1 | #include "duckdb/execution/aggregate_hashtable.hpp" |
2 | |
3 | #include "duckdb/common/exception.hpp" |
4 | #include "duckdb/common/types/null_value.hpp" |
5 | #include "duckdb/common/vector_operations/vector_operations.hpp" |
6 | #include "duckdb/planner/expression/bound_aggregate_expression.hpp" |
7 | #include "duckdb/catalog/catalog_entry/aggregate_function_catalog_entry.hpp" |
8 | #include "duckdb/common/vector_operations/unary_executor.hpp" |
9 | #include "duckdb/common/operator/comparison_operators.hpp" |
10 | |
11 | #include <cmath> |
12 | #include <map> |
13 | |
14 | using namespace duckdb; |
15 | using namespace std; |
16 | |
17 | SuperLargeHashTable::SuperLargeHashTable(idx_t initial_capacity, vector<TypeId> group_types, |
18 | vector<TypeId> payload_types, vector<BoundAggregateExpression *> bindings, |
19 | bool parallel) |
20 | : SuperLargeHashTable(initial_capacity, move(group_types), move(payload_types), |
21 | AggregateObject::CreateAggregateObjects(move(bindings)), parallel) { |
22 | } |
23 | |
24 | vector<AggregateObject> AggregateObject::CreateAggregateObjects(vector<BoundAggregateExpression *> bindings) { |
25 | vector<AggregateObject> aggregates; |
26 | for (auto &binding : bindings) { |
27 | auto payload_size = binding->function.state_size(); |
28 | aggregates.push_back(AggregateObject(binding->function, binding->children.size(), payload_size, |
29 | binding->distinct, binding->return_type)); |
30 | } |
31 | return aggregates; |
32 | } |
33 | |
34 | SuperLargeHashTable::SuperLargeHashTable(idx_t initial_capacity, vector<TypeId> group_types, |
35 | vector<TypeId> payload_types, vector<AggregateObject> aggregate_objects, |
36 | bool parallel) |
37 | : aggregates(move(aggregate_objects)), group_types(group_types), payload_types(payload_types), group_width(0), |
38 | payload_width(0), capacity(0), entries(0), data(nullptr), parallel(parallel) { |
39 | // HT tuple layout is as follows: |
40 | // [FLAG][GROUPS][PAYLOAD] |
41 | // [FLAG] is the state of the tuple in memory |
42 | // [GROUPS] is the groups |
43 | // [PAYLOAD] is the payload (i.e. the aggregate states) |
44 | for (idx_t i = 0; i < group_types.size(); i++) { |
45 | group_width += GetTypeIdSize(group_types[i]); |
46 | } |
47 | for (idx_t i = 0; i < aggregates.size(); i++) { |
48 | payload_width += aggregates[i].payload_size; |
49 | } |
50 | empty_payload_data = unique_ptr<data_t[]>(new data_t[payload_width]); |
51 | // initialize the aggregates to the NULL value |
52 | auto pointer = empty_payload_data.get(); |
53 | for (idx_t i = 0; i < aggregates.size(); i++) { |
54 | auto &aggr = aggregates[i]; |
55 | aggr.function.initialize(pointer); |
56 | pointer += aggr.payload_size; |
57 | } |
58 | |
59 | // FIXME: this always creates this vector, even if no distinct if present. |
60 | // it likely does not matter. |
61 | distinct_hashes.resize(aggregates.size()); |
62 | |
63 | // create additional hash tables for distinct aggrs |
64 | idx_t payload_idx = 0; |
65 | for (idx_t i = 0; i < aggregates.size(); i++) { |
66 | auto &aggr = aggregates[i]; |
67 | if (aggr.distinct) { |
68 | // group types plus aggr return type |
69 | vector<TypeId> distinct_group_types(group_types); |
70 | vector<TypeId> distinct_payload_types; |
71 | vector<BoundAggregateExpression *> distinct_aggregates; |
72 | distinct_group_types.push_back(payload_types[payload_idx]); |
73 | distinct_hashes[i] = make_unique<SuperLargeHashTable>(initial_capacity, distinct_group_types, |
74 | distinct_payload_types, distinct_aggregates); |
75 | } |
76 | if (aggr.child_count) { |
