| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | |
| 6 | #ifndef _SYNCBLK_INL_ |
| 7 | #define _SYNCBLK_INL_ |
| 8 | |
| 9 | #ifndef DACCESS_COMPILE |
| 10 | |
| 11 | FORCEINLINE bool AwareLock::LockState::InterlockedTryLock() |
| 12 | { |
| 13 | WRAPPER_NO_CONTRACT; |
| 14 | return InterlockedTryLock(VolatileLoadWithoutBarrier()); |
| 15 | } |
| 16 | |
| 17 | FORCEINLINE bool AwareLock::LockState::InterlockedTryLock(LockState state) |
| 18 | { |
| 19 | WRAPPER_NO_CONTRACT; |
| 20 | |
| 21 | // The monitor is fair to release waiters in FIFO order, but allows non-waiters to acquire the lock if it's available to |
| 22 | // avoid lock convoys. |
| 23 | // |
| 24 | // Lock convoys can be detrimental to performance in scenarios where work is being done on multiple threads and the work |
| 25 | // involves periodically taking a particular lock for a short time to access shared resources. With a lock convoy, once |
| 26 | // there is a waiter for the lock (which is not uncommon in such scenarios), a worker thread would be forced to |
| 27 | // context-switch on the subsequent attempt to acquire the lock, often long before the worker thread exhausts its time |
| 28 | // slice. This process repeats as long as the lock has a waiter, forcing every worker to context-switch on each attempt to |
| 29 | // acquire the lock, killing performance and creating a negative feedback loop that makes it more likely for the lock to |
| 30 | // have waiters. To avoid the lock convoy, each worker needs to be allowed to acquire the lock multiple times in sequence |
| 31 | // despite there being a waiter for the lock in order to have the worker continue working efficiently during its time slice |
| 32 | // as long as the lock is not contended. |
| 33 | // |
| 34 | // This scheme has the possibility to starve waiters. Waiter starvation is mitigated by other means, see |
| 35 | // InterlockedTrySetShouldNotPreemptWaitersIfNecessary(). |
| 36 | if (state.ShouldNonWaiterAttemptToAcquireLock()) |
| 37 | { |
| 38 | LockState newState = state; |
| 39 | newState.InvertIsLocked(); |
| 40 | |
| 41 | return CompareExchangeAcquire(newState, state) == state; |
| 42 | } |
| 43 | return false; |
| 44 | } |
| 45 | |
| 46 | FORCEINLINE bool AwareLock::LockState::InterlockedUnlock() |
| 47 | { |
| 48 | WRAPPER_NO_CONTRACT; |
| 49 | static_assert_no_msg(IsLockedMask == 1); |
| 50 | _ASSERTE(IsLocked()); |
| 51 | |
| 52 | LockState state = InterlockedDecrementRelease((LONG *)&m_state); |
| 53 | while (true) |
| 54 | { |
| 55 | // Keep track of whether a thread has been signaled to wake but has not yet woken from the wait. |
| 56 | // IsWaiterSignaledToWakeMask is cleared when a signaled thread wakes up by observing a signal. Since threads can |
| 57 | // preempt waiting threads and acquire the lock (see InterlockedTryLock()), it allows for example, one thread to acquire |
| 58 | // and release the lock multiple times while there are multiple waiting threads. In such a case, we don't want that |
| 59 | // thread to signal a waiter every time it releases the lock, as that will cause unnecessary context switches with more |
| 60 | // and more signaled threads waking up, finding that the lock is still locked, and going right back into a wait state. |
| 61 | // So, signal only one waiting thread at a time. |
| 62 | if (!state.NeedToSignalWaiter()) |
| 63 | { |
| 64 | return false; |
| 65 | } |
| 66 | |
| 67 | LockState newState = state; |
| 68 | newState.InvertIsWaiterSignaledToWake(); |
| 69 | |
| 70 | LockState stateBeforeUpdate = CompareExchange(newState, state); |
| 71 | if (stateBeforeUpdate == state) |
| 72 | { |
| 73 | return true; |
| 74 | } |
| 75 | |
| 76 | state = stateBeforeUpdate; |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | FORCEINLINE bool AwareLock::LockState::InterlockedTrySetShouldNotPreemptWaitersIfNecessary(AwareLock *awareLock) |
| 81 | { |
| 82 | WRAPPER_NO_CONTRACT; |
| 83 | return InterlockedTrySetShouldNotPreemptWaitersIfNecessary(awareLock, VolatileLoadWithoutBarrier()); |
| 84 | } |
| 85 | |
