYTE { |
1727 | #define OPDEF(c,s,pop,push,args,type,l,s1,s2,ctrl) TWOBYTE_##c = unsigned(s2), |
1728 | #include "opcode.def" |
1729 | #undef OPDEF |
1730 | }; |
1731 | |
1732 | // Optimize the interpreter loop for speed. |
1733 | #ifdef _MSC_VER |
1734 | #pragma optimize("t", on) |
1735 | #endif |
1736 | |
1737 | // Duplicating code from JitHelpers for MonEnter,MonExit,MonEnter_Static, |
1738 | // MonExit_Static because it sets up helper frame for the JIT. |
1739 | static void MonitorEnter(Object* obj, BYTE* pbLockTaken) |
1740 | { |
1741 | |
1742 | OBJECTREF objRef = ObjectToOBJECTREF(obj); |
1743 | |
1744 | |
1745 | if (objRef == NULL) |
1746 | COMPlusThrow(kArgumentNullException); |
1747 | |
1748 | GCPROTECT_BEGININTERIOR(pbLockTaken); |
1749 | |
1750 | #ifdef _DEBUG |
1751 | Thread *pThread = GetThread(); |
1752 | DWORD lockCount = pThread->m_dwLockCount; |
1753 | #endif |
1754 | if (GET_THREAD()->CatchAtSafePointOpportunistic()) |
1755 | { |
1756 | GET_THREAD()->PulseGCMode(); |
1757 | } |
1758 | objRef->EnterObjMonitor(); |
1759 | _ASSERTE ((objRef->GetSyncBlock()->GetMonitor()->GetRecursionLevel() == 1 && pThread->m_dwLockCount == lockCount + 1) || |
1760 | pThread->m_dwLockCount == lockCount); |
1761 | if (pbLockTaken != 0) *pbLockTaken = 1; |
1762 | |
1763 | GCPROTECT_END(); |
1764 | } |
1765 | |
1766 | static void MonitorExit(Object* obj, BYTE* pbLockTaken) |
1767 | { |
1768 | OBJECTREF objRef = ObjectToOBJECTREF(obj); |
1769 | |
1770 | if (objRef == NULL) |
1771 | COMPlusThrow(kArgumentNullException); |
1772 | |
1773 | if (!objRef->LeaveObjMonitor()) |
1774 | COMPlusThrow(kSynchronizationLockException); |
1775 | |
1776 | if (pbLockTaken != 0) *pbLockTaken = 0; |
1777 | |
1778 | TESTHOOKCALL(AppDomainCanBeUnloaded(GET_THREAD()->GetDomain()->GetId().m_dwId,FALSE)); |
1779 | |
1780 | if (GET_THREAD()->IsAbortRequested()) { |
1781 | GET_THREAD()->HandleThreadAbort(); |
1782 | } |
1783 | } |
1784 | |
1785 | static void MonitorEnterStatic(AwareLock *lock, BYTE* pbLockTaken) |
1786 | { |
1787 | lock->Enter(); |
1788 | MONHELPER_STATE(*pbLockTaken = 1;) |
1789 | } |
1790 | |
1791 | static void MonitorExitStatic(AwareLock *lock, BYTE* pbLockTaken) |
1792 | { |
1793 | // Error, yield or contention |
1794 | if (!lock->Leave()) |
1795 | COMPlusThrow(kSynchronizationLockException); |
1796 | |
1797 | TESTHOOKCALL(AppDomainCanBeUnloaded(GET_THREAD()->GetDomain()->GetId().m_dwId,FALSE)); |
1798 | if (GET_THREAD()->IsAbortRequested()) { |
1799 | GET_THREAD()->HandleThreadAbort(); |
1800 | } |
1801 | } |
1802 | |
1803 | |
1804 | AwareLock* Interpreter::GetMonitorForStaticMethod() |
1805 | { |
1806 | MethodDesc* pMD = reinterpret_cast<MethodDesc*>(m_methInfo->m_method); |
1807 | CORINFO_LOOKUP_KIND kind; |
1808 | { |
1809 | GCX_PREEMP(); |
1810 | kind = m_interpCeeInfo.getLocationOfThisType(m_methInfo->m_method); |
1811 | } |
1812 | if (!kind.needsRuntimeLookup) |
1813 | { |
1814 | OBJECTREF ref = pMD->GetMethodTable()->GetManagedClassObject(); |
1815 | return (AwareLock*) ref->GetSyncBlock()->GetMonitor(); |
1816 | } |
1817 | else |
1818 | { |
1819 | CORINFO_CLASS_HANDLE classHnd = nullptr; |
1820 | switch (kind.runtimeLookupKind) |
1821 | { |
1822 | case CORINFO_LOOKUP_CLASSPARAM: |
1823 | { |
1824 | classHnd = (CORINFO_CLASS_HANDLE) GetPreciseGenericsContext(); |
1825 | } |
1826 | break; |
1827 | case CORINFO_LOOKUP_METHODPARAM: |
1828 | { |
1829 | MethodDesc* pMD = (MethodDesc*) GetPreciseGenericsContext(); |
1830 | classHnd = (CORINFO_CLASS_HANDLE) pMD->GetMethodTable(); |
1831 | } |
1832 | break; |
1833 | default: |
1834 | NYI_INTERP("Unknown lookup for synchronized methods" ); |
1835 | break; |
1836 | } |
1837 | MethodTable* pMT = GetMethodTableFromClsHnd(classHnd); |
1838 | OBJECTREF ref = pMT->GetManagedClassObject(); |
1839 | ASSERT(ref); |
1840 | return (AwareLock*) ref->GetSyncBlock()->GetMonitor(); |
1841 | } |
1842 | } |
1843 | |
1844 | void Interpreter::DoMonitorEnterWork() |
1845 | { |
1846 | MethodDesc* pMD = reinterpret_cast<MethodDesc*>(m_methInfo->m_method); |
1847 | if (pMD->IsSynchronized()) |
1848 | { |
1849 | if (pMD->IsStatic()) |
1850 | { |
1851 | AwareLock* lock = GetMonitorForStaticMethod(); |
1852 | MonitorEnterStatic(lock, &m_monAcquired); |
1853 | } |
1854 | else |
1855 | { |
1856 | MonitorEnter((Object*) m_thisArg, &m_monAcquired); |
1857 | } |
1858 | } |
1859 | } |
1860 | |
1861 | void Interpreter::DoMonitorExitWork() |
1862 | { |
1863 | MethodDesc* pMD = reinterpret_cast<MethodDesc*>(m_methInfo->m_method); |
1864 | if (pMD->IsSynchronized()) |
1865 | { |
1866 | if (pMD->IsStatic()) |
1867 | { |
1868 | AwareLock* lock = GetMonitorForStaticMethod(); |
1869 | MonitorExitStatic(lock, &m_monAcquired); |
1870 | } |
1871 | else |
1872 | { |
1873 | MonitorExit((Object*) m_thisArg, &m_monAcquired); |
1874 | } |
1875 | } |
1876 | } |
1877 | |
1878 | |
1879 | void Interpreter::ExecuteMethod(ARG_SLOT* retVal, __out bool* pDoJmpCall, __out unsigned* pJmpCallToken) |
1880 | { |
1881 | #if INTERP_DYNAMIC_CONTRACTS |
1882 | CONTRACTL { |
1883 | THROWS; |
1884 | GC_TRIGGERS; |
1885 | MODE_COOPERATIVE; |
1886 | } CONTRACTL_END; |
1887 | #else |
1888 | // Dynamic contract occupies too much stack. |
1889 | STATIC_CONTRACT_THROWS; |
1890 | STATIC_CONTRACT_GC_TRIGGERS; |
1891 | STATIC_CONTRACT_MODE_COOPERATIVE; |
1892 | #endif |
1893 | |
1894 | *pDoJmpCall = false; |
1895 | |
1896 | // Normally I'd prefer to declare these in small case-block scopes, but most C++ compilers |
1897 | // do not realize that their lifetimes do not overlap, so that makes for a large stack frame. |
1898 | // So I avoid that by outside declarations (sigh). |
1899 | char offsetc, valc; |
1900 | unsigned char argNumc; |
1901 | unsigned short argNums; |
1902 | INT32 vali; |
1903 | INT64 vall; |
1904 | InterpreterType it; |
1905 | size_t sz; |
1906 | |
1907 | unsigned short ops; |
1908 | |
1909 | // Make sure that the .cctor for the current method's class has been run. |
1910 | MethodDesc* pMD = reinterpret_cast<MethodDesc*>(m_methInfo->m_method); |
1911 | EnsureClassInit(pMD->GetMethodTable()); |
1912 | |
1913 | #if INTERP_TRACING |
1914 | const char* methName = eeGetMethodFullName(m_methInfo->m_method); |
1915 | unsigned ilOffset = 0; |
1916 | |
1917 | unsigned curInvocation = InterlockedIncrement(&s_totalInvocations); |
1918 | if (s_TraceInterpreterEntriesFlag.val(CLRConfig::INTERNAL_TraceInterpreterEntries)) |
1919 | { |
1920 | fprintf(GetLogFile(), "Entering method #%d (= 0x%x): %s.\n" , curInvocation, curInvocation, methName); |
1921 | fprintf(GetLogFile(), " arguments:\n" ); |
1922 | PrintArgs(); |
1923 | } |
1924 | #endif // INTERP_TRACING |
1925 | |
1926 | #if LOOPS_VIA_INSTRS |
1927 | unsigned instrs = 0; |
1928 | #else |
1929 | #if INTERP_PROFILE |
1930 | unsigned instrs = 0; |
1931 | #endif |
1932 | #endif |
1933 | |
1934 | EvalLoop: |
1935 | GCX_ASSERT_COOP(); |
1936 | // Catch any exceptions raised. |
1937 | EX_TRY { |
1938 | // Optional features... |
1939 | #define INTERPRETER_CHECK_LARGE_STRUCT_STACK_HEIGHT 1 |
1940 | |
1941 | #if INTERP_ILCYCLE_PROFILE |
1942 | m_instr = CEE_COUNT; // Flag to indicate first instruction. |
1943 | m_exemptCycles = 0; |
1944 | #endif // INTERP_ILCYCLE_PROFILE |
1945 | |
1946 | DoMonitorEnterWork(); |
1947 | |
1948 | INTERPLOG("START %d, %s\n" , m_methInfo->m_stubNum, methName); |
1949 | for (;;) |
1950 | { |
1951 | // TODO: verify that m_ILCodePtr is legal, and we haven't walked off the end of the IL array? (i.e., bad IL). |
1952 | // Note that ExecuteBranch() should be called for every branch. That checks that we aren't either before or |
1953 | // after the IL range. Here, we would only need to check that we haven't gone past the end (not before the beginning) |
1954 | // because everything that doesn't call ExecuteBranch() should only add to m_ILCodePtr. |
1955 | |
1956 | #if INTERP_TRACING |
1957 | ilOffset = CurOffset(); |
1958 | #endif // _DEBUG |
1959 | #if INTERP_TRACING |
1960 | if (s_TraceInterpreterOstackFlag.val(CLRConfig::INTERNAL_TraceInterpreterOstack)) |
1961 | { |
1962 | PrintOStack(); |
1963 | } |
1964 | #if INTERPRETER_CHECK_LARGE_STRUCT_STACK_HEIGHT |
1965 | _ASSERTE_MSG(LargeStructStackHeightIsValid(), "Large structure stack height invariant violated." ); // Check the large struct stack invariant. |
1966 | #endif |
1967 | if (s_TraceInterpreterILFlag.val(CLRConfig::INTERNAL_TraceInterpreterIL)) |
1968 | { |
1969 | fprintf(GetLogFile(), " %#4x: %s\n" , ilOffset, ILOp(m_ILCodePtr)); |
1970 | fflush(GetLogFile()); |
1971 | } |
1972 | #endif // INTERP_TRACING |
1973 | #if LOOPS_VIA_INSTRS |
1974 | instrs++; |
1975 | #else |
1976 | #if INTERP_PROFILE |
1977 | instrs++; |
1978 | #endif |
1979 | #endif |
1980 | |
1981 | #if INTERP_ILINSTR_PROFILE |
1982 | #if INTERP_ILCYCLE_PROFILE |
1983 | UpdateCycleCount(); |
1984 | #endif // INTERP_ILCYCLE_PROFILE |
1985 | |
1986 | InterlockedIncrement(&s_ILInstrExecs[*m_ILCodePtr]); |
1987 | #endif // INTERP_ILINSTR_PROFILE |
1988 | |
1989 | switch (*m_ILCodePtr) |
1990 | { |
1991 | case CEE_NOP: |
1992 | m_ILCodePtr++; |
1993 | continue; |
1994 | case CEE_BREAK: // TODO: interact with the debugger? |
1995 | m_ILCodePtr++; |
1996 | continue; |
1997 | case CEE_LDARG_0: |
1998 | LdArg(0); |
1999 | break; |
2000 | case CEE_LDARG_1: |
2001 | LdArg(1); |
2002 | break; |
2003 | case CEE_LDARG_2: |
2004 | LdArg(2); |
2005 | break; |
2006 | case CEE_LDARG_3: |
2007 | LdArg(3); |
2008 | break; |
2009 | case CEE_LDLOC_0: |
2010 | LdLoc(0); |
2011 | m_ILCodePtr++; |
2012 | continue; |
2013 | case CEE_LDLOC_1: |
2014 | LdLoc(1); |
2015 | break; |
2016 | case CEE_LDLOC_2: |
2017 | LdLoc(2); |
2018 | break; |
2019 | case CEE_LDLOC_3: |
2020 | LdLoc(3); |
2021 | break; |
2022 | case CEE_STLOC_0: |
2023 | StLoc(0); |
2024 | break; |
2025 | case CEE_STLOC_1: |
2026 | StLoc(1); |
2027 | break; |
2028 | case CEE_STLOC_2: |
2029 | StLoc(2); |
2030 | break; |
2031 | case CEE_STLOC_3: |
2032 | StLoc(3); |
2033 | break; |
2034 | case CEE_LDARG_S: |
2035 | m_ILCodePtr++; |
2036 | argNumc = *m_ILCodePtr; |
2037 | LdArg(argNumc); |
2038 | break; |
2039 | case CEE_LDARGA_S: |
2040 | m_ILCodePtr++; |
2041 | argNumc = *m_ILCodePtr; |
2042 | LdArgA(argNumc); |
2043 | break; |
2044 | case CEE_STARG_S: |
2045 | m_ILCodePtr++; |
2046 | argNumc = *m_ILCodePtr; |
2047 | StArg(argNumc); |
2048 | break; |
2049 | case CEE_LDLOC_S: |
2050 | argNumc = *(m_ILCodePtr + 1); |
2051 | LdLoc(argNumc); |
2052 | m_ILCodePtr += 2; |
2053 | continue; |
2054 | case CEE_LDLOCA_S: |
2055 | m_ILCodePtr++; |
2056 | argNumc = *m_ILCodePtr; |
2057 | LdLocA(argNumc); |
2058 | break; |
2059 | case CEE_STLOC_S: |
2060 | argNumc = *(m_ILCodePtr + 1); |
2061 | StLoc(argNumc); |
2062 | m_ILCodePtr += 2; |
2063 | continue; |
2064 | case CEE_LDNULL: |
2065 | LdNull(); |
2066 | break; |
2067 | case CEE_LDC_I4_M1: |
2068 | LdIcon(-1); |
2069 | break; |
2070 | case CEE_LDC_I4_0: |
2071 | LdIcon(0); |
2072 | break; |
2073 | case CEE_LDC_I4_1: |
2074 | LdIcon(1); |
2075 | m_ILCodePtr++; |
2076 | continue; |
2077 | case CEE_LDC_I4_2: |
2078 | LdIcon(2); |
2079 | break; |
2080 | case CEE_LDC_I4_3: |
2081 | LdIcon(3); |
2082 | break; |
2083 | case CEE_LDC_I4_4: |
2084 | LdIcon(4); |
2085 | break; |
2086 | case CEE_LDC_I4_5: |
2087 | LdIcon(5); |
2088 | break; |
2089 | case CEE_LDC_I4_6: |
2090 | LdIcon(6); |
2091 | break; |
2092 | case CEE_LDC_I4_7: |
2093 | LdIcon(7); |
2094 | break; |
2095 | case CEE_LDC_I4_8: |
2096 | LdIcon(8); |
2097 | break; |
2098 | case CEE_LDC_I4_S: |
2099 | valc = getI1(m_ILCodePtr + 1); |
2100 | LdIcon(valc); |
2101 | m_ILCodePtr += 2; |
2102 | continue; |
2103 | case CEE_LDC_I4: |
2104 | vali = getI4LittleEndian(m_ILCodePtr + 1); |
2105 | LdIcon(vali); |
2106 | m_ILCodePtr += 5; |
2107 | continue; |
2108 | case CEE_LDC_I8: |
2109 | vall = getI8LittleEndian(m_ILCodePtr + 1); |
2110 | LdLcon(vall); |
2111 | m_ILCodePtr += 9; |
2112 | continue; |
2113 | case CEE_LDC_R4: |
2114 | // We use I4 here because we just care about the bit pattern. |
2115 | // LdR4Con will push the right InterpreterType. |
2116 | vali = getI4LittleEndian(m_ILCodePtr + 1); |
2117 | LdR4con(vali); |
2118 | m_ILCodePtr += 5; |
2119 | continue; |
2120 | case CEE_LDC_R8: |
2121 | // We use I4 here because we just care about the bit pattern. |
2122 | // LdR8Con will push the right InterpreterType. |
2123 | vall = getI8LittleEndian(m_ILCodePtr + 1); |
2124 | LdR8con(vall); |
2125 | m_ILCodePtr += 9; |
2126 | continue; |
2127 | case CEE_DUP: |
2128 | assert(m_curStackHt > 0); |
2129 | it = OpStackTypeGet(m_curStackHt - 1); |
2130 | OpStackTypeSet(m_curStackHt, it); |
2131 | if (it.IsLargeStruct(&m_interpCeeInfo)) |
2132 | { |
2133 | sz = it.Size(&m_interpCeeInfo); |
2134 | void* dest = LargeStructOperandStackPush(sz); |
2135 | memcpy(dest, OpStackGet<void*>(m_curStackHt - 1), sz); |
2136 | OpStackSet<void*>(m_curStackHt, dest); |
2137 | } |
2138 | else |
2139 | { |
2140 | OpStackSet<INT64>(m_curStackHt, OpStackGet<INT64>(m_curStackHt - 1)); |
2141 | } |
2142 | m_curStackHt++; |
2143 | break; |
2144 | case CEE_POP: |
2145 | assert(m_curStackHt > 0); |
2146 | m_curStackHt--; |
2147 | it = OpStackTypeGet(m_curStackHt); |
2148 | if (it.IsLargeStruct(&m_interpCeeInfo)) |
2149 | { |
2150 | LargeStructOperandStackPop(it.Size(&m_interpCeeInfo), OpStackGet<void*>(m_curStackHt)); |
2151 | } |
2152 | break; |
2153 | |
2154 | case CEE_JMP: |
2155 | *pJmpCallToken = getU4LittleEndian(m_ILCodePtr + sizeof(BYTE)); |
2156 | *pDoJmpCall = true; |
2157 | goto ExitEvalLoop; |
2158 | |
2159 | case CEE_CALL: |
2160 | DoCall(/*virtualCall*/false); |
2161 | #if INTERP_TRACING |
2162 | if (s_TraceInterpreterILFlag.val(CLRConfig::INTERNAL_TraceInterpreterIL)) |
2163 | { |
2164 | fprintf(GetLogFile(), " Returning to method %s, stub num %d.\n" , methName, m_methInfo->m_stubNum); |
2165 | } |
2166 | #endif // INTERP_TRACING |
2167 | continue; |
2168 | |
2169 | case CEE_CALLVIRT: |
2170 | DoCall(/*virtualCall*/true); |
2171 | #if INTERP_TRACING |
2172 | if (s_TraceInterpreterILFlag.val(CLRConfig::INTERNAL_TraceInterpreterIL)) |
2173 | { |
2174 | fprintf(GetLogFile(), " Returning to method %s, stub num %d.\n" , methName, m_methInfo->m_stubNum); |
2175 | } |
2176 | #endif // INTERP_TRACING |
2177 | continue; |
2178 | |
2179 | // HARD |
2180 | case CEE_CALLI: |
2181 | CallI(); |
2182 | continue; |
2183 | |
2184 | case CEE_RET: |
2185 | if (m_methInfo->m_returnType == CORINFO_TYPE_VOID) |
2186 | { |
2187 | assert(m_curStackHt == 0); |
2188 | } |
2189 | else |
2190 | { |
2191 | assert(m_curStackHt == 1); |
2192 | InterpreterType retValIt = OpStackTypeGet(0); |
2193 | bool looseInt = s_InterpreterLooseRules && |
2194 | CorInfoTypeIsIntegral(m_methInfo->m_returnType) && |
2195 | (CorInfoTypeIsIntegral(retValIt.ToCorInfoType()) || CorInfoTypeIsPointer(retValIt.ToCorInfoType())) && |
2196 | (m_methInfo->m_returnType != retValIt.ToCorInfoType()); |
2197 | |
2198 | bool looseFloat = s_InterpreterLooseRules && |
2199 | CorInfoTypeIsFloatingPoint(m_methInfo->m_returnType) && |
2200 | CorInfoTypeIsFloatingPoint(retValIt.ToCorInfoType()) && |
2201 | (m_methInfo->m_returnType != retValIt.ToCorInfoType()); |
2202 | |
2203 | // Make sure that the return value "matches" (which allows certain relaxations) the declared return type. |
2204 | assert((m_methInfo->m_returnType == CORINFO_TYPE_VALUECLASS && retValIt.ToCorInfoType() == CORINFO_TYPE_VALUECLASS) || |
2205 | (m_methInfo->m_returnType == CORINFO_TYPE_REFANY && retValIt.ToCorInfoType() == CORINFO_TYPE_VALUECLASS) || |
2206 | (m_methInfo->m_returnType == CORINFO_TYPE_REFANY && retValIt.ToCorInfoType() == CORINFO_TYPE_REFANY) || |
2207 | (looseInt || looseFloat) || |
2208 | InterpreterType(m_methInfo->m_returnType).StackNormalize().Matches(retValIt, &m_interpCeeInfo)); |
2209 | |
2210 | size_t sz = retValIt.Size(&m_interpCeeInfo); |
2211 | #if defined(FEATURE_HFA) |
2212 | CorInfoType cit = CORINFO_TYPE_UNDEF; |
2213 | { |
2214 | GCX_PREEMP(); |
2215 | if(m_methInfo->m_returnType == CORINFO_TYPE_VALUECLASS) |
2216 | cit = m_interpCeeInfo.getHFAType(retValIt.ToClassHandle()); |
2217 | } |
2218 | #endif |
2219 | if (m_methInfo->GetFlag<InterpreterMethodInfo::Flag_hasRetBuffArg>()) |
2220 | { |
2221 | assert((m_methInfo->m_returnType == CORINFO_TYPE_VALUECLASS && retValIt.ToCorInfoType() == CORINFO_TYPE_VALUECLASS) || |
2222 | (m_methInfo->m_returnType == CORINFO_TYPE_REFANY && retValIt.ToCorInfoType() == CORINFO_TYPE_VALUECLASS) || |
2223 | (m_methInfo->m_returnType == CORINFO_TYPE_REFANY && retValIt.ToCorInfoType() == CORINFO_TYPE_REFANY)); |
2224 | if (retValIt.ToCorInfoType() == CORINFO_TYPE_REFANY) |
2225 | { |
2226 | InterpreterType typedRefIT = GetTypedRefIT(&m_interpCeeInfo); |
2227 | TypedByRef* ptr = OpStackGet<TypedByRef*>(0); |
2228 | *((TypedByRef*) m_retBufArg) = *ptr; |
2229 | } |
2230 | else if (retValIt.IsLargeStruct(&m_interpCeeInfo)) |
2231 | { |
2232 | MethodTable* clsMt = GetMethodTableFromClsHnd(retValIt.ToClassHandle()); |
2233 | // The ostack value is a pointer to the struct value. |
2234 | CopyValueClassUnchecked(m_retBufArg, OpStackGet<void*>(0), clsMt); |
2235 | } |
2236 | else |
2237 | { |
2238 | MethodTable* clsMt = GetMethodTableFromClsHnd(retValIt.ToClassHandle()); |
2239 | // The ostack value *is* the struct value. |
2240 | CopyValueClassUnchecked(m_retBufArg, OpStackGetAddr(0, sz), clsMt); |
2241 | } |
2242 | } |
2243 | #if defined(FEATURE_HFA) |
2244 | // Is it an HFA? |
2245 | else if (m_methInfo->m_returnType == CORINFO_TYPE_VALUECLASS |
2246 | && CorInfoTypeIsFloatingPoint(cit) |
2247 | && (MetaSig(reinterpret_cast<MethodDesc*>(m_methInfo->m_method)).GetCallingConventionInfo() & CORINFO_CALLCONV_VARARG) == 0) |
2248 | { |
2249 | if (retValIt.IsLargeStruct(&m_interpCeeInfo)) |
2250 | { |
2251 | // The ostack value is a pointer to the struct value. |
2252 | memcpy(GetHFARetBuffAddr(static_cast<unsigned>(sz)), OpStackGet<void*>(0), sz); |
2253 | } |
2254 | else |
2255 | { |
2256 | // The ostack value *is* the struct value. |
2257 | memcpy(GetHFARetBuffAddr(static_cast<unsigned>(sz)), OpStackGetAddr(0, sz), sz); |
2258 | } |
2259 | } |
2260 | #endif |
2261 | else if (CorInfoTypeIsFloatingPoint(m_methInfo->m_returnType) && |
2262 | CorInfoTypeIsFloatingPoint(retValIt.ToCorInfoType())) |
2263 | { |
2264 | double val = (sz <= sizeof(INT32)) ? OpStackGet<float>(0) : OpStackGet<double>(0); |
2265 | if (m_methInfo->m_returnType == CORINFO_TYPE_DOUBLE) |
2266 | { |
2267 | memcpy(retVal, &val, sizeof(double)); |
2268 | } |
2269 | else |
2270 | { |
2271 | float val2 = (float) val; |
2272 | memcpy(retVal, &val2, sizeof(float)); |
2273 | } |
2274 | } |
2275 | else |
2276 | { |
2277 | if (sz <= sizeof(INT32)) |
2278 | { |
2279 | *retVal = OpStackGet<INT32>(0); |
2280 | } |
2281 | else |
2282 | { |
2283 | // If looseInt is true, we are relying on auto-downcast in case *retVal |
2284 | // is small (but this is guaranteed not to happen by def'n of ARG_SLOT.) |
2285 | // |
2286 | // Note structs of size 5, 6, 7 may be returned as 8 byte ints. |
2287 | assert(sz <= sizeof(INT64)); |
2288 | *retVal = OpStackGet<INT64>(0); |
2289 | } |
2290 | } |
2291 | } |
2292 | |
2293 | |
2294 | #if INTERP_PROFILE |
2295 | // We're not capturing instructions executed in a method that terminates via exception, |
2296 | // but that's OK... |
2297 | m_methInfo->RecordExecInstrs(instrs); |
2298 | #endif |
2299 | #if INTERP_TRACING |
2300 | // We keep this live until we leave. |
2301 | delete methName; |
2302 | #endif // INTERP_TRACING |
2303 | |
2304 | #if INTERP_ILCYCLE_PROFILE |
2305 | // Finish off accounting for the "RET" before we return |
2306 | UpdateCycleCount(); |
2307 | #endif // INTERP_ILCYCLE_PROFILE |
2308 | |
2309 | goto ExitEvalLoop; |
2310 | |
2311 | case CEE_BR_S: |
2312 | m_ILCodePtr++; |
2313 | offsetc = *m_ILCodePtr; |
2314 | // The offset is wrt the beginning of the following instruction, so the +1 is to get to that |
2315 | // m_ILCodePtr value before adding the offset. |
2316 | ExecuteBranch(m_ILCodePtr + offsetc + 1); |
2317 | continue; // Skip the default m_ILCodePtr++ at bottom of loop. |
2318 | |
2319 | case CEE_LEAVE_S: |
2320 | // LEAVE empties the operand stack. |
2321 | m_curStackHt = 0; |
2322 | m_largeStructOperandStackHt = 0; |
2323 | offsetc = getI1(m_ILCodePtr + 1); |
2324 | |
2325 | { |
2326 | // The offset is wrt the beginning of the following instruction, so the +2 is to get to that |
2327 | // m_ILCodePtr value before adding the offset. |
2328 | BYTE* leaveTarget = m_ILCodePtr + offsetc + 2; |
2329 | unsigned leaveOffset = CurOffset(); |
2330 | m_leaveInfoStack.Push(LeaveInfo(leaveOffset, leaveTarget)); |
2331 | if (!SearchForCoveringFinally()) |
2332 | { |
2333 | m_leaveInfoStack.Pop(); |
2334 | ExecuteBranch(leaveTarget); |
2335 | } |
2336 | } |
2337 | continue; // Skip the default m_ILCodePtr++ at bottom of loop. |
2338 | |
2339 | // Abstract the next pair out to something common with templates. |
2340 | case CEE_BRFALSE_S: |
2341 | BrOnValue<false, 1>(); |
2342 | continue; |
2343 | |
2344 | case CEE_BRTRUE_S: |
2345 | BrOnValue<true, 1>(); |
2346 | continue; |
2347 | |
2348 | case CEE_BEQ_S: |
2349 | BrOnComparison<CO_EQ, false, 1>(); |
2350 | continue; |
2351 | case CEE_BGE_S: |
2352 | assert(m_curStackHt >= 2); |
2353 | // ECMA spec gives different semantics for different operand types: |
2354 | switch (OpStackTypeGet(m_curStackHt-1).ToCorInfoType()) |
2355 | { |
2356 | case CORINFO_TYPE_FLOAT: |
2357 | case CORINFO_TYPE_DOUBLE: |
2358 | BrOnComparison<CO_LT_UN, true, 1>(); |
2359 | break; |
2360 | default: |
2361 | BrOnComparison<CO_LT, true, 1>(); |
2362 | break; |
2363 | } |
2364 | continue; |
2365 | case CEE_BGT_S: |
2366 | BrOnComparison<CO_GT, false, 1>(); |
2367 | continue; |
2368 | case CEE_BLE_S: |
2369 | assert(m_curStackHt >= 2); |
2370 | // ECMA spec gives different semantics for different operand types: |
2371 | switch (OpStackTypeGet(m_curStackHt-1).ToCorInfoType()) |
2372 | { |
2373 | case CORINFO_TYPE_FLOAT: |
2374 | case CORINFO_TYPE_DOUBLE: |
2375 | BrOnComparison<CO_GT_UN, true, 1>(); |
2376 | break; |
2377 | default: |
2378 | BrOnComparison<CO_GT, true, 1>(); |
2379 | break; |
2380 | } |
2381 | continue; |
2382 | case CEE_BLT_S: |
2383 | BrOnComparison<CO_LT, false, 1>(); |
2384 | continue; |
2385 | case CEE_BNE_UN_S: |
2386 | BrOnComparison<CO_EQ, true, 1>(); |
2387 | continue; |
2388 | case CEE_BGE_UN_S: |
2389 | assert(m_curStackHt >= 2); |
2390 | // ECMA spec gives different semantics for different operand types: |
2391 | switch (OpStackTypeGet(m_curStackHt-1).ToCorInfoType()) |
2392 | { |
2393 | case CORINFO_TYPE_FLOAT: |
2394 | case CORINFO_TYPE_DOUBLE: |
2395 | BrOnComparison<CO_LT, true, 1>(); |
2396 | break; |
2397 | default: |
2398 | BrOnComparison<CO_LT_UN, true, 1>(); |
2399 | break; |
2400 | } |
2401 | continue; |
2402 | case CEE_BGT_UN_S: |
2403 | BrOnComparison<CO_GT_UN, false, 1>(); |
2404 | continue; |
2405 | case CEE_BLE_UN_S: |
2406 | assert(m_curStackHt >= 2); |
2407 | // ECMA spec gives different semantics for different operand types: |
2408 | switch (OpStackTypeGet(m_curStackHt-1).ToCorInfoType()) |
2409 | { |
2410 | case CORINFO_TYPE_FLOAT: |
2411 | case CORINFO_TYPE_DOUBLE: |
2412 | BrOnComparison<CO_GT, true, 1>(); |
2413 | break; |
2414 | default: |
2415 | BrOnComparison<CO_GT_UN, true, 1>(); |
2416 | break; |
2417 | } |
2418 | continue; |
2419 | case CEE_BLT_UN_S: |
2420 | BrOnComparison<CO_LT_UN, false, 1>(); |
2421 | continue; |
2422 | |
2423 | case CEE_BR: |
2424 | m_ILCodePtr++; |
2425 | vali = getI4LittleEndian(m_ILCodePtr); |
2426 | vali += 4; // +4 for the length of the offset. |
2427 | ExecuteBranch(m_ILCodePtr + vali); |
2428 | if (vali < 0) |
2429 | { |
2430 | // Backwards branch -- enable caching. |
2431 | BackwardsBranchActions(vali); |
2432 | } |
2433 | |
2434 | continue; |
2435 | |
2436 | case CEE_LEAVE: |
2437 | // LEAVE empties the operand stack. |
2438 | m_curStackHt = 0; |
2439 | m_largeStructOperandStackHt = 0; |
2440 | vali = getI4LittleEndian(m_ILCodePtr + 1); |
2441 | |
2442 | { |
2443 | // The offset is wrt the beginning of the following instruction, so the +5 is to get to that |
2444 | // m_ILCodePtr value before adding the offset. |
2445 | BYTE* leaveTarget = m_ILCodePtr + (vali + 5); |
2446 | unsigned leaveOffset = CurOffset(); |
2447 | m_leaveInfoStack.Push(LeaveInfo(leaveOffset, leaveTarget)); |
2448 | if (!SearchForCoveringFinally()) |
2449 | { |
2450 | (void)m_leaveInfoStack.Pop(); |
2451 | if (vali < 0) |
2452 | { |
2453 | // Backwards branch -- enable caching. |
2454 | BackwardsBranchActions(vali); |
2455 | } |
2456 | ExecuteBranch(leaveTarget); |
2457 | } |
2458 | } |
2459 | continue; // Skip the default m_ILCodePtr++ at bottom of loop. |
2460 | |
2461 | case CEE_BRFALSE: |
2462 | BrOnValue<false, 4>(); |
2463 | continue; |
2464 | case CEE_BRTRUE: |
2465 | BrOnValue<true, 4>(); |
2466 | continue; |
2467 | |
2468 | case CEE_BEQ: |
2469 | BrOnComparison<CO_EQ, false, 4>(); |
2470 | continue; |
2471 | case CEE_BGE: |
2472 | assert(m_curStackHt >= 2); |
2473 | // ECMA spec gives different semantics for different operand types: |
2474 | switch (OpStackTypeGet(m_curStackHt-1).ToCorInfoType()) |
2475 | { |
2476 | case CORINFO_TYPE_FLOAT: |
2477 | case CORINFO_TYPE_DOUBLE: |
2478 | BrOnComparison<CO_LT_UN, true, 4>(); |
2479 | break; |
2480 | default: |
2481 | BrOnComparison<CO_LT, true, 4>(); |
2482 | break; |
2483 | } |
2484 | continue; |
2485 | case CEE_BGT: |
2486 | BrOnComparison<CO_GT, false, 4>(); |
2487 | continue; |
2488 | case CEE_BLE: |
2489 | assert(m_curStackHt >= 2); |
2490 | // ECMA spec gives different semantics for different operand types: |
2491 | switch (OpStackTypeGet(m_curStackHt-1).ToCorInfoType()) |
2492 | { |
2493 | case CORINFO_TYPE_FLOAT: |
2494 | case CORINFO_TYPE_DOUBLE: |
2495 | BrOnComparison<CO_GT_UN, true, 4>(); |
2496 | break; |
2497 | default: |
2498 | BrOnComparison<CO_GT, true, 4>(); |
2499 | break; |
2500 | } |
2501 | continue; |
2502 | case CEE_BLT: |
2503 | BrOnComparison<CO_LT, false, 4>(); |
2504 | continue; |
2505 | case CEE_BNE_UN: |
2506 | BrOnComparison<CO_EQ, true, 4>(); |
2507 | continue; |
2508 | case CEE_BGE_UN: |
2509 | assert(m_curStackHt >= 2); |
2510 | // ECMA spec gives different semantics for different operand types: |
2511 | switch (OpStackTypeGet(m_curStackHt-1).ToCorInfoType()) |
2512 | { |
2513 | case CORINFO_TYPE_FLOAT: |
2514 | case CORINFO_TYPE_DOUBLE: |
2515 | BrOnComparison<CO_LT, true, 4>(); |
2516 | break; |
2517 | default: |
2518 | BrOnComparison<CO_LT_UN, true, 4>(); |
2519 | break; |
2520 | } |
2521 | continue; |
2522 | case CEE_BGT_UN: |
2523 | BrOnComparison<CO_GT_UN, false, 4>(); |
2524 | continue; |
2525 | case CEE_BLE_UN: |
2526 | assert(m_curStackHt >= 2); |
2527 | // ECMA spec gives different semantics for different operand types: |
2528 | switch (OpStackTypeGet(m_curStackHt-1).ToCorInfoType()) |
2529 | { |
2530 | case CORINFO_TYPE_FLOAT: |
2531 | case CORINFO_TYPE_DOUBLE: |
2532 | BrOnComparison<CO_GT, true, 4>(); |
2533 | break; |
2534 | default: |
2535 | BrOnComparison<CO_GT_UN, true, 4>(); |
2536 | break; |
2537 | } |
2538 | continue; |
2539 | case CEE_BLT_UN: |
2540 | BrOnComparison<CO_LT_UN, false, 4>(); |
2541 | continue; |
2542 | |
2543 | case CEE_SWITCH: |
2544 | { |
2545 | assert(m_curStackHt > 0); |
2546 | m_curStackHt--; |
2547 | #if defined(_DEBUG) || defined(_AMD64_) |
2548 | CorInfoType cit = OpStackTypeGet(m_curStackHt).ToCorInfoType(); |
2549 | #endif // _DEBUG || _AMD64_ |
2550 | #ifdef _DEBUG |
2551 | assert(cit == CORINFO_TYPE_INT || cit == CORINFO_TYPE_UINT || cit == CORINFO_TYPE_NATIVEINT); |
2552 | #endif // _DEBUG |
2553 | #if defined(_AMD64_) |
2554 | UINT32 val = (cit == CORINFO_TYPE_NATIVEINT) ? (INT32) OpStackGet<NativeInt>(m_curStackHt) |
2555 | : OpStackGet<INT32>(m_curStackHt); |
2556 | #else |
2557 | UINT32 val = OpStackGet<INT32>(m_curStackHt); |
2558 | #endif |
2559 | UINT32 n = getU4LittleEndian(m_ILCodePtr + 1); |
2560 | UINT32 instrSize = 1 + (n + 1)*4; |
2561 | if (val < n) |
2562 | { |
2563 | vali = getI4LittleEndian(m_ILCodePtr + (5 + val * 4)); |
2564 | ExecuteBranch(m_ILCodePtr + instrSize + vali); |
2565 | } |
2566 | else |
2567 | { |
2568 | m_ILCodePtr += instrSize; |
2569 | } |
2570 | } |
2571 | continue; |
2572 | |
2573 | case CEE_LDIND_I1: |
2574 | LdIndShort<INT8, /*isUnsigned*/false>(); |
2575 | break; |
2576 | case CEE_LDIND_U1: |
2577 | LdIndShort<UINT8, /*isUnsigned*/true>(); |
2578 | break; |
2579 | case CEE_LDIND_I2: |
2580 | LdIndShort<INT16, /*isUnsigned*/false>(); |
2581 | break; |
2582 | case CEE_LDIND_U2: |
2583 | LdIndShort<UINT16, /*isUnsigned*/true>(); |
2584 | break; |
2585 | case CEE_LDIND_I4: |
2586 | LdInd<INT32, CORINFO_TYPE_INT>(); |
2587 | break; |
2588 | case CEE_LDIND_U4: |
2589 | LdInd<UINT32, CORINFO_TYPE_INT>(); |
2590 | break; |
2591 | case CEE_LDIND_I8: |
2592 | LdInd<INT64, CORINFO_TYPE_LONG>(); |
2593 | break; |
2594 | case CEE_LDIND_I: |
2595 | LdInd<NativeInt, CORINFO_TYPE_NATIVEINT>(); |
2596 | break; |
2597 | case CEE_LDIND_R4: |
2598 | LdInd<float, CORINFO_TYPE_FLOAT>(); |
2599 | break; |
2600 | case CEE_LDIND_R8: |
2601 | LdInd<double, CORINFO_TYPE_DOUBLE>(); |
2602 | break; |
2603 | case CEE_LDIND_REF: |
2604 | LdInd<Object*, CORINFO_TYPE_CLASS>(); |
2605 | break; |
2606 | case CEE_STIND_REF: |
2607 | StInd_Ref(); |
2608 | break; |
2609 | case CEE_STIND_I1: |
2610 | StInd<INT8>(); |
2611 | break; |
2612 | case CEE_STIND_I2: |
2613 | StInd<INT16>(); |
2614 | break; |
2615 | case CEE_STIND_I4: |
2616 | StInd<INT32>(); |
2617 | break; |
2618 | case CEE_STIND_I8: |
2619 | StInd<INT64>(); |
2620 | break; |
2621 | case CEE_STIND_R4: |
2622 | StInd<float>(); |
2623 | break; |
2624 | case CEE_STIND_R8: |
2625 | StInd<double>(); |
2626 | break; |
2627 | case CEE_ADD: |
2628 | BinaryArithOp<BA_Add>(); |
2629 | m_ILCodePtr++; |
2630 | continue; |
2631 | case CEE_SUB: |
2632 | BinaryArithOp<BA_Sub>(); |
2633 | break; |
2634 | case CEE_MUL: |
2635 | BinaryArithOp<BA_Mul>(); |
2636 | break; |
2637 | case CEE_DIV: |
2638 | BinaryArithOp<BA_Div>(); |
2639 | break; |
2640 | case CEE_DIV_UN: |
2641 | BinaryIntOp<BIO_DivUn>(); |
2642 | break; |
2643 | case CEE_REM: |
2644 | BinaryArithOp<BA_Rem>(); |
2645 | break; |
2646 | case CEE_REM_UN: |
2647 | BinaryIntOp<BIO_RemUn>(); |
2648 | break; |
2649 | case CEE_AND: |
2650 | BinaryIntOp<BIO_And>(); |
2651 | break; |
2652 | case CEE_OR: |
2653 | BinaryIntOp<BIO_Or>(); |
2654 | break; |
2655 | case CEE_XOR: |
2656 | BinaryIntOp<BIO_Xor>(); |
2657 | break; |
2658 | case CEE_SHL: |
2659 | ShiftOp<CEE_SHL>(); |
2660 | break; |
2661 | case CEE_SHR: |
2662 | ShiftOp<CEE_SHR>(); |
2663 | break; |
2664 | case CEE_SHR_UN: |
2665 | ShiftOp<CEE_SHR_UN>(); |
2666 | break; |
2667 | case CEE_NEG: |
2668 | Neg(); |
2669 | break; |
2670 | case CEE_NOT: |
2671 | Not(); |
2672 | break; |
2673 | case CEE_CONV_I1: |
2674 | Conv<INT8, /*TIsUnsigned*/false, /*TCanHoldPtr*/false, /*TIsShort*/true, CORINFO_TYPE_INT>(); |
2675 | break; |
2676 | case CEE_CONV_I2: |
2677 | Conv<INT16, /*TIsUnsigned*/false, /*TCanHoldPtr*/false, /*TIsShort*/true, CORINFO_TYPE_INT>(); |
2678 | break; |
2679 | case CEE_CONV_I4: |
2680 | Conv<INT32, /*TIsUnsigned*/false, /*TCanHoldPtr*/false, /*TIsShort*/false, CORINFO_TYPE_INT>(); |
2681 | break; |
2682 | case CEE_CONV_I8: |
2683 | Conv<INT64, /*TIsUnsigned*/false, /*TCanHoldPtr*/true, /*TIsShort*/false, CORINFO_TYPE_LONG>(); |
2684 | break; |
2685 | case CEE_CONV_R4: |
2686 | Conv<float, /*TIsUnsigned*/false, /*TCanHoldPtr*/false, /*TIsShort*/false, CORINFO_TYPE_FLOAT>(); |
2687 | break; |
2688 | case CEE_CONV_R8: |
2689 | Conv<double, /*TIsUnsigned*/false, /*TCanHoldPtr*/false, /*TIsShort*/false, CORINFO_TYPE_DOUBLE>(); |
2690 | break; |
2691 | case CEE_CONV_U4: |
2692 | Conv<UINT32, /*TIsUnsigned*/true, /*TCanHoldPtr*/false, /*TIsShort*/false, CORINFO_TYPE_INT>(); |
2693 | break; |
2694 | case CEE_CONV_U8: |
2695 | Conv<UINT64, /*TIsUnsigned*/true, /*TCanHoldPtr*/true, /*TIsShort*/false, CORINFO_TYPE_LONG>(); |
2696 | break; |
2697 | |
2698 | case CEE_CPOBJ: |
2699 | CpObj(); |
2700 | continue; |
2701 | case CEE_LDOBJ: |
2702 | LdObj(); |
2703 | continue; |
2704 | case CEE_LDSTR: |
2705 | LdStr(); |
2706 | continue; |
2707 | case CEE_NEWOBJ: |
2708 | NewObj(); |
2709 | #if INTERP_TRACING |
2710 | if (s_TraceInterpreterILFlag.val(CLRConfig::INTERNAL_TraceInterpreterIL)) |
2711 | { |
2712 | fprintf(GetLogFile(), " Returning to method %s, stub num %d.\n" , methName, m_methInfo->m_stubNum); |
2713 | } |
2714 | #endif // INTERP_TRACING |
2715 | continue; |
2716 | case CEE_CASTCLASS: |
2717 | CastClass(); |
2718 | continue; |
2719 | case CEE_ISINST: |
2720 | IsInst(); |
2721 | continue; |
2722 | case CEE_CONV_R_UN: |
2723 | ConvRUn(); |
2724 | break; |
2725 | case CEE_UNBOX: |
2726 | Unbox(); |
2727 | continue; |
2728 | case CEE_THROW: |
2729 | Throw(); |
2730 | break; |
2731 | case CEE_LDFLD: |
2732 | LdFld(); |
2733 | continue; |
2734 | case CEE_LDFLDA: |
2735 | LdFldA(); |
2736 | continue; |
2737 | case CEE_STFLD: |
2738 | StFld(); |
2739 | continue; |
2740 | case CEE_LDSFLD: |
2741 | LdSFld(); |
2742 | continue; |
2743 | case CEE_LDSFLDA: |
2744 | LdSFldA(); |
2745 | continue; |
2746 | case CEE_STSFLD: |
2747 | StSFld(); |
2748 | continue; |
2749 | case CEE_STOBJ: |
2750 | StObj(); |
2751 | continue; |
2752 | case CEE_CONV_OVF_I1_UN: |
2753 | ConvOvfUn<INT8, SCHAR_MIN, SCHAR_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
2754 | break; |
2755 | case CEE_CONV_OVF_I2_UN: |
2756 | ConvOvfUn<INT16, SHRT_MIN, SHRT_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
2757 | break; |
2758 | case CEE_CONV_OVF_I4_UN: |
2759 | ConvOvfUn<INT32, INT_MIN, INT_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
2760 | break; |
2761 | case CEE_CONV_OVF_I8_UN: |
2762 | ConvOvfUn<INT64, _I64_MIN, _I64_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_LONG>(); |
2763 | break; |
2764 | case CEE_CONV_OVF_U1_UN: |
2765 | ConvOvfUn<UINT8, 0, UCHAR_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
2766 | break; |
2767 | case CEE_CONV_OVF_U2_UN: |
2768 | ConvOvfUn<UINT16, 0, USHRT_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
2769 | break; |
2770 | case CEE_CONV_OVF_U4_UN: |
2771 | ConvOvfUn<UINT32, 0, UINT_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
2772 | break; |
2773 | case CEE_CONV_OVF_U8_UN: |
2774 | ConvOvfUn<UINT64, 0, _UI64_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_LONG>(); |
2775 | break; |
2776 | case CEE_CONV_OVF_I_UN: |
2777 | if (sizeof(NativeInt) == 4) |
2778 | { |
2779 | ConvOvfUn<NativeInt, INT_MIN, INT_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_NATIVEINT>(); |
2780 | } |
2781 | else |
2782 | { |
2783 | assert(sizeof(NativeInt) == 8); |
2784 | ConvOvfUn<NativeInt, _I64_MIN, _I64_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_NATIVEINT>(); |
2785 | } |
2786 | break; |
2787 | case CEE_CONV_OVF_U_UN: |
2788 | if (sizeof(NativeUInt) == 4) |
2789 | { |
2790 | ConvOvfUn<NativeUInt, 0, UINT_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_NATIVEINT>(); |
2791 | } |
2792 | else |
2793 | { |
2794 | assert(sizeof(NativeUInt) == 8); |
2795 | ConvOvfUn<NativeUInt, 0, _UI64_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_NATIVEINT>(); |
2796 | } |
2797 | break; |
2798 | case CEE_BOX: |
2799 | Box(); |
2800 | continue; |
2801 | case CEE_NEWARR: |
2802 | NewArr(); |
2803 | continue; |
2804 | case CEE_LDLEN: |
2805 | LdLen(); |
2806 | break; |
2807 | case CEE_LDELEMA: |
2808 | LdElem</*takeAddr*/true>(); |
2809 | continue; |
2810 | case CEE_LDELEM_I1: |
2811 | LdElemWithType<INT8, false, CORINFO_TYPE_INT>(); |
2812 | break; |
2813 | case CEE_LDELEM_U1: |
2814 | LdElemWithType<UINT8, false, CORINFO_TYPE_INT>(); |
2815 | break; |
2816 | case CEE_LDELEM_I2: |
2817 | LdElemWithType<INT16, false, CORINFO_TYPE_INT>(); |
2818 | break; |
2819 | case CEE_LDELEM_U2: |
2820 | LdElemWithType<UINT16, false, CORINFO_TYPE_INT>(); |
2821 | break; |
2822 | case CEE_LDELEM_I4: |
2823 | LdElemWithType<INT32, false, CORINFO_TYPE_INT>(); |
2824 | break; |
2825 | case CEE_LDELEM_U4: |
2826 | LdElemWithType<UINT32, false, CORINFO_TYPE_INT>(); |
2827 | break; |
2828 | case CEE_LDELEM_I8: |
2829 | LdElemWithType<INT64, false, CORINFO_TYPE_LONG>(); |
2830 | break; |
2831 | // Note that the ECMA spec defines a "LDELEM_U8", but it is the same instruction number as LDELEM_I8 (since |
2832 | // when loading to the widest width, signed/unsigned doesn't matter). |
2833 | case CEE_LDELEM_I: |
2834 | LdElemWithType<NativeInt, false, CORINFO_TYPE_NATIVEINT>(); |
2835 | break; |
2836 | case CEE_LDELEM_R4: |
2837 | LdElemWithType<float, false, CORINFO_TYPE_FLOAT>(); |
2838 | break; |
2839 | case CEE_LDELEM_R8: |
2840 | LdElemWithType<double, false, CORINFO_TYPE_DOUBLE>(); |
2841 | break; |
2842 | case CEE_LDELEM_REF: |
2843 | LdElemWithType<Object*, true, CORINFO_TYPE_CLASS>(); |
2844 | break; |
2845 | case CEE_STELEM_I: |
2846 | StElemWithType<NativeInt, false>(); |
2847 | break; |
2848 | case CEE_STELEM_I1: |
2849 | StElemWithType<INT8, false>(); |
2850 | break; |
2851 | case CEE_STELEM_I2: |
2852 | StElemWithType<INT16, false>(); |
2853 | break; |
2854 | case CEE_STELEM_I4: |
2855 | StElemWithType<INT32, false>(); |
2856 | break; |
2857 | case CEE_STELEM_I8: |
2858 | StElemWithType<INT64, false>(); |
2859 | break; |
2860 | case CEE_STELEM_R4: |
2861 | StElemWithType<float, false>(); |
2862 | break; |
2863 | case CEE_STELEM_R8: |
2864 | StElemWithType<double, false>(); |
2865 | break; |
2866 | case CEE_STELEM_REF: |
2867 | StElemWithType<Object*, true>(); |
2868 | break; |
2869 | case CEE_LDELEM: |
2870 | LdElem</*takeAddr*/false>(); |
2871 | continue; |
2872 | case CEE_STELEM: |
2873 | StElem(); |
2874 | continue; |
2875 | case CEE_UNBOX_ANY: |
2876 | UnboxAny(); |
2877 | continue; |
2878 | case CEE_CONV_OVF_I1: |
2879 | ConvOvf<INT8, SCHAR_MIN, SCHAR_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
2880 | break; |
2881 | case CEE_CONV_OVF_U1: |
2882 | ConvOvf<UINT8, 0, UCHAR_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
2883 | break; |
2884 | case CEE_CONV_OVF_I2: |
2885 | ConvOvf<INT16, SHRT_MIN, SHRT_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
2886 | break; |
2887 | case CEE_CONV_OVF_U2: |
2888 | ConvOvf<UINT16, 0, USHRT_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
2889 | break; |
2890 | case CEE_CONV_OVF_I4: |
2891 | ConvOvf<INT32, INT_MIN, INT_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
2892 | break; |
2893 | case CEE_CONV_OVF_U4: |
2894 | ConvOvf<UINT32, 0, UINT_MAX, /*TCanHoldPtr*/false, CORINFO_TYPE_INT>(); |
2895 | break; |
2896 | case CEE_CONV_OVF_I8: |
2897 | ConvOvf<INT64, _I64_MIN, _I64_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_LONG>(); |
2898 | break; |
2899 | case CEE_CONV_OVF_U8: |
2900 | ConvOvf<UINT64, 0, _UI64_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_LONG>(); |
2901 | break; |
2902 | case CEE_REFANYVAL: |
2903 | RefanyVal(); |
2904 | continue; |
2905 | case CEE_CKFINITE: |
2906 | CkFinite(); |
2907 | break; |
2908 | case CEE_MKREFANY: |
2909 | MkRefany(); |
2910 | continue; |
2911 | case CEE_LDTOKEN: |
2912 | LdToken(); |
2913 | continue; |
2914 | case CEE_CONV_U2: |
2915 | Conv<UINT16, /*TIsUnsigned*/true, /*TCanHoldPtr*/false, /*TIsShort*/true, CORINFO_TYPE_INT>(); |
2916 | break; |
2917 | case CEE_CONV_U1: |
2918 | Conv<UINT8, /*TIsUnsigned*/true, /*TCanHoldPtr*/false, /*TIsShort*/true, CORINFO_TYPE_INT>(); |
2919 | break; |
2920 | case CEE_CONV_I: |
2921 | Conv<NativeInt, /*TIsUnsigned*/false, /*TCanHoldPtr*/true, /*TIsShort*/false, CORINFO_TYPE_NATIVEINT>(); |
2922 | break; |
2923 | case CEE_CONV_OVF_I: |
2924 | if (sizeof(NativeInt) == 4) |
2925 | { |
2926 | ConvOvf<NativeInt, INT_MIN, INT_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_NATIVEINT>(); |
2927 | } |
2928 | else |
2929 | { |
2930 | assert(sizeof(NativeInt) == 8); |
2931 | ConvOvf<NativeInt, _I64_MIN, _I64_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_NATIVEINT>(); |
2932 | } |
2933 | break; |
2934 | case CEE_CONV_OVF_U: |
2935 | if (sizeof(NativeUInt) == 4) |
2936 | { |
2937 | ConvOvf<NativeUInt, 0, UINT_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_NATIVEINT>(); |
2938 | } |
2939 | else |
2940 | { |
2941 | assert(sizeof(NativeUInt) == 8); |
2942 | ConvOvf<NativeUInt, 0, _UI64_MAX, /*TCanHoldPtr*/true, CORINFO_TYPE_NATIVEINT>(); |
2943 | } |
2944 | break; |
2945 | case CEE_ADD_OVF: |
2946 | BinaryArithOvfOp<BA_Add, /*asUnsigned*/false>(); |
2947 | break; |
2948 | case CEE_ADD_OVF_UN: |
2949 | BinaryArithOvfOp<BA_Add, /*asUnsigned*/true>(); |
2950 | break; |
2951 | case CEE_MUL_OVF: |
2952 | BinaryArithOvfOp<BA_Mul, /*asUnsigned*/false>(); |
2953 | break; |
2954 | case CEE_MUL_OVF_UN: |
2955 | BinaryArithOvfOp<BA_Mul, /*asUnsigned*/true>(); |
2956 | break; |
2957 | case CEE_SUB_OVF: |
2958 | BinaryArithOvfOp<BA_Sub, /*asUnsigned*/false>(); |
2959 | break; |
2960 | case CEE_SUB_OVF_UN: |
2961 | BinaryArithOvfOp<BA_Sub, /*asUnsigned*/true>(); |
2962 | break; |
2963 | case CEE_ENDFINALLY: |
2964 | // We have just ended a finally. |
2965 | // If we were called during exception dispatch, |
2966 | // rethrow the exception on our way out. |
2967 | if (m_leaveInfoStack.IsEmpty()) |
2968 | { |
2969 | Object* finallyException = NULL; |
2970 | |
2971 | { |
2972 | GCX_FORBID(); |
2973 | assert(m_inFlightException != NULL); |
2974 | finallyException = m_inFlightException; |
2975 | INTERPLOG("endfinally handling for %s, %p, %p\n" , methName, m_methInfo, finallyException); |
2976 | m_inFlightException = NULL; |
2977 | } |
2978 | |
2979 | COMPlusThrow(ObjectToOBJECTREF(finallyException)); |
2980 | UNREACHABLE(); |
2981 | } |
2982 | // Otherwise, see if there's another finally block to |
2983 | // execute as part of processing the current LEAVE... |
2984 | else if (!SearchForCoveringFinally()) |
2985 | { |
2986 | // No, there isn't -- go to the leave target. |
2987 | assert(!m_leaveInfoStack.IsEmpty()); |
2988 | LeaveInfo li = m_leaveInfoStack.Pop(); |
2989 | ExecuteBranch(li.m_target); |
2990 | } |
2991 | // Yes, there, is, and SearchForCoveringFinally set us up to start executing it. |
2992 | continue; // Skip the default m_ILCodePtr++ at bottom of loop. |
2993 | |
2994 | case CEE_STIND_I: |
2995 | StInd<NativeInt>(); |
2996 | break; |
2997 | case CEE_CONV_U: |
2998 | Conv<NativeUInt, /*TIsUnsigned*/true, /*TCanHoldPtr*/true, /*TIsShort*/false, CORINFO_TYPE_NATIVEINT>(); |
2999 | break; |
3000 | case CEE_PREFIX7: |
3001 | NYI_INTERP("Unimplemented opcode: CEE_PREFIX7" ); |
3002 | break; |
3003 | case CEE_PREFIX6: |
3004 | NYI_INTERP("Unimplemented opcode: CEE_PREFIX6" ); |
3005 | break; |
3006 | case CEE_PREFIX5: |
3007 | NYI_INTERP("Unimplemented opcode: CEE_PREFIX5" ); |
3008 | break; |
3009 | case CEE_PREFIX4: |
3010 | NYI_INTERP("Unimplemented opcode: CEE_PREFIX4" ); |
3011 | break; |
3012 | case CEE_PREFIX3: |
3013 | NYI_INTERP("Unimplemented opcode: CEE_PREFIX3" ); |
3014 | break; |
3015 | case CEE_PREFIX2: |
3016 | NYI_INTERP("Unimplemented opcode: CEE_PREFIX2" ); |
3017 | break; |
3018 | case CEE_PREFIX1: |
3019 | // This is the prefix for all the 2-byte opcodes. |
3020 | // Figure out the second byte of the 2-byte opcode. |
3021 | ops = *(m_ILCodePtr + 1); |
3022 | #if INTERP_ILINSTR_PROFILE |
3023 | // Take one away from PREFIX1, which we won't count. |
3024 | InterlockedDecrement(&s_ILInstrExecs[CEE_PREFIX1]); |
3025 | // Credit instead to the 2-byte instruction index. |
3026 | InterlockedIncrement(&s_ILInstr2ByteExecs[ops]); |
3027 | #endif // INTERP_ILINSTR_PROFILE |
3028 | switch (ops) |
3029 | { |
3030 | case TWOBYTE_CEE_ARGLIST: |
3031 | // NYI_INTERP("Unimplemented opcode: TWOBYTE_CEE_ARGLIST"); |
3032 | assert(m_methInfo->m_varArgHandleArgNum != NO_VA_ARGNUM); |
3033 | LdArgA(m_methInfo->m_varArgHandleArgNum); |
3034 | m_ILCodePtr += 2; |
3035 | break; |
3036 | |
3037 | case TWOBYTE_CEE_CEQ: |
3038 | CompareOp<CO_EQ>(); |
3039 | m_ILCodePtr += 2; |
3040 | break; |
3041 | case TWOBYTE_CEE_CGT: |
3042 | CompareOp<CO_GT>(); |
3043 | m_ILCodePtr += 2; |
3044 | break; |
3045 | case TWOBYTE_CEE_CGT_UN: |
3046 | CompareOp<CO_GT_UN>(); |
3047 | m_ILCodePtr += 2; |
3048 | break; |
3049 | case TWOBYTE_CEE_CLT: |
3050 | CompareOp<CO_LT>(); |
3051 | m_ILCodePtr += 2; |
3052 | break; |
3053 | case TWOBYTE_CEE_CLT_UN: |
3054 | CompareOp<CO_LT_UN>(); |
3055 | m_ILCodePtr += 2; |
3056 | break; |
3057 | |
3058 | case TWOBYTE_CEE_LDARG: |
3059 | m_ILCodePtr += 2; |
3060 | argNums = getU2LittleEndian(m_ILCodePtr); |
3061 | LdArg(argNums); |
3062 | m_ILCodePtr += 2; |
3063 | break; |
3064 | case TWOBYTE_CEE_LDARGA: |
3065 | m_ILCodePtr += 2; |
3066 | argNums = getU2LittleEndian(m_ILCodePtr); |
3067 | LdArgA(argNums); |
3068 | m_ILCodePtr += 2; |
3069 | break; |
3070 | case TWOBYTE_CEE_STARG: |
3071 | m_ILCodePtr += 2; |
3072 | argNums = getU2LittleEndian(m_ILCodePtr); |
3073 | StArg(argNums); |
3074 | m_ILCodePtr += 2; |
3075 | break; |
3076 | |
3077 | case TWOBYTE_CEE_LDLOC: |
3078 | m_ILCodePtr += 2; |
3079 | argNums = getU2LittleEndian(m_ILCodePtr); |
3080 | LdLoc(argNums); |
3081 | m_ILCodePtr += 2; |
3082 | break; |
3083 | case TWOBYTE_CEE_LDLOCA: |
3084 | m_ILCodePtr += 2; |
3085 | argNums = getU2LittleEndian(m_ILCodePtr); |
3086 | LdLocA(argNums); |
3087 | m_ILCodePtr += 2; |
3088 | break; |
3089 | case TWOBYTE_CEE_STLOC: |
3090 | m_ILCodePtr += 2; |
3091 | argNums = getU2LittleEndian(m_ILCodePtr); |
3092 | StLoc(argNums); |
3093 | m_ILCodePtr += 2; |
3094 | break; |
3095 | |
3096 | case TWOBYTE_CEE_CONSTRAINED: |
3097 | RecordConstrainedCall(); |
3098 | break; |
3099 | |
3100 | case TWOBYTE_CEE_VOLATILE: |
3101 | // Set a flag that causes a memory barrier to be associated with the next load or store. |
3102 | m_volatileFlag = true; |
3103 | m_ILCodePtr += 2; |
3104 | break; |
3105 | |
3106 | case TWOBYTE_CEE_LDFTN: |
3107 | LdFtn(); |
3108 | break; |
3109 | |
3110 | case TWOBYTE_CEE_INITOBJ: |
3111 | InitObj(); |
3112 | break; |
