1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | // STACKWALK.CPP |
5 | |
6 | |
7 | |
8 | #include "common.h" |
9 | #include "frames.h" |
10 | #include "threads.h" |
11 | #include "stackwalk.h" |
12 | #include "excep.h" |
13 | #include "eetwain.h" |
14 | #include "codeman.h" |
15 | #include "eeconfig.h" |
16 | #include "stackprobe.h" |
17 | #include "dbginterface.h" |
18 | #include "generics.h" |
19 | #ifdef FEATURE_INTERPRETER |
20 | #include "interpreter.h" |
21 | #endif // FEATURE_INTERPRETER |
22 | |
23 | #ifdef WIN64EXCEPTIONS |
24 | #define PROCESS_EXPLICIT_FRAME_BEFORE_MANAGED_FRAME |
25 | #endif |
26 | |
27 | CrawlFrame::CrawlFrame() |
28 | { |
29 | LIMITED_METHOD_DAC_CONTRACT; |
30 | pCurGSCookie = NULL; |
31 | pFirstGSCookie = NULL; |
32 | isCachedMethod = FALSE; |
33 | } |
34 | |
35 | Assembly* CrawlFrame::GetAssembly() |
36 | { |
37 | WRAPPER_NO_CONTRACT; |
38 | |
39 | Assembly *pAssembly = NULL; |
40 | Frame *pF = GetFrame(); |
41 | |
42 | if (pF != NULL) |
43 | pAssembly = pF->GetAssembly(); |
44 | |
45 | if (pAssembly == NULL && pFunc != NULL) |
46 | pAssembly = pFunc->GetModule()->GetAssembly(); |
47 | |
48 | return pAssembly; |
49 | } |
50 | |
51 | #ifndef DACCESS_COMPILE |
52 | OBJECTREF* CrawlFrame::GetAddrOfSecurityObject() |
53 | { |
54 | CONTRACTL { |
55 | NOTHROW; |
56 | GC_NOTRIGGER; |
57 | } CONTRACTL_END; |
58 | |
59 | if (isFrameless) |
60 | { |
61 | _ASSERTE(pFunc); |
62 | |
63 | #if defined(_TARGET_X86_) |
64 | if (isCachedMethod) |
65 | { |
66 | return pSecurityObject; |
67 | } |
68 | else |
69 | #endif // _TARGET_X86_ |
70 | { |
71 | return (static_cast <OBJECTREF*>(GetCodeManager()->GetAddrOfSecurityObject(this))); |
72 | } |
73 | } |
74 | else |
75 | { |
76 | #ifdef FEATURE_INTERPRETER |
77 | // Check for an InterpreterFrame. |
78 | Frame* pFrm = GetFrame(); |
79 | if (pFrm != NULL && pFrm->GetVTablePtr() == InterpreterFrame::GetMethodFrameVPtr()) |
80 | { |
81 | #ifdef DACCESS_COMPILE |
82 | // TBD: DACize the interpreter. |
83 | return NULL; |
84 | #else |
85 | return dac_cast<PTR_InterpreterFrame>(pFrm)->GetInterpreter()->GetAddressOfSecurityObject(); |
86 | #endif |
87 | } |
88 | // Otherwise... |
89 | #endif // FEATURE_INTERPRETER |
90 | |
91 | /*ISSUE: Are there any other functions holding a security desc? */ |
92 | if (pFunc && (pFunc->IsIL() || pFunc->IsNoMetadata())) |
93 | return dac_cast<PTR_FramedMethodFrame> |
94 | (pFrame)->GetAddrOfSecurityDesc(); |
95 | } |
96 | return NULL; |
97 | } |
98 | #endif |
99 | |
100 | BOOL CrawlFrame::IsInCalleesFrames(LPVOID stackPointer) |
101 | { |
102 | LIMITED_METHOD_CONTRACT; |
103 | #ifdef FEATURE_INTERPRETER |
104 | Frame* pFrm = GetFrame(); |
105 | if (pFrm != NULL && pFrm->GetVTablePtr() == InterpreterFrame::GetMethodFrameVPtr()) |
106 | { |
107 | #ifdef DACCESS_COMPILE |
108 | // TBD: DACize the interpreter. |
109 | return NULL; |
110 | #else |
111 | return dac_cast<PTR_InterpreterFrame>(pFrm)->GetInterpreter()->IsInCalleesFrames(stackPointer); |
112 | #endif |
113 | } |
114 | else if (pFunc != NULL) |
115 | { |
116 | return ::IsInCalleesFrames(GetRegisterSet(), stackPointer); |
117 | } |
118 | else |
119 | { |
120 | return FALSE; |
121 | } |
122 | #else |
123 | return ::IsInCalleesFrames(GetRegisterSet(), stackPointer); |
124 | #endif |
125 | } |
126 | |
127 | #ifdef FEATURE_INTERPRETER |
128 | MethodDesc* CrawlFrame::GetFunction() |
129 | { |
130 | LIMITED_METHOD_DAC_CONTRACT; |
131 | STATIC_CONTRACT_SO_TOLERANT; |
132 | if (pFunc != NULL) |
133 | { |
134 | return pFunc; |
135 | } |
136 | else |
137 | { |
138 | Frame* pFrm = GetFrame(); |
139 | if (pFrm != NULL && pFrm->GetVTablePtr() == InterpreterFrame::GetMethodFrameVPtr()) |
140 | { |
141 | #ifdef DACCESS_COMPILE |
142 | // TBD: DACize the interpreter. |
143 | return NULL; |
144 | #else |
145 | return dac_cast<PTR_InterpreterFrame>(pFrm)->GetInterpreter()->GetMethodDesc(); |
146 | #endif |
147 | } |
148 | else |
149 | { |
150 | return NULL; |
151 | } |
152 | } |
153 | } |
154 | #endif // FEATURE_INTERPRETER |
155 | |
156 | OBJECTREF CrawlFrame::GetThisPointer() |
157 | { |
158 | CONTRACTL { |
159 | NOTHROW; |
160 | GC_NOTRIGGER; |
161 | MODE_COOPERATIVE; |
162 | SUPPORTS_DAC; |
163 | } CONTRACTL_END; |
164 | |
165 | if (!pFunc || pFunc->IsStatic() || pFunc->GetMethodTable()->IsValueType()) |
166 | return NULL; |
167 | |
168 | // As discussed in the specification comment at the declaration, the precondition, unfortunately, |
169 | // differs by architecture. @TODO: fix this. |
170 | #if defined(_TARGET_X86_) |
171 | _ASSERTE_MSG((pFunc->IsSharedByGenericInstantiations() && pFunc->AcquiresInstMethodTableFromThis()) |
172 | || pFunc->IsSynchronized(), |
173 | "Precondition" ); |
174 | #else |
175 | _ASSERTE_MSG(pFunc->IsSharedByGenericInstantiations() && pFunc->AcquiresInstMethodTableFromThis(), "Precondition" ); |
176 | #endif |
177 | |
178 | if (isFrameless) |
179 | { |
180 | return GetCodeManager()->GetInstance(pRD, |
181 | &codeInfo); |
182 | } |
183 | else |
184 | { |
185 | _ASSERTE(pFrame); |
186 | _ASSERTE(pFunc); |
187 | /*ISSUE: we already know that we have (at least) a method */ |
188 | /* might need adjustment as soon as we solved the |
189 | jit-helper frame question |
190 | */ |
191 | //<TODO>@TODO: What about other calling conventions? |
192 | // _ASSERT(pFunc()->GetCallSig()->CALLING CONVENTION);</TODO> |
193 | |
194 | #ifdef _TARGET_AMD64_ |
195 | // @TODO: PORT: we need to find the this pointer without triggering a GC |
196 | // or find a way to make this method GC_TRIGGERS |
197 | return NULL; |
198 | #else |
199 | return (dac_cast<PTR_FramedMethodFrame>(pFrame))->GetThis(); |
200 | #endif // _TARGET_AMD64_ |
201 | } |
202 | } |
203 | |
204 | |
205 | //----------------------------------------------------------------------------- |
206 | // Get the "Ambient SP" from a CrawlFrame. |
207 | // This will be null if there is no Ambient SP (eg, in the prolog / epilog, |
208 | // or on certain platforms), |
209 | //----------------------------------------------------------------------------- |
210 | TADDR CrawlFrame::GetAmbientSPFromCrawlFrame() |
211 | { |
212 | SUPPORTS_DAC; |
213 | #if defined(_TARGET_X86_) |
214 | // we set nesting level to zero because it won't be used for esp-framed methods, |
215 | // and zero is at least valid for ebp based methods (where we won't use the ambient esp anyways) |
216 | DWORD nestingLevel = 0; |
217 | return GetCodeManager()->GetAmbientSP( |
218 | GetRegisterSet(), |
219 | GetCodeInfo(), |
220 | GetRelOffset(), |
221 | nestingLevel, |
222 | GetCodeManState() |
223 | ); |
224 | |
225 | #elif defined(_TARGET_ARM_) |
226 | return GetRegisterSet()->pCurrentContext->Sp; |
227 | #else |
228 | return NULL; |
229 | #endif |
230 | } |
231 | |
232 | |
233 | PTR_VOID CrawlFrame::GetParamTypeArg() |
234 | { |
235 | CONTRACTL { |
236 | NOTHROW; |
237 | GC_NOTRIGGER; |
238 | SUPPORTS_DAC; |
239 | } CONTRACTL_END; |
240 | |
241 | if (isFrameless) |
242 | { |
243 | return GetCodeManager()->GetParamTypeArg(pRD, |
244 | &codeInfo); |
245 | } |
246 | else |
247 | { |
248 | #ifdef FEATURE_INTERPRETER |
249 | if (pFrame != NULL && pFrame->GetVTablePtr() == InterpreterFrame::GetMethodFrameVPtr()) |
250 | { |
251 | #ifdef DACCESS_COMPILE |
252 | // TBD: DACize the interpreter. |
253 | return NULL; |
254 | #else |
255 | return dac_cast<PTR_InterpreterFrame>(pFrame)->GetInterpreter()->GetParamTypeArg(); |
256 | #endif |
257 | } |
258 | // Otherwise... |
259 | #endif // FEATURE_INTERPRETER |
260 | |
261 | if (!pFunc || !pFunc->RequiresInstArg()) |
262 | { |
263 | return NULL; |
264 | } |
265 | |
266 | #ifdef _WIN64 |
267 | if (!pFunc->IsSharedByGenericInstantiations() || |
268 | !(pFunc->RequiresInstMethodTableArg() || pFunc->RequiresInstMethodDescArg())) |
269 | { |
270 | // win64 can only return the param type arg if the method is shared code |
271 | // and actually has a param type arg |
272 | return NULL; |
273 | } |
274 | #endif // _WIN64 |
275 | |
276 | _ASSERTE(pFrame); |
277 | _ASSERTE(pFunc); |
278 | return (dac_cast<PTR_FramedMethodFrame>(pFrame))->GetParamTypeArg(); |
279 | } |
280 | } |
281 | |
282 | |
283 | |
284 | // [pClassInstantiation] : Always filled in, though may be set to NULL if no inst. |
285 | // [pMethodInst] : Always filled in, though may be set to NULL if no inst. |
286 | void CrawlFrame::GetExactGenericInstantiations(Instantiation *pClassInst, |
287 | Instantiation *pMethodInst) |
288 | { |
289 | |
290 | CONTRACTL { |
291 | NOTHROW; |
292 | GC_NOTRIGGER; |
293 | PRECONDITION(CheckPointer(pClassInst)); |
294 | PRECONDITION(CheckPointer(pMethodInst)); |
295 | } CONTRACTL_END; |
296 | |
297 | TypeHandle specificClass; |
298 | MethodDesc* specificMethod; |
299 | |
300 | BOOL ret = Generics::GetExactInstantiationsOfMethodAndItsClassFromCallInformation( |
301 | GetFunction(), |
302 | GetExactGenericArgsToken(), |
303 | &specificClass, |
304 | &specificMethod); |
305 | |
306 | if (!ret) |
307 | { |
308 | _ASSERTE(!"Cannot return exact class instantiation when we are requested to." ); |
309 | } |
310 | |
311 | *pClassInst = specificMethod->GetExactClassInstantiation(specificClass); |
312 | *pMethodInst = specificMethod->GetMethodInstantiation(); |
313 | } |
314 | |
315 | PTR_VOID CrawlFrame::GetExactGenericArgsToken() |
316 | { |
317 | |
318 | CONTRACTL { |
319 | NOTHROW; |
320 | GC_NOTRIGGER; |
321 | SUPPORTS_DAC; |
322 | } CONTRACTL_END; |
323 | |
324 | MethodDesc* pFunc = GetFunction(); |
325 | |
326 | if (!pFunc || !pFunc->IsSharedByGenericInstantiations()) |
327 | return NULL; |
328 | |
329 | if (pFunc->AcquiresInstMethodTableFromThis()) |
330 | { |
331 | OBJECTREF obj = GetThisPointer(); |
332 | if (obj == NULL) |
333 | return NULL; |
334 | return obj->GetMethodTable(); |
335 | } |
336 | else |
337 | { |
338 | _ASSERTE(pFunc->RequiresInstArg()); |
339 | return GetParamTypeArg(); |
340 | } |
341 | } |
342 | |
343 | /* Is this frame at a safe spot for GC? |
344 | */ |
345 | bool CrawlFrame::IsGcSafe() |
346 | { |
347 | CONTRACTL { |
348 | NOTHROW; |
349 | GC_NOTRIGGER; |
350 | SUPPORTS_DAC; |
351 | } CONTRACTL_END; |
352 | |
353 | return GetCodeManager()->IsGcSafe(&codeInfo, GetRelOffset()); |
354 | } |
355 | |
356 | #if defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
357 | bool CrawlFrame::HasTailCalls() |
358 | { |
359 | CONTRACTL { |
360 | NOTHROW; |
361 | GC_NOTRIGGER; |
362 | SUPPORTS_DAC; |
363 | } CONTRACTL_END; |
364 | |
365 | return GetCodeManager()->HasTailCalls(&codeInfo); |
366 | } |
367 | #endif // _TARGET_ARM_ || _TARGET_ARM64_ |
368 | |
369 | inline void CrawlFrame::GotoNextFrame() |
370 | { |
371 | CONTRACTL { |
372 | NOTHROW; |
373 | GC_NOTRIGGER; |
374 | SUPPORTS_DAC; |
375 | } CONTRACTL_END; |
376 | |
377 | // |
378 | // Update app domain if this frame caused a transition |
379 | // |
380 | |
381 | AppDomain *pRetDomain = pFrame->GetReturnDomain(); |
382 | if (pRetDomain != NULL) |
383 | pAppDomain = pRetDomain; |
384 | pFrame = pFrame->Next(); |
385 | |
386 | if (pFrame != FRAME_TOP) |
387 | { |
388 | SetCurGSCookie(Frame::SafeGetGSCookiePtr(pFrame)); |
389 | } |
390 | } |
391 | |
392 | //****************************************************************************** |
393 | |
394 | // For asynchronous stackwalks, the thread being walked may not be suspended. |
395 | // It could cause a buffer-overrun while the stack-walk is in progress. |
396 | // To detect this, we can only use data that is guarded by a GSCookie |
397 | // that has been recently checked. |
398 | // This function should be called after doing any time-consuming activity |
399 | // during stack-walking to reduce the window in which a buffer-overrun |
400 | // could cause an problems. |
401 | // |
402 | // To keep things simple, we do this checking even for synchronous stack-walks. |
403 | void CrawlFrame::CheckGSCookies() |
404 | { |
405 | WRAPPER_NO_CONTRACT; |
406 | SUPPORTS_DAC; |
407 | |
408 | #if !defined(DACCESS_COMPILE) |
409 | if (pFirstGSCookie == NULL) |
410 | return; |
411 | |
412 | if (*pFirstGSCookie != GetProcessGSCookie()) |
413 | DoJITFailFast(); |
414 | |
415 | if(*pCurGSCookie != GetProcessGSCookie()) |
416 | DoJITFailFast(); |
417 | #endif // !DACCESS_COMPILE |
418 | } |
419 | |
420 | void CrawlFrame::SetCurGSCookie(GSCookie * pGSCookie) |
421 | { |
422 | WRAPPER_NO_CONTRACT; |
423 | SUPPORTS_DAC; |
424 | |
425 | #if !defined(DACCESS_COMPILE) |
426 | if (pGSCookie == NULL) |
427 | DoJITFailFast(); |
428 | |
429 | pCurGSCookie = pGSCookie; |
430 | if (pFirstGSCookie == NULL) |
431 | pFirstGSCookie = pGSCookie; |
432 | |
433 | CheckGSCookies(); |
434 | #endif // !DACCESS_COMPILE |
435 | } |
436 | |
437 | #if defined(WIN64EXCEPTIONS) |
438 | bool CrawlFrame::IsFilterFunclet() |
439 | { |
440 | WRAPPER_NO_CONTRACT; |
441 | |
442 | if (!IsFrameless()) |
443 | { |
444 | return false; |
445 | } |
446 | |
447 | if (!isFilterFuncletCached) |
448 | { |
449 | isFilterFunclet = GetJitManager()->IsFilterFunclet(&codeInfo) != 0; |
450 | isFilterFuncletCached = true; |
451 | } |
452 | |
453 | return isFilterFunclet; |
454 | } |
455 | |
456 | #endif // WIN64EXCEPTIONS |
457 | |
458 | //****************************************************************************** |
459 | #if defined(ELIMINATE_FEF) |
460 | //****************************************************************************** |
461 | // Advance to the next ExInfo. Typically done when an ExInfo has been used and |
462 | // should not be used again. |
463 | //****************************************************************************** |
464 | void ExInfoWalker::WalkOne() |
465 | { |
466 | LIMITED_METHOD_CONTRACT; |
467 | SUPPORTS_DAC; |
468 | |
469 | if (m_pExInfo) |
470 | { |
471 | LOG((LF_EH, LL_INFO10000, "ExInfoWalker::WalkOne: advancing ExInfo chain: pExInfo:%p, pContext:%p; prev:%p, pContext:%p\n" , |
472 | m_pExInfo, m_pExInfo->m_pContext, m_pExInfo->m_pPrevNestedInfo, m_pExInfo->m_pPrevNestedInfo?m_pExInfo->m_pPrevNestedInfo->m_pContext:0)); |
473 | m_pExInfo = m_pExInfo->m_pPrevNestedInfo; |
474 | } |
475 | } // void ExInfoWalker::WalkOne() |
476 | |
477 | //****************************************************************************** |
478 | // Attempt to find an ExInfo with a pContext that is higher (older) than |
479 | // a given minimum location. (It is the pContext's SP that is relevant.) |
480 | //****************************************************************************** |
481 | void ExInfoWalker::WalkToPosition( |
482 | TADDR taMinimum, // Starting point of stack walk. |
483 | BOOL bPopFrames) // If true, ResetUseExInfoForStackwalk on each exinfo. |
484 | { |
485 | LIMITED_METHOD_CONTRACT; |
486 | SUPPORTS_DAC; |
487 | |
488 | while (m_pExInfo && |
489 | ((GetSPFromContext() < taMinimum) || |
490 | (GetSPFromContext() == NULL)) ) |
491 | { |
492 | // Try the next ExInfo, if there is one. |
493 | LOG((LF_EH, LL_INFO10000, |
494 | "ExInfoWalker::WalkToPosition: searching ExInfo chain: m_pExInfo:%p, pContext:%p; \ |
495 | prev:%p, pContext:%p; pStartFrame:%p\n" , |
496 | m_pExInfo, |
497 | m_pExInfo->m_pContext, |
498 | m_pExInfo->m_pPrevNestedInfo, |
499 | (m_pExInfo->m_pPrevNestedInfo ? m_pExInfo->m_pPrevNestedInfo->m_pContext : 0), |
500 | taMinimum)); |
501 | |
502 | if (bPopFrames) |
503 | { // If caller asked for it, reset the bit which indicates that this ExInfo marks a fault from managed code. |
504 | // This is done so that the fault can be effectively "unwound" from the stack, similarly to how Frames |
505 | // are unlinked from the Frame chain. |
506 | m_pExInfo->m_ExceptionFlags.ResetUseExInfoForStackwalk(); |
507 | } |
508 | m_pExInfo = m_pExInfo->m_pPrevNestedInfo; |
509 | } |
510 | // At this point, m_pExInfo is NULL, or points to a pContext that is greater than taMinimum. |
511 | } // void ExInfoWalker::WalkToPosition() |
512 | |
513 | //****************************************************************************** |
514 | // Attempt to find an ExInfo with a pContext that has an IP in managed code. |
515 | //****************************************************************************** |
516 | void ExInfoWalker::WalkToManaged() |
517 | { |
518 | CONTRACTL |
519 | { |
520 | NOTHROW; |
521 | GC_NOTRIGGER; |
522 | SO_TOLERANT; |
523 | MODE_ANY; |
524 | SUPPORTS_DAC; |
525 | } |
526 | CONTRACTL_END; |
527 | |
528 | |
529 | while (m_pExInfo) |
530 | { |
531 | // See if the current ExInfo has a CONTEXT that "returns" to managed code, and, if so, exit the loop. |
532 | if (m_pExInfo->m_ExceptionFlags.UseExInfoForStackwalk() && |
533 | GetContext() && |
534 | ExecutionManager::IsManagedCode(GetIP(GetContext()))) |
535 | { |
536 | break; |
537 | } |
538 | // No, so skip to next, if any. |
539 | LOG((LF_EH, LL_INFO1000, "ExInfoWalker::WalkToManaged: searching for ExInfo->managed: m_pExInfo:%p, pContext:%p, sp:%p; prev:%p, pContext:%p\n" , |
