1 | // Licensed to the .NET Foundation under one or more agreements. |
2 | // The .NET Foundation licenses this file to you under the MIT license. |
3 | // See the LICENSE file in the project root for more information. |
4 | // |
5 | // ZapImage.cpp |
6 | // |
7 | |
8 | // |
9 | // NGEN-specific infrastructure for writing PE files. |
10 | // |
11 | // ====================================================================================== |
12 | |
13 | #include "common.h" |
14 | #include "strsafe.h" |
15 | |
16 | #include "zaprelocs.h" |
17 | |
18 | #include "zapinnerptr.h" |
19 | #include "zapwrapper.h" |
20 | |
21 | #include "zapheaders.h" |
22 | #include "zapmetadata.h" |
23 | #include "zapcode.h" |
24 | #include "zapimport.h" |
25 | |
26 | #ifdef FEATURE_READYTORUN_COMPILER |
27 | #include "zapreadytorun.h" |
28 | #endif |
29 | |
30 | #include "md5.h" |
31 | |
32 | // This is RTL_CONTAINS_FIELD from ntdef.h |
33 | #define CONTAINS_FIELD(Struct, Size, Field) \ |
34 | ( (((PCHAR)(&(Struct)->Field)) + sizeof((Struct)->Field)) <= (((PCHAR)(Struct))+(Size)) ) |
35 | |
36 | /* --------------------------------------------------------------------------- * |
37 | * Destructor wrapper objects |
38 | * --------------------------------------------------------------------------- */ |
39 | |
40 | ZapImage::ZapImage(Zapper *zapper) |
41 | : m_zapper(zapper), |
42 | m_stats(new ZapperStats()) |
43 | /* Everything else is initialized to 0 by default */ |
44 | { |
45 | } |
46 | |
47 | ZapImage::~ZapImage() |
48 | { |
49 | #ifdef ZAP_HASHTABLE_TUNING |
50 | // If ZAP_HASHTABLE_TUNING is defined, preallocate is overloaded to print the tunning constants |
51 | Preallocate(); |
52 | #endif |
53 | |
54 | // |
55 | // Clean up. |
56 | // |
57 | if (m_stats != NULL) |
58 | delete m_stats; |
59 | |
60 | if (m_pModuleFileName != NULL) |
61 | delete [] m_pModuleFileName; |
62 | |
63 | if (m_pMDImport != NULL) |
64 | m_pMDImport->Release(); |
65 | |
66 | if (m_pAssemblyEmit != NULL) |
67 | m_pAssemblyEmit->Release(); |
68 | |
69 | if (m_profileDataFile != NULL) |
70 | UnmapViewOfFile(m_profileDataFile); |
71 | |
72 | if (m_pPreloader) |
73 | m_pPreloader->Release(); |
74 | |
75 | if (m_pImportSectionsTable != NULL) |
76 | m_pImportSectionsTable->~ZapImportSectionsTable(); |
77 | |
78 | if (m_pGCInfoTable != NULL) |
79 | m_pGCInfoTable->~ZapGCInfoTable(); |
80 | |
81 | #ifdef WIN64EXCEPTIONS |
82 | if (m_pUnwindDataTable != NULL) |
83 | m_pUnwindDataTable->~ZapUnwindDataTable(); |
84 | #endif |
85 | |
86 | if (m_pStubDispatchDataTable != NULL) |
87 | m_pStubDispatchDataTable->~ZapImportSectionSignatures(); |
88 | |
89 | if (m_pExternalMethodDataTable != NULL) |
90 | m_pExternalMethodDataTable->~ZapImportSectionSignatures(); |
91 | |
92 | if (m_pDynamicHelperDataTable != NULL) |
93 | m_pDynamicHelperDataTable->~ZapImportSectionSignatures(); |
94 | |
95 | if (m_pDebugInfoTable != NULL) |
96 | m_pDebugInfoTable->~ZapDebugInfoTable(); |
97 | |
98 | if (m_pVirtualSectionsTable != NULL) |
99 | m_pVirtualSectionsTable->~ZapVirtualSectionsTable(); |
100 | |
101 | if (m_pILMetaData != NULL) |
102 | m_pILMetaData->~ZapILMetaData(); |
103 | |
104 | if (m_pBaseRelocs != NULL) |
105 | m_pBaseRelocs->~ZapBaseRelocs(); |
106 | |
107 | if (m_pAssemblyMetaData != NULL) |
108 | m_pAssemblyMetaData->~ZapMetaData(); |
109 | |
110 | // |
111 | // Destruction of auxiliary tables in alphabetical order |
112 | // |
113 | |
114 | if (m_pImportTable != NULL) |
115 | m_pImportTable->~ZapImportTable(); |
116 | |
117 | if (m_pInnerPtrs != NULL) |
118 | m_pInnerPtrs->~ZapInnerPtrTable(); |
119 | |
120 | if (m_pMethodEntryPoints != NULL) |
121 | m_pMethodEntryPoints->~ZapMethodEntryPointTable(); |
122 | |
123 | if (m_pWrappers != NULL) |
124 | m_pWrappers->~ZapWrapperTable(); |
125 | } |
126 | |
127 | void ZapImage::InitializeSections() |
128 | { |
129 | AllocateVirtualSections(); |
130 | |
131 | m_pCorHeader = new (GetHeap()) ZapCorHeader(this); |
132 | m_pHeaderSection->Place(m_pCorHeader); |
133 | |
134 | SetDirectoryEntry(IMAGE_DIRECTORY_ENTRY_COMHEADER, m_pCorHeader); |
135 | |
136 | m_pNativeHeader = new (GetHeap()) ZapNativeHeader(this); |
137 | m_pHeaderSection->Place(m_pNativeHeader); |
138 | |
139 | m_pCodeManagerEntry = new (GetHeap()) ZapCodeManagerEntry(this); |
140 | m_pHeaderSection->Place(m_pCodeManagerEntry); |
141 | |
142 | m_pImportSectionsTable = new (GetHeap()) ZapImportSectionsTable(this); |
143 | m_pImportTableSection->Place(m_pImportSectionsTable); |
144 | |
145 | m_pExternalMethodDataTable = new (GetHeap()) ZapImportSectionSignatures(this, m_pExternalMethodThunkSection, m_pGCSection); |
146 | m_pExternalMethodDataSection->Place(m_pExternalMethodDataTable); |
147 | |
148 | m_pStubDispatchDataTable = new (GetHeap()) ZapImportSectionSignatures(this, m_pStubDispatchCellSection, m_pGCSection); |
149 | m_pStubDispatchDataSection->Place(m_pStubDispatchDataTable); |
150 | |
151 | m_pImportTable = new (GetHeap()) ZapImportTable(this); |
152 | |
153 | m_pGCInfoTable = new (GetHeap()) ZapGCInfoTable(this); |
154 | m_pExceptionInfoLookupTable = new (GetHeap()) ZapExceptionInfoLookupTable(this); |
155 | |
156 | #ifdef WIN64EXCEPTIONS |
157 | m_pUnwindDataTable = new (GetHeap()) ZapUnwindDataTable(this); |
158 | #endif |
159 | |
160 | m_pEEInfoTable = ZapBlob::NewAlignedBlob(this, NULL, sizeof(CORCOMPILE_EE_INFO_TABLE), TARGET_POINTER_SIZE); |
161 | m_pEETableSection->Place(m_pEEInfoTable); |
162 | |
163 | // |
164 | // Allocate Helper table, and fill it out |
165 | // |
166 | |
167 | m_pHelperThunks = new (GetHeap()) ZapNode * [CORINFO_HELP_COUNT]; |
168 | |
169 | if (!m_zapper->m_pOpt->m_fNoMetaData) |
170 | { |
171 | m_pILMetaData = new (GetHeap()) ZapILMetaData(this); |
172 | m_pILMetaDataSection->Place(m_pILMetaData); |
173 | } |
174 | |
175 | m_pDebugInfoTable = new (GetHeap()) ZapDebugInfoTable(this); |
176 | m_pDebugSection->Place(m_pDebugInfoTable); |
177 | |
178 | m_pBaseRelocs = new (GetHeap()) ZapBaseRelocs(this); |
179 | m_pBaseRelocsSection->Place(m_pBaseRelocs); |
180 | |
181 | SetDirectoryEntry(IMAGE_DIRECTORY_ENTRY_BASERELOC, m_pBaseRelocsSection); |
182 | |
183 | // |
184 | // Initialization of auxiliary tables in alphabetical order |
185 | // |
186 | m_pInnerPtrs = new (GetHeap()) ZapInnerPtrTable(this); |
187 | m_pMethodEntryPoints = new (GetHeap()) ZapMethodEntryPointTable(this); |
188 | m_pWrappers = new (GetHeap()) ZapWrapperTable(this); |
189 | |
190 | // Place the virtual sections tables in debug section. It exists for diagnostic purposes |
191 | // only and should not be touched under normal circumstances |
192 | m_pVirtualSectionsTable = new (GetHeap()) ZapVirtualSectionsTable(this); |
193 | m_pDebugSection->Place(m_pVirtualSectionsTable); |
194 | |
195 | #ifndef ZAP_HASHTABLE_TUNING |
196 | Preallocate(); |
197 | #endif |
198 | } |
199 | |
200 | #ifdef FEATURE_READYTORUN_COMPILER |
201 | void ZapImage::InitializeSectionsForReadyToRun() |
202 | { |
203 | AllocateVirtualSections(); |
204 | |
205 | // Preload sections are not used for ready to run. Clear the pointers to them to catch accidental use. |
206 | for (int i = 0; i < CORCOMPILE_SECTION_COUNT; i++) |
207 | m_pPreloadSections[i] = NULL; |
208 | |
209 | m_pCorHeader = new (GetHeap()) ZapCorHeader(this); |
210 | m_pHeaderSection->Place(m_pCorHeader); |
211 | |
212 | SetDirectoryEntry(IMAGE_DIRECTORY_ENTRY_COMHEADER, m_pCorHeader); |
213 | |
214 | m_pNativeHeader = new (GetHeap()) ZapReadyToRunHeader(this); |
215 | m_pHeaderSection->Place(m_pNativeHeader); |
216 | |
217 | m_pImportSectionsTable = new (GetHeap()) ZapImportSectionsTable(this); |
218 | m_pHeaderSection->Place(m_pImportSectionsTable); |
219 | |
220 | { |
221 | #define COMPILER_NAME "CoreCLR" |
222 | |
223 | const char * pCompilerIdentifier = COMPILER_NAME " " FX_FILEVERSION_STR " " QUOTE_MACRO(__BUILDMACHINE__); |
224 | ZapBlob * pCompilerIdentifierBlob = new (GetHeap()) ZapBlobPtr((PVOID)pCompilerIdentifier, strlen(pCompilerIdentifier) + 1); |
225 | |
226 | GetReadyToRunHeader()->RegisterSection(READYTORUN_SECTION_COMPILER_IDENTIFIER, pCompilerIdentifierBlob); |
227 | m_pHeaderSection->Place(pCompilerIdentifierBlob); |
228 | } |
229 | |
230 | m_pImportTable = new (GetHeap()) ZapImportTable(this); |
231 | |
232 | for (int i=0; i<ZapImportSectionType_Total; i++) |
233 | { |
234 | ZapVirtualSection * pSection; |
235 | if (i == ZapImportSectionType_Eager) |
236 | pSection = m_pDelayLoadInfoDelayListSectionEager; |
237 | else |
238 | if (i < ZapImportSectionType_Cold) |
239 | pSection = m_pDelayLoadInfoDelayListSectionHot; |
240 | else |
241 | pSection = m_pDelayLoadInfoDelayListSectionCold; |
242 | |
243 | m_pDelayLoadInfoDataTable[i] = new (GetHeap()) ZapImportSectionSignatures(this, m_pDelayLoadInfoTableSection[i]); |
244 | pSection->Place(m_pDelayLoadInfoDataTable[i]); |
245 | } |
246 | |
247 | m_pDynamicHelperDataTable = new (GetHeap()) ZapImportSectionSignatures(this, m_pDynamicHelperCellSection); |
248 | m_pDynamicHelperDataSection->Place(m_pDynamicHelperDataTable); |
249 | |
250 | m_pExternalMethodDataTable = new (GetHeap()) ZapImportSectionSignatures(this, m_pExternalMethodCellSection, m_pGCSection); |
251 | m_pExternalMethodDataSection->Place(m_pExternalMethodDataTable); |
252 | |
253 | m_pStubDispatchDataTable = new (GetHeap()) ZapImportSectionSignatures(this, m_pStubDispatchCellSection, m_pGCSection); |
254 | m_pStubDispatchDataSection->Place(m_pStubDispatchDataTable); |
255 | |
256 | m_pGCInfoTable = new (GetHeap()) ZapGCInfoTable(this); |
257 | |
258 | #ifdef WIN64EXCEPTIONS |
259 | m_pUnwindDataTable = new (GetHeap()) ZapUnwindDataTable(this); |
260 | #endif |
261 | |
262 | m_pILMetaData = new (GetHeap()) ZapILMetaData(this); |
263 | m_pILMetaDataSection->Place(m_pILMetaData); |
264 | |
265 | m_pBaseRelocs = new (GetHeap()) ZapBaseRelocs(this); |
266 | m_pBaseRelocsSection->Place(m_pBaseRelocs); |
267 | |
268 | SetDirectoryEntry(IMAGE_DIRECTORY_ENTRY_BASERELOC, m_pBaseRelocsSection); |
269 | |
270 | // |
271 | // Initialization of auxiliary tables in alphabetical order |
272 | // |
273 | m_pInnerPtrs = new (GetHeap()) ZapInnerPtrTable(this); |
274 | |
275 | m_pExceptionInfoLookupTable = new (GetHeap()) ZapExceptionInfoLookupTable(this); |
276 | |
277 | // |
278 | // Always allocate slot for module - it is used to determine that the image is used |
279 | // |
280 | m_pImportTable->GetPlacedHelperImport(READYTORUN_HELPER_Module); |
281 | |
282 | // |
283 | // Make sure the import sections table is in the image, so we can find the slot for module |
284 | // |
285 | _ASSERTE(m_pImportSectionsTable->GetSize() != 0); |
286 | GetReadyToRunHeader()->RegisterSection(READYTORUN_SECTION_IMPORT_SECTIONS, m_pImportSectionsTable); |
287 | } |
288 | #endif // FEATURE_READYTORUN_COMPILER |
289 | |
290 | |
291 | #define DATA_MEM_READONLY IMAGE_SCN_MEM_READ |
292 | #define DATA_MEM_WRITABLE IMAGE_SCN_MEM_READ | IMAGE_SCN_MEM_WRITE |
293 | #define XDATA_MEM IMAGE_SCN_MEM_EXECUTE | IMAGE_SCN_MEM_READ | IMAGE_SCN_MEM_WRITE |
294 | #define TEXT_MEM IMAGE_SCN_MEM_EXECUTE | IMAGE_SCN_MEM_READ |
295 | |
296 | void ZapImage::AllocateVirtualSections() |
297 | { |
298 | // |
299 | // Allocate all virtual sections in the order they will appear in the final image |
300 | // |
301 | // To maximize packing of the data in the native image, the number of named physical sections is minimized - |
302 | // the named physical sections are used just for memory protection control. All items with the same memory |
303 | // protection are packed together in one physical section. |
304 | // |
305 | |
306 | { |
307 | // |
308 | // .data section |
309 | // |
310 | DWORD access = DATA_MEM_WRITABLE; |
311 | |
312 | #ifdef FEATURE_LAZY_COW_PAGES |
313 | // READYTORUN: FUTURE: Optional support for COW pages |
314 | if (!IsReadyToRunCompilation() && CLRConfig::GetConfigValue(CLRConfig::INTERNAL_ZapLazyCOWPagesEnabled)) |
315 | access = DATA_MEM_READONLY; |
316 | #endif |
317 | |
318 | ZapPhysicalSection * pDataSection = NewPhysicalSection(".data" , IMAGE_SCN_CNT_INITIALIZED_DATA | access); |
319 | |
320 | m_pPreloadSections[CORCOMPILE_SECTION_MODULE] = NewVirtualSection(pDataSection, IBCUnProfiledSection | HotRange | ModuleSection); |
321 | |
322 | m_pEETableSection = NewVirtualSection(pDataSection, IBCUnProfiledSection | HotRange | EETableSection); // Could be marked bss if it makes sense |
323 | |
324 | // These are all known to be hot or writeable |
325 | m_pPreloadSections[CORCOMPILE_SECTION_WRITE] = NewVirtualSection(pDataSection, IBCProfiledSection | HotRange | WriteDataSection); |
326 | m_pPreloadSections[CORCOMPILE_SECTION_HOT_WRITEABLE] = NewVirtualSection(pDataSection, IBCProfiledSection | HotRange | WriteableDataSection); // hot for reading, potentially written to |
327 | m_pPreloadSections[CORCOMPILE_SECTION_WRITEABLE] = NewVirtualSection(pDataSection, IBCProfiledSection | ColdRange | WriteableDataSection); // Cold based on IBC profiling data. |
328 | m_pPreloadSections[CORCOMPILE_SECTION_HOT] = NewVirtualSection(pDataSection, IBCProfiledSection | HotRange | DataSection); |
329 | |
330 | m_pPreloadSections[CORCOMPILE_SECTION_RVA_STATICS_HOT] = NewVirtualSection(pDataSection, IBCProfiledSection | HotRange | RVAStaticsSection); |
331 | |
332 | m_pDelayLoadInfoTableSection[ZapImportSectionType_Eager] = NewVirtualSection(pDataSection, IBCUnProfiledSection | HotRange | DelayLoadInfoTableEagerSection, TARGET_POINTER_SIZE); |
333 | |
334 | // |
335 | // Allocate dynamic info tables |
336 | // |
337 | |
338 | // Place the HOT CorCompileTables now, the cold ones would be placed later in this routine (after other HOT sections) |
339 | for (int i=0; i<ZapImportSectionType_Count; i++) |
340 | { |
341 | m_pDelayLoadInfoTableSection[i] = NewVirtualSection(pDataSection, IBCProfiledSection | HotRange | DelayLoadInfoTableSection, TARGET_POINTER_SIZE); |
342 | } |
343 | |
344 | m_pDynamicHelperCellSection = NewVirtualSection(pDataSection, IBCProfiledSection | HotColdSortedRange | ExternalMethodDataSection, TARGET_POINTER_SIZE); |
345 | |
346 | m_pExternalMethodCellSection = NewVirtualSection(pDataSection, IBCProfiledSection | HotColdSortedRange | ExternalMethodThunkSection, TARGET_POINTER_SIZE); |
347 | |
348 | // m_pStubDispatchCellSection is deliberately placed directly after |
349 | // the last m_pDelayLoadInfoTableSection (all .data sections go together in the order indicated). |
350 | // We do this to place it as the last "hot, written" section. Why? Because |
351 | // we don't split the dispatch cells into hot/cold sections (We probably should), |
352 | // and so the section is actually half hot and half cold. |
353 | // But it turns out that the hot dispatch cells always come |
354 | // first (because the code that uses them is hot and gets compiled first). |
355 | // Thus m_pStubDispatchCellSection contains all hot cells at the front of |
356 | // this blob of data. By making them last in a grouping of written data we |
357 | // make sure the hot data is grouped with hot data in the |
358 | // m_pDelayLoadInfoTableSection sections. |
359 | |
360 | m_pStubDispatchCellSection = NewVirtualSection(pDataSection, IBCProfiledSection | HotColdSortedRange | StubDispatchDataSection, TARGET_POINTER_SIZE); |
361 | |
362 | // Earlier we placed the HOT corCompile tables. Now place the cold ones after the stub dispatch cell section. |
363 | for (int i=0; i<ZapImportSectionType_Count; i++) |
364 | { |
365 | m_pDelayLoadInfoTableSection[ZapImportSectionType_Cold + i] = NewVirtualSection(pDataSection, IBCProfiledSection | ColdRange | DelayLoadInfoTableSection, TARGET_POINTER_SIZE); |
366 | } |
367 | |
368 | // |
369 | // Virtual sections that are moved to .cdata when we have profile data. |
370 | // |
371 | |
372 | // This is everyhing that is assumed to be warm in the first strata |
373 | // of non-profiled scenarios. MethodTables related to objects etc. |
374 | m_pPreloadSections[CORCOMPILE_SECTION_WARM] = NewVirtualSection(pDataSection, IBCProfiledSection | WarmRange | EEDataSection, TARGET_POINTER_SIZE); |
375 | |
376 | m_pPreloadSections[CORCOMPILE_SECTION_RVA_STATICS_COLD] = NewVirtualSection(pDataSection, IBCProfiledSection | ColdRange | RVAStaticsSection); |
377 | |
378 | // In an ideal world these are cold in both profiled and the first strata |
379 | // of non-profiled scenarios (i.e. no reflection, etc. ) The sections at the |
380 | // bottom correspond to further strata of non-profiled scenarios. |
381 | m_pPreloadSections[CORCOMPILE_SECTION_CLASS_COLD] = NewVirtualSection(pDataSection, IBCProfiledSection | ColdRange | ClassSection, TARGET_POINTER_SIZE); |
382 | m_pPreloadSections[CORCOMPILE_SECTION_CROSS_DOMAIN_INFO] = NewVirtualSection(pDataSection, IBCUnProfiledSection | ColdRange | CrossDomainInfoSection, TARGET_POINTER_SIZE); |
383 | m_pPreloadSections[CORCOMPILE_SECTION_METHOD_DESC_COLD] = NewVirtualSection(pDataSection, IBCProfiledSection | ColdRange | MethodDescSection, TARGET_POINTER_SIZE); |
384 | m_pPreloadSections[CORCOMPILE_SECTION_METHOD_DESC_COLD_WRITEABLE] = NewVirtualSection(pDataSection, IBCProfiledSection | ColdRange | MethodDescWriteableSection, TARGET_POINTER_SIZE); |
385 | m_pPreloadSections[CORCOMPILE_SECTION_MODULE_COLD] = NewVirtualSection(pDataSection, IBCProfiledSection | ColdRange | ModuleSection, TARGET_POINTER_SIZE); |
386 | m_pPreloadSections[CORCOMPILE_SECTION_DEBUG_COLD] = NewVirtualSection(pDataSection, IBCUnProfiledSection | ColdRange | DebugSection, TARGET_POINTER_SIZE); |
387 | |
388 | // |
389 | // If we're instrumenting allocate a section for writing profile data |
390 | // |
391 | if (m_zapper->m_pOpt->m_compilerFlags.IsSet(CORJIT_FLAGS::CORJIT_FLAG_BBINSTR)) |
392 | { |
393 | m_pInstrumentSection = NewVirtualSection(pDataSection, IBCUnProfiledSection | ColdRange | InstrumentSection, TARGET_POINTER_SIZE); |
394 | } |
395 | } |
396 | |
397 | // No RWX pages in ready to run images |
398 | if (!IsReadyToRunCompilation()) |
399 | { |
400 | DWORD access = XDATA_MEM; |
401 | |
402 | #ifdef FEATURE_LAZY_COW_PAGES |
403 | if (CLRConfig::GetConfigValue(CLRConfig::INTERNAL_ZapLazyCOWPagesEnabled)) |
404 | access = TEXT_MEM; |
405 | #endif |
406 | |
407 | // |
408 | // .xdata section |
409 | // |