3113 | |
3114 | case TWOBYTE_CEE_LOCALLOC: |
3115 | LocAlloc(); |
3116 | m_ILCodePtr += 2; |
3117 | break; |
3118 | |
3119 | case TWOBYTE_CEE_LDVIRTFTN: |
3120 | LdVirtFtn(); |
3121 | break; |
3122 | |
3123 | case TWOBYTE_CEE_SIZEOF: |
3124 | Sizeof(); |
3125 | break; |
3126 | |
3127 | case TWOBYTE_CEE_RETHROW: |
3128 | Rethrow(); |
3129 | break; |
3130 | |
3131 | case TWOBYTE_CEE_READONLY: |
3132 | m_readonlyFlag = true; |
3133 | m_ILCodePtr += 2; |
3134 | // A comment in importer.cpp indicates that READONLY may also apply to calls. We'll see. |
3135 | _ASSERTE_MSG(*m_ILCodePtr == CEE_LDELEMA, "According to the ECMA spec, READONLY may only precede LDELEMA" ); |
3136 | break; |
3137 | |
3138 | case TWOBYTE_CEE_INITBLK: |
3139 | InitBlk(); |
3140 | break; |
3141 | |
3142 | case TWOBYTE_CEE_CPBLK: |
3143 | CpBlk(); |
3144 | break; |
3145 | |
3146 | case TWOBYTE_CEE_ENDFILTER: |
3147 | EndFilter(); |
3148 | break; |
3149 | |
3150 | case TWOBYTE_CEE_UNALIGNED: |
3151 | // Nothing to do here. |
3152 | m_ILCodePtr += 3; |
3153 | break; |
3154 | |
3155 | case TWOBYTE_CEE_TAILCALL: |
3156 | // TODO: Needs revisiting when implementing tail call. |
3157 | // NYI_INTERP("Unimplemented opcode: TWOBYTE_CEE_TAILCALL"); |
3158 | m_ILCodePtr += 2; |
3159 | break; |
3160 | |
3161 | case TWOBYTE_CEE_REFANYTYPE: |
3162 | RefanyType(); |
3163 | break; |
3164 | |
3165 | default: |
3166 | UNREACHABLE(); |
3167 | break; |
3168 | } |
3169 | continue; |
3170 | |
3171 | case CEE_PREFIXREF: |
3172 | NYI_INTERP("Unimplemented opcode: CEE_PREFIXREF" ); |
3173 | m_ILCodePtr++; |
3174 | continue; |
3175 | |
3176 | default: |
3177 | UNREACHABLE(); |
3178 | continue; |
3179 | } |
3180 | m_ILCodePtr++; |
3181 | } |
3182 | ExitEvalLoop:; |
3183 | INTERPLOG("DONE %d, %s\n" , m_methInfo->m_stubNum, m_methInfo->m_methName); |
3184 | } |
3185 | EX_CATCH |
3186 | { |
3187 | INTERPLOG("EXCEPTION %d (throw), %s\n" , m_methInfo->m_stubNum, m_methInfo->m_methName); |
3188 | |
3189 | bool handleException = false; |
3190 | OBJECTREF orThrowable = NULL; |
3191 | GCX_COOP_NO_DTOR(); |
3192 | |
3193 | orThrowable = GET_THROWABLE(); |
3194 | |
3195 | if (m_filterNextScan != 0) |
3196 | { |
3197 | // We are in the middle of a filter scan and an exception is thrown inside |
3198 | // a filter. We are supposed to swallow it and assume the filter did not |
3199 | // handle the exception. |
3200 | m_curStackHt = 0; |
3201 | m_largeStructOperandStackHt = 0; |
3202 | LdIcon(0); |
3203 | EndFilter(); |
3204 | handleException = true; |
3205 | } |
3206 | else |
3207 | { |
3208 | // orThrowable must be protected. MethodHandlesException() will place orThrowable |
3209 | // into the operand stack (a permanently protected area) if it returns true. |
3210 | GCPROTECT_BEGIN(orThrowable); |
3211 | handleException = MethodHandlesException(orThrowable); |
3212 | GCPROTECT_END(); |
3213 | } |
3214 | |
3215 | if (handleException) |
3216 | { |
3217 | GetThread()->SafeSetThrowables(orThrowable |
3218 | DEBUG_ARG(ThreadExceptionState::STEC_CurrentTrackerEqualNullOkForInterpreter)); |
3219 | goto EvalLoop; |
3220 | } |
3221 | else |
3222 | { |
3223 | INTERPLOG("EXCEPTION %d (rethrow), %s\n" , m_methInfo->m_stubNum, m_methInfo->m_methName); |
3224 | EX_RETHROW; |
3225 | } |
3226 | } |
3227 | EX_END_CATCH(RethrowTransientExceptions) |
3228 | } |
3229 | |
3230 | #ifdef _MSC_VER |
3231 | #pragma optimize("", on) |
3232 | #endif |
3233 | |
3234 | void Interpreter::EndFilter() |
3235 | { |
3236 | unsigned handles = OpStackGet<unsigned>(0); |
3237 | // If the filter decides to handle the exception, then go to the handler offset. |
3238 | if (handles) |
3239 | { |
3240 | // We decided to handle the exception, so give all EH entries a chance to |
3241 | // handle future exceptions. Clear scan. |
3242 | m_filterNextScan = 0; |
3243 | ExecuteBranch(m_methInfo->m_ILCode + m_filterHandlerOffset); |
3244 | } |
3245 | // The filter decided not to handle the exception, ask if there is some other filter |
3246 | // lined up to try to handle it or some other catch/finally handlers will handle it. |
3247 | // If no one handles the exception, rethrow and be done with it. |
3248 | else |
3249 | { |
3250 | bool handlesEx = false; |
3251 | { |
3252 | OBJECTREF orThrowable = ObjectToOBJECTREF(m_inFlightException); |
3253 | GCPROTECT_BEGIN(orThrowable); |
3254 | handlesEx = MethodHandlesException(orThrowable); |
3255 | GCPROTECT_END(); |
3256 | } |
3257 | if (!handlesEx) |
3258 | { |
3259 | // Just clear scan before rethrowing to give any EH entry a chance to handle |
3260 | // the "rethrow". |
3261 | m_filterNextScan = 0; |
3262 | Object* filterException = NULL; |
3263 | { |
3264 | GCX_FORBID(); |
3265 | assert(m_inFlightException != NULL); |
3266 | filterException = m_inFlightException; |
3267 | INTERPLOG("endfilter handling for %s, %p, %p\n" , m_methInfo->m_methName, m_methInfo, filterException); |
3268 | m_inFlightException = NULL; |
3269 | } |
3270 | |
3271 | COMPlusThrow(ObjectToOBJECTREF(filterException)); |
3272 | UNREACHABLE(); |
3273 | } |
3274 | else |
3275 | { |
3276 | // Let it do another round of filter:end-filter or handler block. |
3277 | // During the next end filter, we will reuse m_filterNextScan and |
3278 | // continue searching where we left off. Note however, while searching, |
3279 | // any of the filters could throw an exception. But this is supposed to |
3280 | // be swallowed and endfilter should be called with a value of 0 on the |
3281 | // stack. |
3282 | } |
3283 | } |
3284 | } |
3285 | |
3286 | bool Interpreter::MethodHandlesException(OBJECTREF orThrowable) |
3287 | { |
3288 | CONTRACTL { |
3289 | SO_TOLERANT; |
3290 | THROWS; |
3291 | GC_TRIGGERS; |
3292 | MODE_COOPERATIVE; |
3293 | } CONTRACTL_END; |
3294 | |
3295 | bool handlesEx = false; |
3296 | |
3297 | if (orThrowable != NULL) |
3298 | { |
3299 | PTR_Thread pCurThread = GetThread(); |
3300 | |
3301 | // Don't catch ThreadAbort and other uncatchable exceptions |
3302 | if (!IsUncatchable(&orThrowable)) |
3303 | { |
3304 | // Does the current method catch this? The clauses are defined by offsets, so get that. |
3305 | // However, if we are in the middle of a filter scan, make sure we get the offset of the |
3306 | // excepting code, rather than the offset of the filter body. |
3307 | DWORD curOffset = (m_filterNextScan != 0) ? m_filterExcILOffset : CurOffset(); |
3308 | TypeHandle orThrowableTH = TypeHandle(orThrowable->GetMethodTable()); |
3309 | |
3310 | GCPROTECT_BEGIN(orThrowable); |
3311 | GCX_PREEMP(); |
3312 | |
3313 | // Perform a filter scan or regular walk of the EH Table. Filter scan is performed when |
3314 | // we are evaluating a series of filters to handle the exception until the first handler |
3315 | // (filter's or otherwise) that will handle the exception. |
3316 | for (unsigned XTnum = m_filterNextScan; XTnum < m_methInfo->m_ehClauseCount; XTnum++) |
3317 | { |
3318 | CORINFO_EH_CLAUSE clause; |
3319 | m_interpCeeInfo.getEHinfo(m_methInfo->m_method, XTnum, &clause); |
3320 | assert(clause.HandlerLength != (unsigned)-1); // @DEPRECATED |
3321 | |
3322 | // First, is the current offset in the try block? |
3323 | if (clause.TryOffset <= curOffset && curOffset < clause.TryOffset + clause.TryLength) |
3324 | { |
3325 | unsigned handlerOffset = 0; |
3326 | // CORINFO_EH_CLAUSE_NONE represents 'catch' blocks |
3327 | if (clause.Flags == CORINFO_EH_CLAUSE_NONE) |
3328 | { |
3329 | // Now, does the catch block handle the thrown exception type? |
3330 | CORINFO_CLASS_HANDLE excType = FindClass(clause.ClassToken InterpTracingArg(RTK_CheckHandlesException)); |
3331 | if (ExceptionIsOfRightType(TypeHandle::FromPtr(excType), orThrowableTH)) |
3332 | { |
3333 | GCX_COOP(); |
3334 | // Push the exception object onto the operand stack. |
3335 | OpStackSet<OBJECTREF>(0, orThrowable); |
3336 | OpStackTypeSet(0, InterpreterType(CORINFO_TYPE_CLASS)); |
3337 | m_curStackHt = 1; |
3338 | m_largeStructOperandStackHt = 0; |
3339 | handlerOffset = clause.HandlerOffset; |
3340 | handlesEx = true; |
3341 | m_filterNextScan = 0; |
3342 | } |
3343 | else |
3344 | { |
3345 | GCX_COOP(); |
3346 | // Handle a wrapped exception. |
3347 | OBJECTREF orUnwrapped = PossiblyUnwrapThrowable(orThrowable, GetMethodDesc()->GetAssembly()); |
3348 | if (ExceptionIsOfRightType(TypeHandle::FromPtr(excType), orUnwrapped->GetTrueTypeHandle())) |
3349 | { |
3350 | // Push the exception object onto the operand stack. |
3351 | OpStackSet<OBJECTREF>(0, orUnwrapped); |
3352 | OpStackTypeSet(0, InterpreterType(CORINFO_TYPE_CLASS)); |
3353 | m_curStackHt = 1; |
3354 | m_largeStructOperandStackHt = 0; |
3355 | handlerOffset = clause.HandlerOffset; |
3356 | handlesEx = true; |
3357 | m_filterNextScan = 0; |
3358 | } |
3359 | } |
3360 | } |
3361 | else if (clause.Flags == CORINFO_EH_CLAUSE_FILTER) |
3362 | { |
3363 | GCX_COOP(); |
3364 | // Push the exception object onto the operand stack. |
3365 | OpStackSet<OBJECTREF>(0, orThrowable); |
3366 | OpStackTypeSet(0, InterpreterType(CORINFO_TYPE_CLASS)); |
3367 | m_curStackHt = 1; |
3368 | m_largeStructOperandStackHt = 0; |
3369 | handlerOffset = clause.FilterOffset; |
3370 | m_inFlightException = OBJECTREFToObject(orThrowable); |
3371 | handlesEx = true; |
3372 | m_filterHandlerOffset = clause.HandlerOffset; |
3373 | m_filterNextScan = XTnum + 1; |
3374 | m_filterExcILOffset = curOffset; |
3375 | } |
3376 | else if (clause.Flags == CORINFO_EH_CLAUSE_FAULT || |
3377 | clause.Flags == CORINFO_EH_CLAUSE_FINALLY) |
3378 | { |
3379 | GCX_COOP(); |
3380 | // Save the exception object to rethrow. |
3381 | m_inFlightException = OBJECTREFToObject(orThrowable); |
3382 | // Empty the operand stack. |
3383 | m_curStackHt = 0; |
3384 | m_largeStructOperandStackHt = 0; |
3385 | handlerOffset = clause.HandlerOffset; |
3386 | handlesEx = true; |
3387 | m_filterNextScan = 0; |
3388 | } |
3389 | |
3390 | // Reset the interpreter loop in preparation of calling the handler. |
3391 | if (handlesEx) |
3392 | { |
3393 | // Set the IL offset of the handler. |
3394 | ExecuteBranch(m_methInfo->m_ILCode + handlerOffset); |
3395 | |
3396 | // If an exception occurs while attempting to leave a protected scope, |
3397 | // we empty the 'leave' info stack upon entering the handler. |
3398 | while (!m_leaveInfoStack.IsEmpty()) |
3399 | { |
3400 | m_leaveInfoStack.Pop(); |
3401 | } |
3402 | |
3403 | // Some things are set up before a call, and must be cleared on an exception caught be the caller. |
3404 | // A method that returns a struct allocates local space for the return value, and "registers" that |
3405 | // space and the type so that it's scanned if a GC happens. "Unregister" it if we throw an exception |
3406 | // in the call, and handle it in the caller. (If it's not handled by the caller, the Interpreter is |
3407 | // deallocated, so it's value doesn't matter.) |
3408 | m_structRetValITPtr = NULL; |
3409 | m_callThisArg = NULL; |
3410 | m_argsSize = 0; |
3411 | |
3412 | break; |
3413 | } |
3414 | } |
3415 | } |
3416 | GCPROTECT_END(); |
3417 | } |
3418 | if (!handlesEx) |
3419 | { |
3420 | DoMonitorExitWork(); |
3421 | } |
3422 | } |
3423 | return handlesEx; |
3424 | } |
3425 | |
3426 | static unsigned OpFormatExtraSize(opcode_format_t format) { |
3427 | switch (format) |
3428 | { |
3429 | case InlineNone: |
3430 | return 0; |
3431 | case InlineVar: |
3432 | return 2; |
3433 | case InlineI: |
3434 | case InlineBrTarget: |
3435 | case InlineMethod: |
3436 | case InlineField: |
3437 | case InlineType: |
3438 | case InlineString: |
3439 | case InlineSig: |
3440 | case InlineRVA: |
3441 | case InlineTok: |
3442 | case ShortInlineR: |
3443 | return 4; |
3444 | |
3445 | case InlineR: |
3446 | case InlineI8: |
3447 | return 8; |
3448 | |
3449 | case InlineSwitch: |
3450 | return 0; // We'll handle this specially. |
3451 | |
3452 | case ShortInlineVar: |
3453 | case ShortInlineI: |
3454 | case ShortInlineBrTarget: |
3455 | return 1; |
3456 | |
3457 | default: |
3458 | assert(false); |
3459 | return 0; |
3460 | } |
3461 | } |
3462 | |
3463 | |
3464 | |
3465 | static unsigned opSizes1Byte[CEE_COUNT]; |
3466 | static bool opSizes1ByteInit = false; |
3467 | |
3468 | static void OpSizes1ByteInit() |
3469 | { |
3470 | if (opSizes1ByteInit) return; |
3471 | #define OPDEF(name, stringname, stackpop, stackpush, params, kind, len, byte1, byte2, ctrl) \ |
3472 | opSizes1Byte[name] = len + OpFormatExtraSize(params); |
3473 | #include "opcode.def" |
3474 | #undef OPDEF |
3475 | opSizes1ByteInit = true; |
3476 | }; |
3477 | |
3478 | // static |
3479 | bool Interpreter::MethodMayHaveLoop(BYTE* ilCode, unsigned codeSize) |
3480 | { |
3481 | OpSizes1ByteInit(); |
3482 | int delta; |
3483 | BYTE* ilCodeLim = ilCode + codeSize; |
3484 | while (ilCode < ilCodeLim) |
3485 | { |
3486 | unsigned op = *ilCode; |
3487 | switch (op) |
3488 | { |
3489 | case CEE_BR_S: case CEE_BRFALSE_S: case CEE_BRTRUE_S: |
3490 | case CEE_BEQ_S: case CEE_BGE_S: case CEE_BGT_S: case CEE_BLE_S: case CEE_BLT_S: |
3491 | case CEE_BNE_UN_S: case CEE_BGE_UN_S: case CEE_BGT_UN_S: case CEE_BLE_UN_S: case CEE_BLT_UN_S: |
3492 | case CEE_LEAVE_S: |
3493 | delta = getI1(ilCode + 1); |
3494 | if (delta < 0) return true; |
3495 | ilCode += 2; |
3496 | break; |
3497 | |
3498 | case CEE_BR: case CEE_BRFALSE: case CEE_BRTRUE: |
3499 | case CEE_BEQ: case CEE_BGE: case CEE_BGT: case CEE_BLE: case CEE_BLT: |
3500 | case CEE_BNE_UN: case CEE_BGE_UN: case CEE_BGT_UN: case CEE_BLE_UN: case CEE_BLT_UN: |
3501 | case CEE_LEAVE: |
3502 | delta = getI4LittleEndian(ilCode + 1); |
3503 | if (delta < 0) return true; |
3504 | ilCode += 5; |
3505 | break; |
3506 | |
3507 | case CEE_SWITCH: |
3508 | { |
3509 | UINT32 n = getU4LittleEndian(ilCode + 1); |
3510 | UINT32 instrSize = 1 + (n + 1)*4; |
3511 | for (unsigned i = 0; i < n; i++) { |
3512 | delta = getI4LittleEndian(ilCode + (5 + i * 4)); |
3513 | if (delta < 0) return true; |
3514 | } |
3515 | ilCode += instrSize; |
3516 | break; |
3517 | } |
3518 | |
3519 | case CEE_PREFIX1: |
3520 | op = *(ilCode + 1) + 0x100; |
3521 | assert(op < CEE_COUNT); // Bounds check for below. |
3522 | // deliberate fall-through here. |
3523 | default: |
3524 | // For the rest of the 1-byte instructions, we'll use a table-driven approach. |
3525 | ilCode += opSizes1Byte[op]; |
3526 | break; |
3527 | } |
3528 | } |
3529 | return false; |
3530 | |
3531 | } |
3532 | |
3533 | void Interpreter::BackwardsBranchActions(int offset) |
3534 | { |
3535 | // TODO: Figure out how to do a GC poll. |
3536 | } |
3537 | |
3538 | bool Interpreter::SearchForCoveringFinally() |
3539 | { |
3540 | CONTRACTL { |
3541 | SO_TOLERANT; |
3542 | THROWS; |
3543 | GC_TRIGGERS; |
3544 | MODE_ANY; |
3545 | } CONTRACTL_END; |
3546 | |
3547 | _ASSERTE_MSG(!m_leaveInfoStack.IsEmpty(), "precondition" ); |
3548 | |
3549 | LeaveInfo& li = m_leaveInfoStack.PeekRef(); |
3550 | |
3551 | GCX_PREEMP(); |
3552 | |
3553 | for (unsigned XTnum = li.m_nextEHIndex; XTnum < m_methInfo->m_ehClauseCount; XTnum++) |
3554 | { |
3555 | CORINFO_EH_CLAUSE clause; |
3556 | m_interpCeeInfo.getEHinfo(m_methInfo->m_method, XTnum, &clause); |
3557 | assert(clause.HandlerLength != (unsigned)-1); // @DEPRECATED |
3558 | |
3559 | // First, is the offset of the leave instruction in the try block? |
3560 | unsigned tryEndOffset = clause.TryOffset + clause.TryLength; |
3561 | if (clause.TryOffset <= li.m_offset && li.m_offset < tryEndOffset) |
3562 | { |
3563 | // Yes: is it a finally, and is its target outside the try block? |
3564 | size_t targOffset = (li.m_target - m_methInfo->m_ILCode); |
3565 | if (clause.Flags == CORINFO_EH_CLAUSE_FINALLY |
3566 | && !(clause.TryOffset <= targOffset && targOffset < tryEndOffset)) |
3567 | { |
3568 | m_ILCodePtr = m_methInfo->m_ILCode + clause.HandlerOffset; |
3569 | li.m_nextEHIndex = XTnum + 1; |
3570 | return true; |
3571 | } |
3572 | } |
3573 | } |
3574 | |
3575 | // Caller will handle popping the leave info stack. |
3576 | return false; |
3577 | } |
3578 | |
3579 | // static |
3580 | void Interpreter::GCScanRoots(promote_func* pf, ScanContext* sc, void* interp0) |
3581 | { |
3582 | Interpreter* interp = reinterpret_cast<Interpreter*>(interp0); |
3583 | interp->GCScanRoots(pf, sc); |
3584 | } |
3585 | |
3586 | void Interpreter::GCScanRoots(promote_func* pf, ScanContext* sc) |
3587 | { |
3588 | // Report inbound arguments, if the interpreter has not been invoked directly. |
3589 | // (In the latter case, the arguments are reported by the calling method.) |
3590 | if (!m_directCall) |
3591 | { |
3592 | for (unsigned i = 0; i < m_methInfo->m_numArgs; i++) |
3593 | { |
3594 | GCScanRootAtLoc(reinterpret_cast<Object**>(GetArgAddr(i)), GetArgType(i), pf, sc); |
3595 | } |
3596 | } |
3597 | |
3598 | if (m_methInfo->GetFlag<InterpreterMethodInfo::Flag_hasThisArg>()) |
3599 | { |
3600 | if (m_methInfo->GetFlag<InterpreterMethodInfo::Flag_thisArgIsObjPtr>()) |
3601 | { |
3602 | GCScanRootAtLoc(&m_thisArg, InterpreterType(CORINFO_TYPE_CLASS), pf, sc); |
3603 | } |
3604 | else |
3605 | { |
3606 | GCScanRootAtLoc(&m_thisArg, InterpreterType(CORINFO_TYPE_BYREF), pf, sc); |
3607 | } |
3608 | } |
3609 | |
3610 | // This is the "this" argument passed in to DoCallWork. (Note that we treat this as a byref; it |
3611 | // might be, for a struct instance method, and this covers the object pointer case as well.) |
3612 | GCScanRootAtLoc(reinterpret_cast<Object**>(&m_callThisArg), InterpreterType(CORINFO_TYPE_BYREF), pf, sc); |
3613 | |
3614 | // Scan the exception object that we'll rethrow at the end of the finally block. |
3615 | GCScanRootAtLoc(reinterpret_cast<Object**>(&m_inFlightException), InterpreterType(CORINFO_TYPE_CLASS), pf, sc); |
3616 | |
3617 | // A retBufArg, may, in some cases, be a byref into the heap. |
3618 | if (m_retBufArg != NULL) |
3619 | { |
3620 | GCScanRootAtLoc(reinterpret_cast<Object**>(&m_retBufArg), InterpreterType(CORINFO_TYPE_BYREF), pf, sc); |
3621 | } |
3622 | |
3623 | if (m_structRetValITPtr != NULL) |
3624 | { |
3625 | GCScanRootAtLoc(reinterpret_cast<Object**>(m_structRetValTempSpace), *m_structRetValITPtr, pf, sc); |
3626 | } |
3627 | |
3628 | // We'll conservatively assume that we might have a security object. |
3629 | GCScanRootAtLoc(reinterpret_cast<Object**>(&m_securityObject), InterpreterType(CORINFO_TYPE_CLASS), pf, sc); |
3630 | |
3631 | // Do locals. |
3632 | for (unsigned i = 0; i < m_methInfo->m_numLocals; i++) |
3633 | { |
3634 | InterpreterType it = m_methInfo->m_localDescs[i].m_type; |
3635 | void* localPtr = NULL; |
3636 | if (it.IsLargeStruct(&m_interpCeeInfo)) |
3637 | { |
3638 | void* structPtr = ArgSlotEndianessFixup(reinterpret_cast<ARG_SLOT*>(FixedSizeLocalSlot(i)), sizeof(void**)); |
3639 | localPtr = *reinterpret_cast<void**>(structPtr); |
3640 | } |
3641 | else |
3642 | { |
3643 | localPtr = ArgSlotEndianessFixup(reinterpret_cast<ARG_SLOT*>(FixedSizeLocalSlot(i)), it.Size(&m_interpCeeInfo)); |
3644 | } |
3645 | GCScanRootAtLoc(reinterpret_cast<Object**>(localPtr), it, pf, sc, m_methInfo->GetPinningBit(i)); |
3646 | } |
3647 | |
3648 | // Do current ostack. |
3649 | for (unsigned i = 0; i < m_curStackHt; i++) |
3650 | { |
3651 | InterpreterType it = OpStackTypeGet(i); |
3652 | if (it.IsLargeStruct(&m_interpCeeInfo)) |
3653 | { |
3654 | Object** structPtr = reinterpret_cast<Object**>(OpStackGet<void*>(i)); |
3655 | // If the ostack value is a pointer to a local var value, don't scan, since we already |
3656 | // scanned the variable value above. |
3657 | if (!IsInLargeStructLocalArea(structPtr)) |
3658 | { |
3659 | GCScanRootAtLoc(structPtr, it, pf, sc); |
3660 | } |
3661 | } |
3662 | else |
3663 | { |
3664 | void* stackPtr = OpStackGetAddr(i, it.Size(&m_interpCeeInfo)); |
3665 | GCScanRootAtLoc(reinterpret_cast<Object**>(stackPtr), it, pf, sc); |
3666 | } |
3667 | } |
3668 | |
3669 | // Any outgoing arguments for a call in progress. |
3670 | for (unsigned i = 0; i < m_argsSize; i++) |
3671 | { |
3672 | // If a call has a large struct argument, we'll have pushed a pointer to the entry for that argument on the |
3673 | // largeStructStack of the current Interpreter. That will be scanned by the code above, so just skip it. |
3674 | InterpreterType undef(CORINFO_TYPE_UNDEF); |
3675 | InterpreterType it = m_argTypes[i]; |
3676 | if (it != undef && !it.IsLargeStruct(&m_interpCeeInfo)) |
3677 | { |
3678 | BYTE* argPtr = ArgSlotEndianessFixup(&m_args[i], it.Size(&m_interpCeeInfo)); |
3679 | GCScanRootAtLoc(reinterpret_cast<Object**>(argPtr), it, pf, sc); |
3680 | } |
3681 | } |
3682 | } |
3683 | |
3684 | void Interpreter::GCScanRootAtLoc(Object** loc, InterpreterType it, promote_func* pf, ScanContext* sc, bool pinningRef) |
3685 | { |
3686 | switch (it.ToCorInfoType()) |
3687 | { |
3688 | case CORINFO_TYPE_CLASS: |
3689 | case CORINFO_TYPE_STRING: |
3690 | { |
3691 | DWORD flags = 0; |
3692 | if (pinningRef) flags |= GC_CALL_PINNED; |
3693 | (*pf)(loc, sc, flags); |
3694 | } |
3695 | break; |
3696 | |
3697 | case CORINFO_TYPE_BYREF: |
3698 | case CORINFO_TYPE_REFANY: |
3699 | { |
3700 | DWORD flags = GC_CALL_INTERIOR; |
3701 | if (pinningRef) flags |= GC_CALL_PINNED; |
3702 | (*pf)(loc, sc, flags); |
3703 | } |
3704 | break; |
3705 | |
3706 | case CORINFO_TYPE_VALUECLASS: |
3707 | assert(!pinningRef); |
3708 | GCScanValueClassRootAtLoc(loc, it.ToClassHandle(), pf, sc); |
3709 | break; |
3710 | |
3711 | default: |
3712 | assert(!pinningRef); |
3713 | break; |
3714 | } |
3715 | } |
3716 | |
3717 | void Interpreter::GCScanValueClassRootAtLoc(Object** loc, CORINFO_CLASS_HANDLE valueClsHnd, promote_func* pf, ScanContext* sc) |
3718 | { |
3719 | MethodTable* valClsMT = GetMethodTableFromClsHnd(valueClsHnd); |
3720 | ReportPointersFromValueType(pf, sc, valClsMT, loc); |
3721 | } |
3722 | |
3723 | // Returns "true" iff "cit" is "stack-normal": all integer types with byte size less than 4 |
3724 | // are folded to CORINFO_TYPE_INT; all remaining unsigned types are folded to their signed counterparts. |
3725 | bool IsStackNormalType(CorInfoType cit) |
3726 | { |
3727 | LIMITED_METHOD_CONTRACT; |
3728 | |
3729 | switch (cit) |
3730 | { |
3731 | case CORINFO_TYPE_UNDEF: |
3732 | case CORINFO_TYPE_VOID: |
3733 | case CORINFO_TYPE_BOOL: |
3734 | case CORINFO_TYPE_CHAR: |
3735 | case CORINFO_TYPE_BYTE: |
3736 | case CORINFO_TYPE_UBYTE: |
3737 | case CORINFO_TYPE_SHORT: |
3738 | case CORINFO_TYPE_USHORT: |
3739 | case CORINFO_TYPE_UINT: |
3740 | case CORINFO_TYPE_NATIVEUINT: |
3741 | case CORINFO_TYPE_ULONG: |
3742 | case CORINFO_TYPE_VAR: |
3743 | case CORINFO_TYPE_STRING: |
3744 | case CORINFO_TYPE_PTR: |
3745 | return false; |
3746 | |
3747 | case CORINFO_TYPE_INT: |
3748 | case CORINFO_TYPE_NATIVEINT: |
3749 | case CORINFO_TYPE_BYREF: |
3750 | case CORINFO_TYPE_CLASS: |
3751 | case CORINFO_TYPE_LONG: |
3752 | case CORINFO_TYPE_VALUECLASS: |
3753 | case CORINFO_TYPE_REFANY: |
3754 | // I chose to consider both float and double stack-normal; together these comprise |
3755 | // the "F" type of the ECMA spec. This means I have to consider these to freely |
3756 | // interconvert. |
3757 | case CORINFO_TYPE_FLOAT: |
3758 | case CORINFO_TYPE_DOUBLE: |
3759 | return true; |
3760 | |
3761 | default: |
3762 | UNREACHABLE(); |
3763 | } |
3764 | } |
3765 | |
3766 | CorInfoType CorInfoTypeStackNormalize(CorInfoType cit) |
3767 | { |
3768 | LIMITED_METHOD_CONTRACT; |
3769 | |
3770 | switch (cit) |
3771 | { |
3772 | case CORINFO_TYPE_UNDEF: |
3773 | return CORINFO_TYPE_UNDEF; |
3774 | |
3775 | case CORINFO_TYPE_VOID: |
3776 | case CORINFO_TYPE_VAR: |
3777 | _ASSERTE_MSG(false, "Type that cannot be on the ostack." ); |
3778 | return CORINFO_TYPE_UNDEF; |
3779 | |
3780 | case CORINFO_TYPE_BOOL: |
3781 | case CORINFO_TYPE_CHAR: |
3782 | case CORINFO_TYPE_BYTE: |
3783 | case CORINFO_TYPE_UBYTE: |
3784 | case CORINFO_TYPE_SHORT: |
3785 | case CORINFO_TYPE_USHORT: |
3786 | case CORINFO_TYPE_UINT: |
3787 | return CORINFO_TYPE_INT; |
3788 | |
3789 | case CORINFO_TYPE_NATIVEUINT: |
3790 | case CORINFO_TYPE_PTR: |
3791 | return CORINFO_TYPE_NATIVEINT; |
3792 | |
3793 | case CORINFO_TYPE_ULONG: |
3794 | return CORINFO_TYPE_LONG; |
3795 | |
3796 | case CORINFO_TYPE_STRING: |
3797 | return CORINFO_TYPE_CLASS; |
3798 | |
3799 | case CORINFO_TYPE_INT: |
3800 | case CORINFO_TYPE_NATIVEINT: |
3801 | case CORINFO_TYPE_BYREF: |
3802 | case CORINFO_TYPE_CLASS: |
3803 | case CORINFO_TYPE_LONG: |
3804 | case CORINFO_TYPE_VALUECLASS: |
3805 | case CORINFO_TYPE_REFANY: |
3806 | // I chose to consider both float and double stack-normal; together these comprise |
3807 | // the "F" type of the ECMA spec. This means I have to consider these to freely |
3808 | // interconvert. |
3809 | case CORINFO_TYPE_FLOAT: |
3810 | case CORINFO_TYPE_DOUBLE: |
3811 | assert(IsStackNormalType(cit)); |
3812 | return cit; |
3813 | |
3814 | default: |
3815 | UNREACHABLE(); |
3816 | } |
3817 | } |
3818 | |
3819 | InterpreterType InterpreterType::StackNormalize() const |
3820 | { |
3821 | LIMITED_METHOD_CONTRACT; |
3822 | |
3823 | switch (ToCorInfoType()) |
3824 | { |
3825 | case CORINFO_TYPE_BOOL: |
3826 | case CORINFO_TYPE_CHAR: |
3827 | case CORINFO_TYPE_BYTE: |
3828 | case CORINFO_TYPE_UBYTE: |
3829 | case CORINFO_TYPE_SHORT: |
3830 | case CORINFO_TYPE_USHORT: |
3831 | case CORINFO_TYPE_UINT: |
3832 | return InterpreterType(CORINFO_TYPE_INT); |
3833 | |
3834 | case CORINFO_TYPE_NATIVEUINT: |
3835 | case CORINFO_TYPE_PTR: |
3836 | return InterpreterType(CORINFO_TYPE_NATIVEINT); |
3837 | |
3838 | case CORINFO_TYPE_ULONG: |
3839 | return InterpreterType(CORINFO_TYPE_LONG); |
3840 | |
3841 | case CORINFO_TYPE_STRING: |
3842 | return InterpreterType(CORINFO_TYPE_CLASS); |
3843 | |
3844 | case CORINFO_TYPE_INT: |
3845 | case CORINFO_TYPE_NATIVEINT: |
3846 | case CORINFO_TYPE_BYREF: |
3847 | case CORINFO_TYPE_CLASS: |
3848 | case CORINFO_TYPE_LONG: |
3849 | case CORINFO_TYPE_VALUECLASS: |
3850 | case CORINFO_TYPE_REFANY: |
3851 | case CORINFO_TYPE_FLOAT: |
3852 | case CORINFO_TYPE_DOUBLE: |
3853 | return *const_cast<InterpreterType*>(this); |
3854 | |
3855 | case CORINFO_TYPE_UNDEF: |
3856 | case CORINFO_TYPE_VOID: |
3857 | case CORINFO_TYPE_VAR: |
3858 | default: |
3859 | _ASSERTE_MSG(false, "should not reach here" ); |
3860 | return *const_cast<InterpreterType*>(this); |
3861 | } |
3862 | } |
3863 | |
3864 | #ifdef _DEBUG |
3865 | bool InterpreterType::MatchesWork(const InterpreterType it2, CEEInfo* info) const |
3866 | { |
3867 | CONTRACTL { |
3868 | THROWS; |
3869 | GC_TRIGGERS; |
3870 | MODE_COOPERATIVE; |
3871 | } CONTRACTL_END; |
3872 | |
3873 | if (*this == it2) return true; |
3874 | |
3875 | // Otherwise... |
3876 | CorInfoType cit1 = ToCorInfoType(); |
3877 | CorInfoType cit2 = it2.ToCorInfoType(); |
3878 | |
3879 | GCX_PREEMP(); |
3880 | |
3881 | // An approximation: valueclasses of the same size match. |
3882 | if (cit1 == CORINFO_TYPE_VALUECLASS && |
3883 | cit2 == CORINFO_TYPE_VALUECLASS && |
3884 | Size(info) == it2.Size(info)) |
3885 | { |
3886 | return true; |
3887 | } |
3888 | |
3889 | // NativeInt matches byref. (In unsafe code). |
3890 | if ((cit1 == CORINFO_TYPE_BYREF && cit2 == CORINFO_TYPE_NATIVEINT)) |
3891 | return true; |
3892 | |
3893 | // apparently the VM may do the optimization of reporting the return type of a method that |
3894 | // returns a struct of a single nativeint field *as* nativeint; and similarly with at least some other primitive types. |
3895 | // So weaken this check to allow that. |
3896 | // (The check is actually a little weaker still, since I don't want to crack the return type and make sure |
3897 | // that it has only a single nativeint member -- so I just ensure that the total size is correct). |
3898 | switch (cit1) |
3899 | { |
3900 | case CORINFO_TYPE_NATIVEINT: |
3901 | case CORINFO_TYPE_NATIVEUINT: |
3902 | assert(sizeof(NativeInt) == sizeof(NativeUInt)); |
3903 | if (it2.Size(info) == sizeof(NativeInt)) |
3904 | return true; |
3905 | break; |
3906 | |
3907 | case CORINFO_TYPE_INT: |
3908 | case CORINFO_TYPE_UINT: |
3909 | assert(sizeof(INT32) == sizeof(UINT32)); |
3910 | if (it2.Size(info) == sizeof(INT32)) |
3911 | return true; |
3912 | break; |
3913 | |
3914 | default: |
3915 | break; |
3916 | } |
3917 | |
3918 | // See if the second is a value type synonym for a primitive. |
3919 | if (cit2 == CORINFO_TYPE_VALUECLASS) |
3920 | { |
3921 | CorInfoType cit2prim = info->getTypeForPrimitiveValueClass(it2.ToClassHandle()); |
3922 | if (cit2prim != CORINFO_TYPE_UNDEF) |
3923 | { |
3924 | InterpreterType it2prim(cit2prim); |
3925 | if (*this == it2prim.StackNormalize()) |
3926 | return true; |
3927 | } |
3928 | } |
3929 | |
3930 | // Otherwise... |
3931 | return false; |
3932 | } |
3933 | #endif // _DEBUG |
3934 | |
3935 | // Static |
3936 | size_t CorInfoTypeSizeArray[] = |
3937 | { |
3938 | /*CORINFO_TYPE_UNDEF = 0x0*/0, |
3939 | /*CORINFO_TYPE_VOID = 0x1*/0, |
3940 | /*CORINFO_TYPE_BOOL = 0x2*/1, |
3941 | /*CORINFO_TYPE_CHAR = 0x3*/2, |
3942 | /*CORINFO_TYPE_BYTE = 0x4*/1, |
3943 | /*CORINFO_TYPE_UBYTE = 0x5*/1, |
3944 | /*CORINFO_TYPE_SHORT = 0x6*/2, |
3945 | /*CORINFO_TYPE_USHORT = 0x7*/2, |
3946 | /*CORINFO_TYPE_INT = 0x8*/4, |
3947 | /*CORINFO_TYPE_UINT = 0x9*/4, |
3948 | /*CORINFO_TYPE_LONG = 0xa*/8, |
3949 | /*CORINFO_TYPE_ULONG = 0xb*/8, |
3950 | /*CORINFO_TYPE_NATIVEINT = 0xc*/sizeof(void*), |
3951 | /*CORINFO_TYPE_NATIVEUINT = 0xd*/sizeof(void*), |
3952 | /*CORINFO_TYPE_FLOAT = 0xe*/4, |
3953 | /*CORINFO_TYPE_DOUBLE = 0xf*/8, |
3954 | /*CORINFO_TYPE_STRING = 0x10*/sizeof(void*), |
3955 | /*CORINFO_TYPE_PTR = 0x11*/sizeof(void*), |
3956 | /*CORINFO_TYPE_BYREF = 0x12*/sizeof(void*), |
3957 | /*CORINFO_TYPE_VALUECLASS = 0x13*/0, |
3958 | /*CORINFO_TYPE_CLASS = 0x14*/sizeof(void*), |
3959 | /*CORINFO_TYPE_REFANY = 0x15*/sizeof(void*)*2, |
3960 | /*CORINFO_TYPE_VAR = 0x16*/0, |
3961 | }; |
3962 | |
3963 | bool CorInfoTypeIsUnsigned(CorInfoType cit) |
3964 | { |
3965 | LIMITED_METHOD_CONTRACT; |
3966 | |
3967 | switch (cit) |
3968 | { |
3969 | case CORINFO_TYPE_UINT: |
3970 | case CORINFO_TYPE_NATIVEUINT: |
3971 | case CORINFO_TYPE_ULONG: |
3972 | case CORINFO_TYPE_UBYTE: |
3973 | case CORINFO_TYPE_USHORT: |
3974 | case CORINFO_TYPE_CHAR: |
3975 | return true; |
3976 | |
3977 | default: |
3978 | return false; |
3979 | } |
3980 | } |
3981 | |
3982 | bool CorInfoTypeIsIntegral(CorInfoType cit) |
3983 | { |
3984 | LIMITED_METHOD_CONTRACT; |
3985 | |
3986 | switch (cit) |
3987 | { |
3988 | case CORINFO_TYPE_UINT: |
3989 | case CORINFO_TYPE_NATIVEUINT: |
3990 | case CORINFO_TYPE_ULONG: |
3991 | case CORINFO_TYPE_UBYTE: |
3992 | case CORINFO_TYPE_USHORT: |
3993 | case CORINFO_TYPE_INT: |
3994 | case CORINFO_TYPE_NATIVEINT: |
3995 | case CORINFO_TYPE_LONG: |
3996 | case CORINFO_TYPE_BYTE: |
3997 | case CORINFO_TYPE_BOOL: |
3998 | case CORINFO_TYPE_SHORT: |
3999 | return true; |
4000 | |
4001 | default: |
4002 | return false; |
4003 | } |
4004 | } |
4005 | |
4006 | bool CorInfoTypeIsFloatingPoint(CorInfoType cit) |
4007 | { |
4008 | return cit == CORINFO_TYPE_FLOAT || cit == CORINFO_TYPE_DOUBLE; |
4009 | } |
4010 | |
4011 | |
4012 | bool CorElemTypeIsUnsigned(CorElementType cet) |
4013 | { |
4014 | LIMITED_METHOD_CONTRACT; |
4015 | |
4016 | switch (cet) |
4017 | { |
4018 | case ELEMENT_TYPE_U1: |
4019 | case ELEMENT_TYPE_U2: |
4020 | case ELEMENT_TYPE_U4: |
4021 | case ELEMENT_TYPE_U8: |
4022 | case ELEMENT_TYPE_U: |
4023 | return true; |
4024 | |
4025 | default: |
4026 | return false; |
4027 | } |
4028 | } |
4029 | |
4030 | bool CorInfoTypeIsPointer(CorInfoType cit) |
4031 | { |
4032 | LIMITED_METHOD_CONTRACT; |
4033 | switch (cit) |
4034 | { |
4035 | case CORINFO_TYPE_PTR: |
4036 | case CORINFO_TYPE_BYREF: |
4037 | case CORINFO_TYPE_NATIVEINT: |
4038 | case CORINFO_TYPE_NATIVEUINT: |
4039 | return true; |
4040 | |
4041 | // It seems like the ECMA spec doesn't allow this, but (at least) the managed C++ |
4042 | // compiler expects the explicitly-sized pointer type of the platform pointer size to work: |
4043 | case CORINFO_TYPE_INT: |
4044 | case CORINFO_TYPE_UINT: |
4045 | return sizeof(NativeInt) == sizeof(INT32); |
4046 | case CORINFO_TYPE_LONG: |
4047 | case CORINFO_TYPE_ULONG: |
4048 | return sizeof(NativeInt) == sizeof(INT64); |
4049 | |
4050 | default: |
4051 | return false; |
4052 | } |
4053 | } |
4054 | |
4055 | void Interpreter::LdArg(int argNum) |
4056 | { |
4057 | CONTRACTL { |
4058 | SO_TOLERANT; |
4059 | THROWS; |
4060 | GC_TRIGGERS; |
4061 | MODE_COOPERATIVE; |
4062 | } CONTRACTL_END; |
4063 | |
4064 | LdFromMemAddr(GetArgAddr(argNum), GetArgType(argNum)); |
4065 | } |
4066 | |
4067 | void Interpreter::LdArgA(int argNum) |
4068 | { |
4069 | CONTRACTL { |
4070 | SO_TOLERANT; |
4071 | NOTHROW; |
4072 | GC_NOTRIGGER; |
4073 | MODE_COOPERATIVE; |
4074 | } CONTRACTL_END; |
4075 | |
4076 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_BYREF)); |
4077 | OpStackSet<void*>(m_curStackHt, reinterpret_cast<void*>(GetArgAddr(argNum))); |
4078 | m_curStackHt++; |
4079 | } |
4080 | |
4081 | void Interpreter::StArg(int argNum) |
4082 | { |
4083 | CONTRACTL { |
4084 | SO_TOLERANT; |
4085 | THROWS; |
4086 | GC_TRIGGERS; |
4087 | MODE_COOPERATIVE; |
4088 | } CONTRACTL_END; |
4089 | |
4090 | StToLocalMemAddr(GetArgAddr(argNum), GetArgType(argNum)); |
4091 | } |
4092 | |
4093 | |
4094 | void Interpreter::LdLocA(int locNum) |
4095 | { |
4096 | CONTRACTL { |
4097 | SO_TOLERANT; |
4098 | NOTHROW; |
4099 | GC_NOTRIGGER; |
4100 | MODE_COOPERATIVE; |
4101 | } CONTRACTL_END; |
4102 | |
4103 | InterpreterType tp = m_methInfo->m_localDescs[locNum].m_type; |
4104 | void* addr; |
4105 | if (tp.IsLargeStruct(&m_interpCeeInfo)) |
4106 | { |
4107 | void* structPtr = ArgSlotEndianessFixup(reinterpret_cast<ARG_SLOT*>(FixedSizeLocalSlot(locNum)), sizeof(void**)); |
4108 | addr = *reinterpret_cast<void**>(structPtr); |
4109 | } |
4110 | else |
4111 | { |
4112 | addr = ArgSlotEndianessFixup(reinterpret_cast<ARG_SLOT*>(FixedSizeLocalSlot(locNum)), tp.Size(&m_interpCeeInfo)); |
4113 | } |
4114 | // The "addr" above, while a byref, is never a heap pointer, so we're robust if |
4115 | // any of these were to cause a GC. |
4116 | OpStackSet<void*>(m_curStackHt, addr); |
4117 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_BYREF)); |
4118 | m_curStackHt++; |
4119 | } |
4120 | |
4121 | void Interpreter::LdIcon(INT32 c) |
4122 | { |
4123 | CONTRACTL { |
4124 | SO_TOLERANT; |
4125 | NOTHROW; |
4126 | GC_NOTRIGGER; |
4127 | MODE_COOPERATIVE; |
4128 | } CONTRACTL_END; |
4129 | |
4130 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_INT)); |
4131 | OpStackSet<INT32>(m_curStackHt, c); |
4132 | m_curStackHt++; |
4133 | } |
4134 | |
4135 | void Interpreter::LdR4con(INT32 c) |
4136 | { |
4137 | CONTRACTL { |
4138 | SO_TOLERANT; |
4139 | NOTHROW; |
4140 | GC_NOTRIGGER; |
4141 | MODE_COOPERATIVE; |
4142 | } CONTRACTL_END; |
4143 | |
4144 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_FLOAT)); |
4145 | OpStackSet<INT32>(m_curStackHt, c); |
4146 | m_curStackHt++; |
4147 | } |
4148 | |
4149 | void Interpreter::LdLcon(INT64 c) |
4150 | { |
4151 | CONTRACTL { |
4152 | SO_TOLERANT; |
4153 | NOTHROW; |
4154 | GC_NOTRIGGER; |
4155 | MODE_COOPERATIVE; |
4156 | } CONTRACTL_END; |
4157 | |
4158 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_LONG)); |
4159 | OpStackSet<INT64>(m_curStackHt, c); |
4160 | m_curStackHt++; |
4161 | } |
4162 | |
4163 | void Interpreter::LdR8con(INT64 c) |
4164 | { |
4165 | CONTRACTL { |
4166 | SO_TOLERANT; |
4167 | NOTHROW; |
4168 | GC_NOTRIGGER; |
4169 | MODE_COOPERATIVE; |
4170 | } CONTRACTL_END; |
4171 | |
4172 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_DOUBLE)); |
4173 | OpStackSet<INT64>(m_curStackHt, c); |
4174 | m_curStackHt++; |
4175 | } |
4176 | |
4177 | void Interpreter::LdNull() |
4178 | { |
4179 | CONTRACTL { |
4180 | SO_TOLERANT; |
4181 | NOTHROW; |
4182 | GC_NOTRIGGER; |
4183 | MODE_COOPERATIVE; |
4184 | } CONTRACTL_END; |
4185 | |
4186 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_CLASS)); |
4187 | OpStackSet<void*>(m_curStackHt, NULL); |
4188 | m_curStackHt++; |
4189 | } |
4190 | |
4191 | template<typename T, CorInfoType cit> |
4192 | void Interpreter::LdInd() |
4193 | { |
4194 | assert(TOSIsPtr()); |
4195 | assert(IsStackNormalType(cit)); |
4196 | unsigned curStackInd = m_curStackHt-1; |
4197 | T* ptr = OpStackGet<T*>(curStackInd); |
4198 | ThrowOnInvalidPointer(ptr); |
4199 | OpStackSet<T>(curStackInd, *ptr); |
4200 | OpStackTypeSet(curStackInd, InterpreterType(cit)); |
4201 | BarrierIfVolatile(); |
4202 | } |
4203 | |
4204 | template<typename T, bool isUnsigned> |
4205 | void Interpreter::LdIndShort() |
4206 | { |
4207 | assert(TOSIsPtr()); |
4208 | assert(sizeof(T) < 4); |
4209 | unsigned curStackInd = m_curStackHt-1; |
4210 | T* ptr = OpStackGet<T*>(curStackInd); |
4211 | ThrowOnInvalidPointer(ptr); |
4212 | if (isUnsigned) |
4213 | { |
4214 | OpStackSet<UINT32>(curStackInd, *ptr); |
4215 | } |
4216 | else |
4217 | { |
4218 | OpStackSet<INT32>(curStackInd, *ptr); |
4219 | } |
4220 | // All short integers are normalized to INT as their stack type. |
4221 | OpStackTypeSet(curStackInd, InterpreterType(CORINFO_TYPE_INT)); |
4222 | BarrierIfVolatile(); |
4223 | } |
4224 | |
4225 | template<typename T> |
4226 | void Interpreter::StInd() |
4227 | { |
4228 | assert(m_curStackHt >= 2); |
4229 | assert(CorInfoTypeIsPointer(OpStackTypeGet(m_curStackHt-2).ToCorInfoType())); |
4230 | BarrierIfVolatile(); |
4231 | unsigned stackInd0 = m_curStackHt-2; |
4232 | unsigned stackInd1 = m_curStackHt-1; |
4233 | T val = OpStackGet<T>(stackInd1); |
4234 | T* ptr = OpStackGet<T*>(stackInd0); |
4235 | ThrowOnInvalidPointer(ptr); |
4236 | *ptr = val; |
4237 | m_curStackHt -= 2; |
4238 | |
4239 | #if INTERP_TRACING |
4240 | if (s_TraceInterpreterILFlag.val(CLRConfig::INTERNAL_TraceInterpreterIL) && |
4241 | IsInLocalArea(ptr)) |
4242 | { |
4243 | PrintLocals(); |
4244 | } |
4245 | #endif // INTERP_TRACING |
4246 | } |
4247 | |
4248 | void Interpreter::StInd_Ref() |
4249 | { |
4250 | assert(m_curStackHt >= 2); |
4251 | assert(CorInfoTypeIsPointer(OpStackTypeGet(m_curStackHt-2).ToCorInfoType())); |
4252 | BarrierIfVolatile(); |
4253 | unsigned stackInd0 = m_curStackHt-2; |
4254 | unsigned stackInd1 = m_curStackHt-1; |
4255 | OBJECTREF val = ObjectToOBJECTREF(OpStackGet<Object*>(stackInd1)); |
4256 | OBJECTREF* ptr = OpStackGet<OBJECTREF*>(stackInd0); |
4257 | ThrowOnInvalidPointer(ptr); |
4258 | SetObjectReferenceUnchecked(ptr, val); |
4259 | m_curStackHt -= 2; |
4260 | |
4261 | #if INTERP_TRACING |
4262 | if (s_TraceInterpreterILFlag.val(CLRConfig::INTERNAL_TraceInterpreterIL) && |
4263 | IsInLocalArea(ptr)) |
4264 | { |
4265 | PrintLocals(); |
4266 | } |
4267 | #endif // INTERP_TRACING |
4268 | } |
4269 | |
4270 | |
4271 | template<int op> |
4272 | void Interpreter::BinaryArithOp() |
4273 | { |
4274 | CONTRACTL { |
4275 | SO_TOLERANT; |
4276 | THROWS; |
4277 | GC_TRIGGERS; |
4278 | MODE_COOPERATIVE; |
4279 | } CONTRACTL_END; |
4280 | |
4281 | assert(m_curStackHt >= 2); |
4282 | unsigned op1idx = m_curStackHt - 2; |
4283 | unsigned op2idx = m_curStackHt - 1; |
4284 | InterpreterType t1 = OpStackTypeGet(op1idx); |
4285 | assert(IsStackNormalType(t1.ToCorInfoType())); |
4286 | // Looking at the generated code, it does seem to save some instructions to use the "shifted |
4287 | // types," though the effect on end-to-end time is variable. So I'll leave it set. |
4288 | InterpreterType t2 = OpStackTypeGet(op2idx); |
4289 | assert(IsStackNormalType(t2.ToCorInfoType())); |
4290 | |
4291 | // In all cases belows, since "op" is compile-time constant, "if" chains on it should fold away. |
4292 | switch (t1.ToCorInfoTypeShifted()) |
4293 | { |
4294 | case CORINFO_TYPE_SHIFTED_INT: |
4295 | if (t1 == t2) |
4296 | { |
4297 | // Int op Int = Int |
4298 | INT32 val1 = OpStackGet<INT32>(op1idx); |
4299 | INT32 val2 = OpStackGet<INT32>(op2idx); |
4300 | BinaryArithOpWork<op, INT32, /*IsIntType*/true, CORINFO_TYPE_INT, /*TypeIsUnchanged*/true>(val1, val2); |
4301 | } |
4302 | else |
4303 | { |
4304 | CorInfoTypeShifted cits2 = t2.ToCorInfoTypeShifted(); |
4305 | if (cits2 == CORINFO_TYPE_SHIFTED_NATIVEINT) |
4306 | { |
4307 | // Int op NativeInt = NativeInt |
4308 | NativeInt val1 = static_cast<NativeInt>(OpStackGet<INT32>(op1idx)); |
4309 | NativeInt val2 = OpStackGet<NativeInt>(op2idx); |
4310 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/false>(val1, val2); |
4311 | } |
4312 | else if (s_InterpreterLooseRules && cits2 == CORINFO_TYPE_SHIFTED_LONG) |
4313 | { |
4314 | // Int op Long = Long |
4315 | INT64 val1 = static_cast<INT64>(OpStackGet<INT32>(op1idx)); |
4316 | INT64 val2 = OpStackGet<INT64>(op2idx); |
4317 | BinaryArithOpWork<op, INT64, /*IsIntType*/true, CORINFO_TYPE_LONG, /*TypeIsUnchanged*/false>(val1, val2); |
4318 | } |
4319 | else if (cits2 == CORINFO_TYPE_SHIFTED_BYREF) |
4320 | { |
4321 | if (op == BA_Add || (s_InterpreterLooseRules && op == BA_Sub)) |
4322 | { |
4323 | // Int + ByRef = ByRef |
4324 | NativeInt val1 = static_cast<NativeInt>(OpStackGet<INT32>(op1idx)); |
4325 | NativeInt val2 = OpStackGet<NativeInt>(op2idx); |
4326 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_BYREF, /*TypeIsUnchanged*/false>(val1, val2); |
4327 | } |
4328 | else |
4329 | { |
4330 | VerificationError("Operation not permitted on int and managed pointer." ); |
4331 | } |
4332 | } |
4333 | else |
4334 | { |
4335 | VerificationError("Binary arithmetic operation type mismatch (int and ?)" ); |
4336 | } |
4337 | } |
4338 | break; |
4339 | |
4340 | case CORINFO_TYPE_SHIFTED_NATIVEINT: |
4341 | { |
4342 | NativeInt val1 = OpStackGet<NativeInt>(op1idx); |
4343 | if (t1 == t2) |
4344 | { |
4345 | // NativeInt op NativeInt = NativeInt |
4346 | NativeInt val2 = OpStackGet<NativeInt>(op2idx); |
4347 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
4348 | } |
4349 | else |
4350 | { |
4351 | CorInfoTypeShifted cits2 = t2.ToCorInfoTypeShifted(); |
4352 | if (cits2 == CORINFO_TYPE_SHIFTED_INT) |
4353 | { |
4354 | // NativeInt op Int = NativeInt |
4355 | NativeInt val2 = static_cast<NativeInt>(OpStackGet<INT32>(op2idx)); |
4356 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
4357 | } |
4358 | // CLI spec does not allow adding a native int and an int64. So use loose rules. |
4359 | else if (s_InterpreterLooseRules && cits2 == CORINFO_TYPE_SHIFTED_LONG) |
4360 | { |
4361 | // NativeInt op Int = NativeInt |
4362 | NativeInt val2 = static_cast<NativeInt>(OpStackGet<INT64>(op2idx)); |
4363 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
4364 | } |
4365 | else if (cits2 == CORINFO_TYPE_SHIFTED_BYREF) |
4366 | { |
4367 | if (op == BA_Add || (s_InterpreterLooseRules && op == BA_Sub)) |
4368 | { |
4369 | // NativeInt + ByRef = ByRef |
4370 | NativeInt val2 = OpStackGet<NativeInt>(op2idx); |
4371 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_BYREF, /*TypeIsUnchanged*/false>(val1, val2); |
4372 | } |
4373 | else |
4374 | { |
4375 | VerificationError("Operation not permitted on native int and managed pointer." ); |
4376 | } |
4377 | } |
4378 | else |
4379 | { |
4380 | VerificationError("Binary arithmetic operation type mismatch (native int and ?)" ); |
4381 | } |
4382 | } |
4383 | } |
4384 | break; |
4385 | |
4386 | case CORINFO_TYPE_SHIFTED_LONG: |
4387 | { |
4388 | bool looseLong = false; |
4389 | #if defined(_AMD64_) |
4390 | looseLong = (s_InterpreterLooseRules && (t2.ToCorInfoType() == CORINFO_TYPE_NATIVEINT || |
4391 | t2.ToCorInfoType() == CORINFO_TYPE_BYREF)); |
4392 | #endif |
4393 | if (t1 == t2 || looseLong) |
4394 | { |
4395 | // Long op Long = Long |
4396 | INT64 val1 = OpStackGet<INT64>(op1idx); |
4397 | INT64 val2 = OpStackGet<INT64>(op2idx); |
4398 | BinaryArithOpWork<op, INT64, /*IsIntType*/true, CORINFO_TYPE_LONG, /*TypeIsUnchanged*/true>(val1, val2); |
4399 | } |
4400 | else |
4401 | { |
4402 | VerificationError("Binary arithmetic operation type mismatch (long and ?)" ); |
4403 | } |
4404 | } |
4405 | break; |
4406 | |
4407 | case CORINFO_TYPE_SHIFTED_FLOAT: |
4408 | { |
4409 | if (t1 == t2) |
4410 | { |
4411 | // Float op Float = Float |
4412 | float val1 = OpStackGet<float>(op1idx); |
4413 | float val2 = OpStackGet<float>(op2idx); |
4414 | BinaryArithOpWork<op, float, /*IsIntType*/false, CORINFO_TYPE_FLOAT, /*TypeIsUnchanged*/true>(val1, val2); |
4415 | } |
4416 | else |
4417 | { |
4418 | CorInfoTypeShifted cits2 = t2.ToCorInfoTypeShifted(); |
4419 | if (cits2 == CORINFO_TYPE_SHIFTED_DOUBLE) |
4420 | { |
4421 | // Float op Double = Double |
4422 | double val1 = static_cast<double>(OpStackGet<float>(op1idx)); |
4423 | double val2 = OpStackGet<double>(op2idx); |
4424 | BinaryArithOpWork<op, double, /*IsIntType*/false, CORINFO_TYPE_DOUBLE, /*TypeIsUnchanged*/false>(val1, val2); |
4425 | } |
4426 | else |
4427 | { |
4428 | VerificationError("Binary arithmetic operation type mismatch (float and ?)" ); |
4429 | } |
4430 | } |
4431 | } |
4432 | break; |
4433 | |
4434 | case CORINFO_TYPE_SHIFTED_DOUBLE: |
4435 | { |
4436 | if (t1 == t2) |
4437 | { |
4438 | // Double op Double = Double |
4439 | double val1 = OpStackGet<double>(op1idx); |
4440 | double val2 = OpStackGet<double>(op2idx); |
4441 | BinaryArithOpWork<op, double, /*IsIntType*/false, CORINFO_TYPE_DOUBLE, /*TypeIsUnchanged*/true>(val1, val2); |
4442 | } |
4443 | else |
4444 | { |
4445 | CorInfoTypeShifted cits2 = t2.ToCorInfoTypeShifted(); |
4446 | if (cits2 == CORINFO_TYPE_SHIFTED_FLOAT) |
4447 | { |
4448 | // Double op Float = Double |
4449 | double val1 = OpStackGet<double>(op1idx); |
4450 | double val2 = static_cast<double>(OpStackGet<float>(op2idx)); |
4451 | BinaryArithOpWork<op, double, /*IsIntType*/false, CORINFO_TYPE_DOUBLE, /*TypeIsUnchanged*/true>(val1, val2); |
4452 | } |
4453 | else |
4454 | { |
4455 | VerificationError("Binary arithmetic operation type mismatch (double and ?)" ); |
4456 | } |
4457 | } |
4458 | } |
4459 | break; |
4460 | |
4461 | case CORINFO_TYPE_SHIFTED_BYREF: |
4462 | { |
4463 | NativeInt val1 = OpStackGet<NativeInt>(op1idx); |
4464 | CorInfoTypeShifted cits2 = t2.ToCorInfoTypeShifted(); |