540 | m_pExInfo, |
541 | GetContext(), |
542 | GetSPFromContext(), |
543 | m_pExInfo->m_pPrevNestedInfo, |
544 | m_pExInfo->m_pPrevNestedInfo?m_pExInfo->m_pPrevNestedInfo->m_pContext:0)); |
545 | m_pExInfo = m_pExInfo->m_pPrevNestedInfo; |
546 | } |
547 | // At this point, m_pExInfo is NULL, or points to a pContext that has an IP in managed code. |
548 | } // void ExInfoWalker::WalkToManaged() |
549 | #endif // defined(ELIMINATE_FEF) |
550 | |
551 | #ifdef WIN64EXCEPTIONS |
552 | // static |
553 | UINT_PTR Thread::VirtualUnwindCallFrame(PREGDISPLAY pRD, EECodeInfo* pCodeInfo /*= NULL*/) |
554 | { |
555 | CONTRACTL |
556 | { |
557 | NOTHROW; |
558 | GC_NOTRIGGER; |
559 | |
560 | PRECONDITION(GetControlPC(pRD) == GetIP(pRD->pCurrentContext)); |
561 | SO_TOLERANT; |
562 | } |
563 | CONTRACTL_END; |
564 | |
565 | if (pRD->IsCallerContextValid) |
566 | { |
567 | // We already have the caller's frame context |
568 | // We just switch the pointers |
569 | PT_CONTEXT temp = pRD->pCurrentContext; |
570 | pRD->pCurrentContext = pRD->pCallerContext; |
571 | pRD->pCallerContext = temp; |
572 | |
573 | PT_KNONVOLATILE_CONTEXT_POINTERS tempPtrs = pRD->pCurrentContextPointers; |
574 | pRD->pCurrentContextPointers = pRD->pCallerContextPointers; |
575 | pRD->pCallerContextPointers = tempPtrs; |
576 | } |
577 | else |
578 | { |
579 | VirtualUnwindCallFrame(pRD->pCurrentContext, pRD->pCurrentContextPointers, pCodeInfo); |
580 | } |
581 | |
582 | SyncRegDisplayToCurrentContext(pRD); |
583 | pRD->IsCallerContextValid = FALSE; |
584 | pRD->IsCallerSPValid = FALSE; // Don't add usage of this field. This is only temporary. |
585 | |
586 | return pRD->ControlPC; |
587 | } |
588 | |
589 | |
590 | // static |
591 | PCODE Thread::VirtualUnwindCallFrame(T_CONTEXT* pContext, |
592 | T_KNONVOLATILE_CONTEXT_POINTERS* pContextPointers /*= NULL*/, |
593 | EECodeInfo * pCodeInfo /*= NULL*/) |
594 | { |
595 | CONTRACTL |
596 | { |
597 | NOTHROW; |
598 | GC_NOTRIGGER; |
599 | PRECONDITION(CheckPointer(pContext, NULL_NOT_OK)); |
600 | PRECONDITION(CheckPointer(pContextPointers, NULL_OK)); |
601 | SO_TOLERANT; |
602 | SUPPORTS_DAC; |
603 | } |
604 | CONTRACTL_END; |
605 | |
606 | PCODE uControlPc = GetIP(pContext); |
607 | |
608 | #if !defined(DACCESS_COMPILE) |
609 | UINT_PTR uImageBase; |
610 | PT_RUNTIME_FUNCTION pFunctionEntry; |
611 | |
612 | if (pCodeInfo == NULL) |
613 | { |
614 | #ifndef FEATURE_PAL |
615 | pFunctionEntry = RtlLookupFunctionEntry(uControlPc, |
616 | ARM_ONLY((DWORD*))(&uImageBase), |
617 | NULL); |
618 | #else // !FEATURE_PAL |
619 | EECodeInfo codeInfo; |
620 | |
621 | codeInfo.Init(uControlPc); |
622 | pFunctionEntry = codeInfo.GetFunctionEntry(); |
623 | uImageBase = (UINT_PTR)codeInfo.GetModuleBase(); |
624 | #endif // !FEATURE_PAL |
625 | } |
626 | else |
627 | { |
628 | pFunctionEntry = pCodeInfo->GetFunctionEntry(); |
629 | uImageBase = (UINT_PTR)pCodeInfo->GetModuleBase(); |
630 | |
631 | // RUNTIME_FUNCTION of cold code just points to the RUNTIME_FUNCTION of hot code. The unwinder |
632 | // expects this indirection to be resolved, so we use RUNTIME_FUNCTION of the hot code even |
633 | // if we are in cold code. |
634 | |
635 | #if defined(_DEBUG) && !defined(FEATURE_PAL) |
636 | UINT_PTR uImageBaseFromOS; |
637 | PT_RUNTIME_FUNCTION pFunctionEntryFromOS; |
638 | |
639 | pFunctionEntryFromOS = RtlLookupFunctionEntry(uControlPc, |
640 | ARM_ONLY((DWORD*))(&uImageBaseFromOS), |
641 | NULL); |
642 | |
643 | // Note that he address returned from the OS is different from the one we have computed |
644 | // when unwind info is registered using RtlAddGrowableFunctionTable. Compare RUNTIME_FUNCTION content. |
645 | _ASSERTE( (uImageBase == uImageBaseFromOS) && (memcmp(pFunctionEntry, pFunctionEntryFromOS, sizeof(RUNTIME_FUNCTION)) == 0) ); |
646 | #endif // _DEBUG && !FEATURE_PAL |
647 | } |
648 | |
649 | if (pFunctionEntry) |
650 | { |
651 | uControlPc = VirtualUnwindNonLeafCallFrame(pContext, pContextPointers, pFunctionEntry, uImageBase); |
652 | } |
653 | else |
654 | { |
655 | uControlPc = VirtualUnwindLeafCallFrame(pContext); |
656 | } |
657 | #else // DACCESS_COMPILE |
658 | // We can't use RtlVirtualUnwind() from out-of-process. Instead, we call code:DacUnwindStackFrame, |
659 | // which is similar to StackWalk64(). |
660 | if (DacUnwindStackFrame(pContext, pContextPointers) == TRUE) |
661 | { |
662 | uControlPc = GetIP(pContext); |
663 | } |
664 | else |
665 | { |
666 | ThrowHR(CORDBG_E_TARGET_INCONSISTENT); |
667 | } |
668 | #endif // !DACCESS_COMPILE |
669 | |
670 | return uControlPc; |
671 | } |
672 | |
673 | #ifndef DACCESS_COMPILE |
674 | |
675 | // static |
676 | PCODE Thread::VirtualUnwindLeafCallFrame(T_CONTEXT* pContext) |
677 | { |
678 | PCODE uControlPc; |
679 | |
680 | #if defined(_DEBUG) && !defined(FEATURE_PAL) |
681 | UINT_PTR uImageBase; |
682 | |
683 | PT_RUNTIME_FUNCTION pFunctionEntry = RtlLookupFunctionEntry((UINT_PTR)GetIP(pContext), |
684 | ARM_ONLY((DWORD*))(&uImageBase), |
685 | NULL); |
686 | |
687 | CONSISTENCY_CHECK(NULL == pFunctionEntry); |
688 | #endif // _DEBUG && !FEATURE_PAL |
689 | |
690 | #if defined(_TARGET_AMD64_) |
691 | |
692 | uControlPc = *(ULONGLONG*)pContext->Rsp; |
693 | pContext->Rsp += sizeof(ULONGLONG); |
694 | |
695 | #elif defined(_TARGET_ARM_) || defined(_TARGET_ARM64_) |
696 | |
697 | uControlPc = TADDR(pContext->Lr); |
698 | |
699 | #else |
700 | PORTABILITY_ASSERT("Thread::VirtualUnwindLeafCallFrame" ); |
701 | uControlPc = NULL; |
702 | #endif |
703 | |
704 | SetIP(pContext, uControlPc); |
705 | |
706 | |
707 | return uControlPc; |
708 | } |
709 | |
710 | // static |
711 | PCODE Thread::VirtualUnwindNonLeafCallFrame(T_CONTEXT* pContext, KNONVOLATILE_CONTEXT_POINTERS* pContextPointers, |
712 | PT_RUNTIME_FUNCTION pFunctionEntry, UINT_PTR uImageBase) |
713 | { |
714 | CONTRACTL |
715 | { |
716 | NOTHROW; |
717 | GC_NOTRIGGER; |
718 | PRECONDITION(CheckPointer(pContext, NULL_NOT_OK)); |
719 | PRECONDITION(CheckPointer(pContextPointers, NULL_OK)); |
720 | PRECONDITION(CheckPointer(pFunctionEntry, NULL_OK)); |
721 | SO_TOLERANT; |
722 | } |
723 | CONTRACTL_END; |
724 | |
725 | PCODE uControlPc = GetIP(pContext); |
726 | #ifdef BIT64 |
727 | UINT64 EstablisherFrame; |
728 | #else // BIT64 |
729 | DWORD EstablisherFrame; |
730 | #endif // BIT64 |
731 | PVOID HandlerData; |
732 | |
733 | if (NULL == pFunctionEntry) |
734 | { |
735 | #ifndef FEATURE_PAL |
736 | pFunctionEntry = RtlLookupFunctionEntry(uControlPc, |
737 | ARM_ONLY((DWORD*))(&uImageBase), |
738 | NULL); |
739 | #endif |
740 | if (NULL == pFunctionEntry) |
741 | { |
742 | return NULL; |
743 | } |
744 | } |
745 | |
746 | RtlVirtualUnwind(NULL, |
747 | uImageBase, |
748 | uControlPc, |
749 | pFunctionEntry, |
750 | pContext, |
751 | &HandlerData, |
752 | &EstablisherFrame, |
753 | pContextPointers); |
754 | |
755 | uControlPc = GetIP(pContext); |
756 | return uControlPc; |
757 | } |
758 | |
759 | // static |
760 | UINT_PTR Thread::VirtualUnwindToFirstManagedCallFrame(T_CONTEXT* pContext) |
761 | { |
762 | CONTRACTL |
763 | { |
764 | NOTHROW; |
765 | GC_NOTRIGGER; |
766 | SO_TOLERANT; |
767 | } |
768 | CONTRACTL_END; |
769 | |
770 | PCODE uControlPc = GetIP(pContext); |
771 | |
772 | // unwind out of this function and out of our caller to |
773 | // get our caller's PSP, or our caller's caller's SP. |
774 | while (!ExecutionManager::IsManagedCode(uControlPc)) |
775 | { |
776 | #ifndef FEATURE_PAL |
777 | uControlPc = VirtualUnwindCallFrame(pContext); |
778 | #else // !FEATURE_PAL |
779 | BOOL success = PAL_VirtualUnwind(pContext, NULL); |
780 | if (!success) |
781 | { |
782 | _ASSERTE(!"Thread::VirtualUnwindToFirstManagedCallFrame: PAL_VirtualUnwind failed" ); |
783 | EEPOLICY_HANDLE_FATAL_ERROR(COR_E_EXECUTIONENGINE); |
784 | } |
785 | |
786 | uControlPc = GetIP(pContext); |
787 | |
788 | if (uControlPc == 0) |
789 | { |
790 | break; |
791 | } |
792 | #endif // !FEATURE_PAL |
793 | } |
794 | |
795 | return uControlPc; |
796 | } |
797 | |
798 | #endif // !DACCESS_COMPILE |
799 | #endif // WIN64EXCEPTIONS |
800 | |
801 | #ifdef _DEBUG |
802 | void Thread::DebugLogStackWalkInfo(CrawlFrame* pCF, __in_z LPCSTR pszTag, UINT32 uFramesProcessed) |
803 | { |
804 | LIMITED_METHOD_CONTRACT; |
805 | SUPPORTS_DAC; |
806 | if (pCF->isFrameless) |
807 | { |
808 | LPCSTR pszType = "" ; |
809 | |
810 | #ifdef WIN64EXCEPTIONS |
811 | if (pCF->IsFunclet()) |
812 | { |
813 | pszType = "[funclet]" ; |
814 | } |
815 | else |
816 | #endif // WIN64EXCEPTIONS |
817 | if (pCF->pFunc->IsNoMetadata()) |
818 | { |
819 | pszType = "[no metadata]" ; |
820 | } |
821 | |
822 | LOG((LF_GCROOTS, LL_INFO10000, "STACKWALK: [%03x] %s: FRAMELESS: PC=" FMT_ADDR " SP=" FMT_ADDR " method=%s %s\n" , |
823 | uFramesProcessed, |
824 | pszTag, |
825 | DBG_ADDR(GetControlPC(pCF->pRD)), |
826 | DBG_ADDR(GetRegdisplaySP(pCF->pRD)), |
827 | pCF->pFunc->m_pszDebugMethodName, |
828 | pszType)); |
829 | } |
830 | else if (pCF->isNativeMarker) |
831 | { |
832 | LOG((LF_GCROOTS, LL_INFO10000, "STACKWALK: [%03x] %s: NATIVE : PC=" FMT_ADDR " SP=" FMT_ADDR "\n" , |
833 | uFramesProcessed, |
834 | pszTag, |
835 | DBG_ADDR(GetControlPC(pCF->pRD)), |
836 | DBG_ADDR(GetRegdisplaySP(pCF->pRD)))); |
837 | } |
838 | else if (pCF->isNoFrameTransition) |
839 | { |
840 | LOG((LF_GCROOTS, LL_INFO10000, "STACKWALK: [%03x] %s: NO_FRAME : PC=" FMT_ADDR " SP=" FMT_ADDR "\n" , |
841 | uFramesProcessed, |
842 | pszTag, |
843 | DBG_ADDR(GetControlPC(pCF->pRD)), |
844 | DBG_ADDR(GetRegdisplaySP(pCF->pRD)))); |
845 | } |
846 | else |
847 | { |
848 | LOG((LF_GCROOTS, LL_INFO10000, "STACKWALK: [%03x] %s: EXPLICIT : PC=" FMT_ADDR " SP=" FMT_ADDR " Frame=" FMT_ADDR" vtbl=" FMT_ADDR "\n" , |
849 | uFramesProcessed, |
850 | pszTag, |
851 | DBG_ADDR(GetControlPC(pCF->pRD)), |
852 | DBG_ADDR(GetRegdisplaySP(pCF->pRD)), |
853 | DBG_ADDR(pCF->pFrame), |
854 | DBG_ADDR((pCF->pFrame != FRAME_TOP) ? pCF->pFrame->GetVTablePtr() : NULL))); |
855 | } |
856 | } |
857 | #endif // _DEBUG |
858 | |
859 | StackWalkAction Thread::MakeStackwalkerCallback( |
860 | CrawlFrame* pCF, |
861 | PSTACKWALKFRAMESCALLBACK pCallback, |
862 | VOID* pData |
863 | DEBUG_ARG(UINT32 uFramesProcessed)) |
864 | { |
865 | INDEBUG(DebugLogStackWalkInfo(pCF, "CALLBACK" , uFramesProcessed)); |
866 | |
867 | // Since we may be asynchronously walking another thread's stack, |
868 | // check (frequently) for stack-buffer-overrun corruptions |
869 | pCF->CheckGSCookies(); |
870 | |
871 | // Since the stackwalker callback may execute arbitrary managed code and possibly |
872 | // not even return (in the case of exception unwinding), explicitly clear the |
873 | // stackwalker thread state indicator around the callback. |
874 | |
875 | CLEAR_THREAD_TYPE_STACKWALKER(); |
876 | |
877 | StackWalkAction swa = pCallback(pCF, (VOID*)pData); |
878 | |
879 | SET_THREAD_TYPE_STACKWALKER(this); |
880 | |
881 | pCF->CheckGSCookies(); |
882 | |
883 | #ifdef _DEBUG |
884 | if (swa == SWA_ABORT) |
885 | { |
886 | LOG((LF_GCROOTS, LL_INFO10000, "STACKWALK: SWA_ABORT: callback aborted the stackwalk\n" )); |
887 | } |
888 | #endif // _DEBUG |
889 | |
890 | return swa; |
891 | } |
892 | |
893 | |
894 | #if !defined(DACCESS_COMPILE) && defined(_TARGET_X86_) && !defined(WIN64EXCEPTIONS) |
895 | #define STACKWALKER_MAY_POP_FRAMES |
896 | #endif |
897 | |
898 | |
899 | StackWalkAction Thread::StackWalkFramesEx( |
900 | PREGDISPLAY pRD, // virtual register set at crawl start |
901 | PSTACKWALKFRAMESCALLBACK pCallback, |
902 | VOID *pData, |
903 | unsigned flags, |
904 | PTR_Frame pStartFrame |
905 | ) |
906 | { |
907 | // Note: there are cases (i.e., exception handling) where we may never return from this function. This means |
908 | // that any C++ destructors pushed in this function will never execute, and it means that this function can |
909 | // never have a dynamic contract. |
910 | STATIC_CONTRACT_WRAPPER; |
911 | STATIC_CONTRACT_SO_INTOLERANT; |
912 | SCAN_IGNORE_THROW; // see contract above |
913 | SCAN_IGNORE_TRIGGER; // see contract above |
914 | |
915 | _ASSERTE(pRD); |
916 | _ASSERTE(pCallback); |
917 | |
918 | // when POPFRAMES we don't want to allow GC trigger. |
919 | // The only method that guarantees this now is COMPlusUnwindCallback |
920 | #ifdef STACKWALKER_MAY_POP_FRAMES |
921 | ASSERT(!(flags & POPFRAMES) || pCallback == (PSTACKWALKFRAMESCALLBACK) COMPlusUnwindCallback); |
922 | ASSERT(!(flags & POPFRAMES) || pRD->pContextForUnwind != NULL); |
923 | ASSERT(!(flags & POPFRAMES) || (this == GetThread() && PreemptiveGCDisabled())); |
924 | #else // STACKWALKER_MAY_POP_FRAMES |
925 | ASSERT(!(flags & POPFRAMES)); |
926 | #endif // STACKWALKER_MAY_POP_FRAMES |
927 | |
928 | // We haven't set the stackwalker thread type flag yet, so it shouldn't be set. Only |
929 | // exception to this is if the current call is made by a hijacking profiler which |
930 | // redirected this thread while it was previously in the middle of another stack walk |
931 | #ifdef PROFILING_SUPPORTED |
932 | _ASSERTE(CORProfilerStackSnapshotEnabled() || !IsStackWalkerThread()); |
933 | #else |
934 | _ASSERTE(!IsStackWalkerThread()); |
935 | #endif |
936 | |
937 | StackWalkAction retVal = SWA_FAILED; |
938 | |
939 | { |
940 | // SCOPE: Remember that we're walking the stack. |
941 | // |
942 | // Normally, we'd use a holder (ClrFlsThreadTypeSwitch) to temporarily set this |
943 | // flag in the thread state, but we can't in this function, since C++ destructors |
944 | // are forbidden when this is called for exception handling (which causes |
945 | // MakeStackwalkerCallback() not to return). Note that in exception handling |
946 | // cases, we will have already cleared the stack walker thread state indicator inside |
947 | // MakeStackwalkerCallback(), so we will be properly cleaned up. |
948 | #if !defined(DACCESS_COMPILE) |
949 | PVOID pStackWalkThreadOrig = ClrFlsGetValue(TlsIdx_StackWalkerWalkingThread); |
950 | #endif |
951 | SET_THREAD_TYPE_STACKWALKER(this); |
952 | |
953 | StackFrameIterator iter; |
954 | if (iter.Init(this, pStartFrame, pRD, flags) == TRUE) |
955 | { |
956 | while (iter.IsValid()) |
957 | { |
958 | retVal = MakeStackwalkerCallback(&iter.m_crawl, pCallback, pData DEBUG_ARG(iter.m_uFramesProcessed)); |
959 | if (retVal == SWA_ABORT) |
960 | { |
961 | break; |
962 | } |
963 | |
964 | retVal = iter.Next(); |
965 | if (retVal == SWA_FAILED) |
966 | { |
967 | break; |
968 | } |
969 | } |
970 | } |
971 | |
972 | SET_THREAD_TYPE_STACKWALKER(pStackWalkThreadOrig); |
973 | } |
974 | |
975 | return retVal; |
976 | } // StackWalkAction Thread::StackWalkFramesEx() |
977 | |
978 | StackWalkAction Thread::StackWalkFrames(PSTACKWALKFRAMESCALLBACK pCallback, |
979 | VOID *pData, |
980 | unsigned flags, |
981 | PTR_Frame pStartFrame) |
982 | { |
983 | // Note: there are cases (i.e., exception handling) where we may never return from this function. This means |
984 | // that any C++ destructors pushed in this function will never execute, and it means that this function can |
985 | // never have a dynamic contract. |
986 | STATIC_CONTRACT_WRAPPER; |
987 | _ASSERTE((flags & THREAD_IS_SUSPENDED) == 0 || (flags & ALLOW_ASYNC_STACK_WALK)); |
988 | |
989 | T_CONTEXT ctx; |
990 | REGDISPLAY rd; |
991 | bool fUseInitRegDisplay; |
992 | |
993 | #ifndef DACCESS_COMPILE |
994 | _ASSERTE(GetThread() == this || (flags & ALLOW_ASYNC_STACK_WALK)); |
995 | BOOL fDebuggerHasInitialContext = (GetFilterContext() != NULL); |
996 | BOOL fProfilerHasInitialContext = (GetProfilerFilterContext() != NULL); |
997 | |
998 | // If this walk is seeded by a profiler, then the walk better be done by the profiler |
999 | _ASSERTE(!fProfilerHasInitialContext || (flags & PROFILER_DO_STACK_SNAPSHOT)); |
1000 | |
1001 | fUseInitRegDisplay = fDebuggerHasInitialContext || fProfilerHasInitialContext; |
1002 | #else |
1003 | fUseInitRegDisplay = true; |
1004 | #endif |
1005 | |
1006 | if(fUseInitRegDisplay) |
1007 | { |
1008 | if (GetProfilerFilterContext() != NULL) |
1009 | { |
1010 | if (!InitRegDisplay(&rd, GetProfilerFilterContext(), TRUE)) |
1011 | { |
1012 | LOG((LF_CORPROF, LL_INFO100, "**PROF: InitRegDisplay(&rd, GetProfilerFilterContext() failure leads to SWA_FAILED.\n" )); |
1013 | return SWA_FAILED; |
1014 | } |
1015 | } |
1016 | else |
1017 | { |
1018 | if (!InitRegDisplay(&rd, &ctx, FALSE)) |
1019 | { |
1020 | LOG((LF_CORPROF, LL_INFO100, "**PROF: InitRegDisplay(&rd, &ctx, FALSE) failure leads to SWA_FAILED.\n" )); |
1021 | return SWA_FAILED; |
1022 | } |
1023 | } |
1024 | } |
1025 | else |
1026 | { |
1027 | // Initialize the context |
1028 | memset(&ctx, 0x00, sizeof(T_CONTEXT)); |
1029 | SetIP(&ctx, 0); |
1030 | SetSP(&ctx, 0); |
1031 | SetFP(&ctx, 0); |
1032 | LOG((LF_GCROOTS, LL_INFO100000, "STACKWALK starting with partial context\n" )); |