77 | payload_idx += aggr.child_count; |
78 | } else { |
79 | payload_idx += 1; |
80 | } |
81 | } |
82 | |
83 | tuple_size = FLAG_SIZE + (group_width + payload_width); |
84 | Resize(initial_capacity); |
85 | } |
86 | |
87 | SuperLargeHashTable::~SuperLargeHashTable() { |
88 | Destroy(); |
89 | } |
90 | |
91 | void SuperLargeHashTable::CallDestructors(Vector &state_vector, idx_t count) { |
92 | if (count == 0) { |
93 | return; |
94 | } |
95 | for (idx_t i = 0; i < aggregates.size(); i++) { |
96 | auto &aggr = aggregates[i]; |
97 | if (aggr.function.destructor) { |
98 | aggr.function.destructor(state_vector, count); |
99 | } |
100 | // move to the next aggregate state |
101 | VectorOperations::AddInPlace(state_vector, aggr.payload_size, count); |
102 | } |
103 | } |
104 | |
105 | void SuperLargeHashTable::Destroy() { |
106 | if (!data) { |
107 | return; |
108 | } |
109 | // check if there is a destructor |
110 | bool has_destructor = false; |
111 | for (idx_t i = 0; i < aggregates.size(); i++) { |
112 | if (aggregates[i].function.destructor) { |
113 | has_destructor = true; |
114 | } |
115 | } |
116 | if (!has_destructor) { |
117 | return; |
118 | } |
119 | // there are aggregates with destructors: loop over the hash table |
120 | // and call the destructor method for each of the aggregates |
121 | data_ptr_t data_pointers[STANDARD_VECTOR_SIZE]; |
122 | Vector state_vector(TypeId::POINTER, (data_ptr_t)data_pointers); |
123 | idx_t count = 0; |
124 | for (data_ptr_t ptr = data, end = data + capacity * tuple_size; ptr < end; ptr += tuple_size) { |
125 | if (*ptr == FULL_CELL) { |
126 | // found entry |
127 | data_pointers[count++] = ptr + FLAG_SIZE + group_width; |
128 | if (count == STANDARD_VECTOR_SIZE) { |
129 | // vector is full: call the destructors |
130 | CallDestructors(state_vector, count); |
131 | count = 0; |
132 | } |
133 | } |
134 | } |
135 | CallDestructors(state_vector, count); |
136 | } |
137 | |
138 | void SuperLargeHashTable::Resize(idx_t size) { |
139 | if (size <= capacity) { |
140 | throw Exception("Cannot downsize a hash table!" ); |
141 | } |
142 | if (size < STANDARD_VECTOR_SIZE) { |
143 | size = STANDARD_VECTOR_SIZE; |
144 | } |
145 | // size needs to be a power of 2 |
146 | assert((size & (size - 1)) == 0); |
147 | bitmask = size - 1; |
148 | |
149 | if (entries > 0) { |
150 | auto new_table = make_unique<SuperLargeHashTable>(size, group_types, payload_types, aggregates, parallel); |
151 | |
152 | DataChunk groups; |
153 | groups.Initialize(group_types); |
154 | |
155 | Vector addresses(TypeId::POINTER); |
156 | auto data_pointers = FlatVector::GetData<data_ptr_t>(addresses); |
157 | |
158 | data_ptr_t ptr = data; |
159 | data_ptr_t end = data + capacity * tuple_size; |
160 | |
161 | assert(new_table->tuple_size == this->tuple_size); |
162 | |
163 | while (true) { |
164 | groups.Reset(); |
165 | |
166 | // scan the table for full cells starting from the scan position |
167 | idx_t found_entries = 0; |
168 | for (; ptr < end && found_entries < STANDARD_VECTOR_SIZE; ptr += tuple_size) { |
169 | if (*ptr == FULL_CELL) { |
170 | // found entry |
171 | data_pointers[found_entries++] = ptr + FLAG_SIZE; |
172 | } |
173 | } |
174 | if (found_entries == 0) { |
175 | break; |
176 | } |
177 | // fetch the group columns |
178 | groups.SetCardinality(found_entries); |
179 | for (idx_t i = 0; i < groups.column_count(); i++) { |
180 | auto &column = groups.data[i]; |
181 | VectorOperations::Gather::Set(addresses, column, found_entries); |
182 | } |
183 | |
184 | groups.Verify(); |
185 | assert(groups.size() == found_entries); |