4465 | if (cits2 == CORINFO_TYPE_SHIFTED_INT) |
4466 | { |
4467 | if (op == BA_Add || op == BA_Sub) |
4468 | { |
4469 | // ByRef +- Int = ByRef |
4470 | NativeInt val2 = static_cast<NativeInt>(OpStackGet<INT32>(op2idx)); |
4471 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_BYREF, /*TypeIsUnchanged*/true>(val1, val2); |
4472 | } |
4473 | else |
4474 | { |
4475 | VerificationError("May only add/subtract managed pointer and integral value." ); |
4476 | } |
4477 | } |
4478 | else if (cits2 == CORINFO_TYPE_SHIFTED_NATIVEINT) |
4479 | { |
4480 | if (op == BA_Add || op == BA_Sub) |
4481 | { |
4482 | // ByRef +- NativeInt = ByRef |
4483 | NativeInt val2 = OpStackGet<NativeInt>(op2idx); |
4484 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_BYREF, /*TypeIsUnchanged*/true>(val1, val2); |
4485 | } |
4486 | else |
4487 | { |
4488 | VerificationError("May only add/subtract managed pointer and integral value." ); |
4489 | } |
4490 | } |
4491 | else if (cits2 == CORINFO_TYPE_SHIFTED_BYREF) |
4492 | { |
4493 | if (op == BA_Sub) |
4494 | { |
4495 | // ByRef - ByRef = NativeInt |
4496 | NativeInt val2 = OpStackGet<NativeInt>(op2idx); |
4497 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/false>(val1, val2); |
4498 | } |
4499 | else |
4500 | { |
4501 | VerificationError("May only subtract managed pointer values." ); |
4502 | } |
4503 | } |
4504 | // CLI spec does not allow adding a native int and an int64. So use loose rules. |
4505 | else if (s_InterpreterLooseRules && cits2 == CORINFO_TYPE_SHIFTED_LONG) |
4506 | { |
4507 | // NativeInt op Int = NativeInt |
4508 | NativeInt val2 = static_cast<NativeInt>(OpStackGet<INT64>(op2idx)); |
4509 | BinaryArithOpWork<op, NativeInt, /*IsIntType*/true, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
4510 | } |
4511 | else |
4512 | { |
4513 | VerificationError("Binary arithmetic operation not permitted on byref" ); |
4514 | } |
4515 | } |
4516 | break; |
4517 | |
4518 | case CORINFO_TYPE_SHIFTED_CLASS: |
4519 | VerificationError("Can't do binary arithmetic on object references." ); |
4520 | break; |
4521 | |
4522 | default: |
4523 | _ASSERTE_MSG(false, "Non-stack-normal type on stack." ); |
4524 | } |
4525 | |
4526 | // In all cases: |
4527 | m_curStackHt--; |
4528 | } |
4529 | |
4530 | template<int op, bool asUnsigned> |
4531 | void Interpreter::BinaryArithOvfOp() |
4532 | { |
4533 | CONTRACTL { |
4534 | SO_TOLERANT; |
4535 | THROWS; |
4536 | GC_TRIGGERS; |
4537 | MODE_COOPERATIVE; |
4538 | } CONTRACTL_END; |
4539 | |
4540 | assert(m_curStackHt >= 2); |
4541 | unsigned op1idx = m_curStackHt - 2; |
4542 | unsigned op2idx = m_curStackHt - 1; |
4543 | |
4544 | InterpreterType t1 = OpStackTypeGet(op1idx); |
4545 | CorInfoType cit1 = t1.ToCorInfoType(); |
4546 | assert(IsStackNormalType(cit1)); |
4547 | |
4548 | InterpreterType t2 = OpStackTypeGet(op2idx); |
4549 | CorInfoType cit2 = t2.ToCorInfoType(); |
4550 | assert(IsStackNormalType(cit2)); |
4551 | |
4552 | // In all cases belows, since "op" is compile-time constant, "if" chains on it should fold away. |
4553 | switch (cit1) |
4554 | { |
4555 | case CORINFO_TYPE_INT: |
4556 | if (cit2 == CORINFO_TYPE_INT) |
4557 | { |
4558 | if (asUnsigned) |
4559 | { |
4560 | // UnsignedInt op UnsignedInt = UnsignedInt |
4561 | UINT32 val1 = OpStackGet<UINT32>(op1idx); |
4562 | UINT32 val2 = OpStackGet<UINT32>(op2idx); |
4563 | BinaryArithOvfOpWork<op, UINT32, CORINFO_TYPE_INT, /*TypeIsUnchanged*/true>(val1, val2); |
4564 | } |
4565 | else |
4566 | { |
4567 | // Int op Int = Int |
4568 | INT32 val1 = OpStackGet<INT32>(op1idx); |
4569 | INT32 val2 = OpStackGet<INT32>(op2idx); |
4570 | BinaryArithOvfOpWork<op, INT32, CORINFO_TYPE_INT, /*TypeIsUnchanged*/true>(val1, val2); |
4571 | } |
4572 | } |
4573 | else if (cit2 == CORINFO_TYPE_NATIVEINT) |
4574 | { |
4575 | if (asUnsigned) |
4576 | { |
4577 | // UnsignedInt op UnsignedNativeInt = UnsignedNativeInt |
4578 | NativeUInt val1 = static_cast<NativeUInt>(OpStackGet<UINT32>(op1idx)); |
4579 | NativeUInt val2 = OpStackGet<NativeUInt>(op2idx); |
4580 | BinaryArithOvfOpWork<op, NativeUInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/false>(val1, val2); |
4581 | } |
4582 | else |
4583 | { |
4584 | // Int op NativeInt = NativeInt |
4585 | NativeInt val1 = static_cast<NativeInt>(OpStackGet<INT32>(op1idx)); |
4586 | NativeInt val2 = OpStackGet<NativeInt>(op2idx); |
4587 | BinaryArithOvfOpWork<op, NativeInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/false>(val1, val2); |
4588 | } |
4589 | } |
4590 | else if (cit2 == CORINFO_TYPE_BYREF) |
4591 | { |
4592 | if (asUnsigned && op == BA_Add) |
4593 | { |
4594 | // UnsignedInt + ByRef = ByRef |
4595 | NativeUInt val1 = static_cast<NativeUInt>(OpStackGet<UINT32>(op1idx)); |
4596 | NativeUInt val2 = OpStackGet<NativeUInt>(op2idx); |
4597 | BinaryArithOvfOpWork<op, NativeUInt, CORINFO_TYPE_BYREF, /*TypeIsUnchanged*/false>(val1, val2); |
4598 | } |
4599 | else |
4600 | { |
4601 | VerificationError("Illegal arithmetic overflow operation for int and byref." ); |
4602 | } |
4603 | } |
4604 | else |
4605 | { |
4606 | VerificationError("Binary arithmetic overflow operation type mismatch (int and ?)" ); |
4607 | } |
4608 | break; |
4609 | |
4610 | case CORINFO_TYPE_NATIVEINT: |
4611 | if (cit2 == CORINFO_TYPE_INT) |
4612 | { |
4613 | if (asUnsigned) |
4614 | { |
4615 | // UnsignedNativeInt op UnsignedInt = UnsignedNativeInt |
4616 | NativeUInt val1 = OpStackGet<NativeUInt>(op1idx); |
4617 | NativeUInt val2 = static_cast<NativeUInt>(OpStackGet<UINT32>(op2idx)); |
4618 | BinaryArithOvfOpWork<op, NativeUInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
4619 | } |
4620 | else |
4621 | { |
4622 | // NativeInt op Int = NativeInt |
4623 | NativeInt val1 = OpStackGet<NativeInt>(op1idx); |
4624 | NativeInt val2 = static_cast<NativeInt>(OpStackGet<INT32>(op2idx)); |
4625 | BinaryArithOvfOpWork<op, NativeInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
4626 | } |
4627 | } |
4628 | else if (cit2 == CORINFO_TYPE_NATIVEINT) |
4629 | { |
4630 | if (asUnsigned) |
4631 | { |
4632 | // UnsignedNativeInt op UnsignedNativeInt = UnsignedNativeInt |
4633 | NativeUInt val1 = OpStackGet<NativeUInt>(op1idx); |
4634 | NativeUInt val2 = OpStackGet<NativeUInt>(op2idx); |
4635 | BinaryArithOvfOpWork<op, NativeUInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
4636 | } |
4637 | else |
4638 | { |
4639 | // NativeInt op NativeInt = NativeInt |
4640 | NativeInt val1 = OpStackGet<NativeInt>(op1idx); |
4641 | NativeInt val2 = OpStackGet<NativeInt>(op2idx); |
4642 | BinaryArithOvfOpWork<op, NativeInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
4643 | } |
4644 | } |
4645 | else if (cit2 == CORINFO_TYPE_BYREF) |
4646 | { |
4647 | if (asUnsigned && op == BA_Add) |
4648 | { |
4649 | // UnsignedNativeInt op ByRef = ByRef |
4650 | NativeUInt val1 = OpStackGet<UINT32>(op1idx); |
4651 | NativeUInt val2 = OpStackGet<NativeUInt>(op2idx); |
4652 | BinaryArithOvfOpWork<op, NativeUInt, CORINFO_TYPE_BYREF, /*TypeIsUnchanged*/false>(val1, val2); |
4653 | } |
4654 | else |
4655 | { |
4656 | VerificationError("Illegal arithmetic overflow operation for native int and byref." ); |
4657 | } |
4658 | } |
4659 | else |
4660 | { |
4661 | VerificationError("Binary arithmetic overflow operation type mismatch (native int and ?)" ); |
4662 | } |
4663 | break; |
4664 | |
4665 | case CORINFO_TYPE_LONG: |
4666 | if (cit2 == CORINFO_TYPE_LONG || (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_NATIVEINT)) |
4667 | { |
4668 | if (asUnsigned) |
4669 | { |
4670 | // UnsignedLong op UnsignedLong = UnsignedLong |
4671 | UINT64 val1 = OpStackGet<UINT64>(op1idx); |
4672 | UINT64 val2 = OpStackGet<UINT64>(op2idx); |
4673 | BinaryArithOvfOpWork<op, UINT64, CORINFO_TYPE_LONG, /*TypeIsUnchanged*/true>(val1, val2); |
4674 | } |
4675 | else |
4676 | { |
4677 | // Long op Long = Long |
4678 | INT64 val1 = OpStackGet<INT64>(op1idx); |
4679 | INT64 val2 = OpStackGet<INT64>(op2idx); |
4680 | BinaryArithOvfOpWork<op, INT64, CORINFO_TYPE_LONG, /*TypeIsUnchanged*/true>(val1, val2); |
4681 | } |
4682 | } |
4683 | else |
4684 | { |
4685 | VerificationError("Binary arithmetic overflow operation type mismatch (long and ?)" ); |
4686 | } |
4687 | break; |
4688 | |
4689 | case CORINFO_TYPE_BYREF: |
4690 | if (asUnsigned && (op == BA_Add || op == BA_Sub)) |
4691 | { |
4692 | NativeUInt val1 = OpStackGet<NativeUInt>(op1idx); |
4693 | if (cit2 == CORINFO_TYPE_INT) |
4694 | { |
4695 | // ByRef +- UnsignedInt = ByRef |
4696 | NativeUInt val2 = static_cast<NativeUInt>(OpStackGet<INT32>(op2idx)); |
4697 | BinaryArithOvfOpWork<op, NativeUInt, CORINFO_TYPE_BYREF, /*TypeIsUnchanged*/true>(val1, val2); |
4698 | } |
4699 | else if (cit2 == CORINFO_TYPE_NATIVEINT) |
4700 | { |
4701 | // ByRef +- UnsignedNativeInt = ByRef |
4702 | NativeUInt val2 = OpStackGet<NativeUInt>(op2idx); |
4703 | BinaryArithOvfOpWork<op, NativeUInt, CORINFO_TYPE_BYREF, /*TypeIsUnchanged*/true>(val1, val2); |
4704 | } |
4705 | else if (cit2 == CORINFO_TYPE_BYREF) |
4706 | { |
4707 | if (op == BA_Sub) |
4708 | { |
4709 | // ByRef - ByRef = UnsignedNativeInt |
4710 | NativeUInt val2 = OpStackGet<NativeUInt>(op2idx); |
4711 | BinaryArithOvfOpWork<op, NativeUInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/false>(val1, val2); |
4712 | } |
4713 | else |
4714 | { |
4715 | VerificationError("Illegal arithmetic overflow operation for byref and byref: may only subtract managed pointer values." ); |
4716 | } |
4717 | } |
4718 | else |
4719 | { |
4720 | VerificationError("Binary arithmetic overflow operation not permitted on byref" ); |
4721 | } |
4722 | } |
4723 | else |
4724 | { |
4725 | if (!asUnsigned) |
4726 | { |
4727 | VerificationError("Signed binary arithmetic overflow operation not permitted on managed pointer values." ); |
4728 | } |
4729 | else |
4730 | { |
4731 | _ASSERTE_MSG(op == BA_Mul, "Must be an overflow operation; tested for Add || Sub above." ); |
4732 | VerificationError("Cannot multiply managed pointer values." ); |
4733 | } |
4734 | } |
4735 | break; |
4736 | |
4737 | default: |
4738 | _ASSERTE_MSG(false, "Non-stack-normal type on stack." ); |
4739 | } |
4740 | |
4741 | // In all cases: |
4742 | m_curStackHt--; |
4743 | } |
4744 | |
4745 | template<int op, typename T, CorInfoType cit, bool TypeIsUnchanged> |
4746 | void Interpreter::BinaryArithOvfOpWork(T val1, T val2) |
4747 | { |
4748 | CONTRACTL { |
4749 | SO_TOLERANT; |
4750 | THROWS; |
4751 | GC_TRIGGERS; |
4752 | MODE_COOPERATIVE; |
4753 | } CONTRACTL_END; |
4754 | |
4755 | ClrSafeInt<T> res; |
4756 | ClrSafeInt<T> safeV1(val1); |
4757 | ClrSafeInt<T> safeV2(val2); |
4758 | if (op == BA_Add) |
4759 | { |
4760 | res = safeV1 + safeV2; |
4761 | } |
4762 | else if (op == BA_Sub) |
4763 | { |
4764 | res = safeV1 - safeV2; |
4765 | } |
4766 | else if (op == BA_Mul) |
4767 | { |
4768 | res = safeV1 * safeV2; |
4769 | } |
4770 | else |
4771 | { |
4772 | _ASSERTE_MSG(false, "op should be one of the overflow ops..." ); |
4773 | } |
4774 | |
4775 | if (res.IsOverflow()) |
4776 | { |
4777 | ThrowOverflowException(); |
4778 | } |
4779 | |
4780 | unsigned residx = m_curStackHt - 2; |
4781 | OpStackSet<T>(residx, res.Value()); |
4782 | if (!TypeIsUnchanged) |
4783 | { |
4784 | OpStackTypeSet(residx, InterpreterType(cit)); |
4785 | } |
4786 | } |
4787 | |
4788 | template<int op> |
4789 | void Interpreter::BinaryIntOp() |
4790 | { |
4791 | CONTRACTL { |
4792 | SO_TOLERANT; |
4793 | THROWS; |
4794 | GC_TRIGGERS; |
4795 | MODE_COOPERATIVE; |
4796 | } CONTRACTL_END; |
4797 | |
4798 | assert(m_curStackHt >= 2); |
4799 | unsigned op1idx = m_curStackHt - 2; |
4800 | unsigned op2idx = m_curStackHt - 1; |
4801 | |
4802 | InterpreterType t1 = OpStackTypeGet(op1idx); |
4803 | CorInfoType cit1 = t1.ToCorInfoType(); |
4804 | assert(IsStackNormalType(cit1)); |
4805 | |
4806 | InterpreterType t2 = OpStackTypeGet(op2idx); |
4807 | CorInfoType cit2 = t2.ToCorInfoType(); |
4808 | assert(IsStackNormalType(cit2)); |
4809 | |
4810 | // In all cases belows, since "op" is compile-time constant, "if" chains on it should fold away. |
4811 | switch (cit1) |
4812 | { |
4813 | case CORINFO_TYPE_INT: |
4814 | if (cit2 == CORINFO_TYPE_INT) |
4815 | { |
4816 | // Int op Int = Int |
4817 | UINT32 val1 = OpStackGet<UINT32>(op1idx); |
4818 | UINT32 val2 = OpStackGet<UINT32>(op2idx); |
4819 | BinaryIntOpWork<op, UINT32, CORINFO_TYPE_INT, /*TypeIsUnchanged*/true>(val1, val2); |
4820 | } |
4821 | else if (cit2 == CORINFO_TYPE_NATIVEINT) |
4822 | { |
4823 | // Int op NativeInt = NativeInt |
4824 | NativeUInt val1 = static_cast<NativeUInt>(OpStackGet<INT32>(op1idx)); |
4825 | NativeUInt val2 = OpStackGet<NativeUInt>(op2idx); |
4826 | BinaryIntOpWork<op, NativeUInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/false>(val1, val2); |
4827 | } |
4828 | else if (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_BYREF) |
4829 | { |
4830 | // Int op NativeUInt = NativeUInt |
4831 | NativeUInt val1 = static_cast<NativeUInt>(OpStackGet<INT32>(op1idx)); |
4832 | NativeUInt val2 = OpStackGet<NativeUInt>(op2idx); |
4833 | BinaryIntOpWork<op, NativeUInt, CORINFO_TYPE_BYREF, /*TypeIsUnchanged*/false>(val1, val2); |
4834 | } |
4835 | else |
4836 | { |
4837 | VerificationError("Binary arithmetic operation type mismatch (int and ?)" ); |
4838 | } |
4839 | break; |
4840 | |
4841 | case CORINFO_TYPE_NATIVEINT: |
4842 | if (cit2 == CORINFO_TYPE_NATIVEINT) |
4843 | { |
4844 | // NativeInt op NativeInt = NativeInt |
4845 | NativeUInt val1 = OpStackGet<NativeUInt>(op1idx); |
4846 | NativeUInt val2 = OpStackGet<NativeUInt>(op2idx); |
4847 | BinaryIntOpWork<op, NativeUInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
4848 | } |
4849 | else if (cit2 == CORINFO_TYPE_INT) |
4850 | { |
4851 | // NativeInt op Int = NativeInt |
4852 | NativeUInt val1 = OpStackGet<NativeUInt>(op1idx); |
4853 | NativeUInt val2 = static_cast<NativeUInt>(OpStackGet<INT32>(op2idx)); |
4854 | BinaryIntOpWork<op, NativeUInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
4855 | } |
4856 | // CLI spec does not allow adding a native int and an int64. So use loose rules. |
4857 | else if (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_LONG) |
4858 | { |
4859 | // NativeInt op Int = NativeInt |
4860 | NativeUInt val1 = OpStackGet<NativeUInt>(op1idx); |
4861 | NativeUInt val2 = static_cast<NativeUInt>(OpStackGet<INT64>(op2idx)); |
4862 | BinaryIntOpWork<op, NativeUInt, CORINFO_TYPE_NATIVEINT, /*TypeIsUnchanged*/true>(val1, val2); |
4863 | } |
4864 | else |
4865 | { |
4866 | VerificationError("Binary arithmetic operation type mismatch (native int and ?)" ); |
4867 | } |
4868 | break; |
4869 | |
4870 | case CORINFO_TYPE_LONG: |
4871 | if (cit2 == CORINFO_TYPE_LONG || (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_NATIVEINT)) |
4872 | { |
4873 | // Long op Long = Long |
4874 | UINT64 val1 = OpStackGet<UINT64>(op1idx); |
4875 | UINT64 val2 = OpStackGet<UINT64>(op2idx); |
4876 | BinaryIntOpWork<op, UINT64, CORINFO_TYPE_LONG, /*TypeIsUnchanged*/true>(val1, val2); |
4877 | } |
4878 | else |
4879 | { |
4880 | VerificationError("Binary arithmetic operation type mismatch (long and ?)" ); |
4881 | } |
4882 | break; |
4883 | |
4884 | default: |
4885 | VerificationError("Illegal operation for non-integral data type." ); |
4886 | } |
4887 | |
4888 | // In all cases: |
4889 | m_curStackHt--; |
4890 | } |
4891 | |
4892 | template<int op, typename T, CorInfoType cit, bool TypeIsUnchanged> |
4893 | void Interpreter::BinaryIntOpWork(T val1, T val2) |
4894 | { |
4895 | T res; |
4896 | if (op == BIO_And) |
4897 | { |
4898 | res = val1 & val2; |
4899 | } |
4900 | else if (op == BIO_Or) |
4901 | { |
4902 | res = val1 | val2; |
4903 | } |
4904 | else if (op == BIO_Xor) |
4905 | { |
4906 | res = val1 ^ val2; |
4907 | } |
4908 | else |
4909 | { |
4910 | assert(op == BIO_DivUn || op == BIO_RemUn); |
4911 | if (val2 == 0) |
4912 | { |
4913 | ThrowDivideByZero(); |
4914 | } |
4915 | else if (val2 == -1 && val1 == static_cast<T>(((UINT64)1) << (sizeof(T)*8 - 1))) // min int / -1 is not representable. |
4916 | { |
4917 | ThrowSysArithException(); |
4918 | } |
4919 | // Otherwise... |
4920 | if (op == BIO_DivUn) |
4921 | { |
4922 | res = val1 / val2; |
4923 | } |
4924 | else |
4925 | { |
4926 | res = val1 % val2; |
4927 | } |
4928 | } |
4929 | |
4930 | unsigned residx = m_curStackHt - 2; |
4931 | OpStackSet<T>(residx, res); |
4932 | if (!TypeIsUnchanged) |
4933 | { |
4934 | OpStackTypeSet(residx, InterpreterType(cit)); |
4935 | } |
4936 | } |
4937 | |
4938 | template<int op> |
4939 | void Interpreter::ShiftOp() |
4940 | { |
4941 | CONTRACTL { |
4942 | SO_TOLERANT; |
4943 | NOTHROW; |
4944 | GC_NOTRIGGER; |
4945 | MODE_COOPERATIVE; |
4946 | } CONTRACTL_END; |
4947 | |
4948 | assert(m_curStackHt >= 2); |
4949 | unsigned op1idx = m_curStackHt - 2; |
4950 | unsigned op2idx = m_curStackHt - 1; |
4951 | |
4952 | InterpreterType t1 = OpStackTypeGet(op1idx); |
4953 | CorInfoType cit1 = t1.ToCorInfoType(); |
4954 | assert(IsStackNormalType(cit1)); |
4955 | |
4956 | InterpreterType t2 = OpStackTypeGet(op2idx); |
4957 | CorInfoType cit2 = t2.ToCorInfoType(); |
4958 | assert(IsStackNormalType(cit2)); |
4959 | |
4960 | // In all cases belows, since "op" is compile-time constant, "if" chains on it should fold away. |
4961 | switch (cit1) |
4962 | { |
4963 | case CORINFO_TYPE_INT: |
4964 | ShiftOpWork<op, INT32, UINT32>(op1idx, cit2); |
4965 | break; |
4966 | |
4967 | case CORINFO_TYPE_NATIVEINT: |
4968 | ShiftOpWork<op, NativeInt, NativeUInt>(op1idx, cit2); |
4969 | break; |
4970 | |
4971 | case CORINFO_TYPE_LONG: |
4972 | ShiftOpWork<op, INT64, UINT64>(op1idx, cit2); |
4973 | break; |
4974 | |
4975 | default: |
4976 | VerificationError("Illegal value type for shift operation." ); |
4977 | break; |
4978 | } |
4979 | |
4980 | m_curStackHt--; |
4981 | } |
4982 | |
4983 | template<int op, typename T, typename UT> |
4984 | void Interpreter::ShiftOpWork(unsigned op1idx, CorInfoType cit2) |
4985 | { |
4986 | T val = OpStackGet<T>(op1idx); |
4987 | unsigned op2idx = op1idx + 1; |
4988 | T res = 0; |
4989 | |
4990 | if (cit2 == CORINFO_TYPE_INT) |
4991 | { |
4992 | INT32 shiftAmt = OpStackGet<INT32>(op2idx); |
4993 | if (op == CEE_SHL) |
4994 | { |
4995 | res = val << shiftAmt; // TODO: Check that C++ semantics matches IL. |
4996 | } |
4997 | else if (op == CEE_SHR) |
4998 | { |
4999 | res = val >> shiftAmt; |
5000 | } |
5001 | else |
5002 | { |
5003 | assert(op == CEE_SHR_UN); |
5004 | res = (static_cast<UT>(val)) >> shiftAmt; |
5005 | } |
5006 | } |
5007 | else if (cit2 == CORINFO_TYPE_NATIVEINT) |
5008 | { |
5009 | NativeInt shiftAmt = OpStackGet<NativeInt>(op2idx); |
5010 | if (op == CEE_SHL) |
5011 | { |
5012 | res = val << shiftAmt; // TODO: Check that C++ semantics matches IL. |
5013 | } |
5014 | else if (op == CEE_SHR) |
5015 | { |
5016 | res = val >> shiftAmt; |
5017 | } |
5018 | else |
5019 | { |
5020 | assert(op == CEE_SHR_UN); |
5021 | res = (static_cast<UT>(val)) >> shiftAmt; |
5022 | } |
5023 | } |
5024 | else |
5025 | { |
5026 | VerificationError("Operand type mismatch for shift operator." ); |
5027 | } |
5028 | OpStackSet<T>(op1idx, res); |
5029 | } |
5030 | |
5031 | |
5032 | void Interpreter::Neg() |
5033 | { |
5034 | CONTRACTL { |
5035 | SO_TOLERANT; |
5036 | NOTHROW; |
5037 | GC_NOTRIGGER; |
5038 | MODE_COOPERATIVE; |
5039 | } CONTRACTL_END; |
5040 | |
5041 | assert(m_curStackHt >= 1); |
5042 | unsigned opidx = m_curStackHt - 1; |
5043 | |
5044 | InterpreterType t1 = OpStackTypeGet(opidx); |
5045 | CorInfoType cit1 = t1.ToCorInfoType(); |
5046 | assert(IsStackNormalType(cit1)); |
5047 | |
5048 | switch (cit1) |
5049 | { |
5050 | case CORINFO_TYPE_INT: |
5051 | OpStackSet<INT32>(opidx, -OpStackGet<INT32>(opidx)); |
5052 | break; |
5053 | |
5054 | case CORINFO_TYPE_NATIVEINT: |
5055 | OpStackSet<NativeInt>(opidx, -OpStackGet<NativeInt>(opidx)); |
5056 | break; |
5057 | |
5058 | case CORINFO_TYPE_LONG: |
5059 | OpStackSet<INT64>(opidx, -OpStackGet<INT64>(opidx)); |
5060 | break; |
5061 | |
5062 | case CORINFO_TYPE_FLOAT: |
5063 | OpStackSet<float>(opidx, -OpStackGet<float>(opidx)); |
5064 | break; |
5065 | |
5066 | case CORINFO_TYPE_DOUBLE: |
5067 | OpStackSet<double>(opidx, -OpStackGet<double>(opidx)); |
5068 | break; |
5069 | |
5070 | default: |
5071 | VerificationError("Illegal operand type for Neg operation." ); |
5072 | } |
5073 | } |
5074 | |
5075 | void Interpreter::Not() |
5076 | { |
5077 | CONTRACTL { |
5078 | SO_TOLERANT; |
5079 | NOTHROW; |
5080 | GC_NOTRIGGER; |
5081 | MODE_COOPERATIVE; |
5082 | } CONTRACTL_END; |
5083 | |
5084 | assert(m_curStackHt >= 1); |
5085 | unsigned opidx = m_curStackHt - 1; |
5086 | |
5087 | InterpreterType t1 = OpStackTypeGet(opidx); |
5088 | CorInfoType cit1 = t1.ToCorInfoType(); |
5089 | assert(IsStackNormalType(cit1)); |
5090 | |
5091 | switch (cit1) |
5092 | { |
5093 | case CORINFO_TYPE_INT: |
5094 | OpStackSet<INT32>(opidx, ~OpStackGet<INT32>(opidx)); |
5095 | break; |
5096 | |
5097 | case CORINFO_TYPE_NATIVEINT: |
5098 | OpStackSet<NativeInt>(opidx, ~OpStackGet<NativeInt>(opidx)); |
5099 | break; |
5100 | |
5101 | case CORINFO_TYPE_LONG: |
5102 | OpStackSet<INT64>(opidx, ~OpStackGet<INT64>(opidx)); |
5103 | break; |
5104 | |
5105 | default: |
5106 | VerificationError("Illegal operand type for Not operation." ); |
5107 | } |
5108 | } |
5109 | |
5110 | template<typename T, bool TIsUnsigned, bool TCanHoldPtr, bool TIsShort, CorInfoType cit> |
5111 | void Interpreter::Conv() |
5112 | { |
5113 | CONTRACTL { |
5114 | SO_TOLERANT; |
5115 | NOTHROW; |
5116 | GC_NOTRIGGER; |
5117 | MODE_COOPERATIVE; |
5118 | } CONTRACTL_END; |
5119 | |
5120 | assert(m_curStackHt >= 1); |
5121 | unsigned opidx = m_curStackHt - 1; |
5122 | |
5123 | InterpreterType t1 = OpStackTypeGet(opidx); |
5124 | CorInfoType cit1 = t1.ToCorInfoType(); |
5125 | assert(IsStackNormalType(cit1)); |
5126 | |
5127 | T val; |
5128 | switch (cit1) |
5129 | { |
5130 | case CORINFO_TYPE_INT: |
5131 | if (TIsUnsigned) |
5132 | { |
5133 | // Must convert the 32 bit value to unsigned first, so that we zero-extend if necessary. |
5134 | val = static_cast<T>(static_cast<UINT32>(OpStackGet<INT32>(opidx))); |
5135 | } |
5136 | else |
5137 | { |
5138 | val = static_cast<T>(OpStackGet<INT32>(opidx)); |
5139 | } |
5140 | break; |
5141 | |
5142 | case CORINFO_TYPE_NATIVEINT: |
5143 | if (TIsUnsigned) |
5144 | { |
5145 | // NativeInt might be 32 bits, so convert to unsigned before possibly widening. |
5146 | val = static_cast<T>(static_cast<NativeUInt>(OpStackGet<NativeInt>(opidx))); |
5147 | } |
5148 | else |
5149 | { |
5150 | val = static_cast<T>(OpStackGet<NativeInt>(opidx)); |
5151 | } |
5152 | break; |
5153 | |
5154 | case CORINFO_TYPE_LONG: |
5155 | val = static_cast<T>(OpStackGet<INT64>(opidx)); |
5156 | break; |
5157 | |
5158 | // TODO: Make sure that the C++ conversions do the right thing (truncate to zero...) |
5159 | case CORINFO_TYPE_FLOAT: |
5160 | val = static_cast<T>(OpStackGet<float>(opidx)); |
5161 | break; |
5162 | |
5163 | case CORINFO_TYPE_DOUBLE: |
5164 | val = static_cast<T>(OpStackGet<double>(opidx)); |
5165 | break; |
5166 | |
5167 | case CORINFO_TYPE_BYREF: |
5168 | case CORINFO_TYPE_CLASS: |
5169 | case CORINFO_TYPE_STRING: |
5170 | if (!TCanHoldPtr && !s_InterpreterLooseRules) |
5171 | { |
5172 | VerificationError("Conversion of pointer value to type that can't hold its value." ); |
5173 | } |
5174 | |
5175 | // Otherwise... |
5176 | // (Must first convert to NativeInt, because the compiler believes this might be applied for T = |
5177 | // float or double. It won't, by the test above, and the extra cast shouldn't generate any code...) |
5178 | val = static_cast<T>(reinterpret_cast<NativeInt>(OpStackGet<void*>(opidx))); |
5179 | break; |
5180 | |
5181 | default: |
5182 | VerificationError("Illegal operand type for conv.* operation." ); |
5183 | UNREACHABLE(); |
5184 | } |
5185 | |
5186 | if (TIsShort) |
5187 | { |
5188 | OpStackSet<INT32>(opidx, static_cast<INT32>(val)); |
5189 | } |
5190 | else |
5191 | { |
5192 | OpStackSet<T>(opidx, val); |
5193 | } |
5194 | |
5195 | OpStackTypeSet(opidx, InterpreterType(cit)); |
5196 | } |
5197 | |
5198 | |
5199 | void Interpreter::ConvRUn() |
5200 | { |
5201 | CONTRACTL { |
5202 | SO_TOLERANT; |
5203 | NOTHROW; |
5204 | GC_NOTRIGGER; |
5205 | MODE_COOPERATIVE; |
5206 | } CONTRACTL_END; |
5207 | |
5208 | assert(m_curStackHt >= 1); |
5209 | unsigned opidx = m_curStackHt - 1; |
5210 | |
5211 | InterpreterType t1 = OpStackTypeGet(opidx); |
5212 | CorInfoType cit1 = t1.ToCorInfoType(); |
5213 | assert(IsStackNormalType(cit1)); |
5214 | |
5215 | switch (cit1) |
5216 | { |
5217 | case CORINFO_TYPE_INT: |
5218 | OpStackSet<double>(opidx, static_cast<double>(OpStackGet<UINT32>(opidx))); |
5219 | break; |
5220 | |
5221 | case CORINFO_TYPE_NATIVEINT: |
5222 | OpStackSet<double>(opidx, static_cast<double>(OpStackGet<NativeUInt>(opidx))); |
5223 | break; |
5224 | |
5225 | case CORINFO_TYPE_LONG: |
5226 | OpStackSet<double>(opidx, static_cast<double>(OpStackGet<UINT64>(opidx))); |
5227 | break; |
5228 | |
5229 | case CORINFO_TYPE_DOUBLE: |
5230 | return; |
5231 | |
5232 | default: |
5233 | VerificationError("Illegal operand type for conv.r.un operation." ); |
5234 | } |
5235 | |
5236 | OpStackTypeSet(opidx, InterpreterType(CORINFO_TYPE_DOUBLE)); |
5237 | } |
5238 | |
5239 | template<typename T, INT64 TMin, UINT64 TMax, bool TCanHoldPtr, CorInfoType cit> |
5240 | void Interpreter::ConvOvf() |
5241 | { |
5242 | CONTRACTL { |
5243 | SO_TOLERANT; |
5244 | THROWS; |
5245 | GC_TRIGGERS; |
5246 | MODE_COOPERATIVE; |
5247 | } CONTRACTL_END; |
5248 | |
5249 | assert(m_curStackHt >= 1); |
5250 | unsigned opidx = m_curStackHt - 1; |
5251 | |
5252 | InterpreterType t1 = OpStackTypeGet(opidx); |
5253 | CorInfoType cit1 = t1.ToCorInfoType(); |
5254 | assert(IsStackNormalType(cit1)); |
5255 | |
5256 | switch (cit1) |
5257 | { |
5258 | case CORINFO_TYPE_INT: |
5259 | { |
5260 | INT32 i4 = OpStackGet<INT32>(opidx); |
5261 | if (!FitsIn<T>(i4)) |
5262 | { |
5263 | ThrowOverflowException(); |
5264 | } |
5265 | OpStackSet<T>(opidx, static_cast<T>(i4)); |
5266 | } |
5267 | break; |
5268 | |
5269 | case CORINFO_TYPE_NATIVEINT: |
5270 | { |
5271 | NativeInt i = OpStackGet<NativeInt>(opidx); |
5272 | if (!FitsIn<T>(i)) |
5273 | { |
5274 | ThrowOverflowException(); |
5275 | } |
5276 | OpStackSet<T>(opidx, static_cast<T>(i)); |
5277 | } |
5278 | break; |
5279 | |
5280 | case CORINFO_TYPE_LONG: |
5281 | { |
5282 | INT64 i8 = OpStackGet<INT64>(opidx); |
5283 | if (!FitsIn<T>(i8)) |
5284 | { |
5285 | ThrowOverflowException(); |
5286 | } |
5287 | OpStackSet<T>(opidx, static_cast<T>(i8)); |
5288 | } |
5289 | break; |
5290 | |
5291 | // Make sure that the C++ conversions do the right thing (truncate to zero...) |
5292 | case CORINFO_TYPE_FLOAT: |
5293 | { |
5294 | float f = OpStackGet<float>(opidx); |
5295 | if (!FloatFitsInIntType<TMin, TMax>(f)) |
5296 | { |
5297 | ThrowOverflowException(); |
5298 | } |
5299 | OpStackSet<T>(opidx, static_cast<T>(f)); |
5300 | } |
5301 | break; |
5302 | |
5303 | case CORINFO_TYPE_DOUBLE: |
5304 | { |
5305 | double d = OpStackGet<double>(opidx); |
5306 | if (!DoubleFitsInIntType<TMin, TMax>(d)) |
5307 | { |
5308 | ThrowOverflowException(); |
5309 | } |
5310 | OpStackSet<T>(opidx, static_cast<T>(d)); |
5311 | } |
5312 | break; |
5313 | |
5314 | case CORINFO_TYPE_BYREF: |
5315 | case CORINFO_TYPE_CLASS: |
5316 | case CORINFO_TYPE_STRING: |
5317 | if (!TCanHoldPtr) |
5318 | { |
5319 | VerificationError("Conversion of pointer value to type that can't hold its value." ); |
5320 | } |
5321 | |
5322 | // Otherwise... |
5323 | // (Must first convert to NativeInt, because the compiler believes this might be applied for T = |
5324 | // float or double. It won't, by the test above, and the extra cast shouldn't generate any code... |
5325 | OpStackSet<T>(opidx, static_cast<T>(reinterpret_cast<NativeInt>(OpStackGet<void*>(opidx)))); |
5326 | break; |
5327 | |
5328 | default: |
5329 | VerificationError("Illegal operand type for conv.ovf.* operation." ); |
5330 | } |
5331 | |
5332 | _ASSERTE_MSG(IsStackNormalType(cit), "Precondition." ); |
5333 | OpStackTypeSet(opidx, InterpreterType(cit)); |
5334 | } |
5335 | |
5336 | template<typename T, INT64 TMin, UINT64 TMax, bool TCanHoldPtr, CorInfoType cit> |
5337 | void Interpreter::ConvOvfUn() |
5338 | { |
5339 | CONTRACTL { |
5340 | SO_TOLERANT; |
5341 | THROWS; |
5342 | GC_TRIGGERS; |
5343 | MODE_COOPERATIVE; |
5344 | } CONTRACTL_END; |
5345 | |
5346 | assert(m_curStackHt >= 1); |
5347 | unsigned opidx = m_curStackHt - 1; |
5348 | |
5349 | InterpreterType t1 = OpStackTypeGet(opidx); |
5350 | CorInfoType cit1 = t1.ToCorInfoType(); |
5351 | assert(IsStackNormalType(cit1)); |
5352 | |
5353 | switch (cit1) |
5354 | { |
5355 | case CORINFO_TYPE_INT: |
5356 | { |
5357 | UINT32 ui4 = OpStackGet<UINT32>(opidx); |
5358 | if (!FitsIn<T>(ui4)) |
5359 | { |
5360 | ThrowOverflowException(); |
5361 | } |
5362 | OpStackSet<T>(opidx, static_cast<T>(ui4)); |
5363 | } |
5364 | break; |
5365 | |
5366 | case CORINFO_TYPE_NATIVEINT: |
5367 | { |
5368 | NativeUInt ui = OpStackGet<NativeUInt>(opidx); |
5369 | if (!FitsIn<T>(ui)) |
5370 | { |
5371 | ThrowOverflowException(); |
5372 | } |
5373 | OpStackSet<T>(opidx, static_cast<T>(ui)); |
5374 | } |
5375 | break; |
5376 | |
5377 | case CORINFO_TYPE_LONG: |
5378 | { |
5379 | UINT64 ui8 = OpStackGet<UINT64>(opidx); |
5380 | if (!FitsIn<T>(ui8)) |
5381 | { |
5382 | ThrowOverflowException(); |
5383 | } |
5384 | OpStackSet<T>(opidx, static_cast<T>(ui8)); |
5385 | } |
5386 | break; |
5387 | |
5388 | // Make sure that the C++ conversions do the right thing (truncate to zero...) |
5389 | case CORINFO_TYPE_FLOAT: |
5390 | { |
5391 | float f = OpStackGet<float>(opidx); |
5392 | if (!FloatFitsInIntType<TMin, TMax>(f)) |
5393 | { |
5394 | ThrowOverflowException(); |
5395 | } |
5396 | OpStackSet<T>(opidx, static_cast<T>(f)); |
5397 | } |
5398 | break; |
5399 | |
5400 | case CORINFO_TYPE_DOUBLE: |
5401 | { |
5402 | double d = OpStackGet<double>(opidx); |
5403 | if (!DoubleFitsInIntType<TMin, TMax>(d)) |
5404 | { |
5405 | ThrowOverflowException(); |
5406 | } |
5407 | OpStackSet<T>(opidx, static_cast<T>(d)); |
5408 | } |
5409 | break; |
5410 | |
5411 | case CORINFO_TYPE_BYREF: |
5412 | case CORINFO_TYPE_CLASS: |
5413 | case CORINFO_TYPE_STRING: |
5414 | if (!TCanHoldPtr) |
5415 | { |
5416 | VerificationError("Conversion of pointer value to type that can't hold its value." ); |
5417 | } |
5418 | |
5419 | // Otherwise... |
5420 | // (Must first convert to NativeInt, because the compiler believes this might be applied for T = |
5421 | // float or double. It won't, by the test above, and the extra cast shouldn't generate any code... |
5422 | OpStackSet<T>(opidx, static_cast<T>(reinterpret_cast<NativeInt>(OpStackGet<void*>(opidx)))); |
5423 | break; |
5424 | |
5425 | default: |
5426 | VerificationError("Illegal operand type for conv.ovf.*.un operation." ); |
5427 | } |
5428 | |
5429 | _ASSERTE_MSG(IsStackNormalType(cit), "Precondition." ); |
5430 | OpStackTypeSet(opidx, InterpreterType(cit)); |
5431 | } |
5432 | |
5433 | void Interpreter::LdObj() |
5434 | { |
5435 | CONTRACTL { |
5436 | SO_TOLERANT; |
5437 | THROWS; |
5438 | GC_TRIGGERS; |
5439 | MODE_COOPERATIVE; |
5440 | } CONTRACTL_END; |
5441 | |
5442 | BarrierIfVolatile(); |
5443 | |
5444 | assert(m_curStackHt > 0); |
5445 | unsigned ind = m_curStackHt - 1; |
5446 | |
5447 | #ifdef _DEBUG |
5448 | CorInfoType cit = OpStackTypeGet(ind).ToCorInfoType(); |
5449 | _ASSERTE_MSG(IsValidPointerType(cit), "Expect pointer on stack" ); |
5450 | #endif // _DEBUG |
5451 | |
5452 | #if INTERP_TRACING |
5453 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_LdObj]); |
5454 | #endif // INTERP_TRACING |
5455 | |
5456 | // TODO: GetTypeFromToken also uses GCX_PREEMP(); can we merge it with the getClassAttribs() block below, and do it just once? |
5457 | CORINFO_CLASS_HANDLE clsHnd = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_LdObj)); |
5458 | DWORD clsAttribs; |
5459 | { |
5460 | GCX_PREEMP(); |
5461 | clsAttribs = m_interpCeeInfo.getClassAttribs(clsHnd); |
5462 | } |
5463 | |
5464 | void* src = OpStackGet<void*>(ind); |
5465 | ThrowOnInvalidPointer(src); |
5466 | |
5467 | if (clsAttribs & CORINFO_FLG_VALUECLASS) |
5468 | { |
5469 | LdObjValueClassWork(clsHnd, ind, src); |
5470 | } |
5471 | else |
5472 | { |
5473 | OpStackSet<void*>(ind, *reinterpret_cast<void**>(src)); |
5474 | OpStackTypeSet(ind, InterpreterType(CORINFO_TYPE_CLASS)); |
5475 | } |
5476 | m_ILCodePtr += 5; |
5477 | } |
5478 | |
5479 | void Interpreter::LdObjValueClassWork(CORINFO_CLASS_HANDLE valueClsHnd, unsigned ind, void* src) |
5480 | { |
5481 | CONTRACTL { |
5482 | SO_TOLERANT; |
5483 | THROWS; |
5484 | GC_TRIGGERS; |
5485 | MODE_COOPERATIVE; |
5486 | } CONTRACTL_END; |
5487 | |
5488 | // "src" is a byref, which may be into an object. GCPROTECT for the call below. |
5489 | GCPROTECT_BEGININTERIOR(src); |
5490 | |
5491 | InterpreterType it = InterpreterType(&m_interpCeeInfo, valueClsHnd); |
5492 | size_t sz = it.Size(&m_interpCeeInfo); |
5493 | // Note that the memcpy's below are permissible because the destination is in the operand stack. |
5494 | if (sz > sizeof(INT64)) |
5495 | { |
5496 | void* dest = LargeStructOperandStackPush(sz); |
5497 | memcpy(dest, src, sz); |
5498 | OpStackSet<void*>(ind, dest); |
5499 | } |
5500 | else |
5501 | { |
5502 | OpStackSet<INT64>(ind, GetSmallStructValue(src, sz)); |
5503 | } |
5504 | |
5505 | OpStackTypeSet(ind, it.StackNormalize()); |
5506 | |
5507 | GCPROTECT_END(); |
5508 | } |
5509 | |
5510 | CORINFO_CLASS_HANDLE Interpreter::GetTypeFromToken(BYTE* codePtr, CorInfoTokenKind tokKind InterpTracingArg(ResolveTokenKind rtk)) |
5511 | { |
5512 | CONTRACTL { |
5513 | SO_TOLERANT; |
5514 | THROWS; |
5515 | GC_TRIGGERS; |
5516 | MODE_COOPERATIVE; |
5517 | } CONTRACTL_END; |
5518 | |
5519 | GCX_PREEMP(); |
5520 | |
5521 | CORINFO_RESOLVED_TOKEN typeTok; |
5522 | ResolveToken(&typeTok, getU4LittleEndian(codePtr), tokKind InterpTracingArg(rtk)); |
5523 | return typeTok.hClass; |
5524 | } |
5525 | |
5526 | bool Interpreter::IsValidPointerType(CorInfoType cit) |
5527 | { |
5528 | bool isValid = (cit == CORINFO_TYPE_NATIVEINT || cit == CORINFO_TYPE_BYREF); |
5529 | #if defined(_AMD64_) |
5530 | isValid = isValid || (s_InterpreterLooseRules && cit == CORINFO_TYPE_LONG); |
5531 | #endif |
5532 | return isValid; |
5533 | } |
5534 | |
5535 | void Interpreter::CpObj() |
5536 | { |
5537 | CONTRACTL { |
5538 | SO_TOLERANT; |
5539 | THROWS; |
5540 | GC_TRIGGERS; |
5541 | MODE_COOPERATIVE; |
5542 | } CONTRACTL_END; |
5543 | |
5544 | assert(m_curStackHt >= 2); |
5545 | unsigned destInd = m_curStackHt - 2; |
5546 | unsigned srcInd = m_curStackHt - 1; |
5547 | |
5548 | #ifdef _DEBUG |
5549 | // Check that src and dest are both pointer types. |
5550 | CorInfoType cit = OpStackTypeGet(destInd).ToCorInfoType(); |
5551 | _ASSERTE_MSG(IsValidPointerType(cit), "Expect pointer on stack for dest of cpobj" ); |
5552 | |
5553 | cit = OpStackTypeGet(srcInd).ToCorInfoType(); |
5554 | _ASSERTE_MSG(IsValidPointerType(cit), "Expect pointer on stack for src of cpobj" ); |
5555 | #endif // _DEBUG |
5556 | |
5557 | #if INTERP_TRACING |
5558 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_CpObj]); |
5559 | #endif // INTERP_TRACING |
5560 | |
5561 | CORINFO_CLASS_HANDLE clsHnd = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_CpObj)); |
5562 | DWORD clsAttribs; |
5563 | { |
5564 | GCX_PREEMP(); |
5565 | clsAttribs = m_interpCeeInfo.getClassAttribs(clsHnd); |
5566 | } |
5567 | |
5568 | void* dest = OpStackGet<void*>(destInd); |
5569 | void* src = OpStackGet<void*>(srcInd); |
5570 | |
5571 | ThrowOnInvalidPointer(dest); |
5572 | ThrowOnInvalidPointer(src); |
5573 | |
5574 | // dest and src are vulnerable byrefs. |
5575 | GCX_FORBID(); |
5576 | |
5577 | if (clsAttribs & CORINFO_FLG_VALUECLASS) |
5578 | { |
5579 | CopyValueClassUnchecked(dest, src, GetMethodTableFromClsHnd(clsHnd)); |
5580 | } |
5581 | else |
5582 | { |
5583 | OBJECTREF val = *reinterpret_cast<OBJECTREF*>(src); |
5584 | SetObjectReferenceUnchecked(reinterpret_cast<OBJECTREF*>(dest), val); |
5585 | } |
5586 | m_curStackHt -= 2; |
5587 | m_ILCodePtr += 5; |
5588 | } |
5589 | |
5590 | void Interpreter::StObj() |
5591 | { |
5592 | CONTRACTL { |
5593 | SO_TOLERANT; |
5594 | THROWS; |
5595 | GC_TRIGGERS; |
5596 | MODE_COOPERATIVE; |
5597 | } CONTRACTL_END; |
5598 | |
5599 | assert(m_curStackHt >= 2); |
5600 | unsigned destInd = m_curStackHt - 2; |
5601 | unsigned valInd = m_curStackHt - 1; |
5602 | |
5603 | #ifdef _DEBUG |
5604 | // Check that dest is a pointer type. |
5605 | CorInfoType cit = OpStackTypeGet(destInd).ToCorInfoType(); |
5606 | _ASSERTE_MSG(IsValidPointerType(cit), "Expect pointer on stack for dest of stobj" ); |
5607 | #endif // _DEBUG |
5608 | |
5609 | #if INTERP_TRACING |
5610 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_StObj]); |
5611 | #endif // INTERP_TRACING |
5612 | |
5613 | CORINFO_CLASS_HANDLE clsHnd = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_StObj)); |
5614 | DWORD clsAttribs; |
5615 | { |
5616 | GCX_PREEMP(); |
5617 | clsAttribs = m_interpCeeInfo.getClassAttribs(clsHnd); |
5618 | } |
5619 | |
5620 | if (clsAttribs & CORINFO_FLG_VALUECLASS) |
5621 | { |
5622 | MethodTable* clsMT = GetMethodTableFromClsHnd(clsHnd); |
5623 | size_t sz; |
5624 | { |
5625 | GCX_PREEMP(); |
5626 | sz = getClassSize(clsHnd); |
5627 | } |
5628 | |
5629 | // Note that "dest" might be a pointer into the heap. It is therefore important |
5630 | // to calculate it *after* any PREEMP transitions at which we might do a GC. |
5631 | void* dest = OpStackGet<void*>(destInd); |
5632 | ThrowOnInvalidPointer(dest); |
5633 | |
5634 | #ifdef _DEBUG |
5635 | // Try and validate types |
5636 | InterpreterType vit = OpStackTypeGet(valInd); |
5637 | CorInfoType vitc = vit.ToCorInfoType(); |
5638 | |
5639 | if (vitc == CORINFO_TYPE_VALUECLASS) |
5640 | { |
5641 | CORINFO_CLASS_HANDLE vClsHnd = vit.ToClassHandle(); |
5642 | const bool isClass = (vClsHnd == clsHnd); |
5643 | const bool isPrim = (vitc == CorInfoTypeStackNormalize(GetTypeForPrimitiveValueClass(clsHnd))); |
5644 | bool isShared = false; |
5645 | |
5646 | // If operand type is shared we need a more complex check; |
5647 | // the IL type may not be shared |
5648 | if (!isPrim && !isClass) |
5649 | { |
5650 | DWORD vClsAttribs; |
5651 | { |
5652 | GCX_PREEMP(); |
5653 | vClsAttribs = m_interpCeeInfo.getClassAttribs(vClsHnd); |
5654 | } |
5655 | |
5656 | if ((vClsAttribs & CORINFO_FLG_SHAREDINST) != 0) |
5657 | { |
5658 | MethodTable* clsMT2 = clsMT->GetCanonicalMethodTable(); |
5659 | if (((CORINFO_CLASS_HANDLE) clsMT2) == vClsHnd) |
5660 | { |
5661 | isShared = true; |
5662 | } |
5663 | } |
5664 | } |
5665 | |
5666 | assert(isClass || isPrim || isShared); |
5667 | } |
5668 | else |
5669 | { |
5670 | const bool isSz = s_InterpreterLooseRules && sz <= sizeof(dest); |
5671 | assert(isSz); |
5672 | } |
5673 | |
5674 | #endif // _DEBUG |
5675 | |
5676 | GCX_FORBID(); |
5677 | |
5678 | if (sz > sizeof(INT64)) |
5679 | { |
5680 | // Large struct case -- ostack entry is pointer. |
5681 | void* src = OpStackGet<void*>(valInd); |
5682 | CopyValueClassUnchecked(dest, src, clsMT); |
5683 | LargeStructOperandStackPop(sz, src); |
5684 | } |
5685 | else |
5686 | { |
5687 | // The ostack entry contains the struct value. |
5688 | CopyValueClassUnchecked(dest, OpStackGetAddr(valInd, sz), clsMT); |
5689 | } |
5690 | } |
5691 | else |
5692 | { |
5693 | // The ostack entry is an object reference. |
5694 | assert(OpStackTypeGet(valInd).ToCorInfoType() == CORINFO_TYPE_CLASS); |
5695 | |
5696 | // Note that "dest" might be a pointer into the heap. It is therefore important |
5697 | // to calculate it *after* any PREEMP transitions at which we might do a GC. (Thus, |
5698 | // we have to duplicate this code with the case above. |
5699 | void* dest = OpStackGet<void*>(destInd); |
5700 | ThrowOnInvalidPointer(dest); |
5701 | |
5702 | GCX_FORBID(); |
5703 | |
5704 | OBJECTREF val = ObjectToOBJECTREF(OpStackGet<Object*>(valInd)); |
5705 | SetObjectReferenceUnchecked(reinterpret_cast<OBJECTREF*>(dest), val); |
5706 | } |
5707 | |
5708 | m_curStackHt -= 2; |
5709 | m_ILCodePtr += 5; |
5710 | |
5711 | BarrierIfVolatile(); |
5712 | } |
5713 | |
5714 | void Interpreter::InitObj() |
5715 | { |
5716 | CONTRACTL { |
5717 | SO_TOLERANT; |
5718 | THROWS; |
5719 | GC_TRIGGERS; |
5720 | MODE_COOPERATIVE; |
5721 | } CONTRACTL_END; |
5722 | |
5723 | assert(m_curStackHt >= 1); |
5724 | unsigned destInd = m_curStackHt - 1; |
5725 | #ifdef _DEBUG |
5726 | // Check that src and dest are both pointer types. |
5727 | CorInfoType cit = OpStackTypeGet(destInd).ToCorInfoType(); |
5728 | _ASSERTE_MSG(IsValidPointerType(cit), "Expect pointer on stack" ); |
5729 | #endif // _DEBUG |
5730 | |
5731 | #if INTERP_TRACING |
5732 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_InitObj]); |
5733 | #endif // INTERP_TRACING |
5734 | |
5735 | CORINFO_CLASS_HANDLE clsHnd = GetTypeFromToken(m_ILCodePtr + 2, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_InitObj)); |
5736 | size_t valueClassSz = 0; |
5737 | |
5738 | DWORD clsAttribs; |
5739 | { |
5740 | GCX_PREEMP(); |
5741 | clsAttribs = m_interpCeeInfo.getClassAttribs(clsHnd); |
5742 | if (clsAttribs & CORINFO_FLG_VALUECLASS) |
5743 | { |
5744 | valueClassSz = getClassSize(clsHnd); |
5745 | } |
5746 | } |
5747 | |
5748 | void* dest = OpStackGet<void*>(destInd); |
5749 | ThrowOnInvalidPointer(dest); |
5750 | |
5751 | // dest is a vulnerable byref. |
5752 | GCX_FORBID(); |
5753 | |
5754 | if (clsAttribs & CORINFO_FLG_VALUECLASS) |
5755 | { |
5756 | memset(dest, 0, valueClassSz); |
5757 | } |
5758 | else |
5759 | { |
5760 | // The ostack entry is an object reference. |
5761 | SetObjectReferenceUnchecked(reinterpret_cast<OBJECTREF*>(dest), NULL); |
5762 | } |
5763 | m_curStackHt -= 1; |
5764 | m_ILCodePtr += 6; |
5765 | } |
5766 | |
5767 | void Interpreter::LdStr() |
5768 | { |
5769 | CONTRACTL { |
5770 | SO_TOLERANT; |
5771 | THROWS; |
5772 | GC_TRIGGERS; |
5773 | MODE_COOPERATIVE; |
5774 | } CONTRACTL_END; |
5775 | |
5776 | OBJECTHANDLE res = ConstructStringLiteral(m_methInfo->m_module, getU4LittleEndian(m_ILCodePtr + 1)); |
5777 | { |
5778 | GCX_FORBID(); |
5779 | OpStackSet<Object*>(m_curStackHt, *reinterpret_cast<Object**>(res)); |
5780 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_CLASS)); // Stack-normal type for "string" |
5781 | m_curStackHt++; |
5782 | } |
5783 | m_ILCodePtr += 5; |
5784 | } |
5785 | |
5786 | void Interpreter::NewObj() |
5787 | { |
5788 | #if INTERP_DYNAMIC_CONTRACTS |
5789 | CONTRACTL { |
5790 | SO_TOLERANT; |
5791 | THROWS; |
5792 | GC_TRIGGERS; |
5793 | MODE_COOPERATIVE; |
5794 | } CONTRACTL_END; |
5795 | #else |
5796 | // Dynamic contract occupies too much stack. |
5797 | STATIC_CONTRACT_SO_TOLERANT; |
5798 | STATIC_CONTRACT_THROWS; |
5799 | STATIC_CONTRACT_GC_TRIGGERS; |
5800 | STATIC_CONTRACT_MODE_COOPERATIVE; |
5801 | #endif |
5802 | |
5803 | unsigned ctorTok = getU4LittleEndian(m_ILCodePtr + 1); |
5804 | |
5805 | #if INTERP_TRACING |
5806 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_NewObj]); |
5807 | #endif // INTERP_TRACING |
5808 | |
5809 | CORINFO_CALL_INFO callInfo; |
5810 | CORINFO_RESOLVED_TOKEN methTok; |
5811 | |
5812 | { |
5813 | GCX_PREEMP(); |
5814 | ResolveToken(&methTok, ctorTok, CORINFO_TOKENKIND_Ldtoken InterpTracingArg(RTK_NewObj)); |
5815 | m_interpCeeInfo.getCallInfo(&methTok, NULL, |
5816 | m_methInfo->m_method, |
5817 | CORINFO_CALLINFO_FLAGS(0), |
5818 | &callInfo); |
5819 | } |
5820 | |
5821 | unsigned mflags = callInfo.methodFlags; |
5822 | |
5823 | if ((mflags & (CORINFO_FLG_STATIC|CORINFO_FLG_ABSTRACT)) != 0) |
5824 | { |
5825 | VerificationError("newobj on static or abstract method" ); |
5826 | } |
5827 | |
5828 | unsigned clsFlags = callInfo.classFlags; |
5829 | |
5830 | #ifdef _DEBUG |
5831 | // What class are we allocating? |
5832 | const char* clsName; |
5833 | |
5834 | { |
5835 | GCX_PREEMP(); |
5836 | clsName = m_interpCeeInfo.getClassName(methTok.hClass); |
5837 | } |
5838 | #endif // _DEBUG |
5839 | |
5840 | // There are four cases: |
5841 | // 1) Value types (ordinary constructor, resulting VALUECLASS pushed) |
5842 | // 2) String (var-args constructor, result automatically pushed) |
5843 | // 3) MDArray (var-args constructor, resulting OBJECTREF pushed) |
5844 | // 4) Reference types (ordinary constructor, resulting OBJECTREF pushed) |
5845 | if (clsFlags & CORINFO_FLG_VALUECLASS) |
5846 | { |
5847 | void* tempDest; |
5848 | INT64 smallTempDest = 0; |
5849 | size_t sz = 0; |
5850 | { |
5851 | GCX_PREEMP(); |
5852 | sz = getClassSize(methTok.hClass); |
5853 | } |
5854 | if (sz > sizeof(INT64)) |
5855 | { |
5856 | // TODO: Make sure this is deleted in the face of exceptions. |
5857 | tempDest = new BYTE[sz]; |
5858 | } |
5859 | else |
5860 | { |
5861 | tempDest = &smallTempDest; |
5862 | } |
5863 | memset(tempDest, 0, sz); |
5864 | InterpreterType structValRetIT(&m_interpCeeInfo, methTok.hClass); |
5865 | m_structRetValITPtr = &structValRetIT; |
5866 | m_structRetValTempSpace = tempDest; |
5867 | |
5868 | DoCallWork(/*virtCall*/false, tempDest, &methTok, &callInfo); |
5869 | |
5870 | if (sz > sizeof(INT64)) |
5871 | { |
5872 | void* dest = LargeStructOperandStackPush(sz); |
5873 | memcpy(dest, tempDest, sz); |
5874 | delete[] reinterpret_cast<BYTE*>(tempDest); |
5875 | OpStackSet<void*>(m_curStackHt, dest); |
5876 | } |
5877 | else |
5878 | { |
5879 | OpStackSet<INT64>(m_curStackHt, GetSmallStructValue(tempDest, sz)); |
5880 | } |
5881 | if (m_structRetValITPtr->IsStruct()) |
5882 | { |
5883 | OpStackTypeSet(m_curStackHt, *m_structRetValITPtr); |
5884 | } |
5885 | else |
5886 | { |
5887 | // Must stack-normalize primitive types. |
5888 | OpStackTypeSet(m_curStackHt, m_structRetValITPtr->StackNormalize()); |
5889 | } |
5890 | // "Unregister" the temp space for GC scanning... |