410 | ZapPhysicalSection * pXDataSection = NewPhysicalSection(".xdata" , IMAGE_SCN_CNT_INITIALIZED_DATA | access); |
411 | |
412 | // Some sections are placed in a sorted order. Hot items are placed first, |
413 | // then cold items. These sections are marked as HotColdSortedRange since |
414 | // they are neither completely hot, nor completely cold. |
415 | m_pVirtualImportThunkSection = NewVirtualSection(pXDataSection, IBCProfiledSection | HotColdSortedRange | VirtualImportThunkSection, HELPER_TABLE_ALIGN); |
416 | m_pExternalMethodThunkSection = NewVirtualSection(pXDataSection, IBCProfiledSection | HotColdSortedRange | ExternalMethodThunkSection, HELPER_TABLE_ALIGN); |
417 | m_pHelperTableSection = NewVirtualSection(pXDataSection, IBCProfiledSection | HotColdSortedRange| HelperTableSection, HELPER_TABLE_ALIGN); |
418 | |
419 | // hot for writing, i.e. profiling has indicated a write to this item, so at least one write likely per item at some point |
420 | m_pPreloadSections[CORCOMPILE_SECTION_METHOD_PRECODE_WRITE] = NewVirtualSection(pXDataSection, IBCProfiledSection | HotRange | MethodPrecodeWriteSection, TARGET_POINTER_SIZE); |
421 | m_pPreloadSections[CORCOMPILE_SECTION_METHOD_PRECODE_HOT] = NewVirtualSection(pXDataSection, IBCProfiledSection | HotRange | MethodPrecodeSection, TARGET_POINTER_SIZE); |
422 | |
423 | // |
424 | // cold sections |
425 | // |
426 | m_pPreloadSections[CORCOMPILE_SECTION_METHOD_PRECODE_COLD] = NewVirtualSection(pXDataSection, IBCProfiledSection | ColdRange | MethodPrecodeSection, TARGET_POINTER_SIZE); |
427 | m_pPreloadSections[CORCOMPILE_SECTION_METHOD_PRECODE_COLD_WRITEABLE] = NewVirtualSection(pXDataSection, IBCProfiledSection | ColdRange | MethodPrecodeWriteableSection, TARGET_POINTER_SIZE); |
428 | } |
429 | |
430 | { |
431 | // code:NativeUnwindInfoLookupTable::LookupUnwindInfoForMethod and code:NativeImageJitManager::GetFunctionEntry expects |
432 | // sentinel value right after end of .pdata section. |
433 | static const DWORD dwRuntimeFunctionSectionSentinel = (DWORD)-1; |
434 | |
435 | |
436 | // |
437 | // .text section |
438 | // |
439 | #if defined(_TARGET_ARM_) |
440 | // for ARM, put the resource section at the end if it's very large - this |
441 | // is because b and bl instructions have a limited distance range of +-16MB |
442 | // which we should not exceed if we can avoid it. |
443 | // we draw the limit at 1 MB resource size, somewhat arbitrarily |
444 | COUNT_T resourceSize; |
445 | m_ModuleDecoder.GetResources(&resourceSize); |
446 | BOOL bigResourceSection = resourceSize >= 1024*1024; |
447 | #endif |
448 | ZapPhysicalSection * pTextSection = NewPhysicalSection(".text" , IMAGE_SCN_CNT_CODE | TEXT_MEM); |
449 | m_pTextSection = pTextSection; |
450 | |
451 | // Marked as HotRange since it contains items that are always touched by |
452 | // the OS during NGEN image loading (i.e. VersionInfo) |
453 | m_pWin32ResourceSection = NewVirtualSection(pTextSection, IBCUnProfiledSection | HotRange | Win32ResourcesSection); |
454 | |
455 | // Marked as a HotRange since it is always touched during Ngen image load. |
456 | m_pHeaderSection = NewVirtualSection(pTextSection, IBCUnProfiledSection | HotRange | HeaderSection); |
457 | |
458 | // Marked as a HotRange since it is always touched during Ngen image binding. |
459 | m_pMetaDataSection = NewVirtualSection(pTextSection, IBCUnProfiledSection | HotRange | MetadataSection); |
460 | |
461 | m_pImportTableSection = NewVirtualSection(pTextSection, IBCUnProfiledSection | HotRange | ImportTableSection, sizeof(DWORD)); |
462 | |
463 | m_pDelayLoadInfoDelayListSectionEager = NewVirtualSection(pTextSection, IBCUnProfiledSection | HotRange | DelayLoadInfoDelayListSection, sizeof(DWORD)); |
464 | |
465 | // |
466 | // GC Info for methods which were profiled hot AND had their GC Info touched during profiling |
467 | // |
468 | m_pHotTouchedGCSection = NewVirtualSection(pTextSection, IBCProfiledSection | HotRange | GCInfoSection, sizeof(DWORD)); |
469 | |
470 | m_pLazyHelperSection = NewVirtualSection(pTextSection, IBCUnProfiledSection | HotRange | HelperTableSection, MINIMUM_CODE_ALIGN); |
471 | m_pLazyHelperSection->SetDefaultFill(DEFAULT_CODE_BUFFER_INIT); |
472 | |
473 | m_pLazyMethodCallHelperSection = NewVirtualSection(pTextSection, IBCUnProfiledSection | HotRange | HelperTableSection, MINIMUM_CODE_ALIGN); |
474 | m_pLazyMethodCallHelperSection->SetDefaultFill(DEFAULT_CODE_BUFFER_INIT); |
475 | |
476 | int codeSectionAlign = DEFAULT_CODE_ALIGN; |
477 | |
478 | m_pHotCodeSection = NewVirtualSection(pTextSection, IBCProfiledSection | HotRange | CodeSection, codeSectionAlign); |
479 | m_pHotCodeSection->SetDefaultFill(DEFAULT_CODE_BUFFER_INIT); |
480 | |
481 | #if defined(WIN64EXCEPTIONS) |
482 | m_pHotUnwindDataSection = NewVirtualSection(pTextSection, IBCProfiledSection | HotRange | UnwindDataSection, sizeof(DWORD)); // .rdata area |
483 | |
484 | // All RuntimeFunctionSections have to be together for WIN64EXCEPTIONS |
485 | m_pHotRuntimeFunctionSection = NewVirtualSection(pTextSection, IBCProfiledSection | HotRange | RuntimeFunctionSection, sizeof(DWORD)); // .pdata area |
486 | m_pRuntimeFunctionSection = NewVirtualSection(pTextSection, IBCProfiledSection | WarmRange | ColdRange | RuntimeFunctionSection, sizeof(DWORD)); |
487 | m_pColdRuntimeFunctionSection = NewVirtualSection(pTextSection, IBCProfiledSection | IBCUnProfiledSection | ColdRange | RuntimeFunctionSection, sizeof(DWORD)); |
488 | |
489 | // The following sentinel section is just a padding for RuntimeFunctionSection - Apply same classification |
490 | NewVirtualSection(pTextSection, IBCProfiledSection | IBCUnProfiledSection | ColdRange | RuntimeFunctionSection, sizeof(DWORD)) |
491 | ->Place(new (GetHeap()) ZapBlobPtr((PVOID)&dwRuntimeFunctionSectionSentinel, sizeof(DWORD))); |
492 | #endif // defined(WIN64EXCEPTIONS) |
493 | |
494 | m_pStubsSection = NewVirtualSection(pTextSection, IBCProfiledSection | HotColdSortedRange | StubsSection); |
495 | m_pReadOnlyDataSection = NewVirtualSection(pTextSection, IBCProfiledSection | HotColdSortedRange | ReadonlyDataSection); |
496 | |
497 | m_pDynamicHelperDataSection = NewVirtualSection(pTextSection, IBCProfiledSection | HotColdSortedRange | ExternalMethodDataSection, sizeof(DWORD)); |
498 | m_pExternalMethodDataSection = NewVirtualSection(pTextSection, IBCProfiledSection | HotColdSortedRange | ExternalMethodDataSection, sizeof(DWORD)); |
499 | m_pStubDispatchDataSection = NewVirtualSection(pTextSection, IBCProfiledSection | HotColdSortedRange | StubDispatchDataSection, sizeof(DWORD)); |
500 | |
501 | m_pHotRuntimeFunctionLookupSection = NewVirtualSection(pTextSection, IBCProfiledSection | HotRange | RuntimeFunctionSection, sizeof(DWORD)); |
502 | #if !defined(WIN64EXCEPTIONS) |
503 | m_pHotRuntimeFunctionSection = NewVirtualSection(pTextSection, IBCProfiledSection | HotRange | RuntimeFunctionSection, sizeof(DWORD)); |
504 | |
505 | // The following sentinel section is just a padding for RuntimeFunctionSection - Apply same classification |
506 | NewVirtualSection(pTextSection, IBCProfiledSection | HotRange | RuntimeFunctionSection, sizeof(DWORD)) |
507 | ->Place(new (GetHeap()) ZapBlobPtr((PVOID)&dwRuntimeFunctionSectionSentinel, sizeof(DWORD))); |
508 | #endif |
509 | m_pHotCodeMethodDescsSection = NewVirtualSection(pTextSection, IBCProfiledSection | HotRange | CodeManagerSection, sizeof(DWORD)); |
510 | |
511 | m_pDelayLoadInfoDelayListSectionHot = NewVirtualSection(pTextSection, IBCProfiledSection | HotRange | DelayLoadInfoDelayListSection, sizeof(DWORD)); |
512 | |
513 | // |
514 | // The hot set of read-only data structures. Note that read-only data structures are the things that we can (and aggressively do) intern |
515 | // to share between different owners. However, this can have a bad interaction with IBC, which performs its ordering optimizations without |
516 | // knowing that NGen may jumble around layout with interning. Thankfully, it is a relatively small percentage of the items that are duplicates |
517 | // (many of them used a great deal to add up to large interning savings). This means that we can track all of the interned items for which we |
518 | // actually find any duplicates and put those in a small section. For the rest, where there wasn't a duplicate in the entire image, we leave the |
519 | // singleton in its normal place in the READONLY_HOT section, which was selected carefully by IBC. |
520 | // |
521 | m_pPreloadSections[CORCOMPILE_SECTION_READONLY_SHARED_HOT] = NewVirtualSection(pTextSection, IBCProfiledSection | HotRange | ReadonlySharedSection, TARGET_POINTER_SIZE); |
522 | m_pPreloadSections[CORCOMPILE_SECTION_READONLY_HOT] = NewVirtualSection(pTextSection, IBCProfiledSection | HotRange | ReadonlySection, TARGET_POINTER_SIZE); |
523 | |
524 | // |
525 | // GC Info for methods which were touched during profiling but didn't explicitly have |
526 | // their GC Info touched during profiling |
527 | // |
528 | m_pHotGCSection = NewVirtualSection(pTextSection, IBCProfiledSection | WarmRange | GCInfoSection, sizeof(DWORD)); |
529 | |
530 | #if !defined(_TARGET_ARM_) |
531 | // For ARM, put these sections more towards the end because bl/b instructions have limited diplacement |
532 | |
533 | // IL |
534 | m_pILSection = NewVirtualSection(pTextSection, IBCProfiledSection | HotColdSortedRange | ILSection, sizeof(DWORD)); |
535 | |
536 | //ILMetadata/Resources sections are reported as a statically known warm ranges for now. |
537 | m_pILMetaDataSection = NewVirtualSection(pTextSection, IBCProfiledSection | HotColdSortedRange | ILMetadataSection, sizeof(DWORD)); |
538 | #endif // _TARGET_ARM_ |
539 | |
540 | #if defined(_TARGET_ARM_) |
541 | if (!bigResourceSection) // for ARM, put the resource section at the end if it's very large - see comment above |
542 | #endif |
543 | m_pResourcesSection = NewVirtualSection(pTextSection, IBCUnProfiledSection | WarmRange | ResourcesSection); |
544 | |
545 | // |
546 | // Allocate the unprofiled code section and code manager nibble map here |
547 | // |
548 | m_pCodeSection = NewVirtualSection(pTextSection, IBCProfiledSection | WarmRange | ColdRange | CodeSection, codeSectionAlign); |
549 | m_pCodeSection->SetDefaultFill(DEFAULT_CODE_BUFFER_INIT); |
550 | |
551 | m_pRuntimeFunctionLookupSection = NewVirtualSection(pTextSection, IBCProfiledSection | WarmRange | ColdRange | RuntimeFunctionSection, sizeof(DWORD)); |
552 | #if !defined(WIN64EXCEPTIONS) |
553 | m_pRuntimeFunctionSection = NewVirtualSection(pTextSection, IBCProfiledSection | WarmRange | ColdRange | RuntimeFunctionSection, sizeof(DWORD)); |
554 | |
555 | // The following sentinel section is just a padding for RuntimeFunctionSection - Apply same classification |
556 | NewVirtualSection(pTextSection, IBCProfiledSection | WarmRange | ColdRange | RuntimeFunctionSection, sizeof(DWORD)) |
557 | ->Place(new (GetHeap()) ZapBlobPtr((PVOID)&dwRuntimeFunctionSectionSentinel, sizeof(DWORD))); |
558 | #endif |
559 | m_pCodeMethodDescsSection = NewVirtualSection(pTextSection, IBCProfiledSection | WarmRange | ColdRange | CodeHeaderSection,sizeof(DWORD)); |
560 | |
561 | #ifdef FEATURE_READYTORUN_COMPILER |
562 | if (IsReadyToRunCompilation()) |
563 | { |
564 | m_pAvailableTypesSection = NewVirtualSection(pTextSection, IBCUnProfiledSection | WarmRange | ReadonlySection); |
565 | } |
566 | #endif |
567 | |
568 | #if defined(WIN64EXCEPTIONS) |
569 | m_pUnwindDataSection = NewVirtualSection(pTextSection, IBCProfiledSection | WarmRange | ColdRange | UnwindDataSection, sizeof(DWORD)); |
570 | #endif // defined(WIN64EXCEPTIONS) |
571 | |
572 | m_pPreloadSections[CORCOMPILE_SECTION_READONLY_WARM] = NewVirtualSection(pTextSection, IBCProfiledSection | WarmRange | ReadonlySection, TARGET_POINTER_SIZE); |
573 | m_pPreloadSections[CORCOMPILE_SECTION_READONLY_VCHUNKS] = NewVirtualSection(pTextSection, IBCProfiledSection | WarmRange | ReadonlySection, TARGET_POINTER_SIZE); |
574 | m_pPreloadSections[CORCOMPILE_SECTION_READONLY_DICTIONARY] = NewVirtualSection(pTextSection, IBCProfiledSection | WarmRange | ReadonlySection, TARGET_POINTER_SIZE); |
575 | |
576 | // |
577 | // GC Info for methods which were not touched in profiling |
578 | // |
579 | m_pGCSection = NewVirtualSection(pTextSection, IBCProfiledSection | ColdRange | GCInfoSection, sizeof(DWORD)); |
580 | |
581 | m_pDelayLoadInfoDelayListSectionCold = NewVirtualSection(pTextSection, IBCProfiledSection | ColdRange | DelayLoadInfoDelayListSection, sizeof(DWORD)); |
582 | |
583 | m_pPreloadSections[CORCOMPILE_SECTION_READONLY_COLD] = NewVirtualSection(pTextSection, IBCProfiledSection | ColdRange | ReadonlySection, TARGET_POINTER_SIZE); |
584 | |
585 | // |
586 | // Allocate the cold code section near the end of the image |
587 | // |
588 | m_pColdCodeSection = NewVirtualSection(pTextSection, IBCProfiledSection | IBCUnProfiledSection | ColdRange | CodeSection, codeSectionAlign); |
589 | m_pColdCodeSection->SetDefaultFill(DEFAULT_CODE_BUFFER_INIT); |
590 | |
591 | #if defined(_TARGET_ARM_) |
592 | // For ARM, put these sections more towards the end because bl/b instructions have limited diplacement |
593 | |
594 | // IL |
595 | m_pILSection = NewVirtualSection(pTextSection, IBCProfiledSection | HotColdSortedRange | ILSection, sizeof(DWORD)); |
596 | |
597 | //ILMetadata/Resources sections are reported as a statically known warm ranges for now. |
598 | m_pILMetaDataSection = NewVirtualSection(pTextSection, IBCProfiledSection | HotColdSortedRange | ILMetadataSection, sizeof(DWORD)); |
599 | |
600 | if (bigResourceSection) // for ARM, put the resource section at the end if it's very large - see comment above |
601 | m_pResourcesSection = NewVirtualSection(pTextSection, IBCUnProfiledSection | WarmRange | ResourcesSection); |
602 | #endif // _TARGET_ARM_ |
603 | m_pColdCodeMapSection = NewVirtualSection(pTextSection, IBCProfiledSection | IBCUnProfiledSection | ColdRange | CodeManagerSection, sizeof(DWORD)); |
604 | |
605 | #if !defined(WIN64EXCEPTIONS) |
606 | m_pColdRuntimeFunctionSection = NewVirtualSection(pTextSection, IBCProfiledSection | IBCUnProfiledSection | ColdRange | RuntimeFunctionSection, sizeof(DWORD)); |
607 | |
608 | // The following sentinel section is just a padding for RuntimeFunctionSection - Apply same classification |
609 | NewVirtualSection(pTextSection, IBCProfiledSection | IBCUnProfiledSection | ColdRange | RuntimeFunctionSection, sizeof(DWORD)) |
610 | ->Place(new (GetHeap()) ZapBlobPtr((PVOID)&dwRuntimeFunctionSectionSentinel, sizeof(DWORD))); |
611 | #endif |
612 | |
613 | #if defined(WIN64EXCEPTIONS) |
614 | m_pColdUnwindDataSection = NewVirtualSection(pTextSection, IBCProfiledSection | IBCUnProfiledSection | ColdRange | UnwindDataSection, sizeof(DWORD)); |
615 | #endif // defined(WIN64EXCEPTIONS) |
616 | |
617 | // |
618 | // Allocate space for compressed LookupMaps (ridmaps). This needs to come after the .data physical |
619 | // section (which is currently true for the .text section) and late enough in the .text section to be |
620 | // after any structure referenced by the LookupMap (current MethodTables and MethodDescs). This is a |
621 | // hard requirement since the compression algorithm requires that all referenced data structures have |
622 | // been laid out by the time we come to lay out the compressed nodes. |
623 | // |
624 | m_pPreloadSections[CORCOMPILE_SECTION_COMPRESSED_MAPS] = NewVirtualSection(pTextSection, IBCProfiledSection | ColdRange | CompressedMapsSection, sizeof(DWORD)); |
625 | |
626 | m_pExceptionSection = NewVirtualSection(pTextSection, IBCProfiledSection | HotColdSortedRange | ExceptionSection, sizeof(DWORD)); |
627 | |
628 | // |
629 | // Debug info is sometimes used during exception handling to build stacktrace |
630 | // |
631 | m_pDebugSection = NewVirtualSection(pTextSection, IBCUnProfiledSection | ColdRange | DebugSection, sizeof(DWORD)); |
632 | } |
633 | |
634 | { |
635 | // |
636 | // .reloc section |
637 | // |
638 | |
639 | ZapPhysicalSection * pRelocSection = NewPhysicalSection(".reloc" , IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_DISCARDABLE | IMAGE_SCN_MEM_READ); |
640 | |
641 | // .reloc section is always read by the OS when the image is opted in ASLR |
642 | // (Vista+ default behavior). |
643 | m_pBaseRelocsSection = NewVirtualSection(pRelocSection, IBCUnProfiledSection | HotRange | BaseRelocsSection); |
644 | |
645 | } |
646 | } |
647 | |
648 | void ZapImage::Preallocate() |
649 | { |
650 | COUNT_T cbILImage = m_ModuleDecoder.GetSize(); |
651 | |
652 | // Curb the estimate to handle corner cases gracefuly |
653 | cbILImage = min(cbILImage, 50000000); |
654 | |
655 | PREALLOCATE_HASHTABLE(ZapImage::m_CompiledMethods, 0.0050, cbILImage); |
656 | PREALLOCATE_HASHTABLE(ZapImage::m_ClassLayoutOrder, 0.0003, cbILImage); |
657 | |
658 | // |
659 | // Preallocation of auxiliary tables in alphabetical order |
660 | // |
661 | m_pImportTable->Preallocate(cbILImage); |
662 | m_pInnerPtrs->Preallocate(cbILImage); |
663 | m_pMethodEntryPoints->Preallocate(cbILImage); |
664 | m_pWrappers->Preallocate(cbILImage); |
665 | |
666 | if (m_pILMetaData != NULL) |
667 | m_pILMetaData->Preallocate(cbILImage); |
668 | m_pGCInfoTable->Preallocate(cbILImage); |
669 | #ifdef WIN64EXCEPTIONS |
670 | m_pUnwindDataTable->Preallocate(cbILImage); |
671 | #endif // WIN64EXCEPTIONS |
672 | m_pDebugInfoTable->Preallocate(cbILImage); |
673 | } |
674 | |
675 | void ZapImage::SetVersionInfo(CORCOMPILE_VERSION_INFO * pVersionInfo) |
676 | { |
677 | m_pVersionInfo = new (GetHeap()) ZapVersionInfo(pVersionInfo); |
678 | m_pHeaderSection->Place(m_pVersionInfo); |
679 | } |
680 | |
681 | void ZapImage::SetDependencies(CORCOMPILE_DEPENDENCY *pDependencies, DWORD cDependencies) |
682 | { |
683 | m_pDependencies = new (GetHeap()) ZapDependencies(pDependencies, cDependencies); |
684 | m_pHeaderSection->Place(m_pDependencies); |
685 | } |
686 | |
687 | void ZapImage::SetPdbFileName(const SString &strFileName) |
688 | { |
689 | m_pdbFileName.Set(strFileName); |
690 | } |
691 | |
692 | #ifdef WIN64EXCEPTIONS |
693 | void ZapImage::SetRuntimeFunctionsDirectoryEntry() |
694 | { |
695 | // |
696 | // Runtime functions span multiple virtual sections and so there is no natural ZapNode * to cover them all. |