| 86 | FORCEINLINE bool AwareLock::LockState::InterlockedTrySetShouldNotPreemptWaitersIfNecessary( |
| 87 | AwareLock *awareLock, |
| 88 | LockState state) |
| 89 | { |
| 90 | WRAPPER_NO_CONTRACT; |
| 91 | _ASSERTE(awareLock != nullptr); |
| 92 | _ASSERTE(&awareLock->m_lockState == this); |
| 93 | |
| 94 | // Normally, threads are allowed to preempt waiters to acquire the lock in order to avoid creating lock convoys, see |
| 95 | // InterlockedTryLock(). There are cases where waiters can be easily starved as a result. For example, a thread that |
| 96 | // holds a lock for a significant amount of time (much longer than the time it takes to do a context switch), then |
| 97 | // releases and reacquires the lock in quick succession, and repeats. Though a waiter would be woken upon lock release, |
| 98 | // usually it will not have enough time to context-switch-in and take the lock, and can be starved for an unreasonably long |
| 99 | // duration. |
| 100 | // |
| 101 | // In order to prevent such starvation and force a bit of fair forward progress, it is sometimes necessary to change the |
| 102 | // normal policy and disallow threads from preempting waiters. ShouldNotPreemptWaiters() indicates the current state of the |
| 103 | // policy and this function determines whether the policy should be changed to disallow non-waiters from preempting waiters. |
| 104 | // - When the first waiter begins waiting, it records the current time as a "waiter starvation start time". That is a |
| 105 | // point in time after which no forward progress has occurred for waiters. When a waiter acquires the lock, the time is |
| 106 | // updated to the current time. |
| 107 | // - This function checks whether the starvation duration has crossed a threshold and if so, sets |
| 108 | // ShouldNotPreemptWaiters() |
| 109 | // |
| 110 | // When unreasonable starvation is occurring, the lock will be released occasionally and if caused by spinners, spinners |
| 111 | // will be starting to spin. |
| 112 | // - Before starting to spin this function is called. If ShouldNotPreemptWaiters() is set, the spinner will skip spinning |
| 113 | // and wait instead. Spinners that are already registered at the time ShouldNotPreemptWaiters() is set will stop |
| 114 | // spinning as necessary. Eventually, all spinners will drain and no new ones will be registered. |
| 115 | // - Upon releasing a lock, if there are no spinners, a waiter will be signaled to wake. On that path, this function |
| 116 | // is called. |
| 117 | // - Eventually, after spinners have drained, only a waiter will be able to acquire the lock. When a waiter acquires |
| 118 | // the lock, or when the last waiter unregisters itself, ShouldNotPreemptWaiters() is cleared to restore the normal |
| 119 | // policy. |
| 120 | |
| 121 | while (true) |
| 122 | { |
| 123 | if (!state.HasAnyWaiters()) |
| 124 | { |
| 125 | _ASSERTE(!state.ShouldNotPreemptWaiters()); |
| 126 | return false; |
| 127 | } |
| 128 | if (state.ShouldNotPreemptWaiters()) |
| 129 | { |
| 130 | return true; |
| 131 | } |
| 132 | if (!awareLock->ShouldStopPreemptingWaiters()) |
| 133 | { |
| 134 | return false; |
| 135 | } |
| 136 | |
| 137 | LockState newState = state; |
| 138 | newState.InvertShouldNotPreemptWaiters(); |
| 139 | |
| 140 | LockState stateBeforeUpdate = CompareExchange(newState, state); |
| 141 | if (stateBeforeUpdate == state) |
| 142 | { |
| 143 | return true; |
| 144 | } |
| 145 | |
| 146 | state = stateBeforeUpdate; |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | FORCEINLINE AwareLock::EnterHelperResult AwareLock::LockState::InterlockedTry_LockOrRegisterSpinner(LockState state) |
| 151 | { |
| 152 | WRAPPER_NO_CONTRACT; |
| 153 | |
| 154 | while (true) |
| 155 | { |
| 156 | LockState newState = state; |
| 157 | if (state.ShouldNonWaiterAttemptToAcquireLock()) |
| 158 | { |
| 159 | newState.InvertIsLocked(); |
| 160 | } |
| 161 | else if (state.ShouldNotPreemptWaiters() || !newState.TryIncrementSpinnerCount()) |
| 162 | { |
| 163 | return EnterHelperResult_UseSlowPath; |