5891 | m_structRetValITPtr = NULL; |
5892 | m_curStackHt++; |
5893 | } |
5894 | else if ((clsFlags & CORINFO_FLG_VAROBJSIZE) && !(clsFlags & CORINFO_FLG_ARRAY)) |
5895 | { |
5896 | // For a VAROBJSIZE class (currently == String), pass NULL as this to "pseudo-constructor." |
5897 | void* specialFlagArg = reinterpret_cast<void*>(0x1); // Special value for "thisArg" argument of "DoCallWork": push NULL that's not on op stack. |
5898 | DoCallWork(/*virtCall*/false, specialFlagArg, &methTok, &callInfo); // pushes result automatically |
5899 | } |
5900 | else |
5901 | { |
5902 | OBJECTREF thisArgObj = NULL; |
5903 | GCPROTECT_BEGIN(thisArgObj); |
5904 | |
5905 | if (clsFlags & CORINFO_FLG_ARRAY) |
5906 | { |
5907 | assert(clsFlags & CORINFO_FLG_VAROBJSIZE); |
5908 | |
5909 | MethodDesc* methDesc = GetMethod(methTok.hMethod); |
5910 | |
5911 | PCCOR_SIGNATURE pSig; |
5912 | DWORD cbSigSize; |
5913 | methDesc->GetSig(&pSig, &cbSigSize); |
5914 | MetaSig msig(pSig, cbSigSize, methDesc->GetModule(), NULL); |
5915 | |
5916 | unsigned dwNumArgs = msig.NumFixedArgs(); |
5917 | assert(m_curStackHt >= dwNumArgs); |
5918 | m_curStackHt -= dwNumArgs; |
5919 | |
5920 | INT32* args = (INT32*)_alloca(dwNumArgs * sizeof(INT32)); |
5921 | |
5922 | unsigned dwArg; |
5923 | for (dwArg = 0; dwArg < dwNumArgs; dwArg++) |
5924 | { |
5925 | unsigned stkInd = m_curStackHt + dwArg; |
5926 | bool loose = s_InterpreterLooseRules && (OpStackTypeGet(stkInd).ToCorInfoType() == CORINFO_TYPE_NATIVEINT); |
5927 | if (OpStackTypeGet(stkInd).ToCorInfoType() != CORINFO_TYPE_INT && !loose) |
5928 | { |
5929 | VerificationError("MD array dimension bounds and sizes must be int." ); |
5930 | } |
5931 | args[dwArg] = loose ? (INT32) OpStackGet<NativeInt>(stkInd) : OpStackGet<INT32>(stkInd); |
5932 | } |
5933 | |
5934 | thisArgObj = AllocateArrayEx(TypeHandle(methTok.hClass), args, dwNumArgs); |
5935 | } |
5936 | else |
5937 | { |
5938 | CorInfoHelpFunc newHelper; |
5939 | { |
5940 | GCX_PREEMP(); |
5941 | newHelper = m_interpCeeInfo.getNewHelper(&methTok, m_methInfo->m_method); |
5942 | } |
5943 | |
5944 | MethodTable * pNewObjMT = GetMethodTableFromClsHnd(methTok.hClass); |
5945 | switch (newHelper) |
5946 | { |
5947 | case CORINFO_HELP_NEWFAST: |
5948 | default: |
5949 | thisArgObj = AllocateObject(pNewObjMT); |
5950 | break; |
5951 | } |
5952 | |
5953 | DoCallWork(/*virtCall*/false, OBJECTREFToObject(thisArgObj), &methTok, &callInfo); |
5954 | } |
5955 | |
5956 | { |
5957 | GCX_FORBID(); |
5958 | OpStackSet<Object*>(m_curStackHt, OBJECTREFToObject(thisArgObj)); |
5959 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_CLASS)); |
5960 | m_curStackHt++; |
5961 | } |
5962 | GCPROTECT_END(); // For "thisArgObj" |
5963 | } |
5964 | |
5965 | m_ILCodePtr += 5; |
5966 | } |
5967 | |
5968 | void Interpreter::NewArr() |
5969 | { |
5970 | CONTRACTL { |
5971 | SO_TOLERANT; |
5972 | THROWS; |
5973 | GC_TRIGGERS; |
5974 | MODE_COOPERATIVE; |
5975 | } CONTRACTL_END; |
5976 | |
5977 | assert(m_curStackHt > 0); |
5978 | unsigned stkInd = m_curStackHt-1; |
5979 | CorInfoType cit = OpStackTypeGet(stkInd).ToCorInfoType(); |
5980 | NativeInt sz = 0; |
5981 | switch (cit) |
5982 | { |
5983 | case CORINFO_TYPE_INT: |
5984 | sz = static_cast<NativeInt>(OpStackGet<INT32>(stkInd)); |
5985 | break; |
5986 | case CORINFO_TYPE_NATIVEINT: |
5987 | sz = OpStackGet<NativeInt>(stkInd); |
5988 | break; |
5989 | default: |
5990 | VerificationError("Size operand of 'newarr' must be int or native int." ); |
5991 | } |
5992 | |
5993 | unsigned elemTypeTok = getU4LittleEndian(m_ILCodePtr + 1); |
5994 | |
5995 | CORINFO_CLASS_HANDLE elemClsHnd; |
5996 | |
5997 | #if INTERP_TRACING |
5998 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_NewArr]); |
5999 | #endif // INTERP_TRACING |
6000 | |
6001 | CORINFO_RESOLVED_TOKEN elemTypeResolvedTok; |
6002 | |
6003 | { |
6004 | GCX_PREEMP(); |
6005 | ResolveToken(&elemTypeResolvedTok, elemTypeTok, CORINFO_TOKENKIND_Newarr InterpTracingArg(RTK_NewArr)); |
6006 | elemClsHnd = elemTypeResolvedTok.hClass; |
6007 | } |
6008 | |
6009 | { |
6010 | if (sz < 0) |
6011 | { |
6012 | COMPlusThrow(kOverflowException); |
6013 | } |
6014 | |
6015 | #ifdef _WIN64 |
6016 | // Even though ECMA allows using a native int as the argument to newarr instruction |
6017 | // (therefore size is INT_PTR), ArrayBase::m_NumComponents is 32-bit, so even on 64-bit |
6018 | // platforms we can't create an array whose size exceeds 32 bits. |
6019 | if (sz > INT_MAX) |
6020 | { |
6021 | EX_THROW(EEMessageException, (kOverflowException, IDS_EE_ARRAY_DIMENSIONS_EXCEEDED)); |
6022 | } |
6023 | #endif |
6024 | |
6025 | TypeHandle th(elemClsHnd); |
6026 | MethodTable* pArrayMT = th.GetMethodTable(); |
6027 | pArrayMT->CheckRunClassInitThrowing(); |
6028 | |
6029 | INT32 size32 = (INT32)sz; |
6030 | Object* newarray = OBJECTREFToObject(AllocateArrayEx(pArrayMT, &size32, 1)); |
6031 | |
6032 | GCX_FORBID(); |
6033 | OpStackTypeSet(stkInd, InterpreterType(CORINFO_TYPE_CLASS)); |
6034 | OpStackSet<Object*>(stkInd, newarray); |
6035 | } |
6036 | |
6037 | m_ILCodePtr += 5; |
6038 | } |
6039 | |
6040 | void Interpreter::IsInst() |
6041 | { |
6042 | CONTRACTL { |
6043 | SO_TOLERANT; |
6044 | THROWS; |
6045 | GC_TRIGGERS; |
6046 | MODE_COOPERATIVE; |
6047 | } CONTRACTL_END; |
6048 | |
6049 | #if INTERP_TRACING |
6050 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_IsInst]); |
6051 | #endif // INTERP_TRACING |
6052 | |
6053 | CORINFO_CLASS_HANDLE cls = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Casting InterpTracingArg(RTK_IsInst)); |
6054 | |
6055 | assert(m_curStackHt >= 1); |
6056 | unsigned idx = m_curStackHt - 1; |
6057 | #ifdef _DEBUG |
6058 | CorInfoType cit = OpStackTypeGet(idx).ToCorInfoType(); |
6059 | assert(cit == CORINFO_TYPE_CLASS || cit == CORINFO_TYPE_STRING); |
6060 | #endif // DEBUG |
6061 | |
6062 | Object * pObj = OpStackGet<Object*>(idx); |
6063 | if (pObj != NULL) |
6064 | { |
6065 | if (!ObjIsInstanceOf(pObj, TypeHandle(cls))) |
6066 | OpStackSet<Object*>(idx, NULL); |
6067 | } |
6068 | |
6069 | // Type stack stays unmodified. |
6070 | |
6071 | m_ILCodePtr += 5; |
6072 | } |
6073 | |
6074 | void Interpreter::CastClass() |
6075 | { |
6076 | CONTRACTL { |
6077 | SO_TOLERANT; |
6078 | THROWS; |
6079 | GC_TRIGGERS; |
6080 | MODE_COOPERATIVE; |
6081 | } CONTRACTL_END; |
6082 | |
6083 | #if INTERP_TRACING |
6084 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_CastClass]); |
6085 | #endif // INTERP_TRACING |
6086 | |
6087 | CORINFO_CLASS_HANDLE cls = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Casting InterpTracingArg(RTK_CastClass)); |
6088 | |
6089 | assert(m_curStackHt >= 1); |
6090 | unsigned idx = m_curStackHt - 1; |
6091 | #ifdef _DEBUG |
6092 | CorInfoType cit = OpStackTypeGet(idx).ToCorInfoType(); |
6093 | assert(cit == CORINFO_TYPE_CLASS || cit == CORINFO_TYPE_STRING); |
6094 | #endif // _DEBUG |
6095 | |
6096 | Object * pObj = OpStackGet<Object*>(idx); |
6097 | if (pObj != NULL) |
6098 | { |
6099 | if (!ObjIsInstanceOf(pObj, TypeHandle(cls), TRUE)) |
6100 | { |
6101 | UNREACHABLE(); //ObjIsInstanceOf will throw if cast can't be done |
6102 | } |
6103 | } |
6104 | |
6105 | |
6106 | // Type stack stays unmodified. |
6107 | |
6108 | m_ILCodePtr += 5; |
6109 | } |
6110 | |
6111 | void Interpreter::LocAlloc() |
6112 | { |
6113 | CONTRACTL { |
6114 | SO_TOLERANT; |
6115 | THROWS; |
6116 | GC_TRIGGERS; |
6117 | MODE_COOPERATIVE; |
6118 | } CONTRACTL_END; |
6119 | |
6120 | assert(m_curStackHt >= 1); |
6121 | unsigned idx = m_curStackHt - 1; |
6122 | CorInfoType cit = OpStackTypeGet(idx).ToCorInfoType(); |
6123 | NativeUInt sz = 0; |
6124 | if (cit == CORINFO_TYPE_INT || cit == CORINFO_TYPE_UINT) |
6125 | { |
6126 | sz = static_cast<NativeUInt>(OpStackGet<UINT32>(idx)); |
6127 | } |
6128 | else if (cit == CORINFO_TYPE_NATIVEINT || cit == CORINFO_TYPE_NATIVEUINT) |
6129 | { |
6130 | sz = OpStackGet<NativeUInt>(idx); |
6131 | } |
6132 | else if (s_InterpreterLooseRules && cit == CORINFO_TYPE_LONG) |
6133 | { |
6134 | sz = (NativeUInt) OpStackGet<INT64>(idx); |
6135 | } |
6136 | else |
6137 | { |
6138 | VerificationError("localloc requires int or nativeint argument." ); |
6139 | } |
6140 | if (sz == 0) |
6141 | { |
6142 | OpStackSet<void*>(idx, NULL); |
6143 | } |
6144 | else |
6145 | { |
6146 | void* res = GetLocAllocData()->Alloc(sz); |
6147 | if (res == NULL) ThrowStackOverflow(); |
6148 | OpStackSet<void*>(idx, res); |
6149 | } |
6150 | OpStackTypeSet(idx, InterpreterType(CORINFO_TYPE_NATIVEINT)); |
6151 | } |
6152 | |
6153 | void Interpreter::MkRefany() |
6154 | { |
6155 | CONTRACTL { |
6156 | SO_TOLERANT; |
6157 | THROWS; |
6158 | GC_TRIGGERS; |
6159 | MODE_COOPERATIVE; |
6160 | } CONTRACTL_END; |
6161 | |
6162 | #if INTERP_TRACING |
6163 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_MkRefAny]); |
6164 | #endif // INTERP_TRACING |
6165 | |
6166 | CORINFO_CLASS_HANDLE cls = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_MkRefAny)); |
6167 | assert(m_curStackHt >= 1); |
6168 | unsigned idx = m_curStackHt - 1; |
6169 | |
6170 | CorInfoType cit = OpStackTypeGet(idx).ToCorInfoType(); |
6171 | if (!(cit == CORINFO_TYPE_BYREF || cit == CORINFO_TYPE_NATIVEINT)) |
6172 | VerificationError("MkRefany requires byref or native int (pointer) on the stack." ); |
6173 | |
6174 | void* ptr = OpStackGet<void*>(idx); |
6175 | |
6176 | InterpreterType typedRefIT = GetTypedRefIT(&m_interpCeeInfo); |
6177 | TypedByRef* tbr; |
6178 | #if defined(_AMD64_) |
6179 | assert(typedRefIT.IsLargeStruct(&m_interpCeeInfo)); |
6180 | tbr = (TypedByRef*) LargeStructOperandStackPush(GetTypedRefSize(&m_interpCeeInfo)); |
6181 | OpStackSet<void*>(idx, tbr); |
6182 | #elif defined(_X86_) || defined(_ARM_) |
6183 | assert(!typedRefIT.IsLargeStruct(&m_interpCeeInfo)); |
6184 | tbr = OpStackGetAddr<TypedByRef>(idx); |
6185 | #elif defined(_ARM64_) |
6186 | tbr = NULL; |
6187 | NYI_INTERP("Unimplemented code: MkRefAny" ); |
6188 | #else |
6189 | #error "unsupported platform" |
6190 | #endif |
6191 | tbr->data = ptr; |
6192 | tbr->type = TypeHandle(cls); |
6193 | OpStackTypeSet(idx, typedRefIT); |
6194 | |
6195 | m_ILCodePtr += 5; |
6196 | } |
6197 | |
6198 | void Interpreter::RefanyType() |
6199 | { |
6200 | CONTRACTL { |
6201 | SO_TOLERANT; |
6202 | THROWS; |
6203 | GC_TRIGGERS; |
6204 | MODE_COOPERATIVE; |
6205 | } CONTRACTL_END; |
6206 | |
6207 | assert(m_curStackHt > 0); |
6208 | unsigned idx = m_curStackHt - 1; |
6209 | |
6210 | if (OpStackTypeGet(idx) != GetTypedRefIT(&m_interpCeeInfo)) |
6211 | VerificationError("RefAnyVal requires a TypedRef on the stack." ); |
6212 | |
6213 | TypedByRef* ptbr = OpStackGet<TypedByRef*>(idx); |
6214 | LargeStructOperandStackPop(sizeof(TypedByRef), ptbr); |
6215 | |
6216 | TypeHandle* pth = &ptbr->type; |
6217 | |
6218 | { |
6219 | OBJECTREF classobj = TypeHandleToTypeRef(pth); |
6220 | GCX_FORBID(); |
6221 | OpStackSet<Object*>(idx, OBJECTREFToObject(classobj)); |
6222 | OpStackTypeSet(idx, InterpreterType(CORINFO_TYPE_CLASS)); |
6223 | } |
6224 | m_ILCodePtr += 2; |
6225 | } |
6226 | |
6227 | // This (unfortunately) duplicates code in JIT_GetRuntimeTypeHandle, which |
6228 | // isn't callable because it sets up a Helper Method Frame. |
6229 | OBJECTREF Interpreter::TypeHandleToTypeRef(TypeHandle* pth) |
6230 | { |
6231 | OBJECTREF typePtr = NULL; |
6232 | if (!pth->IsTypeDesc()) |
6233 | { |
6234 | // Most common... and fastest case |
6235 | typePtr = pth->AsMethodTable()->GetManagedClassObjectIfExists(); |
6236 | if (typePtr == NULL) |
6237 | { |
6238 | typePtr = pth->GetManagedClassObject(); |
6239 | } |
6240 | } |
6241 | else |
6242 | { |
6243 | typePtr = pth->GetManagedClassObject(); |
6244 | } |
6245 | return typePtr; |
6246 | } |
6247 | |
6248 | CorInfoType Interpreter::GetTypeForPrimitiveValueClass(CORINFO_CLASS_HANDLE clsHnd) |
6249 | { |
6250 | CONTRACTL { |
6251 | SO_TOLERANT; |
6252 | THROWS; |
6253 | GC_TRIGGERS; |
6254 | MODE_COOPERATIVE; |
6255 | } CONTRACTL_END; |
6256 | |
6257 | GCX_PREEMP(); |
6258 | |
6259 | return m_interpCeeInfo.getTypeForPrimitiveValueClass(clsHnd); |
6260 | } |
6261 | |
6262 | void Interpreter::RefanyVal() |
6263 | { |
6264 | CONTRACTL { |
6265 | SO_TOLERANT; |
6266 | THROWS; |
6267 | GC_TRIGGERS; |
6268 | MODE_COOPERATIVE; |
6269 | } CONTRACTL_END; |
6270 | |
6271 | assert(m_curStackHt > 0); |
6272 | unsigned idx = m_curStackHt - 1; |
6273 | |
6274 | if (OpStackTypeGet(idx) != GetTypedRefIT(&m_interpCeeInfo)) |
6275 | VerificationError("RefAnyVal requires a TypedRef on the stack." ); |
6276 | |
6277 | #if INTERP_TRACING |
6278 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_RefAnyVal]); |
6279 | #endif // INTERP_TRACING |
6280 | |
6281 | CORINFO_CLASS_HANDLE cls = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_RefAnyVal)); |
6282 | TypeHandle expected(cls); |
6283 | |
6284 | TypedByRef* ptbr = OpStackGet<TypedByRef*>(idx); |
6285 | LargeStructOperandStackPop(sizeof(TypedByRef), ptbr); |
6286 | if (expected != ptbr->type) ThrowInvalidCastException(); |
6287 | |
6288 | OpStackSet<void*>(idx, static_cast<void*>(ptbr->data)); |
6289 | OpStackTypeSet(idx, InterpreterType(CORINFO_TYPE_BYREF)); |
6290 | |
6291 | m_ILCodePtr += 5; |
6292 | } |
6293 | |
6294 | void Interpreter::CkFinite() |
6295 | { |
6296 | CONTRACTL { |
6297 | SO_TOLERANT; |
6298 | THROWS; |
6299 | GC_TRIGGERS; |
6300 | MODE_COOPERATIVE; |
6301 | } CONTRACTL_END; |
6302 | |
6303 | assert(m_curStackHt > 0); |
6304 | unsigned idx = m_curStackHt - 1; |
6305 | |
6306 | CorInfoType cit = OpStackTypeGet(idx).ToCorInfoType(); |
6307 | double val = 0.0; |
6308 | |
6309 | switch (cit) |
6310 | { |
6311 | case CORINFO_TYPE_FLOAT: |
6312 | val = (double)OpStackGet<float>(idx); |
6313 | break; |
6314 | case CORINFO_TYPE_DOUBLE: |
6315 | val = OpStackGet<double>(idx); |
6316 | break; |
6317 | default: |
6318 | VerificationError("CkFinite requires a floating-point value on the stack." ); |
6319 | break; |
6320 | } |
6321 | |
6322 | if (!_finite(val)) |
6323 | ThrowSysArithException(); |
6324 | } |
6325 | |
6326 | void Interpreter::LdToken() |
6327 | { |
6328 | CONTRACTL { |
6329 | SO_TOLERANT; |
6330 | THROWS; |
6331 | GC_TRIGGERS; |
6332 | MODE_COOPERATIVE; |
6333 | } CONTRACTL_END; |
6334 | |
6335 | unsigned tokVal = getU4LittleEndian(m_ILCodePtr + 1); |
6336 | |
6337 | #if INTERP_TRACING |
6338 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_LdToken]); |
6339 | #endif // INTERP_TRACING |
6340 | |
6341 | |
6342 | CORINFO_RESOLVED_TOKEN tok; |
6343 | { |
6344 | GCX_PREEMP(); |
6345 | ResolveToken(&tok, tokVal, CORINFO_TOKENKIND_Ldtoken InterpTracingArg(RTK_LdToken)); |
6346 | } |
6347 | |
6348 | // To save duplication of the factored code at the bottom, I don't do GCX_FORBID for |
6349 | // these Object* values, but this comment documents the intent. |
6350 | if (tok.hMethod != NULL) |
6351 | { |
6352 | MethodDesc* pMethod = (MethodDesc*)tok.hMethod; |
6353 | Object* objPtr = OBJECTREFToObject((OBJECTREF)pMethod->GetStubMethodInfo()); |
6354 | OpStackSet<Object*>(m_curStackHt, objPtr); |
6355 | } |
6356 | else if (tok.hField != NULL) |
6357 | { |
6358 | FieldDesc * pField = (FieldDesc *)tok.hField; |
6359 | Object* objPtr = OBJECTREFToObject((OBJECTREF)pField->GetStubFieldInfo()); |
6360 | OpStackSet<Object*>(m_curStackHt, objPtr); |
6361 | } |
6362 | else |
6363 | { |
6364 | TypeHandle th(tok.hClass); |
6365 | Object* objPtr = OBJECTREFToObject(th.GetManagedClassObject()); |
6366 | OpStackSet<Object*>(m_curStackHt, objPtr); |
6367 | } |
6368 | |
6369 | { |
6370 | GCX_FORBID(); |
6371 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_CLASS)); |
6372 | m_curStackHt++; |
6373 | } |
6374 | |
6375 | m_ILCodePtr += 5; |
6376 | } |
6377 | |
6378 | void Interpreter::LdFtn() |
6379 | { |
6380 | CONTRACTL { |
6381 | SO_TOLERANT; |
6382 | THROWS; |
6383 | GC_TRIGGERS; |
6384 | MODE_COOPERATIVE; |
6385 | } CONTRACTL_END; |
6386 | |
6387 | unsigned tokVal = getU4LittleEndian(m_ILCodePtr + 2); |
6388 | |
6389 | #if INTERP_TRACING |
6390 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_LdFtn]); |
6391 | #endif // INTERP_TRACING |
6392 | |
6393 | CORINFO_RESOLVED_TOKEN tok; |
6394 | CORINFO_CALL_INFO callInfo; |
6395 | { |
6396 | GCX_PREEMP(); |
6397 | ResolveToken(&tok, tokVal, CORINFO_TOKENKIND_Method InterpTracingArg(RTK_LdFtn)); |
6398 | m_interpCeeInfo.getCallInfo(&tok, NULL, m_methInfo->m_method, |
6399 | combine(CORINFO_CALLINFO_SECURITYCHECKS,CORINFO_CALLINFO_LDFTN), |
6400 | &callInfo); |
6401 | } |
6402 | |
6403 | switch (callInfo.kind) |
6404 | { |
6405 | case CORINFO_CALL: |
6406 | { |
6407 | PCODE pCode = ((MethodDesc *)callInfo.hMethod)->GetMultiCallableAddrOfCode(); |
6408 | OpStackSet<void*>(m_curStackHt, (void *)pCode); |
6409 | GetFunctionPointerStack()[m_curStackHt] = callInfo.hMethod; |
6410 | } |
6411 | break; |
6412 | case CORINFO_CALL_CODE_POINTER: |
6413 | NYI_INTERP("Indirect code pointer." ); |
6414 | break; |
6415 | default: |
6416 | _ASSERTE_MSG(false, "Should not reach here: unknown call kind." ); |
6417 | break; |
6418 | } |
6419 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_NATIVEINT)); |
6420 | m_curStackHt++; |
6421 | m_ILCodePtr += 6; |
6422 | } |
6423 | |
6424 | void Interpreter::LdVirtFtn() |
6425 | { |
6426 | CONTRACTL { |
6427 | SO_TOLERANT; |
6428 | THROWS; |
6429 | GC_TRIGGERS; |
6430 | MODE_COOPERATIVE; |
6431 | } CONTRACTL_END; |
6432 | |
6433 | assert(m_curStackHt >= 1); |
6434 | unsigned ind = m_curStackHt - 1; |
6435 | |
6436 | unsigned tokVal = getU4LittleEndian(m_ILCodePtr + 2); |
6437 | |
6438 | #if INTERP_TRACING |
6439 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_LdVirtFtn]); |
6440 | #endif // INTERP_TRACING |
6441 | |
6442 | CORINFO_RESOLVED_TOKEN tok; |
6443 | CORINFO_CALL_INFO callInfo; |
6444 | CORINFO_CLASS_HANDLE classHnd; |
6445 | CORINFO_METHOD_HANDLE methodHnd; |
6446 | { |
6447 | GCX_PREEMP(); |
6448 | ResolveToken(&tok, tokVal, CORINFO_TOKENKIND_Method InterpTracingArg(RTK_LdVirtFtn)); |
6449 | m_interpCeeInfo.getCallInfo(&tok, NULL, m_methInfo->m_method, |
6450 | combine(CORINFO_CALLINFO_SECURITYCHECKS,CORINFO_CALLINFO_LDFTN), |
6451 | &callInfo); |
6452 | |
6453 | |
6454 | classHnd = tok.hClass; |
6455 | methodHnd = tok.hMethod; |
6456 | } |
6457 | |
6458 | MethodDesc * pMD = (MethodDesc *)methodHnd; |
6459 | PCODE pCode; |
6460 | if (pMD->IsVtableMethod()) |
6461 | { |
6462 | Object* obj = OpStackGet<Object*>(ind); |
6463 | ThrowOnInvalidPointer(obj); |
6464 | |
6465 | OBJECTREF objRef = ObjectToOBJECTREF(obj); |
6466 | GCPROTECT_BEGIN(objRef); |
6467 | pCode = pMD->GetMultiCallableAddrOfVirtualizedCode(&objRef, TypeHandle(classHnd)); |
6468 | GCPROTECT_END(); |
6469 | |
6470 | pMD = Entry2MethodDesc(pCode, TypeHandle(classHnd).GetMethodTable()); |
6471 | } |
6472 | else |
6473 | { |
6474 | pCode = pMD->GetMultiCallableAddrOfCode(); |
6475 | } |
6476 | OpStackSet<void*>(ind, (void *)pCode); |
6477 | GetFunctionPointerStack()[ind] = (CORINFO_METHOD_HANDLE)pMD; |
6478 | |
6479 | OpStackTypeSet(ind, InterpreterType(CORINFO_TYPE_NATIVEINT)); |
6480 | m_ILCodePtr += 6; |
6481 | } |
6482 | |
6483 | void Interpreter::Sizeof() |
6484 | { |
6485 | CONTRACTL { |
6486 | SO_TOLERANT; |
6487 | THROWS; |
6488 | GC_TRIGGERS; |
6489 | MODE_COOPERATIVE; |
6490 | } CONTRACTL_END; |
6491 | |
6492 | #if INTERP_TRACING |
6493 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_Sizeof]); |
6494 | #endif // INTERP_TRACING |
6495 | |
6496 | CORINFO_CLASS_HANDLE cls = GetTypeFromToken(m_ILCodePtr + 2, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_Sizeof)); |
6497 | unsigned sz; |
6498 | { |
6499 | GCX_PREEMP(); |
6500 | CorInfoType cit = ::asCorInfoType(cls); |
6501 | // For class types, the ECMA spec says to return the size of the object reference, not the referent |
6502 | // object. Everything else should be a value type, for which we can just return the size as reported |
6503 | // by the EE. |
6504 | switch (cit) |
6505 | { |
6506 | case CORINFO_TYPE_CLASS: |
6507 | sz = sizeof(Object*); |
6508 | break; |
6509 | default: |
6510 | sz = getClassSize(cls); |
6511 | break; |
6512 | } |
6513 | } |
6514 | |
6515 | OpStackSet<UINT32>(m_curStackHt, sz); |
6516 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_INT)); |
6517 | m_curStackHt++; |
6518 | m_ILCodePtr += 6; |
6519 | } |
6520 | |
6521 | |
6522 | // static: |
6523 | bool Interpreter::s_initialized = false; |
6524 | bool Interpreter::s_compilerStaticsInitialized = false; |
6525 | size_t Interpreter::s_TypedRefSize; |
6526 | CORINFO_CLASS_HANDLE Interpreter::s_TypedRefClsHnd; |
6527 | InterpreterType Interpreter::s_TypedRefIT; |
6528 | |
6529 | // Must call GetTypedRefIT |
6530 | size_t Interpreter::GetTypedRefSize(CEEInfo* info) |
6531 | { |
6532 | _ASSERTE_MSG(s_compilerStaticsInitialized, "Precondition" ); |
6533 | return s_TypedRefSize; |
6534 | } |
6535 | |
6536 | InterpreterType Interpreter::GetTypedRefIT(CEEInfo* info) |
6537 | { |
6538 | _ASSERTE_MSG(s_compilerStaticsInitialized, "Precondition" ); |
6539 | return s_TypedRefIT; |
6540 | } |
6541 | |
6542 | CORINFO_CLASS_HANDLE Interpreter::GetTypedRefClsHnd(CEEInfo* info) |
6543 | { |
6544 | _ASSERTE_MSG(s_compilerStaticsInitialized, "Precondition" ); |
6545 | return s_TypedRefClsHnd; |
6546 | } |
6547 | |
6548 | void Interpreter::Initialize() |
6549 | { |
6550 | assert(!s_initialized); |
6551 | |
6552 | s_InterpretMeths.ensureInit(CLRConfig::INTERNAL_Interpret); |
6553 | s_InterpretMethsExclude.ensureInit(CLRConfig::INTERNAL_InterpretExclude); |
6554 | s_InterpreterUseCaching = (s_InterpreterUseCachingFlag.val(CLRConfig::INTERNAL_InterpreterUseCaching) != 0); |
6555 | s_InterpreterLooseRules = (s_InterpreterLooseRulesFlag.val(CLRConfig::INTERNAL_InterpreterLooseRules) != 0); |
6556 | s_InterpreterDoLoopMethods = (s_InterpreterDoLoopMethodsFlag.val(CLRConfig::INTERNAL_InterpreterDoLoopMethods) != 0); |
6557 | |
6558 | // Initialize the lock used to protect method locks. |
6559 | // TODO: it would be better if this were a reader/writer lock. |
6560 | s_methodCacheLock.Init(CrstLeafLock, CRST_DEFAULT); |
6561 | |
6562 | // Similarly, initialize the lock used to protect the map from |
6563 | // interpreter stub addresses to their method descs. |
6564 | s_interpStubToMDMapLock.Init(CrstLeafLock, CRST_DEFAULT); |
6565 | |
6566 | s_initialized = true; |
6567 | |
6568 | #if INTERP_ILINSTR_PROFILE |
6569 | SetILInstrCategories(); |
6570 | #endif // INTERP_ILINSTR_PROFILE |
6571 | } |
6572 | |
6573 | void Interpreter::InitializeCompilerStatics(CEEInfo* info) |
6574 | { |
6575 | if (!s_compilerStaticsInitialized) |
6576 | { |
6577 | // TODO: I believe I need no synchronization around this on x86, but I do |
6578 | // on more permissive memory models. (Why it's OK on x86: each thread executes this |
6579 | // before any access to the initialized static variables; if several threads do |
6580 | // so, they perform idempotent initializing writes to the statics. |
6581 | GCX_PREEMP(); |
6582 | s_TypedRefClsHnd = info->getBuiltinClass(CLASSID_TYPED_BYREF); |
6583 | s_TypedRefIT = InterpreterType(info, s_TypedRefClsHnd); |
6584 | s_TypedRefSize = getClassSize(s_TypedRefClsHnd); |
6585 | s_compilerStaticsInitialized = true; |
6586 | // TODO: Need store-store memory barrier here. |
6587 | } |
6588 | } |
6589 | |
6590 | void Interpreter::Terminate() |
6591 | { |
6592 | if (s_initialized) |
6593 | { |
6594 | s_methodCacheLock.Destroy(); |
6595 | s_interpStubToMDMapLock.Destroy(); |
6596 | s_initialized = false; |
6597 | } |
6598 | } |
6599 | |
6600 | #if INTERP_ILINSTR_PROFILE |
6601 | void Interpreter::SetILInstrCategories() |
6602 | { |
6603 | // Start with the indentity maps |
6604 | for (unsigned short instr = 0; instr < 512; instr++) s_ILInstrCategories[instr] = instr; |
6605 | // Now make exceptions. |
6606 | for (unsigned instr = CEE_LDARG_0; instr <= CEE_LDARG_3; instr++) s_ILInstrCategories[instr] = CEE_LDARG; |
6607 | s_ILInstrCategories[CEE_LDARG_S] = CEE_LDARG; |
6608 | |
6609 | for (unsigned instr = CEE_LDLOC_0; instr <= CEE_LDLOC_3; instr++) s_ILInstrCategories[instr] = CEE_LDLOC; |
6610 | s_ILInstrCategories[CEE_LDLOC_S] = CEE_LDLOC; |
6611 | |
6612 | for (unsigned instr = CEE_STLOC_0; instr <= CEE_STLOC_3; instr++) s_ILInstrCategories[instr] = CEE_STLOC; |
6613 | s_ILInstrCategories[CEE_STLOC_S] = CEE_STLOC; |
6614 | |
6615 | s_ILInstrCategories[CEE_LDLOCA_S] = CEE_LDLOCA; |
6616 | |
6617 | for (unsigned instr = CEE_LDC_I4_M1; instr <= CEE_LDC_I4_S; instr++) s_ILInstrCategories[instr] = CEE_LDC_I4; |
6618 | |
6619 | for (unsigned instr = CEE_BR_S; instr <= CEE_BLT_UN; instr++) s_ILInstrCategories[instr] = CEE_BR; |
6620 | |
6621 | for (unsigned instr = CEE_LDIND_I1; instr <= CEE_LDIND_REF; instr++) s_ILInstrCategories[instr] = CEE_LDIND_I; |
6622 | |
6623 | for (unsigned instr = CEE_STIND_REF; instr <= CEE_STIND_R8; instr++) s_ILInstrCategories[instr] = CEE_STIND_I; |
6624 | |
6625 | for (unsigned instr = CEE_ADD; instr <= CEE_REM_UN; instr++) s_ILInstrCategories[instr] = CEE_ADD; |
6626 | |
6627 | for (unsigned instr = CEE_AND; instr <= CEE_NOT; instr++) s_ILInstrCategories[instr] = CEE_AND; |
6628 | |
6629 | for (unsigned instr = CEE_CONV_I1; instr <= CEE_CONV_U8; instr++) s_ILInstrCategories[instr] = CEE_CONV_I; |
6630 | for (unsigned instr = CEE_CONV_OVF_I1_UN; instr <= CEE_CONV_OVF_U_UN; instr++) s_ILInstrCategories[instr] = CEE_CONV_I; |
6631 | |
6632 | for (unsigned instr = CEE_LDELEM_I1; instr <= CEE_LDELEM_REF; instr++) s_ILInstrCategories[instr] = CEE_LDELEM; |
6633 | for (unsigned instr = CEE_STELEM_I; instr <= CEE_STELEM_REF; instr++) s_ILInstrCategories[instr] = CEE_STELEM; |
6634 | |
6635 | for (unsigned instr = CEE_CONV_OVF_I1; instr <= CEE_CONV_OVF_U8; instr++) s_ILInstrCategories[instr] = CEE_CONV_I; |
6636 | for (unsigned instr = CEE_CONV_U2; instr <= CEE_CONV_U1; instr++) s_ILInstrCategories[instr] = CEE_CONV_I; |
6637 | for (unsigned instr = CEE_CONV_OVF_I; instr <= CEE_CONV_OVF_U; instr++) s_ILInstrCategories[instr] = CEE_CONV_I; |
6638 | |
6639 | for (unsigned instr = CEE_ADD_OVF; instr <= CEE_SUB_OVF; instr++) s_ILInstrCategories[instr] = CEE_ADD_OVF; |
6640 | |
6641 | s_ILInstrCategories[CEE_LEAVE_S] = CEE_LEAVE; |
6642 | s_ILInstrCategories[CEE_CONV_U] = CEE_CONV_I; |
6643 | } |
6644 | #endif // INTERP_ILINSTR_PROFILE |
6645 | |
6646 | |
6647 | template<int op> |
6648 | void Interpreter::CompareOp() |
6649 | { |
6650 | CONTRACTL { |
6651 | SO_TOLERANT; |
6652 | THROWS; |
6653 | GC_TRIGGERS; |
6654 | MODE_COOPERATIVE; |
6655 | } CONTRACTL_END; |
6656 | |
6657 | assert(m_curStackHt >= 2); |
6658 | unsigned op1idx = m_curStackHt - 2; |
6659 | INT32 res = CompareOpRes<op>(op1idx); |
6660 | OpStackSet<INT32>(op1idx, res); |
6661 | OpStackTypeSet(op1idx, InterpreterType(CORINFO_TYPE_INT)); |
6662 | m_curStackHt--; |
6663 | } |
6664 | |
6665 | template<int op> |
6666 | INT32 Interpreter::CompareOpRes(unsigned op1idx) |
6667 | { |
6668 | CONTRACTL { |
6669 | SO_TOLERANT; |
6670 | THROWS; |
6671 | GC_TRIGGERS; |
6672 | MODE_COOPERATIVE; |
6673 | } CONTRACTL_END; |
6674 | |
6675 | assert(m_curStackHt >= op1idx + 2); |
6676 | unsigned op2idx = op1idx + 1; |
6677 | InterpreterType t1 = OpStackTypeGet(op1idx); |
6678 | CorInfoType cit1 = t1.ToCorInfoType(); |
6679 | assert(IsStackNormalType(cit1)); |
6680 | InterpreterType t2 = OpStackTypeGet(op2idx); |
6681 | CorInfoType cit2 = t2.ToCorInfoType(); |
6682 | assert(IsStackNormalType(cit2)); |
6683 | INT32 res = 0; |
6684 | |
6685 | switch (cit1) |
6686 | { |
6687 | case CORINFO_TYPE_INT: |
6688 | if (cit2 == CORINFO_TYPE_INT) |
6689 | { |
6690 | INT32 val1 = OpStackGet<INT32>(op1idx); |
6691 | INT32 val2 = OpStackGet<INT32>(op2idx); |
6692 | if (op == CO_EQ) |
6693 | { |
6694 | if (val1 == val2) res = 1; |
6695 | } |
6696 | else if (op == CO_GT) |
6697 | { |
6698 | if (val1 > val2) res = 1; |
6699 | } |
6700 | else if (op == CO_GT_UN) |
6701 | { |
6702 | if (static_cast<UINT32>(val1) > static_cast<UINT32>(val2)) res = 1; |
6703 | } |
6704 | else if (op == CO_LT) |
6705 | { |
6706 | if (val1 < val2) res = 1; |
6707 | } |
6708 | else |
6709 | { |
6710 | assert(op == CO_LT_UN); |
6711 | if (static_cast<UINT32>(val1) < static_cast<UINT32>(val2)) res = 1; |
6712 | } |
6713 | } |
6714 | else if (cit2 == CORINFO_TYPE_NATIVEINT || |
6715 | (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_BYREF) || |
6716 | (cit2 == CORINFO_TYPE_VALUECLASS |
6717 | && CorInfoTypeStackNormalize(GetTypeForPrimitiveValueClass(t2.ToClassHandle())) == CORINFO_TYPE_NATIVEINT)) |
6718 | { |
6719 | NativeInt val1 = OpStackGet<NativeInt>(op1idx); |
6720 | NativeInt val2 = OpStackGet<NativeInt>(op2idx); |
6721 | if (op == CO_EQ) |
6722 | { |
6723 | if (val1 == val2) res = 1; |
6724 | } |
6725 | else if (op == CO_GT) |
6726 | { |
6727 | if (val1 > val2) res = 1; |
6728 | } |
6729 | else if (op == CO_GT_UN) |
6730 | { |
6731 | if (static_cast<NativeUInt>(val1) > static_cast<NativeUInt>(val2)) res = 1; |
6732 | } |
6733 | else if (op == CO_LT) |
6734 | { |
6735 | if (val1 < val2) res = 1; |
6736 | } |
6737 | else |
6738 | { |
6739 | assert(op == CO_LT_UN); |
6740 | if (static_cast<NativeUInt>(val1) < static_cast<NativeUInt>(val2)) res = 1; |
6741 | } |
6742 | } |
6743 | else if (cit2 == CORINFO_TYPE_VALUECLASS) |
6744 | { |
6745 | cit2 = GetTypeForPrimitiveValueClass(t2.ToClassHandle()); |
6746 | INT32 val1 = OpStackGet<INT32>(op1idx); |
6747 | INT32 val2 = 0; |
6748 | if (CorInfoTypeStackNormalize(cit2) == CORINFO_TYPE_INT) |
6749 | { |
6750 | |
6751 | size_t sz = t2.Size(&m_interpCeeInfo); |
6752 | switch (sz) |
6753 | { |
6754 | case 1: |
6755 | if (CorInfoTypeIsUnsigned(cit2)) |
6756 | { |
6757 | val2 = OpStackGet<UINT8>(op2idx); |
6758 | } |
6759 | else |
6760 | { |
6761 | val2 = OpStackGet<INT8>(op2idx); |
6762 | } |
6763 | break; |
6764 | case 2: |
6765 | if (CorInfoTypeIsUnsigned(cit2)) |
6766 | { |
6767 | val2 = OpStackGet<UINT16>(op2idx); |
6768 | } |
6769 | else |
6770 | { |
6771 | val2 = OpStackGet<INT16>(op2idx); |
6772 | } |
6773 | break; |
6774 | case 4: |
6775 | val2 = OpStackGet<INT32>(op2idx); |
6776 | break; |
6777 | default: |
6778 | UNREACHABLE(); |
6779 | } |
6780 | } |
6781 | else |
6782 | { |
6783 | VerificationError("Can't compare with struct type." ); |
6784 | } |
6785 | if (op == CO_EQ) |
6786 | { |
6787 | if (val1 == val2) res = 1; |
6788 | } |
6789 | else if (op == CO_GT) |
6790 | { |
6791 | if (val1 > val2) res = 1; |
6792 | } |
6793 | else if (op == CO_GT_UN) |
6794 | { |
6795 | if (static_cast<UINT32>(val1) > static_cast<UINT32>(val2)) res = 1; |
6796 | } |
6797 | else if (op == CO_LT) |
6798 | { |
6799 | if (val1 < val2) res = 1; |
6800 | } |
6801 | else |
6802 | { |
6803 | assert(op == CO_LT_UN); |
6804 | if (static_cast<UINT32>(val1) < static_cast<UINT32>(val2)) res = 1; |
6805 | } |
6806 | } |
6807 | else |
6808 | { |
6809 | VerificationError("Binary comparision operation: type mismatch." ); |
6810 | } |
6811 | break; |
6812 | case CORINFO_TYPE_NATIVEINT: |
6813 | if (cit2 == CORINFO_TYPE_NATIVEINT || cit2 == CORINFO_TYPE_INT |
6814 | || (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_LONG) |
6815 | || (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_BYREF) |
6816 | || (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_CLASS && OpStackGet<void*>(op2idx) == 0)) |
6817 | { |
6818 | NativeInt val1 = OpStackGet<NativeInt>(op1idx); |
6819 | NativeInt val2; |
6820 | if (cit2 == CORINFO_TYPE_NATIVEINT) |
6821 | { |
6822 | val2 = OpStackGet<NativeInt>(op2idx); |
6823 | } |
6824 | else if (cit2 == CORINFO_TYPE_INT) |
6825 | { |
6826 | val2 = static_cast<NativeInt>(OpStackGet<INT32>(op2idx)); |
6827 | } |
6828 | else if (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_LONG) |
6829 | { |
6830 | val2 = static_cast<NativeInt>(OpStackGet<INT64>(op2idx)); |
6831 | } |
6832 | else if (cit2 == CORINFO_TYPE_CLASS) |
6833 | { |
6834 | assert(OpStackGet<void*>(op2idx) == 0); |
6835 | val2 = 0; |
6836 | } |
6837 | else |
6838 | { |
6839 | assert(s_InterpreterLooseRules && cit2 == CORINFO_TYPE_BYREF); |
6840 | val2 = reinterpret_cast<NativeInt>(OpStackGet<void*>(op2idx)); |
6841 | } |
6842 | if (op == CO_EQ) |
6843 | { |
6844 | if (val1 == val2) res = 1; |
6845 | } |
6846 | else if (op == CO_GT) |
6847 | { |
6848 | if (val1 > val2) res = 1; |
6849 | } |
6850 | else if (op == CO_GT_UN) |
6851 | { |
6852 | if (static_cast<NativeUInt>(val1) > static_cast<NativeUInt>(val2)) res = 1; |
6853 | } |
6854 | else if (op == CO_LT) |
6855 | { |
6856 | if (val1 < val2) res = 1; |
6857 | } |
6858 | else |
6859 | { |
6860 | assert(op == CO_LT_UN); |
6861 | if (static_cast<NativeUInt>(val1) < static_cast<NativeUInt>(val2)) res = 1; |
6862 | } |
6863 | } |
6864 | else |
6865 | { |
6866 | VerificationError("Binary comparision operation: type mismatch." ); |
6867 | } |
6868 | break; |
6869 | case CORINFO_TYPE_LONG: |
6870 | { |
6871 | bool looseLong = false; |
6872 | #if defined(_AMD64_) |
6873 | looseLong = s_InterpreterLooseRules && (cit2 == CORINFO_TYPE_NATIVEINT || cit2 == CORINFO_TYPE_BYREF); |
6874 | #endif |
6875 | if (cit2 == CORINFO_TYPE_LONG || looseLong) |
6876 | { |
6877 | INT64 val1 = OpStackGet<INT64>(op1idx); |
6878 | INT64 val2 = OpStackGet<INT64>(op2idx); |
6879 | if (op == CO_EQ) |
6880 | { |
6881 | if (val1 == val2) res = 1; |
6882 | } |
6883 | else if (op == CO_GT) |
6884 | { |
6885 | if (val1 > val2) res = 1; |
6886 | } |
6887 | else if (op == CO_GT_UN) |
6888 | { |
6889 | if (static_cast<UINT64>(val1) > static_cast<UINT64>(val2)) res = 1; |
6890 | } |
6891 | else if (op == CO_LT) |
6892 | { |
6893 | if (val1 < val2) res = 1; |
6894 | } |
6895 | else |
6896 | { |
6897 | assert(op == CO_LT_UN); |
6898 | if (static_cast<UINT64>(val1) < static_cast<UINT64>(val2)) res = 1; |
6899 | } |
6900 | } |
6901 | else |
6902 | { |
6903 | VerificationError("Binary comparision operation: type mismatch." ); |
6904 | } |
6905 | } |
6906 | break; |
6907 | |
6908 | case CORINFO_TYPE_CLASS: |
6909 | case CORINFO_TYPE_STRING: |
6910 | if (cit2 == CORINFO_TYPE_CLASS || cit2 == CORINFO_TYPE_STRING) |
6911 | { |
6912 | GCX_FORBID(); |
6913 | Object* val1 = OpStackGet<Object*>(op1idx); |
6914 | Object* val2 = OpStackGet<Object*>(op2idx); |
6915 | if (op == CO_EQ) |
6916 | { |
6917 | if (val1 == val2) res = 1; |
6918 | } |
6919 | else if (op == CO_GT_UN) |
6920 | { |
6921 | if (val1 != val2) res = 1; |
6922 | } |
6923 | else |
6924 | { |
6925 | VerificationError("Binary comparision operation: type mismatch." ); |
6926 | } |
6927 | } |
6928 | else |
6929 | { |
6930 | VerificationError("Binary comparision operation: type mismatch." ); |
6931 | } |
6932 | break; |
6933 | |
6934 | |
6935 | case CORINFO_TYPE_FLOAT: |
6936 | { |
6937 | bool isDouble = (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_DOUBLE); |
6938 | if (cit2 == CORINFO_TYPE_FLOAT || isDouble) |
6939 | { |
6940 | float val1 = OpStackGet<float>(op1idx); |
6941 | float val2 = (isDouble) ? (float) OpStackGet<double>(op2idx) : OpStackGet<float>(op2idx); |
6942 | if (op == CO_EQ) |
6943 | { |
6944 | // I'm assuming IEEE math here, so that if at least one is a NAN, the comparison will fail... |
6945 | if (val1 == val2) res = 1; |
6946 | } |
6947 | else if (op == CO_GT) |
6948 | { |
6949 | // I'm assuming that C++ arithmetic does the right thing here with infinities and NANs. |
6950 | if (val1 > val2) res = 1; |
6951 | } |
6952 | else if (op == CO_GT_UN) |
6953 | { |
6954 | // Check for NAN's here: if either is a NAN, they're unordered, so this comparison returns true. |
6955 | if (_isnan(val1) || _isnan(val2)) res = 1; |
6956 | else if (val1 > val2) res = 1; |
6957 | } |
6958 | else if (op == CO_LT) |
6959 | { |
6960 | if (val1 < val2) res = 1; |
6961 | } |
6962 | else |
6963 | { |
6964 | assert(op == CO_LT_UN); |
6965 | // Check for NAN's here: if either is a NAN, they're unordered, so this comparison returns true. |
6966 | if (_isnan(val1) || _isnan(val2)) res = 1; |
6967 | else if (val1 < val2) res = 1; |
6968 | } |
6969 | } |
6970 | else |
6971 | { |
6972 | VerificationError("Binary comparision operation: type mismatch." ); |
6973 | } |
6974 | } |
6975 | break; |
6976 | |
6977 | case CORINFO_TYPE_DOUBLE: |
6978 | { |
6979 | bool isFloat = (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_FLOAT); |
6980 | if (cit2 == CORINFO_TYPE_DOUBLE || isFloat) |
6981 | { |
6982 | double val1 = OpStackGet<double>(op1idx); |
6983 | double val2 = (isFloat) ? (double) OpStackGet<float>(op2idx) : OpStackGet<double>(op2idx); |
6984 | if (op == CO_EQ) |
6985 | { |
6986 | // I'm assuming IEEE math here, so that if at least one is a NAN, the comparison will fail... |
6987 | if (val1 == val2) res = 1; |
6988 | } |
6989 | else if (op == CO_GT) |
6990 | { |
6991 | // I'm assuming that C++ arithmetic does the right thing here with infinities and NANs. |
6992 | if (val1 > val2) res = 1; |
6993 | } |
6994 | else if (op == CO_GT_UN) |
6995 | { |
6996 | // Check for NAN's here: if either is a NAN, they're unordered, so this comparison returns true. |
6997 | if (_isnan(val1) || _isnan(val2)) res = 1; |
6998 | else if (val1 > val2) res = 1; |
6999 | } |
7000 | else if (op == CO_LT) |
7001 | { |
7002 | if (val1 < val2) res = 1; |
7003 | } |
7004 | else |
7005 | { |
7006 | assert(op == CO_LT_UN); |
7007 | // Check for NAN's here: if either is a NAN, they're unordered, so this comparison returns true. |
7008 | if (_isnan(val1) || _isnan(val2)) res = 1; |
7009 | else if (val1 < val2) res = 1; |
7010 | } |
7011 | } |
7012 | else |
7013 | { |
7014 | VerificationError("Binary comparision operation: type mismatch." ); |
7015 | } |
7016 | } |
7017 | break; |
7018 | |
7019 | case CORINFO_TYPE_BYREF: |
7020 | if (cit2 == CORINFO_TYPE_BYREF || (s_InterpreterLooseRules && cit2 == CORINFO_TYPE_NATIVEINT)) |
7021 | { |
7022 | NativeInt val1 = reinterpret_cast<NativeInt>(OpStackGet<void*>(op1idx)); |
7023 | NativeInt val2; |
7024 | if (cit2 == CORINFO_TYPE_BYREF) |
7025 | { |
7026 | val2 = reinterpret_cast<NativeInt>(OpStackGet<void*>(op2idx)); |
7027 | } |
7028 | else |
7029 | { |
7030 | assert(s_InterpreterLooseRules && cit2 == CORINFO_TYPE_NATIVEINT); |
7031 | val2 = OpStackGet<NativeInt>(op2idx); |
7032 | } |
7033 | if (op == CO_EQ) |
7034 | { |
7035 | if (val1 == val2) res = 1; |
7036 | } |
7037 | else if (op == CO_GT) |
7038 | { |
7039 | if (val1 > val2) res = 1; |
7040 | } |
7041 | else if (op == CO_GT_UN) |
7042 | { |
7043 | if (static_cast<NativeUInt>(val1) > static_cast<NativeUInt>(val2)) res = 1; |
7044 | } |
7045 | else if (op == CO_LT) |
7046 | { |
7047 | if (val1 < val2) res = 1; |
7048 | } |
7049 | else |
7050 | { |
7051 | assert(op == CO_LT_UN); |
7052 | if (static_cast<NativeUInt>(val1) < static_cast<NativeUInt>(val2)) res = 1; |
7053 | } |
7054 | } |
7055 | else |
7056 | { |
7057 | VerificationError("Binary comparision operation: type mismatch." ); |
7058 | } |
7059 | break; |
7060 | |
7061 | case CORINFO_TYPE_VALUECLASS: |
7062 | { |
7063 | CorInfoType newCit1 = GetTypeForPrimitiveValueClass(t1.ToClassHandle()); |
7064 | if (newCit1 == CORINFO_TYPE_UNDEF) |
7065 | { |
7066 | VerificationError("Can't compare a value class." ); |
7067 | } |
7068 | else |
7069 | { |
7070 | NYI_INTERP("Must eliminate 'punning' value classes from the ostack." ); |
7071 | } |
7072 | } |
7073 | break; |
7074 | |
7075 | default: |
7076 | assert(false); // Should not be here if the type is stack-normal. |
7077 | } |
7078 | |
7079 | return res; |
7080 | } |
7081 | |
7082 | template<bool val, int targetLen> |
7083 | void Interpreter::BrOnValue() |
7084 | { |
7085 | assert(targetLen == 1 || targetLen == 4); |
7086 | assert(m_curStackHt > 0); |
7087 | unsigned stackInd = m_curStackHt - 1; |
7088 | InterpreterType it = OpStackTypeGet(stackInd); |
7089 | |
7090 | // It shouldn't be a value class, unless it's a punning name for a primitive integral type. |
7091 | if (it.ToCorInfoType() == CORINFO_TYPE_VALUECLASS) |
7092 | { |
7093 | GCX_PREEMP(); |
7094 | CorInfoType cit = m_interpCeeInfo.getTypeForPrimitiveValueClass(it.ToClassHandle()); |
7095 | if (CorInfoTypeIsIntegral(cit)) |
7096 | { |
7097 | it = InterpreterType(cit); |
7098 | } |
7099 | else |
7100 | { |
7101 | VerificationError("Can't branch on the value of a value type that is not a primitive type." ); |
7102 | } |
7103 | } |
7104 | |
7105 | #ifdef _DEBUG |
7106 | switch (it.ToCorInfoType()) |
7107 | { |
7108 | case CORINFO_TYPE_FLOAT: |
7109 | case CORINFO_TYPE_DOUBLE: |
7110 | VerificationError("Can't branch on the value of a float or double." ); |
7111 | break; |
7112 | default: |
7113 | break; |
7114 | } |
7115 | #endif // _DEBUG |
7116 | |
7117 | switch (it.SizeNotStruct()) |
7118 | { |
7119 | case 4: |
7120 | { |
7121 | INT32 branchVal = OpStackGet<INT32>(stackInd); |
7122 | BrOnValueTakeBranch((branchVal != 0) == val, targetLen); |
7123 | } |
7124 | break; |
7125 | case 8: |
7126 | { |
7127 | INT64 branchVal = OpStackGet<INT64>(stackInd); |
7128 | BrOnValueTakeBranch((branchVal != 0) == val, targetLen); |
7129 | } |
7130 | break; |
7131 | |
7132 | // The value-class case handled above makes sizes 1 and 2 possible. |
7133 | case 1: |
7134 | { |
7135 | INT8 branchVal = OpStackGet<INT8>(stackInd); |
7136 | BrOnValueTakeBranch((branchVal != 0) == val, targetLen); |
7137 | } |
7138 | break; |
7139 | case 2: |
7140 | { |
7141 | INT16 branchVal = OpStackGet<INT16>(stackInd); |
7142 | BrOnValueTakeBranch((branchVal != 0) == val, targetLen); |
7143 | } |
7144 | break; |
7145 | default: |
7146 | UNREACHABLE(); |
7147 | break; |
7148 | } |
7149 | m_curStackHt = stackInd; |
7150 | } |
7151 | |
7152 | // compOp is a member of the BranchComparisonOp enumeration. |
7153 | template<int compOp, bool reverse, int targetLen> |
7154 | void Interpreter::BrOnComparison() |
7155 | { |
7156 | CONTRACTL { |
7157 | SO_TOLERANT; |
7158 | THROWS; |
7159 | GC_TRIGGERS; |
7160 | MODE_COOPERATIVE; |
7161 | } CONTRACTL_END; |
7162 | |
7163 | assert(targetLen == 1 || targetLen == 4); |
7164 | assert(m_curStackHt >= 2); |
7165 | unsigned v1Ind = m_curStackHt - 2; |
7166 | |
7167 | INT32 res = CompareOpRes<compOp>(v1Ind); |
7168 | if (reverse) |
7169 | { |
7170 | res = (res == 0) ? 1 : 0; |
7171 | } |
7172 | |
7173 | if (res) |
7174 | { |
7175 | int offset; |
7176 | if (targetLen == 1) |
7177 | { |
7178 | // BYTE is unsigned... |
7179 | offset = getI1(m_ILCodePtr + 1); |
7180 | } |
7181 | else |
7182 | { |
7183 | offset = getI4LittleEndian(m_ILCodePtr + 1); |
7184 | } |
7185 | // 1 is the size of the current instruction; offset is relative to start of next. |
7186 | if (offset < 0) |
7187 | { |
7188 | // Backwards branch; enable caching. |
7189 | BackwardsBranchActions(offset); |
7190 | } |
7191 | ExecuteBranch(m_ILCodePtr + 1 + targetLen + offset); |
7192 | } |
7193 | else |
7194 | { |
7195 | m_ILCodePtr += targetLen + 1; |
7196 | } |
7197 | m_curStackHt -= 2; |
7198 | } |
7199 | |
7200 | void Interpreter::LdFld(FieldDesc* fldIn) |
7201 | { |
7202 | CONTRACTL { |
7203 | SO_TOLERANT; |
7204 | THROWS; |
7205 | GC_TRIGGERS; |
7206 | MODE_COOPERATIVE; |
7207 | } CONTRACTL_END; |
7208 | |
7209 | BarrierIfVolatile(); |
7210 | |
7211 | FieldDesc* fld = fldIn; |
7212 | CORINFO_CLASS_HANDLE valClsHnd = NULL; |
7213 | DWORD fldOffset; |
7214 | { |
7215 | GCX_PREEMP(); |
7216 | unsigned ilOffset = CurOffset(); |
7217 | if (fld == NULL && s_InterpreterUseCaching) |
7218 | { |
7219 | #if INTERP_TRACING |
7220 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_LdFld]); |
7221 | #endif // INTERP_TRACING |
7222 | fld = GetCachedInstanceField(ilOffset); |
7223 | } |
7224 | if (fld == NULL) |
7225 | { |
7226 | unsigned tok = getU4LittleEndian(m_ILCodePtr + sizeof(BYTE)); |
7227 | fld = FindField(tok InterpTracingArg(RTK_LdFld)); |
7228 | assert(fld != NULL); |
7229 | |
7230 | fldOffset = fld->GetOffset(); |
7231 | if (s_InterpreterUseCaching && fldOffset < FIELD_OFFSET_LAST_REAL_OFFSET) |
7232 | CacheInstanceField(ilOffset, fld); |
7233 | } |
7234 | else |
7235 | { |
7236 | fldOffset = fld->GetOffset(); |
7237 | } |
7238 | } |
7239 | CorInfoType valCit = CEEInfo::asCorInfoType(fld->GetFieldType()); |
7240 | |
7241 | // If "fldIn" is non-NULL, it's not a "real" LdFld -- the caller should handle updating the instruction pointer. |
7242 | if (fldIn == NULL) |
7243 | m_ILCodePtr += 5; // Last use above, so update now. |
7244 | |
7245 | // We need to construct the interpreter type for a struct type before we try to do coordinated |
7246 | // pushes of the value and type on the opstacks -- these must be atomic wrt GC, and constructing |
7247 | // a struct InterpreterType transitions to preemptive mode. |
7248 | InterpreterType structValIT; |
7249 | if (valCit == CORINFO_TYPE_VALUECLASS) |
7250 | { |
7251 | GCX_PREEMP(); |
7252 | valCit = m_interpCeeInfo.getFieldType(CORINFO_FIELD_HANDLE(fld), &valClsHnd); |
7253 | structValIT = InterpreterType(&m_interpCeeInfo, valClsHnd); |
7254 | } |
7255 | |
7256 | UINT sz = fld->GetSize(); |
7257 | |
7258 | // Live vars: valCit, structValIt |
7259 | assert(m_curStackHt > 0); |
7260 | unsigned stackInd = m_curStackHt - 1; |
7261 | InterpreterType addrIt = OpStackTypeGet(stackInd); |
7262 | CorInfoType addrCit = addrIt.ToCorInfoType(); |
7263 | bool isUnsigned; |
7264 | |
7265 | if (addrCit == CORINFO_TYPE_CLASS) |
7266 | { |
7267 | OBJECTREF obj = OBJECTREF(OpStackGet<Object*>(stackInd)); |
7268 | ThrowOnInvalidPointer(OBJECTREFToObject(obj)); |
7269 | if (valCit == CORINFO_TYPE_VALUECLASS) |
7270 | { |
7271 | void* srcPtr = fld->GetInstanceAddress(obj); |
7272 | |
7273 | // srcPtr is now vulnerable. |
7274 | GCX_FORBID(); |
7275 | |
7276 | MethodTable* valClsMT = GetMethodTableFromClsHnd(valClsHnd); |
7277 | if (sz > sizeof(INT64)) |
7278 | { |
7279 | // Large struct case: allocate space on the large struct operand stack. |
7280 | void* destPtr = LargeStructOperandStackPush(sz); |
7281 | OpStackSet<void*>(stackInd, destPtr); |
7282 | CopyValueClass(destPtr, srcPtr, valClsMT, obj->GetAppDomain()); |
7283 | } |
7284 | else |
7285 | { |