1033 | FillRegDisplay(&rd, &ctx); |
1034 | } |
1035 | |
1036 | #ifdef STACKWALKER_MAY_POP_FRAMES |
1037 | if (flags & POPFRAMES) |
1038 | rd.pContextForUnwind = &ctx; |
1039 | #endif |
1040 | |
1041 | return StackWalkFramesEx(&rd, pCallback, pData, flags, pStartFrame); |
1042 | } |
1043 | |
1044 | StackWalkAction StackWalkFunctions(Thread * thread, |
1045 | PSTACKWALKFRAMESCALLBACK pCallback, |
1046 | VOID * pData) |
1047 | { |
1048 | // Note: there are cases (i.e., exception handling) where we may never return from this function. This means |
1049 | // that any C++ destructors pushed in this function will never execute, and it means that this function can |
1050 | // never have a dynamic contract. |
1051 | STATIC_CONTRACT_WRAPPER; |
1052 | |
1053 | return thread->StackWalkFrames(pCallback, pData, FUNCTIONSONLY); |
1054 | } |
1055 | |
1056 | // ---------------------------------------------------------------------------- |
1057 | // StackFrameIterator::StackFrameIterator |
1058 | // |
1059 | // Description: |
1060 | // This constructor is for the usage pattern of creating an uninitialized StackFrameIterator and then |
1061 | // calling Init() on it. |
1062 | // |
1063 | // Assumptions: |
1064 | // * The caller needs to call Init() with the correct arguments before using the StackFrameIterator. |
1065 | // |
1066 | |
1067 | StackFrameIterator::StackFrameIterator() |
1068 | { |
1069 | LIMITED_METHOD_CONTRACT; |
1070 | SUPPORTS_DAC; |
1071 | CommonCtor(NULL, NULL, 0xbaadf00d); |
1072 | } // StackFrameIterator::StackFrameIterator() |
1073 | |
1074 | // ---------------------------------------------------------------------------- |
1075 | // StackFrameIterator::StackFrameIterator |
1076 | // |
1077 | // Description: |
1078 | // This constructor is for the usage pattern of creating an initialized StackFrameIterator and then |
1079 | // calling ResetRegDisp() on it. |
1080 | // |
1081 | // Arguments: |
1082 | // * pThread - the thread to walk |
1083 | // * pFrame - the starting explicit frame; NULL means use the top explicit frame from the frame chain |
1084 | // * flags - the stackwalk flags |
1085 | // |
1086 | // Assumptions: |
1087 | // * The caller can call ResetRegDisp() to use the StackFrameIterator without calling Init() first. |
1088 | // |
1089 | |
1090 | StackFrameIterator::StackFrameIterator(Thread * pThread, PTR_Frame pFrame, ULONG32 flags) |
1091 | { |
1092 | SUPPORTS_DAC; |
1093 | CommonCtor(pThread, pFrame, flags); |
1094 | } // StackFrameIterator::StackFrameIterator() |
1095 | |
1096 | // ---------------------------------------------------------------------------- |
1097 | // StackFrameIterator::CommonCtor |
1098 | // |
1099 | // Description: |
1100 | // This is a helper for the two constructors. |
1101 | // |
1102 | // Arguments: |
1103 | // * pThread - the thread to walk |
1104 | // * pFrame - the starting explicit frame; NULL means use the top explicit frame from the frame chain |
1105 | // * flags - the stackwalk flags |
1106 | // |
1107 | |
1108 | void StackFrameIterator::CommonCtor(Thread * pThread, PTR_Frame pFrame, ULONG32 flags) |
1109 | { |
1110 | WRAPPER_NO_CONTRACT; |
1111 | SUPPORTS_DAC; |
1112 | |
1113 | INDEBUG(m_uFramesProcessed = 0); |
1114 | |
1115 | m_frameState = SFITER_UNINITIALIZED; |
1116 | m_pThread = pThread; |
1117 | |
1118 | m_pStartFrame = pFrame; |
1119 | #if defined(_DEBUG) |
1120 | if (m_pStartFrame != NULL) |
1121 | { |
1122 | m_pRealStartFrame = m_pStartFrame; |
1123 | } |
1124 | else if (m_pThread != NULL) |
1125 | { |
1126 | m_pRealStartFrame = m_pThread->GetFrame(); |
1127 | } |
1128 | else |
1129 | { |
1130 | m_pRealStartFrame = NULL; |
1131 | } |
1132 | #endif // _DEBUG |
1133 | |
1134 | m_flags = flags; |
1135 | m_codeManFlags = (ICodeManagerFlags)0; |
1136 | |
1137 | m_pCachedGSCookie = NULL; |
1138 | |
1139 | #if defined(WIN64EXCEPTIONS) |
1140 | m_sfParent = StackFrame(); |
1141 | ResetGCRefReportingState(); |
1142 | m_fDidFuncletReportGCReferences = true; |
1143 | #endif // WIN64EXCEPTIONS |
1144 | |
1145 | #if defined(RECORD_RESUMABLE_FRAME_SP) |
1146 | m_pvResumableFrameTargetSP = NULL; |
1147 | #endif |
1148 | } // StackFrameIterator::CommonCtor() |
1149 | |
1150 | //--------------------------------------------------------------------------------------- |
1151 | // |
1152 | // Initialize the iterator. Note that the iterator has thread-affinity, |
1153 | // and the stackwalk flags cannot be changed once the iterator is created. |
1154 | // Depending on the flags, initialization may involve unwinding to a frame of interest. |
1155 | // The unwinding could fail. |
1156 | // |
1157 | // Arguments: |
1158 | // pThread - the thread to walk |
1159 | // pFrame - the starting explicit frame; NULL means use the top explicit frame from |
1160 | // pThread->GetFrame() |
1161 | // pRegDisp - the initial REGDISPLAY |
1162 | // flags - the stackwalk flags |
1163 | // |
1164 | // Return Value: |
1165 | // Returns true if the initialization is successful. The initialization could fail because |
1166 | // we fail to unwind. |
1167 | // |
1168 | // Notes: |
1169 | // Do not do anything funky between initializing a StackFrameIterator and actually using it. |
1170 | // In particular, do not resume the thread. We only unhijack the thread once in Init(). |
1171 | // Refer to StackWalkFramesEx() for the typical usage pattern. |
1172 | // |
1173 | |
1174 | BOOL StackFrameIterator::Init(Thread * pThread, |
1175 | PTR_Frame pFrame, |
1176 | PREGDISPLAY pRegDisp, |
1177 | ULONG32 flags) |
1178 | { |
1179 | WRAPPER_NO_CONTRACT; |
1180 | SUPPORTS_DAC; |
1181 | |
1182 | _ASSERTE(pThread != NULL); |
1183 | _ASSERTE(pRegDisp != NULL); |
1184 | |
1185 | #if !defined(DACCESS_COMPILE) |
1186 | // When the LIGHTUNWIND flag is set, we use the stack walk cache. |
1187 | // On x64, accesses to the stack walk cache are synchronized by |
1188 | // a CrstStatic, which may need to call back into the host. |
1189 | _ASSERTE(CanThisThreadCallIntoHost() || (flags & LIGHTUNWIND) == 0); |
1190 | #endif // DACCESS_COMPILE |
1191 | |
1192 | #ifdef WIN64EXCEPTIONS |
1193 | _ASSERTE(!(flags & POPFRAMES)); |
1194 | _ASSERTE(pRegDisp->pCurrentContext); |
1195 | #endif // WIN64EXCEPTIONS |
1196 | |
1197 | BEGIN_FORBID_TYPELOAD(); |
1198 | |
1199 | #ifdef FEATURE_HIJACK |
1200 | // We can't crawl the stack of a thread that currently has a hijack pending |
1201 | // (since the hijack routine won't be recognized by any code manager). So we |
1202 | // undo any hijack, the EE will re-attempt it later. |
1203 | |
1204 | #if !defined(DACCESS_COMPILE) |
1205 | // OOP stackwalks need to deal with hijacked threads in a special way. |
1206 | pThread->UnhijackThread(); |
1207 | #endif // !DACCESS_COMPILE |
1208 | |
1209 | #endif // FEATURE_HIJACK |
1210 | |
1211 | // FRAME_TOP and NULL must be distinct values. This assert |
1212 | // will fire if someone changes this. |
1213 | static_assert_no_msg(FRAME_TOP_VALUE != NULL); |
1214 | |
1215 | m_frameState = SFITER_UNINITIALIZED; |
1216 | |
1217 | m_pThread = pThread; |
1218 | m_flags = flags; |
1219 | |
1220 | ResetCrawlFrame(); |
1221 | |
1222 | m_pStartFrame = pFrame; |
1223 | if (m_pStartFrame) |
1224 | { |
1225 | m_crawl.pFrame = m_pStartFrame; |
1226 | } |
1227 | else |
1228 | { |
1229 | m_crawl.pFrame = m_pThread->GetFrame(); |
1230 | _ASSERTE(m_crawl.pFrame != NULL); |
1231 | } |
1232 | INDEBUG(m_pRealStartFrame = m_crawl.pFrame); |
1233 | |
1234 | if (m_crawl.pFrame != FRAME_TOP && !(m_flags & SKIP_GSCOOKIE_CHECK)) |
1235 | { |
1236 | m_crawl.SetCurGSCookie(Frame::SafeGetGSCookiePtr(m_crawl.pFrame)); |
1237 | } |
1238 | |
1239 | m_crawl.pRD = pRegDisp; |
1240 | m_crawl.pAppDomain = pThread->GetDomain(INDEBUG(flags & PROFILER_DO_STACK_SNAPSHOT)); |
1241 | |
1242 | m_codeManFlags = (ICodeManagerFlags)((flags & QUICKUNWIND) ? 0 : UpdateAllRegs); |
1243 | m_scanFlag = ExecutionManager::GetScanFlags(); |
1244 | |
1245 | #if defined(ELIMINATE_FEF) |
1246 | // Walk the ExInfo chain, past any specified starting frame. |
1247 | m_exInfoWalk.Init(&(pThread->GetExceptionState()->m_currentExInfo)); |
1248 | // false means don't reset UseExInfoForStackwalk |
1249 | m_exInfoWalk.WalkToPosition(dac_cast<TADDR>(m_pStartFrame), false); |
1250 | #endif // ELIMINATE_FEF |
1251 | |
1252 | // |
1253 | // These fields are used in the iteration and will be updated on a per-frame basis: |
1254 | // |
1255 | // EECodeInfo m_cachedCodeInfo; |
1256 | // |
1257 | // GSCookie * m_pCachedGSCookie; |
1258 | // |
1259 | // StackFrame m_sfParent; |
1260 | // |
1261 | // LPVOID m_pvResumableFrameTargetSP; |
1262 | // |
1263 | |
1264 | // process the REGDISPLAY and stop at the first frame |
1265 | ProcessIp(GetControlPC(m_crawl.pRD)); |
1266 | ProcessCurrentFrame(); |
1267 | |
1268 | // advance to the next frame which matches the stackwalk flags |
1269 | StackWalkAction retVal = Filter(); |
1270 | |
1271 | END_FORBID_TYPELOAD(); |
1272 | |
1273 | return (retVal == SWA_CONTINUE); |
1274 | } // StackFrameIterator::Init() |
1275 | |
1276 | //--------------------------------------------------------------------------------------- |
1277 | // |
1278 | // Reset the stackwalk iterator with the specified REGDISPLAY. |
1279 | // The caller is responsible for making sure the REGDISPLAY is valid. |
1280 | // This function is very similar to Init(), except that this function takes a REGDISPLAY |
1281 | // to seed the stackwalk. This function may also unwind depending on the flags, and the |
1282 | // unwinding may fail. |
1283 | // |
1284 | // Arguments: |
1285 | // pRegDisp - new REGDISPLAY |
1286 | // bool - whether the REGDISPLAY is for the leaf frame |
1287 | // |
1288 | // Return Value: |
1289 | // Returns true if the reset is successful. The reset could fail because |
1290 | // we fail to unwind. |
1291 | // |
1292 | // Assumptions: |
1293 | // The REGDISPLAY is valid for the thread which the iterator has affinity to. |
1294 | // |
1295 | |
1296 | BOOL StackFrameIterator::ResetRegDisp(PREGDISPLAY pRegDisp, |
1297 | bool fIsFirst) |
1298 | { |
1299 | WRAPPER_NO_CONTRACT; |
1300 | SUPPORTS_DAC; |
1301 | |
1302 | // It is invalid to reset a stackwalk if we are popping frames along the way. |
1303 | ASSERT(!(m_flags & POPFRAMES)); |
1304 | |
1305 | BEGIN_FORBID_TYPELOAD(); |
1306 | |
1307 | m_frameState = SFITER_UNINITIALIZED; |
1308 | |
1309 | // Make sure the StackFrameIterator has been initialized properly. |
1310 | _ASSERTE(m_pThread != NULL); |
1311 | _ASSERTE(m_flags != 0xbaadf00d); |
1312 | |
1313 | ResetCrawlFrame(); |
1314 | |
1315 | m_crawl.isFirst = fIsFirst; |
1316 | |
1317 | if (m_pStartFrame) |
1318 | { |
1319 | m_crawl.pFrame = m_pStartFrame; |
1320 | } |
1321 | else |
1322 | { |
1323 | m_crawl.pFrame = m_pThread->GetFrame(); |
1324 | _ASSERTE(m_crawl.pFrame != NULL); |
1325 | } |
1326 | |
1327 | if (m_crawl.pFrame != FRAME_TOP && !(m_flags & SKIP_GSCOOKIE_CHECK)) |
1328 | { |
1329 | m_crawl.SetCurGSCookie(Frame::SafeGetGSCookiePtr(m_crawl.pFrame)); |
1330 | } |
1331 | |
1332 | m_crawl.pRD = pRegDisp; |
1333 | |
1334 | // we initialize the appdomain to be the current domain, but this nees to be updated below |
1335 | m_crawl.pAppDomain = m_crawl.pThread->GetDomain(INDEBUG(m_flags & PROFILER_DO_STACK_SNAPSHOT)); |
1336 | |
1337 | m_codeManFlags = (ICodeManagerFlags)((m_flags & QUICKUNWIND) ? 0 : UpdateAllRegs); |
1338 | |
1339 | // make sure the REGDISPLAY is synchronized with the CONTEXT |
1340 | UpdateRegDisp(); |
1341 | |
1342 | PCODE curPc = GetControlPC(pRegDisp); |
1343 | ProcessIp(curPc); |
1344 | |
1345 | // loop the frame chain to find the closet explicit frame which is lower than the specificed REGDISPLAY |
1346 | // (stack grows up towards lower address) |
1347 | if (m_crawl.pFrame != FRAME_TOP) |
1348 | { |
1349 | TADDR curSP = GetRegdisplaySP(m_crawl.pRD); |
1350 | |
1351 | #ifdef PROCESS_EXPLICIT_FRAME_BEFORE_MANAGED_FRAME |
1352 | if (m_crawl.IsFrameless()) |
1353 | { |
1354 | // On 64-bit and ARM, we stop at the explicit frames contained in a managed stack frame |
1355 | // before the managed stack frame itself. |
1356 | EECodeManager::EnsureCallerContextIsValid(m_crawl.pRD, NULL); |
1357 | curSP = GetSP(m_crawl.pRD->pCallerContext); |
1358 | } |
1359 | #endif // PROCESS_EXPLICIT_FRAME_BEFORE_MANAGED_FRAME |
1360 | |
1361 | #if defined(_TARGET_X86_) |
1362 | // special processing on x86; see below for more information |
1363 | TADDR curEBP = GetRegdisplayFP(m_crawl.pRD); |
1364 | |
1365 | CONTEXT tmpCtx; |
1366 | REGDISPLAY tmpRD; |
1367 | CopyRegDisplay(m_crawl.pRD, &tmpRD, &tmpCtx); |
1368 | #endif // _TARGET_X86_ |
1369 | |
1370 | // |
1371 | // The basic idea is to loop the frame chain until we find an explicit frame whose address is below |
1372 | // (close to the root) the SP in the specified REGDISPLAY. This works well on WIN64 platforms. |
1373 | // However, on x86, in M2U transitions, the Windows debuggers will pass us an incorrect REGDISPLAY |
1374 | // for the managed stack frame at the M2U boundary. The REGDISPLAY is obtained by unwinding the |
1375 | // marshaling stub, and it contains an SP which is actually higher (closer to the leaf) than the |
1376 | // address of the transition frame. It is as if the explicit frame is not contained in the stack |
1377 | // frame of any method. Here's an example: |
1378 | // |
1379 | // ChildEBP |
1380 | // 0012e884 ntdll32!DbgBreakPoint |
1381 | // 0012e89c CLRStub[StubLinkStub]@1f0ac1e |
1382 | // 0012e8a4 invalid ESP of Foo() according to the REGDISPLAY specified by the debuggers |
1383 | // 0012e8b4 address of transition frame (NDirectMethodFrameStandalone) |
1384 | // 0012e8c8 real ESP of Foo() according to the transition frame |
1385 | // 0012e8d8 managed!Dummy.Foo()+0x20 |
1386 | // |
1387 | // The original implementation of ResetRegDisp() compares the return address of the transition frame |
1388 | // and the IP in the specified REGDISPLAY to work around this problem. However, even this comparison |
1389 | // is not enough because we may have recursive pinvoke calls on the stack (albeit an unlikely |
1390 | // scenario). So in addition to the IP comparison, we also check EBP. Note that this does not |
1391 | // require managed stack frames to be EBP-framed. |
1392 | // |
1393 | |
1394 | while (m_crawl.pFrame != FRAME_TOP) |
1395 | { |
1396 | // this check is sufficient on WIN64 |
1397 | if (dac_cast<TADDR>(m_crawl.pFrame) >= curSP) |
1398 | { |
1399 | #if defined(_TARGET_X86_) |
1400 | // check the IP |
1401 | if (m_crawl.pFrame->GetReturnAddress() != curPc) |
1402 | { |
1403 | break; |
1404 | } |
1405 | else |
1406 | { |
1407 | // unwind the REGDISPLAY using the transition frame and check the EBP |
1408 | m_crawl.pFrame->UpdateRegDisplay(&tmpRD); |
1409 | if (GetRegdisplayFP(&tmpRD) != curEBP) |
1410 | { |
1411 | break; |
1412 | } |
1413 | } |
1414 | #else // !_TARGET_X86_ |
1415 | break; |
1416 | #endif // !_TARGET_X86_ |
1417 | } |
1418 | |
1419 | // if the REGDISPLAY represents the managed stack frame at a M2U transition boundary, |
1420 | // update the flags on the CrawlFrame and the REGDISPLAY |
1421 | PCODE frameRetAddr = m_crawl.pFrame->GetReturnAddress(); |
1422 | if (frameRetAddr == curPc) |
1423 | { |
1424 | unsigned uFrameAttribs = m_crawl.pFrame->GetFrameAttribs(); |
1425 | |
1426 | m_crawl.isFirst = ((uFrameAttribs & Frame::FRAME_ATTR_RESUMABLE) != 0); |
1427 | m_crawl.isInterrupted = ((uFrameAttribs & Frame::FRAME_ATTR_EXCEPTION) != 0); |
1428 | |
1429 | if (m_crawl.isInterrupted) |
1430 | { |
1431 | m_crawl.hasFaulted = ((uFrameAttribs & Frame::FRAME_ATTR_FAULTED) != 0); |
1432 | m_crawl.isIPadjusted = ((uFrameAttribs & Frame::FRAME_ATTR_OUT_OF_LINE) != 0); |
1433 | } |
1434 | |
1435 | m_crawl.pFrame->UpdateRegDisplay(m_crawl.pRD); |
1436 | |
1437 | _ASSERTE(curPc == GetControlPC(m_crawl.pRD)); |
1438 | } |
1439 | |
1440 | // this call also updates the appdomain if the explicit frame is a ContextTransitionFrame |
1441 | m_crawl.GotoNextFrame(); |
1442 | } |
1443 | } |
1444 | |
1445 | #if defined(ELIMINATE_FEF) |
1446 | // Similarly, we need to walk the ExInfos. |
1447 | m_exInfoWalk.Init(&(m_crawl.pThread->GetExceptionState()->m_currentExInfo)); |
1448 | // false means don't reset UseExInfoForStackwalk |
1449 | m_exInfoWalk.WalkToPosition(GetRegdisplaySP(m_crawl.pRD), false); |
1450 | #endif // ELIMINATE_FEF |
1451 | |
1452 | // now that everything is at where it should be, update the CrawlFrame |
1453 | ProcessCurrentFrame(); |
1454 | |
1455 | // advance to the next frame which matches the stackwalk flags |
1456 | StackWalkAction retVal = Filter(); |
1457 | |
1458 | END_FORBID_TYPELOAD(); |
1459 | |
1460 | return (retVal == SWA_CONTINUE); |
1461 | } // StackFrameIterator::ResetRegDisp() |
1462 | |
1463 | |
1464 | //--------------------------------------------------------------------------------------- |
