1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | // |
5 | // ProfDetach.cpp |
6 | // |
7 | |
8 | // |
9 | // Implementation of helper classes and structures used for Profiling API Detaching |
10 | // |
11 | // ====================================================================================== |
12 | |
13 | #include "common.h" |
14 | |
15 | #ifdef FEATURE_PROFAPI_ATTACH_DETACH |
16 | |
17 | #include "profdetach.h" |
18 | #include "profilinghelper.h" |
19 | #include "profilinghelper.inl" |
20 | #include "eetoprofinterfaceimpl.inl" |
21 | |
22 | // Class static member variables |
23 | ProfilerDetachInfo ProfilingAPIDetach::s_profilerDetachInfo; |
24 | CLREvent ProfilingAPIDetach::s_eventDetachWorkAvailable; |
25 | |
26 | |
27 | // --------------------------------------------------------------------------------------- |
28 | // ProfilerDetachInfo constructor |
29 | // |
30 | // Description: |
31 | // Set every member variable to NULL or 0. They'll get initialized to real values |
32 | // in ProfilingAPIDetach::RequestProfilerDetach. |
33 | // |
34 | |
35 | ProfilerDetachInfo::ProfilerDetachInfo() |
36 | { |
37 | // Executed during construction of a global object, therefore we cannot |
38 | // use real contracts, as this requires that utilcode has been initialized. |
39 | STATIC_CONTRACT_NOTHROW; |
40 | STATIC_CONTRACT_MODE_ANY; |
41 | STATIC_CONTRACT_GC_NOTRIGGER; |
42 | STATIC_CONTRACT_CANNOT_TAKE_LOCK; |
43 | |
44 | Init(); |
45 | } |
46 | |
47 | void ProfilerDetachInfo::Init() |
48 | { |
49 | // Executed during construction of a global object, therefore we cannot |
50 | // use real contracts, as this requires that utilcode has been initialized. |
51 | STATIC_CONTRACT_LEAF; |
52 | |
53 | m_pEEToProf = NULL; |
54 | m_ui64DetachStartTime = 0; |
55 | m_dwExpectedCompletionMilliseconds = 0; |
56 | } |
57 | |
58 | |
59 | // ---------------------------------------------------------------------------- |
60 | // Implementation of ProfilingAPIAttachDetach statics |
61 | |
62 | |
63 | // ---------------------------------------------------------------------------- |
64 | // ProfilingAPIDetach::Initialize |
65 | // |
66 | // Description: |
67 | // Initialize static event |
68 | |
69 | // static |
70 | HRESULT ProfilingAPIDetach::Initialize() |
71 | { |
72 | CONTRACTL |
73 | { |
74 | NOTHROW; |
75 | MODE_ANY; |
76 | GC_TRIGGERS; |
77 | } |
78 | CONTRACTL_END; |
79 | |
80 | if (!s_eventDetachWorkAvailable.IsValid()) |
81 | { |
82 | HRESULT hr = S_OK; |
83 | |
84 | EX_TRY |
85 | { |
86 | s_eventDetachWorkAvailable.CreateAutoEvent(FALSE); |
87 | } |
88 | EX_CATCH |
89 | { |
90 | hr = GET_EXCEPTION()->GetHR(); |
91 | if (SUCCEEDED(hr)) |
92 | { |
93 | // For exceptions that give us useless hr's, just use E_FAIL |
94 | hr = E_FAIL; |
95 | } |
96 | } |
97 | EX_END_CATCH(RethrowTerminalExceptions) |
98 | |
99 | if (FAILED(hr)) |
100 | { |
101 | return hr; |
102 | } |
103 | } |
104 | |
105 | return S_OK; |
106 | } |
107 | |
108 | |
109 | |
110 | // ---------------------------------------------------------------------------- |
111 | // ProfilingAPIDetach::RequestProfilerDetach |
112 | // |
113 | // Description: |
114 | // Initialize ProfilerDetachInfo structures with parameters passed from |
115 | // ICorProfilerInfo3::RequestProfilerDetach |
116 | // |
117 | // Arguments: |
118 | // * dwExpectedCompletionMilliseconds - A hint to the CLR as to how long it should |
119 | // wait before checking to see if execution has evacuated the profiler and all |