7286 | // Small struct case -- is inline in operand stack. |
7287 | OpStackSet<INT64>(stackInd, GetSmallStructValue(srcPtr, sz)); |
7288 | } |
7289 | } |
7290 | else |
7291 | { |
7292 | BYTE* fldStart = dac_cast<PTR_BYTE>(OBJECTREFToObject(obj)) + sizeof(Object) + fldOffset; |
7293 | // fldStart is now a vulnerable byref |
7294 | GCX_FORBID(); |
7295 | |
7296 | switch (sz) |
7297 | { |
7298 | case 1: |
7299 | isUnsigned = CorInfoTypeIsUnsigned(valCit); |
7300 | if (isUnsigned) |
7301 | { |
7302 | OpStackSet<UINT32>(stackInd, *reinterpret_cast<UINT8*>(fldStart)); |
7303 | } |
7304 | else |
7305 | { |
7306 | OpStackSet<INT32>(stackInd, *reinterpret_cast<INT8*>(fldStart)); |
7307 | } |
7308 | break; |
7309 | case 2: |
7310 | isUnsigned = CorInfoTypeIsUnsigned(valCit); |
7311 | if (isUnsigned) |
7312 | { |
7313 | OpStackSet<UINT32>(stackInd, *reinterpret_cast<UINT16*>(fldStart)); |
7314 | } |
7315 | else |
7316 | { |
7317 | OpStackSet<INT32>(stackInd, *reinterpret_cast<INT16*>(fldStart)); |
7318 | } |
7319 | break; |
7320 | case 4: |
7321 | OpStackSet<INT32>(stackInd, *reinterpret_cast<INT32*>(fldStart)); |
7322 | break; |
7323 | case 8: |
7324 | OpStackSet<INT64>(stackInd, *reinterpret_cast<INT64*>(fldStart)); |
7325 | break; |
7326 | default: |
7327 | _ASSERTE_MSG(false, "Should not reach here." ); |
7328 | break; |
7329 | } |
7330 | } |
7331 | } |
7332 | else |
7333 | { |
7334 | INT8* ptr = NULL; |
7335 | if (addrCit == CORINFO_TYPE_VALUECLASS) |
7336 | { |
7337 | size_t addrSize = addrIt.Size(&m_interpCeeInfo); |
7338 | // The ECMA spec allows ldfld to be applied to "an instance of a value type." |
7339 | // We will take the address of the ostack entry. |
7340 | if (addrIt.IsLargeStruct(&m_interpCeeInfo)) |
7341 | { |
7342 | ptr = reinterpret_cast<INT8*>(OpStackGet<void*>(stackInd)); |
7343 | // This is delicate. I'm going to pop the large struct off the large-struct stack |
7344 | // now, even though the field value we push may go back on the large object stack. |
7345 | // We rely on the fact that this instruction doesn't do any other pushing, and |
7346 | // we assume that LargeStructOperandStackPop does not actually deallocate any memory, |
7347 | // and we rely on memcpy properly handling possibly-overlapping regions being copied. |
7348 | // Finally (wow, this really *is* delicate), we rely on the property that the large-struct |
7349 | // stack pop operation doesn't deallocate memory (the size of the allocated memory for the |
7350 | // large-struct stack only grows in a method execution), and that if we push the field value |
7351 | // on the large struct stack below, the size of the pushed item is at most the size of the |
7352 | // popped item, so the stack won't grow (which would allow a dealloc/realloc). |
7353 | // (All in all, maybe it would be better to just copy the value elsewhere then pop...but |
7354 | // that wouldn't be very aggressive.) |
7355 | LargeStructOperandStackPop(addrSize, ptr); |
7356 | } |
7357 | else |
7358 | { |
7359 | ptr = reinterpret_cast<INT8*>(OpStackGetAddr(stackInd, addrSize)); |
7360 | } |
7361 | } |
7362 | else |
7363 | { |
7364 | assert(CorInfoTypeIsPointer(addrCit)); |
7365 | ptr = OpStackGet<INT8*>(stackInd); |
7366 | ThrowOnInvalidPointer(ptr); |
7367 | } |
7368 | |
7369 | assert(ptr != NULL); |
7370 | ptr += fldOffset; |
7371 | |
7372 | if (valCit == CORINFO_TYPE_VALUECLASS) |
7373 | { |
7374 | if (sz > sizeof(INT64)) |
7375 | { |
7376 | // Large struct case. |
7377 | void* dstPtr = LargeStructOperandStackPush(sz); |
7378 | memcpy(dstPtr, ptr, sz); |
7379 | OpStackSet<void*>(stackInd, dstPtr); |
7380 | } |
7381 | else |
7382 | { |
7383 | // Small struct case -- is inline in operand stack. |
7384 | OpStackSet<INT64>(stackInd, GetSmallStructValue(ptr, sz)); |
7385 | } |
7386 | OpStackTypeSet(stackInd, structValIT.StackNormalize()); |
7387 | return; |
7388 | } |
7389 | // Otherwise... |
7390 | switch (sz) |
7391 | { |
7392 | case 1: |
7393 | isUnsigned = CorInfoTypeIsUnsigned(valCit); |
7394 | if (isUnsigned) |
7395 | { |
7396 | OpStackSet<UINT32>(stackInd, *reinterpret_cast<UINT8*>(ptr)); |
7397 | } |
7398 | else |
7399 | { |
7400 | OpStackSet<INT32>(stackInd, *reinterpret_cast<INT8*>(ptr)); |
7401 | } |
7402 | break; |
7403 | case 2: |
7404 | isUnsigned = CorInfoTypeIsUnsigned(valCit); |
7405 | if (isUnsigned) |
7406 | { |
7407 | OpStackSet<UINT32>(stackInd, *reinterpret_cast<UINT16*>(ptr)); |
7408 | } |
7409 | else |
7410 | { |
7411 | OpStackSet<INT32>(stackInd, *reinterpret_cast<INT16*>(ptr)); |
7412 | } |
7413 | break; |
7414 | case 4: |
7415 | OpStackSet<INT32>(stackInd, *reinterpret_cast<INT32*>(ptr)); |
7416 | break; |
7417 | case 8: |
7418 | OpStackSet<INT64>(stackInd, *reinterpret_cast<INT64*>(ptr)); |
7419 | break; |
7420 | } |
7421 | } |
7422 | if (valCit == CORINFO_TYPE_VALUECLASS) |
7423 | { |
7424 | OpStackTypeSet(stackInd, structValIT.StackNormalize()); |
7425 | } |
7426 | else |
7427 | { |
7428 | OpStackTypeSet(stackInd, InterpreterType(valCit).StackNormalize()); |
7429 | } |
7430 | } |
7431 | |
7432 | void Interpreter::LdFldA() |
7433 | { |
7434 | CONTRACTL { |
7435 | SO_TOLERANT; |
7436 | THROWS; |
7437 | GC_TRIGGERS; |
7438 | MODE_COOPERATIVE; |
7439 | } CONTRACTL_END; |
7440 | |
7441 | unsigned tok = getU4LittleEndian(m_ILCodePtr + sizeof(BYTE)); |
7442 | |
7443 | #if INTERP_TRACING |
7444 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_LdFldA]); |
7445 | #endif // INTERP_TRACING |
7446 | |
7447 | unsigned offset = CurOffset(); |
7448 | m_ILCodePtr += 5; // Last use above, so update now. |
7449 | |
7450 | FieldDesc* fld = NULL; |
7451 | if (s_InterpreterUseCaching) fld = GetCachedInstanceField(offset); |
7452 | if (fld == NULL) |
7453 | { |
7454 | GCX_PREEMP(); |
7455 | fld = FindField(tok InterpTracingArg(RTK_LdFldA)); |
7456 | if (s_InterpreterUseCaching) CacheInstanceField(offset, fld); |
7457 | } |
7458 | assert(m_curStackHt > 0); |
7459 | unsigned stackInd = m_curStackHt - 1; |
7460 | CorInfoType addrCit = OpStackTypeGet(stackInd).ToCorInfoType(); |
7461 | if (addrCit == CORINFO_TYPE_BYREF || addrCit == CORINFO_TYPE_CLASS || addrCit == CORINFO_TYPE_NATIVEINT) |
7462 | { |
7463 | NativeInt ptr = OpStackGet<NativeInt>(stackInd); |
7464 | ThrowOnInvalidPointer((void*)ptr); |
7465 | // The "offset" below does not include the Object (i.e., the MethodTable pointer) for object pointers, so add that in first. |
7466 | if (addrCit == CORINFO_TYPE_CLASS) ptr += sizeof(Object); |
7467 | // Now add the offset. |
7468 | ptr += fld->GetOffset(); |
7469 | OpStackSet<NativeInt>(stackInd, ptr); |
7470 | if (addrCit == CORINFO_TYPE_NATIVEINT) |
7471 | { |
7472 | OpStackTypeSet(stackInd, InterpreterType(CORINFO_TYPE_NATIVEINT)); |
7473 | } |
7474 | else |
7475 | { |
7476 | OpStackTypeSet(stackInd, InterpreterType(CORINFO_TYPE_BYREF)); |
7477 | } |
7478 | } |
7479 | else |
7480 | { |
7481 | VerificationError("LdfldA requires object reference, managed or unmanaged pointer type." ); |
7482 | } |
7483 | } |
7484 | |
7485 | void Interpreter::StFld() |
7486 | { |
7487 | CONTRACTL { |
7488 | SO_TOLERANT; |
7489 | THROWS; |
7490 | GC_TRIGGERS; |
7491 | MODE_COOPERATIVE; |
7492 | } CONTRACTL_END; |
7493 | |
7494 | #if INTERP_TRACING |
7495 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_StFld]); |
7496 | #endif // INTERP_TRACING |
7497 | |
7498 | FieldDesc* fld = NULL; |
7499 | DWORD fldOffset; |
7500 | { |
7501 | unsigned ilOffset = CurOffset(); |
7502 | if (s_InterpreterUseCaching) fld = GetCachedInstanceField(ilOffset); |
7503 | if (fld == NULL) |
7504 | { |
7505 | unsigned tok = getU4LittleEndian(m_ILCodePtr + sizeof(BYTE)); |
7506 | GCX_PREEMP(); |
7507 | fld = FindField(tok InterpTracingArg(RTK_StFld)); |
7508 | assert(fld != NULL); |
7509 | fldOffset = fld->GetOffset(); |
7510 | if (s_InterpreterUseCaching && fldOffset < FIELD_OFFSET_LAST_REAL_OFFSET) |
7511 | CacheInstanceField(ilOffset, fld); |
7512 | } |
7513 | else |
7514 | { |
7515 | fldOffset = fld->GetOffset(); |
7516 | } |
7517 | } |
7518 | m_ILCodePtr += 5; // Last use above, so update now. |
7519 | |
7520 | UINT sz = fld->GetSize(); |
7521 | assert(m_curStackHt >= 2); |
7522 | unsigned addrInd = m_curStackHt - 2; |
7523 | CorInfoType addrCit = OpStackTypeGet(addrInd).ToCorInfoType(); |
7524 | unsigned valInd = m_curStackHt - 1; |
7525 | CorInfoType valCit = OpStackTypeGet(valInd).ToCorInfoType(); |
7526 | assert(IsStackNormalType(addrCit) && IsStackNormalType(valCit)); |
7527 | |
7528 | m_curStackHt -= 2; |
7529 | |
7530 | if (addrCit == CORINFO_TYPE_CLASS) |
7531 | { |
7532 | OBJECTREF obj = OBJECTREF(OpStackGet<Object*>(addrInd)); |
7533 | ThrowOnInvalidPointer(OBJECTREFToObject(obj)); |
7534 | |
7535 | if (valCit == CORINFO_TYPE_CLASS) |
7536 | { |
7537 | fld->SetRefValue(obj, ObjectToOBJECTREF(OpStackGet<Object*>(valInd))); |
7538 | } |
7539 | else if (valCit == CORINFO_TYPE_VALUECLASS) |
7540 | { |
7541 | MethodTable* valClsMT = GetMethodTableFromClsHnd(OpStackTypeGet(valInd).ToClassHandle()); |
7542 | void* destPtr = fld->GetInstanceAddress(obj); |
7543 | |
7544 | // destPtr is now a vulnerable byref, so can't do GC. |
7545 | GCX_FORBID(); |
7546 | |
7547 | // I use GCSafeMemCpy below to ensure that write barriers happen for the case in which |
7548 | // the value class contains GC pointers. We could do better... |
7549 | if (sz > sizeof(INT64)) |
7550 | { |
7551 | // Large struct case: stack slot contains pointer... |
7552 | void* srcPtr = OpStackGet<void*>(valInd); |
7553 | CopyValueClassUnchecked(destPtr, srcPtr, valClsMT); |
7554 | LargeStructOperandStackPop(sz, srcPtr); |
7555 | } |
7556 | else |
7557 | { |
7558 | // Small struct case -- is inline in operand stack. |
7559 | CopyValueClassUnchecked(destPtr, OpStackGetAddr(valInd, sz), valClsMT); |
7560 | } |
7561 | BarrierIfVolatile(); |
7562 | return; |
7563 | } |
7564 | else |
7565 | { |
7566 | BYTE* fldStart = dac_cast<PTR_BYTE>(OBJECTREFToObject(obj)) + sizeof(Object) + fldOffset; |
7567 | // fldStart is now a vulnerable byref |
7568 | GCX_FORBID(); |
7569 | |
7570 | switch (sz) |
7571 | { |
7572 | case 1: |
7573 | *reinterpret_cast<INT8*>(fldStart) = OpStackGet<INT8>(valInd); |
7574 | break; |
7575 | case 2: |
7576 | *reinterpret_cast<INT16*>(fldStart) = OpStackGet<INT16>(valInd); |
7577 | break; |
7578 | case 4: |
7579 | *reinterpret_cast<INT32*>(fldStart) = OpStackGet<INT32>(valInd); |
7580 | break; |
7581 | case 8: |
7582 | *reinterpret_cast<INT64*>(fldStart) = OpStackGet<INT64>(valInd); |
7583 | break; |
7584 | } |
7585 | } |
7586 | } |
7587 | else |
7588 | { |
7589 | assert(addrCit == CORINFO_TYPE_BYREF || addrCit == CORINFO_TYPE_NATIVEINT); |
7590 | |
7591 | INT8* destPtr = OpStackGet<INT8*>(addrInd); |
7592 | ThrowOnInvalidPointer(destPtr); |
7593 | destPtr += fldOffset; |
7594 | |
7595 | if (valCit == CORINFO_TYPE_VALUECLASS) |
7596 | { |
7597 | MethodTable* valClsMT = GetMethodTableFromClsHnd(OpStackTypeGet(valInd).ToClassHandle()); |
7598 | // I use GCSafeMemCpy below to ensure that write barriers happen for the case in which |
7599 | // the value class contains GC pointers. We could do better... |
7600 | if (sz > sizeof(INT64)) |
7601 | { |
7602 | // Large struct case: stack slot contains pointer... |
7603 | void* srcPtr = OpStackGet<void*>(valInd); |
7604 | CopyValueClassUnchecked(destPtr, srcPtr, valClsMT); |
7605 | LargeStructOperandStackPop(sz, srcPtr); |
7606 | } |
7607 | else |
7608 | { |
7609 | // Small struct case -- is inline in operand stack. |
7610 | CopyValueClassUnchecked(destPtr, OpStackGetAddr(valInd, sz), valClsMT); |
7611 | } |
7612 | BarrierIfVolatile(); |
7613 | return; |
7614 | } |
7615 | else if (valCit == CORINFO_TYPE_CLASS) |
7616 | { |
7617 | OBJECTREF val = ObjectToOBJECTREF(OpStackGet<Object*>(valInd)); |
7618 | SetObjectReferenceUnchecked(reinterpret_cast<OBJECTREF*>(destPtr), val); |
7619 | } |
7620 | else |
7621 | { |
7622 | switch (sz) |
7623 | { |
7624 | case 1: |
7625 | *reinterpret_cast<INT8*>(destPtr) = OpStackGet<INT8>(valInd); |
7626 | break; |
7627 | case 2: |
7628 | *reinterpret_cast<INT16*>(destPtr) = OpStackGet<INT16>(valInd); |
7629 | break; |
7630 | case 4: |
7631 | *reinterpret_cast<INT32*>(destPtr) = OpStackGet<INT32>(valInd); |
7632 | break; |
7633 | case 8: |
7634 | *reinterpret_cast<INT64*>(destPtr) = OpStackGet<INT64>(valInd); |
7635 | break; |
7636 | } |
7637 | } |
7638 | } |
7639 | BarrierIfVolatile(); |
7640 | } |
7641 | |
7642 | bool Interpreter::StaticFldAddrWork(CORINFO_ACCESS_FLAGS accessFlgs, /*out (byref)*/void** pStaticFieldAddr, /*out*/InterpreterType* pit, /*out*/UINT* pFldSize, /*out*/bool* pManagedMem) |
7643 | { |
7644 | CONTRACTL { |
7645 | SO_TOLERANT; |
7646 | THROWS; |
7647 | GC_TRIGGERS; |
7648 | MODE_COOPERATIVE; |
7649 | } CONTRACTL_END; |
7650 | |
7651 | bool isCacheable = true; |
7652 | *pManagedMem = true; // Default result. |
7653 | |
7654 | unsigned tok = getU4LittleEndian(m_ILCodePtr + sizeof(BYTE)); |
7655 | m_ILCodePtr += 5; // Above is last use of m_ILCodePtr in this method, so update now. |
7656 | |
7657 | FieldDesc* fld; |
7658 | CORINFO_FIELD_INFO fldInfo; |
7659 | CORINFO_RESOLVED_TOKEN fldTok; |
7660 | |
7661 | void* pFldAddr = NULL; |
7662 | { |
7663 | { |
7664 | GCX_PREEMP(); |
7665 | |
7666 | ResolveToken(&fldTok, tok, CORINFO_TOKENKIND_Field InterpTracingArg(RTK_SFldAddr)); |
7667 | fld = reinterpret_cast<FieldDesc*>(fldTok.hField); |
7668 | |
7669 | m_interpCeeInfo.getFieldInfo(&fldTok, m_methInfo->m_method, accessFlgs, &fldInfo); |
7670 | } |
7671 | |
7672 | EnsureClassInit(GetMethodTableFromClsHnd(fldTok.hClass)); |
7673 | |
7674 | if (fldInfo.fieldAccessor == CORINFO_FIELD_STATIC_TLS) |
7675 | { |
7676 | NYI_INTERP("Thread-local static." ); |
7677 | } |
7678 | else if (fldInfo.fieldAccessor == CORINFO_FIELD_STATIC_SHARED_STATIC_HELPER |
7679 | || fldInfo.fieldAccessor == CORINFO_FIELD_STATIC_GENERICS_STATIC_HELPER) |
7680 | { |
7681 | *pStaticFieldAddr = fld->GetCurrentStaticAddress(); |
7682 | isCacheable = false; |
7683 | } |
7684 | else |
7685 | { |
7686 | *pStaticFieldAddr = fld->GetCurrentStaticAddress(); |
7687 | } |
7688 | } |
7689 | if (fldInfo.structType != NULL && fldInfo.fieldType != CORINFO_TYPE_CLASS && fldInfo.fieldType != CORINFO_TYPE_PTR) |
7690 | { |
7691 | *pit = InterpreterType(&m_interpCeeInfo, fldInfo.structType); |
7692 | |
7693 | if ((fldInfo.fieldFlags & CORINFO_FLG_FIELD_UNMANAGED) == 0) |
7694 | { |
7695 | // For valuetypes in managed memory, the address returned contains a pointer into the heap, to a boxed version of the |
7696 | // static variable; return a pointer to the boxed struct. |
7697 | isCacheable = false; |
7698 | } |
7699 | else |
7700 | { |
7701 | *pManagedMem = false; |
7702 | } |
7703 | } |
7704 | else |
7705 | { |
7706 | *pit = InterpreterType(fldInfo.fieldType); |
7707 | } |
7708 | *pFldSize = fld->GetSize(); |
7709 | |
7710 | return isCacheable; |
7711 | } |
7712 | |
7713 | void Interpreter::LdSFld() |
7714 | { |
7715 | CONTRACTL { |
7716 | SO_TOLERANT; |
7717 | THROWS; |
7718 | GC_TRIGGERS; |
7719 | MODE_COOPERATIVE; |
7720 | } CONTRACTL_END; |
7721 | |
7722 | InterpreterType fldIt; |
7723 | UINT sz; |
7724 | bool managedMem; |
7725 | void* srcPtr = NULL; |
7726 | |
7727 | BarrierIfVolatile(); |
7728 | |
7729 | GCPROTECT_BEGININTERIOR(srcPtr); |
7730 | |
7731 | StaticFldAddr(CORINFO_ACCESS_GET, &srcPtr, &fldIt, &sz, &managedMem); |
7732 | |
7733 | bool isUnsigned; |
7734 | |
7735 | if (fldIt.IsStruct()) |
7736 | { |
7737 | // Large struct case. |
7738 | CORINFO_CLASS_HANDLE sh = fldIt.ToClassHandle(); |
7739 | // This call is GC_TRIGGERS, so do it before we copy the value: no GC after this, |
7740 | // until the op stacks and ht are consistent. |
7741 | OpStackTypeSet(m_curStackHt, InterpreterType(&m_interpCeeInfo, sh).StackNormalize()); |
7742 | if (fldIt.IsLargeStruct(&m_interpCeeInfo)) |
7743 | { |
7744 | void* dstPtr = LargeStructOperandStackPush(sz); |
7745 | memcpy(dstPtr, srcPtr, sz); |
7746 | OpStackSet<void*>(m_curStackHt, dstPtr); |
7747 | } |
7748 | else |
7749 | { |
7750 | OpStackSet<INT64>(m_curStackHt, GetSmallStructValue(srcPtr, sz)); |
7751 | } |
7752 | } |
7753 | else |
7754 | { |
7755 | CorInfoType valCit = fldIt.ToCorInfoType(); |
7756 | switch (sz) |
7757 | { |
7758 | case 1: |
7759 | isUnsigned = CorInfoTypeIsUnsigned(valCit); |
7760 | if (isUnsigned) |
7761 | { |
7762 | OpStackSet<UINT32>(m_curStackHt, *reinterpret_cast<UINT8*>(srcPtr)); |
7763 | } |
7764 | else |
7765 | { |
7766 | OpStackSet<INT32>(m_curStackHt, *reinterpret_cast<INT8*>(srcPtr)); |
7767 | } |
7768 | break; |
7769 | case 2: |
7770 | isUnsigned = CorInfoTypeIsUnsigned(valCit); |
7771 | if (isUnsigned) |
7772 | { |
7773 | OpStackSet<UINT32>(m_curStackHt, *reinterpret_cast<UINT16*>(srcPtr)); |
7774 | } |
7775 | else |
7776 | { |
7777 | OpStackSet<INT32>(m_curStackHt, *reinterpret_cast<INT16*>(srcPtr)); |
7778 | } |
7779 | break; |
7780 | case 4: |
7781 | OpStackSet<INT32>(m_curStackHt, *reinterpret_cast<INT32*>(srcPtr)); |
7782 | break; |
7783 | case 8: |
7784 | OpStackSet<INT64>(m_curStackHt, *reinterpret_cast<INT64*>(srcPtr)); |
7785 | break; |
7786 | default: |
7787 | _ASSERTE_MSG(false, "LdSFld: this should have exhausted all the possible sizes." ); |
7788 | break; |
7789 | } |
7790 | OpStackTypeSet(m_curStackHt, fldIt.StackNormalize()); |
7791 | } |
7792 | m_curStackHt++; |
7793 | GCPROTECT_END(); |
7794 | } |
7795 | |
7796 | void Interpreter::EnsureClassInit(MethodTable* pMT) |
7797 | { |
7798 | if (!pMT->IsClassInited()) |
7799 | { |
7800 | pMT->CheckRestore(); |
7801 | // This is tantamount to a call, so exempt it from the cycle count. |
7802 | #if INTERP_ILCYCLE_PROFILE |
7803 | unsigned __int64 startCycles; |
7804 | bool b = CycleTimer::GetThreadCyclesS(&startCycles); assert(b); |
7805 | #endif // INTERP_ILCYCLE_PROFILE |
7806 | |
7807 | pMT->CheckRunClassInitThrowing(); |
7808 | |
7809 | #if INTERP_ILCYCLE_PROFILE |
7810 | unsigned __int64 endCycles; |
7811 | b = CycleTimer::GetThreadCyclesS(&endCycles); assert(b); |
7812 | m_exemptCycles += (endCycles - startCycles); |
7813 | #endif // INTERP_ILCYCLE_PROFILE |
7814 | } |
7815 | } |
7816 | |
7817 | void Interpreter::LdSFldA() |
7818 | { |
7819 | CONTRACTL { |
7820 | SO_TOLERANT; |
7821 | THROWS; |
7822 | GC_TRIGGERS; |
7823 | MODE_COOPERATIVE; |
7824 | } CONTRACTL_END; |
7825 | |
7826 | InterpreterType fldIt; |
7827 | UINT fldSz; |
7828 | bool managedMem; |
7829 | void* srcPtr = NULL; |
7830 | GCPROTECT_BEGININTERIOR(srcPtr); |
7831 | |
7832 | StaticFldAddr(CORINFO_ACCESS_ADDRESS, &srcPtr, &fldIt, &fldSz, &managedMem); |
7833 | |
7834 | OpStackSet<void*>(m_curStackHt, srcPtr); |
7835 | if (managedMem) |
7836 | { |
7837 | // Static variable in managed memory... |
7838 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_BYREF)); |
7839 | } |
7840 | else |
7841 | { |
7842 | // RVA is in unmanaged memory. |
7843 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_NATIVEINT)); |
7844 | } |
7845 | m_curStackHt++; |
7846 | |
7847 | GCPROTECT_END(); |
7848 | } |
7849 | |
7850 | void Interpreter::StSFld() |
7851 | { |
7852 | CONTRACTL { |
7853 | SO_TOLERANT; |
7854 | THROWS; |
7855 | GC_TRIGGERS; |
7856 | MODE_COOPERATIVE; |
7857 | } CONTRACTL_END; |
7858 | InterpreterType fldIt; |
7859 | UINT sz; |
7860 | bool managedMem; |
7861 | void* dstPtr = NULL; |
7862 | GCPROTECT_BEGININTERIOR(dstPtr); |
7863 | |
7864 | StaticFldAddr(CORINFO_ACCESS_SET, &dstPtr, &fldIt, &sz, &managedMem); |
7865 | |
7866 | m_curStackHt--; |
7867 | InterpreterType valIt = OpStackTypeGet(m_curStackHt); |
7868 | CorInfoType valCit = valIt.ToCorInfoType(); |
7869 | |
7870 | if (valCit == CORINFO_TYPE_VALUECLASS) |
7871 | { |
7872 | MethodTable* valClsMT = GetMethodTableFromClsHnd(valIt.ToClassHandle()); |
7873 | if (sz > sizeof(INT64)) |
7874 | { |
7875 | // Large struct case: value in operand stack is indirect pointer. |
7876 | void* srcPtr = OpStackGet<void*>(m_curStackHt); |
7877 | CopyValueClassUnchecked(dstPtr, srcPtr, valClsMT); |
7878 | LargeStructOperandStackPop(sz, srcPtr); |
7879 | } |
7880 | else |
7881 | { |
7882 | // Struct value is inline in the operand stack. |
7883 | CopyValueClassUnchecked(dstPtr, OpStackGetAddr(m_curStackHt, sz), valClsMT); |
7884 | } |
7885 | } |
7886 | else if (valCit == CORINFO_TYPE_CLASS) |
7887 | { |
7888 | SetObjectReferenceUnchecked(reinterpret_cast<OBJECTREF*>(dstPtr), ObjectToOBJECTREF(OpStackGet<Object*>(m_curStackHt))); |
7889 | } |
7890 | else |
7891 | { |
7892 | switch (sz) |
7893 | { |
7894 | case 1: |
7895 | *reinterpret_cast<UINT8*>(dstPtr) = OpStackGet<UINT8>(m_curStackHt); |
7896 | break; |
7897 | case 2: |
7898 | *reinterpret_cast<UINT16*>(dstPtr) = OpStackGet<UINT16>(m_curStackHt); |
7899 | break; |
7900 | case 4: |
7901 | *reinterpret_cast<UINT32*>(dstPtr) = OpStackGet<UINT32>(m_curStackHt); |
7902 | break; |
7903 | case 8: |
7904 | *reinterpret_cast<UINT64*>(dstPtr) = OpStackGet<UINT64>(m_curStackHt); |
7905 | break; |
7906 | default: |
7907 | _ASSERTE_MSG(false, "This should have exhausted all the possible sizes." ); |
7908 | break; |
7909 | } |
7910 | } |
7911 | GCPROTECT_END(); |
7912 | |
7913 | BarrierIfVolatile(); |
7914 | } |
7915 | |
7916 | template<typename T, bool IsObjType, CorInfoType cit> |
7917 | void Interpreter::LdElemWithType() |
7918 | { |
7919 | CONTRACTL { |
7920 | SO_TOLERANT; |
7921 | THROWS; |
7922 | GC_TRIGGERS; |
7923 | MODE_COOPERATIVE; |
7924 | } CONTRACTL_END; |
7925 | |
7926 | assert(m_curStackHt >= 2); |
7927 | unsigned arrInd = m_curStackHt - 2; |
7928 | unsigned indexInd = m_curStackHt - 1; |
7929 | |
7930 | assert(OpStackTypeGet(arrInd).ToCorInfoType() == CORINFO_TYPE_CLASS); |
7931 | |
7932 | ArrayBase* a = OpStackGet<ArrayBase*>(arrInd); |
7933 | ThrowOnInvalidPointer(a); |
7934 | int len = a->GetNumComponents(); |
7935 | |
7936 | CorInfoType indexCit = OpStackTypeGet(indexInd).ToCorInfoType(); |
7937 | if (indexCit == CORINFO_TYPE_INT) |
7938 | { |
7939 | int index = OpStackGet<INT32>(indexInd); |
7940 | if (index < 0 || index >= len) ThrowArrayBoundsException(); |
7941 | |
7942 | GCX_FORBID(); |
7943 | |
7944 | if (IsObjType) |
7945 | { |
7946 | OBJECTREF res = reinterpret_cast<PtrArray*>(a)->GetAt(index); |
7947 | OpStackSet<OBJECTREF>(arrInd, res); |
7948 | } |
7949 | else |
7950 | { |
7951 | T res = reinterpret_cast<Array<T>*>(a)->GetDirectConstPointerToNonObjectElements()[index]; |
7952 | if (cit == CORINFO_TYPE_INT) |
7953 | { |
7954 | // Widen narrow types. |
7955 | int ires = (int)res; |
7956 | OpStackSet<int>(arrInd, ires); |
7957 | } |
7958 | else |
7959 | { |
7960 | OpStackSet<T>(arrInd, res); |
7961 | } |
7962 | } |
7963 | } |
7964 | else |
7965 | { |
7966 | assert(indexCit == CORINFO_TYPE_NATIVEINT); |
7967 | NativeInt index = OpStackGet<NativeInt>(indexInd); |
7968 | if (index < 0 || index >= NativeInt(len)) ThrowArrayBoundsException(); |
7969 | |
7970 | GCX_FORBID(); |
7971 | |
7972 | if (IsObjType) |
7973 | { |
7974 | OBJECTREF res = reinterpret_cast<PtrArray*>(a)->GetAt(index); |
7975 | OpStackSet<OBJECTREF>(arrInd, res); |
7976 | } |
7977 | else |
7978 | { |
7979 | T res = reinterpret_cast<Array<T>*>(a)->GetDirectConstPointerToNonObjectElements()[index]; |
7980 | OpStackSet<T>(arrInd, res); |
7981 | } |
7982 | } |
7983 | |
7984 | OpStackTypeSet(arrInd, InterpreterType(cit)); |
7985 | m_curStackHt--; |
7986 | } |
7987 | |
7988 | template<typename T, bool IsObjType> |
7989 | void Interpreter::StElemWithType() |
7990 | { |
7991 | CONTRACTL { |
7992 | SO_TOLERANT; |
7993 | THROWS; |
7994 | GC_TRIGGERS; |
7995 | MODE_COOPERATIVE; |
7996 | } CONTRACTL_END; |
7997 | |
7998 | |
7999 | assert(m_curStackHt >= 3); |
8000 | unsigned arrInd = m_curStackHt - 3; |
8001 | unsigned indexInd = m_curStackHt - 2; |
8002 | unsigned valInd = m_curStackHt - 1; |
8003 | |
8004 | assert(OpStackTypeGet(arrInd).ToCorInfoType() == CORINFO_TYPE_CLASS); |
8005 | |
8006 | ArrayBase* a = OpStackGet<ArrayBase*>(arrInd); |
8007 | ThrowOnInvalidPointer(a); |
8008 | int len = a->GetNumComponents(); |
8009 | |
8010 | CorInfoType indexCit = OpStackTypeGet(indexInd).ToCorInfoType(); |
8011 | if (indexCit == CORINFO_TYPE_INT) |
8012 | { |
8013 | int index = OpStackGet<INT32>(indexInd); |
8014 | if (index < 0 || index >= len) ThrowArrayBoundsException(); |
8015 | if (IsObjType) |
8016 | { |
8017 | struct _gc { |
8018 | OBJECTREF val; |
8019 | OBJECTREF a; |
8020 | } gc; |
8021 | gc.val = ObjectToOBJECTREF(OpStackGet<Object*>(valInd)); |
8022 | gc.a = ObjectToOBJECTREF(a); |
8023 | GCPROTECT_BEGIN(gc); |
8024 | if (gc.val != NULL && |
8025 | !ObjIsInstanceOf(OBJECTREFToObject(gc.val), reinterpret_cast<PtrArray*>(a)->GetArrayElementTypeHandle())) |
8026 | COMPlusThrow(kArrayTypeMismatchException); |
8027 | reinterpret_cast<PtrArray*>(OBJECTREFToObject(gc.a))->SetAt(index, gc.val); |
8028 | GCPROTECT_END(); |
8029 | } |
8030 | else |
8031 | { |
8032 | GCX_FORBID(); |
8033 | T val = OpStackGet<T>(valInd); |
8034 | reinterpret_cast<Array<T>*>(a)->GetDirectPointerToNonObjectElements()[index] = val; |
8035 | } |
8036 | } |
8037 | else |
8038 | { |
8039 | assert(indexCit == CORINFO_TYPE_NATIVEINT); |
8040 | NativeInt index = OpStackGet<NativeInt>(indexInd); |
8041 | if (index < 0 || index >= NativeInt(len)) ThrowArrayBoundsException(); |
8042 | if (IsObjType) |
8043 | { |
8044 | struct _gc { |
8045 | OBJECTREF val; |
8046 | OBJECTREF a; |
8047 | } gc; |
8048 | gc.val = ObjectToOBJECTREF(OpStackGet<Object*>(valInd)); |
8049 | gc.a = ObjectToOBJECTREF(a); |
8050 | GCPROTECT_BEGIN(gc); |
8051 | if (gc.val != NULL && |
8052 | !ObjIsInstanceOf(OBJECTREFToObject(gc.val), reinterpret_cast<PtrArray*>(a)->GetArrayElementTypeHandle())) |
8053 | COMPlusThrow(kArrayTypeMismatchException); |
8054 | reinterpret_cast<PtrArray*>(OBJECTREFToObject(gc.a))->SetAt(index, gc.val); |
8055 | GCPROTECT_END(); |
8056 | } |
8057 | else |
8058 | { |
8059 | GCX_FORBID(); |
8060 | T val = OpStackGet<T>(valInd); |
8061 | reinterpret_cast<Array<T>*>(a)->GetDirectPointerToNonObjectElements()[index] = val; |
8062 | } |
8063 | } |
8064 | |
8065 | m_curStackHt -= 3; |
8066 | } |
8067 | |
8068 | template<bool takeAddress> |
8069 | void Interpreter::LdElem() |
8070 | { |
8071 | CONTRACTL { |
8072 | SO_TOLERANT; |
8073 | THROWS; |
8074 | GC_TRIGGERS; |
8075 | MODE_COOPERATIVE; |
8076 | } CONTRACTL_END; |
8077 | |
8078 | assert(m_curStackHt >= 2); |
8079 | unsigned arrInd = m_curStackHt - 2; |
8080 | unsigned indexInd = m_curStackHt - 1; |
8081 | |
8082 | unsigned elemTypeTok = getU4LittleEndian(m_ILCodePtr + 1); |
8083 | |
8084 | #if INTERP_TRACING |
8085 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_LdElem]); |
8086 | #endif // INTERP_TRACING |
8087 | |
8088 | unsigned ilOffset = CurOffset(); |
8089 | CORINFO_CLASS_HANDLE clsHnd = NULL; |
8090 | if (s_InterpreterUseCaching) clsHnd = GetCachedClassHandle(ilOffset); |
8091 | |
8092 | if (clsHnd == NULL) |
8093 | { |
8094 | |
8095 | CORINFO_RESOLVED_TOKEN elemTypeResolvedTok; |
8096 | { |
8097 | GCX_PREEMP(); |
8098 | ResolveToken(&elemTypeResolvedTok, elemTypeTok, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_LdElem)); |
8099 | clsHnd = elemTypeResolvedTok.hClass; |
8100 | } |
8101 | if (s_InterpreterUseCaching) CacheClassHandle(ilOffset, clsHnd); |
8102 | } |
8103 | |
8104 | CorInfoType elemCit = ::asCorInfoType(clsHnd); |
8105 | |
8106 | m_ILCodePtr += 5; |
8107 | |
8108 | |
8109 | InterpreterType elemIt; |
8110 | if (elemCit == CORINFO_TYPE_VALUECLASS) |
8111 | { |
8112 | elemIt = InterpreterType(&m_interpCeeInfo, clsHnd); |
8113 | } |
8114 | else |
8115 | { |
8116 | elemIt = InterpreterType(elemCit); |
8117 | } |
8118 | |
8119 | assert(OpStackTypeGet(arrInd).ToCorInfoType() == CORINFO_TYPE_CLASS); |
8120 | |
8121 | |
8122 | ArrayBase* a = OpStackGet<ArrayBase*>(arrInd); |
8123 | ThrowOnInvalidPointer(a); |
8124 | int len = a->GetNumComponents(); |
8125 | |
8126 | NativeInt index; |
8127 | { |
8128 | GCX_FORBID(); |
8129 | |
8130 | CorInfoType indexCit = OpStackTypeGet(indexInd).ToCorInfoType(); |
8131 | if (indexCit == CORINFO_TYPE_INT) |
8132 | { |
8133 | index = static_cast<NativeInt>(OpStackGet<INT32>(indexInd)); |
8134 | } |
8135 | else |
8136 | { |
8137 | assert(indexCit == CORINFO_TYPE_NATIVEINT); |
8138 | index = OpStackGet<NativeInt>(indexInd); |
8139 | } |
8140 | } |
8141 | if (index < 0 || index >= len) ThrowArrayBoundsException(); |
8142 | |
8143 | bool throwTypeMismatch = NULL; |
8144 | { |
8145 | void* elemPtr = a->GetDataPtr() + a->GetComponentSize() * index; |
8146 | // elemPtr is now a vulnerable byref. |
8147 | GCX_FORBID(); |
8148 | |
8149 | if (takeAddress) |
8150 | { |
8151 | // If the element type is a class type, may have to do a type check. |
8152 | if (elemCit == CORINFO_TYPE_CLASS) |
8153 | { |
8154 | // Unless there was a readonly prefix, which removes the need to |
8155 | // do the (dynamic) type check. |
8156 | if (m_readonlyFlag) |
8157 | { |
8158 | // Consume the readonly prefix, and don't do the type check below. |
8159 | m_readonlyFlag = false; |
8160 | } |
8161 | else |
8162 | { |
8163 | PtrArray* pa = reinterpret_cast<PtrArray*>(a); |
8164 | // The element array type must be exactly the referent type of the managed |
8165 | // pointer we'll be creating. |
8166 | if (pa->GetArrayElementTypeHandle() != TypeHandle(clsHnd)) |
8167 | { |
8168 | throwTypeMismatch = true; |
8169 | } |
8170 | } |
8171 | } |
8172 | if (!throwTypeMismatch) |
8173 | { |
8174 | // If we're not going to throw the exception, we can take the address. |
8175 | OpStackSet<void*>(arrInd, elemPtr); |
8176 | OpStackTypeSet(arrInd, InterpreterType(CORINFO_TYPE_BYREF)); |
8177 | m_curStackHt--; |
8178 | } |
8179 | } |
8180 | else |
8181 | { |
8182 | m_curStackHt -= 2; |
8183 | LdFromMemAddr(elemPtr, elemIt); |
8184 | return; |
8185 | } |
8186 | } |
8187 | |
8188 | // If we're going to throw, we do the throw outside the GCX_FORBID region above, since it requires GC_TRIGGERS. |
8189 | if (throwTypeMismatch) |
8190 | { |
8191 | COMPlusThrow(kArrayTypeMismatchException); |
8192 | } |
8193 | } |
8194 | |
8195 | void Interpreter::StElem() |
8196 | { |
8197 | CONTRACTL { |
8198 | SO_TOLERANT; |
8199 | THROWS; |
8200 | GC_TRIGGERS; |
8201 | MODE_COOPERATIVE; |
8202 | } CONTRACTL_END; |
8203 | |
8204 | assert(m_curStackHt >= 3); |
8205 | unsigned arrInd = m_curStackHt - 3; |
8206 | unsigned indexInd = m_curStackHt - 2; |
8207 | unsigned valInd = m_curStackHt - 1; |
8208 | |
8209 | CorInfoType valCit = OpStackTypeGet(valInd).ToCorInfoType(); |
8210 | |
8211 | #if INTERP_TRACING |
8212 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_StElem]); |
8213 | #endif // INTERP_TRACING |
8214 | |
8215 | CORINFO_CLASS_HANDLE typeFromTok = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_StElem)); |
8216 | |
8217 | m_ILCodePtr += 5; |
8218 | |
8219 | CorInfoType typeFromTokCit; |
8220 | { |
8221 | GCX_PREEMP(); |
8222 | typeFromTokCit = ::asCorInfoType(typeFromTok); |
8223 | } |
8224 | size_t sz; |
8225 | |
8226 | #ifdef _DEBUG |
8227 | InterpreterType typeFromTokIt; |
8228 | #endif // _DEBUG |
8229 | |
8230 | if (typeFromTokCit == CORINFO_TYPE_VALUECLASS) |
8231 | { |
8232 | GCX_PREEMP(); |
8233 | sz = getClassSize(typeFromTok); |
8234 | #ifdef _DEBUG |
8235 | typeFromTokIt = InterpreterType(&m_interpCeeInfo, typeFromTok); |
8236 | #endif // _DEBUG |
8237 | } |
8238 | else |
8239 | { |
8240 | sz = CorInfoTypeSize(typeFromTokCit); |
8241 | #ifdef _DEBUG |
8242 | typeFromTokIt = InterpreterType(typeFromTokCit); |
8243 | #endif // _DEBUG |
8244 | } |
8245 | |
8246 | #ifdef _DEBUG |
8247 | // Instead of debug, I need to parameterize the interpreter at the top level over whether |
8248 | // to do checks corresponding to verification. |
8249 | if (typeFromTokIt.StackNormalize().ToCorInfoType() != valCit) |
8250 | { |
8251 | // This is obviously only a partial test of the required condition. |
8252 | VerificationError("Value in stelem does not have the required type." ); |
8253 | } |
8254 | #endif // _DEBUG |
8255 | |
8256 | assert(OpStackTypeGet(arrInd).ToCorInfoType() == CORINFO_TYPE_CLASS); |
8257 | |
8258 | ArrayBase* a = OpStackGet<ArrayBase*>(arrInd); |
8259 | ThrowOnInvalidPointer(a); |
8260 | int len = a->GetNumComponents(); |
8261 | |
8262 | CorInfoType indexCit = OpStackTypeGet(indexInd).ToCorInfoType(); |
8263 | NativeInt index = 0; |
8264 | if (indexCit == CORINFO_TYPE_INT) |
8265 | { |
8266 | index = static_cast<NativeInt>(OpStackGet<INT32>(indexInd)); |
8267 | } |
8268 | else |
8269 | { |
8270 | index = OpStackGet<NativeInt>(indexInd); |
8271 | } |
8272 | |
8273 | if (index < 0 || index >= len) ThrowArrayBoundsException(); |
8274 | |
8275 | if (typeFromTokCit == CORINFO_TYPE_CLASS) |
8276 | { |
8277 | struct _gc { |
8278 | OBJECTREF val; |
8279 | OBJECTREF a; |
8280 | } gc; |
8281 | gc.val = ObjectToOBJECTREF(OpStackGet<Object*>(valInd)); |
8282 | gc.a = ObjectToOBJECTREF(a); |
8283 | GCPROTECT_BEGIN(gc); |
8284 | if (gc.val != NULL && |
8285 | !ObjIsInstanceOf(OBJECTREFToObject(gc.val), reinterpret_cast<PtrArray*>(a)->GetArrayElementTypeHandle())) |
8286 | COMPlusThrow(kArrayTypeMismatchException); |
8287 | reinterpret_cast<PtrArray*>(OBJECTREFToObject(gc.a))->SetAt(index, gc.val); |
8288 | GCPROTECT_END(); |
8289 | } |
8290 | else |
8291 | { |
8292 | GCX_FORBID(); |
8293 | |
8294 | void* destPtr = a->GetDataPtr() + index * sz;; |
8295 | |
8296 | if (typeFromTokCit == CORINFO_TYPE_VALUECLASS) |
8297 | { |
8298 | MethodTable* valClsMT = GetMethodTableFromClsHnd(OpStackTypeGet(valInd).ToClassHandle()); |
8299 | // I use GCSafeMemCpy below to ensure that write barriers happen for the case in which |
8300 | // the value class contains GC pointers. We could do better... |
8301 | if (sz > sizeof(UINT64)) |
8302 | { |
8303 | // Large struct case: stack slot contains pointer... |
8304 | void* src = OpStackGet<void*>(valInd); |
8305 | CopyValueClassUnchecked(destPtr, src, valClsMT); |
8306 | LargeStructOperandStackPop(sz, src); |
8307 | } |
8308 | else |
8309 | { |
8310 | // Small struct case -- is inline in operand stack. |
8311 | CopyValueClassUnchecked(destPtr, OpStackGetAddr(valInd, sz), valClsMT); |
8312 | } |
8313 | } |
8314 | else |
8315 | { |
8316 | switch (sz) |
8317 | { |
8318 | case 1: |
8319 | *reinterpret_cast<INT8*>(destPtr) = OpStackGet<INT8>(valInd); |
8320 | break; |
8321 | case 2: |
8322 | *reinterpret_cast<INT16*>(destPtr) = OpStackGet<INT16>(valInd); |
8323 | break; |
8324 | case 4: |
8325 | *reinterpret_cast<INT32*>(destPtr) = OpStackGet<INT32>(valInd); |
8326 | break; |
8327 | case 8: |
8328 | *reinterpret_cast<INT64*>(destPtr) = OpStackGet<INT64>(valInd); |
8329 | break; |
8330 | } |
8331 | } |
8332 | } |
8333 | |
8334 | m_curStackHt -= 3; |
8335 | } |
8336 | |
8337 | void Interpreter::InitBlk() |
8338 | { |
8339 | CONTRACTL { |
8340 | SO_TOLERANT; |
8341 | THROWS; |
8342 | GC_TRIGGERS; |
8343 | MODE_COOPERATIVE; |
8344 | } CONTRACTL_END; |
8345 | |
8346 | assert(m_curStackHt >= 3); |
8347 | unsigned addrInd = m_curStackHt - 3; |
8348 | unsigned valInd = m_curStackHt - 2; |
8349 | unsigned sizeInd = m_curStackHt - 1; |
8350 | |
8351 | #ifdef _DEBUG |
8352 | CorInfoType addrCIT = OpStackTypeGet(addrInd).ToCorInfoType(); |
8353 | bool addrValidType = (addrCIT == CORINFO_TYPE_NATIVEINT || addrCIT == CORINFO_TYPE_BYREF); |
8354 | #if defined(_AMD64_) |
8355 | if (s_InterpreterLooseRules && addrCIT == CORINFO_TYPE_LONG) |
8356 | addrValidType = true; |
8357 | #endif |
8358 | if (!addrValidType) |
8359 | VerificationError("Addr of InitBlk must be native int or &." ); |
8360 | |
8361 | CorInfoType valCIT = OpStackTypeGet(valInd).ToCorInfoType(); |
8362 | if (valCIT != CORINFO_TYPE_INT) |
8363 | VerificationError("Value of InitBlk must be int" ); |
8364 | |
8365 | #endif // _DEBUG |
8366 | |
8367 | CorInfoType sizeCIT = OpStackTypeGet(sizeInd).ToCorInfoType(); |
8368 | bool isLong = s_InterpreterLooseRules && (sizeCIT == CORINFO_TYPE_LONG); |
8369 | |
8370 | #ifdef _DEBUG |
8371 | if (sizeCIT != CORINFO_TYPE_INT && !isLong) |
8372 | VerificationError("Size of InitBlk must be int" ); |
8373 | #endif // _DEBUG |
8374 | |
8375 | void* addr = OpStackGet<void*>(addrInd); |
8376 | ThrowOnInvalidPointer(addr); |
8377 | GCX_FORBID(); // addr is a potentially vulnerable byref. |
8378 | INT8 val = OpStackGet<INT8>(valInd); |
8379 | size_t size = (size_t) ((isLong) ? OpStackGet<UINT64>(sizeInd) : OpStackGet<UINT32>(sizeInd)); |
8380 | memset(addr, val, size); |
8381 | |
8382 | m_curStackHt = addrInd; |
8383 | m_ILCodePtr += 2; |
8384 | |
8385 | BarrierIfVolatile(); |
8386 | } |
8387 | |
8388 | void Interpreter::CpBlk() |
8389 | { |
8390 | CONTRACTL { |
8391 | SO_TOLERANT; |
8392 | THROWS; |
8393 | GC_TRIGGERS; |
8394 | MODE_COOPERATIVE; |
8395 | } CONTRACTL_END; |
8396 | |
8397 | assert(m_curStackHt >= 3); |
8398 | unsigned destInd = m_curStackHt - 3; |
8399 | unsigned srcInd = m_curStackHt - 2; |
8400 | unsigned sizeInd = m_curStackHt - 1; |
8401 | |
8402 | #ifdef _DEBUG |
8403 | CorInfoType destCIT = OpStackTypeGet(destInd).ToCorInfoType(); |
8404 | bool destValidType = (destCIT == CORINFO_TYPE_NATIVEINT || destCIT == CORINFO_TYPE_BYREF); |
8405 | #if defined(_AMD64_) |
8406 | if (s_InterpreterLooseRules && destCIT == CORINFO_TYPE_LONG) |
8407 | destValidType = true; |
8408 | #endif |
8409 | if (!destValidType) |
8410 | { |
8411 | VerificationError("Dest addr of CpBlk must be native int or &." ); |
8412 | } |
8413 | CorInfoType srcCIT = OpStackTypeGet(srcInd).ToCorInfoType(); |
8414 | bool srcValidType = (srcCIT == CORINFO_TYPE_NATIVEINT || srcCIT == CORINFO_TYPE_BYREF); |
8415 | #if defined(_AMD64_) |
8416 | if (s_InterpreterLooseRules && srcCIT == CORINFO_TYPE_LONG) |
8417 | srcValidType = true; |
8418 | #endif |
8419 | if (!srcValidType) |
8420 | VerificationError("Src addr of CpBlk must be native int or &." ); |
8421 | #endif // _DEBUG |
8422 | |
8423 | CorInfoType sizeCIT = OpStackTypeGet(sizeInd).ToCorInfoType(); |
8424 | bool isLong = s_InterpreterLooseRules && (sizeCIT == CORINFO_TYPE_LONG); |
8425 | |
8426 | #ifdef _DEBUG |
8427 | if (sizeCIT != CORINFO_TYPE_INT && !isLong) |
8428 | VerificationError("Size of CpBlk must be int" ); |
8429 | #endif // _DEBUG |
8430 | |
8431 | |
8432 | void* destAddr = OpStackGet<void*>(destInd); |
8433 | void* srcAddr = OpStackGet<void*>(srcInd); |
8434 | ThrowOnInvalidPointer(destAddr); |
8435 | ThrowOnInvalidPointer(srcAddr); |
8436 | GCX_FORBID(); // destAddr & srcAddr are potentially vulnerable byrefs. |
8437 | size_t size = (size_t)((isLong) ? OpStackGet<UINT64>(sizeInd) : OpStackGet<UINT32>(sizeInd)); |
8438 | memcpyNoGCRefs(destAddr, srcAddr, size); |
8439 | |
8440 | m_curStackHt = destInd; |
8441 | m_ILCodePtr += 2; |
8442 | |
8443 | BarrierIfVolatile(); |
8444 | } |
8445 | |
8446 | void Interpreter::Box() |
8447 | { |
8448 | CONTRACTL { |
8449 | SO_TOLERANT; |
8450 | THROWS; |
8451 | GC_TRIGGERS; |
8452 | MODE_COOPERATIVE; |
8453 | } CONTRACTL_END; |
8454 | |
8455 | assert(m_curStackHt >= 1); |
8456 | unsigned ind = m_curStackHt - 1; |
8457 | |
8458 | DWORD boxTypeAttribs = 0; |
8459 | |
8460 | #if INTERP_TRACING |
8461 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_Box]); |
8462 | #endif // INTERP_TRACING |
8463 | |
8464 | CORINFO_CLASS_HANDLE boxTypeClsHnd = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_Box)); |
8465 | |
8466 | { |
8467 | GCX_PREEMP(); |
8468 | boxTypeAttribs = m_interpCeeInfo.getClassAttribs(boxTypeClsHnd); |
8469 | } |
8470 | |
8471 | m_ILCodePtr += 5; |
8472 | |
8473 | if (boxTypeAttribs & CORINFO_FLG_VALUECLASS) |
8474 | { |
8475 | InterpreterType valIt = OpStackTypeGet(ind); |
8476 | |
8477 | void* valPtr; |
8478 | if (valIt.IsLargeStruct(&m_interpCeeInfo)) |
8479 | { |
8480 | // Operand stack entry is pointer to the data. |
8481 | valPtr = OpStackGet<void*>(ind); |
8482 | } |
8483 | else |
8484 | { |
8485 | // Operand stack entry *is* the data. |
8486 | size_t classSize = getClassSize(boxTypeClsHnd); |
8487 | valPtr = OpStackGetAddr(ind, classSize); |
8488 | } |
8489 | |
8490 | TypeHandle th(boxTypeClsHnd); |
8491 | if (th.IsTypeDesc()) |
8492 | { |
8493 | COMPlusThrow(kInvalidOperationException, W("InvalidOperation_TypeCannotBeBoxed" )); |
8494 | } |
8495 | |
8496 | MethodTable* pMT = th.AsMethodTable(); |
8497 | |
8498 | { |
8499 | Object* res = OBJECTREFToObject(pMT->Box(valPtr)); |
8500 | |
8501 | GCX_FORBID(); |
8502 | |
8503 | // If we're popping a large struct off the operand stack, make sure we clean up. |
8504 | if (valIt.IsLargeStruct(&m_interpCeeInfo)) |
8505 | { |
8506 | LargeStructOperandStackPop(valIt.Size(&m_interpCeeInfo), valPtr); |
8507 | } |
8508 | OpStackSet<Object*>(ind, res); |
8509 | OpStackTypeSet(ind, InterpreterType(CORINFO_TYPE_CLASS)); |
8510 | } |
8511 | } |
8512 | } |
8513 | |
8514 | void Interpreter::BoxStructRefAt(unsigned ind, CORINFO_CLASS_HANDLE valCls) |
8515 | { |
8516 | CONTRACTL { |
8517 | SO_TOLERANT; |
8518 | THROWS; |
8519 | GC_TRIGGERS; |
8520 | MODE_COOPERATIVE; |
8521 | } CONTRACTL_END; |
8522 | |
8523 | _ASSERTE_MSG(ind < m_curStackHt, "Precondition" ); |
8524 | { |
8525 | GCX_PREEMP(); |
8526 | _ASSERTE_MSG(m_interpCeeInfo.getClassAttribs(valCls) & CORINFO_FLG_VALUECLASS, "Precondition" ); |
8527 | } |
8528 | _ASSERTE_MSG(OpStackTypeGet(ind).ToCorInfoType() == CORINFO_TYPE_BYREF, "Precondition" ); |
8529 | |
8530 | InterpreterType valIt = InterpreterType(&m_interpCeeInfo, valCls); |
8531 | |
8532 | void* valPtr = OpStackGet<void*>(ind); |
8533 | |
8534 | TypeHandle th(valCls); |
8535 | if (th.IsTypeDesc()) |
8536 | COMPlusThrow(kInvalidOperationException,W("InvalidOperation_TypeCannotBeBoxed" )); |
8537 | |
8538 | MethodTable* pMT = th.AsMethodTable(); |
8539 | |
8540 | { |
8541 | Object* res = OBJECTREFToObject(pMT->Box(valPtr)); |
8542 | |
8543 | GCX_FORBID(); |
8544 | |
8545 | OpStackSet<Object*>(ind, res); |
8546 | OpStackTypeSet(ind, InterpreterType(CORINFO_TYPE_CLASS)); |
8547 | } |
8548 | } |
8549 | |
8550 | |
8551 | void Interpreter::Unbox() |
8552 | { |
8553 | CONTRACTL { |
8554 | SO_TOLERANT; |
8555 | THROWS; |
8556 | GC_TRIGGERS; |
8557 | MODE_COOPERATIVE; |
8558 | } CONTRACTL_END |
8559 | |
8560 | assert(m_curStackHt > 0); |
8561 | unsigned tos = m_curStackHt - 1; |
8562 | |
8563 | #ifdef _DEBUG |
8564 | CorInfoType tosCIT = OpStackTypeGet(tos).ToCorInfoType(); |
8565 | if (tosCIT != CORINFO_TYPE_CLASS) |
8566 | VerificationError("Unbox requires that TOS is an object pointer." ); |
8567 | #endif // _DEBUG |
8568 | |
8569 | #if INTERP_TRACING |
8570 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_Unbox]); |
8571 | #endif // INTERP_TRACING |
8572 | |
8573 | CORINFO_CLASS_HANDLE boxTypeClsHnd = GetTypeFromToken(m_ILCodePtr + 1, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_Unbox)); |
8574 | |
8575 | CorInfoHelpFunc unboxHelper; |
8576 | |
8577 | { |
8578 | GCX_PREEMP(); |
8579 | unboxHelper = m_interpCeeInfo.getUnBoxHelper(boxTypeClsHnd); |
8580 | } |
8581 | |
8582 | void* res = NULL; |
8583 | Object* obj = OpStackGet<Object*>(tos); |
8584 | |
8585 | switch (unboxHelper) |
8586 | { |
8587 | case CORINFO_HELP_UNBOX: |
8588 | { |
8589 | ThrowOnInvalidPointer(obj); |
8590 | |
8591 | MethodTable* pMT1 = (MethodTable*)boxTypeClsHnd; |
8592 | MethodTable* pMT2 = obj->GetMethodTable(); |
8593 | |
8594 | if (pMT1->IsEquivalentTo(pMT2)) |
8595 | { |
8596 | res = OpStackGet<Object*>(tos)->UnBox(); |
8597 | } |
8598 | else |
8599 | { |
8600 | CorElementType type1 = pMT1->GetInternalCorElementType(); |
8601 | CorElementType type2 = pMT2->GetInternalCorElementType(); |
8602 | |
8603 | // we allow enums and their primtive type to be interchangable |
8604 | if (type1 == type2) |
8605 | { |
8606 | if ((pMT1->IsEnum() || pMT1->IsTruePrimitive()) && |
8607 | (pMT2->IsEnum() || pMT2->IsTruePrimitive())) |
8608 | { |
8609 | res = OpStackGet<Object*>(tos)->UnBox(); |
8610 | } |
8611 | } |
8612 | } |
8613 | |
8614 | if (res == NULL) |
8615 | { |
8616 | COMPlusThrow(kInvalidCastException); |
8617 | } |
8618 | } |
8619 | break; |
8620 | |
8621 | case CORINFO_HELP_UNBOX_NULLABLE: |
8622 | { |
8623 | // For "unbox Nullable<T>", we need to create a new object (maybe in some temporary local |
8624 | // space (that we reuse every time we hit this IL instruction?), that gets reported to the GC, |
8625 | // maybe in the GC heap itself). That object will contain an embedded Nullable<T>. Then, we need to |
8626 | // get a byref to the data within the object. |
8627 | |
8628 | NYI_INTERP("Unhandled 'unbox' of Nullable<T>." ); |
8629 | } |
8630 | break; |
8631 | |
8632 | default: |
8633 | NYI_INTERP("Unhandled 'unbox' helper." ); |
8634 | } |
8635 | |
8636 | { |
8637 | GCX_FORBID(); |
8638 | OpStackSet<void*>(tos, res); |
8639 | OpStackTypeSet(tos, InterpreterType(CORINFO_TYPE_BYREF)); |
8640 | } |
8641 | |
8642 | m_ILCodePtr += 5; |
8643 | } |
8644 | |
8645 | |
8646 | void Interpreter::Throw() |
8647 | { |
8648 | CONTRACTL { |
8649 | SO_TOLERANT; |
8650 | THROWS; |
8651 | GC_TRIGGERS; |
8652 | MODE_COOPERATIVE; |
8653 | } CONTRACTL_END |
8654 | |
8655 | assert(m_curStackHt >= 1); |
8656 | |
8657 | // Note that we can't decrement the stack height here, since the operand stack |
8658 | // protects the thrown object. Nor do we need to, since the ostack will be cleared on |
8659 | // any catch within this method. |
8660 | unsigned exInd = m_curStackHt - 1; |
8661 | |
8662 | #ifdef _DEBUG |
8663 | CorInfoType exCIT = OpStackTypeGet(exInd).ToCorInfoType(); |
8664 | if (exCIT != CORINFO_TYPE_CLASS) |
8665 | { |
8666 | VerificationError("Can only throw an object." ); |
8667 | } |
8668 | #endif // _DEBUG |
8669 | |
8670 | Object* obj = OpStackGet<Object*>(exInd); |
8671 | ThrowOnInvalidPointer(obj); |
8672 | |
8673 | OBJECTREF oref = ObjectToOBJECTREF(obj); |
8674 | if (!IsException(oref->GetMethodTable())) |
8675 | { |
8676 | GCPROTECT_BEGIN(oref); |
8677 | WrapNonCompliantException(&oref); |
8678 | GCPROTECT_END(); |
8679 | } |
8680 | COMPlusThrow(oref); |
8681 | } |
8682 | |
8683 | void Interpreter::Rethrow() |
8684 | { |
8685 | CONTRACTL { |
8686 | SO_TOLERANT; |
8687 | THROWS; |