1465 | // |
1466 | // Reset the CrawlFrame owned by the iterator. Used by both Init() and ResetRegDisp(). |
1467 | // |
1468 | // Assumptions: |
1469 | // this->m_pThread and this->m_flags have been initialized. |
1470 | // |
1471 | // Notes: |
1472 | // In addition, the following fields are not reset. The caller must update them: |
1473 | // pFrame, pFunc, pAppDomain, pRD |
1474 | // |
1475 | // Fields updated by ProcessIp(): |
1476 | // isFrameless, and codeInfo |
1477 | // |
1478 | // Fields updated by ProcessCurrentFrame(): |
1479 | // codeManState |
1480 | // |
1481 | |
1482 | void StackFrameIterator::ResetCrawlFrame() |
1483 | { |
1484 | WRAPPER_NO_CONTRACT; |
1485 | SUPPORTS_DAC; |
1486 | |
1487 | INDEBUG(memset(&(m_crawl.pFunc), 0xCC, sizeof(m_crawl.pFunc))); |
1488 | |
1489 | m_crawl.isFirst = true; |
1490 | m_crawl.isInterrupted = false; |
1491 | m_crawl.hasFaulted = false; |
1492 | m_crawl.isIPadjusted = false; // can be removed |
1493 | |
1494 | m_crawl.isNativeMarker = false; |
1495 | m_crawl.isProfilerDoStackSnapshot = !!(this->m_flags & PROFILER_DO_STACK_SNAPSHOT); |
1496 | m_crawl.isNoFrameTransition = false; |
1497 | |
1498 | m_crawl.taNoFrameTransitionMarker = NULL; |
1499 | |
1500 | #if defined(WIN64EXCEPTIONS) |
1501 | m_crawl.isFilterFunclet = false; |
1502 | m_crawl.isFilterFuncletCached = false; |
1503 | m_crawl.fShouldParentToFuncletSkipReportingGCReferences = false; |
1504 | m_crawl.fShouldParentFrameUseUnwindTargetPCforGCReporting = false; |
1505 | #endif // WIN64EXCEPTIONS |
1506 | |
1507 | m_crawl.pThread = this->m_pThread; |
1508 | |
1509 | m_crawl.pSecurityObject = NULL; |
1510 | m_crawl.isCachedMethod = false; |
1511 | m_crawl.stackWalkCache.ClearEntry(); |
1512 | |
1513 | m_crawl.pCurGSCookie = NULL; |
1514 | m_crawl.pFirstGSCookie = NULL; |
1515 | } |
1516 | |
1517 | //--------------------------------------------------------------------------------------- |
1518 | // |
1519 | // This function represents whether the iterator has reached the root of the stack or not. |
1520 | // It can be used as the loop-terminating condition for the iterator. |
1521 | // |
1522 | // Return Value: |
1523 | // Returns true if there is more frames on the stack to walk. |
1524 | // |
1525 | |
1526 | BOOL StackFrameIterator::IsValid(void) |
1527 | { |
1528 | WRAPPER_NO_CONTRACT; |
1529 | SUPPORTS_DAC; |
1530 | |
1531 | // There is more to iterate if the stackwalk is currently in managed code, |
1532 | // or if there are frames left. |
1533 | // If there is an ExInfo with a pContext, it may substitute for a Frame, |
1534 | // if the ExInfo is due to an exception in managed code. |
1535 | if (!m_crawl.isFrameless && m_crawl.pFrame == FRAME_TOP) |
1536 | { |
1537 | // if we are stopped at a native marker frame, we can still advance at least once more |
1538 | if (m_frameState == SFITER_NATIVE_MARKER_FRAME) |
1539 | { |
1540 | _ASSERTE(m_crawl.isNativeMarker); |
1541 | return TRUE; |
1542 | } |
1543 | |
1544 | #if defined(ELIMINATE_FEF) |
1545 | // Not in managed code, and no frames left -- check for an ExInfo. |
1546 | // @todo: check for exception? |
1547 | m_exInfoWalk.WalkToManaged(); |
1548 | if (m_exInfoWalk.GetContext()) |
1549 | return TRUE; |
1550 | #endif // ELIMINATE_FEF |
1551 | |
1552 | #ifdef _DEBUG |
1553 | // Try to ensure that the frame chain did not change underneath us. |
1554 | // In particular, is thread's starting frame the same as it was when |
1555 | // we started? |
1556 | //DevDiv 168789: In GCStress >= 4 two threads could race on triggering GC; |
1557 | // if the one that just made p/invoke call is second and hits the trap instruction |
1558 | // before call to syncronize with GC, it will push a frame [ResumableFrame on Unix |
1559 | // and RedirectedThreadFrame on Windows] concurrently with GC stackwalking. |
1560 | // In normal case (no GCStress), after p/invoke, IL_STUB will check if GC is in progress and syncronize. |
1561 | BOOL bRedirectedPinvoke = FALSE; |
1562 | |
1563 | #ifdef FEATURE_HIJACK |
1564 | bRedirectedPinvoke = ((GCStress<cfg_instr>::IsEnabled()) && |
1565 | (m_pRealStartFrame != NULL) && |
1566 | (m_pRealStartFrame != FRAME_TOP) && |
1567 | (m_pRealStartFrame->GetVTablePtr() == InlinedCallFrame::GetMethodFrameVPtr()) && |
1568 | (m_pThread->GetFrame() != NULL) && |
1569 | (m_pThread->GetFrame() != FRAME_TOP) && |
1570 | ((m_pThread->GetFrame()->GetVTablePtr() == ResumableFrame::GetMethodFrameVPtr()) || |
1571 | (m_pThread->GetFrame()->GetVTablePtr() == RedirectedThreadFrame::GetMethodFrameVPtr()))); |
1572 | #endif // FEATURE_HIJACK |
1573 | |
1574 | _ASSERTE( (m_pStartFrame != NULL) || |
1575 | (m_flags & POPFRAMES) || |
1576 | (m_pRealStartFrame == m_pThread->GetFrame()) || |
1577 | (bRedirectedPinvoke)); |
1578 | #endif //_DEBUG |
1579 | |
1580 | return FALSE; |
1581 | } |
1582 | |
1583 | return TRUE; |
1584 | } // StackFrameIterator::IsValid() |
1585 | |
1586 | //--------------------------------------------------------------------------------------- |
1587 | // |
1588 | // Advance to the next frame according to the stackwalk flags. If the iterator is stopped |
1589 | // at some place not specified by the stackwalk flags, this function will automatically advance |
1590 | // to the next frame. |
1591 | // |
1592 | // Return Value: |
1593 | // SWA_CONTINUE (== SWA_DONE) if the iterator is successful in advancing to the next frame |
1594 | // SWA_FAILED if an operation performed by the iterator fails |
1595 | // |
1596 | // Notes: |
1597 | // This function returns SWA_DONE when advancing from the last frame to becoming invalid. |
1598 | // It returns SWA_FAILED if the iterator is invalid. |
1599 | // |
1600 | |
1601 | StackWalkAction StackFrameIterator::Next(void) |
1602 | { |
1603 | WRAPPER_NO_CONTRACT; |
1604 | SUPPORTS_DAC; |
1605 | |
1606 | if (!IsValid()) |
1607 | { |
1608 | return SWA_FAILED; |
1609 | } |
1610 | |
1611 | BEGIN_FORBID_TYPELOAD(); |
1612 | |
1613 | StackWalkAction retVal = NextRaw(); |
1614 | if (retVal == SWA_CONTINUE) |
1615 | { |
1616 | retVal = Filter(); |
1617 | } |
1618 | |
1619 | END_FORBID_TYPELOAD(); |
1620 | return retVal; |
1621 | } |
1622 | |
1623 | //--------------------------------------------------------------------------------------- |
1624 | // |
1625 | // Check whether we should stop at the current frame given the stackwalk flags. |
1626 | // If not, continue advancing to the next frame. |
1627 | // |
1628 | // Return Value: |
1629 | // Returns SWA_CONTINUE (== SWA_DONE) if the iterator is invalid or if no automatic advancing is done. |
1630 | // Otherwise returns whatever the last call to NextRaw() returns. |
1631 | // |
1632 | |
1633 | StackWalkAction StackFrameIterator::Filter(void) |
1634 | { |
1635 | WRAPPER_NO_CONTRACT; |
1636 | SUPPORTS_DAC; |
1637 | |
1638 | bool fStop = false; |
1639 | bool fSkippingFunclet = false; |
1640 | |
1641 | #if defined(WIN64EXCEPTIONS) |
1642 | bool fRecheckCurrentFrame = false; |
1643 | bool fSkipFuncletCallback = true; |
1644 | #endif // defined(WIN64EXCEPTIONS) |
1645 | |
1646 | StackWalkAction retVal = SWA_CONTINUE; |
1647 | |
1648 | while (IsValid()) |
1649 | { |
1650 | fStop = false; |
1651 | fSkippingFunclet = false; |
1652 | |
1653 | #if defined(WIN64EXCEPTIONS) |
1654 | ExceptionTracker* pTracker = m_crawl.pThread->GetExceptionState()->GetCurrentExceptionTracker(); |
1655 | fRecheckCurrentFrame = false; |
1656 | fSkipFuncletCallback = true; |
1657 | |
1658 | // by default, there is no funclet for the current frame |
1659 | // that reported GC references |
1660 | m_crawl.fShouldParentToFuncletSkipReportingGCReferences = false; |
1661 | |
1662 | // By default, assume that we are going to report GC references for this |
1663 | // CrawlFrame |
1664 | m_crawl.fShouldCrawlframeReportGCReferences = true; |
1665 | |
1666 | // By default, assume that parent frame is going to report GC references from |
1667 | // the actual location reported by the stack walk. |
1668 | m_crawl.fShouldParentFrameUseUnwindTargetPCforGCReporting = false; |
1669 | |
1670 | if (!m_sfParent.IsNull()) |
1671 | { |
1672 | // we are now skipping frames to get to the funclet's parent |
1673 | fSkippingFunclet = true; |
1674 | } |
1675 | #endif // WIN64EXCEPTIONS |
1676 | |
1677 | switch (m_frameState) |
1678 | { |
1679 | case SFITER_FRAMELESS_METHOD: |
1680 | #if defined(WIN64EXCEPTIONS) |
1681 | ProcessFuncletsForGCReporting: |
1682 | do |
1683 | { |
1684 | // When enumerating GC references for "liveness" reporting, depending upon the architecture, |
1685 | // the responsibility of who reports what varies: |
1686 | // |
1687 | // 1) On ARM, ARM64, and X64 (using RyuJIT), the funclet reports all references belonging |
1688 | // to itself and its parent method. This is indicated by the WantsReportOnlyLeaf flag being |
1689 | // set in the GC information for a function. |
1690 | // |
1691 | // 2) X64 (using JIT64) has the reporting distributed between the funclets and the parent method. |
1692 | // If some reference(s) get double reported, JIT64 can handle that by playing conservative. |
1693 | // JIT64 does NOT set the WantsReportOnlyLeaf flag in the function GC information. |
1694 | // |
1695 | // 3) On ARM, the reporting is done by funclets (if present). Otherwise, the primary method |
1696 | // does it. |
1697 | // |
1698 | // 4) x86 behaves like (1) |
1699 | // |
1700 | // For non-x86, the GcStackCrawlCallBack is invoked with a new flag indicating that |
1701 | // the stackwalk is being done for GC reporting purposes - this flag is GC_FUNCLET_REFERENCE_REPORTING. |
1702 | // The presence of this flag influences how the stackwalker will enumerate frames; which frames will |
1703 | // result in the callback being invoked; etc. The idea is that we want to report only the |
1704 | // relevant frames via the callback that are active on the callstack. This removes the need to |
1705 | // double report (even though JIT64 does it), reporting of dead frames, and makes the |
1706 | // design of reference reporting more consistent (and easier to understand) across architectures. |
1707 | // |
1708 | // The algorithm is as follows (at a conceptual level): |
1709 | // |
1710 | // 1) For each enumerated managed (frameless) frame, check if it is a funclet or not. |
1711 | // 1.1) If it is not a funclet, pass the frame to the callback and goto (2). |
1712 | // 1.2) If it is a funclet, we preserve the callerSP of the parent frame where the funclet was invoked from. |
1713 | // Pass the funclet to the callback. |
1714 | // 1.3) For filter funclets, we enumerate all frames until we reach the parent. Once the parent is reached, |
1715 | // pass it to the callback with a flag indicating that its corresponding funclet has already performed |
1716 | // the reporting. |
1717 | // 1.4) For non-filter funclets, we skip all the frames until we reach the parent. Once the parent is reached, |
1718 | // pass it to the callback with a flag indicating that its corresponding funclet has already performed |
1719 | // the reporting. |
1720 | // 1.5) If we see non-filter funclets while processing a filter funclet, then goto (1.4). Once we have reached the |
1721 | // parent of the non-filter funclet, resume filter funclet processing as described in (1.3). |
1722 | // 2) If another frame is enumerated, goto (1). Otherwise, stackwalk is complete. |
1723 | // |
1724 | // Note: When a flag is passed to the callback indicating that the funclet for a parent frame has already |
1725 | // reported the references, RyuJIT will simply do nothing and return from the callback. |
1726 | // JIT64, on the other hand, will ignore the flag and perform reporting (again). |
1727 | // |
1728 | // Note: For non-filter funclets there is a small window during unwind where we have conceptually unwound past a |
1729 | // funclet but have not yet reached the parent/handling frame. In this case we might need the parent to |
1730 | // report its GC roots. See comments around use of m_fDidFuncletReportGCReferences for more details. |
1731 | // |
1732 | // Needless to say, all applicable (read: active) explicit frames are also processed. |
1733 | |
1734 | // Check if we are in the mode of enumerating GC references (or not) |
1735 | if (m_flags & GC_FUNCLET_REFERENCE_REPORTING) |
1736 | { |
1737 | #ifdef FEATURE_PAL |
1738 | // For interleaved exception handling on non-windows systems, we need to find out if the current frame |
1739 | // was a caller of an already executed exception handler based on the previous exception trackers. |
1740 | // The handler funclet frames are already gone from the stack, so the exception trackers are the |
1741 | // only source of evidence about it. |
1742 | // This is different from Windows where the full stack is preserved until an exception is fully handled |
1743 | // and so we can detect it just from walking the stack. |
1744 | // The filter funclet frames are different, they behave the same way on Windows and Unix. They can be present |
1745 | // on the stack when we reach their parent frame if the filter hasn't finished running yet or they can be |
1746 | // gone if the filter completed running, either succesfully or with unhandled exception. |
1747 | // So the special handling below ignores trackers belonging to filter clauses. |
1748 | bool fProcessingFilterFunclet = !m_sfFuncletParent.IsNull() && !(m_fProcessNonFilterFunclet || m_fProcessIntermediaryNonFilterFunclet); |
1749 | if (!fRecheckCurrentFrame && !fSkippingFunclet && (pTracker != NULL) && !fProcessingFilterFunclet) |
1750 | { |
1751 | // The stack walker is not skipping frames now, which means it didn't find a funclet frame that |
1752 | // would require skipping the current frame. If we find a tracker with caller of actual handling |
1753 | // frame matching the current frame, it means that the funclet stack frame was reclaimed. |
1754 | StackFrame sfFuncletParent; |
1755 | ExceptionTracker* pCurrTracker = pTracker; |
1756 | |
1757 | bool hasFuncletStarted = pTracker->GetEHClauseInfo()->IsManagedCodeEntered(); |
1758 | |
1759 | while (pCurrTracker != NULL) |
1760 | { |
1761 | // Ignore exception trackers for filter clauses, since their frames are handled the same way as on Windows |
1762 | if (pCurrTracker->GetEHClauseInfo()->GetClauseType() != COR_PRF_CLAUSE_FILTER) |
1763 | { |
1764 | if (hasFuncletStarted) |
1765 | { |
1766 | sfFuncletParent = pCurrTracker->GetCallerOfEnclosingClause(); |
1767 | if (!sfFuncletParent.IsNull() && ExceptionTracker::IsUnwoundToTargetParentFrame(&m_crawl, sfFuncletParent)) |
1768 | { |
1769 | break; |
1770 | } |
1771 | } |
1772 | |
1773 | sfFuncletParent = pCurrTracker->GetCallerOfCollapsedEnclosingClause(); |
1774 | if (!sfFuncletParent.IsNull() && ExceptionTracker::IsUnwoundToTargetParentFrame(&m_crawl, sfFuncletParent)) |
1775 | { |
1776 | break; |
1777 | } |
1778 | } |
1779 | |
1780 | // Funclets handling exception for trackers older than the current one were always started, |
1781 | // since the current tracker was created due to an exception in the funclet belonging to |
1782 | // the previous tracker. |
1783 | hasFuncletStarted = true; |
1784 | pCurrTracker = pCurrTracker->GetPreviousExceptionTracker(); |
1785 | } |
1786 | |
1787 | if (pCurrTracker != NULL) |
1788 | { |
1789 | // The current frame is a parent of a funclet that was already unwound and removed from the stack |
1790 | // Set the members the same way we would set them on Windows when we |
1791 | // would detect this just from stack walking. |
1792 | m_sfParent = sfFuncletParent; |
1793 | m_sfFuncletParent = sfFuncletParent; |
1794 | m_fProcessNonFilterFunclet = true; |
1795 | m_fDidFuncletReportGCReferences = false; |
1796 | fSkippingFunclet = true; |
1797 | } |
1798 | } |
1799 | #endif // FEATURE_PAL |
1800 | |
1801 | fRecheckCurrentFrame = false; |
1802 | // Do we already have a reference to a funclet parent? |
1803 | if (!m_sfFuncletParent.IsNull()) |
1804 | { |
1805 | // Have we been processing a filter funclet without encountering any non-filter funclets? |
1806 | if ((m_fProcessNonFilterFunclet == false) && (m_fProcessIntermediaryNonFilterFunclet == false)) |
1807 | { |
1808 | // Yes, we have. Check the current frame and if it is the parent we are looking for, |
1809 | // clear the flag indicating that its funclet has already reported the GC references (see |
1810 | // below comment for Dev11 376329 explaining why we do this). |
1811 | if (ExceptionTracker::IsUnwoundToTargetParentFrame(&m_crawl, m_sfFuncletParent)) |
1812 | { |
1813 | STRESS_LOG2(LF_GCROOTS, LL_INFO100, |
1814 | "STACKWALK: Reached parent of filter funclet @ CallerSP: %p, m_crawl.pFunc = %p\n" , |
1815 | m_sfFuncletParent.SP, m_crawl.pFunc); |
1816 | |
1817 | // Dev11 376329 - ARM: GC hole during filter funclet dispatch. |