120 | // profiler-instrumented code. If this is 0, the CLR will select a default. |
121 | // |
122 | // Notes: |
123 | // |
124 | // Invariants maintained by profiler: |
125 | // * Before calling RequestProfilerDetach, the profiler must turn off all hijacking. |
126 | // * If RequestProfilerDetach is called from a thread created by the CLR (i.e., from |
127 | // within a callback), the profiler must first have exited all threads of its own |
128 | // creation |
129 | // * If RequestProfilerDetach is called from a thread of the profiler's own creation, |
130 | // then |
131 | // * The profiler must first have exited all OTHER threads of its own creation, |
132 | // AND |
133 | // * The profiler must immediately call FreeLibraryAndExitThread() after |
134 | // RequestProfilerDetach returns. |
135 | // |
136 | // The above invariants result in the following possiblities: |
137 | // * RequestProfilerDetach() may be called multi-threaded, but only from within |
138 | // profiler callbacks. As such, evacuation counters will have been incremented |
139 | // before entry into RequestProfilerDetach(), so the DetachThread will be |
140 | // blocked until all such threads have returned from RequestProfilerDetach and |
141 | // the callback from which RequestProfilerDetach was called. OR |
142 | // * RequestProfilerDetach() is called single-threaded, from a thread of the |
143 | // profiler's creation, which promises not to make any more calls into the CLR |
144 | // afterward. In this case, the DetachThread will be blocked until |
145 | // RequestProfilerDetach signals s_eventDetachWorkAvailable at the end. |
146 | // |
147 | |
148 | // static |
149 | HRESULT ProfilingAPIDetach::RequestProfilerDetach(DWORD dwExpectedCompletionMilliseconds) |
150 | { |
151 | CONTRACTL |
152 | { |
153 | NOTHROW; |
154 | // Crst is used so GC may be triggered |
155 | GC_TRIGGERS; |
156 | MODE_ANY; |
157 | EE_THREAD_NOT_REQUIRED; |
158 | // Crst is used to synchronize the initialization of ProfilingAPIDetach internal structure |
159 | CAN_TAKE_LOCK; |
160 | PRECONDITION(ProfilingAPIUtility::GetStatusCrst() != NULL); |
161 | PRECONDITION(s_eventDetachWorkAvailable.IsValid()); |
162 | } |
163 | CONTRACTL_END; |
164 | |
165 | // Runtime must be fully started, or else CpuStoreBufferControl used below may not |
166 | // be initialized yet. |
167 | if (!g_fEEStarted) |
168 | { |
169 | return CORPROF_E_RUNTIME_UNINITIALIZED; |
170 | } |
171 | |
172 | if (dwExpectedCompletionMilliseconds == 0) |
173 | { |
174 | // Pick suitable default if the profiler just leaves this at 0. 5 seconds is |
175 | // reasonable. |
176 | dwExpectedCompletionMilliseconds = 5000; |
177 | } |
178 | |
179 | { |
180 | CRITSEC_Holder csh(ProfilingAPIUtility::GetStatusCrst()); |
181 | |
182 | // return immediately if detach is in progress |
183 | |
184 | if (s_profilerDetachInfo.m_pEEToProf != NULL) |
185 | { |
186 | return CORPROF_E_PROFILER_DETACHING; |
187 | } |
188 | |
189 | ProfilerStatus curProfStatus = g_profControlBlock.curProfStatus.Get(); |
190 | |
191 | if ((curProfStatus == kProfStatusInitializingForStartupLoad) || |
192 | (curProfStatus == kProfStatusInitializingForAttachLoad)) |
193 | { |
194 | return CORPROF_E_PROFILER_NOT_YET_INITIALIZED; |
195 | } |
196 | |
197 | if (curProfStatus != kProfStatusActive) |
198 | { |
199 | // Before we acquired the lock, someone else must have unloaded the profiler |