8688 | GC_TRIGGERS; |
8689 | MODE_COOPERATIVE; |
8690 | } CONTRACTL_END |
8691 | |
8692 | OBJECTREF throwable = GetThread()->LastThrownObject(); |
8693 | COMPlusThrow(throwable); |
8694 | } |
8695 | |
8696 | void Interpreter::UnboxAny() |
8697 | { |
8698 | CONTRACTL { |
8699 | SO_TOLERANT; |
8700 | THROWS; |
8701 | GC_TRIGGERS; |
8702 | MODE_COOPERATIVE; |
8703 | } CONTRACTL_END; |
8704 | |
8705 | assert(m_curStackHt > 0); |
8706 | unsigned tos = m_curStackHt - 1; |
8707 | |
8708 | unsigned boxTypeTok = getU4LittleEndian(m_ILCodePtr + 1); |
8709 | m_ILCodePtr += 5; |
8710 | |
8711 | #if INTERP_TRACING |
8712 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_UnboxAny]); |
8713 | #endif // INTERP_TRACING |
8714 | |
8715 | CORINFO_RESOLVED_TOKEN boxTypeResolvedTok; |
8716 | CORINFO_CLASS_HANDLE boxTypeClsHnd; |
8717 | DWORD boxTypeAttribs = 0; |
8718 | |
8719 | { |
8720 | GCX_PREEMP(); |
8721 | ResolveToken(&boxTypeResolvedTok, boxTypeTok, CORINFO_TOKENKIND_Class InterpTracingArg(RTK_UnboxAny)); |
8722 | boxTypeClsHnd = boxTypeResolvedTok.hClass; |
8723 | boxTypeAttribs = m_interpCeeInfo.getClassAttribs(boxTypeClsHnd); |
8724 | } |
8725 | |
8726 | CorInfoType unboxCIT = OpStackTypeGet(tos).ToCorInfoType(); |
8727 | if (unboxCIT != CORINFO_TYPE_CLASS) |
8728 | VerificationError("Type mismatch in UNBOXANY." ); |
8729 | |
8730 | if ((boxTypeAttribs & CORINFO_FLG_VALUECLASS) == 0) |
8731 | { |
8732 | Object* obj = OpStackGet<Object*>(tos); |
8733 | if (obj != NULL && !ObjIsInstanceOf(obj, TypeHandle(boxTypeClsHnd), TRUE)) |
8734 | { |
8735 | UNREACHABLE(); //ObjIsInstanceOf will throw if cast can't be done |
8736 | } |
8737 | } |
8738 | else |
8739 | { |
8740 | CorInfoHelpFunc unboxHelper; |
8741 | |
8742 | { |
8743 | GCX_PREEMP(); |
8744 | unboxHelper = m_interpCeeInfo.getUnBoxHelper(boxTypeClsHnd); |
8745 | } |
8746 | |
8747 | // Important that this *not* be factored out with the identical statement in the "if" branch: |
8748 | // delay read from GC-protected operand stack until after COOP-->PREEMP transition above. |
8749 | Object* obj = OpStackGet<Object*>(tos); |
8750 | |
8751 | switch (unboxHelper) |
8752 | { |
8753 | case CORINFO_HELP_UNBOX: |
8754 | { |
8755 | ThrowOnInvalidPointer(obj); |
8756 | |
8757 | MethodTable* pMT1 = (MethodTable*)boxTypeClsHnd; |
8758 | MethodTable* pMT2 = obj->GetMethodTable(); |
8759 | |
8760 | void* res = NULL; |
8761 | if (pMT1->IsEquivalentTo(pMT2)) |
8762 | { |
8763 | res = OpStackGet<Object*>(tos)->UnBox(); |
8764 | } |
8765 | else |
8766 | { |
8767 | CorElementType type1 = pMT1->GetInternalCorElementType(); |
8768 | CorElementType type2 = pMT2->GetInternalCorElementType(); |
8769 | |
8770 | // we allow enums and their primtive type to be interchangable |
8771 | if (type1 == type2) |
8772 | { |
8773 | if ((pMT1->IsEnum() || pMT1->IsTruePrimitive()) && |
8774 | (pMT2->IsEnum() || pMT2->IsTruePrimitive())) |
8775 | { |
8776 | res = OpStackGet<Object*>(tos)->UnBox(); |
8777 | } |
8778 | } |
8779 | } |
8780 | |
8781 | if (res == NULL) |
8782 | { |
8783 | COMPlusThrow(kInvalidCastException); |
8784 | } |
8785 | |
8786 | // As the ECMA spec says, the rest is like a "ldobj". |
8787 | LdObjValueClassWork(boxTypeClsHnd, tos, res); |
8788 | } |
8789 | break; |
8790 | |
8791 | case CORINFO_HELP_UNBOX_NULLABLE: |
8792 | { |
8793 | InterpreterType it = InterpreterType(&m_interpCeeInfo, boxTypeClsHnd); |
8794 | size_t sz = it.Size(&m_interpCeeInfo); |
8795 | if (sz > sizeof(INT64)) |
8796 | { |
8797 | void* destPtr = LargeStructOperandStackPush(sz); |
8798 | if (!Nullable::UnBox(destPtr, ObjectToOBJECTREF(obj), (MethodTable*)boxTypeClsHnd)) |
8799 | { |
8800 | COMPlusThrow(kInvalidCastException); |
8801 | } |
8802 | OpStackSet<void*>(tos, destPtr); |
8803 | } |
8804 | else |
8805 | { |
8806 | INT64 dest = 0; |
8807 | if (!Nullable::UnBox(&dest, ObjectToOBJECTREF(obj), (MethodTable*)boxTypeClsHnd)) |
8808 | { |
8809 | COMPlusThrow(kInvalidCastException); |
8810 | } |
8811 | OpStackSet<INT64>(tos, dest); |
8812 | } |
8813 | OpStackTypeSet(tos, it.StackNormalize()); |
8814 | } |
8815 | break; |
8816 | |
8817 | default: |
8818 | NYI_INTERP("Unhandled 'unbox.any' helper." ); |
8819 | } |
8820 | } |
8821 | } |
8822 | |
8823 | void Interpreter::LdLen() |
8824 | { |
8825 | CONTRACTL { |
8826 | SO_TOLERANT; |
8827 | THROWS; |
8828 | GC_TRIGGERS; |
8829 | MODE_COOPERATIVE; |
8830 | } CONTRACTL_END; |
8831 | |
8832 | assert(m_curStackHt >= 1); |
8833 | unsigned arrInd = m_curStackHt - 1; |
8834 | |
8835 | assert(OpStackTypeGet(arrInd).ToCorInfoType() == CORINFO_TYPE_CLASS); |
8836 | |
8837 | GCX_FORBID(); |
8838 | |
8839 | ArrayBase* a = OpStackGet<ArrayBase*>(arrInd); |
8840 | ThrowOnInvalidPointer(a); |
8841 | int len = a->GetNumComponents(); |
8842 | |
8843 | OpStackSet<NativeUInt>(arrInd, NativeUInt(len)); |
8844 | // The ECMA spec says that the type of the length value is NATIVEUINT, but this |
8845 | // doesn't make any sense -- unsigned types are not stack-normalized. So I'm |
8846 | // using NATIVEINT, to get the width right. |
8847 | OpStackTypeSet(arrInd, InterpreterType(CORINFO_TYPE_NATIVEINT)); |
8848 | } |
8849 | |
8850 | |
8851 | void Interpreter::DoCall(bool virtualCall) |
8852 | { |
8853 | #if INTERP_DYNAMIC_CONTRACTS |
8854 | CONTRACTL { |
8855 | SO_TOLERANT; |
8856 | THROWS; |
8857 | GC_TRIGGERS; |
8858 | MODE_COOPERATIVE; |
8859 | } CONTRACTL_END; |
8860 | #else |
8861 | // Dynamic contract occupies too much stack. |
8862 | STATIC_CONTRACT_SO_TOLERANT; |
8863 | STATIC_CONTRACT_THROWS; |
8864 | STATIC_CONTRACT_GC_TRIGGERS; |
8865 | STATIC_CONTRACT_MODE_COOPERATIVE; |
8866 | #endif |
8867 | |
8868 | #if INTERP_TRACING |
8869 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_Call]); |
8870 | #endif // INTERP_TRACING |
8871 | |
8872 | DoCallWork(virtualCall); |
8873 | |
8874 | m_ILCodePtr += 5; |
8875 | } |
8876 | |
8877 | CORINFO_CONTEXT_HANDLE InterpreterMethodInfo::GetPreciseGenericsContext(Object* thisArg, void* genericsCtxtArg) |
8878 | { |
8879 | // If the caller has a generic argument, then we need to get the exact methodContext. |
8880 | // There are several possibilities that lead to a generic argument: |
8881 | // 1) Static method of generic class: generic argument is the method table of the class. |
8882 | // 2) generic method of a class: generic argument is the precise MethodDesc* of the method. |
8883 | if (GetFlag<InterpreterMethodInfo::Flag_hasGenericsContextArg>()) |
8884 | { |
8885 | assert(GetFlag<InterpreterMethodInfo::Flag_methHasGenericArgs>() || GetFlag<InterpreterMethodInfo::Flag_typeHasGenericArgs>()); |
8886 | if (GetFlag<InterpreterMethodInfo::Flag_methHasGenericArgs>()) |
8887 | { |
8888 | return MAKE_METHODCONTEXT(reinterpret_cast<CORINFO_METHOD_HANDLE>(genericsCtxtArg)); |
8889 | } |
8890 | else |
8891 | { |
8892 | MethodTable* methodClass = reinterpret_cast<MethodDesc*>(m_method)->GetMethodTable(); |
8893 | MethodTable* contextClass = reinterpret_cast<MethodTable*>(genericsCtxtArg)->GetMethodTableMatchingParentClass(methodClass); |
8894 | return MAKE_CLASSCONTEXT(contextClass); |
8895 | } |
8896 | } |
8897 | // TODO: This condition isn't quite right. If the actual class is a subtype of the declaring type of the method, |
8898 | // then it might be in another module, the scope and context won't agree. |
8899 | else if (GetFlag<InterpreterMethodInfo::Flag_typeHasGenericArgs>() |
8900 | && !GetFlag<InterpreterMethodInfo::Flag_methHasGenericArgs>() |
8901 | && GetFlag<InterpreterMethodInfo::Flag_hasThisArg>() |
8902 | && GetFlag<InterpreterMethodInfo::Flag_thisArgIsObjPtr>() && thisArg != NULL) |
8903 | { |
8904 | MethodTable* methodClass = reinterpret_cast<MethodDesc*>(m_method)->GetMethodTable(); |
8905 | MethodTable* contextClass = thisArg->GetMethodTable()->GetMethodTableMatchingParentClass(methodClass); |
8906 | return MAKE_CLASSCONTEXT(contextClass); |
8907 | } |
8908 | else |
8909 | { |
8910 | return MAKE_METHODCONTEXT(m_method); |
8911 | } |
8912 | } |
8913 | |
8914 | void Interpreter::DoCallWork(bool virtualCall, void* thisArg, CORINFO_RESOLVED_TOKEN* methTokPtr, CORINFO_CALL_INFO* callInfoPtr) |
8915 | { |
8916 | #if INTERP_DYNAMIC_CONTRACTS |
8917 | CONTRACTL { |
8918 | SO_TOLERANT; |
8919 | THROWS; |
8920 | GC_TRIGGERS; |
8921 | MODE_COOPERATIVE; |
8922 | } CONTRACTL_END; |
8923 | #else |
8924 | // Dynamic contract occupies too much stack. |
8925 | STATIC_CONTRACT_SO_TOLERANT; |
8926 | STATIC_CONTRACT_THROWS; |
8927 | STATIC_CONTRACT_GC_TRIGGERS; |
8928 | STATIC_CONTRACT_MODE_COOPERATIVE; |
8929 | #endif |
8930 | |
8931 | #if INTERP_ILCYCLE_PROFILE |
8932 | #if 0 |
8933 | // XXX |
8934 | unsigned __int64 callStartCycles; |
8935 | bool b = CycleTimer::GetThreadCyclesS(&callStartCycles); assert(b); |
8936 | unsigned __int64 callStartExemptCycles = m_exemptCycles; |
8937 | #endif |
8938 | #endif // INTERP_ILCYCLE_PROFILE |
8939 | |
8940 | #if INTERP_TRACING |
8941 | InterlockedIncrement(&s_totalInterpCalls); |
8942 | #endif // INTERP_TRACING |
8943 | unsigned tok = getU4LittleEndian(m_ILCodePtr + sizeof(BYTE)); |
8944 | |
8945 | // It's possible for an IL method to push a capital-F Frame. If so, we pop it and save it; |
8946 | // we'll push it back on after our GCPROTECT frame is popped. |
8947 | Frame* ilPushedFrame = NULL; |
8948 | |
8949 | // We can't protect "thisArg" with a GCPROTECT, because this pushes a Frame, and there |
8950 | // exist managed methods that push (and pop) Frames -- so that the Frame chain does not return |
8951 | // to its original state after a call. Therefore, we can't have a Frame on the stack over the duration |
8952 | // of a call. (I assume that any method that calls a Frame-pushing IL method performs a matching |
8953 | // call to pop that Frame before the caller method completes. If this were not true, if one method could push |
8954 | // a Frame, but defer the pop to its caller, then we could *never* use a Frame in the interpreter, and |
8955 | // our implementation plan would be doomed.) |
8956 | assert(m_callThisArg == NULL); |
8957 | m_callThisArg = thisArg; |
8958 | |
8959 | // Have we already cached a MethodDescCallSite for this call? (We do this only in loops |
8960 | // in the current execution). |
8961 | unsigned iloffset = CurOffset(); |
8962 | CallSiteCacheData* pCscd = NULL; |
8963 | if (s_InterpreterUseCaching) pCscd = GetCachedCallInfo(iloffset); |
8964 | |
8965 | // If this is true, then we should not cache this call site. |
8966 | bool doNotCache; |
8967 | |
8968 | CORINFO_RESOLVED_TOKEN methTok; |
8969 | CORINFO_CALL_INFO callInfo; |
8970 | MethodDesc* methToCall = NULL; |
8971 | CORINFO_CLASS_HANDLE exactClass = NULL; |
8972 | CORINFO_SIG_INFO_SMALL sigInfo; |
8973 | if (pCscd != NULL) |
8974 | { |
8975 | GCX_PREEMP(); |
8976 | methToCall = pCscd->m_pMD; |
8977 | sigInfo = pCscd->m_sigInfo; |
8978 | |
8979 | doNotCache = true; // We already have a cache entry. |
8980 | } |
8981 | else |
8982 | { |
8983 | doNotCache = false; // Until we determine otherwise. |
8984 | if (callInfoPtr == NULL) |
8985 | { |
8986 | GCX_PREEMP(); |
8987 | |
8988 | // callInfoPtr and methTokPtr must either both be NULL, or neither. |
8989 | assert(methTokPtr == NULL); |
8990 | |
8991 | methTokPtr = &methTok; |
8992 | ResolveToken(methTokPtr, tok, CORINFO_TOKENKIND_Method InterpTracingArg(RTK_Call)); |
8993 | OPCODE opcode = (OPCODE)(*m_ILCodePtr); |
8994 | |
8995 | m_interpCeeInfo.getCallInfo(methTokPtr, |
8996 | m_constrainedFlag ? & m_constrainedResolvedToken : NULL, |
8997 | m_methInfo->m_method, |
8998 | //this is how impImportCall invokes getCallInfo |
8999 | combine(combine(CORINFO_CALLINFO_ALLOWINSTPARAM, |
9000 | CORINFO_CALLINFO_SECURITYCHECKS), |
9001 | (opcode == CEE_CALLVIRT) ? CORINFO_CALLINFO_CALLVIRT |
9002 | : CORINFO_CALLINFO_NONE), |
9003 | &callInfo); |
9004 | #if INTERP_ILCYCLE_PROFILE |
9005 | #if 0 |
9006 | if (virtualCall) |
9007 | { |
9008 | unsigned __int64 callEndCycles; |
9009 | b = CycleTimer::GetThreadCyclesS(&callEndCycles); assert(b); |
9010 | unsigned __int64 delta = (callEndCycles - callStartCycles); |
9011 | delta -= (m_exemptCycles - callStartExemptCycles); |
9012 | s_callCycles += delta; |
9013 | s_calls++; |
9014 | } |
9015 | #endif |
9016 | #endif // INTERP_ILCYCLE_PROFILE |
9017 | |
9018 | callInfoPtr = &callInfo; |
9019 | |
9020 | assert(!callInfoPtr->exactContextNeedsRuntimeLookup); |
9021 | |
9022 | methToCall = reinterpret_cast<MethodDesc*>(methTok.hMethod); |
9023 | exactClass = methTok.hClass; |
9024 | } |
9025 | else |
9026 | { |
9027 | // callInfoPtr and methTokPtr must either both be NULL, or neither. |
9028 | assert(methTokPtr != NULL); |
9029 | |
9030 | assert(!callInfoPtr->exactContextNeedsRuntimeLookup); |
9031 | |
9032 | methToCall = reinterpret_cast<MethodDesc*>(callInfoPtr->hMethod); |
9033 | exactClass = methTokPtr->hClass; |
9034 | } |
9035 | |
9036 | // We used to take the sigInfo from the callInfo here, but that isn't precise, since |
9037 | // we may have made "methToCall" more precise wrt generics than the method handle in |
9038 | // the callinfo. So look up th emore precise signature. |
9039 | GCX_PREEMP(); |
9040 | |
9041 | CORINFO_SIG_INFO sigInfoFull; |
9042 | m_interpCeeInfo.getMethodSig(CORINFO_METHOD_HANDLE(methToCall), &sigInfoFull); |
9043 | sigInfo.retTypeClass = sigInfoFull.retTypeClass; |
9044 | sigInfo.numArgs = sigInfoFull.numArgs; |
9045 | sigInfo.callConv = sigInfoFull.callConv; |
9046 | sigInfo.retType = sigInfoFull.retType; |
9047 | } |
9048 | |
9049 | // Point A in our cycle count. |
9050 | |
9051 | |
9052 | // Is the method an intrinsic? If so, and if it's one we've written special-case code for |
9053 | // handle intrinsically. |
9054 | CorInfoIntrinsics intrinsicId; |
9055 | { |
9056 | GCX_PREEMP(); |
9057 | intrinsicId = m_interpCeeInfo.getIntrinsicID(CORINFO_METHOD_HANDLE(methToCall)); |
9058 | } |
9059 | |
9060 | #if INTERP_TRACING |
9061 | if (intrinsicId != CORINFO_INTRINSIC_Illegal) |
9062 | InterlockedIncrement(&s_totalInterpCallsToIntrinsics); |
9063 | #endif // INTERP_TRACING |
9064 | bool didIntrinsic = false; |
9065 | if (!m_constrainedFlag) |
9066 | { |
9067 | switch (intrinsicId) |
9068 | { |
9069 | case CORINFO_INTRINSIC_StringLength: |
9070 | DoStringLength(); didIntrinsic = true; |
9071 | break; |
9072 | case CORINFO_INTRINSIC_StringGetChar: |
9073 | DoStringGetChar(); didIntrinsic = true; |
9074 | break; |
9075 | case CORINFO_INTRINSIC_GetTypeFromHandle: |
9076 | // This is an identity transformation. (At least until I change LdToken to |
9077 | // return a RuntimeTypeHandle struct...which is a TODO.) |
9078 | DoGetTypeFromHandle(); |
9079 | didIntrinsic = true; |
9080 | break; |
9081 | case CORINFO_INTRINSIC_ByReference_Ctor: |
9082 | DoByReferenceCtor(); |
9083 | didIntrinsic = true; |
9084 | break; |
9085 | case CORINFO_INTRINSIC_ByReference_Value: |
9086 | DoByReferenceValue(); |
9087 | didIntrinsic = true; |
9088 | break; |
9089 | #if INTERP_ILSTUBS |
9090 | case CORINFO_INTRINSIC_StubHelpers_GetStubContext: |
9091 | OpStackSet<void*>(m_curStackHt, GetStubContext()); |
9092 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_NATIVEINT)); |
9093 | m_curStackHt++; didIntrinsic = true; |
9094 | break; |
9095 | case CORINFO_INTRINSIC_StubHelpers_GetStubContextAddr: |
9096 | OpStackSet<void*>(m_curStackHt, GetStubContextAddr()); |
9097 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_NATIVEINT)); |
9098 | m_curStackHt++; didIntrinsic = true; |
9099 | break; |
9100 | #endif // INTERP_ILSTUBS |
9101 | default: |
9102 | #if INTERP_TRACING |
9103 | InterlockedIncrement(&s_totalInterpCallsToIntrinsicsUnhandled); |
9104 | #endif // INTERP_TRACING |
9105 | break; |
9106 | } |
9107 | |
9108 | // Plus some other calls that we're going to treat "like" intrinsics... |
9109 | if (methToCall == MscorlibBinder::GetMethod(METHOD__STUBHELPERS__SET_LAST_ERROR)) |
9110 | { |
9111 | // If we're interpreting a method that calls "SetLastError", it's very likely that the call(i) whose |
9112 | // error we're trying to capture was performed with MethodDescCallSite machinery that itself trashes |
9113 | // the last error. We solve this by saving the last error in a special interpreter-specific field of |
9114 | // "Thread" in that case, and essentially implement SetLastError here, taking that field as the |
9115 | // source for the last error. |
9116 | Thread* thrd = GetThread(); |
9117 | thrd->m_dwLastError = thrd->m_dwLastErrorInterp; |
9118 | didIntrinsic = true; |
9119 | } |
9120 | |
9121 | #if FEATURE_SIMD |
9122 | if (fFeatureSIMD.val(CLRConfig::EXTERNAL_FeatureSIMD) != 0) |
9123 | { |
9124 | // Check for the simd class... |
9125 | assert(exactClass != NULL); |
9126 | GCX_PREEMP(); |
9127 | bool isSIMD = m_interpCeeInfo.isInSIMDModule(exactClass); |
9128 | |
9129 | if (isSIMD) |
9130 | { |
9131 | // SIMD intrinsics are recognized by name. |
9132 | const char* namespaceName = NULL; |
9133 | const char* className = NULL; |
9134 | const char* methodName = m_interpCeeInfo.getMethodNameFromMetadata((CORINFO_METHOD_HANDLE)methToCall, &className, &namespaceName, NULL); |
9135 | if (strcmp(methodName, "get_IsHardwareAccelerated" ) == 0) |
9136 | { |
9137 | GCX_COOP(); |
9138 | DoSIMDHwAccelerated(); |
9139 | didIntrinsic = true; |
9140 | } |
9141 | } |
9142 | |
9143 | if (didIntrinsic) |
9144 | { |
9145 | // Must block caching or we lose easy access to the class |
9146 | doNotCache = true; |
9147 | } |
9148 | } |
9149 | #endif // FEATURE_SIMD |
9150 | |
9151 | } |
9152 | |
9153 | if (didIntrinsic) |
9154 | { |
9155 | if (s_InterpreterUseCaching && !doNotCache) |
9156 | { |
9157 | // Cache the token resolution result... |
9158 | pCscd = new CallSiteCacheData(methToCall, sigInfo); |
9159 | CacheCallInfo(iloffset, pCscd); |
9160 | } |
9161 | // Now we can return. |
9162 | return; |
9163 | } |
9164 | |
9165 | // Handle other simple special cases: |
9166 | |
9167 | #if FEATURE_INTERPRETER_DEADSIMPLE_OPT |
9168 | #ifndef DACCESS_COMPILE |
9169 | // Dead simple static getters. |
9170 | InterpreterMethodInfo* calleeInterpMethInfo; |
9171 | if (GetMethodHandleToInterpMethInfoPtrMap()->Lookup(CORINFO_METHOD_HANDLE(methToCall), &calleeInterpMethInfo)) |
9172 | { |
9173 | if (calleeInterpMethInfo->GetFlag<InterpreterMethodInfo::Flag_methIsDeadSimpleGetter>()) |
9174 | { |
9175 | if (methToCall->IsStatic()) |
9176 | { |
9177 | // TODO |
9178 | } |
9179 | else |
9180 | { |
9181 | ILOffsetToItemCache* calleeCache; |
9182 | { |
9183 | Object* thisArg = OpStackGet<Object*>(m_curStackHt-1); |
9184 | GCX_FORBID(); |
9185 | // We pass NULL for the generic context arg, because a dead simple getter takes none, by definition. |
9186 | calleeCache = calleeInterpMethInfo->GetCacheForCall(thisArg, /*genericsContextArg*/NULL); |
9187 | } |
9188 | // We've interpreted the getter at least once, so the cache for *some* generics context is populated -- but maybe not |
9189 | // this one. We're hoping that it usually is. |
9190 | if (calleeCache != NULL) |
9191 | { |
9192 | CachedItem cachedItem; |
9193 | unsigned offsetOfLd; |
9194 | if (calleeInterpMethInfo->GetFlag<InterpreterMethodInfo::Flag_methIsDeadSimpleGetterIsDbgForm>()) |
9195 | offsetOfLd = ILOffsetOfLdFldInDeadSimpleInstanceGetterOpt; |
9196 | else |
9197 | offsetOfLd = ILOffsetOfLdFldInDeadSimpleInstanceGetterOpt; |
9198 | |
9199 | bool b = calleeCache->GetItem(offsetOfLd, cachedItem); |
9200 | _ASSERTE_MSG(b, "If the cache exists for this generic context, it should an entry for the LdFld." ); |
9201 | _ASSERTE_MSG(cachedItem.m_tag == CIK_InstanceField, "If it's there, it should be an instance field cache." ); |
9202 | LdFld(cachedItem.m_value.m_instanceField); |
9203 | #if INTERP_TRACING |
9204 | InterlockedIncrement(&s_totalInterpCallsToDeadSimpleGetters); |
9205 | InterlockedIncrement(&s_totalInterpCallsToDeadSimpleGettersShortCircuited); |
9206 | #endif // INTERP_TRACING |
9207 | return; |
9208 | } |
9209 | } |
9210 | } |
9211 | } |
9212 | #endif // DACCESS_COMPILE |
9213 | #endif // FEATURE_INTERPRETER_DEADSIMPLE_OPT |
9214 | |
9215 | unsigned totalSigArgs; |
9216 | CORINFO_VARARGS_HANDLE vaSigCookie = nullptr; |
9217 | if ((sigInfo.callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG || |
9218 | (sigInfo.callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_NATIVEVARARG) |
9219 | { |
9220 | GCX_PREEMP(); |
9221 | CORINFO_SIG_INFO sig; |
9222 | m_interpCeeInfo.findCallSiteSig(m_methInfo->m_module, methTokPtr->token, MAKE_METHODCONTEXT(m_methInfo->m_method), &sig); |
9223 | sigInfo.retTypeClass = sig.retTypeClass; |
9224 | sigInfo.numArgs = sig.numArgs; |
9225 | sigInfo.callConv = sig.callConv; |
9226 | sigInfo.retType = sig.retType; |
9227 | // Adding 'this' pointer because, numArgs doesn't include the this pointer. |
9228 | totalSigArgs = sigInfo.numArgs + sigInfo.hasThis(); |
9229 | |
9230 | if ((sigInfo.callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG) |
9231 | { |
9232 | Module* module = GetModule(sig.scope); |
9233 | vaSigCookie = CORINFO_VARARGS_HANDLE(module->GetVASigCookie(Signature(sig.pSig, sig.cbSig))); |
9234 | } |
9235 | doNotCache = true; |
9236 | } |
9237 | else |
9238 | { |
9239 | totalSigArgs = sigInfo.totalILArgs(); |
9240 | } |
9241 | |
9242 | // Note that "totalNativeArgs()" includes space for ret buff arg. |
9243 | unsigned nSlots = totalSigArgs + 1; |
9244 | if (sigInfo.hasTypeArg()) nSlots++; |
9245 | if (sigInfo.isVarArg()) nSlots++; |
9246 | |
9247 | DelegateCtorArgs ctorData; |
9248 | // If any of these are non-null, they will be pushed as extra arguments (see the code below). |
9249 | ctorData.pArg3 = NULL; |
9250 | ctorData.pArg4 = NULL; |
9251 | ctorData.pArg5 = NULL; |
9252 | |
9253 | // Since we make "doNotCache" true below, well never have a non-null "pCscd" for a delegate |
9254 | // constructor. But we have to check for a cached method first, since callInfoPtr may be null in the cached case. |
9255 | if (pCscd == NULL && callInfoPtr->classFlags & CORINFO_FLG_DELEGATE && callInfoPtr->methodFlags & CORINFO_FLG_CONSTRUCTOR) |
9256 | { |
9257 | // We won't cache this case. |
9258 | doNotCache = true; |
9259 | |
9260 | _ASSERTE_MSG(!sigInfo.hasTypeArg(), "I assume that this isn't possible." ); |
9261 | GCX_PREEMP(); |
9262 | |
9263 | ctorData.pMethod = methToCall; |
9264 | |
9265 | // Second argument to delegate constructor will be code address of the function the delegate wraps. |
9266 | assert(TOSIsPtr() && OpStackTypeGet(m_curStackHt-1).ToCorInfoType() != CORINFO_TYPE_BYREF); |
9267 | CORINFO_METHOD_HANDLE targetMethodHnd = GetFunctionPointerStack()[m_curStackHt-1]; |
9268 | assert(targetMethodHnd != NULL); |
9269 | CORINFO_METHOD_HANDLE alternateCtorHnd = m_interpCeeInfo.GetDelegateCtor(reinterpret_cast<CORINFO_METHOD_HANDLE>(methToCall), methTokPtr->hClass, targetMethodHnd, &ctorData); |
9270 | MethodDesc* alternateCtor = reinterpret_cast<MethodDesc*>(alternateCtorHnd); |
9271 | if (alternateCtor != methToCall) |
9272 | { |
9273 | methToCall = alternateCtor; |
9274 | |
9275 | // Translate the method address argument from a method handle to the actual callable code address. |
9276 | void* val = (void *)((MethodDesc *)targetMethodHnd)->GetMultiCallableAddrOfCode(); |
9277 | // Change the method argument to the code pointer. |
9278 | OpStackSet<void*>(m_curStackHt-1, val); |
9279 | |
9280 | // Now if there are extra arguments, add them to the number of slots; we'll push them on the |
9281 | // arg list later. |
9282 | if (ctorData.pArg3) nSlots++; |
9283 | if (ctorData.pArg4) nSlots++; |
9284 | if (ctorData.pArg5) nSlots++; |
9285 | } |
9286 | } |
9287 | |
9288 | // Make sure that the operand stack has the required number of arguments. |
9289 | // (Note that this is IL args, not native.) |
9290 | // |
9291 | |
9292 | // The total number of arguments on the IL stack. Initially we assume that all the IL arguments |
9293 | // the callee expects are on the stack, but may be adjusted downwards if the "this" argument |
9294 | // is provided by an allocation (the call is to a constructor). |
9295 | unsigned totalArgsOnILStack = totalSigArgs; |
9296 | if (m_callThisArg != NULL) |
9297 | { |
9298 | assert(totalArgsOnILStack > 0); |
9299 | totalArgsOnILStack--; |
9300 | } |
9301 | |
9302 | #if defined(FEATURE_HFA) |
9303 | // Does the callee have an HFA return type? |
9304 | unsigned HFAReturnArgSlots = 0; |
9305 | { |
9306 | GCX_PREEMP(); |
9307 | |
9308 | if (sigInfo.retType == CORINFO_TYPE_VALUECLASS |
9309 | && CorInfoTypeIsFloatingPoint(m_interpCeeInfo.getHFAType(sigInfo.retTypeClass)) |
9310 | && (sigInfo.getCallConv() & CORINFO_CALLCONV_VARARG) == 0) |
9311 | { |
9312 | HFAReturnArgSlots = getClassSize(sigInfo.retTypeClass); |
9313 | // Round up to a multiple of double size. |
9314 | HFAReturnArgSlots = (HFAReturnArgSlots + sizeof(ARG_SLOT) - 1) / sizeof(ARG_SLOT); |
9315 | } |
9316 | } |
9317 | #endif |
9318 | |
9319 | // Point B |
9320 | |
9321 | const unsigned LOCAL_ARG_SLOTS = 8; |
9322 | ARG_SLOT localArgs[LOCAL_ARG_SLOTS]; |
9323 | InterpreterType localArgTypes[LOCAL_ARG_SLOTS]; |
9324 | |
9325 | ARG_SLOT* args; |
9326 | InterpreterType* argTypes; |
9327 | #if defined(_X86_) |
9328 | unsigned totalArgSlots = nSlots; |
9329 | #elif defined(_ARM_) || defined(_ARM64_) |
9330 | // ARM64TODO: Verify that the following statement is correct for ARM64. |
9331 | unsigned totalArgSlots = nSlots + HFAReturnArgSlots; |
9332 | #elif defined(_AMD64_) |
9333 | unsigned totalArgSlots = nSlots; |
9334 | #else |
9335 | #error "unsupported platform" |
9336 | #endif |
9337 | |
9338 | if (totalArgSlots <= LOCAL_ARG_SLOTS) |
9339 | { |
9340 | args = &localArgs[0]; |
9341 | argTypes = &localArgTypes[0]; |
9342 | } |
9343 | else |
9344 | { |
9345 | args = (ARG_SLOT*)_alloca(totalArgSlots * sizeof(ARG_SLOT)); |
9346 | #if defined(_ARM_) |
9347 | // The HFA return buffer, if any, is assumed to be at a negative |
9348 | // offset from the IL arg pointer, so adjust that pointer upward. |
9349 | args = args + HFAReturnArgSlots; |
9350 | #endif // defined(_ARM_) |
9351 | argTypes = (InterpreterType*)_alloca(nSlots * sizeof(InterpreterType)); |
9352 | } |
9353 | // Make sure that we don't scan any of these until we overwrite them with |
9354 | // the real types of the arguments. |
9355 | InterpreterType undefIt(CORINFO_TYPE_UNDEF); |
9356 | for (unsigned i = 0; i < nSlots; i++) argTypes[i] = undefIt; |
9357 | |
9358 | // GC-protect the argument array (as byrefs). |
9359 | m_args = args; m_argsSize = nSlots; m_argTypes = argTypes; |
9360 | |
9361 | // This is the index into the "args" array (where we copy the value to). |
9362 | int curArgSlot = 0; |
9363 | |
9364 | // The operand stack index of the first IL argument. |
9365 | assert(m_curStackHt >= totalArgsOnILStack); |
9366 | int argsBase = m_curStackHt - totalArgsOnILStack; |
9367 | |
9368 | // Current on-stack argument index. |
9369 | unsigned arg = 0; |
9370 | |
9371 | // We do "this" -- in the case of a constructor, we "shuffle" the "m_callThisArg" argument in as the first |
9372 | // argument -- it isn't on the IL operand stack. |
9373 | |
9374 | if (m_constrainedFlag) |
9375 | { |
9376 | _ASSERT(m_callThisArg == NULL); // "m_callThisArg" non-null only for .ctor, which are not callvirts. |
9377 | |
9378 | CorInfoType argCIT = OpStackTypeGet(argsBase + arg).ToCorInfoType(); |
9379 | if (argCIT != CORINFO_TYPE_BYREF) |
9380 | VerificationError("This arg of constrained call must be managed pointer." ); |
9381 | |
9382 | // We only cache for the CORINFO_NO_THIS_TRANSFORM case, so we may assume that if we have a cached call site, |
9383 | // there's no thisTransform to perform. |
9384 | if (pCscd == NULL) |
9385 | { |
9386 | switch (callInfoPtr->thisTransform) |
9387 | { |
9388 | case CORINFO_NO_THIS_TRANSFORM: |
9389 | // It is a constrained call on a method implemented by a value type; this is already the proper managed pointer. |
9390 | break; |
9391 | |
9392 | case CORINFO_DEREF_THIS: |
9393 | #ifdef _DEBUG |
9394 | { |
9395 | GCX_PREEMP(); |
9396 | DWORD clsAttribs = m_interpCeeInfo.getClassAttribs(m_constrainedResolvedToken.hClass); |
9397 | assert((clsAttribs & CORINFO_FLG_VALUECLASS) == 0); |
9398 | } |
9399 | #endif // _DEBUG |
9400 | { |
9401 | // As per the spec, dereference the byref to the "this" pointer, and substitute it as the new "this" pointer. |
9402 | GCX_FORBID(); |
9403 | Object** objPtrPtr = OpStackGet<Object**>(argsBase + arg); |
9404 | OpStackSet<Object*>(argsBase + arg, *objPtrPtr); |
9405 | OpStackTypeSet(argsBase + arg, InterpreterType(CORINFO_TYPE_CLASS)); |
9406 | } |
9407 | doNotCache = true; |
9408 | break; |
9409 | |
9410 | case CORINFO_BOX_THIS: |
9411 | // This is the case where the call is to a virtual method of Object the given |
9412 | // struct class does not override -- the struct must be boxed, so that the |
9413 | // method can be invoked as a virtual. |
9414 | BoxStructRefAt(argsBase + arg, m_constrainedResolvedToken.hClass); |
9415 | doNotCache = true; |
9416 | break; |
9417 | } |
9418 | |
9419 | exactClass = m_constrainedResolvedToken.hClass; |
9420 | { |
9421 | GCX_PREEMP(); |
9422 | DWORD exactClassAttribs = m_interpCeeInfo.getClassAttribs(exactClass); |
9423 | // If the constraint type is a value class, then it is the exact class (which will be the |
9424 | // "owner type" in the MDCS below.) If it is not, leave it as the (precise) interface method. |
9425 | if (exactClassAttribs & CORINFO_FLG_VALUECLASS) |
9426 | { |
9427 | MethodTable* exactClassMT = GetMethodTableFromClsHnd(exactClass); |
9428 | // Find the method on exactClass corresponding to methToCall. |
9429 | methToCall = MethodDesc::FindOrCreateAssociatedMethodDesc( |
9430 | reinterpret_cast<MethodDesc*>(callInfoPtr->hMethod), // pPrimaryMD |
9431 | exactClassMT, // pExactMT |
9432 | FALSE, // forceBoxedEntryPoint |
9433 | methToCall->GetMethodInstantiation(), // methodInst |
9434 | FALSE); // allowInstParam |
9435 | } |
9436 | else |
9437 | { |
9438 | exactClass = methTokPtr->hClass; |
9439 | } |
9440 | } |
9441 | } |
9442 | |
9443 | // We've consumed the constraint, so reset the flag. |
9444 | m_constrainedFlag = false; |
9445 | } |
9446 | |
9447 | if (pCscd == NULL) |
9448 | { |
9449 | if (callInfoPtr->methodFlags & CORINFO_FLG_STATIC) |
9450 | { |
9451 | MethodDesc* pMD = reinterpret_cast<MethodDesc*>(callInfoPtr->hMethod); |
9452 | EnsureClassInit(pMD->GetMethodTable()); |
9453 | } |
9454 | } |
9455 | |
9456 | // Point C |
9457 | |
9458 | // We must do anything that might make a COOP->PREEMP transition before copying arguments out of the |
9459 | // operand stack (where they are GC-protected) into the args array (where they are not). |
9460 | #ifdef _DEBUG |
9461 | const char* clsOfMethToCallName;; |
9462 | const char* methToCallName = NULL; |
9463 | { |
9464 | GCX_PREEMP(); |
9465 | methToCallName = m_interpCeeInfo.getMethodName(CORINFO_METHOD_HANDLE(methToCall), &clsOfMethToCallName); |
9466 | } |
9467 | #if INTERP_TRACING |
9468 | if (strncmp(methToCallName, "get_" , 4) == 0) |
9469 | { |
9470 | InterlockedIncrement(&s_totalInterpCallsToGetters); |
9471 | size_t offsetOfLd; |
9472 | if (IsDeadSimpleGetter(&m_interpCeeInfo, methToCall, &offsetOfLd)) |
9473 | { |
9474 | InterlockedIncrement(&s_totalInterpCallsToDeadSimpleGetters); |
9475 | } |
9476 | } |
9477 | else if (strncmp(methToCallName, "set_" , 4) == 0) |
9478 | { |
9479 | InterlockedIncrement(&s_totalInterpCallsToSetters); |
9480 | } |
9481 | #endif // INTERP_TRACING |
9482 | |
9483 | // Only do this check on the first call, since it should be the same each time. |
9484 | if (pCscd == NULL) |
9485 | { |
9486 | // Ensure that any value types used as argument types are loaded. This property is checked |
9487 | // by the MethodDescCall site mechanisms. Since enums are freely convertible with their underlying |
9488 | // integer type, this is at least one case where a caller may push a value convertible to a value type |
9489 | // without any code having caused the value type to be loaded. This is DEBUG-only because if the callee |
9490 | // the integer-type value as the enum value type, it will have loaded the value type. |
9491 | MetaSig ms(methToCall); |
9492 | CorElementType argType; |
9493 | while ((argType = ms.NextArg()) != ELEMENT_TYPE_END) |
9494 | { |
9495 | if (argType == ELEMENT_TYPE_VALUETYPE) |
9496 | { |
9497 | TypeHandle th = ms.GetLastTypeHandleThrowing(ClassLoader::LoadTypes); |
9498 | CONSISTENCY_CHECK(th.CheckFullyLoaded()); |
9499 | CONSISTENCY_CHECK(th.IsRestored_NoLogging()); |
9500 | } |
9501 | } |
9502 | } |
9503 | #endif |
9504 | |
9505 | // CYCLE PROFILE: BEFORE ARG PROCESSING. |
9506 | |
9507 | if (sigInfo.hasThis()) |
9508 | { |
9509 | if (m_callThisArg != NULL) |
9510 | { |
9511 | if (size_t(m_callThisArg) == 0x1) |
9512 | { |
9513 | args[curArgSlot] = NULL; |
9514 | } |
9515 | else |
9516 | { |
9517 | args[curArgSlot] = PtrToArgSlot(m_callThisArg); |
9518 | } |
9519 | argTypes[curArgSlot] = InterpreterType(CORINFO_TYPE_BYREF); |
9520 | } |
9521 | else |
9522 | { |
9523 | args[curArgSlot] = PtrToArgSlot(OpStackGet<void*>(argsBase + arg)); |
9524 | argTypes[curArgSlot] = OpStackTypeGet(argsBase + arg); |
9525 | arg++; |
9526 | } |
9527 | // AV -> NullRef translation is NYI for the interpreter, |
9528 | // so we should manually check and throw the correct exception. |
9529 | if (args[curArgSlot] == NULL) |
9530 | { |
9531 | // If we're calling a constructor, we bypass this check since the runtime |
9532 | // should have thrown OOM if it was unable to allocate an instance. |
9533 | if (m_callThisArg == NULL) |
9534 | { |
9535 | assert(!methToCall->IsStatic()); |
9536 | ThrowNullPointerException(); |
9537 | } |
9538 | // ...except in the case of strings, which are both |
9539 | // allocated and initialized by their special constructor. |
9540 | else |
9541 | { |
9542 | assert(methToCall->IsCtor() && methToCall->GetMethodTable()->IsString()); |
9543 | } |
9544 | } |
9545 | curArgSlot++; |
9546 | } |
9547 | |
9548 | // This is the argument slot that will be used to hold the return value. |
9549 | ARG_SLOT retVal = 0; |
9550 | #if !defined(_ARM_) && !defined(UNIX_AMD64_ABI) |
9551 | _ASSERTE (NUMBER_RETURNVALUE_SLOTS == 1); |
9552 | #endif |
9553 | |
9554 | // If the return type is a structure, then these will be initialized. |
9555 | CORINFO_CLASS_HANDLE retTypeClsHnd = NULL; |
9556 | InterpreterType retTypeIt; |
9557 | size_t retTypeSz = 0; |
9558 | |
9559 | // If non-null, space allocated to hold a large struct return value. Should be deleted later. |
9560 | // (I could probably optimize this pop all the arguments first, then allocate space for the return value |
9561 | // on the large structure operand stack, and pass a pointer directly to that space, avoiding the extra |
9562 | // copy we have below. But this seemed more expedient, and this should be a pretty rare case.) |
9563 | BYTE* pLargeStructRetVal = NULL; |
9564 | |
9565 | // If there's a "GetFlag<Flag_hasRetBuffArg>()" struct return value, it will be stored in this variable if it fits, |
9566 | // otherwise, we'll dynamically allocate memory for it. |
9567 | ARG_SLOT smallStructRetVal = 0; |
9568 | |
9569 | // We should have no return buffer temp space registered here...unless this is a constructor, in which |
9570 | // case it will return void. In particular, if the return type VALUE_CLASS, then this should be NULL. |
9571 | _ASSERTE_MSG((pCscd != NULL) || sigInfo.retType == CORINFO_TYPE_VOID || m_structRetValITPtr == NULL, "Invariant." ); |
9572 | |
9573 | // Is it the return value a struct with a ret buff? |
9574 | _ASSERTE_MSG(methToCall != NULL, "assumption" ); |
9575 | bool hasRetBuffArg = false; |
9576 | if (sigInfo.retType == CORINFO_TYPE_VALUECLASS || sigInfo.retType == CORINFO_TYPE_REFANY) |
9577 | { |
9578 | hasRetBuffArg = !!methToCall->HasRetBuffArg(); |
9579 | retTypeClsHnd = sigInfo.retTypeClass; |
9580 | |
9581 | MetaSig ms(methToCall); |
9582 | |
9583 | |
9584 | // On ARM, if there's an HFA return type, we must also allocate a return buffer, since the |
9585 | // MDCS calling convention requires it. |
9586 | if (hasRetBuffArg |
9587 | #if defined(_ARM_) |
9588 | || HFAReturnArgSlots > 0 |
9589 | #endif // defined(_ARM_) |
9590 | ) |
9591 | { |
9592 | assert(retTypeClsHnd != NULL); |
9593 | retTypeIt = InterpreterType(&m_interpCeeInfo, retTypeClsHnd); |
9594 | retTypeSz = retTypeIt.Size(&m_interpCeeInfo); |
9595 | |
9596 | #if defined(_ARM_) |
9597 | if (HFAReturnArgSlots > 0) |
9598 | { |
9599 | args[curArgSlot] = PtrToArgSlot(args - HFAReturnArgSlots); |
9600 | } |
9601 | else |
9602 | #endif // defined(_ARM_) |
9603 | |
9604 | if (retTypeIt.IsLargeStruct(&m_interpCeeInfo)) |
9605 | { |
9606 | size_t retBuffSize = retTypeSz; |
9607 | // If the target architecture can sometimes return a struct in several registers, |
9608 | // MethodDescCallSite will reserve a return value array big enough to hold the maximum. |
9609 | // It will then copy *all* of this into the return buffer area we allocate. So make sure |
9610 | // we allocate at least that much. |
9611 | #ifdef ENREGISTERED_RETURNTYPE_MAXSIZE |
9612 | retBuffSize = max(retTypeSz, ENREGISTERED_RETURNTYPE_MAXSIZE); |
9613 | #endif // ENREGISTERED_RETURNTYPE_MAXSIZE |
9614 | pLargeStructRetVal = (BYTE*)_alloca(retBuffSize); |
9615 | // Clear this in case a GC happens. |
9616 | for (unsigned i = 0; i < retTypeSz; i++) pLargeStructRetVal[i] = 0; |
9617 | // Register this as location needing GC. |
9618 | m_structRetValTempSpace = pLargeStructRetVal; |
9619 | // Set it as the return buffer. |
9620 | args[curArgSlot] = PtrToArgSlot(pLargeStructRetVal); |
9621 | } |
9622 | else |
9623 | { |
9624 | // Clear this in case a GC happens. |
9625 | smallStructRetVal = 0; |
9626 | // Register this as location needing GC. |
9627 | m_structRetValTempSpace = &smallStructRetVal; |
9628 | // Set it as the return buffer. |
9629 | args[curArgSlot] = PtrToArgSlot(&smallStructRetVal); |
9630 | } |
9631 | m_structRetValITPtr = &retTypeIt; |
9632 | argTypes[curArgSlot] = InterpreterType(CORINFO_TYPE_NATIVEINT); |
9633 | curArgSlot++; |
9634 | } |
9635 | else |
9636 | { |
9637 | // The struct type might "normalize" to a primitive type. |
9638 | if (retTypeClsHnd == NULL) |
9639 | { |
9640 | retTypeIt = InterpreterType(CEEInfo::asCorInfoType(ms.GetReturnTypeNormalized())); |
9641 | } |
9642 | else |
9643 | { |
9644 | retTypeIt = InterpreterType(&m_interpCeeInfo, retTypeClsHnd); |
9645 | } |
9646 | } |
9647 | } |
9648 | |
9649 | if (((sigInfo.callConv & CORINFO_CALLCONV_VARARG) != 0) && sigInfo.isVarArg()) |
9650 | { |
9651 | assert(vaSigCookie != nullptr); |
9652 | args[curArgSlot] = PtrToArgSlot(vaSigCookie); |
9653 | argTypes[curArgSlot] = InterpreterType(CORINFO_TYPE_NATIVEINT); |
9654 | curArgSlot++; |
9655 | } |
9656 | |
9657 | if (pCscd == NULL) |
9658 | { |
9659 | if (sigInfo.hasTypeArg()) |
9660 | { |
9661 | GCX_PREEMP(); |
9662 | // We will find the instantiating stub for the method, and call that instead. |
9663 | CORINFO_SIG_INFO sigInfoFull; |
9664 | Instantiation methodInst = methToCall->GetMethodInstantiation(); |
9665 | BOOL fNeedUnboxingStub = virtualCall && TypeHandle(exactClass).IsValueType() && methToCall->IsVirtual(); |
9666 | methToCall = MethodDesc::FindOrCreateAssociatedMethodDesc(methToCall, |
9667 | TypeHandle(exactClass).GetMethodTable(), fNeedUnboxingStub, methodInst, FALSE, TRUE); |
9668 | m_interpCeeInfo.getMethodSig(CORINFO_METHOD_HANDLE(methToCall), &sigInfoFull); |
9669 | sigInfo.retTypeClass = sigInfoFull.retTypeClass; |
9670 | sigInfo.numArgs = sigInfoFull.numArgs; |
9671 | sigInfo.callConv = sigInfoFull.callConv; |
9672 | sigInfo.retType = sigInfoFull.retType; |
9673 | } |
9674 | |
9675 | if (sigInfo.hasTypeArg()) |
9676 | { |
9677 | // If we still have a type argument, we're calling an ArrayOpStub and need to pass the array TypeHandle. |
9678 | assert(methToCall->IsArray()); |
9679 | doNotCache = true; |
9680 | args[curArgSlot] = PtrToArgSlot(exactClass); |
9681 | argTypes[curArgSlot] = InterpreterType(CORINFO_TYPE_NATIVEINT); |
9682 | curArgSlot++; |
9683 | } |
9684 | } |
9685 | |
9686 | // Now we do the non-this arguments. |
9687 | size_t largeStructSpaceToPop = 0; |
9688 | for (; arg < totalArgsOnILStack; arg++) |
9689 | { |
9690 | InterpreterType argIt = OpStackTypeGet(argsBase + arg); |
9691 | size_t sz = OpStackTypeGet(argsBase + arg).Size(&m_interpCeeInfo); |
9692 | switch (sz) |
9693 | { |
9694 | case 1: |
9695 | args[curArgSlot] = OpStackGet<INT8>(argsBase + arg); |
9696 | break; |
9697 | case 2: |
9698 | args[curArgSlot] = OpStackGet<INT16>(argsBase + arg); |
9699 | break; |
9700 | case 4: |
9701 | args[curArgSlot] = OpStackGet<INT32>(argsBase + arg); |
9702 | break; |
9703 | case 8: |
9704 | default: |
9705 | if (sz > 8) |
9706 | { |
9707 | void* srcPtr = OpStackGet<void*>(argsBase + arg); |
9708 | args[curArgSlot] = PtrToArgSlot(srcPtr); |
9709 | if (!IsInLargeStructLocalArea(srcPtr)) |
9710 | largeStructSpaceToPop += sz; |
9711 | } |
9712 | else |
9713 | { |
9714 | args[curArgSlot] = OpStackGet<INT64>(argsBase + arg); |
9715 | } |
9716 | break; |
9717 | } |
9718 | argTypes[curArgSlot] = argIt; |
9719 | curArgSlot++; |
9720 | } |
9721 | |
9722 | if (ctorData.pArg3) |
9723 | { |
9724 | args[curArgSlot] = PtrToArgSlot(ctorData.pArg3); |
9725 | argTypes[curArgSlot] = InterpreterType(CORINFO_TYPE_NATIVEINT); |
9726 | curArgSlot++; |
9727 | } |
9728 | if (ctorData.pArg4) |
9729 | { |
9730 | args[curArgSlot] = PtrToArgSlot(ctorData.pArg4); |
9731 | argTypes[curArgSlot] = InterpreterType(CORINFO_TYPE_NATIVEINT); |
9732 | curArgSlot++; |
9733 | } |
9734 | if (ctorData.pArg5) |
9735 | { |
9736 | args[curArgSlot] = PtrToArgSlot(ctorData.pArg5); |
9737 | argTypes[curArgSlot] = InterpreterType(CORINFO_TYPE_NATIVEINT); |
9738 | curArgSlot++; |
9739 | } |
9740 | |
9741 | // CYCLE PROFILE: AFTER ARG PROCESSING. |
9742 | { |
9743 | Thread* thr = GetThread(); |
9744 | |
9745 | Object** thisArgHnd = NULL; |
9746 | ARG_SLOT nullThisArg = NULL; |
9747 | if (sigInfo.hasThis()) |
9748 | { |
9749 | if (m_callThisArg != NULL) |
9750 | { |
9751 | if (size_t(m_callThisArg) == 0x1) |
9752 | { |
9753 | thisArgHnd = reinterpret_cast<Object**>(&nullThisArg); |
9754 | } |
9755 | else |
9756 | { |
9757 | thisArgHnd = reinterpret_cast<Object**>(&m_callThisArg); |
9758 | } |
9759 | } |
9760 | else |
9761 | { |
9762 | thisArgHnd = OpStackGetAddr<Object*>(argsBase); |
9763 | } |
9764 | } |
9765 | |
9766 | Frame* topFrameBefore = thr->GetFrame(); |
9767 | |
9768 | #if INTERP_ILCYCLE_PROFILE |
9769 | unsigned __int64 startCycles; |
9770 | #endif // INTERP_ILCYCLE_PROFILE |
9771 | |
9772 | // CYCLE PROFILE: BEFORE MDCS CREATION. |
9773 | |
9774 | PCODE target = NULL; |
9775 | MethodDesc *exactMethToCall = methToCall; |
9776 | |
9777 | // Determine the target of virtual calls. |
9778 | if (virtualCall && methToCall->IsVtableMethod()) |
9779 | { |
9780 | PCODE pCode; |
9781 | |
9782 | assert(thisArgHnd != NULL); |
9783 | OBJECTREF objRef = ObjectToOBJECTREF(*thisArgHnd); |
9784 | GCPROTECT_BEGIN(objRef); |
9785 | pCode = methToCall->GetMultiCallableAddrOfVirtualizedCode(&objRef, methToCall->GetMethodTable()); |
9786 | GCPROTECT_END(); |
9787 | |
9788 | exactMethToCall = Entry2MethodDesc(pCode, objRef->GetMethodTable()); |
9789 | } |
9790 | |
9791 | // Compile the target in advance of calling. |
9792 | if (exactMethToCall->IsPointingToPrestub()) |
9793 | { |
9794 | MethodTable* dispatchingMT = NULL; |
9795 | if (exactMethToCall->IsVtableMethod()) |
9796 | { |
9797 | assert(thisArgHnd != NULL); |
9798 | dispatchingMT = (*thisArgHnd)->GetMethodTable(); |
9799 | } |
9800 | GCX_PREEMP(); |
9801 | target = exactMethToCall->DoPrestub(dispatchingMT); |
9802 | } |
9803 | else |
9804 | { |
9805 | target = exactMethToCall->GetMethodEntryPoint(); |
9806 | } |
9807 | |
9808 | // If we're interpreting the method, simply call it directly. |
9809 | if (InterpretationStubToMethodInfo(target) == exactMethToCall) |
9810 | { |
9811 | assert(!exactMethToCall->IsILStub()); |
9812 | InterpreterMethodInfo* methInfo = MethodHandleToInterpreterMethInfoPtr(CORINFO_METHOD_HANDLE(exactMethToCall)); |
9813 | assert(methInfo != NULL); |
9814 | #if INTERP_ILCYCLE_PROFILE |
9815 | bool b = CycleTimer::GetThreadCyclesS(&startCycles); assert(b); |
9816 | #endif // INTERP_ILCYCLE_PROFILE |
9817 | retVal = InterpretMethodBody(methInfo, true, reinterpret_cast<BYTE*>(args), NULL); |
9818 | pCscd = NULL; // Nothing to cache. |
9819 | } |
9820 | else |
9821 | { |
9822 | MetaSig msig(exactMethToCall); |
9823 | // We've already resolved the virtual call target above, so there is no need to do it again. |
9824 | MethodDescCallSite mdcs(exactMethToCall, &msig, target); |
9825 | #if INTERP_ILCYCLE_PROFILE |
9826 | bool b = CycleTimer::GetThreadCyclesS(&startCycles); assert(b); |
9827 | #endif // INTERP_ILCYCLE_PROFILE |
9828 | mdcs.CallTargetWorker(args, &retVal, sizeof(retVal)); |
9829 | |
9830 | if (pCscd != NULL) |
9831 | { |
9832 | // We will do a check at the end to determine whether to cache pCscd, to set |
9833 | // to NULL here to make sure we don't. |
9834 | pCscd = NULL; |
9835 | } |
9836 | else |
9837 | { |
9838 | // For now, we won't cache virtual calls to virtual methods. |
9839 | // TODO: fix this somehow. |
9840 | if (virtualCall && (callInfoPtr->methodFlags & CORINFO_FLG_VIRTUAL)) doNotCache = true; |
9841 | |
9842 | if (s_InterpreterUseCaching && !doNotCache) |
9843 | { |
9844 | // We will add this to the cache later; the locking provokes a GC, |
9845 | // and "retVal" is vulnerable. |
9846 | pCscd = new CallSiteCacheData(exactMethToCall, sigInfo); |
9847 | } |
9848 | } |
9849 | } |
9850 | #if INTERP_ILCYCLE_PROFILE |
9851 | unsigned __int64 endCycles; |
9852 | bool b = CycleTimer::GetThreadCyclesS(&endCycles); assert(b); |
9853 | m_exemptCycles += (endCycles - startCycles); |
9854 | #endif // INTERP_ILCYCLE_PROFILE |
9855 | |
9856 | // retVal is now vulnerable. |
9857 | GCX_FORBID(); |
9858 | |
9859 | // Some managed methods, believe it or not, can push capital-F Frames on the Frame chain. |