| 164 | } |
| 165 | |
| 166 | LockState stateBeforeUpdate = CompareExchange(newState, state); |
| 167 | if (stateBeforeUpdate == state) |
| 168 | { |
| 169 | return state.ShouldNonWaiterAttemptToAcquireLock() ? EnterHelperResult_Entered : EnterHelperResult_Contention; |
| 170 | } |
| 171 | |
| 172 | state = stateBeforeUpdate; |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | FORCEINLINE AwareLock::EnterHelperResult AwareLock::LockState::InterlockedTry_LockAndUnregisterSpinner() |
| 177 | { |
| 178 | WRAPPER_NO_CONTRACT; |
| 179 | |
| 180 | // This function is called from inside a spin loop, it must unregister the spinner if and only if the lock is acquired |
| 181 | LockState state = VolatileLoadWithoutBarrier(); |
| 182 | while (true) |
| 183 | { |
| 184 | _ASSERTE(state.HasAnySpinners()); |
| 185 | if (!state.ShouldNonWaiterAttemptToAcquireLock()) |
| 186 | { |
| 187 | return state.ShouldNotPreemptWaiters() ? EnterHelperResult_UseSlowPath : EnterHelperResult_Contention; |
| 188 | } |
| 189 | |
| 190 | LockState newState = state; |
| 191 | newState.InvertIsLocked(); |
| 192 | newState.DecrementSpinnerCount(); |
| 193 | |
| 194 | LockState stateBeforeUpdate = CompareExchange(newState, state); |
| 195 | if (stateBeforeUpdate == state) |
| 196 | { |
| 197 | return EnterHelperResult_Entered; |
| 198 | } |
| 199 | |
| 200 | state = stateBeforeUpdate; |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | FORCEINLINE bool AwareLock::LockState::InterlockedUnregisterSpinner_TryLock() |
| 205 | { |
| 206 | WRAPPER_NO_CONTRACT; |
| 207 | |
| 208 | // This function is called at the end of a spin loop, it must unregister the spinner always and acquire the lock if it's |
| 209 | // available. If the lock is available, a spinner must acquire the lock along with unregistering itself, because a lock |
| 210 | // releaser does not wake a waiter when there is a spinner registered. |
| 211 | |
| 212 | LockState stateBeforeUpdate = InterlockedExchangeAdd((LONG *)&m_state, -(LONG)SpinnerCountIncrement); |
| 213 | _ASSERTE(stateBeforeUpdate.HasAnySpinners()); |
| 214 | if (stateBeforeUpdate.IsLocked()) |
| 215 | { |
| 216 | return false; |
| 217 | } |
| 218 | |
| 219 | LockState state = stateBeforeUpdate; |
| 220 | state.DecrementSpinnerCount(); |
| 221 | _ASSERTE(!state.IsLocked()); |
| 222 | do |
| 223 | { |
| 224 | LockState newState = state; |
| 225 | newState.InvertIsLocked(); |
| 226 | |
| 227 | LockState stateBeforeUpdate = CompareExchangeAcquire(newState, state); |
| 228 | if (stateBeforeUpdate == state) |
| 229 | { |
| 230 | return true; |
| 231 | } |
| 232 | |
| 233 | state = stateBeforeUpdate; |
| 234 | } while (!state.IsLocked()); |
| 235 | return false; |
| 236 | } |
| 237 | |
| 238 | FORCEINLINE bool AwareLock::LockState::InterlockedTryLock_Or_RegisterWaiter(AwareLock *awareLock, LockState state) |
| 239 | { |
| 240 | WRAPPER_NO_CONTRACT; |
| 241 | _ASSERTE(awareLock != nullptr); |
| 242 | _ASSERTE(&awareLock->m_lockState == this); |
| 243 | |
| 244 | bool waiterStarvationStartTimeWasReset = false; |
| 245 | while (true) |
| 246 | { |
| 247 | LockState newState = state; |
| 248 | if (state.ShouldNonWaiterAttemptToAcquireLock()) |
| 249 | { |
| 250 | newState.InvertIsLocked(); |
| 251 | } |
| 252 | else |
| 253 | { |
| 254 | newState.IncrementWaiterCount(); |
| 255 | |
| 256 | if (!state.HasAnyWaiters() && !waiterStarvationStartTimeWasReset) |
| 257 | { |
| 258 | // This would be the first waiter. Once the waiter is registered, another thread may check the waiter starvation |
| 259 | // start time and the previously recorded value may be stale, causing ShouldNotPreemptWaiters() to be set |
| 260 | // unnecessarily. Reset the start time before registering the waiter. |
| 261 | waiterStarvationStartTimeWasReset = true; |
| 262 | awareLock->ResetWaiterStarvationStartTime(); |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | LockState stateBeforeUpdate = CompareExchange(newState, state); |
| 267 | if (stateBeforeUpdate == state) |
| 268 | { |
| 269 | if (state.ShouldNonWaiterAttemptToAcquireLock()) |