697 | // Create dummy ZapNode * that covers them all for IMAGE_DIRECTORY_ENTRY_EXCEPTION directory entry. |
698 | // |
699 | ZapVirtualSection * rgRuntimeFunctionSections[] = { |
700 | m_pHotRuntimeFunctionSection, |
701 | m_pRuntimeFunctionSection, |
702 | m_pColdRuntimeFunctionSection |
703 | }; |
704 | |
705 | DWORD dwTotalSize = 0, dwStartRVA = (DWORD)-1, dwEndRVA = 0; |
706 | |
707 | for (size_t i = 0; i < _countof(rgRuntimeFunctionSections); i++) |
708 | { |
709 | ZapVirtualSection * pSection = rgRuntimeFunctionSections[i]; |
710 | |
711 | DWORD dwSize = pSection->GetSize(); |
712 | if (dwSize == 0) |
713 | continue; |
714 | |
715 | DWORD dwRVA = pSection->GetRVA(); |
716 | |
717 | dwTotalSize += dwSize; |
718 | |
719 | dwStartRVA = min(dwStartRVA, dwRVA); |
720 | dwEndRVA = max(dwEndRVA, dwRVA + dwSize); |
721 | } |
722 | |
723 | if (dwTotalSize != 0) |
724 | { |
725 | // Verify that there are no holes between the sections |
726 | _ASSERTE(dwStartRVA + dwTotalSize == dwEndRVA); |
727 | |
728 | ZapNode * pAllRuntimeFunctionSections = new (GetHeap()) ZapDummyNode(dwTotalSize); |
729 | pAllRuntimeFunctionSections->SetRVA(dwStartRVA); |
730 | |
731 | // Write the address of the sorted pdata to the optionalHeader.DataDirectory |
732 | SetDirectoryEntry(IMAGE_DIRECTORY_ENTRY_EXCEPTION, pAllRuntimeFunctionSections); |
733 | } |
734 | } |
735 | #endif // WIN64EXCEPTIONS |
736 | |
737 | // Assign RVAs to all ZapNodes |
738 | void ZapImage::ComputeRVAs() |
739 | { |
740 | ZapWriter::ComputeRVAs(); |
741 | |
742 | if (!IsReadyToRunCompilation()) |
743 | { |
744 | m_pMethodEntryPoints->Resolve(); |
745 | m_pWrappers->Resolve(); |
746 | } |
747 | |
748 | m_pInnerPtrs->Resolve(); |
749 | |
750 | #ifdef WIN64EXCEPTIONS |
751 | SetRuntimeFunctionsDirectoryEntry(); |
752 | #endif |
753 | |
754 | #if defined(_DEBUG) |
755 | #ifdef FEATURE_SYMDIFF |
756 | if (CLRConfig::GetConfigValue(CLRConfig::INTERNAL_SymDiffDump)) |
757 | { |
758 | COUNT_T curMethod = 0; |
759 | COUNT_T numMethods = m_MethodCompilationOrder.GetCount(); |
760 | |
761 | for (; curMethod < numMethods; curMethod++) |
762 | { |
763 | bool fCold = false; |
764 | //if(curMethod >= m_iUntrainedMethod) fCold = true; |
765 | |
766 | ZapMethodHeader * pMethod = m_MethodCompilationOrder[curMethod]; |
767 | |
768 | ZapBlobWithRelocs * pCode = fCold ? pMethod->m_pColdCode : pMethod->m_pCode; |
769 | if (pCode == NULL) |
770 | { |
771 | continue; |
772 | } |
773 | CORINFO_METHOD_HANDLE handle = pMethod->GetHandle(); |
774 | mdMethodDef token; |
775 | GetCompileInfo()->GetMethodDef(handle, &token); |
776 | GetSvcLogger()->Printf(W("(EntryPointRVAMap (MethodToken %0X) (RVA %0X) (SIZE %0X))\n" ), token, pCode->GetRVA(), pCode->GetSize()); |
777 | } |
778 | |
779 | } |
780 | #endif // FEATURE_SYMDIFF |
781 | #endif //_DEBUG |
782 | } |
783 | |
784 | class ZapFileStream : public IStream |
785 | { |
786 | HANDLE m_hFile; |
787 | MD5 m_hasher; |
788 | |
789 | public: |
790 | ZapFileStream() |
791 | : m_hFile(INVALID_HANDLE_VALUE) |
792 | { |
793 | m_hasher.Init(); |
794 | } |
795 | |
796 | ~ZapFileStream() |
797 | { |
798 | Close(); |
799 | } |
800 | |
801 | void SetHandle(HANDLE hFile) |
802 | { |
803 | _ASSERTE(m_hFile == INVALID_HANDLE_VALUE); |
804 | m_hFile = hFile; |
805 | } |
806 | |
807 | // IUnknown methods: |
808 | STDMETHODIMP_(ULONG) AddRef() |
809 | { |
810 | return 1; |
811 | } |
812 | |
813 | STDMETHODIMP_(ULONG) Release() |
814 | { |
815 | return 1; |
816 | } |
817 | |
818 | STDMETHODIMP QueryInterface(REFIID riid, LPVOID *ppv) |
819 | { |
820 | HRESULT hr = S_OK; |
821 | if (IsEqualIID(riid, IID_IUnknown) || IsEqualIID(riid, IID_IStream)) { |
822 | *ppv = static_cast<IStream *>(this); |
823 | } |
824 | else { |
825 | hr = E_NOINTERFACE; |
826 | } |
827 | return hr; |
828 | } |
829 | |
830 | // ISequentialStream methods: |
831 | STDMETHODIMP Read(void *pv, ULONG cb, ULONG *pcbRead) |
832 | { |
833 | _ASSERTE(false); |
834 | return E_NOTIMPL; |
835 | } |
836 | |
837 | STDMETHODIMP Write(void const *pv, ULONG cb, ULONG *pcbWritten) |
838 | { |
839 | HRESULT hr = S_OK; |
840 | |
841 | _ASSERTE(m_hFile != INVALID_HANDLE_VALUE); |
842 | |
843 | m_hasher.HashMore(pv, cb); |
844 | |
845 | // We are calling with lpOverlapped == NULL so pcbWritten has to be present |
846 | // to prevent crashes in Win7 and below. |
847 | _ASSERTE(pcbWritten); |
848 | |
849 | if (!::WriteFile(m_hFile, pv, cb, pcbWritten, NULL)) |
850 | { |
851 | hr = HRESULT_FROM_GetLastError(); |
852 | goto Exit; |
853 | } |
854 | |
855 | Exit: |
856 | return hr; |
857 | } |
858 | |
859 | // IStream methods: |
860 | STDMETHODIMP Seek(LARGE_INTEGER dlibMove, DWORD dwOrigin, ULARGE_INTEGER *plibNewPosition) |
861 | { |
862 | HRESULT hr = S_OK; |
863 | |
864 | _ASSERTE(m_hFile != INVALID_HANDLE_VALUE); |
865 | |
866 | DWORD dwFileOrigin; |
867 | switch (dwOrigin) { |
868 | case STREAM_SEEK_SET: |
869 | dwFileOrigin = FILE_BEGIN; |
870 | break; |
871 | |
872 | case STREAM_SEEK_CUR: |
873 | dwFileOrigin = FILE_CURRENT; |
874 | break; |
875 | |
876 | case STREAM_SEEK_END: |
877 | dwFileOrigin = FILE_END; |
878 | break; |
879 | |
880 | default: |
881 | hr = E_UNEXPECTED; |
882 | goto Exit; |
883 | } |
884 | if (!::SetFilePointerEx(m_hFile, dlibMove, (LARGE_INTEGER *)plibNewPosition, dwFileOrigin)) |
885 | { |
886 | hr = HRESULT_FROM_GetLastError(); |
887 | goto Exit; |
888 | } |
889 | |
890 | Exit: |
891 | return hr; |
892 | } |
893 | |
894 | STDMETHODIMP SetSize(ULARGE_INTEGER libNewSize) |
895 | { |
896 | HRESULT hr = S_OK; |
897 | |
898 | _ASSERTE(m_hFile != INVALID_HANDLE_VALUE); |
899 | |
900 | hr = Seek(*(LARGE_INTEGER *)&libNewSize, FILE_BEGIN, NULL); |
901 | if (FAILED(hr)) |
902 | { |
903 | goto Exit; |
904 | } |
905 | |
906 | if (!::SetEndOfFile(m_hFile)) |
907 | { |
908 | hr = HRESULT_FROM_GetLastError(); |
909 | goto Exit; |
910 | } |
911 | |
912 | Exit: |
913 | return hr; |
914 | } |
915 | |
916 | STDMETHODIMP CopyTo(IStream *pstm, ULARGE_INTEGER cb, ULARGE_INTEGER *pcbRead, ULARGE_INTEGER *pcbWritten) |
917 | { |
918 | _ASSERTE(false); |
919 | return E_NOTIMPL; |
920 | } |
921 | |
922 | STDMETHODIMP Commit(DWORD grfCommitFlags) |
923 | { |
924 | _ASSERTE(false); |
925 | return E_NOTIMPL; |
926 | } |
927 | |
928 | STDMETHODIMP Revert() |
929 | { |
930 | _ASSERTE(false); |
931 | return E_NOTIMPL; |
932 | } |
933 | |
934 | STDMETHODIMP LockRegion(ULARGE_INTEGER libOffset, ULARGE_INTEGER cb, DWORD dwLockType) |
935 | { |
936 | _ASSERTE(false); |
937 | return E_NOTIMPL; |
938 | } |
939 | |
940 | STDMETHODIMP UnlockRegion(ULARGE_INTEGER libOffset, ULARGE_INTEGER cb, DWORD dwLockType) |
941 | { |
942 | _ASSERTE(false); |
943 | return E_NOTIMPL; |
944 | } |
945 | |
946 | STDMETHODIMP Stat(STATSTG *pstatstg, DWORD grfStatFlag) |
947 | { |
948 | _ASSERTE(false); |
949 | return E_NOTIMPL; |
950 | } |
951 | |
952 | STDMETHODIMP Clone(IStream **ppIStream) |
953 | { |
954 | _ASSERTE(false); |
955 | return E_NOTIMPL; |
956 | } |
957 | |
958 | HRESULT Close() |
959 | { |
960 | HRESULT hr = S_OK; |
961 | |
962 | HANDLE hFile = m_hFile; |
963 | if (hFile != INVALID_HANDLE_VALUE) |
964 | { |
965 | m_hFile = INVALID_HANDLE_VALUE; |
966 | |
967 | if (!::CloseHandle(hFile)) |
968 | { |
969 | hr = HRESULT_FROM_GetLastError(); |
970 | goto Exit; |
971 | } |
972 | } |
973 | |
974 | Exit: |
975 | return hr; |
976 | } |
977 | |
978 | void SuppressClose() |
979 | { |
980 | m_hFile = INVALID_HANDLE_VALUE; |
981 | } |
982 | |
983 | void GetHash(MD5HASHDATA* pHash) |
984 | { |
985 | m_hasher.GetHashValue(pHash); |
986 | } |
987 | }; |
988 | |
989 | HANDLE ZapImage::GenerateFile(LPCWSTR wszOutputFileName, CORCOMPILE_NGEN_SIGNATURE * pNativeImageSig) |
990 | { |
991 | ZapFileStream outputStream; |
992 | |
993 | HANDLE hFile = WszCreateFile(wszOutputFileName, |
994 | GENERIC_READ | GENERIC_WRITE, |
995 | FILE_SHARE_READ | FILE_SHARE_DELETE, |
996 | NULL, |
997 | CREATE_ALWAYS, |
998 | FILE_ATTRIBUTE_NORMAL | FILE_FLAG_SEQUENTIAL_SCAN, |
999 | NULL); |
1000 | |
1001 | if (hFile == INVALID_HANDLE_VALUE) |
1002 | ThrowLastError(); |
1003 | |
1004 | outputStream.SetHandle(hFile); |
1005 | |
1006 | Save(&outputStream); |
1007 | |
1008 | LARGE_INTEGER filePos; |
1009 | |
1010 | if (m_pNativeHeader != NULL) |
1011 | { |
1012 | // Write back the updated CORCOMPILE_HEADER (relocs and guid is not correct the first time around) |
1013 | filePos.QuadPart = m_pTextSection->GetFilePos() + |
1014 | (m_pNativeHeader->GetRVA() - m_pTextSection->GetRVA()); |
1015 | IfFailThrow(outputStream.Seek(filePos, STREAM_SEEK_SET, NULL)); |
1016 | m_pNativeHeader->Save(this); |
1017 | FlushWriter(); |
1018 | } |
1019 | |
1020 | GUID signature = {0}; |
1021 | |
1022 | static_assert_no_msg(sizeof(GUID) == sizeof(MD5HASHDATA)); |
1023 | outputStream.GetHash((MD5HASHDATA*)&signature); |
1024 | |
1025 | { |
1026 | // Write the debug directory entry for the NGEN PDB |
1027 | RSDS rsds = {0}; |
1028 | |
1029 | rsds.magic = 'SDSR'; |
1030 | rsds.age = 1; |
1031 | // our PDB signature will be the same as our NGEN signature. |
1032 | // However we want the printed version of the GUID to be be the same as the |
1033 | // byte dump of the signature so we swap bytes to make this work. |
1034 | // |
1035 | // * See code:CCorSvcMgr::CreatePdb for where this is used. |
1036 | BYTE* asBytes = (BYTE*) &signature; |
1037 | rsds.signature.Data1 = ((asBytes[0] * 256 + asBytes[1]) * 256 + asBytes[2]) * 256 + asBytes[3]; |
1038 | rsds.signature.Data2 = asBytes[4] * 256 + asBytes[5]; |
1039 | rsds.signature.Data3 = asBytes[6] * 256 + asBytes[7]; |
1040 | memcpy(&rsds.signature.Data4, &asBytes[8], 8); |
1041 | |
1042 | _ASSERTE(!m_pdbFileName.IsEmpty()); |
1043 | ZeroMemory(&rsds.path[0], sizeof(rsds.path)); |
1044 | if (WideCharToMultiByte(CP_UTF8, |
1045 | 0, |
1046 | m_pdbFileName.GetUnicode(), |
1047 | m_pdbFileName.GetCount(), |
1048 | &rsds.path[0], |
1049 | sizeof(rsds.path) - 1, // -1 to keep the buffer zero terminated |
1050 | NULL, |
1051 | NULL) == 0) |
1052 | ThrowHR(E_FAIL); |
1053 | |
1054 | ULONG cbWritten = 0; |
1055 | filePos.QuadPart = m_pTextSection->GetFilePos() + (m_pNGenPdbDebugData->GetRVA() - m_pTextSection->GetRVA()); |
1056 | IfFailThrow(outputStream.Seek(filePos, STREAM_SEEK_SET, NULL)); |
1057 | IfFailThrow(outputStream.Write(&rsds, sizeof rsds, &cbWritten)); |
1058 | } |
1059 | |
1060 | if (m_pVersionInfo != NULL) |
1061 | { |
1062 | ULONG cbWritten; |
1063 | |
1064 | filePos.QuadPart = m_pTextSection->GetFilePos() + |
1065 | (m_pVersionInfo->GetRVA() - m_pTextSection->GetRVA()) + |
1066 | offsetof(CORCOMPILE_VERSION_INFO, signature); |
1067 | IfFailThrow(outputStream.Seek(filePos, STREAM_SEEK_SET, NULL)); |
1068 | IfFailThrow(outputStream.Write(&signature, sizeof(signature), &cbWritten)); |
1069 | |
1070 | if (pNativeImageSig != NULL) |
1071 | *pNativeImageSig = signature; |
1072 | } |
1073 | else |
1074 | { |
1075 | _ASSERTE(pNativeImageSig == NULL); |
1076 | } |
1077 | |
1078 | outputStream.SuppressClose(); |
1079 | return hFile; |
1080 | } |
1081 | |
1082 | |
1083 | HANDLE ZapImage::SaveImage(LPCWSTR wszOutputFileName, LPCWSTR wszDllPath, CORCOMPILE_NGEN_SIGNATURE * pNativeImageSig) |
1084 | { |
1085 | if (!IsReadyToRunCompilation()) |
1086 | { |
1087 | OutputManifestMetadata(); |
1088 | } |
1089 | |
1090 | OutputTables(); |
1091 | |
1092 | // Create a empty export table. This makes tools like symchk not think |
1093 | // that native images are resoure-only DLLs. It is important to NOT |
1094 | // be a resource-only DLL because those DLL's PDBS are not put up on the |
1095 | // symbol server and we want NEN PDBS to be placed there. |
1096 | ZapPEExports* exports = new(GetHeap()) ZapPEExports(wszDllPath); |
1097 | m_pDebugSection->Place(exports); |
1098 | SetDirectoryEntry(IMAGE_DIRECTORY_ENTRY_EXPORT, exports); |
1099 | |
1100 | ComputeRVAs(); |
1101 | |
1102 | if (!IsReadyToRunCompilation()) |
1103 | { |
1104 | m_pPreloader->FixupRVAs(); |
1105 | } |
1106 | |
1107 | HANDLE hFile = GenerateFile(wszOutputFileName, pNativeImageSig); |
1108 | |
1109 | if (m_zapper->m_pOpt->m_verbose) |
1110 | { |
1111 | PrintStats(wszOutputFileName); |
1112 | } |
1113 | |
1114 | return hFile; |
1115 | } |
1116 | |
1117 | void ZapImage::PrintStats(LPCWSTR wszOutputFileName) |
1118 | { |
1119 | #define ACCUM_SIZE(dest, src) if( src != NULL ) dest+= src->GetSize() |
1120 | ACCUM_SIZE(m_stats->m_gcInfoSize, m_pHotTouchedGCSection); |
1121 | ACCUM_SIZE(m_stats->m_gcInfoSize, m_pHotGCSection); |
1122 | ACCUM_SIZE(m_stats->m_gcInfoSize, m_pGCSection); |
1123 | #if defined(WIN64EXCEPTIONS) |
1124 | ACCUM_SIZE(m_stats->m_unwindInfoSize, m_pUnwindDataSection); |
1125 | ACCUM_SIZE(m_stats->m_unwindInfoSize, m_pHotRuntimeFunctionSection); |
1126 | ACCUM_SIZE(m_stats->m_unwindInfoSize, m_pRuntimeFunctionSection); |
1127 | ACCUM_SIZE(m_stats->m_unwindInfoSize, m_pColdRuntimeFunctionSection); |
1128 | #endif // defined(WIN64EXCEPTIONS) |
1129 | |
1130 | // |
1131 | // Get the size of the input & output files |
1132 | // |
1133 | |
1134 | { |
1135 | WIN32_FIND_DATA inputData; |
1136 | FindHandleHolder inputHandle = WszFindFirstFile(m_pModuleFileName, &inputData); |
1137 | if (inputHandle != INVALID_HANDLE_VALUE) |
1138 | m_stats->m_inputFileSize = inputData.nFileSizeLow; |
1139 | } |
1140 | |
1141 | { |
1142 | WIN32_FIND_DATA outputData; |
1143 | FindHandleHolder outputHandle = WszFindFirstFile(wszOutputFileName, &outputData); |
1144 | if (outputHandle != INVALID_HANDLE_VALUE) |
1145 | m_stats->m_outputFileSize = outputData.nFileSizeLow; |
1146 | } |
1147 | |
1148 | ACCUM_SIZE(m_stats->m_metadataSize, m_pAssemblyMetaData); |
1149 | |
1150 | DWORD dwPreloadSize = 0; |
1151 | for (int iSection = 0; iSection < CORCOMPILE_SECTION_COUNT; iSection++) |
1152 | ACCUM_SIZE(dwPreloadSize, m_pPreloadSections[iSection]); |
1153 | m_stats->m_preloadImageSize = dwPreloadSize; |
1154 | |
1155 | ACCUM_SIZE(m_stats->m_hotCodeMgrSize, m_pHotCodeMethodDescsSection); |
1156 | ACCUM_SIZE(m_stats->m_unprofiledCodeMgrSize, m_pCodeMethodDescsSection); |
1157 | ACCUM_SIZE(m_stats->m_coldCodeMgrSize, m_pHotRuntimeFunctionLookupSection); |
1158 | |
1159 | ACCUM_SIZE(m_stats->m_eeInfoTableSize, m_pEEInfoTable); |
1160 | ACCUM_SIZE(m_stats->m_helperTableSize, m_pHelperTableSection); |
1161 | ACCUM_SIZE(m_stats->m_dynamicInfoTableSize, m_pImportSectionsTable); |
1162 | |
1163 | ACCUM_SIZE(m_stats->m_dynamicInfoDelayListSize, m_pDelayLoadInfoDelayListSectionEager); |
1164 | ACCUM_SIZE(m_stats->m_dynamicInfoDelayListSize, m_pDelayLoadInfoDelayListSectionHot); |
1165 | ACCUM_SIZE(m_stats->m_dynamicInfoDelayListSize, m_pDelayLoadInfoDelayListSectionCold); |
1166 | |
1167 | ACCUM_SIZE(m_stats->m_debuggingTableSize, m_pDebugSection); |
1168 | ACCUM_SIZE(m_stats->m_headerSectionSize, m_pGCSection); |
1169 | ACCUM_SIZE(m_stats->m_codeSectionSize, m_pHotCodeSection); |
1170 | ACCUM_SIZE(m_stats->m_coldCodeSectionSize, m_pColdCodeSection); |
1171 | ACCUM_SIZE(m_stats->m_exceptionSectionSize, m_pExceptionSection); |
1172 | ACCUM_SIZE(m_stats->m_readOnlyDataSectionSize, m_pReadOnlyDataSection); |
1173 | ACCUM_SIZE(m_stats->m_relocSectionSize, m_pBaseRelocsSection); |
1174 | ACCUM_SIZE(m_stats->m_ILMetadataSize, m_pILMetaData); |
1175 | ACCUM_SIZE(m_stats->m_virtualImportThunkSize, m_pVirtualImportThunkSection); |
1176 | ACCUM_SIZE(m_stats->m_externalMethodThunkSize, m_pExternalMethodThunkSection); |
1177 | ACCUM_SIZE(m_stats->m_externalMethodDataSize, m_pExternalMethodDataSection); |
1178 | #undef ACCUM_SIZE |
1179 | |
1180 | if (m_stats->m_failedMethods) |
1181 | m_zapper->Warning(W("Warning: %d methods (%d%%) could not be compiled.\n" ), |
1182 | m_stats->m_failedMethods, (m_stats->m_failedMethods*100) / m_stats->m_methods); |
1183 | if (m_stats->m_failedILStubs) |
1184 | m_zapper->Warning(W("Warning: %d IL STUB methods could not be compiled.\n" ), |
1185 | m_stats->m_failedMethods); |
1186 | m_stats->PrintStats(); |
1187 | } |
1188 | |
1189 | // Align native images to 64K |
1190 | const SIZE_T BASE_ADDRESS_ALIGNMENT = 0xffff; |
1191 | const double CODE_EXPANSION_FACTOR = 3.6; |
1192 | |
1193 | void ZapImage::CalculateZapBaseAddress() |
1194 | { |
1195 | static SIZE_T nextBaseAddressForMultiModule; |
1196 | |
1197 | SIZE_T baseAddress = 0; |
1198 | |
1199 | { |
1200 | // Read the actual preferred base address from the disk |
1201 | |
1202 | // Note that we are reopening the file here. We are not guaranteed to get the same file. |
1203 | // The worst thing that can happen is that we will read a bogus preferred base address from the file. |
1204 | HandleHolder hFile(WszCreateFile(m_pModuleFileName, |
1205 | GENERIC_READ, |
1206 | FILE_SHARE_READ|FILE_SHARE_DELETE, |
1207 | NULL, |
1208 | OPEN_EXISTING, |
1209 | FILE_ATTRIBUTE_NORMAL, |
1210 | NULL)); |
1211 | if (hFile == INVALID_HANDLE_VALUE) |
1212 | ThrowLastError(); |
1213 | |
1214 | HandleHolder hFileMap(WszCreateFileMapping(hFile, NULL, PAGE_READONLY, 0, 0, NULL)); |
1215 | if (hFileMap == NULL) |
1216 | ThrowLastError(); |
1217 | |
1218 | MapViewHolder base(MapViewOfFile(hFileMap, FILE_MAP_READ, 0, 0, 0)); |
1219 | if (base == NULL) |
1220 | ThrowLastError(); |
1221 | |
1222 | DWORD dwFileLen = SafeGetFileSize(hFile, 0); |
1223 | if (dwFileLen == INVALID_FILE_SIZE) |
1224 | ThrowLastError(); |
1225 | |
1226 | PEDecoder peFlat((void *)base, (COUNT_T)dwFileLen); |
1227 | |
1228 | baseAddress = (SIZE_T) peFlat.GetPreferredBase(); |
1229 | } |
1230 | |
1231 | // See if the header has the linker's default preferred base address |
1232 | if (baseAddress == (SIZE_T) 0x00400000) |
1233 | { |
1234 | if (m_fManifestModule) |
1235 | { |
1236 | // Set the base address for the main assembly with the manifest |
1237 | |
1238 | if (!m_ModuleDecoder.IsDll()) |
1239 | { |
1240 | #if defined(_TARGET_X86_) |
1241 | // We use 30000000 for an exe |
1242 | baseAddress = 0x30000000; |
1243 | #elif defined(_TARGET_64BIT_) |
1244 | // We use 04000000 for an exe |
1245 | // which is remapped to 0x642`88000000 on x64 |
1246 | baseAddress = 0x04000000; |
1247 | #endif |
1248 | } |
1249 | else |
1250 | { |
1251 | #if defined(_TARGET_X86_) |
1252 | // We start a 31000000 for the main assembly with the manifest |
1253 | baseAddress = 0x31000000; |