9860 | // If this happens, executing the EX_CATCH below will pop it, which is bad. |
9861 | // So detect that case, pop the explicitly-pushed frame, and push it again after the EX_CATCH. |
9862 | // (Asserting that there is only 1 such frame!) |
9863 | if (thr->GetFrame() != topFrameBefore) |
9864 | { |
9865 | ilPushedFrame = thr->GetFrame(); |
9866 | if (ilPushedFrame != NULL) |
9867 | { |
9868 | ilPushedFrame->Pop(thr); |
9869 | if (thr->GetFrame() != topFrameBefore) |
9870 | { |
9871 | // This wasn't an IL-pushed frame, so restore. |
9872 | ilPushedFrame->Push(thr); |
9873 | ilPushedFrame = NULL; |
9874 | } |
9875 | } |
9876 | } |
9877 | } |
9878 | |
9879 | // retVal is still vulnerable. |
9880 | { |
9881 | GCX_FORBID(); |
9882 | m_argsSize = 0; |
9883 | |
9884 | // At this point, the call has happened successfully. We can delete the arguments from the operand stack. |
9885 | m_curStackHt -= totalArgsOnILStack; |
9886 | // We've already checked that "largeStructSpaceToPop |
9887 | LargeStructOperandStackPop(largeStructSpaceToPop, NULL); |
9888 | |
9889 | if (size_t(m_callThisArg) == 0x1) |
9890 | { |
9891 | _ASSERTE_MSG(sigInfo.retType == CORINFO_TYPE_VOID, "Constructor for var-sized object becomes factory method that returns result." ); |
9892 | OpStackSet<Object*>(m_curStackHt, reinterpret_cast<Object*>(retVal)); |
9893 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_CLASS)); |
9894 | m_curStackHt++; |
9895 | } |
9896 | else if (sigInfo.retType != CORINFO_TYPE_VOID) |
9897 | { |
9898 | switch (sigInfo.retType) |
9899 | { |
9900 | case CORINFO_TYPE_BOOL: |
9901 | case CORINFO_TYPE_BYTE: |
9902 | OpStackSet<INT32>(m_curStackHt, static_cast<INT8>(retVal)); |
9903 | break; |
9904 | case CORINFO_TYPE_UBYTE: |
9905 | OpStackSet<UINT32>(m_curStackHt, static_cast<UINT8>(retVal)); |
9906 | break; |
9907 | case CORINFO_TYPE_SHORT: |
9908 | OpStackSet<INT32>(m_curStackHt, static_cast<INT16>(retVal)); |
9909 | break; |
9910 | case CORINFO_TYPE_USHORT: |
9911 | case CORINFO_TYPE_CHAR: |
9912 | OpStackSet<UINT32>(m_curStackHt, static_cast<UINT16>(retVal)); |
9913 | break; |
9914 | case CORINFO_TYPE_INT: |
9915 | case CORINFO_TYPE_UINT: |
9916 | case CORINFO_TYPE_FLOAT: |
9917 | OpStackSet<INT32>(m_curStackHt, static_cast<INT32>(retVal)); |
9918 | break; |
9919 | case CORINFO_TYPE_LONG: |
9920 | case CORINFO_TYPE_ULONG: |
9921 | case CORINFO_TYPE_DOUBLE: |
9922 | OpStackSet<INT64>(m_curStackHt, static_cast<INT64>(retVal)); |
9923 | break; |
9924 | case CORINFO_TYPE_NATIVEINT: |
9925 | case CORINFO_TYPE_NATIVEUINT: |
9926 | case CORINFO_TYPE_PTR: |
9927 | OpStackSet<NativeInt>(m_curStackHt, static_cast<NativeInt>(retVal)); |
9928 | break; |
9929 | case CORINFO_TYPE_CLASS: |
9930 | OpStackSet<Object*>(m_curStackHt, reinterpret_cast<Object*>(retVal)); |
9931 | break; |
9932 | case CORINFO_TYPE_BYREF: |
9933 | OpStackSet<void*>(m_curStackHt, reinterpret_cast<void*>(retVal)); |
9934 | break; |
9935 | case CORINFO_TYPE_VALUECLASS: |
9936 | case CORINFO_TYPE_REFANY: |
9937 | { |
9938 | // We must be careful here to write the value, the type, and update the stack height in one |
9939 | // sequence that has no COOP->PREEMP transitions in it, so no GC's happen until the value |
9940 | // is protected by being fully "on" the operandStack. |
9941 | #if defined(_ARM_) |
9942 | // Is the return type an HFA? |
9943 | if (HFAReturnArgSlots > 0) |
9944 | { |
9945 | ARG_SLOT* hfaRetBuff = args - HFAReturnArgSlots; |
9946 | if (retTypeIt.IsLargeStruct(&m_interpCeeInfo)) |
9947 | { |
9948 | void* dst = LargeStructOperandStackPush(retTypeSz); |
9949 | memcpy(dst, hfaRetBuff, retTypeSz); |
9950 | OpStackSet<void*>(m_curStackHt, dst); |
9951 | } |
9952 | else |
9953 | { |
9954 | memcpy(OpStackGetAddr<UINT64>(m_curStackHt), hfaRetBuff, retTypeSz); |
9955 | } |
9956 | } |
9957 | else |
9958 | #endif // defined(_ARM_) |
9959 | if (pLargeStructRetVal != NULL) |
9960 | { |
9961 | assert(hasRetBuffArg); |
9962 | void* dst = LargeStructOperandStackPush(retTypeSz); |
9963 | CopyValueClassUnchecked(dst, pLargeStructRetVal, GetMethodTableFromClsHnd(retTypeClsHnd)); |
9964 | OpStackSet<void*>(m_curStackHt, dst); |
9965 | } |
9966 | else if (hasRetBuffArg) |
9967 | { |
9968 | OpStackSet<INT64>(m_curStackHt, GetSmallStructValue(&smallStructRetVal, retTypeSz)); |
9969 | } |
9970 | else |
9971 | { |
9972 | OpStackSet<UINT64>(m_curStackHt, retVal); |
9973 | } |
9974 | // We already created this interpreter type, so use it. |
9975 | OpStackTypeSet(m_curStackHt, retTypeIt.StackNormalize()); |
9976 | m_curStackHt++; |
9977 | |
9978 | |
9979 | // In the value-class case, the call might have used a ret buff, which we would have registered for GC scanning. |
9980 | // Make sure it's unregistered. |
9981 | m_structRetValITPtr = NULL; |
9982 | } |
9983 | break; |
9984 | default: |
9985 | NYI_INTERP("Unhandled return type" ); |
9986 | break; |
9987 | } |
9988 | _ASSERTE_MSG(m_structRetValITPtr == NULL, "Invariant." ); |
9989 | |
9990 | // The valueclass case is handled fully in the switch above. |
9991 | if (sigInfo.retType != CORINFO_TYPE_VALUECLASS && |
9992 | sigInfo.retType != CORINFO_TYPE_REFANY) |
9993 | { |
9994 | OpStackTypeSet(m_curStackHt, InterpreterType(sigInfo.retType).StackNormalize()); |
9995 | m_curStackHt++; |
9996 | } |
9997 | } |
9998 | } |
9999 | |
10000 | // Originally, this assertion was in the ValueClass case above, but it does a COOP->PREEMP |
10001 | // transition, and therefore causes a GC, and we're GCX_FORBIDden from doing a GC while retVal |
10002 | // is vulnerable. So, for completeness, do it here. |
10003 | assert(sigInfo.retType != CORINFO_TYPE_VALUECLASS || retTypeIt == InterpreterType(&m_interpCeeInfo, retTypeClsHnd)); |
10004 | |
10005 | // If we created a cached call site, cache it now (when it's safe to take a GC). |
10006 | if (pCscd != NULL && !doNotCache) |
10007 | { |
10008 | CacheCallInfo(iloffset, pCscd); |
10009 | } |
10010 | |
10011 | m_callThisArg = NULL; |
10012 | |
10013 | // If the call we just made pushed a Frame, we popped it above, so re-push it. |
10014 | if (ilPushedFrame != NULL) ilPushedFrame->Push(); |
10015 | } |
10016 | |
10017 | #include "metadata.h" |
10018 | |
10019 | void Interpreter::CallI() |
10020 | { |
10021 | #if INTERP_DYNAMIC_CONTRACTS |
10022 | CONTRACTL { |
10023 | SO_TOLERANT; |
10024 | THROWS; |
10025 | GC_TRIGGERS; |
10026 | MODE_COOPERATIVE; |
10027 | } CONTRACTL_END; |
10028 | #else |
10029 | // Dynamic contract occupies too much stack. |
10030 | STATIC_CONTRACT_SO_TOLERANT; |
10031 | STATIC_CONTRACT_THROWS; |
10032 | STATIC_CONTRACT_GC_TRIGGERS; |
10033 | STATIC_CONTRACT_MODE_COOPERATIVE; |
10034 | #endif |
10035 | |
10036 | #if INTERP_TRACING |
10037 | InterlockedIncrement(&s_totalInterpCalls); |
10038 | #endif // INTERP_TRACING |
10039 | |
10040 | unsigned tok = getU4LittleEndian(m_ILCodePtr + sizeof(BYTE)); |
10041 | |
10042 | CORINFO_SIG_INFO sigInfo; |
10043 | |
10044 | { |
10045 | GCX_PREEMP(); |
10046 | m_interpCeeInfo.findSig(m_methInfo->m_module, tok, GetPreciseGenericsContext(), &sigInfo); |
10047 | } |
10048 | |
10049 | // I'm assuming that a calli can't depend on the generics context, so the simple form of type |
10050 | // context should suffice? |
10051 | MethodDesc* pMD = reinterpret_cast<MethodDesc*>(m_methInfo->m_method); |
10052 | SigTypeContext sigTypeCtxt(pMD); |
10053 | MetaSig mSig(sigInfo.pSig, sigInfo.cbSig, GetModule(sigInfo.scope), &sigTypeCtxt); |
10054 | |
10055 | unsigned totalSigArgs = sigInfo.totalILArgs(); |
10056 | |
10057 | // Note that "totalNativeArgs()" includes space for ret buff arg. |
10058 | unsigned nSlots = totalSigArgs + 1; |
10059 | if ((sigInfo.callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG) |
10060 | { |
10061 | nSlots++; |
10062 | } |
10063 | |
10064 | // Make sure that the operand stack has the required number of arguments. |
10065 | // (Note that this is IL args, not native.) |
10066 | // |
10067 | |
10068 | // The total number of arguments on the IL stack. Initially we assume that all the IL arguments |
10069 | // the callee expects are on the stack, but may be adjusted downwards if the "this" argument |
10070 | // is provided by an allocation (the call is to a constructor). |
10071 | unsigned totalArgsOnILStack = totalSigArgs; |
10072 | |
10073 | const unsigned LOCAL_ARG_SLOTS = 8; |
10074 | ARG_SLOT localArgs[LOCAL_ARG_SLOTS]; |
10075 | InterpreterType localArgTypes[LOCAL_ARG_SLOTS]; |
10076 | |
10077 | ARG_SLOT* args; |
10078 | InterpreterType* argTypes; |
10079 | if (nSlots <= LOCAL_ARG_SLOTS) |
10080 | { |
10081 | args = &localArgs[0]; |
10082 | argTypes = &localArgTypes[0]; |
10083 | } |
10084 | else |
10085 | { |
10086 | args = (ARG_SLOT*)_alloca(nSlots * sizeof(ARG_SLOT)); |
10087 | argTypes = (InterpreterType*)_alloca(nSlots * sizeof(InterpreterType)); |
10088 | } |
10089 | // Make sure that we don't scan any of these until we overwrite them with |
10090 | // the real types of the arguments. |
10091 | InterpreterType undefIt(CORINFO_TYPE_UNDEF); |
10092 | for (unsigned i = 0; i < nSlots; i++) |
10093 | { |
10094 | argTypes[i] = undefIt; |
10095 | } |
10096 | |
10097 | // GC-protect the argument array (as byrefs). |
10098 | m_args = args; |
10099 | m_argsSize = nSlots; |
10100 | m_argTypes = argTypes; |
10101 | |
10102 | // This is the index into the "args" array (where we copy the value to). |
10103 | int curArgSlot = 0; |
10104 | |
10105 | // The operand stack index of the first IL argument. |
10106 | unsigned totalArgPositions = totalArgsOnILStack + 1; // + 1 for the ftn argument. |
10107 | assert(m_curStackHt >= totalArgPositions); |
10108 | int argsBase = m_curStackHt - totalArgPositions; |
10109 | |
10110 | // Current on-stack argument index. |
10111 | unsigned arg = 0; |
10112 | |
10113 | if (sigInfo.hasThis()) |
10114 | { |
10115 | args[curArgSlot] = PtrToArgSlot(OpStackGet<void*>(argsBase + arg)); |
10116 | argTypes[curArgSlot] = OpStackTypeGet(argsBase + arg); |
10117 | // AV -> NullRef translation is NYI for the interpreter, |
10118 | // so we should manually check and throw the correct exception. |
10119 | ThrowOnInvalidPointer((void*)args[curArgSlot]); |
10120 | arg++; |
10121 | curArgSlot++; |
10122 | } |
10123 | |
10124 | // This is the argument slot that will be used to hold the return value. |
10125 | ARG_SLOT retVal = 0; |
10126 | |
10127 | // If the return type is a structure, then these will be initialized. |
10128 | CORINFO_CLASS_HANDLE retTypeClsHnd = NULL; |
10129 | InterpreterType retTypeIt; |
10130 | size_t retTypeSz = 0; |
10131 | |
10132 | // If non-null, space allocated to hold a large struct return value. Should be deleted later. |
10133 | // (I could probably optimize this pop all the arguments first, then allocate space for the return value |
10134 | // on the large structure operand stack, and pass a pointer directly to that space, avoiding the extra |
10135 | // copy we have below. But this seemed more expedient, and this should be a pretty rare case.) |
10136 | BYTE* pLargeStructRetVal = NULL; |
10137 | |
10138 | // If there's a "GetFlag<Flag_hasRetBuffArg>()" struct return value, it will be stored in this variable if it fits, |
10139 | // otherwise, we'll dynamically allocate memory for it. |
10140 | ARG_SLOT smallStructRetVal = 0; |
10141 | |
10142 | // We should have no return buffer temp space registered here...unless this is a constructor, in which |
10143 | // case it will return void. In particular, if the return type VALUE_CLASS, then this should be NULL. |
10144 | _ASSERTE_MSG(sigInfo.retType == CORINFO_TYPE_VOID || m_structRetValITPtr == NULL, "Invariant." ); |
10145 | |
10146 | // Is it the return value a struct with a ret buff? |
10147 | bool hasRetBuffArg = false; |
10148 | if (sigInfo.retType == CORINFO_TYPE_VALUECLASS) |
10149 | { |
10150 | retTypeClsHnd = sigInfo.retTypeClass; |
10151 | retTypeIt = InterpreterType(&m_interpCeeInfo, retTypeClsHnd); |
10152 | retTypeSz = retTypeIt.Size(&m_interpCeeInfo); |
10153 | #if defined(_AMD64_) |
10154 | // TODO: Investigate why HasRetBuffArg can't be used. pMD is a hacked up MD for the |
10155 | // calli because it belongs to the current method. Doing what the JIT does. |
10156 | hasRetBuffArg = (retTypeSz > sizeof(void*)) || ((retTypeSz & (retTypeSz - 1)) != 0); |
10157 | #else |
10158 | hasRetBuffArg = !!pMD->HasRetBuffArg(); |
10159 | #endif |
10160 | if (hasRetBuffArg) |
10161 | { |
10162 | if (retTypeIt.IsLargeStruct(&m_interpCeeInfo)) |
10163 | { |
10164 | size_t retBuffSize = retTypeSz; |
10165 | // If the target architecture can sometimes return a struct in several registers, |
10166 | // MethodDescCallSite will reserve a return value array big enough to hold the maximum. |
10167 | // It will then copy *all* of this into the return buffer area we allocate. So make sure |
10168 | // we allocate at least that much. |
10169 | #ifdef ENREGISTERED_RETURNTYPE_MAXSIZE |
10170 | retBuffSize = max(retTypeSz, ENREGISTERED_RETURNTYPE_MAXSIZE); |
10171 | #endif // ENREGISTERED_RETURNTYPE_MAXSIZE |
10172 | pLargeStructRetVal = (BYTE*)_alloca(retBuffSize); |
10173 | |
10174 | // Clear this in case a GC happens. |
10175 | for (unsigned i = 0; i < retTypeSz; i++) |
10176 | { |
10177 | pLargeStructRetVal[i] = 0; |
10178 | } |
10179 | |
10180 | // Register this as location needing GC. |
10181 | m_structRetValTempSpace = pLargeStructRetVal; |
10182 | |
10183 | // Set it as the return buffer. |
10184 | args[curArgSlot] = PtrToArgSlot(pLargeStructRetVal); |
10185 | } |
10186 | else |
10187 | { |
10188 | // Clear this in case a GC happens. |
10189 | smallStructRetVal = 0; |
10190 | |
10191 | // Register this as location needing GC. |
10192 | m_structRetValTempSpace = &smallStructRetVal; |
10193 | |
10194 | // Set it as the return buffer. |
10195 | args[curArgSlot] = PtrToArgSlot(&smallStructRetVal); |
10196 | } |
10197 | m_structRetValITPtr = &retTypeIt; |
10198 | argTypes[curArgSlot] = InterpreterType(CORINFO_TYPE_NATIVEINT); |
10199 | curArgSlot++; |
10200 | } |
10201 | } |
10202 | |
10203 | if ((sigInfo.callConv & CORINFO_CALLCONV_MASK) == CORINFO_CALLCONV_VARARG) |
10204 | { |
10205 | Module* module = GetModule(sigInfo.scope); |
10206 | CORINFO_VARARGS_HANDLE handle = CORINFO_VARARGS_HANDLE(module->GetVASigCookie(Signature(sigInfo.pSig, sigInfo.cbSig))); |
10207 | args[curArgSlot] = PtrToArgSlot(handle); |
10208 | argTypes[curArgSlot] = InterpreterType(CORINFO_TYPE_NATIVEINT); |
10209 | curArgSlot++; |
10210 | } |
10211 | |
10212 | // Now we do the non-this arguments. |
10213 | size_t largeStructSpaceToPop = 0; |
10214 | for (; arg < totalArgsOnILStack; arg++) |
10215 | { |
10216 | InterpreterType argIt = OpStackTypeGet(argsBase + arg); |
10217 | size_t sz = OpStackTypeGet(argsBase + arg).Size(&m_interpCeeInfo); |
10218 | switch (sz) |
10219 | { |
10220 | case 1: |
10221 | args[curArgSlot] = OpStackGet<INT8>(argsBase + arg); |
10222 | break; |
10223 | case 2: |
10224 | args[curArgSlot] = OpStackGet<INT16>(argsBase + arg); |
10225 | break; |
10226 | case 4: |
10227 | args[curArgSlot] = OpStackGet<INT32>(argsBase + arg); |
10228 | break; |
10229 | case 8: |
10230 | default: |
10231 | if (sz > 8) |
10232 | { |
10233 | void* srcPtr = OpStackGet<void*>(argsBase + arg); |
10234 | args[curArgSlot] = PtrToArgSlot(srcPtr); |
10235 | if (!IsInLargeStructLocalArea(srcPtr)) |
10236 | { |
10237 | largeStructSpaceToPop += sz; |
10238 | } |
10239 | } |
10240 | else |
10241 | { |
10242 | args[curArgSlot] = OpStackGet<INT64>(argsBase + arg); |
10243 | } |
10244 | break; |
10245 | } |
10246 | argTypes[curArgSlot] = argIt; |
10247 | curArgSlot++; |
10248 | } |
10249 | |
10250 | // Finally, we get the code pointer. |
10251 | unsigned ftnInd = m_curStackHt - 1; |
10252 | #ifdef _DEBUG |
10253 | CorInfoType ftnType = OpStackTypeGet(ftnInd).ToCorInfoType(); |
10254 | assert(ftnType == CORINFO_TYPE_NATIVEINT |
10255 | || ftnType == CORINFO_TYPE_INT |
10256 | || ftnType == CORINFO_TYPE_LONG); |
10257 | #endif // DEBUG |
10258 | |
10259 | PCODE ftnPtr = OpStackGet<PCODE>(ftnInd); |
10260 | |
10261 | { |
10262 | MethodDesc* methToCall; |
10263 | // If we're interpreting the target, simply call it directly. |
10264 | if ((methToCall = InterpretationStubToMethodInfo((PCODE)ftnPtr)) != NULL) |
10265 | { |
10266 | InterpreterMethodInfo* methInfo = MethodHandleToInterpreterMethInfoPtr(CORINFO_METHOD_HANDLE(methToCall)); |
10267 | assert(methInfo != NULL); |
10268 | #if INTERP_ILCYCLE_PROFILE |
10269 | bool b = CycleTimer::GetThreadCyclesS(&startCycles); assert(b); |
10270 | #endif // INTERP_ILCYCLE_PROFILE |
10271 | retVal = InterpretMethodBody(methInfo, true, reinterpret_cast<BYTE*>(args), NULL); |
10272 | } |
10273 | else |
10274 | { |
10275 | // This is not a great workaround. For the most part, we really don't care what method desc we're using, since |
10276 | // we're providing the signature and function pointer -- other than that it's well-formed and "activated." |
10277 | // And also, one more thing: whether it is static or not. Which is actually determined by the signature. |
10278 | // So we query the signature we have to determine whether we need a static or instance MethodDesc, and then |
10279 | // use one of the appropriate staticness that happens to be sitting around in global variables. For static |
10280 | // we use "RuntimeHelpers.PrepareConstrainedRegions", for instance we use the default constructor of "Object." |
10281 | // TODO: make this cleaner -- maybe invent a couple of empty methods with instructive names, just for this purpose. |
10282 | MethodDesc* pMD; |
10283 | if (mSig.HasThis()) |
10284 | { |
10285 | pMD = g_pObjectFinalizerMD; |
10286 | } |
10287 | else |
10288 | { |
10289 | pMD = g_pExecuteBackoutCodeHelperMethod; // A random static method. |
10290 | } |
10291 | MethodDescCallSite mdcs(pMD, &mSig, ftnPtr); |
10292 | #if 0 |
10293 | // If the current method being interpreted is an IL stub, we're calling native code, so |
10294 | // change the GC mode. (We'll only do this at the call if the calling convention turns out |
10295 | // to be a managed calling convention.) |
10296 | MethodDesc* pStubContextMD = reinterpret_cast<MethodDesc*>(m_stubContext); |
10297 | bool transitionToPreemptive = (pStubContextMD != NULL && !pStubContextMD->IsIL()); |
10298 | mdcs.CallTargetWorker(args, &retVal, sizeof(retVal), transitionToPreemptive); |
10299 | #else |
10300 | // TODO The code above triggers assertion at threads.cpp:6861: |
10301 | // _ASSERTE(thread->PreemptiveGCDisabled()); // Should have been in managed code |
10302 | // The workaround will likely break more things than what it is fixing: |
10303 | // just do not make transition to preemptive GC for now. |
10304 | mdcs.CallTargetWorker(args, &retVal, sizeof(retVal)); |
10305 | #endif |
10306 | } |
10307 | // retVal is now vulnerable. |
10308 | GCX_FORBID(); |
10309 | } |
10310 | |
10311 | // retVal is still vulnerable. |
10312 | { |
10313 | GCX_FORBID(); |
10314 | m_argsSize = 0; |
10315 | |
10316 | // At this point, the call has happened successfully. We can delete the arguments from the operand stack. |
10317 | m_curStackHt -= totalArgPositions; |
10318 | |
10319 | // We've already checked that "largeStructSpaceToPop |
10320 | LargeStructOperandStackPop(largeStructSpaceToPop, NULL); |
10321 | |
10322 | if (size_t(m_callThisArg) == 0x1) |
10323 | { |
10324 | _ASSERTE_MSG(sigInfo.retType == CORINFO_TYPE_VOID, "Constructor for var-sized object becomes factory method that returns result." ); |
10325 | OpStackSet<Object*>(m_curStackHt, reinterpret_cast<Object*>(retVal)); |
10326 | OpStackTypeSet(m_curStackHt, InterpreterType(CORINFO_TYPE_CLASS)); |
10327 | m_curStackHt++; |
10328 | } |
10329 | else if (sigInfo.retType != CORINFO_TYPE_VOID) |
10330 | { |
10331 | switch (sigInfo.retType) |
10332 | { |
10333 | case CORINFO_TYPE_BOOL: |
10334 | case CORINFO_TYPE_BYTE: |
10335 | OpStackSet<INT32>(m_curStackHt, static_cast<INT8>(retVal)); |
10336 | break; |
10337 | case CORINFO_TYPE_UBYTE: |
10338 | OpStackSet<UINT32>(m_curStackHt, static_cast<UINT8>(retVal)); |
10339 | break; |
10340 | case CORINFO_TYPE_SHORT: |
10341 | OpStackSet<INT32>(m_curStackHt, static_cast<INT16>(retVal)); |
10342 | break; |
10343 | case CORINFO_TYPE_USHORT: |
10344 | case CORINFO_TYPE_CHAR: |
10345 | OpStackSet<UINT32>(m_curStackHt, static_cast<UINT16>(retVal)); |
10346 | break; |
10347 | case CORINFO_TYPE_INT: |
10348 | case CORINFO_TYPE_UINT: |
10349 | case CORINFO_TYPE_FLOAT: |
10350 | OpStackSet<INT32>(m_curStackHt, static_cast<INT32>(retVal)); |
10351 | break; |
10352 | case CORINFO_TYPE_LONG: |
10353 | case CORINFO_TYPE_ULONG: |
10354 | case CORINFO_TYPE_DOUBLE: |
10355 | OpStackSet<INT64>(m_curStackHt, static_cast<INT64>(retVal)); |
10356 | break; |
10357 | case CORINFO_TYPE_NATIVEINT: |
10358 | case CORINFO_TYPE_NATIVEUINT: |
10359 | case CORINFO_TYPE_PTR: |
10360 | OpStackSet<NativeInt>(m_curStackHt, static_cast<NativeInt>(retVal)); |
10361 | break; |
10362 | case CORINFO_TYPE_CLASS: |
10363 | OpStackSet<Object*>(m_curStackHt, reinterpret_cast<Object*>(retVal)); |
10364 | break; |
10365 | case CORINFO_TYPE_VALUECLASS: |
10366 | { |
10367 | // We must be careful here to write the value, the type, and update the stack height in one |
10368 | // sequence that has no COOP->PREEMP transitions in it, so no GC's happen until the value |
10369 | // is protected by being fully "on" the operandStack. |
10370 | if (pLargeStructRetVal != NULL) |
10371 | { |
10372 | assert(hasRetBuffArg); |
10373 | void* dst = LargeStructOperandStackPush(retTypeSz); |
10374 | CopyValueClassUnchecked(dst, pLargeStructRetVal, GetMethodTableFromClsHnd(retTypeClsHnd)); |
10375 | OpStackSet<void*>(m_curStackHt, dst); |
10376 | } |
10377 | else if (hasRetBuffArg) |
10378 | { |
10379 | OpStackSet<INT64>(m_curStackHt, GetSmallStructValue(&smallStructRetVal, retTypeSz)); |
10380 | } |
10381 | else |
10382 | { |
10383 | OpStackSet<UINT64>(m_curStackHt, retVal); |
10384 | } |
10385 | // We already created this interpreter type, so use it. |
10386 | OpStackTypeSet(m_curStackHt, retTypeIt.StackNormalize()); |
10387 | m_curStackHt++; |
10388 | |
10389 | // In the value-class case, the call might have used a ret buff, which we would have registered for GC scanning. |
10390 | // Make sure it's unregistered. |
10391 | m_structRetValITPtr = NULL; |
10392 | } |
10393 | break; |
10394 | default: |
10395 | NYI_INTERP("Unhandled return type" ); |
10396 | break; |
10397 | } |
10398 | _ASSERTE_MSG(m_structRetValITPtr == NULL, "Invariant." ); |
10399 | |
10400 | // The valueclass case is handled fully in the switch above. |
10401 | if (sigInfo.retType != CORINFO_TYPE_VALUECLASS) |
10402 | { |
10403 | OpStackTypeSet(m_curStackHt, InterpreterType(sigInfo.retType).StackNormalize()); |
10404 | m_curStackHt++; |
10405 | } |
10406 | } |
10407 | } |
10408 | |
10409 | // Originally, this assertion was in the ValueClass case above, but it does a COOP->PREEMP |
10410 | // transition, and therefore causes a GC, and we're GCX_FORBIDden from doing a GC while retVal |
10411 | // is vulnerable. So, for completeness, do it here. |
10412 | assert(sigInfo.retType != CORINFO_TYPE_VALUECLASS || retTypeIt == InterpreterType(&m_interpCeeInfo, retTypeClsHnd)); |
10413 | |
10414 | m_ILCodePtr += 5; |
10415 | } |
10416 | |
10417 | // static |
10418 | bool Interpreter::IsDeadSimpleGetter(CEEInfo* info, MethodDesc* pMD, size_t* offsetOfLd) |
10419 | { |
10420 | CONTRACTL { |
10421 | SO_TOLERANT; |
10422 | THROWS; |
10423 | GC_TRIGGERS; |
10424 | MODE_ANY; |
10425 | } CONTRACTL_END; |
10426 | |
10427 | DWORD flags = pMD->GetAttrs(); |
10428 | CORINFO_METHOD_INFO methInfo; |
10429 | { |
10430 | GCX_PREEMP(); |
10431 | bool b = info->getMethodInfo(CORINFO_METHOD_HANDLE(pMD), &methInfo); |
10432 | if (!b) return false; |
10433 | } |
10434 | |
10435 | // If the method takes a generic type argument, it's not dead simple... |
10436 | if (methInfo.args.callConv & CORINFO_CALLCONV_PARAMTYPE) return false; |
10437 | |
10438 | BYTE* codePtr = methInfo.ILCode; |
10439 | |
10440 | if (flags & CORINFO_FLG_STATIC) |
10441 | { |
10442 | if (methInfo.ILCodeSize != 6) |
10443 | return false; |
10444 | if (*codePtr != CEE_LDSFLD) |
10445 | return false; |
10446 | assert(ILOffsetOfLdSFldInDeadSimpleStaticGetter == 0); |
10447 | *offsetOfLd = 0; |
10448 | codePtr += 5; |
10449 | return (*codePtr == CEE_RET); |
10450 | } |
10451 | else |
10452 | { |
10453 | // We handle two forms, one for DBG IL, and one for OPT IL. |
10454 | bool dbg = false; |
10455 | if (methInfo.ILCodeSize == 0xc) |
10456 | dbg = true; |
10457 | else if (methInfo.ILCodeSize != 7) |
10458 | return false; |
10459 | |
10460 | if (dbg) |
10461 | { |
10462 | if (*codePtr != CEE_NOP) |
10463 | return false; |
10464 | codePtr += 1; |
10465 | } |
10466 | if (*codePtr != CEE_LDARG_0) |
10467 | return false; |
10468 | codePtr += 1; |
10469 | if (*codePtr != CEE_LDFLD) |
10470 | return false; |
10471 | *offsetOfLd = codePtr - methInfo.ILCode; |
10472 | assert((dbg && ILOffsetOfLdFldInDeadSimpleInstanceGetterDbg == *offsetOfLd) |
10473 | || (!dbg && ILOffsetOfLdFldInDeadSimpleInstanceGetterOpt == *offsetOfLd)); |
10474 | codePtr += 5; |
10475 | if (dbg) |
10476 | { |
10477 | if (*codePtr != CEE_STLOC_0) |
10478 | return false; |
10479 | codePtr += 1; |
10480 | if (*codePtr != CEE_BR) |
10481 | return false; |
10482 | if (getU4LittleEndian(codePtr + 1) != 0) |
10483 | return false; |
10484 | codePtr += 5; |
10485 | if (*codePtr != CEE_LDLOC_0) |
10486 | return false; |
10487 | } |
10488 | return (*codePtr == CEE_RET); |
10489 | } |
10490 | } |
10491 | |
10492 | void Interpreter::DoStringLength() |
10493 | { |
10494 | CONTRACTL { |
10495 | SO_TOLERANT; |
10496 | THROWS; |
10497 | GC_TRIGGERS; |
10498 | MODE_COOPERATIVE; |
10499 | } CONTRACTL_END; |
10500 | |
10501 | assert(m_curStackHt > 0); |
10502 | unsigned ind = m_curStackHt - 1; |
10503 | |
10504 | #ifdef _DEBUG |
10505 | CorInfoType stringCIT = OpStackTypeGet(ind).ToCorInfoType(); |
10506 | if (stringCIT != CORINFO_TYPE_CLASS) |
10507 | { |
10508 | VerificationError("StringLength called on non-string." ); |
10509 | } |
10510 | #endif // _DEBUG |
10511 | |
10512 | Object* obj = OpStackGet<Object*>(ind); |
10513 | |
10514 | if (obj == NULL) |
10515 | { |
10516 | ThrowNullPointerException(); |
10517 | } |
10518 | |
10519 | #ifdef _DEBUG |
10520 | if (obj->GetMethodTable() != g_pStringClass) |
10521 | { |
10522 | VerificationError("StringLength called on non-string." ); |
10523 | } |
10524 | #endif // _DEBUG |
10525 | |
10526 | StringObject* str = reinterpret_cast<StringObject*>(obj); |
10527 | INT32 len = str->GetStringLength(); |
10528 | OpStackSet<INT32>(ind, len); |
10529 | OpStackTypeSet(ind, InterpreterType(CORINFO_TYPE_INT)); |
10530 | } |
10531 | |
10532 | void Interpreter::DoStringGetChar() |
10533 | { |
10534 | CONTRACTL { |
10535 | SO_TOLERANT; |
10536 | THROWS; |
10537 | GC_TRIGGERS; |
10538 | MODE_COOPERATIVE; |
10539 | } CONTRACTL_END; |
10540 | |
10541 | assert(m_curStackHt >= 2); |
10542 | unsigned strInd = m_curStackHt - 2; |
10543 | unsigned indexInd = strInd + 1; |
10544 | |
10545 | #ifdef _DEBUG |
10546 | CorInfoType stringCIT = OpStackTypeGet(strInd).ToCorInfoType(); |
10547 | if (stringCIT != CORINFO_TYPE_CLASS) |
10548 | { |
10549 | VerificationError("StringGetChar called on non-string." ); |
10550 | } |
10551 | #endif // _DEBUG |
10552 | |
10553 | Object* obj = OpStackGet<Object*>(strInd); |
10554 | |
10555 | if (obj == NULL) |
10556 | { |
10557 | ThrowNullPointerException(); |
10558 | } |
10559 | |
10560 | #ifdef _DEBUG |
10561 | if (obj->GetMethodTable() != g_pStringClass) |
10562 | { |
10563 | VerificationError("StringGetChar called on non-string." ); |
10564 | } |
10565 | #endif // _DEBUG |
10566 | |
10567 | StringObject* str = reinterpret_cast<StringObject*>(obj); |
10568 | |
10569 | #ifdef _DEBUG |
10570 | CorInfoType indexCIT = OpStackTypeGet(indexInd).ToCorInfoType(); |
10571 | if (indexCIT != CORINFO_TYPE_INT) |
10572 | { |
10573 | VerificationError("StringGetChar needs integer index." ); |
10574 | } |
10575 | #endif // _DEBUG |
10576 | |
10577 | INT32 ind = OpStackGet<INT32>(indexInd); |
10578 | if (ind < 0) |
10579 | ThrowArrayBoundsException(); |
10580 | UINT32 uind = static_cast<UINT32>(ind); |
10581 | if (uind >= str->GetStringLength()) |
10582 | ThrowArrayBoundsException(); |
10583 | |
10584 | // Otherwise... |
10585 | GCX_FORBID(); // str is vulnerable. |
10586 | UINT16* dataPtr = reinterpret_cast<UINT16*>(reinterpret_cast<INT8*>(str) + StringObject::GetBufferOffset()); |
10587 | UINT32 filledChar = dataPtr[ind]; |
10588 | OpStackSet<UINT32>(strInd, filledChar); |
10589 | OpStackTypeSet(strInd, InterpreterType(CORINFO_TYPE_INT)); |
10590 | m_curStackHt = indexInd; |
10591 | } |
10592 | |
10593 | void Interpreter::DoGetTypeFromHandle() |
10594 | { |
10595 | CONTRACTL { |
10596 | SO_TOLERANT; |
10597 | THROWS; |
10598 | GC_TRIGGERS; |
10599 | MODE_COOPERATIVE; |
10600 | } CONTRACTL_END; |
10601 | |
10602 | assert(m_curStackHt > 0); |
10603 | unsigned ind = m_curStackHt - 1; |
10604 | |
10605 | #ifdef _DEBUG |
10606 | CorInfoType handleCIT = OpStackTypeGet(ind).ToCorInfoType(); |
10607 | if (handleCIT != CORINFO_TYPE_VALUECLASS && handleCIT != CORINFO_TYPE_CLASS) |
10608 | { |
10609 | VerificationError("HandleGetTypeFromHandle called on non-RuntimeTypeHandle/non-RuntimeType." ); |
10610 | } |
10611 | Object* obj = OpStackGet<Object*>(ind); |
10612 | if (obj->GetMethodTable() != g_pRuntimeTypeClass) |
10613 | { |
10614 | VerificationError("HandleGetTypeFromHandle called on non-RuntimeTypeHandle/non-RuntimeType." ); |
10615 | } |
10616 | #endif // _DEBUG |
10617 | |
10618 | OpStackTypeSet(ind, InterpreterType(CORINFO_TYPE_CLASS)); |
10619 | } |
10620 | |
10621 | void Interpreter::DoByReferenceCtor() |
10622 | { |
10623 | CONTRACTL { |
10624 | SO_TOLERANT; |
10625 | THROWS; |
10626 | GC_TRIGGERS; |
10627 | MODE_COOPERATIVE; |
10628 | } CONTRACTL_END; |
10629 | |
10630 | // Note 'this' is not passed on the operand stack... |
10631 | assert(m_curStackHt > 0); |
10632 | assert(m_callThisArg != NULL); |
10633 | unsigned valInd = m_curStackHt - 1; |
10634 | CorInfoType valCit = OpStackTypeGet(valInd).ToCorInfoType(); |
10635 | |
10636 | #ifdef _DEBUG |
10637 | if (valCit != CORINFO_TYPE_BYREF) |
10638 | { |
10639 | VerificationError("ByReference<T>.ctor called with non-byref value." ); |
10640 | } |
10641 | #endif // _DEBUG |
10642 | |
10643 | #if INTERP_TRACING |
10644 | if (s_TraceInterpreterILFlag.val(CLRConfig::INTERNAL_TraceInterpreterIL)) |
10645 | { |
10646 | fprintf(GetLogFile(), " ByReference<T>.ctor -- intrinsic\n" ); |
10647 | } |
10648 | #endif // INTERP_TRACING |
10649 | |
10650 | GCX_FORBID(); |
10651 | void** thisPtr = reinterpret_cast<void**>(m_callThisArg); |
10652 | void* val = OpStackGet<void*>(valInd); |
10653 | *thisPtr = val; |
10654 | m_curStackHt--; |
10655 | } |
10656 | |
10657 | void Interpreter::DoByReferenceValue() |
10658 | { |
10659 | CONTRACTL { |
10660 | SO_TOLERANT; |
10661 | THROWS; |
10662 | GC_TRIGGERS; |
10663 | MODE_COOPERATIVE; |
10664 | } CONTRACTL_END; |
10665 | |
10666 | assert(m_curStackHt > 0); |
10667 | unsigned slot = m_curStackHt - 1; |
10668 | CorInfoType thisCit = OpStackTypeGet(slot).ToCorInfoType(); |
10669 | |
10670 | #ifdef _DEBUG |
10671 | if (thisCit != CORINFO_TYPE_BYREF) |
10672 | { |
10673 | VerificationError("ByReference<T>.get_Value called with non-byref this" ); |
10674 | } |
10675 | #endif // _DEBUG |
10676 | |
10677 | #if INTERP_TRACING |
10678 | if (s_TraceInterpreterILFlag.val(CLRConfig::INTERNAL_TraceInterpreterIL)) |
10679 | { |
10680 | fprintf(GetLogFile(), " ByReference<T>.getValue -- intrinsic\n" ); |
10681 | } |
10682 | #endif // INTERP_TRACING |
10683 | |
10684 | GCX_FORBID(); |
10685 | void** thisPtr = OpStackGet<void**>(slot); |
10686 | void* value = *thisPtr; |
10687 | OpStackSet<void*>(slot, value); |
10688 | OpStackTypeSet(slot, InterpreterType(CORINFO_TYPE_BYREF)); |
10689 | } |
10690 | |
10691 | void Interpreter::DoSIMDHwAccelerated() |
10692 | { |
10693 | CONTRACTL { |
10694 | SO_TOLERANT; |
10695 | THROWS; |
10696 | GC_TRIGGERS; |
10697 | MODE_COOPERATIVE; |
10698 | } CONTRACTL_END; |
10699 | |
10700 | #if INTERP_TRACING |
10701 | if (s_TraceInterpreterILFlag.val(CLRConfig::INTERNAL_TraceInterpreterIL)) |
10702 | { |
10703 | fprintf(GetLogFile(), " System.Numerics.Vector.IsHardwareAccelerated -- intrinsic\n" ); |
10704 | } |
10705 | #endif // INTERP_TRACING |
10706 | |
10707 | LdIcon(1); |
10708 | } |
10709 | |
10710 | void Interpreter::RecordConstrainedCall() |
10711 | { |
10712 | CONTRACTL { |
10713 | SO_TOLERANT; |
10714 | THROWS; |
10715 | GC_TRIGGERS; |
10716 | MODE_COOPERATIVE; |
10717 | } CONTRACTL_END; |
10718 | |
10719 | #if INTERP_TRACING |
10720 | InterlockedIncrement(&s_tokenResolutionOpportunities[RTK_Constrained]); |
10721 | #endif // INTERP_TRACING |
10722 | |
10723 | { |
10724 | GCX_PREEMP(); |
10725 | ResolveToken(&m_constrainedResolvedToken, getU4LittleEndian(m_ILCodePtr + 2), CORINFO_TOKENKIND_Constrained InterpTracingArg(RTK_Constrained)); |
10726 | } |
10727 | |
10728 | m_constrainedFlag = true; |
10729 | |
10730 | m_ILCodePtr += 6; |
10731 | } |
10732 | |
10733 | void Interpreter::LargeStructOperandStackEnsureCanPush(size_t sz) |
10734 | { |
10735 | size_t remaining = m_largeStructOperandStackAllocSize - m_largeStructOperandStackHt; |
10736 | if (remaining < sz) |
10737 | { |
10738 | size_t newAllocSize = max(m_largeStructOperandStackAllocSize + sz * 4, m_largeStructOperandStackAllocSize * 2); |
10739 | BYTE* newStack = new BYTE[newAllocSize]; |
10740 | m_largeStructOperandStackAllocSize = newAllocSize; |
10741 | if (m_largeStructOperandStack != NULL) |
10742 | { |
10743 | memcpy(newStack, m_largeStructOperandStack, m_largeStructOperandStackHt); |
10744 | delete[] m_largeStructOperandStack; |
10745 | } |
10746 | m_largeStructOperandStack = newStack; |
10747 | } |
10748 | } |
10749 | |
10750 | void* Interpreter::LargeStructOperandStackPush(size_t sz) |
10751 | { |
10752 | LargeStructOperandStackEnsureCanPush(sz); |
10753 | assert(m_largeStructOperandStackAllocSize >= m_largeStructOperandStackHt + sz); |
10754 | void* res = &m_largeStructOperandStack[m_largeStructOperandStackHt]; |
10755 | m_largeStructOperandStackHt += sz; |
10756 | return res; |
10757 | } |
10758 | |
10759 | void Interpreter::LargeStructOperandStackPop(size_t sz, void* fromAddr) |
10760 | { |
10761 | if (!IsInLargeStructLocalArea(fromAddr)) |
10762 | { |
10763 | assert(m_largeStructOperandStackHt >= sz); |
10764 | m_largeStructOperandStackHt -= sz; |
10765 | } |
10766 | } |
10767 | |
10768 | #ifdef _DEBUG |
10769 | bool Interpreter::LargeStructStackHeightIsValid() |
10770 | { |
10771 | size_t sz2 = 0; |
10772 | for (unsigned k = 0; k < m_curStackHt; k++) |
10773 | { |
10774 | if (OpStackTypeGet(k).IsLargeStruct(&m_interpCeeInfo) && !IsInLargeStructLocalArea(OpStackGet<void*>(k))) |
10775 | { |
10776 | sz2 += OpStackTypeGet(k).Size(&m_interpCeeInfo); |
10777 | } |
10778 | } |
10779 | assert(sz2 == m_largeStructOperandStackHt); |
10780 | return sz2 == m_largeStructOperandStackHt; |
10781 | } |
10782 | #endif // _DEBUG |
10783 | |
10784 | void Interpreter::VerificationError(const char* msg) |
10785 | { |
10786 | // TODO: Should raise an exception eventually; for now: |
10787 | const char* const msgPrefix = "Verification Error: " ; |
10788 | size_t len = strlen(msgPrefix) + strlen(msg) + 1; |
10789 | char* msgFinal = (char*)_alloca(len); |
10790 | strcpy_s(msgFinal, len, msgPrefix); |
10791 | strcat_s(msgFinal, len, msg); |
10792 | _ASSERTE_MSG(false, msgFinal); |
10793 | } |
10794 | |
10795 | void Interpreter::ThrowDivideByZero() |
10796 | { |
10797 | CONTRACTL { |
10798 | SO_TOLERANT; |
10799 | THROWS; |
10800 | GC_TRIGGERS; |
10801 | MODE_COOPERATIVE; |
10802 | } CONTRACTL_END; |
10803 | |
10804 | COMPlusThrow(kDivideByZeroException); |
10805 | } |
10806 | |
10807 | void Interpreter::ThrowSysArithException() |
10808 | { |
10809 | CONTRACTL { |
10810 | SO_TOLERANT; |
10811 | THROWS; |
10812 | GC_TRIGGERS; |
10813 | MODE_COOPERATIVE; |
10814 | } CONTRACTL_END; |
10815 | |
10816 | // According to the ECMA spec, this should be an ArithmeticException; however, |
10817 | // the JITs throw an OverflowException and consistency is top priority... |
10818 | COMPlusThrow(kOverflowException); |
10819 | } |
10820 | |
10821 | void Interpreter::ThrowNullPointerException() |
10822 | { |
10823 | CONTRACTL { |
10824 | SO_TOLERANT; |
10825 | THROWS; |
10826 | GC_TRIGGERS; |
10827 | MODE_COOPERATIVE; |
10828 | } CONTRACTL_END; |
10829 | |
10830 | COMPlusThrow(kNullReferenceException); |
10831 | } |
10832 | |
10833 | void Interpreter::ThrowOverflowException() |
10834 | { |
10835 | CONTRACTL { |
10836 | SO_TOLERANT; |
10837 | THROWS; |
10838 | GC_TRIGGERS; |
10839 | MODE_COOPERATIVE; |
10840 | } CONTRACTL_END; |
10841 | |
10842 | COMPlusThrow(kOverflowException); |
10843 | } |
10844 | |
10845 | void Interpreter::ThrowArrayBoundsException() |
10846 | { |
10847 | CONTRACTL { |
10848 | SO_TOLERANT; |
10849 | THROWS; |
10850 | GC_TRIGGERS; |
10851 | MODE_COOPERATIVE; |
10852 | } CONTRACTL_END; |
10853 | |
10854 | COMPlusThrow(kIndexOutOfRangeException); |
10855 | } |
10856 | |
10857 | void Interpreter::ThrowInvalidCastException() |
10858 | { |
10859 | CONTRACTL { |
10860 | SO_TOLERANT; |
10861 | THROWS; |
10862 | GC_TRIGGERS; |
10863 | MODE_COOPERATIVE; |
10864 | } CONTRACTL_END; |
10865 | |
10866 | COMPlusThrow(kInvalidCastException); |
10867 | } |
10868 | |
10869 | void Interpreter::ThrowStackOverflow() |
10870 | { |
10871 | CONTRACTL { |
10872 | SO_TOLERANT; |
10873 | THROWS; |
10874 | GC_TRIGGERS; |
10875 | MODE_COOPERATIVE; |
10876 | } CONTRACTL_END; |
10877 | |
10878 | COMPlusThrow(kStackOverflowException); |
10879 | } |
10880 | |
10881 | float Interpreter::RemFunc(float v1, float v2) |
10882 | { |
10883 | return fmodf(v1, v2); |
10884 | } |
10885 | |
10886 | double Interpreter::RemFunc(double v1, double v2) |
10887 | { |
10888 | return fmod(v1, v2); |
10889 | } |
10890 | |
10891 | // Static members and methods. |
10892 | Interpreter::AddrToMDMap* Interpreter::s_addrToMDMap = NULL; |
10893 | |
10894 | unsigned Interpreter::s_interpreterStubNum = 0; |
10895 | |
10896 | // TODO: contracts and synchronization for the AddrToMDMap methods. |
10897 | // Requires caller to hold "s_interpStubToMDMapLock". |
10898 | Interpreter::AddrToMDMap* Interpreter::GetAddrToMdMap() |
10899 | { |
10900 | #if 0 |
10901 | CONTRACTL { |
10902 | SO_TOLERANT; |
10903 | THROWS; |
10904 | GC_NOTRIGGER; |
10905 | } CONTRACTL_END; |
10906 | #endif |
10907 | |
10908 | if (s_addrToMDMap == NULL) |
10909 | { |
10910 | s_addrToMDMap = new AddrToMDMap(); |
10911 | } |
10912 | return s_addrToMDMap; |
10913 | } |
10914 | |
10915 | void Interpreter::RecordInterpreterStubForMethodDesc(CORINFO_METHOD_HANDLE md, void* addr) |
10916 | { |
10917 | #if 0 |
10918 | CONTRACTL { |
10919 | SO_TOLERANT; |
10920 | NOTHROW; |
10921 | GC_NOTRIGGER; |
10922 | } CONTRACTL_END; |
10923 | #endif |
10924 | |
10925 | CrstHolder ch(&s_interpStubToMDMapLock); |
10926 | |
10927 | AddrToMDMap* map = Interpreter::GetAddrToMdMap(); |
10928 | #ifdef _DEBUG |
10929 | CORINFO_METHOD_HANDLE dummy; |
10930 | assert(!map->Lookup(addr, &dummy)); |
10931 | #endif // DEBUG |
10932 | map->AddOrReplace(KeyValuePair<void*,CORINFO_METHOD_HANDLE>(addr, md)); |
10933 | } |
10934 | |
10935 | MethodDesc* Interpreter::InterpretationStubToMethodInfo(PCODE addr) |
10936 | { |
10937 | CONTRACTL { |
10938 | SO_TOLERANT; |
10939 | NOTHROW; |
10940 | GC_NOTRIGGER; |
10941 | } CONTRACTL_END; |
10942 | |
10943 | |
10944 | // This query function will never allocate the table... |
10945 | if (s_addrToMDMap == NULL) |
10946 | return NULL; |
10947 | |
10948 | // Otherwise...if we observe s_addrToMdMap non-null, the lock below must be initialized. |
10949 | // CrstHolder ch(&s_interpStubToMDMapLock); |
10950 | |
10951 | AddrToMDMap* map = Interpreter::GetAddrToMdMap(); |
10952 | CORINFO_METHOD_HANDLE result = NULL; |
10953 | (void)map->Lookup((void*)addr, &result); |
10954 | return (MethodDesc*)result; |
10955 | } |
10956 | |
10957 | Interpreter::MethodHandleToInterpMethInfoPtrMap* Interpreter::s_methodHandleToInterpMethInfoPtrMap = NULL; |
10958 | |
10959 | // Requires caller to hold "s_interpStubToMDMapLock". |
10960 | Interpreter::MethodHandleToInterpMethInfoPtrMap* Interpreter::GetMethodHandleToInterpMethInfoPtrMap() |
10961 | { |
10962 | #if 0 |
10963 | CONTRACTL { |
10964 | SO_TOLERANT; |
10965 | THROWS; |
10966 | GC_NOTRIGGER; |
10967 | } CONTRACTL_END; |
10968 | #endif |
10969 | |
10970 | if (s_methodHandleToInterpMethInfoPtrMap == NULL) |
10971 | { |
10972 | s_methodHandleToInterpMethInfoPtrMap = new MethodHandleToInterpMethInfoPtrMap(); |
10973 | } |
10974 | return s_methodHandleToInterpMethInfoPtrMap; |
10975 | } |
10976 | |
10977 | InterpreterMethodInfo* Interpreter::RecordInterpreterMethodInfoForMethodHandle(CORINFO_METHOD_HANDLE md, InterpreterMethodInfo* methInfo) |
10978 | { |
10979 | #if 0 |
10980 | CONTRACTL { |
10981 | SO_TOLERANT; |
10982 | NOTHROW; |
10983 | GC_NOTRIGGER; |
10984 | } CONTRACTL_END; |
10985 | #endif |
10986 | |
10987 | CrstHolder ch(&s_interpStubToMDMapLock); |
10988 | |
10989 | MethodHandleToInterpMethInfoPtrMap* map = Interpreter::GetMethodHandleToInterpMethInfoPtrMap(); |
10990 | |
10991 | MethInfo mi; |
10992 | if (map->Lookup(md, &mi)) |
10993 | { |
10994 | // If there's already an entry, make sure it was created by another thread -- the same thread shouldn't create two |
10995 | // of these. |
10996 | _ASSERTE_MSG(mi.m_thread != GetThread(), "Two InterpMethInfo's for same meth by same thread." ); |
10997 | // If we were creating an interpreter stub at the same time as another thread, and we lost the race to |
10998 | // insert it, use the already-existing one, and delete this one. |
10999 | delete methInfo; |
11000 | return mi.m_info; |
11001 | } |
11002 | |
11003 | mi.m_info = methInfo; |
11004 | #ifdef _DEBUG |
11005 | mi.m_thread = GetThread(); |
11006 | #endif |
11007 | |
11008 | _ASSERTE_MSG(map->LookupPtr(md) == NULL, "Multiple InterpMethInfos for method desc." ); |
11009 | map->Add(md, mi); |
11010 | return methInfo; |
11011 | } |
11012 | |
11013 | InterpreterMethodInfo* Interpreter::MethodHandleToInterpreterMethInfoPtr(CORINFO_METHOD_HANDLE md) |
11014 | { |
11015 | CONTRACTL { |
11016 | SO_TOLERANT; |
11017 | NOTHROW; |
11018 | GC_TRIGGERS; |
11019 | } CONTRACTL_END; |
11020 | |
11021 | // This query function will never allocate the table... |
11022 | if (s_methodHandleToInterpMethInfoPtrMap == NULL) |
11023 | return NULL; |
11024 | |
11025 | // Otherwise...if we observe s_addrToMdMap non-null, the lock below must be initialized. |
11026 | CrstHolder ch(&s_interpStubToMDMapLock); |
11027 | |
11028 | MethodHandleToInterpMethInfoPtrMap* map = Interpreter::GetMethodHandleToInterpMethInfoPtrMap(); |
11029 | |
11030 | MethInfo mi; |
11031 | mi.m_info = NULL; |
11032 | (void)map->Lookup(md, &mi); |
11033 | return mi.m_info; |
11034 | } |
11035 | |
11036 | |
11037 | #ifndef DACCESS_COMPILE |
11038 | |
11039 | // Requires that the current thread holds "s_methodCacheLock." |
11040 | ILOffsetToItemCache* InterpreterMethodInfo::GetCacheForCall(Object* thisArg, void* genericsCtxtArg, bool alloc) |
11041 | { |
11042 | // First, does the current method have dynamic generic information, and, if so, |
11043 | // what kind? |
11044 | CORINFO_CONTEXT_HANDLE context = GetPreciseGenericsContext(thisArg, genericsCtxtArg); |
11045 | if (context == MAKE_METHODCONTEXT(m_method)) |
11046 | { |
11047 | // No dynamic generics context information. The caching field in "m_methInfo" is the |
11048 | // ILoffset->Item cache directly. |
11049 | // First, ensure that it's allocated. |
11050 | if (m_methodCache == NULL && alloc) |
11051 | { |
11052 | // Lazy init via compare-exchange. |
11053 | ILOffsetToItemCache* cache = new ILOffsetToItemCache(); |
11054 | void* prev = InterlockedCompareExchangeT<void*>(&m_methodCache, cache, NULL); |
11055 | if (prev != NULL) delete cache; |
11056 | } |
11057 | return reinterpret_cast<ILOffsetToItemCache*>(m_methodCache); |
11058 | } |
11059 | else |
11060 | { |
11061 | // Otherwise, it does have generic info, so find the right cache. |
11062 | // First ensure that the top-level generics-context --> cache cache exists. |
11063 | GenericContextToInnerCache* outerCache = reinterpret_cast<GenericContextToInnerCache*>(m_methodCache); |
11064 | if (outerCache == NULL) |
11065 | { |
11066 | if (alloc) |
11067 | { |
11068 | // Lazy init via compare-exchange. |
11069 | outerCache = new GenericContextToInnerCache(); |
11070 | void* prev = InterlockedCompareExchangeT<void*>(&m_methodCache, outerCache, NULL); |
11071 | if (prev != NULL) |
11072 | { |
11073 | delete outerCache; |
11074 | outerCache = reinterpret_cast<GenericContextToInnerCache*>(prev); |
11075 | } |
11076 | } |
11077 | else |
11078 | { |
11079 | return NULL; |
11080 | } |
11081 | } |
11082 | // Does the outerCache already have an entry for this instantiation? |
11083 | ILOffsetToItemCache* innerCache = NULL; |
11084 | if (!outerCache->GetItem(size_t(context), innerCache) && alloc) |
11085 | { |
11086 | innerCache = new ILOffsetToItemCache(); |
11087 | outerCache->AddItem(size_t(context), innerCache); |
11088 | } |
11089 | return innerCache; |
11090 | } |
11091 | } |
11092 | |
11093 | void Interpreter::CacheCallInfo(unsigned iloffset, CallSiteCacheData* callInfo) |
11094 | { |
11095 | CrstHolder ch(&s_methodCacheLock); |
11096 | |
11097 | ILOffsetToItemCache* cache = GetThisExecCache(true); |
11098 | // Insert, but if the item is already there, delete "mdcs" (which would have been owned |
11099 | // by the cache). |
11100 | // (Duplicate entries can happen because of recursive calls -- F makes a recursive call to F, and when it |