186 | Vector new_addresses(TypeId::POINTER); |
187 | new_table->FindOrCreateGroups(groups, new_addresses); |
188 | |
189 | // NB: both address vectors already point to the payload start |
190 | assert(addresses.type == new_addresses.type && addresses.type == TypeId::POINTER); |
191 | |
192 | auto new_address_data = FlatVector::GetData<data_ptr_t>(new_addresses); |
193 | for (idx_t i = 0; i < found_entries; i++) { |
194 | memcpy(new_address_data[i], data_pointers[i], payload_width); |
195 | } |
196 | } |
197 | |
198 | assert(this->entries == new_table->entries); |
199 | |
200 | this->data = move(new_table->data); |
201 | this->owned_data = move(new_table->owned_data); |
202 | this->capacity = new_table->capacity; |
203 | this->string_heap.MergeHeap(new_table->string_heap); |
204 | new_table->data = nullptr; |
205 | } else { |
206 | data = new data_t[size * tuple_size]; |
207 | owned_data = unique_ptr<data_t[]>(data); |
208 | for (idx_t i = 0; i < size; i++) { |
209 | data[i * tuple_size] = EMPTY_CELL; |
210 | } |
211 | |
212 | capacity = size; |
213 | } |
214 | |
215 | endptr = data + tuple_size * capacity; |
216 | } |
217 | |
218 | void SuperLargeHashTable::AddChunk(DataChunk &groups, DataChunk &payload) { |
219 | if (groups.size() == 0) { |
220 | return; |
221 | } |
222 | |
223 | Vector addresses(TypeId::POINTER); |
224 | FindOrCreateGroups(groups, addresses); |
225 | |
226 | // now every cell has an entry |
227 | // update the aggregates |
228 | idx_t payload_idx = 0; |
229 | |
230 | for (idx_t aggr_idx = 0; aggr_idx < aggregates.size(); aggr_idx++) { |
231 | assert(payload.column_count() > payload_idx); |
232 | |
233 | // for any entries for which a group was found, update the aggregate |
234 | auto &aggr = aggregates[aggr_idx]; |
235 | auto input_count = max((idx_t)1, (idx_t)aggr.child_count); |
236 | if (aggr.distinct) { |
237 | // construct chunk for secondary hash table probing |
238 | vector<TypeId> probe_types(group_types); |
239 | for (idx_t i = 0; i < aggr.child_count; i++) { |
240 | probe_types.push_back(payload_types[payload_idx]); |
241 | } |
242 | DataChunk probe_chunk; |
243 | probe_chunk.Initialize(probe_types); |
244 | for (idx_t group_idx = 0; group_idx < group_types.size(); group_idx++) { |
245 | probe_chunk.data[group_idx].Reference(groups.data[group_idx]); |
246 | } |
247 | for (idx_t i = 0; i < aggr.child_count; i++) { |
248 | probe_chunk.data[group_types.size() + i].Reference(payload.data[payload_idx + i]); |
249 | } |
250 | probe_chunk.SetCardinality(groups); |
251 | probe_chunk.Verify(); |
252 | |
253 | Vector dummy_addresses(TypeId::POINTER); |
254 | SelectionVector new_groups(STANDARD_VECTOR_SIZE); |
255 | // this is the actual meat, find out which groups plus payload |
256 | // value have not been seen yet |
257 | idx_t new_group_count = |
258 | distinct_hashes[aggr_idx]->FindOrCreateGroups(probe_chunk, dummy_addresses, new_groups); |
259 | |
260 | // now fix up the payload and addresses accordingly by creating |
261 | // a selection vector |
262 | if (new_group_count > 0) { |
263 | Vector distinct_addresses; |
264 | distinct_addresses.Slice(addresses, new_groups, new_group_count); |
265 | for (idx_t i = 0; i < aggr.child_count; i++) { |
266 | payload.data[payload_idx + i].Slice(new_groups, new_group_count); |
267 | payload.data[payload_idx + i].Verify(new_group_count); |
268 | } |
269 | |
270 | distinct_addresses.Verify(new_group_count); |
271 | |
272 | aggr.function.update(&payload.data[payload_idx], input_count, distinct_addresses, new_group_count); |
273 | } |