1254 | #elif defined(_TARGET_64BIT_) |
1255 | // We start a 05000000 for the main assembly with the manifest |
1256 | // which is remapped to 0x642`8A000000 on x64 |
1257 | baseAddress = 0x05000000; |
1258 | #endif |
1259 | } |
1260 | } |
1261 | else // is dependent assembly of a multi-module assembly |
1262 | { |
1263 | // Set the base address for a dependant multi module assembly |
1264 | |
1265 | // We should have already set the nextBaseAddressForMultiModule |
1266 | // when we compiled the manifest module |
1267 | _ASSERTE(nextBaseAddressForMultiModule != 0); |
1268 | baseAddress = nextBaseAddressForMultiModule; |
1269 | } |
1270 | } |
1271 | else |
1272 | { |
1273 | // |
1274 | // For some assemblies we have to move the ngen image base address up |
1275 | // past the end of IL image so that that we don't have a conflict. |
1276 | // |
1277 | // CoreCLR currently always loads both the IL and the native image, so |
1278 | // move the native image out of the way. |
1279 | { |
1280 | baseAddress += m_ModuleDecoder.GetVirtualSize(); |
1281 | } |
1282 | } |
1283 | |
1284 | // Round to a multiple of 64K |
1285 | // 64K is the allocation granularity of VirtualAlloc. (Officially this number is not a constant - |
1286 | // we should be querying the system for its allocation granularity, but we do this all over the place |
1287 | // currently.) |
1288 | |
1289 | baseAddress = (baseAddress + BASE_ADDRESS_ALIGNMENT) & ~BASE_ADDRESS_ALIGNMENT; |
1290 | |
1291 | // |
1292 | // Calculate the nextBaseAddressForMultiModule |
1293 | // |
1294 | SIZE_T tempBaseAddress = baseAddress; |
1295 | tempBaseAddress += (SIZE_T) (CODE_EXPANSION_FACTOR * (double) m_ModuleDecoder.GetVirtualSize()); |
1296 | tempBaseAddress += BASE_ADDRESS_ALIGNMENT; |
1297 | tempBaseAddress = (tempBaseAddress + BASE_ADDRESS_ALIGNMENT) & ~BASE_ADDRESS_ALIGNMENT; |
1298 | |
1299 | nextBaseAddressForMultiModule = tempBaseAddress; |
1300 | |
1301 | // |
1302 | // Now we remap the 32-bit address range used for x86 and PE32 images into thre |
1303 | // upper address range used on 64-bit platforms |
1304 | // |
1305 | #if USE_UPPER_ADDRESS |
1306 | #if defined(_TARGET_64BIT_) |
1307 | if (baseAddress < 0x80000000) |
1308 | { |
1309 | if (baseAddress < 0x40000000) |
1310 | baseAddress += 0x40000000; // We map [00000000..3fffffff] to [642'80000000..642'ffffffff] |
1311 | else |
1312 | baseAddress -= 0x40000000; // We map [40000000..7fffffff] to [642'00000000..642'7fffffff] |
1313 | |
1314 | baseAddress *= UPPER_ADDRESS_MAPPING_FACTOR; |
1315 | baseAddress += CLR_UPPER_ADDRESS_MIN; |
1316 | } |
1317 | #endif |
1318 | #endif |
1319 | |
1320 | |
1321 | // Apply the calculated base address. |
1322 | SetBaseAddress(baseAddress); |
1323 | |
1324 | m_NativeBaseAddress = baseAddress; |
1325 | } |
1326 | |
1327 | void ZapImage::Open(CORINFO_MODULE_HANDLE hModule, |
1328 | IMetaDataAssemblyEmit *pEmit) |
1329 | { |
1330 | m_hModule = hModule; |
1331 | m_fManifestModule = (hModule == m_zapper->m_pEECompileInfo->GetAssemblyModule(m_zapper->m_hAssembly)); |
1332 | |
1333 | m_ModuleDecoder = *m_zapper->m_pEECompileInfo->GetModuleDecoder(hModule); |
1334 | |
1335 | |
1336 | // |
1337 | // Get file name, and base address from module |
1338 | // |
1339 | |
1340 | StackSString moduleFileName; |
1341 | m_zapper->m_pEECompileInfo->GetModuleFileName(hModule, moduleFileName); |
1342 | |
1343 | DWORD fileNameLength = moduleFileName.GetCount(); |
1344 | m_pModuleFileName = new WCHAR[fileNameLength+1]; |
1345 | wcscpy_s(m_pModuleFileName, fileNameLength+1, moduleFileName.GetUnicode()); |
1346 | |
1347 | // |
1348 | // Load the IBC Profile data for the assembly if it exists |
1349 | // |
1350 | LoadProfileData(); |
1351 | |
1352 | // |
1353 | // Get metadata of module to be compiled |
1354 | // |
1355 | m_pMDImport = m_zapper->m_pEECompileInfo->GetModuleMetaDataImport(m_hModule); |
1356 | _ASSERTE(m_pMDImport != NULL); |
1357 | |
1358 | // |
1359 | // Open new assembly metadata data for writing. We may not use it, |
1360 | // if so we'll just discard it at the end. |
1361 | // |
1362 | if (pEmit != NULL) |
1363 | { |
1364 | pEmit->AddRef(); |
1365 | m_pAssemblyEmit = pEmit; |
1366 | } |
1367 | else |
1368 | { |
1369 | // Hardwire the metadata version to be the current runtime version so that the ngen image |
1370 | // does not change when the directory runtime is installed in different directory (e.g. v2.0.x86chk vs. v2.0.80826). |
1371 | BSTRHolder strVersion(SysAllocString(W("v" )VER_PRODUCTVERSION_NO_QFE_STR_L)); |
1372 | VARIANT versionOption; |
1373 | V_VT(&versionOption) = VT_BSTR; |
1374 | V_BSTR(&versionOption) = strVersion; |
1375 | IfFailThrow(m_zapper->m_pMetaDataDispenser->SetOption(MetaDataRuntimeVersion, &versionOption)); |
1376 | |
1377 | IfFailThrow(m_zapper->m_pMetaDataDispenser-> |
1378 | DefineScope(CLSID_CorMetaDataRuntime, 0, IID_IMetaDataAssemblyEmit, |
1379 | (IUnknown **) &m_pAssemblyEmit)); |
1380 | } |
1381 | |
1382 | #ifdef FEATURE_READYTORUN_COMPILER |
1383 | if (IsReadyToRunCompilation()) |
1384 | { |
1385 | InitializeSectionsForReadyToRun(); |
1386 | } |
1387 | else |
1388 | #endif |
1389 | { |
1390 | InitializeSections(); |
1391 | } |
1392 | |
1393 | // Set the module base address for the ngen native image |
1394 | CalculateZapBaseAddress(); |
1395 | } |
1396 | |
1397 | |
1398 | |
1399 | |
1400 | // |
1401 | // Load the module and populate all the data-structures |
1402 | // |
1403 | |
1404 | void ZapImage::Preload() |
1405 | { |
1406 | |
1407 | CorProfileData * pProfileData = NewProfileData(); |
1408 | m_pPreloader = m_zapper->m_pEECompileInfo->PreloadModule(m_hModule, this, pProfileData); |
1409 | } |
1410 | |
1411 | // |
1412 | // Store the module |
1413 | // |
1414 | |
1415 | void ZapImage::LinkPreload() |
1416 | { |
1417 | m_pPreloader->Link(); |
1418 | } |
1419 | |
1420 | void ZapImage::OutputManifestMetadata() |
1421 | { |
1422 | // |
1423 | // Write out manifest metadata |
1424 | // |
1425 | |
1426 | // |
1427 | // First, see if we have useful metadata to store |
1428 | // |
1429 | |
1430 | BOOL fMetadata = FALSE; |
1431 | |
1432 | if (m_pAssemblyEmit != NULL) |
1433 | { |
1434 | // |
1435 | // We may have added some assembly refs for exports. |
1436 | // |
1437 | |
1438 | NonVMComHolder<IMetaDataAssemblyImport> pAssemblyImport; |
1439 | IfFailThrow(m_pAssemblyEmit->QueryInterface(IID_IMetaDataAssemblyImport, |
1440 | (void **)&pAssemblyImport)); |
1441 | |
1442 | NonVMComHolder<IMetaDataImport> pImport; |
1443 | IfFailThrow(m_pAssemblyEmit->QueryInterface(IID_IMetaDataImport, |
1444 | (void **)&pImport)); |
1445 | |
1446 | HCORENUM hEnum = 0; |
1447 | ULONG cRefs; |
1448 | IfFailThrow(pAssemblyImport->EnumAssemblyRefs(&hEnum, NULL, 0, &cRefs)); |
1449 | IfFailThrow(pImport->CountEnum(hEnum, &cRefs)); |
1450 | pImport->CloseEnum(hEnum); |
1451 | |
1452 | if (cRefs > 0) |
1453 | fMetadata = TRUE; |
1454 | |
1455 | // |
1456 | // If we are the main module, we have the assembly def for the zap file. |
1457 | // |
1458 | |
1459 | mdAssembly a; |
1460 | if (pAssemblyImport->GetAssemblyFromScope(&a) == S_OK) |
1461 | fMetadata = TRUE; |
1462 | } |
1463 | |
1464 | if (fMetadata) |
1465 | { |
1466 | // Metadata creates a new MVID for every instantiation. |
1467 | // However, we want the generated ngen image to always be the same |
1468 | // for the same input. So set the metadata MVID to NGEN_IMAGE_MVID. |
1469 | |
1470 | NonVMComHolder<IMDInternalEmit> pMDInternalEmit; |
1471 | IfFailThrow(m_pAssemblyEmit->QueryInterface(IID_IMDInternalEmit, |
1472 | (void**)&pMDInternalEmit)); |
1473 | |
1474 | IfFailThrow(pMDInternalEmit->ChangeMvid(NGEN_IMAGE_MVID)); |
1475 | |
1476 | m_pAssemblyMetaData = new (GetHeap()) ZapMetaData(); |
1477 | m_pAssemblyMetaData->SetMetaData(m_pAssemblyEmit); |
1478 | |
1479 | m_pMetaDataSection->Place(m_pAssemblyMetaData); |
1480 | } |
1481 | } |
1482 | |
1483 | void ZapImage::OutputTables() |
1484 | { |
1485 | // |
1486 | // Copy over any resources to the native image |
1487 | // |
1488 | |
1489 | COUNT_T size; |
1490 | PVOID resource = (PVOID)m_ModuleDecoder.GetResources(&size); |
1491 | |
1492 | if (size != 0) |
1493 | { |
1494 | m_pResources = new (GetHeap()) ZapBlobPtr(resource, size); |
1495 | m_pResourcesSection->Place(m_pResources); |
1496 | } |
1497 | |
1498 | CopyDebugDirEntry(); |
1499 | CopyWin32VersionResource(); |
1500 | |
1501 | if (m_pILMetaData != NULL) |
1502 | { |
1503 | m_pILMetaData->CopyIL(); |
1504 | m_pILMetaData->CopyMetaData(); |
1505 | } |
1506 | |
1507 | if (IsReadyToRunCompilation()) |
1508 | { |
1509 | m_pILMetaData->CopyRVAFields(); |
1510 | } |
1511 | |
1512 | // Copy over the timestamp from IL image for determinism |
1513 | SetTimeDateStamp(m_ModuleDecoder.GetTimeDateStamp()); |
1514 | |
1515 | SetSubsystem(m_ModuleDecoder.GetSubsystem()); |
1516 | |
1517 | { |
1518 | USHORT dllCharacteristics = 0; |
1519 | |
1520 | #ifndef _TARGET_64BIT_ |
1521 | dllCharacteristics |= IMAGE_DLLCHARACTERISTICS_NO_SEH; |
1522 | #endif |
1523 | |
1524 | #ifdef _TARGET_ARM_ |
1525 | // Images without NX compat bit set fail to load on ARM |
1526 | dllCharacteristics |= IMAGE_DLLCHARACTERISTICS_NX_COMPAT; |
1527 | #endif |
1528 | |
1529 | // Copy over selected DLL characteristics bits from IL image |
1530 | dllCharacteristics |= (m_ModuleDecoder.GetDllCharacteristics() & |
1531 | (IMAGE_DLLCHARACTERISTICS_NX_COMPAT | IMAGE_DLLCHARACTERISTICS_TERMINAL_SERVER_AWARE | IMAGE_DLLCHARACTERISTICS_APPCONTAINER)); |
1532 | |
1533 | #ifdef _DEBUG |
1534 | if (0 == CLRConfig::GetConfigValue(CLRConfig::INTERNAL_NoASLRForNgen)) |
1535 | #endif // _DEBUG |
1536 | { |
1537 | dllCharacteristics |= IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE; |
1538 | #ifdef _TARGET_64BIT_ |
1539 | // Large address aware, required for High Entry VA, is always enabled for 64bit native images. |
1540 | dllCharacteristics |= IMAGE_DLLCHARACTERISTICS_HIGH_ENTROPY_VA; |
1541 | #endif |
1542 | } |
1543 | |
1544 | SetDllCharacteristics(dllCharacteristics); |
1545 | } |
1546 | |
1547 | if (IsReadyToRunCompilation()) |
1548 | { |
1549 | |
1550 | SetSizeOfStackReserve(m_ModuleDecoder.GetSizeOfStackReserve()); |
1551 | SetSizeOfStackCommit(m_ModuleDecoder.GetSizeOfStackCommit()); |
1552 | } |
1553 | |
1554 | #if defined(FEATURE_PAL) && !defined(_TARGET_64BIT_) |
1555 | // To minimize wasted VA space on 32 bit systems align file to page bounaries (presumed to be 4K). |
1556 | SetFileAlignment(0x1000); |
1557 | #elif defined(_TARGET_ARM_) && defined(FEATURE_CORESYSTEM) |
1558 | if (!IsReadyToRunCompilation()) |
1559 | { |
1560 | // On ARM CoreSys builds, crossgen will use 4k file alignment, as requested by Phone perf team |
1561 | // to improve perf on phones with compressed system partitions. |
1562 | SetFileAlignment(0x1000); |
1563 | } |
1564 | #endif |
1565 | } |
1566 | |
1567 | ZapImage::CompileStatus ZapImage::CompileProfileDataWorker(mdToken token, unsigned methodProfilingDataFlags) |
1568 | { |
1569 | if ((TypeFromToken(token) != mdtMethodDef) || |
1570 | (!m_pMDImport->IsValidToken(token))) |
1571 | { |
1572 | m_zapper->Info(W("Warning: Invalid method token %08x in profile data.\n" ), token); |
1573 | return NOT_COMPILED; |
1574 | } |
1575 | |
1576 | #ifdef _DEBUG |
1577 | static ConfigDWORD g_NgenOrder; |
1578 | |
1579 | if ((g_NgenOrder.val(CLRConfig::INTERNAL_NgenOrder) & 2) == 2) |
1580 | { |
1581 | const ProfileDataHashEntry * foundEntry = profileDataHashTable.LookupPtr(token); |
1582 | |
1583 | if (foundEntry == NULL) |
1584 | return NOT_COMPILED; |
1585 | |
1586 | // The md must match. |
1587 | _ASSERTE(foundEntry->md == token); |
1588 | // The target position cannot be 0. |
1589 | _ASSERTE(foundEntry->pos > 0); |
1590 | } |
1591 | #endif |
1592 | |
1593 | // Now compile the method |
1594 | return TryCompileMethodDef(token, methodProfilingDataFlags); |
1595 | } |
1596 | |
1597 | // ProfileDisableInlining |
1598 | // Before we start compiling any methods we may need to suppress the inlining |
1599 | // of certain methods based upon our profile data. |
1600 | // This method will arrange to disable this inlining. |
1601 | // |
1602 | void ZapImage::ProfileDisableInlining() |
1603 | { |
1604 | // We suppress the inlining of any Hot methods that have the ExcludeHotMethodCode flag. |
1605 | // We want such methods to be Jitted at runtime rather than compiled in the AOT native image. |
1606 | // The inlining of such a method also need to be suppressed. |
1607 | // |
1608 | ProfileDataSection* methodProfileData = &(m_profileDataSections[MethodProfilingData]); |
1609 | if (methodProfileData->tableSize > 0) |
1610 | { |
1611 | for (DWORD i = 0; i < methodProfileData->tableSize; i++) |
1612 | { |
1613 | CORBBTPROF_TOKEN_INFO * pTokenInfo = &(methodProfileData->pTable[i]); |
1614 | unsigned methodProfilingDataFlags = pTokenInfo->flags; |
1615 | |
1616 | // Hot methods can be marked to be excluded from the AOT native image. |
1617 | // We also need to disable inlining of such methods. |
1618 | // |
1619 | if ((methodProfilingDataFlags & (1 << DisableInlining)) != 0) |
1620 | { |
1621 | // Disable the inlining of this method |
1622 | // |
1623 | // @ToDo: Figure out how to disable inlining for this method. |
1624 | } |
1625 | } |
1626 | } |
1627 | } |
1628 | |
1629 | // CompileHotRegion |
1630 | // Performs the compilation and placement for all methods in the the "Hot" code region |
1631 | // Methods placed in this region typically correspond to all of the methods that were |
1632 | // executed during any of the profiling scenarios. |
1633 | // |
1634 | void ZapImage::CompileHotRegion() |
1635 | { |
1636 | // Compile all of the methods that were executed during profiling into the "Hot" code region. |
1637 | // |
1638 | BeginRegion(CORINFO_REGION_HOT); |
1639 | |
1640 | CorProfileData* pProfileData = GetProfileData(); |
1641 | |
1642 | ProfileDataSection* methodProfileData = &(m_profileDataSections[MethodProfilingData]); |
1643 | if (methodProfileData->tableSize > 0) |
1644 | { |
1645 | // record the start of hot IBC methods. |
1646 | m_iIBCMethod = m_MethodCompilationOrder.GetCount(); |
1647 | |
1648 | // |
1649 | // Compile the hot methods in the order specified in the MethodProfilingData |
1650 | // |
1651 | for (DWORD i = 0; i < methodProfileData->tableSize; i++) |
1652 | { |
1653 | CompileStatus compileResult = NOT_COMPILED; |
1654 | CORBBTPROF_TOKEN_INFO * pTokenInfo = &(methodProfileData->pTable[i]); |
1655 | |
1656 | mdToken token = pTokenInfo->token; |
1657 | unsigned methodProfilingDataFlags = pTokenInfo->flags; |
1658 | _ASSERTE(methodProfilingDataFlags != 0); |
1659 | |
1660 | if (TypeFromToken(token) == mdtMethodDef) |
1661 | { |
1662 | // |
1663 | // Compile a non-generic method |
1664 | // |
1665 | compileResult = CompileProfileDataWorker(token, methodProfilingDataFlags); |
1666 | } |
1667 | else if (TypeFromToken(token) == ibcMethodSpec) |
1668 | { |
1669 | // |
1670 | // compile a generic/parameterized method |
1671 | // |
1672 | CORBBTPROF_BLOB_PARAM_SIG_ENTRY *pBlobSigEntry = pProfileData->GetBlobSigEntry(token); |
1673 | |
1674 | if (pBlobSigEntry == NULL) |
1675 | { |
1676 | m_zapper->Info(W("Warning: Did not find definition for method token %08x in profile data.\n" ), token); |
1677 | } |
1678 | else // (pBlobSigEntry != NULL) |
1679 | { |
1680 | _ASSERTE(pBlobSigEntry->blob.token == token); |
1681 | |
1682 | // decode method desc |
1683 | CORINFO_METHOD_HANDLE pMethod = m_pPreloader->FindMethodForProfileEntry(pBlobSigEntry); |
1684 | |
1685 | if (pMethod) |
1686 | { |
1687 | m_pPreloader->AddMethodToTransitiveClosureOfInstantiations(pMethod); |
1688 | |
1689 | compileResult = TryCompileInstantiatedMethod(pMethod, methodProfilingDataFlags); |
1690 | } |
1691 | else |
1692 | { |
1693 | // This generic/parameterized method is not part of the native image |
1694 | // Either the IBC type specified no longer exists or it is a SIMD types |
1695 | // or the type can't be loaded in a ReadyToRun native image because of |
1696 | // a cross-module type dependencies. |
1697 | // |
1698 | compileResult = COMPILE_EXCLUDED; |
1699 | } |
1700 | } |
1701 | } |
1702 | |
1703 | // Update the 'flags' and 'compileResult' saved in the profileDataHashTable hash table. |
1704 | // |
1705 | hashBBUpdateFlagsAndCompileResult(token, methodProfilingDataFlags, compileResult); |
1706 | } |
1707 | // record the start of hot Generics methods. |
1708 | m_iGenericsMethod = m_MethodCompilationOrder.GetCount(); |
1709 | } |
1710 | |
1711 | // record the start of untrained code |
1712 | m_iUntrainedMethod = m_MethodCompilationOrder.GetCount(); |
1713 | |
1714 | EndRegion(CORINFO_REGION_HOT); |
1715 | } |
1716 | |
1717 | // CompileColdRegion |
1718 | // Performs the compilation and placement for all methods in the the "Cold" code region |
1719 | // Methods placed in this region typically correspond to all of the methods that were |
1720 | // NOT executed during any of the profiling scenarios. |
1721 | // |
1722 | void ZapImage::CompileColdRegion() |
1723 | { |
1724 | // Compile all of the methods that were NOT executed during profiling into the "Cold" code region. |
1725 | // |
1726 | |
1727 | BeginRegion(CORINFO_REGION_COLD); |
1728 | |
1729 | IMDInternalImport * pMDImport = m_pMDImport; |
1730 | |
1731 | HENUMInternalHolder hEnum(pMDImport); |
1732 | hEnum.EnumAllInit(mdtMethodDef); |
1733 | |
1734 | mdMethodDef md; |
1735 | while (pMDImport->EnumNext(&hEnum, &md)) |
1736 | { |
1737 | // |
1738 | // Compile the remaining methods that weren't compiled during the CompileHotRegion phase |
1739 | // |
1740 | TryCompileMethodDef(md, 0); |
1741 | } |
1742 | |
1743 | // Compile any generic code which lands in this LoaderModule |
1744 | // that resulted from the above compilations |
1745 | CORINFO_METHOD_HANDLE handle = m_pPreloader->NextUncompiledMethod(); |
1746 | while (handle != NULL) |
1747 | { |
1748 | TryCompileInstantiatedMethod(handle, 0); |
1749 | handle = m_pPreloader->NextUncompiledMethod(); |
1750 | } |
1751 | |
1752 | EndRegion(CORINFO_REGION_COLD); |
1753 | } |
1754 | |
1755 | // PlaceMethodIL |
1756 | // Copy the IL for all method into the AOT native image |
1757 | // |
1758 | void ZapImage::PlaceMethodIL() |
1759 | { |