11101 | // returns wants to cache it, but the recursive call makes a furher recursive call, and caches that, so the |
11102 | // first call finds the iloffset already occupied.) |
11103 | if (!cache->AddItem(iloffset, CachedItem(callInfo))) |
11104 | { |
11105 | delete callInfo; |
11106 | } |
11107 | } |
11108 | |
11109 | CallSiteCacheData* Interpreter::GetCachedCallInfo(unsigned iloffset) |
11110 | { |
11111 | CrstHolder ch(&s_methodCacheLock); |
11112 | |
11113 | ILOffsetToItemCache* cache = GetThisExecCache(false); |
11114 | if (cache == NULL) return NULL; |
11115 | // Otherwise... |
11116 | CachedItem item; |
11117 | if (cache->GetItem(iloffset, item)) |
11118 | { |
11119 | _ASSERTE_MSG(item.m_tag == CIK_CallSite, "Wrong cached item tag." ); |
11120 | return item.m_value.m_callSiteInfo; |
11121 | } |
11122 | else |
11123 | { |
11124 | return NULL; |
11125 | } |
11126 | } |
11127 | |
11128 | void Interpreter::CacheInstanceField(unsigned iloffset, FieldDesc* fld) |
11129 | { |
11130 | CrstHolder ch(&s_methodCacheLock); |
11131 | |
11132 | ILOffsetToItemCache* cache = GetThisExecCache(true); |
11133 | cache->AddItem(iloffset, CachedItem(fld)); |
11134 | } |
11135 | |
11136 | FieldDesc* Interpreter::GetCachedInstanceField(unsigned iloffset) |
11137 | { |
11138 | CrstHolder ch(&s_methodCacheLock); |
11139 | |
11140 | ILOffsetToItemCache* cache = GetThisExecCache(false); |
11141 | if (cache == NULL) return NULL; |
11142 | // Otherwise... |
11143 | CachedItem item; |
11144 | if (cache->GetItem(iloffset, item)) |
11145 | { |
11146 | _ASSERTE_MSG(item.m_tag == CIK_InstanceField, "Wrong cached item tag." ); |
11147 | return item.m_value.m_instanceField; |
11148 | } |
11149 | else |
11150 | { |
11151 | return NULL; |
11152 | } |
11153 | } |
11154 | |
11155 | void Interpreter::CacheStaticField(unsigned iloffset, StaticFieldCacheEntry* pEntry) |
11156 | { |
11157 | CrstHolder ch(&s_methodCacheLock); |
11158 | |
11159 | ILOffsetToItemCache* cache = GetThisExecCache(true); |
11160 | // If (say) a concurrent thread has beaten us to this, delete the entry (which otherwise would have |
11161 | // been owned by the cache). |
11162 | if (!cache->AddItem(iloffset, CachedItem(pEntry))) |
11163 | { |
11164 | delete pEntry; |
11165 | } |
11166 | } |
11167 | |
11168 | StaticFieldCacheEntry* Interpreter::GetCachedStaticField(unsigned iloffset) |
11169 | { |
11170 | CrstHolder ch(&s_methodCacheLock); |
11171 | |
11172 | ILOffsetToItemCache* cache = GetThisExecCache(false); |
11173 | if (cache == NULL) |
11174 | return NULL; |
11175 | |
11176 | // Otherwise... |
11177 | CachedItem item; |
11178 | if (cache->GetItem(iloffset, item)) |
11179 | { |
11180 | _ASSERTE_MSG(item.m_tag == CIK_StaticField, "Wrong cached item tag." ); |
11181 | return item.m_value.m_staticFieldAddr; |
11182 | } |
11183 | else |
11184 | { |
11185 | return NULL; |
11186 | } |
11187 | } |
11188 | |
11189 | |
11190 | void Interpreter::CacheClassHandle(unsigned iloffset, CORINFO_CLASS_HANDLE clsHnd) |
11191 | { |
11192 | CrstHolder ch(&s_methodCacheLock); |
11193 | |
11194 | ILOffsetToItemCache* cache = GetThisExecCache(true); |
11195 | cache->AddItem(iloffset, CachedItem(clsHnd)); |
11196 | } |
11197 | |
11198 | CORINFO_CLASS_HANDLE Interpreter::GetCachedClassHandle(unsigned iloffset) |
11199 | { |
11200 | CrstHolder ch(&s_methodCacheLock); |
11201 | |
11202 | ILOffsetToItemCache* cache = GetThisExecCache(false); |
11203 | if (cache == NULL) |
11204 | return NULL; |
11205 | |
11206 | // Otherwise... |
11207 | CachedItem item; |
11208 | if (cache->GetItem(iloffset, item)) |
11209 | { |
11210 | _ASSERTE_MSG(item.m_tag == CIK_ClassHandle, "Wrong cached item tag." ); |
11211 | return item.m_value.m_clsHnd; |
11212 | } |
11213 | else |
11214 | { |
11215 | return NULL; |
11216 | } |
11217 | } |
11218 | #endif // DACCESS_COMPILE |
11219 | |
11220 | // Statics |
11221 | |
11222 | // Theses are not debug-only. |
11223 | ConfigMethodSet Interpreter::s_InterpretMeths; |
11224 | ConfigMethodSet Interpreter::s_InterpretMethsExclude; |
11225 | ConfigDWORD Interpreter::s_InterpretMethHashMin; |
11226 | ConfigDWORD Interpreter::s_InterpretMethHashMax; |
11227 | ConfigDWORD Interpreter::s_InterpreterJITThreshold; |
11228 | ConfigDWORD Interpreter::s_InterpreterDoLoopMethodsFlag; |
11229 | ConfigDWORD Interpreter::s_InterpreterUseCachingFlag; |
11230 | ConfigDWORD Interpreter::s_InterpreterLooseRulesFlag; |
11231 | |
11232 | bool Interpreter::s_InterpreterDoLoopMethods; |
11233 | bool Interpreter::s_InterpreterUseCaching; |
11234 | bool Interpreter::s_InterpreterLooseRules; |
11235 | |
11236 | CrstExplicitInit Interpreter::s_methodCacheLock; |
11237 | CrstExplicitInit Interpreter::s_interpStubToMDMapLock; |
11238 | |
11239 | // The static variables below are debug-only. |
11240 | #if INTERP_TRACING |
11241 | LONG Interpreter::s_totalInvocations = 0; |
11242 | LONG Interpreter::s_totalInterpCalls = 0; |
11243 | LONG Interpreter::s_totalInterpCallsToGetters = 0; |
11244 | LONG Interpreter::s_totalInterpCallsToDeadSimpleGetters = 0; |
11245 | LONG Interpreter::s_totalInterpCallsToDeadSimpleGettersShortCircuited = 0; |
11246 | LONG Interpreter::s_totalInterpCallsToSetters = 0; |
11247 | LONG Interpreter::s_totalInterpCallsToIntrinsics = 0; |
11248 | LONG Interpreter::s_totalInterpCallsToIntrinsicsUnhandled = 0; |
11249 | |
11250 | LONG Interpreter::s_tokenResolutionOpportunities[RTK_Count] = {0, }; |
11251 | LONG Interpreter::s_tokenResolutionCalls[RTK_Count] = {0, }; |
11252 | const char* Interpreter::s_tokenResolutionKindNames[RTK_Count] = |
11253 | { |
11254 | "Undefined" , |
11255 | "Constrained" , |
11256 | "NewObj" , |
11257 | "NewArr" , |
11258 | "LdToken" , |
11259 | "LdFtn" , |
11260 | "LdVirtFtn" , |
11261 | "SFldAddr" , |
11262 | "LdElem" , |
11263 | "Call" , |
11264 | "LdObj" , |
11265 | "StObj" , |
11266 | "CpObj" , |
11267 | "InitObj" , |
11268 | "IsInst" , |
11269 | "CastClass" , |
11270 | "MkRefAny" , |
11271 | "RefAnyVal" , |
11272 | "Sizeof" , |
11273 | "StElem" , |
11274 | "Box" , |
11275 | "Unbox" , |
11276 | "UnboxAny" , |
11277 | "LdFld" , |
11278 | "LdFldA" , |
11279 | "StFld" , |
11280 | "FindClass" , |
11281 | "Exception" , |
11282 | }; |
11283 | |
11284 | FILE* Interpreter::s_InterpreterLogFile = NULL; |
11285 | ConfigDWORD Interpreter::s_DumpInterpreterStubsFlag; |
11286 | ConfigDWORD Interpreter::s_TraceInterpreterEntriesFlag; |
11287 | ConfigDWORD Interpreter::s_TraceInterpreterILFlag; |
11288 | ConfigDWORD Interpreter::s_TraceInterpreterOstackFlag; |
11289 | ConfigDWORD Interpreter::s_TraceInterpreterVerboseFlag; |
11290 | ConfigDWORD Interpreter::s_TraceInterpreterJITTransitionFlag; |
11291 | ConfigDWORD Interpreter::s_InterpreterStubMin; |
11292 | ConfigDWORD Interpreter::s_InterpreterStubMax; |
11293 | #endif // INTERP_TRACING |
11294 | |
11295 | #if INTERP_ILINSTR_PROFILE |
11296 | unsigned short Interpreter::s_ILInstrCategories[512]; |
11297 | |
11298 | int Interpreter::s_ILInstrExecs[256] = {0, }; |
11299 | int Interpreter::s_ILInstrExecsByCategory[512] = {0, }; |
11300 | int Interpreter::s_ILInstr2ByteExecs[Interpreter::CountIlInstr2Byte] = {0, }; |
11301 | #if INTERP_ILCYCLE_PROFILE |
11302 | unsigned __int64 Interpreter::s_ILInstrCycles[512] = { 0, }; |
11303 | unsigned __int64 Interpreter::s_ILInstrCyclesByCategory[512] = { 0, }; |
11304 | // XXX |
11305 | unsigned __int64 Interpreter::s_callCycles = 0; |
11306 | unsigned Interpreter::s_calls = 0; |
11307 | |
11308 | void Interpreter::UpdateCycleCount() |
11309 | { |
11310 | unsigned __int64 endCycles; |
11311 | bool b = CycleTimer::GetThreadCyclesS(&endCycles); assert(b); |
11312 | if (m_instr != CEE_COUNT) |
11313 | { |
11314 | unsigned __int64 delta = (endCycles - m_startCycles); |
11315 | if (m_exemptCycles > 0) |
11316 | { |
11317 | delta = delta - m_exemptCycles; |
11318 | m_exemptCycles = 0; |
11319 | } |
11320 | CycleTimer::InterlockedAddU64(&s_ILInstrCycles[m_instr], delta); |
11321 | } |
11322 | // In any case, set the instruction to the current one, and record it's start time. |
11323 | m_instr = (*m_ILCodePtr); |
11324 | if (m_instr == CEE_PREFIX1) { |
11325 | m_instr = *(m_ILCodePtr + 1) + 0x100; |
11326 | } |
11327 | b = CycleTimer::GetThreadCyclesS(&m_startCycles); assert(b); |
11328 | } |
11329 | |
11330 | #endif // INTERP_ILCYCLE_PROFILE |
11331 | #endif // INTERP_ILINSTR_PROFILE |
11332 | |
11333 | #ifdef _DEBUG |
11334 | InterpreterMethodInfo** Interpreter::s_interpMethInfos = NULL; |
11335 | unsigned Interpreter::s_interpMethInfosAllocSize = 0; |
11336 | unsigned Interpreter::s_interpMethInfosCount = 0; |
11337 | |
11338 | bool Interpreter::TOSIsPtr() |
11339 | { |
11340 | if (m_curStackHt == 0) |
11341 | return false; |
11342 | |
11343 | return CorInfoTypeIsPointer(OpStackTypeGet(m_curStackHt - 1).ToCorInfoType()); |
11344 | } |
11345 | #endif // DEBUG |
11346 | |
11347 | ConfigDWORD Interpreter::s_PrintPostMortemFlag; |
11348 | |
11349 | // InterpreterCache. |
11350 | template<typename Key, typename Val> |
11351 | InterpreterCache<Key,Val>::InterpreterCache() : m_pairs(NULL), m_allocSize(0), m_count(0) |
11352 | { |
11353 | #ifdef _DEBUG |
11354 | AddAllocBytes(sizeof(*this)); |
11355 | #endif |
11356 | } |
11357 | |
11358 | #ifdef _DEBUG |
11359 | // static |
11360 | static unsigned InterpreterCacheAllocBytes = 0; |
11361 | const unsigned KBYTE = 1024; |
11362 | const unsigned MBYTE = KBYTE*KBYTE; |
11363 | const unsigned InterpreterCacheAllocBytesIncrement = 16*KBYTE; |
11364 | static unsigned InterpreterCacheAllocBytesNextTarget = InterpreterCacheAllocBytesIncrement; |
11365 | |
11366 | template<typename Key, typename Val> |
11367 | void InterpreterCache<Key,Val>::AddAllocBytes(unsigned bytes) |
11368 | { |
11369 | // Reinstate this code if you want to track bytes attributable to caching. |
11370 | #if 0 |
11371 | InterpreterCacheAllocBytes += bytes; |
11372 | if (InterpreterCacheAllocBytes > InterpreterCacheAllocBytesNextTarget) |
11373 | { |
11374 | printf("Total cache alloc = %d bytes.\n" , InterpreterCacheAllocBytes); |
11375 | fflush(stdout); |
11376 | InterpreterCacheAllocBytesNextTarget += InterpreterCacheAllocBytesIncrement; |
11377 | } |
11378 | #endif |
11379 | } |
11380 | #endif // _DEBUG |
11381 | |
11382 | template<typename Key, typename Val> |
11383 | void InterpreterCache<Key,Val>::EnsureCanInsert() |
11384 | { |
11385 | if (m_count < m_allocSize) |
11386 | return; |
11387 | |
11388 | // Otherwise, must make room. |
11389 | if (m_allocSize == 0) |
11390 | { |
11391 | assert(m_count == 0); |
11392 | m_pairs = new KeyValPair[InitSize]; |
11393 | m_allocSize = InitSize; |
11394 | #ifdef _DEBUG |
11395 | AddAllocBytes(m_allocSize * sizeof(KeyValPair)); |
11396 | #endif |
11397 | } |
11398 | else |
11399 | { |
11400 | unsigned short newSize = min(m_allocSize * 2, USHRT_MAX); |
11401 | |
11402 | KeyValPair* newPairs = new KeyValPair[newSize]; |
11403 | memcpy(newPairs, m_pairs, m_count * sizeof(KeyValPair)); |
11404 | delete[] m_pairs; |
11405 | m_pairs = newPairs; |
11406 | #ifdef _DEBUG |
11407 | AddAllocBytes((newSize - m_allocSize) * sizeof(KeyValPair)); |
11408 | #endif |
11409 | m_allocSize = newSize; |
11410 | } |
11411 | } |
11412 | |
11413 | template<typename Key, typename Val> |
11414 | bool InterpreterCache<Key,Val>::AddItem(Key key, Val val) |
11415 | { |
11416 | EnsureCanInsert(); |
11417 | // Find the index to insert before. |
11418 | unsigned firstGreaterOrEqual = 0; |
11419 | for (; firstGreaterOrEqual < m_count; firstGreaterOrEqual++) |
11420 | { |
11421 | if (m_pairs[firstGreaterOrEqual].m_key >= key) |
11422 | break; |
11423 | } |
11424 | if (firstGreaterOrEqual < m_count && m_pairs[firstGreaterOrEqual].m_key == key) |
11425 | { |
11426 | assert(m_pairs[firstGreaterOrEqual].m_val == val); |
11427 | return false; |
11428 | } |
11429 | // Move everything starting at firstGreater up one index (if necessary) |
11430 | if (m_count > 0) |
11431 | { |
11432 | for (unsigned k = m_count-1; k >= firstGreaterOrEqual; k--) |
11433 | { |
11434 | m_pairs[k + 1] = m_pairs[k]; |
11435 | if (k == 0) |
11436 | break; |
11437 | } |
11438 | } |
11439 | // Now we can insert the new element. |
11440 | m_pairs[firstGreaterOrEqual].m_key = key; |
11441 | m_pairs[firstGreaterOrEqual].m_val = val; |
11442 | m_count++; |
11443 | return true; |
11444 | } |
11445 | |
11446 | template<typename Key, typename Val> |
11447 | bool InterpreterCache<Key,Val>::GetItem(Key key, Val& v) |
11448 | { |
11449 | unsigned lo = 0; |
11450 | unsigned hi = m_count; |
11451 | // Invariant: we've determined that the pair for "iloffset", if present, |
11452 | // is in the index interval [lo, hi). |
11453 | while (lo < hi) |
11454 | { |
11455 | unsigned mid = (hi + lo)/2; |
11456 | Key midKey = m_pairs[mid].m_key; |
11457 | if (key == midKey) |
11458 | { |
11459 | v = m_pairs[mid].m_val; |
11460 | return true; |
11461 | } |
11462 | else if (key < midKey) |
11463 | { |
11464 | hi = mid; |
11465 | } |
11466 | else |
11467 | { |
11468 | assert(key > midKey); |
11469 | lo = mid + 1; |
11470 | } |
11471 | } |
11472 | // If we reach here without returning, it's not here. |
11473 | return false; |
11474 | } |
11475 | |
11476 | // TODO: add a header comment here describing this function. |
11477 | void Interpreter::OpStackNormalize() |
11478 | { |
11479 | size_t largeStructStackOffset = 0; |
11480 | // Yes, I've written a quadratic algorithm here. I don't think it will matter in practice. |
11481 | for (unsigned i = 0; i < m_curStackHt; i++) |
11482 | { |
11483 | InterpreterType tp = OpStackTypeGet(i); |
11484 | if (tp.IsLargeStruct(&m_interpCeeInfo)) |
11485 | { |
11486 | size_t sz = tp.Size(&m_interpCeeInfo); |
11487 | |
11488 | void* addr = OpStackGet<void*>(i); |
11489 | if (IsInLargeStructLocalArea(addr)) |
11490 | { |
11491 | // We're going to allocate space at the top for the new value, then copy everything above the current slot |
11492 | // up into that new space, then copy the value into the vacated space. |
11493 | // How much will we have to copy? |
11494 | size_t toCopy = m_largeStructOperandStackHt - largeStructStackOffset; |
11495 | |
11496 | // Allocate space for the new value. |
11497 | void* dummy = LargeStructOperandStackPush(sz); |
11498 | |
11499 | // Remember where we're going to write to. |
11500 | BYTE* fromAddr = m_largeStructOperandStack + largeStructStackOffset; |
11501 | BYTE* toAddr = fromAddr + sz; |
11502 | memcpy(toAddr, fromAddr, toCopy); |
11503 | |
11504 | // Now copy the local variable value. |
11505 | memcpy(fromAddr, addr, sz); |
11506 | OpStackSet<void*>(i, fromAddr); |
11507 | } |
11508 | largeStructStackOffset += sz; |
11509 | } |
11510 | } |
11511 | // When we've normalized the stack, it contains no pointers to locals. |
11512 | m_orOfPushedInterpreterTypes = 0; |
11513 | } |
11514 | |
11515 | #if INTERP_TRACING |
11516 | |
11517 | // Code copied from eeinterface.cpp in "compiler". Should be common... |
11518 | |
11519 | static const char* CorInfoTypeNames[] = { |
11520 | "undef" , |
11521 | "void" , |
11522 | "bool" , |
11523 | "char" , |
11524 | "byte" , |
11525 | "ubyte" , |
11526 | "short" , |
11527 | "ushort" , |
11528 | "int" , |
11529 | "uint" , |
11530 | "long" , |
11531 | "ulong" , |
11532 | "nativeint" , |
11533 | "nativeuint" , |
11534 | "float" , |
11535 | "double" , |
11536 | "string" , |
11537 | "ptr" , |
11538 | "byref" , |
11539 | "valueclass" , |
11540 | "class" , |
11541 | "refany" , |
11542 | "var" |
11543 | }; |
11544 | |
11545 | const char* eeGetMethodFullName(CEEInfo* info, CORINFO_METHOD_HANDLE hnd, const char** clsName) |
11546 | { |
11547 | CONTRACTL { |
11548 | SO_TOLERANT; |
11549 | THROWS; |
11550 | GC_TRIGGERS; |
11551 | MODE_ANY; |
11552 | } CONTRACTL_END; |
11553 | |
11554 | GCX_PREEMP(); |
11555 | |
11556 | const char* returnType = NULL; |
11557 | |
11558 | const char* className; |
11559 | const char* methodName = info->getMethodName(hnd, &className); |
11560 | if (clsName != NULL) |
11561 | { |
11562 | *clsName = className; |
11563 | } |
11564 | |
11565 | size_t length = 0; |
11566 | unsigned i; |
11567 | |
11568 | /* Generating the full signature is a two-pass process. First we have to walk |
11569 | the components in order to assess the total size, then we allocate the buffer |
11570 | and copy the elements into it. |
11571 | */ |
11572 | |
11573 | /* Right now there is a race-condition in the EE, className can be NULL */ |
11574 | |
11575 | /* initialize length with length of className and '.' */ |
11576 | |
11577 | if (className) |
11578 | { |
11579 | length = strlen(className) + 1; |
11580 | } |
11581 | else |
11582 | { |
11583 | assert(strlen("<NULL>." ) == 7); |
11584 | length = 7; |
11585 | } |
11586 | |
11587 | /* add length of methodName and opening bracket */ |
11588 | length += strlen(methodName) + 1; |
11589 | |
11590 | CORINFO_SIG_INFO sig; |
11591 | info->getMethodSig(hnd, &sig); |
11592 | CORINFO_ARG_LIST_HANDLE argLst = sig.args; |
11593 | |
11594 | CORINFO_CLASS_HANDLE dummyCls; |
11595 | for (i = 0; i < sig.numArgs; i++) |
11596 | { |
11597 | CorInfoType type = strip(info->getArgType(&sig, argLst, &dummyCls)); |
11598 | |
11599 | length += strlen(CorInfoTypeNames[type]); |
11600 | argLst = info->getArgNext(argLst); |
11601 | } |
11602 | |
11603 | /* add ',' if there is more than one argument */ |
11604 | |
11605 | if (sig.numArgs > 1) |
11606 | { |
11607 | length += (sig.numArgs - 1); |
11608 | } |
11609 | |
11610 | if (sig.retType != CORINFO_TYPE_VOID) |
11611 | { |
11612 | returnType = CorInfoTypeNames[sig.retType]; |
11613 | length += strlen(returnType) + 1; // don't forget the delimiter ':' |
11614 | } |
11615 | |
11616 | /* add closing bracket and null terminator */ |
11617 | |
11618 | length += 2; |
11619 | |
11620 | char* retName = new char[length]; |
11621 | |
11622 | /* Now generate the full signature string in the allocated buffer */ |
11623 | |
11624 | if (className) |
11625 | { |
11626 | strcpy_s(retName, length, className); |
11627 | strcat_s(retName, length, ":" ); |
11628 | } |
11629 | else |
11630 | { |
11631 | strcpy_s(retName, length, "<NULL>." ); |
11632 | } |
11633 | |
11634 | strcat_s(retName, length, methodName); |
11635 | |
11636 | // append the signature |
11637 | strcat_s(retName, length, "(" ); |
11638 | |
11639 | argLst = sig.args; |
11640 | |
11641 | for (i = 0; i < sig.numArgs; i++) |
11642 | { |
11643 | CorInfoType type = strip(info->getArgType(&sig, argLst, &dummyCls)); |
11644 | strcat_s(retName, length, CorInfoTypeNames[type]); |
11645 | |
11646 | argLst = info->getArgNext(argLst); |
11647 | if (i + 1 < sig.numArgs) |
11648 | { |
11649 | strcat_s(retName, length, "," ); |
11650 | } |
11651 | } |
11652 | |
11653 | strcat_s(retName, length, ")" ); |
11654 | |
11655 | if (returnType) |
11656 | { |
11657 | strcat_s(retName, length, ":" ); |
11658 | strcat_s(retName, length, returnType); |
11659 | } |
11660 | |
11661 | assert(strlen(retName) == length - 1); |
11662 | |
11663 | return(retName); |
11664 | } |
11665 | |
11666 | const char* Interpreter::eeGetMethodFullName(CORINFO_METHOD_HANDLE hnd) |
11667 | { |
11668 | return ::eeGetMethodFullName(&m_interpCeeInfo, hnd); |
11669 | } |
11670 | |
11671 | const char* ILOpNames[256*2]; |
11672 | bool ILOpNamesInited = false; |
11673 | |
11674 | void InitILOpNames() |
11675 | { |
11676 | if (!ILOpNamesInited) |
11677 | { |
11678 | // Initialize the array. |
11679 | #define OPDEF(c,s,pop,push,args,type,l,s1,s2,ctrl) if (s1 == 0xfe || s1 == 0xff) { int ind ((unsigned(s1) << 8) + unsigned(s2)); ind -= 0xfe00; ILOpNames[ind] = s; } |
11680 | #include "opcode.def" |
11681 | #undef OPDEF |
11682 | ILOpNamesInited = true; |
11683 | } |
11684 | }; |
11685 | const char* Interpreter::ILOp(BYTE* m_ILCodePtr) |
11686 | { |
11687 | InitILOpNames(); |
11688 | BYTE b = *m_ILCodePtr; |
11689 | if (b == 0xfe) |
11690 | { |
11691 | return ILOpNames[*(m_ILCodePtr + 1)]; |
11692 | } |
11693 | else |
11694 | { |
11695 | return ILOpNames[(0x1 << 8) + b]; |
11696 | } |
11697 | } |
11698 | const char* Interpreter::ILOp1Byte(unsigned short ilInstrVal) |
11699 | { |
11700 | InitILOpNames(); |
11701 | return ILOpNames[(0x1 << 8) + ilInstrVal]; |
11702 | } |
11703 | const char* Interpreter::ILOp2Byte(unsigned short ilInstrVal) |
11704 | { |
11705 | InitILOpNames(); |
11706 | return ILOpNames[ilInstrVal]; |
11707 | } |
11708 | |
11709 | void Interpreter::PrintOStack() |
11710 | { |
11711 | if (m_curStackHt == 0) |
11712 | { |
11713 | fprintf(GetLogFile(), " <empty>\n" ); |
11714 | } |
11715 | else |
11716 | { |
11717 | for (unsigned k = 0; k < m_curStackHt; k++) |
11718 | { |
11719 | CorInfoType cit = OpStackTypeGet(k).ToCorInfoType(); |
11720 | assert(IsStackNormalType(cit)); |
11721 | fprintf(GetLogFile(), " %4d: %10s: " , k, CorInfoTypeNames[cit]); |
11722 | PrintOStackValue(k); |
11723 | fprintf(GetLogFile(), "\n" ); |
11724 | } |
11725 | } |
11726 | fflush(GetLogFile()); |
11727 | } |
11728 | |
11729 | void Interpreter::PrintOStackValue(unsigned index) |
11730 | { |
11731 | _ASSERTE_MSG(index < m_curStackHt, "precondition" ); |
11732 | InterpreterType it = OpStackTypeGet(index); |
11733 | if (it.IsLargeStruct(&m_interpCeeInfo)) |
11734 | { |
11735 | PrintValue(it, OpStackGet<BYTE*>(index)); |
11736 | } |
11737 | else |
11738 | { |
11739 | PrintValue(it, reinterpret_cast<BYTE*>(OpStackGetAddr(index, it.Size(&m_interpCeeInfo)))); |
11740 | } |
11741 | } |
11742 | |
11743 | void Interpreter::PrintLocals() |
11744 | { |
11745 | if (m_methInfo->m_numLocals == 0) |
11746 | { |
11747 | fprintf(GetLogFile(), " <no locals>\n" ); |
11748 | } |
11749 | else |
11750 | { |
11751 | for (unsigned i = 0; i < m_methInfo->m_numLocals; i++) |
11752 | { |
11753 | InterpreterType it = m_methInfo->m_localDescs[i].m_type; |
11754 | CorInfoType cit = it.ToCorInfoType(); |
11755 | void* localPtr = NULL; |
11756 | if (it.IsLargeStruct(&m_interpCeeInfo)) |
11757 | { |
11758 | void* structPtr = ArgSlotEndianessFixup(reinterpret_cast<ARG_SLOT*>(FixedSizeLocalSlot(i)), sizeof(void**)); |
11759 | localPtr = *reinterpret_cast<void**>(structPtr); |
11760 | } |
11761 | else |
11762 | { |
11763 | localPtr = ArgSlotEndianessFixup(reinterpret_cast<ARG_SLOT*>(FixedSizeLocalSlot(i)), it.Size(&m_interpCeeInfo)); |
11764 | } |
11765 | fprintf(GetLogFile(), " loc%-4d: %10s: " , i, CorInfoTypeNames[cit]); |
11766 | PrintValue(it, reinterpret_cast<BYTE*>(localPtr)); |
11767 | fprintf(GetLogFile(), "\n" ); |
11768 | } |
11769 | } |
11770 | fflush(GetLogFile()); |
11771 | } |
11772 | |
11773 | void Interpreter::PrintArgs() |
11774 | { |
11775 | for (unsigned k = 0; k < m_methInfo->m_numArgs; k++) |
11776 | { |
11777 | CorInfoType cit = GetArgType(k).ToCorInfoType(); |
11778 | fprintf(GetLogFile(), " %4d: %10s: " , k, CorInfoTypeNames[cit]); |
11779 | PrintArgValue(k); |
11780 | fprintf(GetLogFile(), "\n" ); |
11781 | } |
11782 | fprintf(GetLogFile(), "\n" ); |
11783 | fflush(GetLogFile()); |
11784 | } |
11785 | |
11786 | void Interpreter::PrintArgValue(unsigned argNum) |
11787 | { |
11788 | _ASSERTE_MSG(argNum < m_methInfo->m_numArgs, "precondition" ); |
11789 | InterpreterType it = GetArgType(argNum); |
11790 | PrintValue(it, GetArgAddr(argNum)); |
11791 | } |
11792 | |
11793 | // Note that this is used to print non-stack-normal values, so |
11794 | // it must handle all cases. |
11795 | void Interpreter::PrintValue(InterpreterType it, BYTE* valAddr) |
11796 | { |
11797 | switch (it.ToCorInfoType()) |
11798 | { |
11799 | case CORINFO_TYPE_BOOL: |
11800 | fprintf(GetLogFile(), "%s" , ((*reinterpret_cast<INT8*>(valAddr)) ? "true" : "false" )); |
11801 | break; |
11802 | case CORINFO_TYPE_BYTE: |
11803 | fprintf(GetLogFile(), "%d" , *reinterpret_cast<INT8*>(valAddr)); |
11804 | break; |
11805 | case CORINFO_TYPE_UBYTE: |
11806 | fprintf(GetLogFile(), "%u" , *reinterpret_cast<UINT8*>(valAddr)); |
11807 | break; |
11808 | |
11809 | case CORINFO_TYPE_SHORT: |
11810 | fprintf(GetLogFile(), "%d" , *reinterpret_cast<INT16*>(valAddr)); |
11811 | break; |
11812 | case CORINFO_TYPE_USHORT: case CORINFO_TYPE_CHAR: |
11813 | fprintf(GetLogFile(), "%u" , *reinterpret_cast<UINT16*>(valAddr)); |
11814 | break; |
11815 | |
11816 | case CORINFO_TYPE_INT: |
11817 | fprintf(GetLogFile(), "%d" , *reinterpret_cast<INT32*>(valAddr)); |
11818 | break; |
11819 | case CORINFO_TYPE_UINT: |
11820 | fprintf(GetLogFile(), "%u" , *reinterpret_cast<UINT32*>(valAddr)); |
11821 | break; |
11822 | |
11823 | case CORINFO_TYPE_NATIVEINT: |
11824 | { |
11825 | INT64 val = static_cast<INT64>(*reinterpret_cast<NativeInt*>(valAddr)); |
11826 | fprintf(GetLogFile(), "%lld (= 0x%llx)" , val, val); |
11827 | } |
11828 | break; |
11829 | case CORINFO_TYPE_NATIVEUINT: |
11830 | { |
11831 | UINT64 val = static_cast<UINT64>(*reinterpret_cast<NativeUInt*>(valAddr)); |
11832 | fprintf(GetLogFile(), "%lld (= 0x%llx)" , val, val); |
11833 | } |
11834 | break; |
11835 | |
11836 | case CORINFO_TYPE_BYREF: |
11837 | fprintf(GetLogFile(), "0x%p" , *reinterpret_cast<void**>(valAddr)); |
11838 | break; |
11839 | |
11840 | case CORINFO_TYPE_LONG: |
11841 | { |
11842 | INT64 val = *reinterpret_cast<INT64*>(valAddr); |
11843 | fprintf(GetLogFile(), "%lld (= 0x%llx)" , val, val); |
11844 | } |
11845 | break; |
11846 | case CORINFO_TYPE_ULONG: |
11847 | fprintf(GetLogFile(), "%lld" , *reinterpret_cast<UINT64*>(valAddr)); |
11848 | break; |
11849 | |
11850 | case CORINFO_TYPE_CLASS: |
11851 | { |
11852 | Object* obj = *reinterpret_cast<Object**>(valAddr); |
11853 | if (obj == NULL) |
11854 | { |
11855 | fprintf(GetLogFile(), "null" ); |
11856 | } |
11857 | else |
11858 | { |
11859 | #ifdef _DEBUG |
11860 | fprintf(GetLogFile(), "0x%p (%s) [" , obj, obj->GetMethodTable()->GetDebugClassName()); |
11861 | #else |
11862 | fprintf(GetLogFile(), "0x%p (MT=0x%p) [" , obj, obj->GetMethodTable()); |
11863 | #endif |
11864 | unsigned sz = obj->GetMethodTable()->GetBaseSize(); |
11865 | BYTE* objBytes = reinterpret_cast<BYTE*>(obj); |
11866 | for (unsigned i = 0; i < sz; i++) |
11867 | { |
11868 | if (i > 0) |
11869 | { |
11870 | fprintf(GetLogFile(), " " ); |
11871 | } |
11872 | fprintf(GetLogFile(), "0x%x" , objBytes[i]); |
11873 | } |
11874 | fprintf(GetLogFile(), "]" ); |
11875 | } |
11876 | } |
11877 | break; |
11878 | case CORINFO_TYPE_VALUECLASS: |
11879 | { |
11880 | GCX_PREEMP(); |
11881 | fprintf(GetLogFile(), "<%s>: [" , m_interpCeeInfo.getClassName(it.ToClassHandle())); |
11882 | unsigned sz = getClassSize(it.ToClassHandle()); |
11883 | for (unsigned i = 0; i < sz; i++) |
11884 | { |
11885 | if (i > 0) |
11886 | { |
11887 | fprintf(GetLogFile(), " " ); |
11888 | } |
11889 | fprintf(GetLogFile(), "0x%02x" , valAddr[i]); |
11890 | } |
11891 | fprintf(GetLogFile(), "]" ); |
11892 | } |
11893 | break; |
11894 | case CORINFO_TYPE_REFANY: |
11895 | fprintf(GetLogFile(), "<refany>" ); |
11896 | break; |
11897 | case CORINFO_TYPE_FLOAT: |
11898 | fprintf(GetLogFile(), "%f" , *reinterpret_cast<float*>(valAddr)); |
11899 | break; |
11900 | case CORINFO_TYPE_DOUBLE: |
11901 | fprintf(GetLogFile(), "%g" , *reinterpret_cast<double*>(valAddr)); |
11902 | break; |
11903 | case CORINFO_TYPE_PTR: |
11904 | fprintf(GetLogFile(), "0x%p" , *reinterpret_cast<void**>(valAddr)); |
11905 | break; |
11906 | default: |
11907 | _ASSERTE_MSG(false, "Unknown type in PrintValue." ); |
11908 | break; |
11909 | } |
11910 | } |
11911 | #endif // INTERP_TRACING |
11912 | |
11913 | #ifdef _DEBUG |
11914 | void Interpreter::AddInterpMethInfo(InterpreterMethodInfo* methInfo) |
11915 | { |
11916 | typedef InterpreterMethodInfo* InterpreterMethodInfoPtr; |
11917 | // TODO: this requires synchronization. |
11918 | const unsigned InitSize = 128; |
11919 | if (s_interpMethInfos == NULL) |
11920 | { |
11921 | s_interpMethInfos = new InterpreterMethodInfoPtr[InitSize]; |
11922 | s_interpMethInfosAllocSize = InitSize; |
11923 | } |
11924 | if (s_interpMethInfosAllocSize == s_interpMethInfosCount) |
11925 | { |
11926 | unsigned newSize = s_interpMethInfosAllocSize * 2; |
11927 | InterpreterMethodInfoPtr* tmp = new InterpreterMethodInfoPtr[newSize]; |
11928 | memcpy(tmp, s_interpMethInfos, s_interpMethInfosCount * sizeof(InterpreterMethodInfoPtr)); |
11929 | delete[] s_interpMethInfos; |
11930 | s_interpMethInfos = tmp; |
11931 | s_interpMethInfosAllocSize = newSize; |
11932 | } |
11933 | s_interpMethInfos[s_interpMethInfosCount] = methInfo; |
11934 | s_interpMethInfosCount++; |
11935 | } |
11936 | |
11937 | int _cdecl Interpreter::CompareMethInfosByInvocations(const void* mi0in, const void* mi1in) |
11938 | { |
11939 | const InterpreterMethodInfo* mi0 = *((const InterpreterMethodInfo**)mi0in); |
11940 | const InterpreterMethodInfo* mi1 = *((const InterpreterMethodInfo**)mi1in); |
11941 | if (mi0->m_invocations < mi1->m_invocations) |
11942 | { |
11943 | return -1; |
11944 | } |
11945 | else if (mi0->m_invocations == mi1->m_invocations) |
11946 | { |
11947 | return 0; |
11948 | } |
11949 | else |
11950 | { |
11951 | assert(mi0->m_invocations > mi1->m_invocations); |
11952 | return 1; |
11953 | } |
11954 | } |
11955 | |
11956 | #if INTERP_PROFILE |
11957 | int _cdecl Interpreter::CompareMethInfosByILInstrs(const void* mi0in, const void* mi1in) |
11958 | { |
11959 | const InterpreterMethodInfo* mi0 = *((const InterpreterMethodInfo**)mi0in); |
11960 | const InterpreterMethodInfo* mi1 = *((const InterpreterMethodInfo**)mi1in); |
11961 | if (mi0->m_totIlInstructionsExeced < mi1->m_totIlInstructionsExeced) return 1; |
11962 | else if (mi0->m_totIlInstructionsExeced == mi1->m_totIlInstructionsExeced) return 0; |
11963 | else |
11964 | { |
11965 | assert(mi0->m_totIlInstructionsExeced > mi1->m_totIlInstructionsExeced); |
11966 | return -1; |
11967 | } |
11968 | } |
11969 | #endif // INTERP_PROFILE |
11970 | #endif // _DEBUG |
11971 | |
11972 | const int MIL = 1000000; |
11973 | |
11974 | // Leaving this disabled for now. |
11975 | #if 0 |
11976 | unsigned __int64 ForceSigWalkCycles = 0; |
11977 | #endif |
11978 | |
11979 | void Interpreter::PrintPostMortemData() |
11980 | { |
11981 | if (s_PrintPostMortemFlag.val(CLRConfig::INTERNAL_InterpreterPrintPostMortem) == 0) |
11982 | return; |
11983 | |
11984 | // Otherwise... |
11985 | |
11986 | #if INTERP_TRACING |
11987 | // Let's print two things: the number of methods that are 0-10, or more, and |
11988 | // For each 10% of methods, cumulative % of invocations they represent. By 1% for last 10%. |
11989 | |
11990 | // First one doesn't require any sorting. |
11991 | const unsigned HistoMax = 11; |
11992 | unsigned histo[HistoMax]; |
11993 | unsigned numExecs[HistoMax]; |
11994 | for (unsigned k = 0; k < HistoMax; k++) |
11995 | { |
11996 | histo[k] = 0; numExecs[k] = 0; |
11997 | } |
11998 | for (unsigned k = 0; k < s_interpMethInfosCount; k++) |
11999 | { |
12000 | unsigned invokes = s_interpMethInfos[k]->m_invocations; |
12001 | if (invokes > HistoMax - 1) |
12002 | { |
12003 | invokes = HistoMax - 1; |
12004 | } |
12005 | histo[invokes]++; |
12006 | numExecs[invokes] += s_interpMethInfos[k]->m_invocations; |
12007 | } |
12008 | |
12009 | fprintf(GetLogFile(), "Histogram of method executions:\n" ); |
12010 | fprintf(GetLogFile(), " # of execs | # meths (%%) | cum %% | %% cum execs\n" ); |
12011 | fprintf(GetLogFile(), " -------------------------------------------------------\n" ); |
12012 | float fTotMeths = float(s_interpMethInfosCount); |
12013 | float fTotExecs = float(s_totalInvocations); |
12014 | float numPct = 0.0f; |
12015 | float numExecPct = 0.0f; |
12016 | for (unsigned k = 0; k < HistoMax; k++) |
12017 | { |
12018 | fprintf(GetLogFile(), " %10d" , k); |
12019 | if (k == HistoMax) |
12020 | { |
12021 | fprintf(GetLogFile(), "+ " ); |
12022 | } |
12023 | else |
12024 | { |
12025 | fprintf(GetLogFile(), " " ); |
12026 | } |
12027 | float pct = float(histo[k])*100.0f/fTotMeths; |
12028 | numPct += pct; |
12029 | float execPct = float(numExecs[k])*100.0f/fTotExecs; |
12030 | numExecPct += execPct; |
12031 | fprintf(GetLogFile(), "| %7d (%5.2f%%) | %6.2f%% | %6.2f%%\n" , histo[k], pct, numPct, numExecPct); |
12032 | } |
12033 | |
12034 | // This sorts them in ascending order of number of invocations. |
12035 | qsort(&s_interpMethInfos[0], s_interpMethInfosCount, sizeof(InterpreterMethodInfo*), &CompareMethInfosByInvocations); |
12036 | |
12037 | fprintf(GetLogFile(), "\nFor methods sorted in ascending # of executions order, cumulative %% of executions:\n" ); |
12038 | if (s_totalInvocations > 0) |
12039 | { |
12040 | fprintf(GetLogFile(), " %% of methods | max execs | cum %% of execs\n" ); |
12041 | fprintf(GetLogFile(), " ------------------------------------------\n" ); |
12042 | unsigned methNum = 0; |
12043 | unsigned nNumExecs = 0; |
12044 | float totExecsF = float(s_totalInvocations); |
12045 | for (unsigned k = 10; k < 100; k += 10) |
12046 | { |
12047 | unsigned targ = unsigned((float(k)/100.0f)*float(s_interpMethInfosCount)); |
12048 | unsigned targLess1 = (targ > 0 ? targ - 1 : 0); |
12049 | while (methNum < targ) |
12050 | { |
12051 | nNumExecs += s_interpMethInfos[methNum]->m_invocations; |
12052 | methNum++; |
12053 | } |
12054 | float pctExecs = float(nNumExecs) * 100.0f / totExecsF; |
12055 | |
12056 | fprintf(GetLogFile(), " %8d%% | %9d | %8.2f%%\n" , k, s_interpMethInfos[targLess1]->m_invocations, pctExecs); |
12057 | |
12058 | if (k == 90) |
12059 | { |
12060 | k++; |
12061 | for (; k < 100; k++) |
12062 | { |
12063 | unsigned targ = unsigned((float(k)/100.0f)*float(s_interpMethInfosCount)); |
12064 | while (methNum < targ) |
12065 | { |
12066 | nNumExecs += s_interpMethInfos[methNum]->m_invocations; |
12067 | methNum++; |
12068 | } |
12069 | pctExecs = float(nNumExecs) * 100.0f / totExecsF; |
12070 | |
12071 | fprintf(GetLogFile(), " %8d%% | %9d | %8.2f%%\n" , k, s_interpMethInfos[targLess1]->m_invocations, pctExecs); |
12072 | } |
12073 | |
12074 | // Now do 100%. |
12075 | targ = s_interpMethInfosCount; |
12076 | while (methNum < targ) |
12077 | { |
12078 | nNumExecs += s_interpMethInfos[methNum]->m_invocations; |
12079 | methNum++; |
12080 | } |
12081 | pctExecs = float(nNumExecs) * 100.0f / totExecsF; |
12082 | fprintf(GetLogFile(), " %8d%% | %9d | %8.2f%%\n" , k, s_interpMethInfos[targLess1]->m_invocations, pctExecs); |
12083 | } |
12084 | } |
12085 | } |
12086 | |
12087 | fprintf(GetLogFile(), "\nTotal number of calls from interpreted code: %d.\n" , s_totalInterpCalls); |
12088 | fprintf(GetLogFile(), " Also, %d are intrinsics; %d of these are not currently handled intrinsically.\n" , |
12089 | s_totalInterpCallsToIntrinsics, s_totalInterpCallsToIntrinsicsUnhandled); |
12090 | fprintf(GetLogFile(), " Of these, %d to potential property getters (%d of these dead simple), %d to setters.\n" , |
12091 | s_totalInterpCallsToGetters, s_totalInterpCallsToDeadSimpleGetters, s_totalInterpCallsToSetters); |
12092 | fprintf(GetLogFile(), " Of the dead simple getter calls, %d have been short-circuited.\n" , |
12093 | s_totalInterpCallsToDeadSimpleGettersShortCircuited); |
12094 | |
12095 | fprintf(GetLogFile(), "\nToken resolutions by category:\n" ); |
12096 | fprintf(GetLogFile(), "Category | opportunities | calls | %%\n" ); |
12097 | fprintf(GetLogFile(), "---------------------------------------------------\n" ); |
12098 | for (unsigned i = RTK_Undefined; i < RTK_Count; i++) |
12099 | { |
12100 | float pct = 0.0; |
12101 | if (s_tokenResolutionOpportunities[i] > 0) |
12102 | pct = 100.0f * float(s_tokenResolutionCalls[i]) / float(s_tokenResolutionOpportunities[i]); |
12103 | fprintf(GetLogFile(), "%12s | %15d | %9d | %6.2f%%\n" , |
12104 | s_tokenResolutionKindNames[i], s_tokenResolutionOpportunities[i], s_tokenResolutionCalls[i], pct); |
12105 | } |
12106 | |
12107 | #if INTERP_PROFILE |
12108 | fprintf(GetLogFile(), "Information on num of execs:\n" ); |
12109 | |
12110 | UINT64 totILInstrs = 0; |
12111 | for (unsigned i = 0; i < s_interpMethInfosCount; i++) totILInstrs += s_interpMethInfos[i]->m_totIlInstructionsExeced; |
12112 | |
12113 | float totILInstrsF = float(totILInstrs); |
12114 | |
12115 | fprintf(GetLogFile(), "\nTotal instructions = %lld.\n" , totILInstrs); |
12116 | fprintf(GetLogFile(), "\nTop <=10 methods by # of IL instructions executed.\n" ); |
12117 | fprintf(GetLogFile(), "%10s | %9s | %10s | %10s | %8s | %s\n" , "tot execs" , "# invokes" , "code size" , "ratio" , "% of tot" , "Method" ); |
12118 | fprintf(GetLogFile(), "----------------------------------------------------------------------------\n" ); |
12119 | |
12120 | qsort(&s_interpMethInfos[0], s_interpMethInfosCount, sizeof(InterpreterMethodInfo*), &CompareMethInfosByILInstrs); |
12121 | |
12122 | for (unsigned i = 0; i < min(10, s_interpMethInfosCount); i++) |
12123 | { |
12124 | unsigned ilCodeSize = unsigned(s_interpMethInfos[i]->m_ILCodeEnd - s_interpMethInfos[i]->m_ILCode); |
12125 | fprintf(GetLogFile(), "%10lld | %9d | %10d | %10.2f | %8.2f%% | %s:%s\n" , |
12126 | s_interpMethInfos[i]->m_totIlInstructionsExeced, |
12127 | s_interpMethInfos[i]->m_invocations, |
12128 | ilCodeSize, |
12129 | float(s_interpMethInfos[i]->m_totIlInstructionsExeced) / float(ilCodeSize), |
12130 | float(s_interpMethInfos[i]->m_totIlInstructionsExeced) * 100.0f / totILInstrsF, |
12131 | s_interpMethInfos[i]->m_clsName, |
12132 | s_interpMethInfos[i]->m_methName); |
12133 | } |
12134 | #endif // INTERP_PROFILE |
12135 | #endif // _DEBUG |
12136 | |
12137 | #if INTERP_ILINSTR_PROFILE |
12138 | fprintf(GetLogFile(), "\nIL instruction profiling:\n" ); |
12139 | // First, classify by categories. |
12140 | unsigned totInstrs = 0; |
12141 | #if INTERP_ILCYCLE_PROFILE |
12142 | unsigned __int64 totCycles = 0; |
12143 | unsigned __int64 perMeasurementOverhead = CycleTimer::QueryOverhead(); |
12144 | #endif // INTERP_ILCYCLE_PROFILE |
12145 | for (unsigned i = 0; i < 256; i++) |
12146 | { |
12147 | s_ILInstrExecsByCategory[s_ILInstrCategories[i]] += s_ILInstrExecs[i]; |
12148 | totInstrs += s_ILInstrExecs[i]; |
12149 | #if INTERP_ILCYCLE_PROFILE |
12150 | unsigned __int64 cycles = s_ILInstrCycles[i]; |
12151 | if (cycles > s_ILInstrExecs[i] * perMeasurementOverhead) cycles -= s_ILInstrExecs[i] * perMeasurementOverhead; |
12152 | else cycles = 0; |
12153 | s_ILInstrCycles[i] = cycles; |
12154 | s_ILInstrCyclesByCategory[s_ILInstrCategories[i]] += cycles; |
12155 | totCycles += cycles; |
12156 | #endif // INTERP_ILCYCLE_PROFILE |
12157 | } |
12158 | unsigned totInstrs2Byte = 0; |
12159 | #if INTERP_ILCYCLE_PROFILE |
12160 | unsigned __int64 totCycles2Byte = 0; |
12161 | #endif // INTERP_ILCYCLE_PROFILE |
12162 | for (unsigned i = 0; i < CountIlInstr2Byte; i++) |
12163 | { |
12164 | unsigned ind = 0x100 + i; |
12165 | s_ILInstrExecsByCategory[s_ILInstrCategories[ind]] += s_ILInstr2ByteExecs[i]; |
12166 | totInstrs += s_ILInstr2ByteExecs[i]; |
12167 | totInstrs2Byte += s_ILInstr2ByteExecs[i]; |
12168 | #if INTERP_ILCYCLE_PROFILE |
12169 | unsigned __int64 cycles = s_ILInstrCycles[ind]; |
12170 | if (cycles > s_ILInstrExecs[ind] * perMeasurementOverhead) cycles -= s_ILInstrExecs[ind] * perMeasurementOverhead; |
12171 | else cycles = 0; |
12172 | s_ILInstrCycles[i] = cycles; |
12173 | s_ILInstrCyclesByCategory[s_ILInstrCategories[ind]] += cycles; |
12174 | totCycles += cycles; |
12175 | totCycles2Byte += cycles; |
12176 | #endif // INTERP_ILCYCLE_PROFILE |
12177 | } |
12178 | |
12179 | // Now sort the categories by # of occurrences. |
12180 | |
12181 | InstrExecRecord ieps[256 + CountIlInstr2Byte]; |
12182 | for (unsigned short i = 0; i < 256; i++) |
12183 | { |
12184 | ieps[i].m_instr = i; ieps[i].m_is2byte = false; ieps[i].m_execs = s_ILInstrExecs[i]; |
12185 | #if INTERP_ILCYCLE_PROFILE |
12186 | if (i == CEE_BREAK) |
12187 | { |
12188 | ieps[i].m_cycles = 0; |
12189 | continue; // Don't count these if they occur... |
12190 | } |
12191 | ieps[i].m_cycles = s_ILInstrCycles[i]; |
12192 | assert((ieps[i].m_execs != 0) || (ieps[i].m_cycles == 0)); // Cycles can be zero for non-zero execs because of measurement correction. |
12193 | #endif // INTERP_ILCYCLE_PROFILE |
12194 | } |
12195 | for (unsigned short i = 0; i < CountIlInstr2Byte; i++) |
12196 | { |
12197 | int ind = 256 + i; |
12198 | ieps[ind].m_instr = i; ieps[ind].m_is2byte = true; ieps[ind].m_execs = s_ILInstr2ByteExecs[i]; |
12199 | #if INTERP_ILCYCLE_PROFILE |
12200 | ieps[ind].m_cycles = s_ILInstrCycles[ind]; |
12201 | assert((ieps[i].m_execs != 0) || (ieps[i].m_cycles == 0)); // Cycles can be zero for non-zero execs because of measurement correction. |
12202 | #endif // INTERP_ILCYCLE_PROFILE |
12203 | } |
12204 | |
12205 | qsort(&ieps[0], 256 + CountIlInstr2Byte, sizeof(InstrExecRecord), &InstrExecRecord::Compare); |
12206 | |
12207 | fprintf(GetLogFile(), "\nInstructions (%d total, %d 1-byte):\n" , totInstrs, totInstrs - totInstrs2Byte); |
12208 | #if INTERP_ILCYCLE_PROFILE |
12209 | if (s_callCycles > s_calls * perMeasurementOverhead) s_callCycles -= s_calls * perMeasurementOverhead; |
12210 | else s_callCycles = 0; |
12211 | fprintf(GetLogFile(), " MCycles (%lld total, %lld 1-byte, %lld calls (%d calls, %10.2f cyc/call):\n" , |
12212 | totCycles/MIL, (totCycles - totCycles2Byte)/MIL, s_callCycles/MIL, s_calls, float(s_callCycles)/float(s_calls)); |
12213 | #if 0 |
12214 | extern unsigned __int64 MetaSigCtor1Cycles; |
12215 | fprintf(GetLogFile(), " MetaSig(MethodDesc, TypeHandle) ctor: %lld MCycles.\n" , |
12216 | MetaSigCtor1Cycles/MIL); |
12217 | fprintf(GetLogFile(), " ForceSigWalk: %lld MCycles.\n" , |
12218 | ForceSigWalkCycles/MIL); |
12219 | #endif |
12220 | #endif // INTERP_ILCYCLE_PROFILE |
12221 | |
12222 | PrintILProfile(&ieps[0], totInstrs |
12223 | #if INTERP_ILCYCLE_PROFILE |
12224 | , totCycles |
12225 | #endif // INTERP_ILCYCLE_PROFILE |
12226 | ); |
12227 | |
12228 | fprintf(GetLogFile(), "\nInstructions grouped by category: (%d total, %d 1-byte):\n" , totInstrs, totInstrs - totInstrs2Byte); |
12229 | #if INTERP_ILCYCLE_PROFILE |
12230 | fprintf(GetLogFile(), " MCycles (%lld total, %lld 1-byte):\n" , |
12231 | totCycles/MIL, (totCycles - totCycles2Byte)/MIL); |
12232 | #endif // INTERP_ILCYCLE_PROFILE |
12233 | for (unsigned short i = 0; i < 256 + CountIlInstr2Byte; i++) |
12234 | { |
12235 | if (i < 256) |
12236 | { |
12237 | ieps[i].m_instr = i; ieps[i].m_is2byte = false; |
12238 | } |
12239 | else |
12240 | { |
12241 | ieps[i].m_instr = i - 256; ieps[i].m_is2byte = true; |
12242 | } |
12243 | ieps[i].m_execs = s_ILInstrExecsByCategory[i]; |
12244 | #if INTERP_ILCYCLE_PROFILE |
12245 | ieps[i].m_cycles = s_ILInstrCyclesByCategory[i]; |
12246 | #endif // INTERP_ILCYCLE_PROFILE |
12247 | } |
12248 | qsort(&ieps[0], 256 + CountIlInstr2Byte, sizeof(InstrExecRecord), &InstrExecRecord::Compare); |
12249 | PrintILProfile(&ieps[0], totInstrs |
12250 | #if INTERP_ILCYCLE_PROFILE |
12251 | , totCycles |
12252 | #endif // INTERP_ILCYCLE_PROFILE |
12253 | ); |
12254 | |
12255 | #if 0 |
12256 | // Early debugging code. |
12257 | fprintf(GetLogFile(), "\nInstructions grouped category mapping:\n" , totInstrs, totInstrs - totInstrs2Byte); |
12258 | for (unsigned short i = 0; i < 256; i++) |
12259 | { |
12260 | unsigned short cat = s_ILInstrCategories[i]; |
12261 | if (cat < 256) { |
12262 | fprintf(GetLogFile(), "Instr: %12s ==> %12s.\n" , ILOp1Byte(i), ILOp1Byte(cat)); |
12263 | } else { |
12264 | fprintf(GetLogFile(), "Instr: %12s ==> %12s.\n" , ILOp1Byte(i), ILOp2Byte(cat - 256)); |
12265 | } |
12266 | } |
12267 | for (unsigned short i = 0; i < CountIlInstr2Byte; i++) |
12268 | { |
12269 | unsigned ind = 256 + i; |
12270 | unsigned short cat = s_ILInstrCategories[ind]; |
12271 | if (cat < 256) { |
12272 | fprintf(GetLogFile(), "Instr: %12s ==> %12s.\n" , ILOp2Byte(i), ILOp1Byte(cat)); |
12273 | } else { |
12274 | fprintf(GetLogFile(), "Instr: %12s ==> %12s.\n" , ILOp2Byte(i), ILOp2Byte(cat - 256)); |
12275 | } |
12276 | } |
12277 | #endif |
12278 | #endif // INTERP_ILINSTR_PROFILE |
12279 | } |
12280 | |
12281 | #if INTERP_ILINSTR_PROFILE |
12282 | |
12283 | const int K = 1000; |
12284 | |
12285 | // static |
12286 | void Interpreter::PrintILProfile(Interpreter::InstrExecRecord *recs, unsigned int totInstrs |
12287 | #if INTERP_ILCYCLE_PROFILE |
12288 | , unsigned __int64 totCycles |
12289 | #endif // INTERP_ILCYCLE_PROFILE |
12290 | ) |
12291 | { |
12292 | float fTotInstrs = float(totInstrs); |
12293 | fprintf(GetLogFile(), "Instruction | execs | %% | cum %%" ); |
12294 | #if INTERP_ILCYCLE_PROFILE |
12295 | float fTotCycles = float(totCycles); |
12296 | fprintf(GetLogFile(), "| KCycles | %% | cum %% | cyc/inst\n" ); |
12297 | fprintf(GetLogFile(), "--------------------------------------------------" |
12298 | "-----------------------------------------\n" ); |
12299 | #else |
12300 | fprintf(GetLogFile(), "\n-------------------------------------------\n" ); |
12301 | #endif |
12302 | float numPct = 0.0f; |
12303 | #if INTERP_ILCYCLE_PROFILE |
12304 | float numCyclePct = 0.0f; |
12305 | #endif // INTERP_ILCYCLE_PROFILE |
12306 | for (unsigned i = 0; i < 256 + CountIlInstr2Byte; i++) |
12307 | { |
12308 | float pct = 0.0f; |
12309 | if (totInstrs > 0) pct = float(recs[i].m_execs) * 100.0f / fTotInstrs; |
12310 | numPct += pct; |
12311 | if (recs[i].m_execs > 0) |
12312 | { |
12313 | fprintf(GetLogFile(), "%12s | %9d | %6.2f%% | %6.2f%%" , |
12314 | (recs[i].m_is2byte ? ILOp2Byte(recs[i].m_instr) : ILOp1Byte(recs[i].m_instr)), recs[i].m_execs, |
12315 | pct, numPct); |
12316 | #if INTERP_ILCYCLE_PROFILE |
12317 | pct = 0.0f; |
12318 | if (totCycles > 0) pct = float(recs[i].m_cycles) * 100.0f / fTotCycles; |
12319 | numCyclePct += pct; |
12320 | float cyclesPerInst = float(recs[i].m_cycles) / float(recs[i].m_execs); |
12321 | fprintf(GetLogFile(), "| %12llu | %6.2f%% | %6.2f%% | %11.2f" , |
12322 | recs[i].m_cycles/K, pct, numCyclePct, cyclesPerInst); |
12323 | #endif // INTERP_ILCYCLE_PROFILE |
12324 | fprintf(GetLogFile(), "\n" ); |
12325 | } |
12326 | } |
12327 | } |
12328 | #endif // INTERP_ILINSTR_PROFILE |
12329 | |
12330 | #endif // FEATURE_INTERPRETER |
12331 | |