1818 | // Filters are invoked during the first pass so we cannot skip |
1819 | // reporting the parent frame since it's still live. Normally |
1820 | // this would cause double reporting, however for filters the JIT |
1821 | // will report all GC roots as pinned to alleviate this problem. |
1822 | // Note that JIT64 does not have this problem since it always |
1823 | // reports the parent frame (this flag is essentially ignored) |
1824 | // so it's safe to make this change for all (non-x86) architectures. |
1825 | m_crawl.fShouldParentToFuncletSkipReportingGCReferences = false; |
1826 | ResetGCRefReportingState(); |
1827 | |
1828 | // We have reached the parent of the filter funclet. |
1829 | // It is possible this is another funclet (e.g. a catch/fault/finally), |
1830 | // so reexamine this frame and see if it needs any skipping. |
1831 | fRecheckCurrentFrame = true; |
1832 | } |
1833 | else |
1834 | { |
1835 | // When processing filter funclets, until we reach the parent frame |
1836 | // we should be seeing only non--filter-funclet frames. This is because |
1837 | // exceptions cannot escape filter funclets. Thus, there can be no frameless frames |
1838 | // between the filter funclet and its parent. |
1839 | _ASSERTE(!m_crawl.IsFilterFunclet()); |
1840 | if (m_crawl.IsFunclet()) |
1841 | { |
1842 | // This is a non-filter funclet encountered when processing a filter funclet. |
1843 | // In such a case, we will deliver a callback for it and skip frames until we reach |
1844 | // its parent. Once there, we will resume frame enumeration for finding |
1845 | // parent of the filter funclet we were originally processing. |
1846 | m_sfIntermediaryFuncletParent = ExceptionTracker::FindParentStackFrameForStackWalk(&m_crawl, true); |
1847 | _ASSERTE(!m_sfIntermediaryFuncletParent.IsNull()); |
1848 | m_fProcessIntermediaryNonFilterFunclet = true; |
1849 | |
1850 | // Set the parent frame so that the funclet skipping logic (further below) |
1851 | // can use it. |
1852 | m_sfParent = m_sfIntermediaryFuncletParent; |
1853 | fSkipFuncletCallback = false; |
1854 | } |
1855 | } |
1856 | } |
1857 | } |
1858 | else |
1859 | { |
1860 | _ASSERTE(m_sfFuncletParent.IsNull()); |
1861 | |
1862 | // We don't have any funclet parent reference. Check if the current frame represents a funclet. |
1863 | if (m_crawl.IsFunclet()) |
1864 | { |
1865 | // Get a reference to the funclet's parent frame. |
1866 | m_sfFuncletParent = ExceptionTracker::FindParentStackFrameForStackWalk(&m_crawl, true); |
1867 | |
1868 | if (m_sfFuncletParent.IsNull()) |
1869 | { |
1870 | // This can only happen if the funclet (and its parent) have been unwound. |
1871 | _ASSERTE(ExceptionTracker::HasFrameBeenUnwoundByAnyActiveException(&m_crawl)); |
1872 | } |
1873 | else |
1874 | { |
1875 | // We should have found the funclet's parent stackframe |
1876 | _ASSERTE(!m_sfFuncletParent.IsNull()); |
1877 | |
1878 | bool fIsFilterFunclet = m_crawl.IsFilterFunclet(); |
1879 | |
1880 | STRESS_LOG4(LF_GCROOTS, LL_INFO100, |
1881 | "STACKWALK: Found %sFilter funclet @ SP: %p, m_crawl.pFunc = %p; FuncletParentCallerSP: %p\n" , |
1882 | (fIsFilterFunclet) ? "" : "Non-" , GetRegdisplaySP(m_crawl.GetRegisterSet()), m_crawl.pFunc, m_sfFuncletParent.SP); |
1883 | |
1884 | if (!fIsFilterFunclet) |
1885 | { |
1886 | m_fProcessNonFilterFunclet = true; |
1887 | |
1888 | // Set the parent frame so that the funclet skipping logic (further below) |
1889 | // can use it. |
1890 | m_sfParent = m_sfFuncletParent; |
1891 | |
1892 | // For non-filter funclets, we will make the callback for the funclet |
1893 | // but skip all the frames until we reach the parent method. When we do, |
1894 | // we will make a callback for it as well and then continue to make callbacks |
1895 | // for all upstack frames, until we reach another funclet or the top of the stack |
1896 | // is reached. |
1897 | fSkipFuncletCallback = false; |
1898 | } |
1899 | else |
1900 | { |
1901 | _ASSERTE(fIsFilterFunclet); |
1902 | m_fProcessNonFilterFunclet = false; |
1903 | |
1904 | // Nothing more to do as we have come across a filter funclet. In this case, we will: |
1905 | // |
1906 | // 1) Get a reference to the parent frame |
1907 | // 2) Report the funclet |
1908 | // 3) Continue to report the parent frame, along with a flag that funclet has been reported (see above) |
1909 | // 4) Continue to report all upstack frames |
1910 | } |
1911 | } |
1912 | } // end if (m_crawl.IsFunclet()) |
1913 | } |
1914 | } // end if (m_flags & GC_FUNCLET_REFERENCE_REPORTING) |
1915 | } |
1916 | while(fRecheckCurrentFrame == true); |
1917 | |
1918 | if ((m_fProcessNonFilterFunclet == true) || (m_fProcessIntermediaryNonFilterFunclet == true) || (m_flags & (FUNCTIONSONLY | SKIPFUNCLETS))) |
1919 | { |
1920 | bool fSkipFrameDueToUnwind = false; |
1921 | |
1922 | if (m_flags & GC_FUNCLET_REFERENCE_REPORTING) |
1923 | { |
1924 | // When a nested exception escapes, it will unwind past a funclet. In addition, it will |
1925 | // unwind the frame chain up to the funclet. When that happens, we'll basically lose |
1926 | // all the stack frames higher than and equal to the funclet. We can't skip funclets in |
1927 | // the usual way because the first frame we see won't be a funclet. It will be something |
1928 | // which has conceptually been unwound. We need to use the information on the |
1929 | // ExceptionTracker to determine if a stack frame is in the unwound stack region. |
1930 | // |
1931 | // If we are enumerating frames for GC reporting and we determined that |
1932 | // the current frame needs to be reported, ensure that it has not already |
1933 | // been unwound by the active exception. If it has been, then we will set a flag |
1934 | // indicating that its references need not be reported. The CrawlFrame, however, |
1935 | // will still be passed to the GC stackwalk callback in case it represents a dynamic |
1936 | // method, to allow the GC to keep that method alive. |
1937 | if (ExceptionTracker::HasFrameBeenUnwoundByAnyActiveException(&m_crawl)) |
1938 | { |
1939 | // Invoke the GC callback for this crawlframe (to keep any dynamic methods alive) but do not report its references. |
1940 | m_crawl.fShouldCrawlframeReportGCReferences = false; |
1941 | fSkipFrameDueToUnwind = true; |
1942 | |
1943 | if (m_crawl.IsFunclet() && !fSkippingFunclet) |
1944 | { |
1945 | // we have come across a funclet that has been unwound and we haven't yet started to |
1946 | // look for its parent. in such a case, the funclet will not have anything to report |
1947 | // so set the corresponding flag to indicate so. |
1948 | |
1949 | _ASSERTE(m_fDidFuncletReportGCReferences); |
1950 | m_fDidFuncletReportGCReferences = false; |
1951 | |
1952 | STRESS_LOG0(LF_GCROOTS, LL_INFO100, "Unwound funclet will skip reporting references\n" ); |
1953 | } |
1954 | } |
1955 | } |
1956 | else if (m_flags & (FUNCTIONSONLY | SKIPFUNCLETS)) |
1957 | { |
1958 | if (ExceptionTracker::IsInStackRegionUnwoundByCurrentException(&m_crawl)) |
1959 | { |
1960 | // don't stop here |
1961 | fSkipFrameDueToUnwind = true; |
1962 | } |
1963 | } |
1964 | |
1965 | if (fSkipFrameDueToUnwind) |
1966 | { |
1967 | if (m_flags & GC_FUNCLET_REFERENCE_REPORTING) |
1968 | { |
1969 | // Check if we are skipping frames. |
1970 | if (!m_sfParent.IsNull()) |
1971 | { |
1972 | // Check if our have reached our target method frame. |
1973 | // IsMaxVal() is a special value to indicate that we should skip one frame. |
1974 | if (m_sfParent.IsMaxVal() || |
1975 | ExceptionTracker::IsUnwoundToTargetParentFrame(&m_crawl, m_sfParent)) |
1976 | { |
1977 | // Reset flag as we have reached target method frame so no more skipping required |
1978 | fSkippingFunclet = false; |
1979 | |
1980 | // We've finished skipping as told. Now check again. |
1981 | |
1982 | if ((m_fProcessIntermediaryNonFilterFunclet == true) || (m_fProcessNonFilterFunclet == true)) |
1983 | { |
1984 | STRESS_LOG2(LF_GCROOTS, LL_INFO100, |
1985 | "STACKWALK: Reached parent of non-filter funclet @ CallerSP: %p, m_crawl.pFunc = %p\n" , |
1986 | m_sfParent.SP, m_crawl.pFunc); |
1987 | |
1988 | // landing here indicates that the funclet's parent has been unwound so |
1989 | // this will always be true, no need to predicate on the state of the funclet |
1990 | m_crawl.fShouldParentToFuncletSkipReportingGCReferences = true; |
1991 | |
1992 | // we've reached the parent so reset our state |
1993 | m_fDidFuncletReportGCReferences = true; |
1994 | |
1995 | ResetGCRefReportingState(m_fProcessIntermediaryNonFilterFunclet); |
1996 | } |
1997 | |
1998 | m_sfParent.Clear(); |
1999 | |
2000 | if (m_crawl.IsFunclet()) |
2001 | { |
2002 | // We've hit a funclet. |
2003 | // Since we are in GC reference reporting mode, |
2004 | // then avoid code duplication and go to |
2005 | // funclet processing. |
2006 | fRecheckCurrentFrame = true; |
2007 | goto ProcessFuncletsForGCReporting; |
2008 | } |
2009 | } |
2010 | } |
2011 | } // end if (m_flags & GC_FUNCLET_REFERENCE_REPORTING) |
2012 | |
2013 | if (m_crawl.fShouldCrawlframeReportGCReferences) |
2014 | { |
2015 | // Skip the callback for this frame - we don't do this for unwound frames encountered |
2016 | // in GC stackwalk since they may represent dynamic methods whose resolver objects |
2017 | // the GC may need to keep alive. |
2018 | break; |
2019 | } |
2020 | } |
2021 | else |
2022 | { |
2023 | _ASSERTE(!fSkipFrameDueToUnwind); |
2024 | |
2025 | // Check if we are skipping frames. |
2026 | if (!m_sfParent.IsNull()) |
2027 | { |
2028 | // Check if we have reached our target method frame. |
2029 | // IsMaxVal() is a special value to indicate that we should skip one frame. |
2030 | if (m_sfParent.IsMaxVal() || |
2031 | ExceptionTracker::IsUnwoundToTargetParentFrame(&m_crawl, m_sfParent)) |
2032 | { |
2033 | // We've finished skipping as told. Now check again. |
2034 | if ((m_fProcessIntermediaryNonFilterFunclet == true) || (m_fProcessNonFilterFunclet == true)) |
2035 | { |
2036 | // If we are here, we should be in GC reference reporting mode. |
2037 | _ASSERTE(m_flags & GC_FUNCLET_REFERENCE_REPORTING); |
2038 | |
2039 | STRESS_LOG2(LF_GCROOTS, LL_INFO100, |
2040 | "STACKWALK: Reached parent of non-filter funclet @ CallerSP: %p, m_crawl.pFunc = %p\n" , |
2041 | m_sfParent.SP, m_crawl.pFunc); |
2042 | |
2043 | // by default a funclet's parent won't report its GC roots since they would have already |
2044 | // been reported by the funclet. however there is a small window during unwind before |
2045 | // control returns to the OS where we might require the parent to report. more below. |
2046 | bool shouldSkipReporting = true; |
2047 | |
2048 | if (!m_fDidFuncletReportGCReferences) |
2049 | { |
2050 | // we have reached the parent frame of the funclet which didn't report roots since it was already unwound. |
2051 | // check if the parent frame of the funclet is also handling an exception. if it is, then we will need to |
2052 | // report roots for it since the catch handler may use references inside it. |
2053 | |
2054 | STRESS_LOG0(LF_GCROOTS, LL_INFO100, |
2055 | "STACKWALK: Reached parent of funclet which didn't report GC roots, since funclet is already unwound.\n" ); |
2056 | |
2057 | if (pTracker->GetCallerOfActualHandlingFrame() == m_sfFuncletParent) |
2058 | { |
2059 | // we should not skip reporting for this parent frame |
2060 | shouldSkipReporting = false; |
2061 | |
2062 | // now that we've found the parent that will report roots reset our state. |
2063 | m_fDidFuncletReportGCReferences = true; |
2064 | |
2065 | // After funclet gets unwound parent will begin to report gc references. Reporting GC references |
2066 | // using the IP of throw in parent method can crash application. Parent could have locals objects |
2067 | // which might not have been reported by funclet as live and would have already been collected |
2068 | // when funclet was on stack. Now if parent starts using IP of throw to report gc references it |
2069 | // would report garbage values as live objects. So instead parent can use the IP of the resume |
2070 | // address of catch funclet to report live GC references. |
2071 | m_crawl.fShouldParentFrameUseUnwindTargetPCforGCReporting = true; |
2072 | // Store catch clause info. Helps retrieve IP of resume address. |
2073 | m_crawl.ehClauseForCatch = pTracker->GetEHClauseForCatch(); |
2074 | |
2075 | STRESS_LOG3(LF_GCROOTS, LL_INFO100, |
2076 | "STACKWALK: Parent of funclet which didn't report GC roots is handling an exception at 0x%p" |
2077 | "(EH handler range [%x, %x) ), so we need to specially report roots to ensure variables alive" |
2078 | " in its handler stay live.\n" , |
2079 | pTracker->GetCatchToCallPC(), m_crawl.ehClauseForCatch.HandlerStartPC, |
2080 | m_crawl.ehClauseForCatch.HandlerEndPC); |
2081 | } |
2082 | else if (!m_crawl.IsFunclet()) |
2083 | { |
2084 | // we've reached the parent and it's not handling an exception, it's also not |
2085 | // a funclet so reset our state. note that we cannot reset the state when the |
2086 | // parent is a funclet since the leaf funclet didn't report any references and |
2087 | // we might have a catch handler below us that might contain GC roots. |
2088 | m_fDidFuncletReportGCReferences = true; |
2089 | } |
2090 | |
2091 | STRESS_LOG4(LF_GCROOTS, LL_INFO100, |
2092 | "Funclet didn't report references: handling frame: %p, m_sfFuncletParent = %p, is funclet: %d, skip reporting %d\n" , |
2093 | pTracker->GetEstablisherOfActualHandlingFrame().SP, m_sfFuncletParent.SP, m_crawl.IsFunclet(), shouldSkipReporting); |
2094 | } |
2095 | m_crawl.fShouldParentToFuncletSkipReportingGCReferences = shouldSkipReporting; |
2096 | |
2097 | ResetGCRefReportingState(m_fProcessIntermediaryNonFilterFunclet); |
2098 | } |
2099 | |
2100 | m_sfParent.Clear(); |
2101 | } |
2102 | } // end if (!m_sfParent.IsNull()) |
2103 | |
2104 | if (m_sfParent.IsNull() && m_crawl.IsFunclet()) |
2105 | { |
2106 | // We've hit a funclet. |
2107 | if (m_flags & GC_FUNCLET_REFERENCE_REPORTING) |
2108 | { |
2109 | // If we are in GC reference reporting mode, |
2110 | // then avoid code duplication and go to |
2111 | // funclet processing. |
2112 | fRecheckCurrentFrame = true; |
2113 | goto ProcessFuncletsForGCReporting; |
2114 | } |
2115 | else |
2116 | { |
2117 | // Start skipping frames. |
2118 | m_sfParent = ExceptionTracker::FindParentStackFrameForStackWalk(&m_crawl); |
2119 | } |
2120 | |
2121 | // m_sfParent can be NULL if the current funclet is a filter, |
2122 | // in which case we shouldn't skip the frames. |
2123 | } |
2124 | |
2125 | // If we're skipping frames due to a funclet on the stack |
2126 | // or this is an IL stub (which don't get reported when |
2127 | // FUNCTIONSONLY is set) we skip the callback. |
2128 | // |
2129 | // The only exception is the GC reference reporting mode - |
2130 | // for it, we will callback for the funclet so that references |
2131 | // are reported and then continue to skip all frames between the funclet |
2132 | // and its parent, eventually making a callback for the parent as well. |
2133 | if (m_flags & (FUNCTIONSONLY | SKIPFUNCLETS)) |
2134 | { |
2135 | if (!m_sfParent.IsNull() || m_crawl.pFunc->IsILStub()) |
2136 | { |
2137 | STRESS_LOG4(LF_GCROOTS, LL_INFO100, |
2138 | "STACKWALK: %s: not making callback for this frame, SPOfParent = %p, \ |
2139 | isILStub = %d, m_crawl.pFunc = %pM\n" , |
2140 | (!m_sfParent.IsNull() ? "SKIPPING_TO_FUNCLET_PARENT" : "IS_IL_STUB" ), |
2141 | m_sfParent.SP, |
2142 | (m_crawl.pFunc->IsILStub() ? 1 : 0), |
2143 | m_crawl.pFunc); |
2144 | |
2145 | // don't stop here |
2146 | break; |
2147 | } |
2148 | } |
2149 | else if (fSkipFuncletCallback && (m_flags & GC_FUNCLET_REFERENCE_REPORTING)) |
2150 | { |
2151 | if (!m_sfParent.IsNull()) |
2152 | { |
2153 | STRESS_LOG4(LF_GCROOTS, LL_INFO100, |
2154 | "STACKWALK: %s: not making callback for this frame, SPOfParent = %p, \ |
2155 | isILStub = %d, m_crawl.pFunc = %pM\n" , |
2156 | (!m_sfParent.IsNull() ? "SKIPPING_TO_FUNCLET_PARENT" : "IS_IL_STUB" ), |
2157 | m_sfParent.SP, |
2158 | (m_crawl.pFunc->IsILStub() ? 1 : 0), |
2159 | m_crawl.pFunc); |
2160 | |
2161 | // don't stop here |
2162 | break; |
2163 | } |
2164 | } |
2165 | } |
2166 | } |
2167 | else if (m_flags & GC_FUNCLET_REFERENCE_REPORTING) |
2168 | { |
2169 | // If we are enumerating frames for GC reporting and we determined that |
2170 | // the current frame needs to be reported, ensure that it has not already |
2171 | // been unwound by the active exception. If it has been, then we will |
2172 | // simply skip it and not deliver a callback for it. |
2173 | if (ExceptionTracker::HasFrameBeenUnwoundByAnyActiveException(&m_crawl)) |
2174 | { |
2175 | // Invoke the GC callback for this crawlframe (to keep any dynamic methods alive) but do not report its references. |
2176 | m_crawl.fShouldCrawlframeReportGCReferences = false; |