1760 | // Place the IL for all of the methods |
1761 | // |
1762 | IMDInternalImport * pMDImport = m_pMDImport; |
1763 | HENUMInternalHolder hEnum(pMDImport); |
1764 | hEnum.EnumAllInit(mdtMethodDef); |
1765 | |
1766 | mdMethodDef md; |
1767 | while (pMDImport->EnumNext(&hEnum, &md)) |
1768 | { |
1769 | if (m_pILMetaData != NULL) |
1770 | { |
1771 | // Copy IL for all methods. We treat errors during copying IL |
1772 | // over as fatal error. These errors are typically caused by |
1773 | // corrupted IL images. |
1774 | // |
1775 | m_pILMetaData->EmitMethodIL(md); |
1776 | } |
1777 | } |
1778 | } |
1779 | |
1780 | void ZapImage::Compile() |
1781 | { |
1782 | // |
1783 | // Compile all of the methods for our AOT native image |
1784 | // |
1785 | |
1786 | bool doNothingNgen = false; |
1787 | #ifdef _DEBUG |
1788 | static ConfigDWORD fDoNothingNGen; |
1789 | doNothingNgen = !!fDoNothingNGen.val(CLRConfig::INTERNAL_ZapDoNothing); |
1790 | #endif |
1791 | |
1792 | ProfileDisableInlining(); |
1793 | |
1794 | if (!doNothingNgen) |
1795 | { |
1796 | CompileHotRegion(); |
1797 | |
1798 | CompileColdRegion(); |
1799 | } |
1800 | |
1801 | PlaceMethodIL(); |
1802 | |
1803 | // Compute a preferred class layout order based on analyzing the graph |
1804 | // of which classes contain calls to other classes. |
1805 | ComputeClassLayoutOrder(); |
1806 | |
1807 | // Sort the unprofiled methods by this preferred class layout, if available |
1808 | if (m_fHasClassLayoutOrder) |
1809 | { |
1810 | SortUnprofiledMethodsByClassLayoutOrder(); |
1811 | } |
1812 | |
1813 | if (IsReadyToRunCompilation()) |
1814 | { |
1815 | // Pretend that no methods are trained, so that everything is in single code section |
1816 | // READYTORUN: FUTURE: More than one code section |
1817 | m_iUntrainedMethod = 0; |
1818 | } |
1819 | |
1820 | OutputCode(ProfiledHot); |
1821 | OutputCode(Unprofiled); |
1822 | OutputCode(ProfiledCold); |
1823 | |
1824 | OutputCodeInfo(ProfiledHot); |
1825 | OutputCodeInfo(ProfiledCold); // actually both Unprofiled and ProfiledCold |
1826 | |
1827 | OutputGCInfo(); |
1828 | OutputProfileData(); |
1829 | |
1830 | #ifdef FEATURE_READYTORUN_COMPILER |
1831 | if (IsReadyToRunCompilation()) |
1832 | { |
1833 | OutputEntrypointsTableForReadyToRun(); |
1834 | OutputDebugInfoForReadyToRun(); |
1835 | OutputTypesTableForReadyToRun(m_pMDImport); |
1836 | OutputInliningTableForReadyToRun(); |
1837 | OutputProfileDataForReadyToRun(); |
1838 | } |
1839 | else |
1840 | #endif |
1841 | { |
1842 | OutputDebugInfo(); |
1843 | } |
1844 | } |
1845 | |
1846 | struct CompileMethodStubContext |
1847 | { |
1848 | ZapImage * pImage; |
1849 | unsigned methodProfilingDataFlags; |
1850 | ZapImage::CompileStatus enumCompileStubResult; |
1851 | |
1852 | CompileMethodStubContext(ZapImage * _image, unsigned _methodProfilingDataFlags) |
1853 | { |
1854 | pImage = _image; |
1855 | methodProfilingDataFlags = _methodProfilingDataFlags; |
1856 | enumCompileStubResult = ZapImage::NOT_COMPILED; |
1857 | } |
1858 | }; |
1859 | |
1860 | //----------------------------------------------------------------------------- |
1861 | // This method is a callback function use to compile any IL_STUBS that are |
1862 | // associated with a normal IL method. It is called from CompileMethodStubIfNeeded |
1863 | // via the function pointer stored in the CompileMethodStubContext. |
1864 | // It handles the temporary change to the m_compilerFlags and removes any flags |
1865 | // that we don't want set when compiling IL_STUBS. |
1866 | //----------------------------------------------------------------------------- |
1867 | |
1868 | // static void __stdcall |
1869 | void ZapImage::TryCompileMethodStub(LPVOID pContext, CORINFO_METHOD_HANDLE hStub, CORJIT_FLAGS jitFlags) |
1870 | { |
1871 | STANDARD_VM_CONTRACT; |
1872 | |
1873 | // The caller must always set the IL_STUB flag |
1874 | _ASSERTE(jitFlags.IsSet(CORJIT_FLAGS::CORJIT_FLAG_IL_STUB)); |
1875 | |
1876 | CompileMethodStubContext *pCompileContext = reinterpret_cast<CompileMethodStubContext *>(pContext); |
1877 | ZapImage *pImage = pCompileContext->pImage; |
1878 | |
1879 | CORJIT_FLAGS oldFlags = pImage->m_zapper->m_pOpt->m_compilerFlags; |
1880 | |
1881 | CORJIT_FLAGS* pCompilerFlags = &pImage->m_zapper->m_pOpt->m_compilerFlags; |
1882 | pCompilerFlags->Add(jitFlags); |
1883 | pCompilerFlags->Clear(CORJIT_FLAGS::CORJIT_FLAG_PROF_ENTERLEAVE); |
1884 | pCompilerFlags->Clear(CORJIT_FLAGS::CORJIT_FLAG_DEBUG_CODE); |
1885 | pCompilerFlags->Clear(CORJIT_FLAGS::CORJIT_FLAG_DEBUG_EnC); |
1886 | pCompilerFlags->Clear(CORJIT_FLAGS::CORJIT_FLAG_DEBUG_INFO); |
1887 | |
1888 | mdMethodDef md = mdMethodDefNil; |
1889 | |
1890 | pCompileContext->enumCompileStubResult = pImage->TryCompileMethodWorker(hStub, md, |
1891 | pCompileContext->methodProfilingDataFlags); |
1892 | |
1893 | pImage->m_zapper->m_pOpt->m_compilerFlags = oldFlags; |
1894 | } |
1895 | |
1896 | //----------------------------------------------------------------------------- |
1897 | // Helper for ZapImage::TryCompileMethodDef that indicates whether a given method def token refers to a |
1898 | // "vtable gap" method. These are pseudo-methods used to lay out the vtable for COM interop and as such don't |
1899 | // have any associated code (or even a method handle). |
1900 | //----------------------------------------------------------------------------- |
1901 | BOOL ZapImage::IsVTableGapMethod(mdMethodDef md) |
1902 | { |
1903 | #ifdef FEATURE_COMINTEROP |
1904 | HRESULT hr; |
1905 | DWORD dwAttributes; |
1906 | |
1907 | // Get method attributes and check that RTSpecialName was set for the method (this means the name has |
1908 | // semantic import to the runtime and must be formatted rigorously with one of a few well known rules). |
1909 | // Note that we just return false on any failure path since this will just lead to our caller continuing |
1910 | // to throw the exception they were about to anyway. |
1911 | hr = m_pMDImport->GetMethodDefProps(md, &dwAttributes); |
1912 | if (FAILED(hr) || !IsMdRTSpecialName(dwAttributes)) |
1913 | return FALSE; |
1914 | |
1915 | // Now check the name of the method. All vtable gap methods will have a prefix of "_VtblGap". |
1916 | LPCSTR szMethod; |
1917 | PCCOR_SIGNATURE pvSigBlob; |
1918 | ULONG cbSigBlob; |
1919 | hr = m_pMDImport->GetNameAndSigOfMethodDef(md, &pvSigBlob, &cbSigBlob, &szMethod); |
1920 | if (FAILED(hr) || (strncmp(szMethod, "_VtblGap" , 8) != 0)) |
1921 | return FALSE; |
1922 | |
1923 | // If we make it to here we have a vtable gap method. |
1924 | return TRUE; |
1925 | #else |
1926 | return FALSE; |
1927 | #endif // FEATURE_COMINTEROP |
1928 | } |
1929 | |
1930 | //----------------------------------------------------------------------------- |
1931 | // This function is called for non-generic methods in the current assembly, |
1932 | // and for the typical "System.__Canon" instantiations of generic methods |
1933 | // in the current assembly. |
1934 | //----------------------------------------------------------------------------- |
1935 | |
1936 | ZapImage::CompileStatus ZapImage::TryCompileMethodDef(mdMethodDef md, unsigned methodProfilingDataFlags) |
1937 | { |
1938 | _ASSERTE(!IsNilToken(md)); |
1939 | |
1940 | CORINFO_METHOD_HANDLE handle = NULL; |
1941 | CompileStatus result = NOT_COMPILED; |
1942 | |
1943 | if (ShouldCompileMethodDef(md)) |
1944 | { |
1945 | handle = m_pPreloader->LookupMethodDef(md); |
1946 | if (handle == nullptr) |
1947 | { |
1948 | result = LOOKUP_FAILED; |
1949 | } |
1950 | } |
1951 | else |
1952 | { |
1953 | result = COMPILE_EXCLUDED; |
1954 | } |
1955 | |
1956 | if (handle == NULL) |
1957 | return result; |
1958 | |
1959 | // compile the method |
1960 | // |
1961 | CompileStatus methodCompileStatus = TryCompileMethodWorker(handle, md, methodProfilingDataFlags); |
1962 | |
1963 | // Don't bother compiling the IL_STUBS if we failed to compile the parent IL method |
1964 | // |
1965 | if (methodCompileStatus == COMPILE_SUCCEED) |
1966 | { |
1967 | CompileMethodStubContext context(this, methodProfilingDataFlags); |
1968 | |
1969 | // compile stubs associated with the method |
1970 | m_pPreloader->GenerateMethodStubs(handle, m_zapper->m_pOpt->m_ngenProfileImage, |
1971 | &TryCompileMethodStub, |
1972 | &context); |
1973 | } |
1974 | |
1975 | return methodCompileStatus; |
1976 | } |
1977 | |
1978 | |
1979 | //----------------------------------------------------------------------------- |
1980 | // This function is called for non-"System.__Canon" instantiations of generic methods. |
1981 | // These could be methods defined in other assemblies too. |
1982 | //----------------------------------------------------------------------------- |
1983 | |
1984 | ZapImage::CompileStatus ZapImage::TryCompileInstantiatedMethod(CORINFO_METHOD_HANDLE handle, |
1985 | unsigned methodProfilingDataFlags) |
1986 | { |
1987 | if (IsReadyToRunCompilation()) |
1988 | { |
1989 | if (!GetCompileInfo()->IsInCurrentVersionBubble(m_zapper->m_pEEJitInfo->getMethodModule(handle))) |
1990 | return COMPILE_EXCLUDED; |
1991 | } |
1992 | |
1993 | if (!ShouldCompileInstantiatedMethod(handle)) |
1994 | return COMPILE_EXCLUDED; |
1995 | |
1996 | // If we compiling this method because it was specified by the IBC profile data |
1997 | // then issue an warning if this method is not on our uncompiled method list |
1998 | // |
1999 | if (methodProfilingDataFlags != 0) |
2000 | { |
2001 | if (methodProfilingDataFlags & (1 << ReadMethodCode)) |
2002 | { |
2003 | // When we have stale IBC data the method could have been rejected from this image. |
2004 | if (!m_pPreloader->IsUncompiledMethod(handle)) |
2005 | { |
2006 | const char* szClsName; |
2007 | const char* szMethodName = m_zapper->m_pEEJitInfo->getMethodName(handle, &szClsName); |
2008 | |
2009 | SString fullname(SString::Utf8, szClsName); |
2010 | fullname.AppendUTF8(NAMESPACE_SEPARATOR_STR); |
2011 | fullname.AppendUTF8(szMethodName); |
2012 | |
2013 | m_zapper->Info(W("Warning: Invalid method instantiation in profile data: %s\n" ), fullname.GetUnicode()); |
2014 | |
2015 | return NOT_COMPILED; |
2016 | } |
2017 | } |
2018 | } |
2019 | |
2020 | CompileStatus methodCompileStatus = TryCompileMethodWorker(handle, mdMethodDefNil, methodProfilingDataFlags); |
2021 | |
2022 | // Don't bother compiling the IL_STUBS if we failed to compile the parent IL method |
2023 | // |
2024 | if (methodCompileStatus == COMPILE_SUCCEED) |
2025 | { |
2026 | CompileMethodStubContext context(this, methodProfilingDataFlags); |
2027 | |
2028 | // compile stubs associated with the method |
2029 | m_pPreloader->GenerateMethodStubs(handle, m_zapper->m_pOpt->m_ngenProfileImage, |
2030 | &TryCompileMethodStub, |
2031 | &context); |
2032 | } |
2033 | |
2034 | return methodCompileStatus; |
2035 | } |
2036 | |
2037 | //----------------------------------------------------------------------------- |
2038 | |
2039 | ZapImage::CompileStatus ZapImage::TryCompileMethodWorker(CORINFO_METHOD_HANDLE handle, mdMethodDef md, |
2040 | unsigned methodProfilingDataFlags) |
2041 | { |
2042 | _ASSERTE(handle != NULL); |
2043 | |
2044 | if (m_zapper->m_pOpt->m_onlyOneMethod && (m_zapper->m_pOpt->m_onlyOneMethod != md)) |
2045 | return NOT_COMPILED; |
2046 | |
2047 | if (GetCompileInfo()->HasCustomAttribute(handle, "System.Runtime.BypassNGenAttribute" )) |
2048 | return NOT_COMPILED; |
2049 | |
2050 | #ifdef FEATURE_READYTORUN_COMPILER |
2051 | // This is a quick workaround to opt specific methods out of ReadyToRun compilation to work around bugs. |
2052 | if (IsReadyToRunCompilation()) |
2053 | { |
2054 | if (GetCompileInfo()->HasCustomAttribute(handle, "System.Runtime.BypassReadyToRunAttribute" )) |
2055 | return NOT_COMPILED; |
2056 | } |
2057 | #endif |
2058 | |
2059 | // Do we have a profile entry for this method? |
2060 | // |
2061 | if (methodProfilingDataFlags != 0) |
2062 | { |
2063 | // Report the profiling data flags for layout of the EE datastructures |
2064 | m_pPreloader->SetMethodProfilingFlags(handle, methodProfilingDataFlags); |
2065 | |
2066 | // Hot methods can be marked to be excluded from the AOT native image. |
2067 | // A Jitted method executes faster than a ReadyToRun compiled method. |
2068 | // |
2069 | if ((methodProfilingDataFlags & (1 << ExcludeHotMethodCode)) != 0) |
2070 | { |
2071 | // returning COMPILE_HOT_EXCLUDED excludes this method from the AOT native image |
2072 | return COMPILE_HOT_EXCLUDED; |
2073 | } |
2074 | |
2075 | // Cold methods can be marked to be excluded from the AOT native image. |
2076 | // We can reduced the size of the AOT native image by selectively |
2077 | // excluding the code for some of the cold methods. |
2078 | // |
2079 | if ((methodProfilingDataFlags & (1 << ExcludeColdMethodCode)) != 0) |
2080 | { |
2081 | // returning COMPILE_COLD_EXCLUDED excludes this method from the AOT native image |
2082 | return COMPILE_COLD_EXCLUDED; |
2083 | } |
2084 | |
2085 | // If the code was never executed based on the profile data |
2086 | // then don't compile this method now. Wait until until later |
2087 | // when we are compiling the methods in the cold section. |
2088 | // |
2089 | if ((methodProfilingDataFlags & (1 << ReadMethodCode)) == 0) |
2090 | { |
2091 | // returning NOT_COMPILED will defer until later the compilation of this method |
2092 | return NOT_COMPILED; |
2093 | } |
2094 | } |
2095 | else // we are compiling methods for the cold region |
2096 | { |
2097 | // Retrieve any information that we have about a previous compilation attempt of this method |
2098 | const ProfileDataHashEntry* pEntry = profileDataHashTable.LookupPtr(md); |
2099 | |
2100 | // When Partial Ngen is specified we will omit the AOT native code for every |
2101 | // method that does not have profile data |
2102 | // |
2103 | if (pEntry == nullptr && m_zapper->m_pOpt->m_fPartialNGen) |
2104 | { |
2105 | // returning COMPILE_COLD_EXCLUDED excludes this method from the AOT native image |
2106 | return COMPILE_COLD_EXCLUDED; |
2107 | } |
2108 | |
2109 | if (pEntry != nullptr) |
2110 | { |
2111 | if ((pEntry->status == COMPILE_HOT_EXCLUDED) || (pEntry->status == COMPILE_COLD_EXCLUDED)) |
2112 | { |
2113 | // returning COMPILE_HOT_EXCLUDED excludes this method from the AOT native image |
2114 | return pEntry->status; |
2115 | } |
2116 | } |
2117 | } |
2118 | |
2119 | // Have we already compiled it? |
2120 | if (GetCompiledMethod(handle) != NULL) |
2121 | return ALREADY_COMPILED; |
2122 | |
2123 | _ASSERTE(m_zapper->m_pOpt->m_compilerFlags.IsSet(CORJIT_FLAGS::CORJIT_FLAG_IL_STUB) || IsNilToken(md) || handle == m_pPreloader->LookupMethodDef(md)); |
2124 | |
2125 | CompileStatus result = NOT_COMPILED; |
2126 | |
2127 | // This is an entry point into the JIT which can call back into the VM. There are methods in the |
2128 | // JIT that will swallow exceptions and only the VM guarentees that exceptions caught or swallowed |
2129 | // with restore the debug state of the stack guards. So it is necessary to ensure that the status |
2130 | // is restored on return from the call into the JIT, which this light-weight transition macro |
2131 | // will do. |
2132 | REMOVE_STACK_GUARD; |
2133 | |
2134 | CORINFO_MODULE_HANDLE module; |
2135 | |
2136 | // We only compile IL_STUBs from the current assembly |
2137 | if (m_zapper->m_pOpt->m_compilerFlags.IsSet(CORJIT_FLAGS::CORJIT_FLAG_IL_STUB)) |
2138 | module = m_hModule; |
2139 | else |
2140 | module = m_zapper->m_pEEJitInfo->getMethodModule(handle); |
2141 | |
2142 | ZapInfo zapInfo(this, md, handle, module, methodProfilingDataFlags); |
2143 | |
2144 | EX_TRY |
2145 | { |
2146 | zapInfo.CompileMethod(); |
2147 | result = COMPILE_SUCCEED; |
2148 | } |
2149 | EX_CATCH |
2150 | { |
2151 | // Continue unwinding if fatal error was hit. |
2152 | if (FAILED(g_hrFatalError)) |
2153 | ThrowHR(g_hrFatalError); |
2154 | |
2155 | Exception *ex = GET_EXCEPTION(); |
2156 | HRESULT hrException = ex->GetHR(); |
2157 | |
2158 | CorZapLogLevel level; |
2159 | |
2160 | #ifdef CROSSGEN_COMPILE |
2161 | // Warnings should not go to stderr during crossgen |
2162 | level = CORZAP_LOGLEVEL_WARNING; |
2163 | #else |
2164 | level = CORZAP_LOGLEVEL_ERROR; |
2165 | |
2166 | m_zapper->m_failed = TRUE; |
2167 | #endif |
2168 | |
2169 | result = COMPILE_FAILED; |
2170 | |
2171 | #ifdef FEATURE_READYTORUN_COMPILER |
2172 | // NYI features in R2R - Stop crossgen from spitting unnecessary |
2173 | // messages to the console |
2174 | if (IsReadyToRunCompilation()) |
2175 | { |
2176 | // When compiling the method we may recieve an exeception when the |
2177 | // method uses a feature that is Not Implemented for ReadyToRun |
2178 | // or a Type Load exception if the method uses for a SIMD type. |
2179 | // |
2180 | // We skip the compilation of such methods and we don't want to |
2181 | // issue a warning or error |
2182 | // |
2183 | if ((hrException == E_NOTIMPL) || (hrException == IDS_CLASSLOAD_GENERAL)) |
2184 | { |
2185 | result = NOT_COMPILED; |
2186 | level = CORZAP_LOGLEVEL_INFO; |
2187 | } |
2188 | } |
2189 | #endif |
2190 | { |
2191 | StackSString message; |
2192 | ex->GetMessage(message); |
2193 | |
2194 | // FileNotFound errors here can be converted into a single error string per ngen compile, |
2195 | // and the detailed error is available with verbose logging |
2196 | if (hrException == COR_E_FILENOTFOUND) |
2197 | { |
2198 | StackSString logMessage(W("System.IO.FileNotFoundException: " )); |
2199 | logMessage.Append(message); |
2200 | FileNotFoundError(logMessage.GetUnicode()); |
2201 | level = CORZAP_LOGLEVEL_INFO; |
2202 | } |
2203 | |
2204 | m_zapper->Print(level, W("%s while compiling method %s\n" ), message.GetUnicode(), zapInfo.m_currentMethodName.GetUnicode()); |
2205 | |
2206 | if ((result == COMPILE_FAILED) && (m_stats != NULL)) |
2207 | { |
2208 | if (!m_zapper->m_pOpt->m_compilerFlags.IsSet(CORJIT_FLAGS::CORJIT_FLAG_IL_STUB)) |
2209 | m_stats->m_failedMethods++; |
2210 | else |
2211 | m_stats->m_failedILStubs++; |
2212 | } |
2213 | } |
2214 | } |
2215 | EX_END_CATCH(SwallowAllExceptions); |
2216 | |
2217 | return result; |
2218 | } |
2219 | |
2220 | |
2221 | // Should we compile this method, defined in the ngen'ing module? |
2222 | // Result is FALSE if any of the controls (only used by prejit.exe) exclude the method |