200 | // for us (e.g., shutdown or the DetachThread in response to a prior |
201 | // RequestProfilerDetach call). |
202 | return CORPROF_E_PROFILER_DETACHING; |
203 | } |
204 | |
205 | EEToProfInterfaceImpl * pEEToProf = g_profControlBlock.pProfInterface; |
206 | |
207 | // Since prof status was active after entering the lock, the profiler must not |
208 | // have unloaded out from under us. |
209 | _ASSERTE(pEEToProf != NULL); |
210 | |
211 | if (!pEEToProf->IsCallback3Supported()) |
212 | { |
213 | return CORPROF_E_CALLBACK3_REQUIRED; |
214 | } |
215 | |
216 | // Did the profiler do anything immutable? That will prevent us from allowing it to |
217 | // detach. |
218 | HRESULT hr = pEEToProf->EnsureProfilerDetachable(); |
219 | if (FAILED(hr)) |
220 | { |
221 | return hr; |
222 | } |
223 | s_profilerDetachInfo.m_pEEToProf = pEEToProf; |
224 | s_profilerDetachInfo.m_ui64DetachStartTime = CLRGetTickCount64(); |
225 | s_profilerDetachInfo.m_dwExpectedCompletionMilliseconds = dwExpectedCompletionMilliseconds; |
226 | |
227 | // Ok, time to seal the profiler from receiving or making calls with the CLR. |
228 | // (This will force a FlushStoreBuffers().) |
229 | g_profControlBlock.curProfStatus.Set(kProfStatusDetaching); |
230 | } |
231 | |
232 | // Sealing done. Wake up the DetachThread so it can loop until the profiler code is |
233 | // fully evacuated off of all stacks. |
234 | if (!s_eventDetachWorkAvailable.Set()) |
235 | { |
236 | return HRESULT_FROM_WIN32(GetLastError()); |
237 | } |
238 | |
239 | // FUTURE: Currently, kProfStatusDetaching prevents callbacks from being sent to the |
240 | // profiler AND prevents another profiler from attaching. In the future, when |
241 | // implementing the reattach-with-neutered-profilers feature crew, we may want to add |
242 | // another block here to call ProfilingAPIUtility::SetProfStatus(kProfStatusNone), so callbacks are |
243 | // prevented but a new profiler may attempt to attach. |
244 | |
245 | EX_TRY |
246 | { |
247 | ProfilingAPIUtility::LogProfInfo(IDS_PROF_DETACH_INITIATED); |
248 | } |
249 | EX_CATCH |
250 | { |
251 | // Oh well, rest of detach succeeded, so we should still return success to the |
252 | // profiler. |
253 | } |
254 | EX_END_CATCH(RethrowTerminalExceptions); |
255 | |
256 | return S_OK; |
257 | } |
258 | |
259 | //--------------------------------------------------------------------------------------- |
260 | // |
261 | // This is where the DetachThread spends its life. This waits until there's a profiler |
262 | // to detach, then loops until the profiler code is completely evacuated off all stacks. |
263 | // This will then unload the profiler. |
264 | // |
265 | |
266 | // static |
267 | void ProfilingAPIDetach::ExecuteEvacuationLoop() |
268 | { |
269 | CONTRACTL |
270 | { |
271 | THROWS; |
272 | GC_TRIGGERS; |
273 | MODE_PREEMPTIVE; |
274 | CAN_TAKE_LOCK; |
275 | } |
276 | CONTRACTL_END; |
277 | |
278 | // Wait until there's a profiler to detach (or until this thread should "wake up" |
279 | // for some other reason, such as exiting due to an unsuccessful startup-load of a |
280 | // profiler). |
281 | DWORD dwRet = s_eventDetachWorkAvailable.Wait(INFINITE, FALSE /* alertable */); |
282 | if (dwRet != WAIT_OBJECT_0) |
283 | { |
284 | // The wait ended due to a failure or a reason other than the event getting |
285 | // signaled (e.g., WAIT_ABANDONED) |
286 | DWORD dwErr; |
287 | if (dwRet == WAIT_FAILED) |
288 | { |