2177 | } |
2178 | } |
2179 | |
2180 | #else // WIN64EXCEPTIONS |
2181 | // Skip IL stubs |
2182 | if (m_flags & FUNCTIONSONLY) |
2183 | { |
2184 | if (m_crawl.pFunc->IsILStub()) |
2185 | { |
2186 | LOG((LF_GCROOTS, LL_INFO100000, |
2187 | "STACKWALK: IS_IL_STUB: not making callback for this frame, m_crawl.pFunc = %s\n" , |
2188 | m_crawl.pFunc->m_pszDebugMethodName)); |
2189 | |
2190 | // don't stop here |
2191 | break; |
2192 | } |
2193 | } |
2194 | #endif // WIN64EXCEPTIONS |
2195 | |
2196 | fStop = true; |
2197 | break; |
2198 | |
2199 | case SFITER_FRAME_FUNCTION: |
2200 | // |
2201 | // fall through |
2202 | // |
2203 | |
2204 | case SFITER_SKIPPED_FRAME_FUNCTION: |
2205 | if (!fSkippingFunclet) |
2206 | { |
2207 | #if defined(WIN64EXCEPTIONS) |
2208 | if (m_flags & GC_FUNCLET_REFERENCE_REPORTING) |
2209 | { |
2210 | // If we are enumerating frames for GC reporting and we determined that |
2211 | // the current frame needs to be reported, ensure that it has not already |
2212 | // been unwound by the active exception. If it has been, then we will |
2213 | // simply skip it and not deliver a callback for it. |
2214 | if (ExceptionTracker::HasFrameBeenUnwoundByAnyActiveException(&m_crawl)) |
2215 | { |
2216 | // Invoke the GC callback for this crawlframe (to keep any dynamic methods alive) but do not report its references. |
2217 | m_crawl.fShouldCrawlframeReportGCReferences = false; |
2218 | } |
2219 | } |
2220 | else if (m_flags & (FUNCTIONSONLY | SKIPFUNCLETS)) |
2221 | { |
2222 | // See the comment above for IsInStackRegionUnwoundByCurrentException(). |
2223 | if (ExceptionTracker::IsInStackRegionUnwoundByCurrentException(&m_crawl)) |
2224 | { |
2225 | // don't stop here |
2226 | break; |
2227 | } |
2228 | } |
2229 | #endif // WIN64EXCEPTIONS |
2230 | if ( (m_crawl.pFunc != NULL) || !(m_flags & FUNCTIONSONLY) ) |
2231 | { |
2232 | fStop = true; |
2233 | } |
2234 | } |
2235 | break; |
2236 | |
2237 | case SFITER_NO_FRAME_TRANSITION: |
2238 | if (!fSkippingFunclet) |
2239 | { |
2240 | if (m_flags & NOTIFY_ON_NO_FRAME_TRANSITIONS) |
2241 | { |
2242 | _ASSERTE(m_crawl.isNoFrameTransition == true); |
2243 | fStop = true; |
2244 | } |
2245 | } |
2246 | break; |
2247 | |
2248 | case SFITER_NATIVE_MARKER_FRAME: |
2249 | if (!fSkippingFunclet) |
2250 | { |
2251 | if (m_flags & NOTIFY_ON_U2M_TRANSITIONS) |
2252 | { |
2253 | _ASSERTE(m_crawl.isNativeMarker == true); |
2254 | fStop = true; |
2255 | } |
2256 | } |
2257 | break; |
2258 | |
2259 | case SFITER_INITIAL_NATIVE_CONTEXT: |
2260 | if (!fSkippingFunclet) |
2261 | { |
2262 | if (m_flags & NOTIFY_ON_INITIAL_NATIVE_CONTEXT) |
2263 | { |
2264 | fStop = true; |
2265 | } |
2266 | } |
2267 | break; |
2268 | |
2269 | default: |
2270 | UNREACHABLE(); |
2271 | } |
2272 | |
2273 | if (fStop) |
2274 | { |
2275 | break; |
2276 | } |
2277 | else |
2278 | { |
2279 | INDEBUG(m_crawl.pThread->DebugLogStackWalkInfo(&m_crawl, "FILTER " , m_uFramesProcessed)); |
2280 | retVal = NextRaw(); |
2281 | if (retVal != SWA_CONTINUE) |
2282 | { |
2283 | break; |
2284 | } |
2285 | } |
2286 | } |
2287 | |
2288 | return retVal; |
2289 | } |
2290 | |
2291 | //--------------------------------------------------------------------------------------- |
2292 | // |
2293 | // Advance to the next frame and stop, regardless of the stackwalk flags. |
2294 | // |
2295 | // Return Value: |
2296 | // SWA_CONTINUE (== SWA_DONE) if the iterator is successful in advancing to the next frame |
2297 | // SWA_FAILED if an operation performed by the iterator fails |
2298 | // |
2299 | // Assumptions: |
2300 | // The caller has checked that the iterator is valid. |
2301 | // |
2302 | // Notes: |
2303 | // This function returns SWA_DONE when advancing from the last frame to becoming invalid. |
2304 | // |
2305 | |
2306 | StackWalkAction StackFrameIterator::(void) |
2307 | { |
2308 | WRAPPER_NO_CONTRACT; |
2309 | SUPPORTS_DAC; |
2310 | |
2311 | _ASSERTE(IsValid()); |
2312 | |
2313 | INDEBUG(m_uFramesProcessed++); |
2314 | |
2315 | StackWalkAction retVal = SWA_CONTINUE; |
2316 | |
2317 | if (m_frameState == SFITER_SKIPPED_FRAME_FUNCTION) |
2318 | { |
2319 | #if !defined(_TARGET_X86_) && defined(_DEBUG) |
2320 | // make sure we're not skipping a different transition |
2321 | if (m_crawl.pFrame->NeedsUpdateRegDisplay()) |
2322 | { |
2323 | CONSISTENCY_CHECK(m_crawl.pFrame->IsTransitionToNativeFrame()); |
2324 | if (m_crawl.pFrame->GetVTablePtr() == InlinedCallFrame::GetMethodFrameVPtr()) |
2325 | { |
2326 | // ControlPC may be different as the InlinedCallFrame stays active throughout |
2327 | // the STOP_FOR_GC callout but we can use the stack/frame pointer for the assert. |
2328 | PTR_InlinedCallFrame pICF = dac_cast<PTR_InlinedCallFrame>(m_crawl.pFrame); |
2329 | CONSISTENCY_CHECK((GetRegdisplaySP(m_crawl.pRD) == (TADDR)pICF->GetCallSiteSP()) |
2330 | || (GetFP(m_crawl.pRD->pCurrentContext) == pICF->GetCalleeSavedFP())); |
2331 | } |
2332 | else |
2333 | { |
2334 | CONSISTENCY_CHECK(GetControlPC(m_crawl.pRD) == m_crawl.pFrame->GetReturnAddress()); |
2335 | } |
2336 | } |
2337 | #endif // !defined(_TARGET_X86_) && defined(_DEBUG) |
2338 | |
2339 | #if defined(STACKWALKER_MAY_POP_FRAMES) |
2340 | if (m_flags & POPFRAMES) |
2341 | { |
2342 | _ASSERTE(m_crawl.pFrame == m_crawl.pThread->GetFrame()); |
2343 | |
2344 | // If we got here, the current frame chose not to handle the |
2345 | // exception. Give it a chance to do any termination work |
2346 | // before we pop it off. |
2347 | |
2348 | CLEAR_THREAD_TYPE_STACKWALKER(); |
2349 | END_FORBID_TYPELOAD(); |
2350 | |
2351 | m_crawl.pFrame->ExceptionUnwind(); |
2352 | |
2353 | BEGIN_FORBID_TYPELOAD(); |
2354 | SET_THREAD_TYPE_STACKWALKER(m_pThread); |
2355 | |
2356 | // Pop off this frame and go on to the next one. |
2357 | m_crawl.GotoNextFrame(); |
2358 | |
2359 | // When StackWalkFramesEx is originally called, we ensure |
2360 | // that if POPFRAMES is set that the thread is in COOP mode |
2361 | // and that running thread is walking itself. Thus, this |
2362 | // COOP assertion is safe. |
2363 | BEGIN_GCX_ASSERT_COOP; |
2364 | m_crawl.pThread->SetFrame(m_crawl.pFrame); |
2365 | END_GCX_ASSERT_COOP; |
2366 | } |
2367 | else |
2368 | #endif // STACKWALKER_MAY_POP_FRAMES |
2369 | { |
2370 | // go to the next frame |
2371 | m_crawl.GotoNextFrame(); |
2372 | } |
2373 | |
2374 | // check for skipped frames again |
2375 | if (CheckForSkippedFrames()) |
2376 | { |
2377 | // there are more skipped explicit frames |
2378 | _ASSERTE(m_frameState == SFITER_SKIPPED_FRAME_FUNCTION); |
2379 | goto Cleanup; |
2380 | } |
2381 | else |
2382 | { |
2383 | #ifndef PROCESS_EXPLICIT_FRAME_BEFORE_MANAGED_FRAME |
2384 | // On x86, we process a managed stack frame before processing any explicit frames contained in it. |
2385 | // So when we are done with the skipped explicit frame, we have already processed the managed |
2386 | // stack frame, and it is time to move onto the next stack frame. |
2387 | PostProcessingForManagedFrames(); |
2388 | if (m_frameState == SFITER_NATIVE_MARKER_FRAME) |
2389 | { |
2390 | goto Cleanup; |
2391 | } |
2392 | #else // !PROCESS_EXPLICIT_FRAME_BEFORE_MANAGED_FRAME |
2393 | // We are done handling the skipped explicit frame at this point. So move on to the |
2394 | // managed stack frame. |
2395 | m_crawl.isFrameless = true; |
2396 | m_crawl.codeInfo = m_cachedCodeInfo; |
2397 | m_crawl.pFunc = m_crawl.codeInfo.GetMethodDesc(); |
2398 | |
2399 | |
2400 | PreProcessingForManagedFrames(); |
2401 | goto Cleanup; |
2402 | #endif // PROCESS_EXPLICIT_FRAME_BEFORE_MANAGED_FRAME |
2403 | } |
2404 | } |
2405 | else if (m_frameState == SFITER_FRAMELESS_METHOD) |
2406 | { |
2407 | // Now find out if we need to leave monitors |
2408 | |
2409 | #ifdef _TARGET_X86_ |
2410 | // |
2411 | // For non-x86 platforms, the JIT generates try/finally to leave monitors; for x86, the VM handles the monitor |
2412 | // |
2413 | #if defined(STACKWALKER_MAY_POP_FRAMES) |
2414 | if (m_flags & POPFRAMES) |
2415 | { |
2416 | BEGIN_GCX_ASSERT_COOP; |
2417 | |
2418 | if (m_crawl.pFunc->IsSynchronized()) |
2419 | { |
2420 | MethodDesc * pMD = m_crawl.pFunc; |
2421 | OBJECTREF orUnwind = NULL; |
2422 | |
2423 | if (m_crawl.GetCodeManager()->IsInSynchronizedRegion(m_crawl.GetRelOffset(), |
2424 | m_crawl.GetGCInfoToken(), |
2425 | m_crawl.GetCodeManagerFlags())) |
2426 | { |
2427 | if (pMD->IsStatic()) |
2428 | { |
2429 | MethodTable * pMT = pMD->GetMethodTable(); |
2430 | orUnwind = pMT->GetManagedClassObjectIfExists(); |
2431 | |
2432 | _ASSERTE(orUnwind != NULL); |
2433 | } |
2434 | else |
2435 | { |
2436 | orUnwind = m_crawl.GetCodeManager()->GetInstance( |
2437 | m_crawl.pRD, |
2438 | m_crawl.GetCodeInfo()); |
2439 | } |
2440 | |
2441 | _ASSERTE(orUnwind != NULL); |
2442 | VALIDATEOBJECTREF(orUnwind); |
2443 | |
2444 | if (orUnwind != NULL) |
2445 | { |
2446 | orUnwind->LeaveObjMonitorAtException(); |
2447 | } |
2448 | } |
2449 | } |
2450 | |
2451 | END_GCX_ASSERT_COOP; |
2452 | } |
2453 | #endif // STACKWALKER_MAY_POP_FRAMES |
2454 | #endif // _TARGET_X86_ |
2455 | |
2456 | #if !defined(ELIMINATE_FEF) |
2457 | // FaultingExceptionFrame is special case where it gets |
2458 | // pushed on the stack after the frame is running |
2459 | _ASSERTE((m_crawl.pFrame == FRAME_TOP) || |
2460 | ((TADDR)GetRegdisplaySP(m_crawl.pRD) < dac_cast<TADDR>(m_crawl.pFrame)) || |
2461 | (m_crawl.pFrame->GetVTablePtr() == FaultingExceptionFrame::GetMethodFrameVPtr()) || |
2462 | (m_crawl.pFrame->GetVTablePtr() == ContextTransitionFrame::GetMethodFrameVPtr())); |
2463 | #endif // !defined(ELIMINATE_FEF) |
2464 | |
2465 | // Get rid of the frame (actually, it isn't really popped) |
2466 | |
2467 | LOG((LF_GCROOTS, LL_EVERYTHING, "STACKWALK: [%03x] about to unwind for '%s', SP:" FMT_ADDR ", IP:" FMT_ADDR "\n" , |
2468 | m_uFramesProcessed, |
2469 | m_crawl.pFunc->m_pszDebugMethodName, |
2470 | DBG_ADDR(GetRegdisplaySP(m_crawl.pRD)), |
2471 | DBG_ADDR(GetControlPC(m_crawl.pRD)))); |
2472 | |
2473 | #if !defined(DACCESS_COMPILE) && defined(HAS_QUICKUNWIND) |
2474 | StackwalkCacheEntry *pCacheEntry = m_crawl.GetStackwalkCacheEntry(); |
2475 | if (pCacheEntry != NULL) |
2476 | { |
2477 | _ASSERTE(m_crawl.stackWalkCache.Enabled() && (m_flags & LIGHTUNWIND)); |
2478 | |
2479 | // lightened schema: take stack unwind info from stackwalk cache |
2480 | EECodeManager::QuickUnwindStackFrame(m_crawl.pRD, pCacheEntry, EECodeManager::UnwindCurrentStackFrame); |
2481 | } |
2482 | else |
2483 | #endif // !DACCESS_COMPILE && HAS_QUICKUNWIND |
2484 | { |
2485 | #if !defined(DACCESS_COMPILE) |
2486 | // non-optimized stack unwind schema, doesn't use StackwalkCache |
2487 | UINT_PTR curSP = (UINT_PTR)GetRegdisplaySP(m_crawl.pRD); |
2488 | UINT_PTR curIP = (UINT_PTR)GetControlPC(m_crawl.pRD); |
2489 | #endif // !DACCESS_COMPILE |
2490 | |
2491 | bool fInsertCacheEntry = m_crawl.stackWalkCache.Enabled() && |
2492 | (m_flags & LIGHTUNWIND) && |
2493 | (m_pCachedGSCookie == NULL); |
2494 | |
2495 | // Is this a dynamic method. Dynamic methods can be GC collected and so IP to method mapping |
2496 | // is not persistent. Therefore do not cache information for this frame. |
2497 | BOOL isCollectableMethod = ExecutionManager::IsCollectibleMethod(m_crawl.GetMethodToken()); |
2498 | if(isCollectableMethod) |
2499 | fInsertCacheEntry = FALSE; |
2500 | |
2501 | StackwalkCacheUnwindInfo unwindInfo; |
2502 | |
2503 | if (!m_crawl.GetCodeManager()->UnwindStackFrame( |
2504 | m_crawl.pRD, |
2505 | &m_cachedCodeInfo, |
2506 | m_codeManFlags |
2507 | | m_crawl.GetCodeManagerFlags() |
2508 | | ((m_flags & PROFILER_DO_STACK_SNAPSHOT) ? SpeculativeStackwalk : 0), |
2509 | &m_crawl.codeManState, |
2510 | (fInsertCacheEntry ? &unwindInfo : NULL))) |
2511 | { |
2512 | LOG((LF_CORPROF, LL_INFO100, "**PROF: m_crawl.GetCodeManager()->UnwindStackFrame failure leads to SWA_FAILED.\n" )); |
2513 | retVal = SWA_FAILED; |
2514 | goto Cleanup; |
2515 | } |
2516 | |
2517 | #if !defined(DACCESS_COMPILE) |
2518 | // store into hashtable if fits, otherwise just use old schema |
2519 | if (fInsertCacheEntry) |
2520 | { |
2521 | // |
2522 | // information we add to cache, consists of two parts: |
2523 | // 1. SPOffset - locals, etc. of current method, adding which to current ESP we get to retAddr ptr |
2524 | // 2. argSize - size of pushed function arguments, the rest we need to add to get new ESP |
2525 | // we have to store two parts of ESP delta, since we need to update pPC also, and so require retAddr ptr |
2526 | // |
2527 | // newSP = oldSP + SPOffset + sizeof(PTR) + argSize |
2528 | // |
2529 | UINT_PTR SPOffset = (UINT_PTR)GetRegdisplayStackMark(m_crawl.pRD) - curSP; |
2530 | UINT_PTR argSize = (UINT_PTR)GetRegdisplaySP(m_crawl.pRD) - curSP - SPOffset - sizeof(void*); |
2531 | |
2532 | StackwalkCacheEntry cacheEntry = {0}; |
2533 | if (cacheEntry.Init( |
2534 | curIP, |
2535 | SPOffset, |
2536 | &unwindInfo, |
2537 | argSize)) |
2538 | { |
2539 | m_crawl.stackWalkCache.Insert(&cacheEntry); |
2540 | } |
2541 | } |
2542 | #endif // !DACCESS_COMPILE |
2543 | } |
2544 | |
2545 | #define FAIL_IF_SPECULATIVE_WALK(condition) \ |
2546 | if (m_flags & PROFILER_DO_STACK_SNAPSHOT) \ |
2547 | { \ |
2548 | if (!(condition)) \ |
2549 | { \ |
2550 | LOG((LF_CORPROF, LL_INFO100, "**PROF: " #condition " failure leads to SWA_FAILED.\n")); \ |
2551 | retVal = SWA_FAILED; \ |
2552 | goto Cleanup; \ |
2553 | } \ |
2554 | } \ |
2555 | else \ |
2556 | { \ |
2557 | _ASSERTE(condition); \ |
2558 | } |
2559 | |
2560 | // When the stackwalk is seeded with a profiler context, the context |
2561 | // might be bogus. Check the stack pointer and the program counter for validity here. |
2562 | // (Note that these checks are not strictly necessary since we are able |
2563 | // to recover from AVs during profiler stackwalk.) |
2564 | |
2565 | PTR_VOID newSP = PTR_VOID((TADDR)GetRegdisplaySP(m_crawl.pRD)); |
2566 | #ifndef NO_FIXED_STACK_LIMIT |
2567 | FAIL_IF_SPECULATIVE_WALK(newSP >= m_crawl.pThread->GetCachedStackLimit()); |
2568 | #endif // !NO_FIXED_STACK_LIMIT |
2569 | FAIL_IF_SPECULATIVE_WALK(newSP < m_crawl.pThread->GetCachedStackBase()); |
2570 | |
2571 | #undef FAIL_IF_SPECULATIVE_WALK |
2572 | |
2573 | LOG((LF_GCROOTS, LL_EVERYTHING, "STACKWALK: [%03x] finished unwind for '%s', SP:" FMT_ADDR \ |
2574 | ", IP:" FMT_ADDR "\n" , |
2575 | m_uFramesProcessed, |
2576 | m_crawl.pFunc->m_pszDebugMethodName, |
2577 | DBG_ADDR(GetRegdisplaySP(m_crawl.pRD)), |
2578 | DBG_ADDR(GetControlPC(m_crawl.pRD)))); |
2579 | |
2580 | m_crawl.isFirst = FALSE; |
2581 | m_crawl.isInterrupted = FALSE; |
2582 | m_crawl.hasFaulted = FALSE; |
2583 | m_crawl.isIPadjusted = FALSE; |
2584 | |
2585 | #ifndef PROCESS_EXPLICIT_FRAME_BEFORE_MANAGED_FRAME |
2586 | // remember, x86 handles the managed stack frame before the explicit frames contained in it |
2587 | if (CheckForSkippedFrames()) |
2588 | { |
2589 | _ASSERTE(m_frameState == SFITER_SKIPPED_FRAME_FUNCTION); |
2590 | goto Cleanup; |
2591 | } |
2592 | #endif // !PROCESS_EXPLICIT_FRAME_BEFORE_MANAGED_FRAME |
2593 | |
2594 | PostProcessingForManagedFrames(); |
2595 | if (m_frameState == SFITER_NATIVE_MARKER_FRAME) |
2596 | { |
2597 | goto Cleanup; |
2598 | } |
2599 | } |
2600 | else if (m_frameState == SFITER_FRAME_FUNCTION) |
2601 | { |
2602 | Frame* pInlinedFrame = NULL; |
2603 | |
2604 | if (InlinedCallFrame::FrameHasActiveCall(m_crawl.pFrame)) |
2605 | { |
2606 | pInlinedFrame = m_crawl.pFrame; |
2607 | } |
2608 | |
2609 | unsigned uFrameAttribs = m_crawl.pFrame->GetFrameAttribs(); |
2610 | |
2611 | // Special resumable frames make believe they are on top of the stack. |
2612 | m_crawl.isFirst = (uFrameAttribs & Frame::FRAME_ATTR_RESUMABLE) != 0; |
2613 | |
2614 | // If the frame is a subclass of ExceptionFrame, |
2615 | // then we know this is interrupted. |
2616 | m_crawl.isInterrupted = (uFrameAttribs & Frame::FRAME_ATTR_EXCEPTION) != 0; |
2617 | |
2618 | if (m_crawl.isInterrupted) |
2619 | { |
2620 | m_crawl.hasFaulted = (uFrameAttribs & Frame::FRAME_ATTR_FAULTED) != 0; |
2621 | m_crawl.isIPadjusted = (uFrameAttribs & Frame::FRAME_ATTR_OUT_OF_LINE) != 0; |
2622 | _ASSERTE(!m_crawl.hasFaulted || !m_crawl.isIPadjusted); // both cant be set together |
2623 | } |
2624 | |
2625 | // |
2626 | // Update app domain if this frame caused a transition. |
2627 | // |
2628 | |
2629 | AppDomain *retDomain = m_crawl.pFrame->GetReturnDomain(); |
2630 | if (retDomain != NULL) |
2631 | { |
2632 | m_crawl.pAppDomain = retDomain; |
2633 | } |
2634 | |
2635 | PCODE adr = m_crawl.pFrame->GetReturnAddress(); |
2636 | _ASSERTE(adr != (PCODE)POISONC); |
2637 | |
2638 | _ASSERTE(!pInlinedFrame || adr); |
2639 | |
2640 | if (adr) |
2641 | { |
2642 | ProcessIp(adr); |
2643 | |
2644 | _ASSERTE(m_crawl.GetCodeInfo()->IsValid() || !pInlinedFrame); |