2223 | BOOL ZapImage::ShouldCompileMethodDef(mdMethodDef md) |
2224 | { |
2225 | DWORD partialNGenStressVal = PartialNGenStressPercentage(); |
2226 | if (partialNGenStressVal && |
2227 | // Module::AddCerListToRootTable has problems if mscorlib.dll is |
2228 | // a partial ngen image |
2229 | m_hModule != m_zapper->m_pEECompileInfo->GetLoaderModuleForMscorlib()) |
2230 | { |
2231 | _ASSERTE(partialNGenStressVal <= 100); |
2232 | DWORD methodPercentageVal = (md % 100) + 1; |
2233 | if (methodPercentageVal <= partialNGenStressVal) |
2234 | return FALSE; |
2235 | } |
2236 | |
2237 | mdTypeDef td; |
2238 | IfFailThrow(m_pMDImport->GetParentToken(md, &td)); |
2239 | |
2240 | #ifdef FEATURE_COMINTEROP |
2241 | mdToken tkExtends; |
2242 | if (td != mdTypeDefNil) |
2243 | { |
2244 | m_pMDImport->GetTypeDefProps(td, NULL, &tkExtends); |
2245 | |
2246 | mdAssembly tkAssembly; |
2247 | DWORD dwAssemblyFlags; |
2248 | |
2249 | m_pMDImport->GetAssemblyFromScope(&tkAssembly); |
2250 | if (TypeFromToken(tkAssembly) == mdtAssembly) |
2251 | { |
2252 | m_pMDImport->GetAssemblyProps(tkAssembly, |
2253 | NULL, NULL, // Public Key |
2254 | NULL, // Hash Algorithm |
2255 | NULL, // Name |
2256 | NULL, // MetaData |
2257 | &dwAssemblyFlags); |
2258 | |
2259 | if (IsAfContentType_WindowsRuntime(dwAssemblyFlags)) |
2260 | { |
2261 | if (TypeFromToken(tkExtends) == mdtTypeRef) |
2262 | { |
2263 | LPCSTR szNameSpace = NULL; |
2264 | LPCSTR szName = NULL; |
2265 | m_pMDImport->GetNameOfTypeRef(tkExtends, &szNameSpace, &szName); |
2266 | |
2267 | if (!strcmp(szNameSpace, "System" ) && !_stricmp((szName), "Attribute" )) |
2268 | { |
2269 | return FALSE; |
2270 | } |
2271 | } |
2272 | } |
2273 | } |
2274 | } |
2275 | #endif |
2276 | |
2277 | #ifdef _DEBUG |
2278 | static ConfigMethodSet fZapOnly; |
2279 | fZapOnly.ensureInit(CLRConfig::INTERNAL_ZapOnly); |
2280 | |
2281 | static ConfigMethodSet fZapExclude; |
2282 | fZapExclude.ensureInit(CLRConfig::INTERNAL_ZapExclude); |
2283 | |
2284 | PCCOR_SIGNATURE pvSigBlob; |
2285 | ULONG cbSigBlob; |
2286 | |
2287 | // Get the name of the current method and its class |
2288 | LPCSTR szMethod; |
2289 | IfFailThrow(m_pMDImport->GetNameAndSigOfMethodDef(md, &pvSigBlob, &cbSigBlob, &szMethod)); |
2290 | |
2291 | LPCWSTR wszClass = W("" ); |
2292 | SString sClass; |
2293 | |
2294 | if (td != mdTypeDefNil) |
2295 | { |
2296 | LPCSTR szNameSpace = NULL; |
2297 | LPCSTR szName = NULL; |
2298 | |
2299 | IfFailThrow(m_pMDImport->GetNameOfTypeDef(td, &szName, &szNameSpace)); |
2300 | |
2301 | const SString nameSpace(SString::Utf8, szNameSpace); |
2302 | const SString name(SString::Utf8, szName); |
2303 | sClass.MakeFullNamespacePath(nameSpace, name); |
2304 | wszClass = sClass.GetUnicode(); |
2305 | } |
2306 | |
2307 | MAKE_UTF8PTR_FROMWIDE(szClass, wszClass); |
2308 | |
2309 | if (!fZapOnly.isEmpty() && !fZapOnly.contains(szMethod, szClass, pvSigBlob)) |
2310 | { |
2311 | LOG((LF_ZAP, LL_INFO1000, "Rejecting compilation of method %08x, %s::%s\n" , md, szClass, szMethod)); |
2312 | return FALSE; |
2313 | } |
2314 | |
2315 | if (fZapExclude.contains(szMethod, szClass, pvSigBlob)) |
2316 | { |
2317 | LOG((LF_ZAP, LL_INFO1000, "Rejecting compilation of method %08x, %s::%s\n" , md, szClass, szMethod)); |
2318 | return FALSE; |
2319 | } |
2320 | |
2321 | LOG((LF_ZAP, LL_INFO1000, "Compiling method %08x, %s::%s\n" , md, szClass, szMethod)); |
2322 | #endif |
2323 | |
2324 | return TRUE; |
2325 | } |
2326 | |
2327 | |
2328 | BOOL ZapImage::ShouldCompileInstantiatedMethod(CORINFO_METHOD_HANDLE handle) |
2329 | { |
2330 | DWORD partialNGenStressVal = PartialNGenStressPercentage(); |
2331 | if (partialNGenStressVal && |
2332 | // Module::AddCerListToRootTable has problems if mscorlib.dll is |
2333 | // a partial ngen image |
2334 | m_hModule != m_zapper->m_pEECompileInfo->GetLoaderModuleForMscorlib()) |
2335 | { |
2336 | _ASSERTE(partialNGenStressVal <= 100); |
2337 | DWORD methodPercentageVal = (m_zapper->m_pEEJitInfo->getMethodHash(handle) % 100) + 1; |
2338 | if (methodPercentageVal <= partialNGenStressVal) |
2339 | return FALSE; |
2340 | } |
2341 | |
2342 | return TRUE; |
2343 | } |
2344 | |
2345 | HRESULT ZapImage::PrintTokenDescription(CorZapLogLevel level, mdToken token) |
2346 | { |
2347 | HRESULT hr; |
2348 | |
2349 | if (RidFromToken(token) == 0) |
2350 | return S_OK; |
2351 | |
2352 | LPCSTR szNameSpace = NULL; |
2353 | LPCSTR szName = NULL; |
2354 | |
2355 | if (m_pMDImport->IsValidToken(token)) |
2356 | { |
2357 | switch (TypeFromToken(token)) |
2358 | { |
2359 | case mdtMemberRef: |
2360 | { |
2361 | mdToken parent; |
2362 | IfFailRet(m_pMDImport->GetParentOfMemberRef(token, &parent)); |
2363 | if (RidFromToken(parent) != 0) |
2364 | { |
2365 | PrintTokenDescription(level, parent); |
2366 | m_zapper->Print(level, W("." )); |
2367 | } |
2368 | IfFailRet(m_pMDImport->GetNameAndSigOfMemberRef(token, NULL, NULL, &szName)); |
2369 | break; |
2370 | } |
2371 | |
2372 | case mdtMethodDef: |
2373 | { |
2374 | mdToken parent; |
2375 | IfFailRet(m_pMDImport->GetParentToken(token, &parent)); |
2376 | if (RidFromToken(parent) != 0) |
2377 | { |
2378 | PrintTokenDescription(level, parent); |
2379 | m_zapper->Print(level, W("." )); |
2380 | } |
2381 | IfFailRet(m_pMDImport->GetNameOfMethodDef(token, &szName)); |
2382 | break; |
2383 | } |
2384 | |
2385 | case mdtTypeRef: |
2386 | { |
2387 | IfFailRet(m_pMDImport->GetNameOfTypeRef(token, &szNameSpace, &szName)); |
2388 | break; |
2389 | } |
2390 | |
2391 | case mdtTypeDef: |
2392 | { |
2393 | IfFailRet(m_pMDImport->GetNameOfTypeDef(token, &szName, &szNameSpace)); |
2394 | break; |
2395 | } |
2396 | |
2397 | default: |
2398 | break; |
2399 | } |
2400 | } |
2401 | else |
2402 | { |
2403 | szName = "InvalidToken" ; |
2404 | } |
2405 | |
2406 | SString fullName; |
2407 | |
2408 | if (szNameSpace != NULL) |
2409 | { |
2410 | const SString nameSpace(SString::Utf8, szNameSpace); |
2411 | const SString name(SString::Utf8, szName); |
2412 | fullName.MakeFullNamespacePath(nameSpace, name); |
2413 | } |
2414 | else |
2415 | { |
2416 | fullName.SetUTF8(szName); |
2417 | } |
2418 | |
2419 | m_zapper->Print(level, W("%s" ), fullName.GetUnicode()); |
2420 | |
2421 | return S_OK; |
2422 | } |
2423 | |
2424 | |
2425 | HRESULT ZapImage::LocateProfileData() |
2426 | { |
2427 | if (m_zapper->m_pOpt->m_ignoreProfileData) |
2428 | { |
2429 | return S_FALSE; |
2430 | } |
2431 | |
2432 | // |
2433 | // In the past, we have ignored profile data when instrumenting the assembly. |
2434 | // However, this creates significant differences between the tuning image and the eventual |
2435 | // optimized image (e.g. generic instantiations) which in turn leads to missed data during |
2436 | // training and cold touches during execution. Instead, we take advantage of any IBC data |
2437 | // the assembly already has and attempt to make the tuning image as close as possible to |
2438 | // the final image. |
2439 | // |
2440 | #if 0 |
2441 | if (m_zapper->m_pOpt->m_compilerFlags.IsSet(CORJIT_FLAGS::CORJIT_FLAG_BBINSTR)) |
2442 | return S_FALSE; |
2443 | #endif |
2444 | |
2445 | // |
2446 | // Don't use IBC data from untrusted assemblies--this allows us to assume that |
2447 | // the IBC data is not malicious |
2448 | // |
2449 | if (m_zapper->m_pEEJitInfo->canSkipVerification(m_hModule) != CORINFO_VERIFICATION_CAN_SKIP) |
2450 | { |
2451 | return S_FALSE; |
2452 | } |
2453 | |
2454 | #if !defined(FEATURE_PAL) |
2455 | // |
2456 | // See if there's profile data in the resource section of the PE |
2457 | // |
2458 | m_pRawProfileData = (BYTE*)m_ModuleDecoder.GetWin32Resource(W("PROFILE_DATA" ), W("IBC" ), &m_cRawProfileData); |
2459 | |
2460 | if ((m_pRawProfileData != NULL) && (m_cRawProfileData != 0)) |
2461 | { |
2462 | m_zapper->Info(W("Found embedded profile resource in %s.\n" ), m_pModuleFileName); |
2463 | return S_OK; |
2464 | } |
2465 | |
2466 | static ConfigDWORD g_UseIBCFile; |
2467 | if (g_UseIBCFile.val(CLRConfig::EXTERNAL_UseIBCFile) != 1) |
2468 | return S_OK; |
2469 | #endif |
2470 | |
2471 | // |
2472 | // Couldn't find profile resource--let's see if there's an ibc file to use instead |
2473 | // |
2474 | |
2475 | SString path(m_pModuleFileName); |
2476 | |
2477 | SString::Iterator dot = path.End(); |
2478 | if (path.FindBack(dot, '.')) |
2479 | { |
2480 | SString slName(SString::Literal, "ibc" ); |
2481 | path.Replace(dot+1, path.End() - (dot+1), slName); |
2482 | |
2483 | HandleHolder hFile = WszCreateFile(path.GetUnicode(), |
2484 | GENERIC_READ, |
2485 | FILE_SHARE_READ, |
2486 | NULL, |
2487 | OPEN_EXISTING, |
2488 | FILE_ATTRIBUTE_NORMAL | FILE_FLAG_SEQUENTIAL_SCAN, |
2489 | NULL); |
2490 | if (hFile != INVALID_HANDLE_VALUE) |
2491 | { |
2492 | HandleHolder hMapFile = WszCreateFileMapping(hFile, NULL, PAGE_READONLY, 0, 0, NULL); |
2493 | DWORD dwFileLen = SafeGetFileSize(hFile, 0); |
2494 | if (dwFileLen != INVALID_FILE_SIZE) |
2495 | { |
2496 | if (hMapFile == NULL) |
2497 | { |
2498 | m_zapper->Warning(W("Found profile data file %s, but could not open it" ), path.GetUnicode()); |
2499 | } |
2500 | else |
2501 | { |
2502 | m_zapper->Info(W("Found ibc file %s.\n" ), path.GetUnicode()); |
2503 | |
2504 | m_profileDataFile = (BYTE*) MapViewOfFile(hMapFile, FILE_MAP_READ, 0, 0, 0); |
2505 | |
2506 | m_pRawProfileData = m_profileDataFile; |
2507 | m_cRawProfileData = dwFileLen; |
2508 | } |
2509 | } |
2510 | } |
2511 | } |
2512 | |
2513 | return S_OK; |
2514 | } |
2515 | |
2516 | |
2517 | bool ZapImage::CanConvertIbcData() |
2518 | { |
2519 | static ConfigDWORD g_iConvertIbcData; |
2520 | DWORD val = g_iConvertIbcData.val(CLRConfig::UNSUPPORTED_ConvertIbcData); |
2521 | return (val != 0); |
2522 | } |
2523 | |
2524 | HRESULT ZapImage::parseProfileData() |
2525 | { |
2526 | if (m_pRawProfileData == NULL) |
2527 | { |
2528 | return S_FALSE; |
2529 | } |
2530 | |
2531 | ProfileReader profileReader(m_pRawProfileData, m_cRawProfileData); |
2532 | |
2533 | CORBBTPROF_FILE_HEADER *; |
2534 | |
2535 | READ(fileHeader, CORBBTPROF_FILE_HEADER); |
2536 | if (fileHeader->HeaderSize < sizeof(CORBBTPROF_FILE_HEADER)) |
2537 | { |
2538 | _ASSERTE(!"HeaderSize is too small" ); |
2539 | return E_FAIL; |
2540 | } |
2541 | |
2542 | // Read any extra header data. It will be needed for V3 files. |
2543 | |
2544 | DWORD = fileHeader->HeaderSize - sizeof(CORBBTPROF_FILE_HEADER); |
2545 | void * = profileReader.Read(extraHeaderDataSize); |
2546 | |
2547 | bool convertFromV1 = false; |
2548 | bool minified = false; |
2549 | |
2550 | if (fileHeader->Magic != CORBBTPROF_MAGIC) |
2551 | { |
2552 | _ASSERTE(!"ibcHeader contains bad values" ); |
2553 | return E_FAIL; |
2554 | } |
2555 | |
2556 | // CoreCLR should never be presented with V1 IBC data. |
2557 | if (fileHeader->Version == CORBBTPROF_V3_VERSION) |
2558 | { |
2559 | CORBBTPROF_FILE_OPTIONAL_HEADER * = |
2560 | (CORBBTPROF_FILE_OPTIONAL_HEADER *)extraHeaderData; |
2561 | |
2562 | if (!optionalHeader || |
2563 | !CONTAINS_FIELD(optionalHeader, extraHeaderDataSize, Size) || |
2564 | (optionalHeader->Size > extraHeaderDataSize)) |
2565 | { |
2566 | m_zapper->Info(W("Optional header missing or corrupt." )); |
2567 | return E_FAIL; |
2568 | } |
2569 | |
2570 | if (CONTAINS_FIELD(optionalHeader, optionalHeader->Size, FileFlags)) |
2571 | { |
2572 | minified = !!(optionalHeader->FileFlags & CORBBTPROF_FILE_FLAG_MINIFIED); |
2573 | |
2574 | if (!m_zapper->m_pOpt->m_fPartialNGenSet) |
2575 | { |
2576 | m_zapper->m_pOpt->m_fPartialNGen = !!(optionalHeader->FileFlags & CORBBTPROF_FILE_FLAG_PARTIAL_NGEN); |
2577 | } |
2578 | } |
2579 | } |
2580 | else if (fileHeader->Version != CORBBTPROF_V2_VERSION) |
2581 | { |
2582 | m_zapper->Info(W("Discarding profile data with unknown version." )); |
2583 | return S_FALSE; |
2584 | } |
2585 | |
2586 | // This module has profile data (this ends up controling the layout of physical and virtual |
2587 | // sections within the image, see ZapImage::AllocateVirtualSections. |
2588 | m_fHaveProfileData = true; |
2589 | m_zapper->m_pOpt->m_fHasAnyProfileData = true; |
2590 | |
2591 | CORBBTPROF_SECTION_TABLE_HEADER *; |
2592 | READ(sectionHeader, CORBBTPROF_SECTION_TABLE_HEADER); |
2593 | |
2594 | // |
2595 | // Parse the section table |
2596 | // |
2597 | |
2598 | for (ULONG i = 0; i < sectionHeader->NumEntries; i++) |
2599 | { |
2600 | CORBBTPROF_SECTION_TABLE_ENTRY *entry; |
2601 | READ(entry,CORBBTPROF_SECTION_TABLE_ENTRY); |
2602 | |
2603 | SectionFormat format = sectionHeader->Entries[i].FormatID; |
2604 | _ASSERTE(format >= 0); |
2605 | if (format < 0) |
2606 | { |
2607 | continue; |
2608 | } |
2609 | |
2610 | if (convertFromV1) |
2611 | { |
2612 | if (format < LastTokenFlagSection) |
2613 | { |
2614 | format = (SectionFormat) (format + 1); |
2615 | } |
2616 | } |
2617 | |
2618 | _ASSERTE(format < SectionFormatCount); |
2619 | |
2620 | if (format < SectionFormatCount) |
2621 | { |
2622 | BYTE *start = m_pRawProfileData + sectionHeader->Entries[i].Data.Offset; |
2623 | BYTE *end = start + sectionHeader->Entries[i].Data.Size; |
2624 | |
2625 | if ((start > m_pRawProfileData) && |
2626 | (end < m_pRawProfileData + m_cRawProfileData) && |
2627 | (start < end)) |
2628 | { |
2629 | _ASSERTE(m_profileDataSections[format].pData == 0); |
2630 | _ASSERTE(m_profileDataSections[format].dataSize == 0); |
2631 | |
2632 | m_profileDataSections[format].pData = start; |
2633 | m_profileDataSections[format].dataSize = (DWORD) (end - start); |
2634 | } |
2635 | else |
2636 | { |
2637 | _ASSERTE(!"Invalid profile section offset or size" ); |
2638 | return E_FAIL; |
2639 | } |
2640 | } |
2641 | } |
2642 | |
2643 | HRESULT hr = S_OK; |
2644 | |
2645 | if (convertFromV1) |
2646 | { |
2647 | hr = convertProfileDataFromV1(); |
2648 | if (FAILED(hr)) |
2649 | { |
2650 | return hr; |
2651 | } |
2652 | } |
2653 | else if (minified) |
2654 | { |
2655 | hr = RehydrateProfileData(); |
2656 | if (FAILED(hr)) |
2657 | { |
2658 | return hr; |
2659 | } |
2660 | } |
2661 | else |
2662 | { |
2663 | // |
2664 | // For those sections that are collections of tokens, further parse that format to get |
2665 | // the token pointer and number of tokens |
2666 | // |
2667 | |
2668 | for (int format = FirstTokenFlagSection; format < SectionFormatCount; format++) |
2669 | { |
2670 | if (m_profileDataSections[format].pData) |
2671 | { |
2672 | SEEK(((ULONG) (m_profileDataSections[format].pData - m_pRawProfileData))); |
2673 | |
2674 | CORBBTPROF_TOKEN_LIST_SECTION_HEADER *; |
2675 | READ(header, CORBBTPROF_TOKEN_LIST_SECTION_HEADER); |
2676 | |
2677 | DWORD tableSize = header->NumTokens; |
2678 | DWORD dataSize = (m_profileDataSections[format].dataSize - sizeof(CORBBTPROF_TOKEN_LIST_SECTION_HEADER)); |
2679 | DWORD expectedSize = tableSize * sizeof (CORBBTPROF_TOKEN_INFO); |
2680 | |
2681 | if (dataSize == expectedSize) |
2682 | { |
2683 | BYTE * startOfTable = m_profileDataSections[format].pData + sizeof(CORBBTPROF_TOKEN_LIST_SECTION_HEADER); |
2684 | m_profileDataSections[format].tableSize = tableSize; |
2685 | m_profileDataSections[format].pTable = (CORBBTPROF_TOKEN_INFO *) startOfTable; |
2686 | } |
2687 | else |
2688 | { |
2689 | _ASSERTE(!"Invalid CORBBTPROF_TOKEN_LIST_SECTION_HEADER header" ); |
2690 | return E_FAIL; |
2691 | } |
2692 | } |
2693 | } |
2694 | } |
2695 | |
2696 | ZapImage::ProfileDataSection * DataSection_ScenarioInfo = & m_profileDataSections[ScenarioInfo]; |
2697 | if (DataSection_ScenarioInfo->pData != NULL) |
2698 | { |
2699 | CORBBTPROF_SCENARIO_INFO_SECTION_HEADER * = (CORBBTPROF_SCENARIO_INFO_SECTION_HEADER *) DataSection_ScenarioInfo->pData; |
2700 | m_profileDataNumRuns = header->TotalNumRuns; |
2701 | } |
2702 | |
2703 | return S_OK; |
2704 | } |
2705 | |
2706 | |
2707 | HRESULT ZapImage::convertProfileDataFromV1() |
2708 | { |
2709 | if (m_pRawProfileData == NULL) |
2710 | { |
2711 | return S_FALSE; |
2712 | } |
2713 | |
2714 | // |
2715 | // For those sections that are collections of tokens, further parse that format to get |
2716 | // the token pointer and number of tokens |
2717 | // |
2718 | |
2719 | ProfileReader profileReader(m_pRawProfileData, m_cRawProfileData); |
2720 | |
2721 | for (SectionFormat format = FirstTokenFlagSection; format < SectionFormatCount; format = (SectionFormat) (format + 1)) |
2722 | { |
2723 | if (m_profileDataSections[format].pData) |
2724 | { |
2725 | SEEK(((ULONG) (m_profileDataSections[format].pData - m_pRawProfileData))); |
2726 | |
2727 | CORBBTPROF_TOKEN_LIST_SECTION_HEADER *; |
2728 | READ(header, CORBBTPROF_TOKEN_LIST_SECTION_HEADER); |
2729 | |
2730 | DWORD tableSize = header->NumTokens; |
2731 | |
2732 | if (tableSize == 0) |
2733 | { |
2734 | m_profileDataSections[format].tableSize = 0; |
2735 | m_profileDataSections[format].pTable = NULL; |
2736 | continue; |
2737 | } |
2738 | |
2739 | DWORD dataSize = (m_profileDataSections[format].dataSize - sizeof(CORBBTPROF_TOKEN_LIST_SECTION_HEADER)); |
2740 | DWORD expectedSize = tableSize * sizeof (CORBBTPROF_TOKEN_LIST_ENTRY_V1); |
2741 | |
2742 | if (dataSize == expectedSize) |
2743 | { |
2744 | DWORD newDataSize = tableSize * sizeof (CORBBTPROF_TOKEN_INFO); |
2745 | |
2746 | if (newDataSize < dataSize) |
2747 | return E_FAIL; |
2748 | |
2749 | BYTE * startOfTable = new (GetHeap()) BYTE[newDataSize]; |
2750 | |
2751 | CORBBTPROF_TOKEN_LIST_ENTRY_V1 * pOldEntry; |
2752 | CORBBTPROF_TOKEN_INFO * pNewEntry; |
2753 | |
2754 | pOldEntry = (CORBBTPROF_TOKEN_LIST_ENTRY_V1 *) (m_profileDataSections[format].pData + sizeof(CORBBTPROF_TOKEN_LIST_SECTION_HEADER)); |
2755 | pNewEntry = (CORBBTPROF_TOKEN_INFO *) startOfTable; |
2756 | |
2757 | for (DWORD i=0; i<tableSize; i++) |
2758 | { |
2759 | pNewEntry->token = pOldEntry->token; |
2760 | pNewEntry->flags = pOldEntry->flags; |
2761 | pNewEntry->scenarios = 1; |
2762 | |
2763 | pOldEntry++; |
2764 | pNewEntry++; |
2765 | } |
2766 | m_profileDataSections[format].tableSize = tableSize; |
2767 | m_profileDataSections[format].pTable = (CORBBTPROF_TOKEN_INFO *) startOfTable; |
2768 | } |
2769 | else |
2770 | { |
2771 | _ASSERTE(!"Invalid CORBBTPROF_TOKEN_LIST_SECTION_HEADER header" ); |
2772 | return E_FAIL; |
2773 | } |
2774 | } |
2775 | } |
2776 | |