| 270 | { |
| 271 | return true; |
| 272 | } |
| 273 | |
| 274 | if (!state.HasAnyWaiters()) |
| 275 | { |
| 276 | // This was the first waiter, record the waiter starvation start time |
| 277 | _ASSERTE(waiterStarvationStartTimeWasReset); |
| 278 | awareLock->RecordWaiterStarvationStartTime(); |
| 279 | } |
| 280 | return false; |
| 281 | } |
| 282 | |
| 283 | state = stateBeforeUpdate; |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | FORCEINLINE void AwareLock::LockState::InterlockedUnregisterWaiter() |
| 288 | { |
| 289 | WRAPPER_NO_CONTRACT; |
| 290 | |
| 291 | LockState state = VolatileLoadWithoutBarrier(); |
| 292 | while (true) |
| 293 | { |
| 294 | _ASSERTE(state.HasAnyWaiters()); |
| 295 | |
| 296 | LockState newState = state; |
| 297 | newState.DecrementWaiterCount(); |
| 298 | if (newState.ShouldNotPreemptWaiters() && !newState.HasAnyWaiters()) |
| 299 | { |
| 300 | newState.InvertShouldNotPreemptWaiters(); |
| 301 | } |
| 302 | |
| 303 | LockState stateBeforeUpdate = CompareExchange(newState, state); |
| 304 | if (stateBeforeUpdate == state) |
| 305 | { |
| 306 | return; |
| 307 | } |
| 308 | |
| 309 | state = stateBeforeUpdate; |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | FORCEINLINE bool AwareLock::LockState::InterlockedTry_LockAndUnregisterWaiterAndObserveWakeSignal(AwareLock *awareLock) |
| 314 | { |
| 315 | WRAPPER_NO_CONTRACT; |
| 316 | _ASSERTE(awareLock != nullptr); |
| 317 | _ASSERTE(&awareLock->m_lockState == this); |
| 318 | |
| 319 | // This function is called from the waiter's spin loop and should observe the wake signal only if the lock is taken, to |
| 320 | // prevent a lock releaser from waking another waiter while one is already spinning to acquire the lock |
| 321 | bool waiterStarvationStartTimeWasRecorded = false; |
| 322 | LockState state = VolatileLoadWithoutBarrier(); |
| 323 | while (true) |
| 324 | { |
| 325 | _ASSERTE(state.HasAnyWaiters()); |
| 326 | _ASSERTE(state.IsWaiterSignaledToWake()); |
| 327 | if (state.IsLocked()) |
| 328 | { |
| 329 | return false; |
| 330 | } |
| 331 | |
| 332 | LockState newState = state; |
| 333 | newState.InvertIsLocked(); |
| 334 | newState.InvertIsWaiterSignaledToWake(); |
| 335 | newState.DecrementWaiterCount(); |
| 336 | if (newState.ShouldNotPreemptWaiters()) |
| 337 | { |
| 338 | newState.InvertShouldNotPreemptWaiters(); |
| 339 | |
| 340 | if (newState.HasAnyWaiters() && !waiterStarvationStartTimeWasRecorded) |
| 341 | { |
| 342 | // Update the waiter starvation start time. The time must be recorded before ShouldNotPreemptWaiters() is |
| 343 | // cleared, as once that is cleared, another thread may check the waiter starvation start time and the |
| 344 | // previously recorded value may be stale, causing ShouldNotPreemptWaiters() to be set again unnecessarily. |
| 345 | waiterStarvationStartTimeWasRecorded = true; |
| 346 | awareLock->RecordWaiterStarvationStartTime(); |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | LockState stateBeforeUpdate = CompareExchange(newState, state); |
| 351 | if (stateBeforeUpdate == state) |
| 352 | { |
| 353 | if (newState.HasAnyWaiters()) |
| 354 | { |
| 355 | _ASSERTE(!state.ShouldNotPreemptWaiters() || waiterStarvationStartTimeWasRecorded); |
| 356 | if (!waiterStarvationStartTimeWasRecorded) |
| 357 | { |
| 358 | // Since the lock was acquired successfully by a waiter, update the waiter starvation start time |
| 359 | awareLock->RecordWaiterStarvationStartTime(); |
| 360 | } |
| 361 | } |
| 362 | return true; |
| 363 | } |
| 364 | |
| 365 | state = stateBeforeUpdate; |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | FORCEINLINE bool AwareLock::LockState::InterlockedObserveWakeSignal_Try_LockAndUnregisterWaiter(AwareLock *awareLock) |
| 370 | { |
| 371 | WRAPPER_NO_CONTRACT; |
| 372 | _ASSERTE(awareLock != nullptr); |
| 373 | _ASSERTE(&awareLock->m_lockState == this); |
| 374 | |
| 375 | // This function is called at the end of the waiter's spin loop. It must observe the wake signal always, and if the lock is |