289 | dwErr = GetLastError(); |
290 | LOG(( |
291 | LF_CORPROF, |
292 | LL_ERROR, |
293 | "**PROF: DetachThread wait for s_eventDetachWorkAvailable failed with GetLastError = %d.\n" , |
294 | dwErr)); |
295 | } |
296 | else |
297 | { |
298 | dwErr = dwRet; // No extra error info available beyond the return code |
299 | LOG(( |
300 | LF_CORPROF, |
301 | LL_ERROR, |
302 | "**PROF: DetachThread wait for s_eventDetachWorkAvailable terminated with %d.\n" , |
303 | dwErr)); |
304 | } |
305 | |
306 | ProfilingAPIUtility::LogProfError(IDS_PROF_DETACH_THREAD_ERROR, dwErr); |
307 | return; |
308 | } |
309 | |
310 | // Peek to make sure there's actually a profiler to detach |
311 | { |
312 | CRITSEC_Holder csh(ProfilingAPIUtility::GetStatusCrst()); |
313 | |
314 | if (s_profilerDetachInfo.m_pEEToProf == NULL) |
315 | { |
316 | // Nothing to detach. This can happen if the DetachThread (i.e., current |
317 | // thread) was created but then the profiler failed to load. |
318 | return; |
319 | } |
320 | } |
321 | |
322 | do |
323 | { |
324 | // Give profiler a chance to return from its procs |
325 | SleepWhileProfilerEvacuates(); |
326 | } |
327 | while (!IsProfilerEvacuated()); |
328 | |
329 | UnloadProfiler(); |
330 | } |
331 | |
332 | //--------------------------------------------------------------------------------------- |
333 | // |
334 | // This is called in between evacuation counter checks. This calculates how long to |
335 | // sleep, and then sleeps. |
336 | // |
337 | |
338 | // static |
339 | void ProfilingAPIDetach::SleepWhileProfilerEvacuates() |
340 | { |
341 | CONTRACTL |
342 | { |
343 | THROWS; |
344 | GC_TRIGGERS; |
345 | MODE_PREEMPTIVE; |
346 | CAN_TAKE_LOCK; |
347 | } |
348 | CONTRACTL_END; |
349 | |
350 | // Don't want to check evacuation any more frequently than every 300ms |
351 | const DWORD kdwDefaultMinSleepMs = 300; |
352 | |
353 | // The default "steady state" max sleep is how long we'll wait if, after a couple |
354 | // tries the profiler still hasn't evacuated. Default to every 10 minutes |
355 | const DWORD kdwDefaultMaxSleepMs = 600000; |
356 | |
357 | static DWORD s_dwMinSleepMs = 0; |
358 | static DWORD s_dwMaxSleepMs = 0; |
359 | |
360 | // First time through, initialize the static min / max sleep times. Normally, we'll |
361 | // just use the constants above, but the user may customize these (within reason). |
362 | |
363 | // They should either both be uninitialized or both initialized |
364 | _ASSERTE( |
365 | ((s_dwMinSleepMs == 0) && (s_dwMaxSleepMs == 0)) || |
366 | ((s_dwMinSleepMs != 0) && (s_dwMaxSleepMs != 0))); |
367 | |
368 | if (s_dwMaxSleepMs == 0) |
369 | { |
370 | // No race here, since only the DetachThread runs this code |
371 | |
372 | s_dwMinSleepMs = CLRConfig::GetConfigValue(CLRConfig::EXTERNAL_ProfAPI_DetachMinSleepMs); |
373 | s_dwMaxSleepMs = CLRConfig::GetConfigValue(CLRConfig::EXTERNAL_ProfAPI_DetachMaxSleepMs); |
374 | |
375 | // Here's the "within reason" part: the user may not customize these values to |
376 | // be more "extreme" than the constants, or to be 0 (which would confuse the |
377 | // issue of whether these statics were intialized yet). |
378 | if ((s_dwMinSleepMs < kdwDefaultMinSleepMs) || (s_dwMinSleepMs > kdwDefaultMaxSleepMs)) |
379 | { |
380 | // Sleeping less than 300ms between evac checks could negatively affect the |
381 | // app by having the DetachThread execute too often. And a min sleep time |
382 | // that's too high could result in a profiler hanging around way too long |