2777 | _ASSERTE(m_profileDataSections[ScenarioInfo].pData == 0); |
2778 | _ASSERTE(m_profileDataSections[ScenarioInfo].dataSize == 0); |
2779 | |
2780 | // |
2781 | // Convert the MethodBlockCounts format from V1 to V2 |
2782 | // |
2783 | CORBBTPROF_METHOD_BLOCK_COUNTS_SECTION_HEADER_V1 * = NULL; |
2784 | if (m_profileDataSections[MethodBlockCounts].pData) |
2785 | { |
2786 | // |
2787 | // Compute the size of the method block count stream |
2788 | // |
2789 | BYTE * dstPtr = NULL; |
2790 | BYTE * srcPtr = m_profileDataSections[MethodBlockCounts].pData; |
2791 | DWORD maxSizeToRead = m_profileDataSections[MethodBlockCounts].dataSize; |
2792 | DWORD totalSizeNeeded = 0; |
2793 | DWORD totalSizeRead = 0; |
2794 | |
2795 | mbcSectionHeader = (CORBBTPROF_METHOD_BLOCK_COUNTS_SECTION_HEADER_V1 *) srcPtr; |
2796 | |
2797 | totalSizeRead += sizeof(CORBBTPROF_METHOD_BLOCK_COUNTS_SECTION_HEADER_V1); |
2798 | totalSizeNeeded += sizeof(CORBBTPROF_METHOD_BLOCK_COUNTS_SECTION_HEADER); |
2799 | srcPtr += sizeof(CORBBTPROF_METHOD_BLOCK_COUNTS_SECTION_HEADER_V1); |
2800 | |
2801 | if (totalSizeRead > maxSizeToRead) |
2802 | { |
2803 | return E_FAIL; |
2804 | } |
2805 | |
2806 | for (DWORD i=0; (i < mbcSectionHeader->NumMethods); i++) |
2807 | { |
2808 | CORBBTPROF_METHOD_HEADER_V1* methodEntry = (CORBBTPROF_METHOD_HEADER_V1 *) srcPtr; |
2809 | DWORD sizeRead = 0; |
2810 | DWORD sizeWrite = 0; |
2811 | |
2812 | sizeRead += methodEntry->HeaderSize; |
2813 | sizeRead += methodEntry->Size; |
2814 | sizeWrite += sizeof(CORBBTPROF_METHOD_HEADER); |
2815 | sizeWrite += methodEntry->Size; |
2816 | |
2817 | totalSizeRead += sizeRead; |
2818 | totalSizeNeeded += sizeWrite; |
2819 | |
2820 | if (totalSizeRead > maxSizeToRead) |
2821 | { |
2822 | return E_FAIL; |
2823 | } |
2824 | |
2825 | srcPtr += sizeRead; |
2826 | } |
2827 | assert(totalSizeRead == maxSizeToRead); |
2828 | |
2829 | // Reset the srcPtr |
2830 | srcPtr = m_profileDataSections[MethodBlockCounts].pData; |
2831 | |
2832 | BYTE * newMethodData = new (GetHeap()) BYTE[totalSizeNeeded]; |
2833 | |
2834 | dstPtr = newMethodData; |
2835 | |
2836 | memcpy(dstPtr, srcPtr, sizeof(CORBBTPROF_METHOD_BLOCK_COUNTS_SECTION_HEADER)); |
2837 | srcPtr += sizeof(CORBBTPROF_METHOD_BLOCK_COUNTS_SECTION_HEADER_V1); |
2838 | dstPtr += sizeof(CORBBTPROF_METHOD_BLOCK_COUNTS_SECTION_HEADER); |
2839 | |
2840 | for (DWORD i=0; (i < mbcSectionHeader->NumMethods); i++) |
2841 | { |
2842 | CORBBTPROF_METHOD_HEADER_V1 * methodEntryV1 = (CORBBTPROF_METHOD_HEADER_V1 *) srcPtr; |
2843 | CORBBTPROF_METHOD_HEADER * methodEntry = (CORBBTPROF_METHOD_HEADER *) dstPtr; |
2844 | DWORD sizeRead = 0; |
2845 | DWORD sizeWrite = 0; |
2846 | |
2847 | methodEntry->method.token = methodEntryV1->MethodToken; |
2848 | methodEntry->method.ILSize = 0; |
2849 | methodEntry->method.cBlock = (methodEntryV1->Size / sizeof(CORBBTPROF_BLOCK_DATA)); |
2850 | sizeRead += methodEntryV1->HeaderSize; |
2851 | sizeWrite += sizeof(CORBBTPROF_METHOD_HEADER); |
2852 | |
2853 | memcpy( dstPtr + sizeof(CORBBTPROF_METHOD_HEADER), |
2854 | srcPtr + sizeof(CORBBTPROF_METHOD_HEADER_V1), |
2855 | (methodEntry->method.cBlock * sizeof(CORBBTPROF_BLOCK_DATA))); |
2856 | sizeRead += methodEntryV1->Size; |
2857 | sizeWrite += (methodEntry->method.cBlock * sizeof(CORBBTPROF_BLOCK_DATA)); |
2858 | |
2859 | methodEntry->size = sizeWrite; |
2860 | methodEntry->cDetail = 0; |
2861 | srcPtr += sizeRead; |
2862 | dstPtr += sizeWrite; |
2863 | } |
2864 | |
2865 | m_profileDataSections[MethodBlockCounts].pData = newMethodData; |
2866 | m_profileDataSections[MethodBlockCounts].dataSize = totalSizeNeeded; |
2867 | } |
2868 | |
2869 | // |
2870 | // Allocate the scenario info section |
2871 | // |
2872 | { |
2873 | DWORD sizeNeeded = sizeof(CORBBTPROF_SCENARIO_INFO_SECTION_HEADER) + sizeof(CORBBTPROF_SCENARIO_HEADER); |
2874 | BYTE * newData = new (GetHeap()) BYTE[sizeNeeded]; |
2875 | BYTE * dstPtr = newData; |
2876 | { |
2877 | CORBBTPROF_SCENARIO_INFO_SECTION_HEADER * = (CORBBTPROF_SCENARIO_INFO_SECTION_HEADER *) dstPtr; |
2878 | |
2879 | if (mbcSectionHeader != NULL) |
2880 | siHeader->TotalNumRuns = mbcSectionHeader->NumRuns; |
2881 | else |
2882 | siHeader->TotalNumRuns = 1; |
2883 | |
2884 | siHeader->NumScenarios = 1; |
2885 | |
2886 | dstPtr += sizeof(CORBBTPROF_SCENARIO_INFO_SECTION_HEADER); |
2887 | } |
2888 | { |
2889 | CORBBTPROF_SCENARIO_HEADER * = (CORBBTPROF_SCENARIO_HEADER *) dstPtr; |
2890 | |
2891 | sHeader->scenario.ordinal = 1; |
2892 | sHeader->scenario.mask = 1; |
2893 | sHeader->scenario.priority = 0; |
2894 | sHeader->scenario.numRuns = 0; |
2895 | sHeader->scenario.cName = 0; |
2896 | |
2897 | sHeader->size = sHeader->Size(); |
2898 | |
2899 | dstPtr += sizeof(CORBBTPROF_SCENARIO_HEADER); |
2900 | } |
2901 | m_profileDataSections[ScenarioInfo].pData = newData; |
2902 | m_profileDataSections[ScenarioInfo].dataSize = sizeNeeded; |
2903 | } |
2904 | |
2905 | // |
2906 | // Convert the BlobStream format from V1 to V2 |
2907 | // |
2908 | if (m_profileDataSections[BlobStream].dataSize > 0) |
2909 | { |
2910 | // |
2911 | // Compute the size of the blob stream |
2912 | // |
2913 | |
2914 | BYTE * srcPtr = m_profileDataSections[BlobStream].pData; |
2915 | BYTE * dstPtr = NULL; |
2916 | DWORD maxSizeToRead = m_profileDataSections[BlobStream].dataSize; |
2917 | DWORD totalSizeNeeded = 0; |
2918 | DWORD totalSizeRead = 0; |
2919 | bool done = false; |
2920 | |
2921 | while (!done) |
2922 | { |
2923 | CORBBTPROF_BLOB_ENTRY_V1* blobEntry = (CORBBTPROF_BLOB_ENTRY_V1 *) srcPtr; |
2924 | DWORD sizeWrite = 0; |
2925 | DWORD sizeRead = 0; |
2926 | |
2927 | if ((blobEntry->blobType >= MetadataStringPool) && (blobEntry->blobType <= MetadataUserStringPool)) |
2928 | { |
2929 | sizeWrite += sizeof(CORBBTPROF_BLOB_POOL_ENTRY); |
2930 | sizeWrite += blobEntry->cBuffer; |
2931 | sizeRead += sizeof(CORBBTPROF_BLOB_ENTRY_V1); |
2932 | sizeRead += blobEntry->cBuffer; |
2933 | } |
2934 | else if ((blobEntry->blobType >= ParamTypeSpec) && (blobEntry->blobType <= ParamMethodSpec)) |
2935 | { |
2936 | sizeWrite += sizeof(CORBBTPROF_BLOB_PARAM_SIG_ENTRY); |
2937 | sizeWrite += blobEntry->cBuffer; |
2938 | if (blobEntry->blobType == ParamMethodSpec) |
2939 | { |
2940 | sizeWrite -= 1; // Adjust for |
2941 | } |
2942 | sizeRead += sizeof(CORBBTPROF_BLOB_ENTRY_V1); |
2943 | sizeRead += blobEntry->cBuffer; |
2944 | } |
2945 | else if (blobEntry->blobType == EndOfBlobStream) |
2946 | { |
2947 | sizeWrite += sizeof(CORBBTPROF_BLOB_ENTRY); |
2948 | sizeRead += sizeof(CORBBTPROF_BLOB_ENTRY_V1); |
2949 | done = true; |
2950 | } |
2951 | else |
2952 | { |
2953 | return E_FAIL; |
2954 | } |
2955 | |
2956 | totalSizeNeeded += sizeWrite; |
2957 | totalSizeRead += sizeRead; |
2958 | |
2959 | if (sizeRead > maxSizeToRead) |
2960 | { |
2961 | return E_FAIL; |
2962 | } |
2963 | |
2964 | srcPtr += sizeRead; |
2965 | } |
2966 | |
2967 | assert(totalSizeRead == maxSizeToRead); |
2968 | |
2969 | // Reset the srcPtr |
2970 | srcPtr = m_profileDataSections[BlobStream].pData; |
2971 | |
2972 | BYTE * newBlobData = new (GetHeap()) BYTE[totalSizeNeeded]; |
2973 | |
2974 | dstPtr = newBlobData; |
2975 | done = false; |
2976 | |
2977 | while (!done) |
2978 | { |
2979 | CORBBTPROF_BLOB_ENTRY_V1* blobEntryV1 = (CORBBTPROF_BLOB_ENTRY_V1 *) srcPtr; |
2980 | DWORD sizeWrite = 0; |
2981 | DWORD sizeRead = 0; |
2982 | |
2983 | if ((blobEntryV1->blobType >= MetadataStringPool) && (blobEntryV1->blobType <= MetadataUserStringPool)) |
2984 | { |
2985 | CORBBTPROF_BLOB_POOL_ENTRY* blobPoolEntry = (CORBBTPROF_BLOB_POOL_ENTRY*) dstPtr; |
2986 | |
2987 | blobPoolEntry->blob.type = blobEntryV1->blobType; |
2988 | blobPoolEntry->blob.size = sizeof(CORBBTPROF_BLOB_POOL_ENTRY) + blobEntryV1->cBuffer; |
2989 | blobPoolEntry->cBuffer = blobEntryV1->cBuffer; |
2990 | memcpy(blobPoolEntry->buffer, blobEntryV1->pBuffer, blobEntryV1->cBuffer); |
2991 | |
2992 | sizeWrite += sizeof(CORBBTPROF_BLOB_POOL_ENTRY); |
2993 | sizeWrite += blobEntryV1->cBuffer; |
2994 | sizeRead += sizeof(CORBBTPROF_BLOB_ENTRY_V1); |
2995 | sizeRead += blobEntryV1->cBuffer; |
2996 | } |
2997 | else if ((blobEntryV1->blobType >= ParamTypeSpec) && (blobEntryV1->blobType <= ParamMethodSpec)) |
2998 | { |
2999 | CORBBTPROF_BLOB_PARAM_SIG_ENTRY* blobSigEntry = (CORBBTPROF_BLOB_PARAM_SIG_ENTRY*) dstPtr; |
3000 | |
3001 | blobSigEntry->blob.type = blobEntryV1->blobType; |
3002 | blobSigEntry->blob.size = sizeof(CORBBTPROF_BLOB_PARAM_SIG_ENTRY) + blobEntryV1->cBuffer; |
3003 | blobSigEntry->blob.token = 0; |
3004 | blobSigEntry->cSig = blobEntryV1->cBuffer; |
3005 | |
3006 | if (blobEntryV1->blobType == ParamMethodSpec) |
3007 | { |
3008 | // Adjust cSig and blob.size |
3009 | blobSigEntry->cSig--; |
3010 | blobSigEntry->blob.size--; |
3011 | } |
3012 | memcpy(blobSigEntry->sig, blobEntryV1->pBuffer, blobSigEntry->cSig); |
3013 | |
3014 | sizeWrite += sizeof(CORBBTPROF_BLOB_PARAM_SIG_ENTRY); |
3015 | sizeWrite += blobSigEntry->cSig; |
3016 | sizeRead += sizeof(CORBBTPROF_BLOB_ENTRY_V1); |
3017 | sizeRead += blobEntryV1->cBuffer; |
3018 | } |
3019 | else if (blobEntryV1->blobType == EndOfBlobStream) |
3020 | { |
3021 | CORBBTPROF_BLOB_ENTRY* blobEntry = (CORBBTPROF_BLOB_ENTRY*) dstPtr; |
3022 | |
3023 | blobEntry->type = blobEntryV1->blobType; |
3024 | blobEntry->size = sizeof(CORBBTPROF_BLOB_ENTRY); |
3025 | |
3026 | sizeWrite += sizeof(CORBBTPROF_BLOB_ENTRY); |
3027 | sizeRead += sizeof(CORBBTPROF_BLOB_ENTRY_V1); |
3028 | done = true; |
3029 | } |
3030 | else |
3031 | { |
3032 | return E_FAIL; |
3033 | } |
3034 | srcPtr += sizeRead; |
3035 | dstPtr += sizeWrite; |
3036 | } |
3037 | |
3038 | m_profileDataSections[BlobStream].pData = newBlobData; |
3039 | m_profileDataSections[BlobStream].dataSize = totalSizeNeeded; |
3040 | } |
3041 | else |
3042 | { |
3043 | m_profileDataSections[BlobStream].pData = NULL; |
3044 | m_profileDataSections[BlobStream].dataSize = 0; |
3045 | } |
3046 | |
3047 | return S_OK; |
3048 | } |
3049 | |
3050 | void ZapImage::RehydrateBasicBlockSection() |
3051 | { |
3052 | ProfileDataSection §ion = m_profileDataSections[MethodBlockCounts]; |
3053 | if (!section.pData) |
3054 | { |
3055 | return; |
3056 | } |
3057 | |
3058 | ProfileReader reader(section.pData, section.dataSize); |
3059 | |
3060 | m_profileDataNumRuns = reader.Read<unsigned int>(); |
3061 | |
3062 | // The IBC data provides a hint to the number of basic blocks, which is |
3063 | // used here to determine how much space to allocate for the rehydrated |
3064 | // data. |
3065 | unsigned int blockCountHint = reader.Read<unsigned int>(); |
3066 | |
3067 | unsigned int numMethods = reader.Read<unsigned int>(); |
3068 | |
3069 | unsigned int expectedLength = |
3070 | sizeof(CORBBTPROF_METHOD_BLOCK_COUNTS_SECTION_HEADER) + |
3071 | sizeof(CORBBTPROF_METHOD_HEADER) * numMethods + |
3072 | sizeof(CORBBTPROF_BLOCK_DATA) * blockCountHint; |
3073 | |
3074 | BinaryWriter writer(expectedLength, GetHeap()); |
3075 | |
3076 | writer.Write(numMethods); |
3077 | |
3078 | mdToken lastMethodToken = 0x06000000; |
3079 | |
3080 | CORBBTPROF_METHOD_HEADER ; |
3081 | methodHeader.cDetail = 0; |
3082 | methodHeader.method.ILSize = 0; |
3083 | |
3084 | for (unsigned int i = 0; i < numMethods; ++i) |
3085 | { |
3086 | // Translate the method header |
3087 | unsigned int size = reader.Read7BitEncodedInt(); |
3088 | unsigned int startPosition = reader.GetCurrentPos(); |
3089 | |
3090 | mdToken token = reader.ReadTokenWithMemory(lastMethodToken); |
3091 | unsigned int ilSize = reader.Read7BitEncodedInt(); |
3092 | unsigned int firstBlockHitCount = reader.Read7BitEncodedInt(); |
3093 | |
3094 | unsigned int numOtherBlocks = reader.Read7BitEncodedInt(); |
3095 | |
3096 | methodHeader.method.cBlock = 1 + numOtherBlocks; |
3097 | methodHeader.method.token = token; |
3098 | methodHeader.method.ILSize = ilSize; |
3099 | methodHeader.size = (DWORD)methodHeader.Size(); |
3100 | |
3101 | writer.Write(methodHeader); |
3102 | |
3103 | CORBBTPROF_BLOCK_DATA blockData; |
3104 | |
3105 | // The first block is handled specially. |
3106 | blockData.ILOffset = 0; |
3107 | blockData.ExecutionCount = firstBlockHitCount; |
3108 | |
3109 | writer.Write(blockData); |
3110 | |
3111 | // Translate the rest of the basic blocks |
3112 | for (unsigned int j = 0; j < numOtherBlocks; ++j) |
3113 | { |
3114 | blockData.ILOffset = reader.Read7BitEncodedInt(); |
3115 | blockData.ExecutionCount = reader.Read7BitEncodedInt(); |
3116 | |
3117 | writer.Write(blockData); |
3118 | } |
3119 | |
3120 | if (!reader.Seek(startPosition + size)) |
3121 | { |
3122 | ThrowHR(E_FAIL); |
3123 | } |
3124 | } |
3125 | |
3126 | // If the expected and actual lengths differ, the result will still be |
3127 | // correct but performance may suffer slightly because of reallocations. |
3128 | _ASSERTE(writer.GetWrittenSize() == expectedLength); |
3129 | |
3130 | section.pData = writer.GetBuffer(); |
3131 | section.dataSize = writer.GetWrittenSize(); |
3132 | } |
3133 | |
3134 | void ZapImage::RehydrateTokenSection(int sectionFormat, unsigned int flagTable[255]) |
3135 | { |
3136 | ProfileDataSection §ion = m_profileDataSections[sectionFormat]; |
3137 | ProfileReader reader(section.pData, section.dataSize); |
3138 | |
3139 | unsigned int numTokens = reader.Read<unsigned int>(); |
3140 | |
3141 | unsigned int dataLength = sizeof(unsigned int) + |
3142 | numTokens * sizeof(CORBBTPROF_TOKEN_INFO); |
3143 | BinaryWriter writer(dataLength, GetHeap()); |
3144 | |
3145 | writer.Write(numTokens); |
3146 | |
3147 | mdToken lastToken = (sectionFormat - FirstTokenFlagSection) << 24; |
3148 | |
3149 | CORBBTPROF_TOKEN_INFO tokenInfo; |
3150 | tokenInfo.scenarios = 1; |
3151 | |
3152 | for (unsigned int i = 0; i < numTokens; ++i) |
3153 | { |
3154 | tokenInfo.token = reader.ReadTokenWithMemory(lastToken); |
3155 | tokenInfo.flags = reader.ReadFlagWithLookup(flagTable); |
3156 | |
3157 | writer.Write(tokenInfo); |
3158 | } |
3159 | |
3160 | _ASSERTE(writer.GetWrittenSize() == dataLength); |
3161 | |
3162 | section.pData = writer.GetBuffer(); |
3163 | section.dataSize = writer.GetWrittenSize(); |
3164 | section.pTable = (CORBBTPROF_TOKEN_INFO *)(section.pData + sizeof(unsigned int)); |
3165 | section.tableSize = numTokens; |
3166 | } |
3167 | |
3168 | void ZapImage::RehydrateBlobStream() |
3169 | { |
3170 | ProfileDataSection §ion = m_profileDataSections[BlobStream]; |
3171 | |
3172 | ProfileReader reader(section.pData, section.dataSize); |
3173 | |
3174 | // Evidence suggests that rehydrating the blob stream in Framework binaries |
3175 | // increases the size from 1.5-2x. When this was written, 1.85x minimized |
3176 | // the amount of extra memory allocated (about 48K in the worst case). |
3177 | BinaryWriter writer((DWORD)(section.dataSize * 1.85f), GetHeap()); |
3178 | |
3179 | mdToken LastBlobToken = 0; |
3180 | mdToken LastAssemblyToken = 0x23000000; |
3181 | mdToken LastExternalTypeToken = 0x62000000; |
3182 | mdToken LastExternalNamespaceToken = 0x61000000; |
3183 | mdToken LastExternalSignatureToken = 0x63000000; |
3184 | |
3185 | int blobType = 0; |
3186 | do |
3187 | { |
3188 | // Read the blob header. |
3189 | |
3190 | unsigned int sizeToRead = reader.Read7BitEncodedInt(); |
3191 | unsigned int startPositionRead = reader.GetCurrentPos(); |
3192 | |
3193 | blobType = reader.Read7BitEncodedInt(); |
3194 | mdToken token = reader.ReadTokenWithMemory(LastBlobToken); |
3195 | |
3196 | // Write out the blob header. |
3197 | |
3198 | // Note the location in the write stream, and write a 0 there. Once |
3199 | // this blob has been written in its entirety, this location can be |
3200 | // used to calculate the real size and to go back to the right place |
3201 | // to write it. |
3202 | |
3203 | unsigned int startPositionWrite = writer.GetWrittenSize(); |
3204 | writer.Write(0U); |
3205 | |
3206 | writer.Write(blobType); |
3207 | writer.Write(token); |
3208 | |
3209 | // All blobs (except the end-of-stream indicator) end as: |
3210 | // <data length> <data> |
3211 | // Two blob types (handled immediately below) include tokens as well. |
3212 | // Handle those first, then handle the common case. |
3213 | |
3214 | if (blobType == ExternalTypeDef) |
3215 | { |
3216 | writer.Write(reader.ReadTokenWithMemory(LastAssemblyToken)); |
3217 | writer.Write(reader.ReadTokenWithMemory(LastExternalTypeToken)); |
3218 | writer.Write(reader.ReadTokenWithMemory(LastExternalNamespaceToken)); |
3219 | } |
3220 | else if (blobType == ExternalMethodDef) |
3221 | { |
3222 | writer.Write(reader.ReadTokenWithMemory(LastExternalTypeToken)); |
3223 | writer.Write(reader.ReadTokenWithMemory(LastExternalSignatureToken)); |
3224 | } |
3225 | |
3226 | if ((blobType >= MetadataStringPool) && (blobType < IllegalBlob)) |
3227 | { |
3228 | // This blob is of known type and ends with data. |
3229 | unsigned int dataLength = reader.Read7BitEncodedInt(); |
3230 | char *data = (char *)reader.Read(dataLength); |
3231 | |
3232 | if (!data) |
3233 | { |
3234 | ThrowHR(E_FAIL); |
3235 | } |
3236 | |
3237 | writer.Write(dataLength); |
3238 | writer.Write(data, dataLength); |
3239 | } |
3240 | |
3241 | // Write the size for this blob. |
3242 | |
3243 | writer.WriteAt(startPositionWrite, |
3244 | writer.GetWrittenSize() - startPositionWrite); |
3245 | |
3246 | // Move to the next blob. |
3247 | |
3248 | if (!reader.Seek(startPositionRead + sizeToRead)) |
3249 | { |
3250 | ThrowHR(E_FAIL); |
3251 | } |
3252 | } |
3253 | while (blobType != EndOfBlobStream); |
3254 | |
3255 | section.pData = writer.GetBuffer(); |
3256 | section.dataSize = writer.GetWrittenSize(); |
3257 | } |
3258 | |
3259 | HRESULT ZapImage::RehydrateProfileData() |
3260 | { |
3261 | HRESULT hr = S_OK; |
3262 | unsigned int flagTable[255]; |
3263 | memset(flagTable, 0xFF, sizeof(flagTable)); |
3264 | |
3265 | EX_TRY |
3266 | { |
3267 | RehydrateBasicBlockSection(); |
3268 | RehydrateBlobStream(); |
3269 | for (int format = FirstTokenFlagSection; |
3270 | format < SectionFormatCount; |
3271 | ++format) |
3272 | { |
3273 | if (m_profileDataSections[format].pData) |
3274 | { |
3275 | RehydrateTokenSection(format, flagTable); |
3276 | } |
3277 | } |
3278 | } |
3279 | EX_CATCH_HRESULT_NO_ERRORINFO(hr); |
3280 | |
3281 | return hr; |
3282 | } |
3283 | |