| 376 | // available, it must acquire the lock and unregister the waiter. If the lock is available, a waiter must acquire the lock |
| 377 | // along with observing the wake signal, because a lock releaser does not wake a waiter when a waiter was signaled but the |
| 378 | // wake signal has not been observed. |
| 379 | |
| 380 | LockState stateBeforeUpdate = InterlockedExchangeAdd((LONG *)&m_state, -(LONG)IsWaiterSignaledToWakeMask); |
| 381 | _ASSERTE(stateBeforeUpdate.IsWaiterSignaledToWake()); |
| 382 | if (stateBeforeUpdate.IsLocked()) |
| 383 | { |
| 384 | return false; |
| 385 | } |
| 386 | |
| 387 | bool waiterStarvationStartTimeWasRecorded = false; |
| 388 | LockState state = stateBeforeUpdate; |
| 389 | state.InvertIsWaiterSignaledToWake(); |
| 390 | _ASSERTE(!state.IsLocked()); |
| 391 | do |
| 392 | { |
| 393 | _ASSERTE(state.HasAnyWaiters()); |
| 394 | LockState newState = state; |
| 395 | newState.InvertIsLocked(); |
| 396 | newState.DecrementWaiterCount(); |
| 397 | if (newState.ShouldNotPreemptWaiters()) |
| 398 | { |
| 399 | newState.InvertShouldNotPreemptWaiters(); |
| 400 | |
| 401 | if (newState.HasAnyWaiters() && !waiterStarvationStartTimeWasRecorded) |
| 402 | { |
| 403 | // Update the waiter starvation start time. The time must be recorded before ShouldNotPreemptWaiters() is |
| 404 | // cleared, as once that is cleared, another thread may check the waiter starvation start time and the |
| 405 | // previously recorded value may be stale, causing ShouldNotPreemptWaiters() to be set again unnecessarily. |
| 406 | waiterStarvationStartTimeWasRecorded = true; |
| 407 | awareLock->RecordWaiterStarvationStartTime(); |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | LockState stateBeforeUpdate = CompareExchange(newState, state); |
| 412 | if (stateBeforeUpdate == state) |
| 413 | { |
| 414 | if (newState.HasAnyWaiters()) |
| 415 | { |
| 416 | _ASSERTE(!state.ShouldNotPreemptWaiters() || waiterStarvationStartTimeWasRecorded); |
| 417 | if (!waiterStarvationStartTimeWasRecorded) |
| 418 | { |
| 419 | // Since the lock was acquired successfully by a waiter, update the waiter starvation start time |
| 420 | awareLock->RecordWaiterStarvationStartTime(); |
| 421 | } |
| 422 | } |
| 423 | return true; |
| 424 | } |
| 425 | |
| 426 | state = stateBeforeUpdate; |
| 427 | } while (!state.IsLocked()); |
| 428 | return false; |
| 429 | } |
| 430 | |
| 431 | FORCEINLINE void AwareLock::ResetWaiterStarvationStartTime() |
| 432 | { |
| 433 | LIMITED_METHOD_CONTRACT; |
| 434 | m_waiterStarvationStartTimeMs = 0; |
| 435 | } |
| 436 | |
| 437 | FORCEINLINE void AwareLock::RecordWaiterStarvationStartTime() |
| 438 | { |
| 439 | WRAPPER_NO_CONTRACT; |
| 440 | |
| 441 | DWORD currentTimeMs = GetTickCount(); |
| 442 | if (currentTimeMs == 0) |
| 443 | { |
| 444 | // Don't record zero, that value is reserved for identifying that a time is not recorded |
| 445 | --currentTimeMs; |
| 446 | } |
| 447 | m_waiterStarvationStartTimeMs = currentTimeMs; |
| 448 | } |
| 449 | |
| 450 | FORCEINLINE bool AwareLock::ShouldStopPreemptingWaiters() const |
| 451 | { |
| 452 | WRAPPER_NO_CONTRACT; |
| 453 | |
| 454 | // If the recorded time is zero, a time has not been recorded yet |
| 455 | DWORD waiterStarvationStartTimeMs = m_waiterStarvationStartTimeMs; |
| 456 | return |
| 457 | waiterStarvationStartTimeMs != 0 && |
| 458 | GetTickCount() - waiterStarvationStartTimeMs >= WaiterStarvationDurationMsBeforeStoppingPreemptingWaiters; |
| 459 | } |
| 460 | |
| 461 | FORCEINLINE void AwareLock::SpinWait(const YieldProcessorNormalizationInfo &normalizationInfo, DWORD spinIteration) |
| 462 | { |
| 463 | WRAPPER_NO_CONTRACT; |
| 464 | |
| 465 | _ASSERTE(g_SystemInfo.dwNumberOfProcessors != 1); |
| 466 | _ASSERTE(spinIteration < g_SpinConstants.dwMonitorSpinCount); |
| 467 | |
| 468 | YieldProcessorWithBackOffNormalized(normalizationInfo, spinIteration); |
| 469 | } |
| 470 | |
| 471 | FORCEINLINE bool AwareLock::TryEnterHelper(Thread* pCurThread) |
| 472 | { |
| 473 | CONTRACTL{ |
| 474 | SO_TOLERANT; |
| 475 | NOTHROW; |