2645 | |
2646 | if (m_crawl.isFrameless) |
2647 | { |
2648 | m_crawl.pFrame->UpdateRegDisplay(m_crawl.pRD); |
2649 | |
2650 | #if defined(RECORD_RESUMABLE_FRAME_SP) |
2651 | CONSISTENCY_CHECK(NULL == m_pvResumableFrameTargetSP); |
2652 | |
2653 | if (m_crawl.isFirst) |
2654 | { |
2655 | if (m_flags & THREAD_IS_SUSPENDED) |
2656 | { |
2657 | _ASSERTE(m_crawl.isProfilerDoStackSnapshot); |
2658 | |
2659 | // abort the stackwalk, we can't proceed without risking deadlock |
2660 | retVal = SWA_FAILED; |
2661 | goto Cleanup; |
2662 | } |
2663 | |
2664 | // we are about to unwind, which may take a lock, so the thread |
2665 | // better not be suspended. |
2666 | CONSISTENCY_CHECK(!(m_flags & THREAD_IS_SUSPENDED)); |
2667 | |
2668 | #if !defined(DACCESS_COMPILE) |
2669 | if (m_crawl.stackWalkCache.Enabled() && (m_flags & LIGHTUNWIND)) |
2670 | { |
2671 | m_crawl.isCachedMethod = m_crawl.stackWalkCache.Lookup((UINT_PTR)adr); |
2672 | } |
2673 | #endif // DACCESS_COMPILE |
2674 | |
2675 | EECodeManager::EnsureCallerContextIsValid(m_crawl.pRD, m_crawl.GetStackwalkCacheEntry()); |
2676 | m_pvResumableFrameTargetSP = (LPVOID)GetSP(m_crawl.pRD->pCallerContext); |
2677 | } |
2678 | #endif // RECORD_RESUMABLE_FRAME_SP |
2679 | |
2680 | |
2681 | #if defined(_DEBUG) && !defined(DACCESS_COMPILE) && !defined(WIN64EXCEPTIONS) |
2682 | // We are transitioning from unmanaged code to managed code... lets do some validation of our |
2683 | // EH mechanism on platforms that we can. |
2684 | VerifyValidTransitionFromManagedCode(m_crawl.pThread, &m_crawl); |
2685 | #endif // _DEBUG && !DACCESS_COMPILE && !WIN64EXCEPTIONS |
2686 | } |
2687 | } |
2688 | |
2689 | if (!pInlinedFrame) |
2690 | { |
2691 | #if defined(STACKWALKER_MAY_POP_FRAMES) |
2692 | if (m_flags & POPFRAMES) |
2693 | { |
2694 | // If we got here, the current frame chose not to handle the |
2695 | // exception. Give it a chance to do any termination work |
2696 | // before we pop it off. |
2697 | |
2698 | CLEAR_THREAD_TYPE_STACKWALKER(); |
2699 | END_FORBID_TYPELOAD(); |
2700 | |
2701 | m_crawl.pFrame->ExceptionUnwind(); |
2702 | |
2703 | BEGIN_FORBID_TYPELOAD(); |
2704 | SET_THREAD_TYPE_STACKWALKER(m_pThread); |
2705 | |
2706 | // Pop off this frame and go on to the next one. |
2707 | m_crawl.GotoNextFrame(); |
2708 | |
2709 | // When StackWalkFramesEx is originally called, we ensure |
2710 | // that if POPFRAMES is set that the thread is in COOP mode |
2711 | // and that running thread is walking itself. Thus, this |
2712 | // COOP assertion is safe. |
2713 | BEGIN_GCX_ASSERT_COOP; |
2714 | m_crawl.pThread->SetFrame(m_crawl.pFrame); |
2715 | END_GCX_ASSERT_COOP; |
2716 | } |
2717 | else |
2718 | #endif // STACKWALKER_MAY_POP_FRAMES |
2719 | { |
2720 | // Go to the next frame. |
2721 | m_crawl.GotoNextFrame(); |
2722 | } |
2723 | } |
2724 | } |
2725 | #if defined(ELIMINATE_FEF) |
2726 | else if (m_frameState == SFITER_NO_FRAME_TRANSITION) |
2727 | { |
2728 | PostProcessingForNoFrameTransition(); |
2729 | } |
2730 | #endif // ELIMINATE_FEF |
2731 | else if (m_frameState == SFITER_NATIVE_MARKER_FRAME) |
2732 | { |
2733 | m_crawl.isNativeMarker = false; |
2734 | } |
2735 | else if (m_frameState == SFITER_INITIAL_NATIVE_CONTEXT) |
2736 | { |
2737 | // nothing to do here |
2738 | } |
2739 | else |
2740 | { |
2741 | _ASSERTE(m_frameState == SFITER_UNINITIALIZED); |
2742 | _ASSERTE(!"StackFrameIterator::NextRaw() called when the iterator is uninitialized. \ |
2743 | Should never get here." ); |
2744 | retVal = SWA_FAILED; |
2745 | goto Cleanup; |
2746 | } |
2747 | |
2748 | ProcessCurrentFrame(); |
2749 | |
2750 | Cleanup: |
2751 | #if defined(_DEBUG) |
2752 | if (retVal == SWA_FAILED) |
2753 | { |
2754 | LOG((LF_GCROOTS, LL_INFO10000, "STACKWALK: SWA_FAILED: couldn't start stackwalk\n" )); |
2755 | } |
2756 | #endif // _DEBUG |
2757 | |
2758 | return retVal; |
2759 | } // StackFrameIterator::NextRaw() |
2760 | |
2761 | //--------------------------------------------------------------------------------------- |
2762 | // |
2763 | // Synchronizing the REGDISPLAY to the current CONTEXT stored in the REGDISPLAY. |
2764 | // This is an nop on non-WIN64 platforms. |
2765 | // |
2766 | |
2767 | void StackFrameIterator::UpdateRegDisp(void) |
2768 | { |
2769 | WRAPPER_NO_CONTRACT; |
2770 | SUPPORTS_DAC; |
2771 | |
2772 | WIN64_ONLY(SyncRegDisplayToCurrentContext(m_crawl.pRD)); |
2773 | } // StackFrameIterator::UpdateRegDisp() |
2774 | |
2775 | //--------------------------------------------------------------------------------------- |
2776 | // |
2777 | // Check whether the specified Ip is in managed code and update the CrawlFrame accordingly. |
2778 | // This function updates isFrameless, JitManagerInstance. |
2779 | // |
2780 | // Arguments: |
2781 | // Ip - IP to be processed |
2782 | // |
2783 | |
2784 | void StackFrameIterator::ProcessIp(PCODE Ip) |
2785 | { |
2786 | CONTRACTL |
2787 | { |
2788 | NOTHROW; |
2789 | GC_NOTRIGGER; |
2790 | SO_TOLERANT; |
2791 | SUPPORTS_DAC; |
2792 | } CONTRACTL_END; |
2793 | |
2794 | // Re-initialize codeInfo with new IP |
2795 | m_crawl.codeInfo.Init(Ip, m_scanFlag); |
2796 | |
2797 | m_crawl.isFrameless = !!m_crawl.codeInfo.IsValid(); |
2798 | } // StackFrameIterator::ProcessIp() |
2799 | |
2800 | //--------------------------------------------------------------------------------------- |
2801 | // |
2802 | // Update the CrawlFrame to represent where we have stopped. This is called after advancing |
2803 | // to a new frame. |
2804 | // |
2805 | // Notes: |
2806 | // This function and everything it calls must not rely on m_frameState, which could have become invalid |
2807 | // when we advance the iterator before calling this function. |
2808 | // |
2809 | |
2810 | void StackFrameIterator::ProcessCurrentFrame(void) |
2811 | { |
2812 | WRAPPER_NO_CONTRACT; |
2813 | SUPPORTS_DAC; |
2814 | |
2815 | bool fDone = false; |
2816 | |
2817 | m_crawl.CheckGSCookies(); |
2818 | |
2819 | // Since we have advanced the iterator, the frame state represents the previous frame state, |
2820 | // not the current one. This is important to keep in mind. Ideally we should just assert that |
2821 | // the frame state has been set to invalid upon entry to this function, but we need the previous frame |
2822 | // state to decide if we should stop at an native stack frame. |
2823 | |
2824 | // If we just do a simple check for native code here, we will loop forever. |
2825 | if (m_frameState == SFITER_UNINITIALIZED) |
2826 | { |
2827 | // "!IsFrameless()" normally implies that the CrawlFrame is at an explicit frame. Here we are using it |
2828 | // to detect whether the CONTEXT is in managed code or not. Ideally we should have a enum on the |
2829 | // CrawlFrame to indicate the various types of "frames" the CrawlFrame can stop at. |
2830 | // |
2831 | // If the CONTEXT is in native code and the StackFrameIterator is uninitialized, then it must be |
2832 | // an initial native CONTEXT passed to the StackFrameIterator when it is created or |
2833 | // when ResetRegDisp() is called. |
2834 | if (!m_crawl.IsFrameless()) |
2835 | { |
2836 | m_frameState = SFITER_INITIAL_NATIVE_CONTEXT; |
2837 | fDone = true; |
2838 | } |
2839 | } |
2840 | else |
2841 | { |
2842 | // Clear the frame state. It will be set before we return from this function. |
2843 | m_frameState = SFITER_UNINITIALIZED; |
2844 | } |
2845 | |
2846 | // Check for the case of an exception in managed code, and resync the stack walk |
2847 | // from the exception context. |
2848 | #if defined(ELIMINATE_FEF) |
2849 | if (!fDone && !m_crawl.IsFrameless() && m_exInfoWalk.GetExInfo()) |
2850 | { |
2851 | // We are currently walking ("lost") in unmanaged code. We can recover |
2852 | // from a) the next Frame record, or b) an exception context. |
2853 | // Recover from the exception context if all of these are true: |
2854 | // - it "returns" to managed code |
2855 | // - if is lower (newer) than the next Frame record |
2856 | // - the stack walk has not already passed by it |
2857 | // |
2858 | // The ExInfo walker is initialized to be higher than the pStartFrame, and |
2859 | // as we unwind managed (frameless) functions, we keep eliminating any |
2860 | // ExInfos that are passed in the stackwalk. |
2861 | // |
2862 | // So, here we need to find the next ExInfo that "returns" to managed code, |
2863 | // and then choose the lower of that ExInfo and the next Frame. |
2864 | m_exInfoWalk.WalkToManaged(); |
2865 | TADDR pContextSP = m_exInfoWalk.GetSPFromContext(); |
2866 | |
2867 | //@todo: check the exception code for a fault? |
2868 | |
2869 | // If there was a pContext that is higher than the SP and starting frame... |
2870 | if (pContextSP) |
2871 | { |
2872 | PTR_CONTEXT pContext = m_exInfoWalk.GetContext(); |
2873 | |
2874 | LOG((LF_EH, LL_INFO10000, "STACKWALK: considering resync from pContext(%p), fault(%08X), sp(%p); \ |
2875 | pStartFrame(%p); cf.pFrame(%p), cf.SP(%p)\n" , |
2876 | pContext, m_exInfoWalk.GetFault(), pContextSP, |
2877 | m_pStartFrame, dac_cast<TADDR>(m_crawl.pFrame), GetRegdisplaySP(m_crawl.pRD))); |
2878 | |
2879 | // If the pContext is lower (newer) than the CrawlFrame's Frame*, try to use |
2880 | // the pContext. |
2881 | // There are still a few cases in which a FaultingExceptionFrame is linked in. If |
2882 | // the next frame is one of them, we don't want to override it. THIS IS PROBABLY BAD!!! |
2883 | if ( (pContextSP < dac_cast<TADDR>(m_crawl.pFrame)) && |
2884 | ((m_crawl.GetFrame() == FRAME_TOP) || |
2885 | (m_crawl.GetFrame()->GetVTablePtr() != FaultingExceptionFrame::GetMethodFrameVPtr() ) ) ) |
2886 | { |
2887 | // |
2888 | // If the REGDISPLAY represents an unmanaged stack frame above (closer to the leaf than) an |
2889 | // ExInfo without any intervening managed stack frame, then we will stop at the no-frame |
2890 | // transition protected by the ExInfo. However, if the unmanaged stack frame is the one |
2891 | // immediately above the faulting managed stack frame, we want to continue the stackwalk |
2892 | // with the faulting managed stack frame. So we do not stop in this case. |
2893 | // |
2894 | // However, just comparing EBP is not enough. The OS exception handler |
2895 | // (KiUserExceptionDispatcher()) does not use an EBP frame. So if we just compare the EBP |
2896 | // we will think that the OS excpetion handler is the one we want to claim. Instead, |
2897 | // we should also check the current IP, which because of the way unwinding work and |
2898 | // how the OS exception handler behaves is actually going to be the stack limit of the |
2899 | // current thread. This is of course a workaround and is dependent on the OS behaviour. |
2900 | // |
2901 | |
2902 | PCODE curPC = GetControlPC(m_crawl.pRD); |
2903 | if ((m_crawl.pRD->pEbp != NULL ) && |
2904 | (m_exInfoWalk.GetEBPFromContext() == GetRegdisplayFP(m_crawl.pRD)) && |
2905 | ((m_crawl.pThread->GetCachedStackLimit() <= PTR_VOID(curPC)) && |
2906 | (PTR_VOID(curPC) < m_crawl.pThread->GetCachedStackBase()))) |
2907 | { |
2908 | // restore the CONTEXT saved by the ExInfo and continue on to the faulting |
2909 | // managed stack frame |
2910 | PostProcessingForNoFrameTransition(); |
2911 | } |
2912 | else |
2913 | { |
2914 | // we stop stop at the no-frame transition |
2915 | m_frameState = SFITER_NO_FRAME_TRANSITION; |
2916 | m_crawl.isNoFrameTransition = true; |
2917 | m_crawl.taNoFrameTransitionMarker = pContextSP; |
2918 | fDone = true; |
2919 | } |
2920 | } |
2921 | } |
2922 | } |
2923 | #endif // defined(ELIMINATE_FEF) |
2924 | |
2925 | if (!fDone) |
2926 | { |
2927 | // returns SWA_DONE if there is no more frames to walk |
2928 | if (!IsValid()) |
2929 | { |
2930 | LOG((LF_GCROOTS, LL_INFO10000, "STACKWALK: SWA_DONE: reached the end of the stack\n" )); |
2931 | m_frameState = SFITER_DONE; |
2932 | return; |
2933 | } |
2934 | |
2935 | m_crawl.codeManState.dwIsSet = 0; |
2936 | #if defined(_DEBUG) |
2937 | memset((void *)m_crawl.codeManState.stateBuf, 0xCD, |
2938 | sizeof(m_crawl.codeManState.stateBuf)); |
2939 | #endif // _DEBUG |
2940 | |
2941 | if (m_crawl.isFrameless) |
2942 | { |
2943 | //------------------------------------------------------------------------ |
2944 | // This must be a JITed/managed native method. There is no explicit frame. |
2945 | //------------------------------------------------------------------------ |
2946 | |
2947 | #if !defined(DACCESS_COMPILE) |
2948 | m_crawl.isCachedMethod = FALSE; |
2949 | if (m_crawl.stackWalkCache.Enabled() && (m_flags & LIGHTUNWIND)) |
2950 | { |
2951 | m_crawl.isCachedMethod = m_crawl.stackWalkCache.Lookup((UINT_PTR)GetControlPC(m_crawl.pRD)); |
2952 | _ASSERTE (m_crawl.isCachedMethod != m_crawl.stackWalkCache.IsEmpty()); |
2953 | |
2954 | m_crawl.pSecurityObject = NULL; |
2955 | #if defined(_TARGET_X86_) |
2956 | if (m_crawl.isCachedMethod && m_crawl.stackWalkCache.m_CacheEntry.HasSecurityObject()) |
2957 | { |
2958 | // pCallback will use this to save time on GetAddrOfSecurityObject |
2959 | StackwalkCacheUnwindInfo stackwalkCacheUnwindInfo(&m_crawl.stackWalkCache.m_CacheEntry); |
2960 | m_crawl.pSecurityObject = EECodeManager::GetAddrOfSecurityObjectFromCachedInfo( |
2961 | m_crawl.pRD, |
2962 | &stackwalkCacheUnwindInfo); |
2963 | } |
2964 | #endif // _TARGET_X86_ |
2965 | } |
2966 | #endif // DACCESS_COMPILE |
2967 | |
2968 | |
2969 | #if defined(WIN64EXCEPTIONS) |
2970 | m_crawl.isFilterFuncletCached = false; |
2971 | #endif // WIN64EXCEPTIONS |
2972 | |
2973 | m_crawl.pFunc = m_crawl.codeInfo.GetMethodDesc(); |
2974 | |
2975 | // Cache values which may be updated by CheckForSkippedFrames() |
2976 | m_cachedCodeInfo = m_crawl.codeInfo; |
2977 | |
2978 | #ifdef PROCESS_EXPLICIT_FRAME_BEFORE_MANAGED_FRAME |
2979 | // On non-X86, we want to process the skipped explicit frames before the managed stack frame |
2980 | // containing them. |
2981 | if (CheckForSkippedFrames()) |
2982 | { |
2983 | _ASSERTE(m_frameState == SFITER_SKIPPED_FRAME_FUNCTION); |
2984 | } |
2985 | else |
2986 | #endif // PROCESS_EXPLICIT_FRAME_BEFORE_MANAGED_FRAME |
2987 | { |
2988 | PreProcessingForManagedFrames(); |
2989 | _ASSERTE(m_frameState == SFITER_FRAMELESS_METHOD); |
2990 | } |
2991 | } |
2992 | else |
2993 | { |
2994 | INDEBUG(m_crawl.pThread->DebugLogStackWalkInfo(&m_crawl, "CONSIDER" , m_uFramesProcessed)); |
2995 | |
2996 | _ASSERTE(m_crawl.pFrame != FRAME_TOP); |
2997 | |
2998 | m_crawl.pFunc = m_crawl.pFrame->GetFunction(); |
2999 | |
3000 | m_frameState = SFITER_FRAME_FUNCTION; |
3001 | } |
3002 | } |
3003 | |
3004 | _ASSERTE(m_frameState != SFITER_UNINITIALIZED); |
3005 | } // StackFrameIterator::ProcessCurrentFrame() |
3006 | |
3007 | //--------------------------------------------------------------------------------------- |
3008 | // |
3009 | // If an explicit frame is allocated in a managed stack frame (e.g. an inlined pinvoke call), |
3010 | // we may have skipped an explicit frame. This function checks for them. |
3011 | // |
3012 | // Return Value: |
3013 | // Returns true if there are skipped frames. |
3014 | // |
3015 | // Notes: |
3016 | // x86 wants to stop at the skipped stack frames after the containing managed stack frame, but |
3017 | // WIN64 wants to stop before. I don't think x86 actually has any good reason for this, except |
3018 | // because it doesn't unwind one frame ahead of time like WIN64 does. This means that we don't |
3019 | // have the caller SP on x86. |
3020 | // |
3021 | |
3022 | BOOL StackFrameIterator::CheckForSkippedFrames(void) |
3023 | { |
3024 | WRAPPER_NO_CONTRACT; |
3025 | SUPPORTS_DAC; |
3026 | |
3027 | BOOL fHandleSkippedFrames = FALSE; |
3028 | TADDR pvReferenceSP; |
3029 | |
3030 | // Can the caller handle skipped frames; |
3031 | fHandleSkippedFrames = (m_flags & HANDLESKIPPEDFRAMES); |
3032 | |
3033 | #ifndef PROCESS_EXPLICIT_FRAME_BEFORE_MANAGED_FRAME |
3034 | pvReferenceSP = GetRegdisplaySP(m_crawl.pRD); |
3035 | #else // !PROCESS_EXPLICIT_FRAME_BEFORE_MANAGED_FRAME |
3036 | // Order the Frames relative to the caller SP of the methods |
3037 | // this makes it so that any Frame that is in a managed call |
3038 | // frame will be reported before its containing method. |
3039 | |
3040 | // This should always succeed! If it doesn't, it's a bug somewhere else! |
3041 | EECodeManager::EnsureCallerContextIsValid(m_crawl.pRD, m_crawl.GetStackwalkCacheEntry(), &m_cachedCodeInfo); |
3042 | pvReferenceSP = GetSP(m_crawl.pRD->pCallerContext); |
3043 | #endif // PROCESS_EXPLICIT_FRAME_BEFORE_MANAGED_FRAME |
3044 | |
3045 | if ( !( (m_crawl.pFrame != FRAME_TOP) && |
3046 | (dac_cast<TADDR>(m_crawl.pFrame) < pvReferenceSP) ) |
3047 | ) |
3048 | { |
3049 | return FALSE; |
3050 | } |
3051 | |
3052 | LOG((LF_GCROOTS, LL_EVERYTHING, "STACKWALK: CheckForSkippedFrames\n" )); |
3053 | |
3054 | // We might have skipped past some Frames. |