383 | // when it's actually ready to be unloaded. |
384 | s_dwMinSleepMs = kdwDefaultMinSleepMs; |
385 | } |
386 | if ((s_dwMaxSleepMs < kdwDefaultMinSleepMs) || (s_dwMaxSleepMs > kdwDefaultMaxSleepMs)) |
387 | { |
388 | // A steady state that's too small would retry the evac checks too often on |
389 | // an ongoing basis. A steady state that's too high could result in a |
390 | // profiler hanging around way too long when it's actually ready to be |
391 | // unloaded. |
392 | s_dwMaxSleepMs = kdwDefaultMaxSleepMs; |
393 | } |
394 | } |
395 | |
396 | // Take note of when the detach was requested and how long to sleep for |
397 | ULONGLONG ui64ExpectedCompletionMilliseconds; |
398 | ULONGLONG ui64DetachStartTime; |
399 | { |
400 | CRITSEC_Holder csh(ProfilingAPIUtility::GetStatusCrst()); |
401 | |
402 | _ASSERTE(s_profilerDetachInfo.m_pEEToProf != NULL); |
403 | ui64ExpectedCompletionMilliseconds = s_profilerDetachInfo.m_dwExpectedCompletionMilliseconds; |
404 | ui64DetachStartTime = s_profilerDetachInfo.m_ui64DetachStartTime; |
405 | } |
406 | |
407 | // ui64SleepMilliseconds is calculated to ensure that CLR checks evacuation status roughly: |
408 | // * After profiler's ui64ExpectedCompletionMilliseconds hint has elapsed (but not |
409 | // too soon) |
410 | // * At least once more after 2*ui64ExpectedCompletionMilliseconds have elapsed |
411 | // (but not too soon) |
412 | // * Occasionally thereafter (steady state) |
413 | |
414 | ULONGLONG ui64ElapsedMilliseconds = CLRGetTickCount64() - ui64DetachStartTime; |
415 | ULONGLONG ui64SleepMilliseconds; |
416 | if (ui64ExpectedCompletionMilliseconds > ui64ElapsedMilliseconds) |
417 | { |
418 | // Haven't hit ui64ExpectedCompletionMilliseconds yet, so sleep for remainder |
419 | ui64SleepMilliseconds = ui64ExpectedCompletionMilliseconds - ui64ElapsedMilliseconds; |
420 | } |
421 | else if ((2*ui64ExpectedCompletionMilliseconds) > ui64ElapsedMilliseconds) |
422 | { |
423 | // We're between ui64ExpectedCompletionMilliseconds & |
424 | // 2*ui64ExpectedCompletionMilliseconds, so sleep until |
425 | // 2*ui64ExpectedCompletionMilliseconds have transpired |
426 | ui64SleepMilliseconds = (2*ui64ExpectedCompletionMilliseconds) - ui64ElapsedMilliseconds; |
427 | } |
428 | else |
429 | { |
430 | // Steady state |
431 | ui64SleepMilliseconds = s_dwMaxSleepMs; |
432 | } |
433 | |
434 | // ...but keep it in bounds! |
435 | ui64SleepMilliseconds = min( |
436 | max(ui64SleepMilliseconds, s_dwMinSleepMs), |
437 | s_dwMaxSleepMs); |
438 | |
439 | // At this point it's safe to cast ui64SleepMilliseconds down to a DWORD since we |
440 | // know it's between s_dwMinSleepMs & s_dwMaxSleepMs |
441 | _ASSERTE(ui64SleepMilliseconds <= 0xFFFFffff); |
442 | ClrSleepEx((DWORD) ui64SleepMilliseconds, FALSE /* alertable */); |
443 | } |
444 | |
445 | //--------------------------------------------------------------------------------------- |
446 | // |
447 | // Performs the evacuation checks by grabbing the thread store lock, iterating through |
448 | // all EE Threads, and querying each one's evacuation counter. If they're all 0, the |
449 | // profiler is ready to be unloaded. |
450 | // |
451 | // Return Value: |
452 | // Nonzero iff the profiler is fully evacuated and ready to be unloaded. |
453 | // |
454 | |
455 | // static |
456 | BOOL ProfilingAPIDetach::IsProfilerEvacuated() |
457 | { |
458 | CONTRACTL |
459 | { |
460 | NOTHROW; |