| 476 | GC_NOTRIGGER; |
| 477 | MODE_ANY; |
| 478 | } CONTRACTL_END; |
| 479 | |
| 480 | if (m_lockState.InterlockedTryLock()) |
| 481 | { |
| 482 | m_HoldingThread = pCurThread; |
| 483 | m_Recursion = 1; |
| 484 | pCurThread->IncLockCount(); |
| 485 | return true; |
| 486 | } |
| 487 | |
| 488 | if (GetOwningThread() == pCurThread) /* monitor is held, but it could be a recursive case */ |
| 489 | { |
| 490 | m_Recursion++; |
| 491 | return true; |
| 492 | } |
| 493 | return false; |
| 494 | } |
| 495 | |
| 496 | FORCEINLINE AwareLock::EnterHelperResult AwareLock::TryEnterBeforeSpinLoopHelper(Thread *pCurThread) |
| 497 | { |
| 498 | CONTRACTL{ |
| 499 | SO_TOLERANT; |
| 500 | NOTHROW; |
| 501 | GC_NOTRIGGER; |
| 502 | MODE_ANY; |
| 503 | } CONTRACTL_END; |
| 504 | |
| 505 | LockState state = m_lockState.VolatileLoadWithoutBarrier(); |
| 506 | |
| 507 | // Check the recursive case once before the spin loop. If it's not the recursive case in the beginning, it will not |
| 508 | // be in the future, so the spin loop can avoid checking the recursive case. |
| 509 | if (!state.IsLocked() || GetOwningThread() != pCurThread) |
| 510 | { |
| 511 | if (m_lockState.InterlockedTrySetShouldNotPreemptWaitersIfNecessary(this, state)) |
| 512 | { |
| 513 | // This thread currently should not preempt waiters, just wait |
| 514 | return EnterHelperResult_UseSlowPath; |
| 515 | } |
| 516 | |
| 517 | // Not a recursive enter, try to acquire the lock or register the spinner |
| 518 | EnterHelperResult result = m_lockState.InterlockedTry_LockOrRegisterSpinner(state); |
| 519 | if (result != EnterHelperResult_Entered) |
| 520 | { |
| 521 | // EnterHelperResult_Contention: |
| 522 | // Lock was not acquired and the spinner was registered |
| 523 | // EnterHelperResult_UseSlowPath: |
| 524 | // This thread currently should not preempt waiters, or we reached the maximum number of spinners, just wait |
| 525 | return result; |
| 526 | } |
| 527 | |
| 528 | // Lock was acquired and the spinner was not registered |
| 529 | m_HoldingThread = pCurThread; |
| 530 | m_Recursion = 1; |
| 531 | pCurThread->IncLockCount(); |
| 532 | return EnterHelperResult_Entered; |
| 533 | } |
| 534 | |
| 535 | // Recursive enter |
| 536 | m_Recursion++; |
| 537 | return EnterHelperResult_Entered; |
| 538 | } |
| 539 | |
| 540 | FORCEINLINE AwareLock::EnterHelperResult AwareLock::TryEnterInsideSpinLoopHelper(Thread *pCurThread) |
| 541 | { |
| 542 | CONTRACTL{ |
| 543 | SO_TOLERANT; |
| 544 | NOTHROW; |
| 545 | GC_NOTRIGGER; |
| 546 | MODE_ANY; |
| 547 | } CONTRACTL_END; |
| 548 | |
| 549 | // Try to acquire the lock and unregister the spinner. The recursive case is not checked here because |
| 550 | // TryEnterBeforeSpinLoopHelper() would have taken care of that case before the spin loop. |
| 551 | EnterHelperResult result = m_lockState.InterlockedTry_LockAndUnregisterSpinner(); |
| 552 | if (result != EnterHelperResult_Entered) |
| 553 | { |
| 554 | // EnterHelperResult_Contention: |
| 555 | // Lock was not acquired and the spinner was not unregistered |
| 556 | // EnterHelperResult_UseSlowPath: |
| 557 | // This thread currently should not preempt waiters, stop spinning and just wait |
| 558 | return result; |
| 559 | } |
| 560 | |
| 561 | // Lock was acquired and spinner was unregistered |
| 562 | m_HoldingThread = pCurThread; |
| 563 | m_Recursion = 1; |
| 564 | pCurThread->IncLockCount(); |
| 565 | return EnterHelperResult_Entered; |
| 566 | } |
| 567 | |
| 568 | FORCEINLINE bool AwareLock::TryEnterAfterSpinLoopHelper(Thread *pCurThread) |
| 569 | { |
| 570 | CONTRACTL{ |
| 571 | SO_TOLERANT; |
| 572 | NOTHROW; |
| 573 | GC_NOTRIGGER; |
| 574 | MODE_ANY; |
| 575 | } CONTRACTL_END; |
| 576 | |
| 577 | // Unregister the spinner and try to acquire the lock. A spinner must not unregister itself without trying to acquire the |
| 578 | // lock because a lock releaser does not wake a waiter when a spinner can acquire the lock. |
| 579 | if (!m_lockState.InterlockedUnregisterSpinner_TryLock()) |
| 580 | { |