3055 | // This happens with InlinedCallFrames and if we unwound |
3056 | // out of a finally in managed code or for ContextTransitionFrames |
3057 | // that are inserted into the managed call stack. |
3058 | while ( (m_crawl.pFrame != FRAME_TOP) && |
3059 | (dac_cast<TADDR>(m_crawl.pFrame) < pvReferenceSP) |
3060 | ) |
3061 | { |
3062 | BOOL fReportInteropMD = |
3063 | // If we see InlinedCallFrame in certain IL stubs, we should report the MD that |
3064 | // was passed to the stub as its secret argument. This is the true interop MD. |
3065 | // Note that code:InlinedCallFrame.GetFunction may return NULL in this case because |
3066 | // the call is made using the CALLI instruction. |
3067 | m_crawl.pFrame != FRAME_TOP && |
3068 | m_crawl.pFrame->GetVTablePtr() == InlinedCallFrame::GetMethodFrameVPtr() && |
3069 | m_crawl.pFunc != NULL && |
3070 | m_crawl.pFunc->IsILStub() && |
3071 | m_crawl.pFunc->AsDynamicMethodDesc()->HasMDContextArg(); |
3072 | |
3073 | if (fHandleSkippedFrames |
3074 | #ifdef _TARGET_X86_ |
3075 | || // On x86 we have already reported the InlinedCallFrame, don't report it again. |
3076 | (InlinedCallFrame::FrameHasActiveCall(m_crawl.pFrame) && !fReportInteropMD) |
3077 | #endif // _TARGET_X86_ |
3078 | ) |
3079 | { |
3080 | m_crawl.GotoNextFrame(); |
3081 | #ifdef STACKWALKER_MAY_POP_FRAMES |
3082 | if (m_flags & POPFRAMES) |
3083 | { |
3084 | // When StackWalkFramesEx is originally called, we ensure |
3085 | // that if POPFRAMES is set that the thread is in COOP mode |
3086 | // and that running thread is walking itself. Thus, this |
3087 | // COOP assertion is safe. |
3088 | BEGIN_GCX_ASSERT_COOP; |
3089 | m_crawl.pThread->SetFrame(m_crawl.pFrame); |
3090 | END_GCX_ASSERT_COOP; |
3091 | } |
3092 | #endif // STACKWALKER_MAY_POP_FRAMES |
3093 | } |
3094 | else |
3095 | { |
3096 | m_crawl.isFrameless = false; |
3097 | |
3098 | if (fReportInteropMD) |
3099 | { |
3100 | m_crawl.pFunc = ((PTR_InlinedCallFrame)m_crawl.pFrame)->GetActualInteropMethodDesc(); |
3101 | _ASSERTE(m_crawl.pFunc != NULL); |
3102 | _ASSERTE(m_crawl.pFunc->SanityCheck()); |
3103 | } |
3104 | else |
3105 | { |
3106 | m_crawl.pFunc = m_crawl.pFrame->GetFunction(); |
3107 | } |
3108 | |
3109 | INDEBUG(m_crawl.pThread->DebugLogStackWalkInfo(&m_crawl, "CONSIDER" , m_uFramesProcessed)); |
3110 | |
3111 | m_frameState = SFITER_SKIPPED_FRAME_FUNCTION; |
3112 | return TRUE; |
3113 | } |
3114 | } |
3115 | |
3116 | return FALSE; |
3117 | } // StackFrameIterator::CheckForSkippedFrames() |
3118 | |
3119 | //--------------------------------------------------------------------------------------- |
3120 | // |
3121 | // Perform the necessary tasks before stopping at a managed stack frame. This is mostly validation work. |
3122 | // |
3123 | |
3124 | void StackFrameIterator::PreProcessingForManagedFrames(void) |
3125 | { |
3126 | WRAPPER_NO_CONTRACT; |
3127 | SUPPORTS_DAC; |
3128 | |
3129 | #if defined(RECORD_RESUMABLE_FRAME_SP) |
3130 | if (m_pvResumableFrameTargetSP) |
3131 | { |
3132 | // We expect that if we saw a resumable frame, the next managed |
3133 | // IP that we see will be the one the resumable frame took us to. |
3134 | |
3135 | // However, because we might visit intervening explicit Frames |
3136 | // that will clear the .isFirst flag, we need to set it back here. |
3137 | |
3138 | CONSISTENCY_CHECK(m_crawl.pRD->IsCallerContextValid); |
3139 | CONSISTENCY_CHECK((LPVOID)GetSP(m_crawl.pRD->pCallerContext) == m_pvResumableFrameTargetSP); |
3140 | m_pvResumableFrameTargetSP = NULL; |
3141 | m_crawl.isFirst = true; |
3142 | } |
3143 | #endif // RECORD_RESUMABLE_FRAME_SP |
3144 | |
3145 | #if !defined(DACCESS_COMPILE) |
3146 | m_pCachedGSCookie = (GSCookie*)m_crawl.GetCodeManager()->GetGSCookieAddr( |
3147 | m_crawl.pRD, |
3148 | &m_crawl.codeInfo, |
3149 | &m_crawl.codeManState); |
3150 | #endif // !DACCESS_COMPILE |
3151 | |
3152 | if (!(m_flags & SKIP_GSCOOKIE_CHECK) && m_pCachedGSCookie) |
3153 | { |
3154 | m_crawl.SetCurGSCookie(m_pCachedGSCookie); |
3155 | } |
3156 | |
3157 | INDEBUG(m_crawl.pThread->DebugLogStackWalkInfo(&m_crawl, "CONSIDER" , m_uFramesProcessed)); |
3158 | |
3159 | #if defined(_DEBUG) && !defined(WIN64EXCEPTIONS) && !defined(DACCESS_COMPILE) |
3160 | // |
3161 | // VM is responsible for synchronization on non-funclet EH model. |
3162 | // |
3163 | // m_crawl.GetThisPointer() requires full unwind |
3164 | // In GC's relocate phase, objects is not verifiable |
3165 | if ( !(m_flags & (LIGHTUNWIND | QUICKUNWIND | ALLOW_INVALID_OBJECTS)) && |
3166 | m_crawl.pFunc->IsSynchronized() && |
3167 | !m_crawl.pFunc->IsStatic() && |
3168 | m_crawl.GetCodeManager()->IsInSynchronizedRegion(m_crawl.GetRelOffset(), |
3169 | m_crawl.GetGCInfoToken(), |
3170 | m_crawl.GetCodeManagerFlags())) |
3171 | { |
3172 | BEGIN_GCX_ASSERT_COOP; |
3173 | |
3174 | OBJECTREF obj = m_crawl.GetThisPointer(); |
3175 | |
3176 | _ASSERTE(obj != NULL); |
3177 | VALIDATEOBJECTREF(obj); |
3178 | |
3179 | DWORD threadId = 0; |
3180 | DWORD acquisitionCount = 0; |
3181 | _ASSERTE(obj->GetThreadOwningMonitorLock(&threadId, &acquisitionCount) && |
3182 | (threadId == m_crawl.pThread->GetThreadId())); |
3183 | |
3184 | END_GCX_ASSERT_COOP; |
3185 | } |
3186 | #endif // _DEBUG && !WIN64EXCEPTIONS && !DACCESS_COMPILE |
3187 | |
3188 | m_frameState = SFITER_FRAMELESS_METHOD; |
3189 | } // StackFrameIterator::PreProcessingForManagedFrames() |
3190 | |
3191 | //--------------------------------------------------------------------------------------- |
3192 | // |
3193 | // Perform the necessary tasks after stopping at a managed stack frame and unwinding to its caller. |
3194 | // This includes advancing the ExInfo and checking whether the new IP is managed. |
3195 | // |
3196 | |
3197 | void StackFrameIterator::PostProcessingForManagedFrames(void) |
3198 | { |
3199 | CONTRACTL |
3200 | { |
3201 | NOTHROW; |
3202 | GC_NOTRIGGER; |
3203 | SO_TOLERANT; |
3204 | MODE_ANY; |
3205 | SUPPORTS_DAC; |
3206 | } |
3207 | CONTRACTL_END; |
3208 | |
3209 | |
3210 | #if defined(ELIMINATE_FEF) |
3211 | // As with frames, we may have unwound past a ExInfo.pContext. This |
3212 | // can happen when unwinding from a handler that rethrew the exception. |
3213 | // Skip any ExInfo.pContext records that may no longer be valid. |
3214 | // If Frames would be unlinked from the Frame chain, also reset the UseExInfoForStackwalk bit |
3215 | // on the ExInfo. |
3216 | m_exInfoWalk.WalkToPosition(GetRegdisplaySP(m_crawl.pRD), (m_flags & POPFRAMES)); |
3217 | #endif // ELIMINATE_FEF |
3218 | |
3219 | ProcessIp(GetControlPC(m_crawl.pRD)); |
3220 | |
3221 | // if we have unwound to a native stack frame, stop and set the frame state accordingly |
3222 | if (!m_crawl.isFrameless) |
3223 | { |
3224 | m_frameState = SFITER_NATIVE_MARKER_FRAME; |
3225 | m_crawl.isNativeMarker = true; |
3226 | } |
3227 | } // StackFrameIterator::PostProcessingForManagedFrames() |
3228 | |
3229 | //--------------------------------------------------------------------------------------- |
3230 | // |
3231 | // Perform the necessary tasks after stopping at a no-frame transition. This includes loading |
3232 | // the CONTEXT stored in the ExInfo and updating the REGDISPLAY to the faulting managed stack frame. |
3233 | // |
3234 | |
3235 | void StackFrameIterator::PostProcessingForNoFrameTransition() |
3236 | { |
3237 | CONTRACTL |
3238 | { |
3239 | NOTHROW; |
3240 | GC_NOTRIGGER; |
3241 | SO_TOLERANT; |
3242 | MODE_ANY; |
3243 | SUPPORTS_DAC; |
3244 | } |
3245 | CONTRACTL_END; |
3246 | |
3247 | #if defined(ELIMINATE_FEF) |
3248 | PTR_CONTEXT pContext = m_exInfoWalk.GetContext(); |
3249 | |
3250 | // Get the JitManager for the managed address. |
3251 | m_crawl.codeInfo.Init(GetIP(pContext), m_scanFlag); |
3252 | _ASSERTE(m_crawl.codeInfo.IsValid()); |
3253 | |
3254 | STRESS_LOG4(LF_EH, LL_INFO100, "STACKWALK: resync from pContext(%p); pStartFrame(%p), \ |
3255 | cf.pFrame(%p), cf.SP(%p)\n" , |
3256 | dac_cast<TADDR>(pContext), dac_cast<TADDR>(m_pStartFrame), dac_cast<TADDR>(m_crawl.pFrame), |
3257 | GetRegdisplaySP(m_crawl.pRD)); |
3258 | |
3259 | // Update the RegDisplay from the context info. |
3260 | FillRegDisplay(m_crawl.pRD, pContext); |
3261 | |
3262 | // Now we know where we are, and it's "frameless", aka managed. |
3263 | m_crawl.isFrameless = true; |
3264 | |
3265 | // Flags the same as from a FaultingExceptionFrame. |
3266 | m_crawl.isInterrupted = 1; |
3267 | m_crawl.hasFaulted = 1; |
3268 | m_crawl.isIPadjusted = 0; |
3269 | |
3270 | #if defined(STACKWALKER_MAY_POP_FRAMES) |
3271 | // If Frames would be unlinked from the Frame chain, also reset the UseExInfoForStackwalk bit |
3272 | // on the ExInfo. |
3273 | if (m_flags & POPFRAMES) |
3274 | { |
3275 | m_exInfoWalk.GetExInfo()->m_ExceptionFlags.ResetUseExInfoForStackwalk(); |
3276 | } |
3277 | #endif // STACKWALKER_MAY_POP_FRAMES |
3278 | |
3279 | // Done with this ExInfo. |
3280 | m_exInfoWalk.WalkOne(); |
3281 | |
3282 | m_crawl.isNoFrameTransition = false; |
3283 | m_crawl.taNoFrameTransitionMarker = NULL; |
3284 | #endif // ELIMINATE_FEF |
3285 | } // StackFrameIterator::PostProcessingForNoFrameTransition() |
3286 | |
3287 | |
3288 | #if defined(_TARGET_AMD64_) && !defined(DACCESS_COMPILE) |
3289 | static CrstStatic g_StackwalkCacheLock; // Global StackwalkCache lock; only used on AMD64 |
3290 | EXTERN_C void moveOWord(LPVOID src, LPVOID target); |
3291 | #endif // _TARGET_AMD64_ |
3292 | |
3293 | /* |
3294 | copies 64-bit *src to *target, atomically accessing the data |
3295 | requires 64-bit alignment for atomic load/store |
3296 | */ |
3297 | inline static void atomicMoveCacheEntry(UINT64* src, UINT64* target) |
3298 | { |
3299 | LIMITED_METHOD_CONTRACT; |
3300 | |
3301 | #ifdef _TARGET_X86_ |
3302 | // the most negative value is used a sort of integer infinity |
3303 | // value, so it have to be avoided |
3304 | _ASSERTE(*src != 0x8000000000000000); |
3305 | __asm |
3306 | { |
3307 | mov eax, src |
3308 | fild qword ptr [eax] |
3309 | mov eax, target |
3310 | fistp qword ptr [eax] |
3311 | } |
3312 | #elif defined(_TARGET_AMD64_) && !defined(DACCESS_COMPILE) |
3313 | // On AMD64 there's no way to move 16 bytes atomically, so we need to take a lock before calling moveOWord(). |
3314 | CrstHolder ch(&g_StackwalkCacheLock); |
3315 | moveOWord(src, target); |
3316 | #endif |
3317 | } |
3318 | |
3319 | /* |
3320 | ============================================================ |
3321 | Here is an implementation of StackwalkCache class, used to optimize performance |
3322 | of stack walking. Currently each CrawlFrame has a StackwalkCache member, which implements |
3323 | functionality for caching already walked methods (see Thread::StackWalkFramesEx). |
3324 | See class and corresponding types declaration at stackwalktypes.h |
3325 | We do use global cache g_StackwalkCache[] with InterlockCompareExchange, fitting |
3326 | each cache entry into 8 bytes. |
3327 | ============================================================ |
3328 | */ |
3329 | |
3330 | #ifndef DACCESS_COMPILE |
3331 | #define LOG_NUM_OF_CACHE_ENTRIES 10 |
3332 | #else |
3333 | // Stack walk cache is disabled in DAC - save space |
3334 | #define LOG_NUM_OF_CACHE_ENTRIES 0 |
3335 | #endif |
3336 | #define NUM_OF_CACHE_ENTRIES (1 << LOG_NUM_OF_CACHE_ENTRIES) |
3337 | |
3338 | static StackwalkCacheEntry g_StackwalkCache[NUM_OF_CACHE_ENTRIES] = {}; // Global StackwalkCache |
3339 | |
3340 | #ifdef DACCESS_COMPILE |
3341 | const BOOL StackwalkCache::s_Enabled = FALSE; |
3342 | #else |
3343 | BOOL StackwalkCache::s_Enabled = FALSE; |
3344 | |
3345 | /* |
3346 | StackwalkCache class constructor. |
3347 | Set "enable/disable optimization" flag according to registry key. |
3348 | */ |
3349 | StackwalkCache::StackwalkCache() |
3350 | { |
3351 | CONTRACTL { |
3352 | NOTHROW; |
3353 | GC_NOTRIGGER; |
3354 | } CONTRACTL_END; |
3355 | |
3356 | ClearEntry(); |
3357 | |
3358 | static BOOL stackwalkCacheEnableChecked = FALSE; |
3359 | if (!stackwalkCacheEnableChecked) |
3360 | { |
3361 | // We can enter this block on multiple threads because of racing. |
3362 | // However, that is OK since this operation is idempotent |
3363 | |
3364 | s_Enabled = ((g_pConfig->DisableStackwalkCache() == 0) && |
3365 | // disable cache if for some reason it is not aligned |
3366 | IS_ALIGNED((void*)&g_StackwalkCache[0], STACKWALK_CACHE_ENTRY_ALIGN_BOUNDARY)); |
3367 | stackwalkCacheEnableChecked = TRUE; |
3368 | } |
3369 | } |
3370 | |
3371 | #endif // #ifndef DACCESS_COMPILE |
3372 | |
3373 | // static |
3374 | void StackwalkCache::Init() |
3375 | { |
3376 | #if defined(_TARGET_AMD64_) && !defined(DACCESS_COMPILE) |
3377 | g_StackwalkCacheLock.Init(CrstSecurityStackwalkCache, CRST_UNSAFE_ANYMODE); |
3378 | #endif // _TARGET_AMD64_ |
3379 | } |
3380 | |
3381 | /* |
3382 | Returns efficient hash table key based on provided IP. |
3383 | CPU architecture dependent. |
3384 | */ |
3385 | inline unsigned StackwalkCache::GetKey(UINT_PTR IP) |
3386 | { |
3387 | LIMITED_METHOD_CONTRACT; |
3388 | return (unsigned)(((IP >> LOG_NUM_OF_CACHE_ENTRIES) ^ IP) & (NUM_OF_CACHE_ENTRIES-1)); |
3389 | } |
3390 | |
3391 | /* |
3392 | Looks into cache and returns StackwalkCache entry, if current IP is cached. |
3393 | JIT team guarantees the same ESP offset for the same IPs for different call chains. |
3394 | */ |
3395 | BOOL StackwalkCache::Lookup(UINT_PTR IP) |
3396 | { |
3397 | CONTRACTL { |
3398 | NOTHROW; |
3399 | GC_NOTRIGGER; |
3400 | } CONTRACTL_END; |
3401 | |
3402 | #if defined(_TARGET_X86_) || defined(_TARGET_AMD64_) |
3403 | _ASSERTE(Enabled()); |
3404 | _ASSERTE(IP); |
3405 | |
3406 | unsigned hkey = GetKey(IP); |
3407 | _ASSERTE(IS_ALIGNED((void*)&g_StackwalkCache[hkey], STACKWALK_CACHE_ENTRY_ALIGN_BOUNDARY)); |
3408 | // Don't care about m_CacheEntry access atomicity, since it's private to this |
3409 | // stackwalk/thread |
3410 | atomicMoveCacheEntry((UINT64*)&g_StackwalkCache[hkey], (UINT64*)&m_CacheEntry); |
3411 | |
3412 | #ifdef _DEBUG |
3413 | if (IP != m_CacheEntry.IP) |
3414 | { |
3415 | ClearEntry(); |
3416 | } |
3417 | #endif |
3418 | |
3419 | return (IP == m_CacheEntry.IP); |
3420 | #else // _TARGET_X86_ |
3421 | return FALSE; |
3422 | #endif // _TARGET_X86_ |
3423 | } |
3424 | |
3425 | /* |
3426 | Caches data provided for current IP. |
3427 | */ |
3428 | void StackwalkCache::Insert(StackwalkCacheEntry *pCacheEntry) |
3429 | { |
3430 | CONTRACTL { |
3431 | NOTHROW; |
3432 | GC_NOTRIGGER; |
3433 | } CONTRACTL_END; |
3434 | |
3435 | _ASSERTE(Enabled()); |
3436 | _ASSERTE(pCacheEntry); |
3437 | |
3438 | unsigned hkey = GetKey(pCacheEntry->IP); |
3439 | _ASSERTE(IS_ALIGNED((void*)&g_StackwalkCache[hkey], STACKWALK_CACHE_ENTRY_ALIGN_BOUNDARY)); |
3440 | atomicMoveCacheEntry((UINT64*)pCacheEntry, (UINT64*)&g_StackwalkCache[hkey]); |
3441 | } |
3442 | |
3443 | // static |
3444 | void StackwalkCache::Invalidate(LoaderAllocator * pLoaderAllocator) |
3445 | { |
3446 | CONTRACTL { |
3447 | NOTHROW; |
3448 | GC_NOTRIGGER; |
3449 | } CONTRACTL_END; |
3450 | |
3451 | if (!s_Enabled) |
3452 | return; |
3453 | |
3454 | /* Note that we could just flush the entries corresponding to |
3455 | pDomain if we wanted to get fancy. To keep things simple for now, |
3456 | we just invalidate everything |
3457 | */ |
3458 | |
3459 | ZeroMemory(PVOID(&g_StackwalkCache), sizeof(g_StackwalkCache)); |
3460 | } |
3461 | |
3462 | //---------------------------------------------------------------------------- |
3463 | // |
3464 | // SetUpRegdisplayForStackWalk - set up Regdisplay for a stack walk |
3465 | // |
3466 | // Arguments: |
3467 | // pThread - pointer to the managed thread to be crawled |
3468 | // pContext - pointer to the context |
3469 | // pRegdisplay - pointer to the REGDISPLAY to be filled |
3470 | // |
3471 | // Return Value: |
3472 | // None |
3473 | // |
3474 | //---------------------------------------------------------------------------- |
3475 | void SetUpRegdisplayForStackWalk(Thread * pThread, T_CONTEXT * pContext, REGDISPLAY * pRegdisplay) |
3476 | { |
3477 | CONTRACTL { |
3478 | NOTHROW; |
3479 | GC_NOTRIGGER; |
3480 | SUPPORTS_DAC; |
3481 | } CONTRACTL_END; |
3482 | |
3483 | // @dbgtodo filter CONTEXT- The filter CONTEXT will be removed in V3.0. |
3484 | T_CONTEXT * pFilterContext = pThread->GetFilterContext(); |
3485 | _ASSERTE(!(pFilterContext && ISREDIRECTEDTHREAD(pThread))); |
3486 | |
3487 | if (pFilterContext != NULL) |
3488 | { |
3489 | FillRegDisplay(pRegdisplay, pFilterContext); |
3490 | } |
3491 | else |
3492 | { |
3493 | ZeroMemory(pContext, sizeof(*pContext)); |
3494 | FillRegDisplay(pRegdisplay, pContext); |
3495 | |
3496 | if (ISREDIRECTEDTHREAD(pThread)) |
3497 | { |
3498 | pThread->GetFrame()->UpdateRegDisplay(pRegdisplay); |
3499 | } |
3500 | } |
3501 | } |
3502 | |