461 | GC_TRIGGERS; |
462 | MODE_ANY; |
463 | CAN_TAKE_LOCK; |
464 | } |
465 | CONTRACTL_END; |
466 | |
467 | _ASSERTE(g_profControlBlock.curProfStatus.Get() == kProfStatusDetaching); |
468 | |
469 | // Check evacuation counters on all the threads (see |
470 | // code:ProfilingAPIUtility::InitializeProfiling#LoadUnloadCallbackSynchronization |
471 | // for details). Doing this under the thread store lock not only ensures we can |
472 | // iterate through the Thread objects safely, but also forces us to serialize with |
473 | // the GC. The latter is important, as server GC enters the profiler on non-EE |
474 | // Threads, and so no evacuation counters might be incremented during server GC even |
475 | // though control could be entering the profiler. |
476 | { |
477 | ThreadStoreLockHolder TSLockHolder; |
478 | |
479 | Thread * pThread = ThreadStore::GetAllThreadList( |
480 | NULL, // cursor thread; always NULL to begin with |
481 | 0, // mask to AND with Thread::m_State to filter returned threads |
482 | 0); // bits to match the result of the above AND. (m_State & 0 == 0, |
483 | // so we won't filter out any threads) |
484 | |
485 | // Note that, by not filtering out any of the threads, we're intentionally including |
486 | // stuff like TS_Dead or TS_Unstarted. But that keeps us on the safe |
487 | // side. If an EE Thread object exists, we want to check its counters to be |
488 | // absolutely certain it isn't executing in a profiler. |
489 | |
490 | while (pThread != NULL) |
491 | { |
492 | // Note that pThread is still in motion as we check its evacuation counter. |
493 | // This is ok, because we've already changed the profiler status to |
494 | // kProfStatusDetaching and flushed CPU buffers. So at this point the counter |
495 | // will typically only go down to 0 (and not increment anymore), with one |
496 | // small exception (below). So if we get a read of 0 below, the counter will |
497 | // typically stay there. Specifically: |
498 | // * pThread is most likely not about to increment its evacuation counter |
499 | // from 0 to 1 because pThread sees that the status is |
500 | // kProfStatusDetaching. |
501 | // * Note that there is a small race where pThread might actually |
502 | // increment its evac counter from 0 to 1 (if it dirty-read the |
503 | // profiler status a tad too early), but that implies that when |
504 | // pThread rechecks the profiler status (clean read) then pThread |
505 | // will immediately decrement the evac counter back to 0 and avoid |
506 | // calling into the EEToProfInterfaceImpl pointer. |
507 | // |
508 | // (see |
509 | // code:ProfilingAPIUtility::InitializeProfiling#LoadUnloadCallbackSynchronization |
510 | // for details) |
511 | DWORD dwEvacCounter = pThread->GetProfilerEvacuationCounter(); |
512 | if (dwEvacCounter != 0) |
513 | { |
514 | LOG(( |
515 | LF_CORPROF, |
516 | LL_INFO100, |
517 | "**PROF: Profiler not yet evacuated because OS Thread ID 0x%x has evac counter of %d (decimal).\n" , |
518 | pThread->GetOSThreadId(), |
519 | dwEvacCounter)); |
520 | return FALSE; |
521 | } |
522 | |
523 | pThread = ThreadStore::GetAllThreadList(pThread, 0, 0); |
524 | } |
525 | } |
526 | |
527 | // FUTURE: When rejit feature crew complete, add code to verify all rejitted |
528 | // functions are fully reverted and off of all stacks. If this is very easy to |
529 | // verify (e.g., checking a single value), consider putting it above the loop |