| 581 | // Spinner was unregistered and the lock was not acquired |
| 582 | return false; |
| 583 | } |
| 584 | |
| 585 | // Spinner was unregistered and the lock was acquired |
| 586 | m_HoldingThread = pCurThread; |
| 587 | m_Recursion = 1; |
| 588 | pCurThread->IncLockCount(); |
| 589 | return true; |
| 590 | } |
| 591 | |
| 592 | FORCEINLINE AwareLock::EnterHelperResult ObjHeader::(Thread* pCurThread) |
| 593 | { |
| 594 | CONTRACTL{ |
| 595 | SO_TOLERANT; |
| 596 | NOTHROW; |
| 597 | GC_NOTRIGGER; |
| 598 | MODE_COOPERATIVE; |
| 599 | } CONTRACTL_END; |
| 600 | |
| 601 | LONG oldValue = m_SyncBlockValue.LoadWithoutBarrier(); |
| 602 | |
| 603 | if ((oldValue & (BIT_SBLK_IS_HASH_OR_SYNCBLKINDEX + |
| 604 | BIT_SBLK_SPIN_LOCK + |
| 605 | SBLK_MASK_LOCK_THREADID + |
| 606 | SBLK_MASK_LOCK_RECLEVEL)) == 0) |
| 607 | { |
| 608 | DWORD tid = pCurThread->GetThreadId(); |
| 609 | if (tid > SBLK_MASK_LOCK_THREADID) |
| 610 | { |
| 611 | return AwareLock::EnterHelperResult_UseSlowPath; |
| 612 | } |
| 613 | |
| 614 | LONG newValue = oldValue | tid; |
| 615 | if (InterlockedCompareExchangeAcquire((LONG*)&m_SyncBlockValue, newValue, oldValue) == oldValue) |
| 616 | { |
| 617 | pCurThread->IncLockCount(); |
| 618 | return AwareLock::EnterHelperResult_Entered; |
| 619 | } |
| 620 | |
| 621 | return AwareLock::EnterHelperResult_Contention; |
| 622 | } |
| 623 | |
| 624 | if (oldValue & BIT_SBLK_IS_HASH_OR_SYNCBLKINDEX) |
| 625 | { |
| 626 | // If we have a hash code already, we need to create a sync block |
| 627 | if (oldValue & BIT_SBLK_IS_HASHCODE) |
| 628 | { |
| 629 | return AwareLock::EnterHelperResult_UseSlowPath; |
| 630 | } |
| 631 | |
| 632 | SyncBlock *syncBlock = g_pSyncTable[oldValue & MASK_SYNCBLOCKINDEX].m_SyncBlock; |
| 633 | _ASSERTE(syncBlock != NULL); |
| 634 | if (syncBlock->m_Monitor.TryEnterHelper(pCurThread)) |
| 635 | { |
| 636 | return AwareLock::EnterHelperResult_Entered; |
| 637 | } |
| 638 | |
| 639 | return AwareLock::EnterHelperResult_Contention; |
| 640 | } |
| 641 | |
| 642 | // The header is transitioning - treat this as if the lock was taken |
| 643 | if (oldValue & BIT_SBLK_SPIN_LOCK) |
| 644 | { |
| 645 | return AwareLock::EnterHelperResult_Contention; |
| 646 | } |
| 647 | |
| 648 | // Here we know we have the "thin lock" layout, but the lock is not free. |
| 649 | // It could still be the recursion case - compare the thread id to check |
| 650 | if (pCurThread->GetThreadId() != (DWORD)(oldValue & SBLK_MASK_LOCK_THREADID)) |
| 651 | { |
| 652 | return AwareLock::EnterHelperResult_Contention; |
| 653 | } |
| 654 | |
| 655 | // Ok, the thread id matches, it's the recursion case. |
| 656 | // Bump up the recursion level and check for overflow |
| 657 | LONG newValue = oldValue + SBLK_LOCK_RECLEVEL_INC; |
| 658 | |
| 659 | if ((newValue & SBLK_MASK_LOCK_RECLEVEL) == 0) |
| 660 | { |
| 661 | return AwareLock::EnterHelperResult_UseSlowPath; |
| 662 | } |
| 663 | |
| 664 | if (InterlockedCompareExchangeAcquire((LONG*)&m_SyncBlockValue, newValue, oldValue) == oldValue) |
| 665 | { |
| 666 | return AwareLock::EnterHelperResult_Entered; |
| 667 | } |
| 668 | |
| 669 | // Use the slow path instead of spinning. The compare-exchange above would not fail often, and it's not worth forcing the |
| 670 | // spin loop that typically follows the call to this function to check the recursive case, so just bail to the slow path. |
| 671 | return AwareLock::EnterHelperResult_UseSlowPath; |
| 672 | } |
| 673 | |
| 674 | // Helper encapsulating the core logic for releasing monitor. Returns what kind of |
| 675 | // follow up action is necessary. This is FORCEINLINE to make it provide a very efficient implementation. |
| 676 | FORCEINLINE AwareLock::LeaveHelperAction AwareLock::LeaveHelper(Thread* pCurThread) |
| 677 | { |
| 678 | CONTRACTL { |
| 679 | SO_TOLERANT; |
| 680 | NOTHROW; |
| 681 | GC_NOTRIGGER; |
| 682 | MODE_ANY; |
| 683 | } CONTRACTL_END; |
| 684 | |
| 685 | if (m_HoldingThread != pCurThread) |
| 686 | return AwareLock::LeaveHelperAction_Error; |
| 687 | |
| 688 | _ASSERTE(m_lockState.VolatileLoadWithoutBarrier().IsLocked()); |