3284 | HRESULT ZapImage::hashBBProfileData () |
3285 | { |
3286 | ProfileDataSection * DataSection_MethodBlockCounts = & m_profileDataSections[MethodBlockCounts]; |
3287 | |
3288 | if (!DataSection_MethodBlockCounts->pData) |
3289 | { |
3290 | return E_FAIL; |
3291 | } |
3292 | |
3293 | ProfileReader profileReader(DataSection_MethodBlockCounts->pData, DataSection_MethodBlockCounts->dataSize); |
3294 | |
3295 | CORBBTPROF_METHOD_BLOCK_COUNTS_SECTION_HEADER *; |
3296 | READ(mbcHeader,CORBBTPROF_METHOD_BLOCK_COUNTS_SECTION_HEADER); |
3297 | |
3298 | for (ULONG i = 0; i < mbcHeader->NumMethods; i++) |
3299 | { |
3300 | ProfileDataHashEntry newEntry; |
3301 | newEntry.pos = profileReader.GetCurrentPos(); |
3302 | |
3303 | CORBBTPROF_METHOD_HEADER *; |
3304 | READ(methodHeader,CORBBTPROF_METHOD_HEADER); |
3305 | newEntry.md = methodHeader->method.token; |
3306 | newEntry.size = methodHeader->size; |
3307 | newEntry.flags = 0; |
3308 | newEntry.status = NOT_COMPILED; |
3309 | |
3310 | // Add the new entry to the table |
3311 | profileDataHashTable.Add(newEntry); |
3312 | |
3313 | // Skip the profileData so we can read the next method. |
3314 | void *profileData; |
3315 | READ_SIZE(profileData, void, (methodHeader->size - sizeof(CORBBTPROF_METHOD_HEADER))); |
3316 | } |
3317 | |
3318 | return S_OK; |
3319 | } |
3320 | |
3321 | void ZapImage::hashBBUpdateFlagsAndCompileResult(mdToken token, unsigned methodProfilingDataFlags, ZapImage::CompileStatus compileResult) |
3322 | { |
3323 | // SHash only supports replacing an entry so we setup our newEntry and then perform a lookup |
3324 | // |
3325 | ProfileDataHashEntry newEntry; |
3326 | newEntry.md = token; |
3327 | newEntry.flags = methodProfilingDataFlags; |
3328 | newEntry.status = compileResult; |
3329 | |
3330 | const ProfileDataHashEntry* pEntry = profileDataHashTable.LookupPtr(token); |
3331 | if (pEntry != nullptr) |
3332 | { |
3333 | assert(pEntry->md == newEntry.md); |
3334 | assert(pEntry->flags == 0); // the flags should not be set at this point. |
3335 | |
3336 | // Copy and keep the two fleids that were previously set |
3337 | newEntry.size = pEntry->size; |
3338 | newEntry.pos = pEntry->pos; |
3339 | } |
3340 | else // We have a method that doesn't have basic block counts |
3341 | { |
3342 | newEntry.size = 0; |
3343 | newEntry.pos = 0; |
3344 | } |
3345 | profileDataHashTable.AddOrReplace(newEntry); |
3346 | } |
3347 | |
3348 | void ZapImage::LoadProfileData() |
3349 | { |
3350 | HRESULT hr = E_FAIL; |
3351 | |
3352 | m_fHaveProfileData = false; |
3353 | m_pRawProfileData = NULL; |
3354 | m_cRawProfileData = 0; |
3355 | |
3356 | EX_TRY |
3357 | { |
3358 | hr = LocateProfileData(); |
3359 | |
3360 | if (hr == S_OK) |
3361 | { |
3362 | hr = parseProfileData(); |
3363 | if (hr == S_OK) |
3364 | { |
3365 | hr = hashBBProfileData(); |
3366 | } |
3367 | } |
3368 | } |
3369 | EX_CATCH |
3370 | { |
3371 | hr = E_FAIL; |
3372 | } |
3373 | EX_END_CATCH(SwallowAllExceptions); |
3374 | |
3375 | if (hr != S_OK) |
3376 | { |
3377 | m_fHaveProfileData = false; |
3378 | m_pRawProfileData = NULL; |
3379 | m_cRawProfileData = 0; |
3380 | |
3381 | if (FAILED(hr)) |
3382 | { |
3383 | m_zapper->Warning(W("Warning: Invalid profile data was ignored for %s\n" ), m_pModuleFileName); |
3384 | } |
3385 | } |
3386 | } |
3387 | |
3388 | // Initializes our form of the profile data stored in the assembly. |
3389 | |
3390 | CorProfileData * ZapImage::NewProfileData() |
3391 | { |
3392 | this->m_pCorProfileData = new CorProfileData(&m_profileDataSections[0]); |
3393 | |
3394 | return this->m_pCorProfileData; |
3395 | } |
3396 | |
3397 | // Returns the profile data stored in the assembly. |
3398 | |
3399 | CorProfileData * ZapImage::GetProfileData() |
3400 | { |
3401 | _ASSERTE(this->m_pCorProfileData != NULL); |
3402 | |
3403 | return this->m_pCorProfileData; |
3404 | } |
3405 | |
3406 | CorProfileData::CorProfileData(void * rawProfileData) |
3407 | { |
3408 | ZapImage::ProfileDataSection * profileData = (ZapImage::ProfileDataSection *) rawProfileData; |
3409 | |
3410 | for (DWORD format = 0; format < SectionFormatCount; format++) |
3411 | { |
3412 | this->profilingTokenFlagsData[format].count = profileData[format].tableSize; |
3413 | this->profilingTokenFlagsData[format].data = profileData[format].pTable; |
3414 | } |
3415 | |
3416 | this->blobStream = (CORBBTPROF_BLOB_ENTRY *) profileData[BlobStream].pData; |
3417 | } |
3418 | |
3419 | |
3420 | // Determines whether a method can be called directly from another method (without |
3421 | // going through the prestub) in the current module. |
3422 | // callerFtn=NULL implies any/unspecified caller in the current module. |
3423 | // |
3424 | // Returns NULL if 'calleeFtn' cannot be called directly *at the current time* |
3425 | // Else returns the direct address that 'calleeFtn' can be called at. |
3426 | |
3427 | |
3428 | bool ZapImage::canIntraModuleDirectCall( |
3429 | CORINFO_METHOD_HANDLE callerFtn, |
3430 | CORINFO_METHOD_HANDLE targetFtn, |
3431 | CorInfoIndirectCallReason *pReason, |
3432 | CORINFO_ACCESS_FLAGS accessFlags/*=CORINFO_ACCESS_ANY*/) |
3433 | { |
3434 | CorInfoIndirectCallReason reason; |
3435 | if (pReason == NULL) |
3436 | pReason = &reason; |
3437 | *pReason = CORINFO_INDIRECT_CALL_UNKNOWN; |
3438 | |
3439 | // The caller should have checked that the method is in current loader module |
3440 | _ASSERTE(m_hModule == m_zapper->m_pEECompileInfo->GetLoaderModuleForEmbeddableMethod(targetFtn)); |
3441 | |
3442 | // No direct calls at all under some circumstances |
3443 | |
3444 | if (m_zapper->m_pOpt->m_compilerFlags.IsSet(CORJIT_FLAGS::CORJIT_FLAG_PROF_ENTERLEAVE) |
3445 | && !m_pPreloader->IsDynamicMethod(callerFtn)) |
3446 | { |
3447 | *pReason = CORINFO_INDIRECT_CALL_PROFILING; |
3448 | goto CALL_VIA_ENTRY_POINT; |
3449 | } |
3450 | |
3451 | // Does the methods's class have a cctor, etc? |
3452 | |
3453 | if (!m_pPreloader->CanSkipMethodPreparation(callerFtn, targetFtn, pReason, accessFlags)) |
3454 | goto CALL_VIA_ENTRY_POINT; |
3455 | |
3456 | ZapMethodHeader * pMethod; |
3457 | pMethod = GetCompiledMethod(targetFtn); |
3458 | |
3459 | // If we have not compiled the method then we can't call direct |
3460 | |
3461 | if (pMethod == NULL) |
3462 | { |
3463 | *pReason = CORINFO_INDIRECT_CALL_NO_CODE; |
3464 | goto CALL_VIA_ENTRY_POINT; |
3465 | } |
3466 | |
3467 | // Does the method have fixups? |
3468 | |
3469 | if (pMethod->HasFixups() != NULL) |
3470 | { |
3471 | *pReason = CORINFO_INDIRECT_CALL_FIXUPS; |
3472 | goto CALL_VIA_ENTRY_POINT; |
3473 | } |
3474 | |
3475 | #ifdef _DEBUG |
3476 | const char* clsName, * methodName; |
3477 | methodName = m_zapper->m_pEEJitInfo->getMethodName(targetFtn, &clsName); |
3478 | LOG((LF_ZAP, LL_INFO10000, "getIntraModuleDirectCallAddr: Success %s::%s\n" , |
3479 | clsName, methodName)); |
3480 | #endif |
3481 | |
3482 | return true; |
3483 | |
3484 | CALL_VIA_ENTRY_POINT: |
3485 | |
3486 | #ifdef _DEBUG |
3487 | methodName = m_zapper->m_pEEJitInfo->getMethodName(targetFtn, &clsName); |
3488 | LOG((LF_ZAP, LL_INFO10000, "getIntraModuleDirectCallAddr: Via EntryPoint %s::%s\n" , |
3489 | clsName, methodName)); |
3490 | #endif |
3491 | |
3492 | return false; |
3493 | } |
3494 | |
3495 | // |
3496 | // Relocations |
3497 | // |
3498 | |
3499 | void ZapImage::WriteReloc(PVOID pSrc, int offset, ZapNode * pTarget, int targetOffset, ZapRelocationType type) |
3500 | { |
3501 | _ASSERTE(!IsWritingRelocs()); |
3502 | |
3503 | _ASSERTE(m_pBaseRelocs != NULL); |
3504 | m_pBaseRelocs->WriteReloc(pSrc, offset, pTarget, targetOffset, type); |
3505 | } |
3506 | |
3507 | ZapImage * ZapImage::GetZapImage() |
3508 | { |
3509 | return this; |
3510 | } |
3511 | |
3512 | void ZapImage::FileNotFoundError(LPCWSTR pszMessage) |
3513 | { |
3514 | SString message(pszMessage); |
3515 | |
3516 | for (COUNT_T i = 0; i < fileNotFoundErrorsTable.GetCount(); i++) |
3517 | { |
3518 | // Check to see if same error has already been displayed for this ngen operation |
3519 | if (message.Equals(fileNotFoundErrorsTable[i])) |
3520 | return; |
3521 | } |
3522 | |
3523 | CorZapLogLevel level; |
3524 | |
3525 | #ifdef CROSSGEN_COMPILE |
3526 | // Warnings should not go to stderr during crossgen |
3527 | level = CORZAP_LOGLEVEL_WARNING; |
3528 | #else |
3529 | level = CORZAP_LOGLEVEL_ERROR; |
3530 | #endif |
3531 | |
3532 | m_zapper->Print(level, W("Warning: %s.\n" ), pszMessage); |
3533 | |
3534 | fileNotFoundErrorsTable.Append(message); |
3535 | } |
3536 | |
3537 | void ZapImage::Error(mdToken token, HRESULT hr, UINT resID, LPCWSTR message) |
3538 | { |
3539 | // Missing dependencies are reported as fatal errors in code:CompilationDomain::BindAssemblySpec. |
3540 | // Avoid printing redundant error message for them. |
3541 | if (FAILED(g_hrFatalError)) |
3542 | ThrowHR(g_hrFatalError); |
3543 | |
3544 | // COM introduces the notion of a vtable gap method, which is not a real method at all but instead |
3545 | // aids in the explicit layout of COM interop vtables. These methods have no implementation and no |
3546 | // direct runtime state tracking them. Trying to lookup a method handle for a vtable gap method will |
3547 | // throw an exception but we choose to let that happen and filter out the warning here in the |
3548 | // handler because (a) vtable gap methods are rare and (b) it's not all that cheap to identify them |
3549 | // beforehand. |
3550 | if ((TypeFromToken(token) == mdtMethodDef) && IsVTableGapMethod(token)) |
3551 | { |
3552 | return; |
3553 | } |
3554 | |
3555 | CorZapLogLevel level = CORZAP_LOGLEVEL_ERROR; |
3556 | |
3557 | // Some warnings are demoted to informational level |
3558 | if (resID == IDS_EE_SIMD_NGEN_DISALLOWED) |
3559 | { |
3560 | // Supress printing of "Target-dependent SIMD vector types may not be used with ngen." |
3561 | level = CORZAP_LOGLEVEL_INFO; |
3562 | } |
3563 | |
3564 | if (resID == IDS_EE_HWINTRINSIC_NGEN_DISALLOWED) |
3565 | { |
3566 | // Supress printing of "Hardware intrinsics may not be used with ngen." |
3567 | level = CORZAP_LOGLEVEL_INFO; |
3568 | } |
3569 | |
3570 | #ifdef CROSSGEN_COMPILE |
3571 | if ((resID == IDS_IBC_MISSING_EXTERNAL_TYPE) || |
3572 | (resID == IDS_IBC_MISSING_EXTERNAL_METHOD)) |
3573 | { |
3574 | // Supress printing of "The generic type/method specified by the IBC data is not available to this assembly" |
3575 | level = CORZAP_LOGLEVEL_INFO; |
3576 | } |
3577 | #endif |
3578 | |
3579 | if (m_zapper->m_pOpt->m_ignoreErrors) |
3580 | { |
3581 | #ifdef CROSSGEN_COMPILE |
3582 | // Warnings should not go to stderr during crossgen |
3583 | if (level == CORZAP_LOGLEVEL_ERROR) |
3584 | { |
3585 | level = CORZAP_LOGLEVEL_WARNING; |
3586 | } |
3587 | #endif |
3588 | m_zapper->Print(level, W("Warning: " )); |
3589 | } |
3590 | else |
3591 | { |
3592 | m_zapper->Print(level, W("Error: " )); |
3593 | } |
3594 | |
3595 | if (message != NULL) |
3596 | m_zapper->Print(level, W("%s" ), message); |
3597 | else |
3598 | m_zapper->PrintErrorMessage(level, hr); |
3599 | |
3600 | m_zapper->Print(level, W(" while resolving 0x%x - " ), token); |
3601 | PrintTokenDescription(level, token); |
3602 | m_zapper->Print(level, W(".\n" )); |
3603 | |
3604 | if (m_zapper->m_pOpt->m_ignoreErrors) |
3605 | return; |
3606 | |
3607 | IfFailThrow(hr); |
3608 | } |
3609 | |
3610 | ZapNode * ZapImage::GetInnerPtr(ZapNode * pNode, SSIZE_T offset) |
3611 | { |
3612 | return m_pInnerPtrs->Get(pNode, offset); |
3613 | } |
3614 | |
3615 | ZapNode * ZapImage::GetHelperThunk(CorInfoHelpFunc ftnNum) |
3616 | { |
3617 | ZapNode * pHelperThunk = m_pHelperThunks[ftnNum]; |
3618 | |
3619 | if (pHelperThunk == NULL) |
3620 | { |
3621 | pHelperThunk = new (GetHeap()) ZapHelperThunk(ftnNum); |
3622 | #ifdef _TARGET_ARM_ |
3623 | pHelperThunk = GetInnerPtr(pHelperThunk, THUMB_CODE); |
3624 | #endif |
3625 | m_pHelperThunks[ftnNum] = pHelperThunk; |
3626 | } |
3627 | |
3628 | // Ensure that the thunk is placed |
3629 | ZapNode * pTarget = pHelperThunk; |
3630 | if (pTarget->GetType() == ZapNodeType_InnerPtr) |
3631 | pTarget = ((ZapInnerPtr *)pTarget)->GetBase(); |
3632 | if (!pTarget->IsPlaced()) |
3633 | m_pHelperTableSection->Place(pTarget); |
3634 | |
3635 | return pHelperThunk; |
3636 | } |
3637 | |
3638 | // |
3639 | // Compute a class-layout order based on a breadth-first traversal of |
3640 | // the class graph (based on what classes contain calls to other classes). |
3641 | // We cannot afford time or space to build the graph, so we do processing |
3642 | // in place. |
3643 | // |
3644 | void ZapImage::ComputeClassLayoutOrder() |
3645 | { |
3646 | // In order to make the computation efficient, we need to store per-class |
3647 | // intermediate values in the class layout field. These come in two forms: |
3648 | // |
3649 | // - An entry with the UNSEEN_CLASS_FLAG set is one that is yet to be encountered. |
3650 | // - An entry with METHOD_INDEX_FLAG set is an index into the m_MethodCompilationOrder list |
3651 | // indicating where the unprofiled methods of this class begin |
3652 | // |
3653 | // Both flags begin set (by InitializeClassLayoutOrder) since the value initialized is |
3654 | // the method index and the class has not been encountered by the algorithm. |
3655 | // When a class layout has been computed, both of these flags will have been stripped. |
3656 | |
3657 | |
3658 | // Early-out in the (probably impossible) case that these bits weren't available |
3659 | if (m_MethodCompilationOrder.GetCount() >= UNSEEN_CLASS_FLAG || |
3660 | m_MethodCompilationOrder.GetCount() >= METHOD_INDEX_FLAG) |
3661 | { |
3662 | return; |
3663 | } |
3664 | |
3665 | // Allocate the queue for the breadth-first traversal. |
3666 | // Note that the use of UNSEEN_CLASS_FLAG ensures that no class is enqueued more |
3667 | // than once, so we can use that bound for the size of the queue. |
3668 | CORINFO_CLASS_HANDLE * classQueue = new CORINFO_CLASS_HANDLE[m_ClassLayoutOrder.GetCount()]; |
3669 | |
3670 | unsigned classOrder = 0; |
3671 | for (COUNT_T i = m_iUntrainedMethod; i < m_MethodCompilationOrder.GetCount(); i++) |
3672 | { |
3673 | unsigned classQueueNext = 0; |
3674 | unsigned classQueueEnd = 0; |
3675 | COUNT_T methodIndex = 0; |
3676 | |
3677 | // |
3678 | // Find an unprocessed method to seed the next breadth-first traversal. |
3679 | // |
3680 | |
3681 | ZapMethodHeader * pMethod = m_MethodCompilationOrder[i]; |
3682 | const ClassLayoutOrderEntry * pEntry = m_ClassLayoutOrder.LookupPtr(pMethod->m_classHandle); |
3683 | _ASSERTE(pEntry); |
3684 | |
3685 | if ((pEntry->m_order & UNSEEN_CLASS_FLAG) == 0) |
3686 | { |
3687 | continue; |
3688 | } |
3689 | |
3690 | // |
3691 | // Enqueue the method's class and start the traversal. |
3692 | // |
3693 | |
3694 | classQueue[classQueueEnd++] = pMethod->m_classHandle; |
3695 | ((ClassLayoutOrderEntry *)pEntry)->m_order &= ~UNSEEN_CLASS_FLAG; |
3696 | |
3697 | while (classQueueNext < classQueueEnd) |
3698 | { |
3699 | // |
3700 | // Dequeue a class and pull out the index of its first method |
3701 | // |
3702 | |
3703 | CORINFO_CLASS_HANDLE dequeuedClassHandle = classQueue[classQueueNext++]; |
3704 | _ASSERTE(dequeuedClassHandle != NULL); |
3705 | |
3706 | pEntry = m_ClassLayoutOrder.LookupPtr(dequeuedClassHandle); |
3707 | _ASSERTE(pEntry); |
3708 | _ASSERTE((pEntry->m_order & UNSEEN_CLASS_FLAG) == 0); |
3709 | _ASSERTE((pEntry->m_order & METHOD_INDEX_FLAG) != 0); |
3710 | |
3711 | methodIndex = pEntry->m_order & ~METHOD_INDEX_FLAG; |
3712 | _ASSERTE(methodIndex < m_MethodCompilationOrder.GetCount()); |
3713 | |
3714 | // |
3715 | // Set the real layout order of the class, and examine its unprofiled methods |
3716 | // |
3717 | |
3718 | ((ClassLayoutOrderEntry *)pEntry)->m_order = ++classOrder; |
3719 | |
3720 | pMethod = m_MethodCompilationOrder[methodIndex]; |
3721 | _ASSERTE(pMethod->m_classHandle == dequeuedClassHandle); |
3722 | |
3723 | while (pMethod->m_classHandle == dequeuedClassHandle) |
3724 | { |
3725 | |
3726 | // |
3727 | // For each unprofiled method, find target classes and enqueue any that haven't been seen |
3728 | // |
3729 | |
3730 | ZapMethodHeader::PartialTargetMethodIterator it(pMethod); |
3731 | |
3732 | CORINFO_METHOD_HANDLE targetMethodHandle; |
3733 | while (it.GetNext(&targetMethodHandle)) |
3734 | { |
3735 | CORINFO_CLASS_HANDLE targetClassHandle = GetJitInfo()->getMethodClass(targetMethodHandle); |
3736 | if (targetClassHandle != pMethod->m_classHandle) |
3737 | { |
3738 | pEntry = m_ClassLayoutOrder.LookupPtr(targetClassHandle); |
3739 | |
3740 | if (pEntry && (pEntry->m_order & UNSEEN_CLASS_FLAG) != 0) |
3741 | { |
3742 | _ASSERTE(classQueueEnd < m_ClassLayoutOrder.GetCount()); |
3743 | classQueue[classQueueEnd++] = targetClassHandle; |
3744 | |
3745 | ((ClassLayoutOrderEntry *)pEntry)->m_order &= ~UNSEEN_CLASS_FLAG; |
3746 | } |
3747 | } |
3748 | } |
3749 | |
3750 | if (++methodIndex == m_MethodCompilationOrder.GetCount()) |
3751 | { |
3752 | break; |
3753 | } |
3754 | |
3755 | pMethod = m_MethodCompilationOrder[methodIndex]; |
3756 | } |
3757 | } |
3758 | } |
3759 | |
3760 | for (COUNT_T i = m_iUntrainedMethod; i < m_MethodCompilationOrder.GetCount(); i++) |
3761 | { |
3762 | ZapMethodHeader * pMethod = m_MethodCompilationOrder[i]; |
3763 | pMethod->m_cachedLayoutOrder = LookupClassLayoutOrder(pMethod->m_classHandle); |
3764 | } |
3765 | |
3766 | m_fHasClassLayoutOrder = true; |
3767 | |
3768 | delete [] classQueue; |
3769 | } |
3770 | |
3771 | static int __cdecl LayoutOrderCmp(const void* a_, const void* b_) |
3772 | { |
3773 | ZapMethodHeader * a = *((ZapMethodHeader**)a_); |
3774 | ZapMethodHeader * b = *((ZapMethodHeader**)b_); |
3775 | |
3776 | int layoutDiff = a->GetCachedLayoutOrder() - b->GetCachedLayoutOrder(); |
3777 | if (layoutDiff != 0) |
3778 | return layoutDiff; |
3779 | |
3780 | // Use compilation order as secondary key to get predictable ordering within the bucket |
3781 | return a->GetCompilationOrder() - b->GetCompilationOrder(); |
3782 | } |
3783 | |
3784 | void ZapImage::SortUnprofiledMethodsByClassLayoutOrder() |
3785 | { |
3786 | qsort(&m_MethodCompilationOrder[m_iUntrainedMethod], m_MethodCompilationOrder.GetCount() - m_iUntrainedMethod, sizeof(ZapMethodHeader *), LayoutOrderCmp); |
3787 | } |
3788 | |