530 | // above so we can early-out quicker if rejitted code is still around. |
531 | |
532 | // We got this far without returning, so the profiler is fully evacuated |
533 | return TRUE; |
534 | } |
535 | |
536 | // --------------------------------------------------------------------------------------- |
537 | // After we've verified a detaching profiler has fully evacuated, call this to unload the |
538 | // profiler and clean up state. |
539 | // |
540 | // Assumptions: |
541 | // Since this is called well after the profiler called RequestProfilerDetach, the |
542 | // profiler must not have any other threads in use. Also, now that the profiler has |
543 | // been evacuated, no CLR threads will be calling into the profiler (thus the |
544 | // profiler will not gain control via CLR threads either). That means the profiler |
545 | // may not call back into the CLR on any other threads. |
546 | // |
547 | |
548 | // static |
549 | void ProfilingAPIDetach::UnloadProfiler() |
550 | { |
551 | CONTRACTL |
552 | { |
553 | THROWS; |
554 | GC_TRIGGERS; |
555 | MODE_ANY; |
556 | CAN_TAKE_LOCK; |
557 | } |
558 | CONTRACTL_END; |
559 | |
560 | _ASSERTE(g_profControlBlock.curProfStatus.Get() == kProfStatusDetaching); |
561 | |
562 | { |
563 | CRITSEC_Holder csh(ProfilingAPIUtility::GetStatusCrst()); |
564 | |
565 | // Notify profiler it's about to be unloaded |
566 | _ASSERTE(s_profilerDetachInfo.m_pEEToProf != NULL); |
567 | s_profilerDetachInfo.m_pEEToProf->ProfilerDetachSucceeded(); |
568 | |
569 | // Reset detach state. |
570 | s_profilerDetachInfo.Init(); |
571 | |
572 | // This deletes the EEToProfInterfaceImpl object managing the detaching profiler, |
573 | // releases the profiler's callback interfaces, unloads the profiler DLL, sets |
574 | // the status to kProfStatusNone, and resets g_profControlBlock for use next time |
575 | // a profiler tries to attach. |
576 | // |
577 | // Note that s_profilerDetachInfo.Init() has already NULL'd out |
578 | // s_profilerDetachInfo.m_pEEToProf, so we won't have a dangling pointer to the |
579 | // EEToProfInterfaceImpl that's about to be destroyed. |
580 | ProfilingAPIUtility::TerminateProfiling(); |
581 | } |
582 | |
583 | ProfilingAPIUtility::LogProfInfo(IDS_PROF_DETACH_COMPLETE); |
584 | } |
585 | |
586 | // ---------------------------------------------------------------------------- |
587 | // ProfilingAPIDetach::ProfilingAPIDetachThreadStart |
588 | // |
589 | // Description: |
590 | // Thread proc for DetachThread. Serves as a simple try/catch wrapper around a call to |
591 | // ProfilingAPIDetach::ExecuteEvacuationLoop. This thread proc is specified by |
592 | // code:ProfilingAPIDetach::CreateDetachThread when it spins up the new DetachThread. |
593 | // This occurs when a profiler is either startup-loaded or attach-loaded. |
594 | // |
595 | // Arguments: |
596 | // * LPVOID thread proc param is ignored |
597 | // |
598 | // Return Value: |
599 | // Just returns 0 always. |
600 | // |
601 | |
602 | // static |
603 | DWORD WINAPI ProfilingAPIDetach::ProfilingAPIDetachThreadStart(LPVOID) |
604 | { |
605 | CONTRACTL |
606 | { |
607 | NOTHROW; |
608 | GC_TRIGGERS; |
609 | MODE_PREEMPTIVE; |
610 | CAN_TAKE_LOCK; |
611 | } |
612 | CONTRACTL_END; |
613 | |
614 | // At start of this thread, set its type so SOS !threads and anyone else knows who we |
615 | // are. |
616 | ClrFlsSetThreadType(ThreadType_ProfAPI_Detach); |
617 | |
618 | LOG(( |
619 | LF_CORPROF, |
620 | LL_INFO10, |