| 689 | _ASSERTE(m_Recursion >= 1); |
| 690 | |
| 691 | #if defined(_DEBUG) && defined(TRACK_SYNC) && !defined(CROSSGEN_COMPILE) |
| 692 | // The best place to grab this is from the ECall frame |
| 693 | Frame *pFrame = pCurThread->GetFrame(); |
| 694 | int caller = (pFrame && pFrame != FRAME_TOP ? (int) pFrame->GetReturnAddress() : -1); |
| 695 | pCurThread->m_pTrackSync->LeaveSync(caller, this); |
| 696 | #endif |
| 697 | |
| 698 | if (--m_Recursion == 0) |
| 699 | { |
| 700 | m_HoldingThread->DecLockCount(); |
| 701 | m_HoldingThread = NULL; |
| 702 | |
| 703 | // Clear lock bit and determine whether we must signal a waiter to wake |
| 704 | if (!m_lockState.InterlockedUnlock()) |
| 705 | { |
| 706 | return AwareLock::LeaveHelperAction_None; |
| 707 | } |
| 708 | |
| 709 | // There is a waiter and we must signal a waiter to wake |
| 710 | return AwareLock::LeaveHelperAction_Signal; |
| 711 | } |
| 712 | return AwareLock::LeaveHelperAction_None; |
| 713 | } |
| 714 | |
| 715 | // Helper encapsulating the core logic for releasing monitor. Returns what kind of |
| 716 | // follow up action is necessary. This is FORCEINLINE to make it provide a very efficient implementation. |
| 717 | FORCEINLINE AwareLock::LeaveHelperAction ObjHeader::(Thread* pCurThread) |
| 718 | { |
| 719 | CONTRACTL { |
| 720 | SO_TOLERANT; |
| 721 | NOTHROW; |
| 722 | GC_NOTRIGGER; |
| 723 | MODE_COOPERATIVE; |
| 724 | } CONTRACTL_END; |
| 725 | |
| 726 | DWORD syncBlockValue = m_SyncBlockValue.LoadWithoutBarrier(); |
| 727 | |
| 728 | if ((syncBlockValue & (BIT_SBLK_SPIN_LOCK + BIT_SBLK_IS_HASH_OR_SYNCBLKINDEX)) == 0) |
| 729 | { |
| 730 | if ((syncBlockValue & SBLK_MASK_LOCK_THREADID) != pCurThread->GetThreadId()) |
| 731 | { |
| 732 | // This thread does not own the lock. |
| 733 | return AwareLock::LeaveHelperAction_Error; |
| 734 | } |
| 735 | |
| 736 | if (!(syncBlockValue & SBLK_MASK_LOCK_RECLEVEL)) |
| 737 | { |
| 738 | // We are leaving the lock |
| 739 | DWORD newValue = (syncBlockValue & (~SBLK_MASK_LOCK_THREADID)); |
| 740 | if (InterlockedCompareExchangeRelease((LONG*)&m_SyncBlockValue, newValue, syncBlockValue) != (LONG)syncBlockValue) |
| 741 | { |
| 742 | return AwareLock::LeaveHelperAction_Yield; |
| 743 | } |
| 744 | pCurThread->DecLockCount(); |
| 745 | } |
| 746 | else |
| 747 | { |
| 748 | // recursion and ThinLock |
| 749 | DWORD newValue = syncBlockValue - SBLK_LOCK_RECLEVEL_INC; |
| 750 | if (InterlockedCompareExchangeRelease((LONG*)&m_SyncBlockValue, newValue, syncBlockValue) != (LONG)syncBlockValue) |
| 751 | { |
| 752 | return AwareLock::LeaveHelperAction_Yield; |
| 753 | } |
| 754 | } |
| 755 | |
| 756 | return AwareLock::LeaveHelperAction_None; |
| 757 | } |
| 758 | |
| 759 | if ((syncBlockValue & (BIT_SBLK_SPIN_LOCK + BIT_SBLK_IS_HASHCODE)) == 0) |
| 760 | { |
| 761 | _ASSERTE((syncBlockValue & BIT_SBLK_IS_HASH_OR_SYNCBLKINDEX) != 0); |
| 762 | SyncBlock *syncBlock = g_pSyncTable[syncBlockValue & MASK_SYNCBLOCKINDEX].m_SyncBlock; |
| 763 | _ASSERTE(syncBlock != NULL); |
| 764 | return syncBlock->m_Monitor.LeaveHelper(pCurThread); |
| 765 | } |
| 766 | |
| 767 | if (syncBlockValue & BIT_SBLK_SPIN_LOCK) |
| 768 | { |
| 769 | return AwareLock::LeaveHelperAction_Contention; |
| 770 | } |
| 771 | |
| 772 | // This thread does not own the lock. |
| 773 | return AwareLock::LeaveHelperAction_Error; |
| 774 | } |
| 775 | |
| 776 | #endif // DACCESS_COMPILE |
| 777 | |
| 778 | // Provide access to the object associated with this awarelock, so client can |
| 779 | // protect it. |
| 780 | inline OBJECTREF AwareLock::GetOwningObject() |
| 781 | { |
| 782 | LIMITED_METHOD_CONTRACT; |
| 783 | SUPPORTS_DAC; |
| 784 | |
| 785 | // gcc on mac needs these intermediate casts to avoid some ambiuous overloading in the DAC case |
| 786 | PTR_SyncTableEntry table = SyncTableEntry::GetSyncTableEntry(); |
| 787 | return (OBJECTREF)(Object*)(PTR_Object)table[(m_dwSyncIndex & ~SyncBlock::SyncBlockPrecious)].m_Object; |
| 788 | } |
| 789 | |
| 790 | #endif // _SYNCBLK_INL_ |
| 791 | |