621 | "**PROF: DetachThread created and executing.\n" )); |
622 | |
623 | // This try block is a last-ditch stop-gap to prevent an unhandled exception on the |
624 | // DetachThread from bringing down the process. Note that if the unhandled |
625 | // exception is a terminal one, then hey, sure, let's tear everything down. Also |
626 | // note that any naughtiness in the profiler (e.g., throwing an exception from its |
627 | // Initialize callback) should already be handled before we pop back to here, so this |
628 | // is just being super paranoid. |
629 | EX_TRY |
630 | { |
631 | // Don't care about return value, thread proc will just return 0 regardless |
632 | ExecuteEvacuationLoop(); |
633 | } |
634 | EX_CATCH |
635 | { |
636 | _ASSERTE(!"Unhandled exception on profiling API detach thread" ); |
637 | } |
638 | EX_END_CATCH(RethrowTerminalExceptions); |
639 | |
640 | LOG(( |
641 | LF_CORPROF, |
642 | LL_INFO10, |
643 | "**PROF: DetachThread exiting.\n" )); |
644 | |
645 | return 0; |
646 | } |
647 | |
648 | // --------------------------------------------------------------------------------------- |
649 | // Called during startup or attach load of a profiler to create a new thread to fill the role of |
650 | // the DetachThread. |
651 | // |
652 | |
653 | // static |
654 | HRESULT ProfilingAPIDetach::CreateDetachThread() |
655 | { |
656 | // This function is practically a leaf (though not quite), so keeping the contract |
657 | // strict to allow for maximum flexibility on when this may called. |
658 | CONTRACTL |
659 | { |
660 | NOTHROW; |
661 | GC_NOTRIGGER; |
662 | MODE_ANY; |
663 | CANNOT_TAKE_LOCK; |
664 | } |
665 | CONTRACTL_END; |
666 | |
667 | // FUTURE: When reattach with neutered profilers is implemented, this |
668 | // function should check if a DetachThread already exists (use synchronization |
669 | // to prevent race), and just return if so. |
670 | |
671 | HandleHolder hDetachThread; |
672 | |
673 | // The DetachThread is intentionally not an EE Thread-object thread (it won't |
674 | // execute managed code). |
675 | hDetachThread = ::CreateThread( |
676 | NULL, // lpThreadAttributes; don't want child processes inheriting this handle |
677 | 0, // dwStackSize (0 = use default) |
678 | ProfilingAPIDetachThreadStart, |
679 | NULL, // lpParameter (none to pass) |
680 | 0, // dwCreationFlags (0 = use default flags, start thread immediately) |
681 | NULL // lpThreadId (don't need therad ID) |
682 | ); |
683 | if (hDetachThread == NULL) |
684 | { |
685 | DWORD dwErr = GetLastError(); |
686 | |
687 | LOG(( |
688 | LF_CORPROF, |
689 | LL_ERROR, |
690 | "**PROF: Failed to create DetachThread. GetLastError=%d.\n" , |
691 | dwErr)); |
692 | |
693 | return HRESULT_FROM_WIN32(dwErr); |
694 | } |
695 | |
696 | return S_OK; |
697 | } |
698 | |
699 | //--------------------------------------------------------------------------------------- |
700 | // |
701 | // Accessor for ProfilingAPIDetach::s_profilerDetachInfo.m_pEEToProf, which is the |
702 | // profiler being detached (or NULL if no profiler is being detached). |
703 | // |
704 | // Return Value: |
705 | // EEToProfInterfaceImpl * for the profiler being detached. |
706 | // |
707 | |
708 | // static |
709 | EEToProfInterfaceImpl * ProfilingAPIDetach::GetEEToProfPtr() |
710 | { |
711 | LIMITED_METHOD_CONTRACT; |
712 | return s_profilerDetachInfo.m_pEEToProf; |
713 | } |
714 | |
715 | #endif // FEATURE_PROFAPI_ATTACH_DETACH |
716 | |