274 | } else { |
275 | aggr.function.update(&payload.data[payload_idx], input_count, addresses, payload.size()); |
276 | } |
277 | |
278 | // move to the next aggregate |
279 | payload_idx += input_count; |
280 | VectorOperations::AddInPlace(addresses, aggr.payload_size, payload.size()); |
281 | } |
282 | } |
283 | |
284 | void SuperLargeHashTable::FetchAggregates(DataChunk &groups, DataChunk &result) { |
285 | groups.Verify(); |
286 | assert(groups.column_count() == group_types.size()); |
287 | for (idx_t i = 0; i < result.column_count(); i++) { |
288 | assert(result.data[i].type == payload_types[i]); |
289 | } |
290 | result.SetCardinality(groups); |
291 | if (groups.size() == 0) { |
292 | return; |
293 | } |
294 | // find the groups associated with the addresses |
295 | // FIXME: this should not use the FindOrCreateGroups, creating them is unnecessary |
296 | Vector addresses(TypeId::POINTER); |
297 | FindOrCreateGroups(groups, addresses); |
298 | // now fetch the aggregates |
299 | for (idx_t aggr_idx = 0; aggr_idx < aggregates.size(); aggr_idx++) { |
300 | assert(result.column_count() > aggr_idx); |
301 | assert(payload_types[aggr_idx] == TypeId::INT64); |
302 | |
303 | VectorOperations::Gather::Set(addresses, result.data[aggr_idx], groups.size()); |
304 | } |
305 | } |
306 | |
307 | void SuperLargeHashTable::HashGroups(DataChunk &groups, Vector &addresses) { |
308 | // create a set of hashes for the groups |
309 | Vector hashes(TypeId::HASH); |
310 | groups.Hash(hashes); |
311 | |
312 | // now compute the entry in the table based on the hash using a modulo |
313 | // multiply the position by the tuple size and add the base address |
314 | UnaryExecutor::Execute<hash_t, data_ptr_t>(hashes, addresses, groups.size(), [&](hash_t element) { |
315 | assert((element & bitmask) == (element % capacity)); |
316 | return data + ((element & bitmask) * tuple_size); |
317 | }); |
318 | } |
319 | |
320 | template <class T> |
321 | static void templated_scatter(VectorData &gdata, Vector &addresses, const SelectionVector &sel, idx_t count, |
322 | idx_t type_size) { |
323 | auto data = (T *)gdata.data; |
324 | auto pointers = FlatVector::GetData<uintptr_t>(addresses); |
325 | if (gdata.nullmask->any()) { |
326 | for (idx_t i = 0; i < count; i++) { |
327 | auto pointer_idx = sel.get_index(i); |
328 | auto group_idx = gdata.sel->get_index(pointer_idx); |
329 | auto ptr = (T *)pointers[pointer_idx]; |
330 | |
331 | if ((*gdata.nullmask)[group_idx]) { |
332 | *ptr = NullValue<T>(); |
333 | } else { |
334 | *ptr = data[group_idx]; |
335 | } |
336 | pointers[pointer_idx] += type_size; |
337 | } |
338 | } else { |
339 | for (idx_t i = 0; i < count; i++) { |
340 | auto pointer_idx = sel.get_index(i); |
341 | auto group_idx = gdata.sel->get_index(pointer_idx); |
342 | auto ptr = (T *)pointers[pointer_idx]; |
343 | |
344 | *ptr = data[group_idx]; |
345 | pointers[pointer_idx] += type_size; |
346 | } |
347 | } |
348 | } |
349 | |
350 | void SuperLargeHashTable::ScatterGroups(DataChunk &groups, unique_ptr<VectorData[]> &group_data, Vector &addresses, |
351 | const SelectionVector &sel, idx_t count) { |
352 | for (idx_t grp_idx = 0; grp_idx < groups.column_count(); grp_idx++) { |
353 | auto &data = groups.data[grp_idx]; |
354 | auto &gdata = group_data[grp_idx]; |
355 | |
356 | auto type_size = GetTypeIdSize(data.type); |
357 | |
358 | switch (data.type) { |
359 | case TypeId::BOOL: |
360 | case TypeId::INT8: |
361 | templated_scatter<int8_t>(gdata, addresses, sel, count, type_size); |
362 | break; |
363 | case TypeId::INT16: |
364 | templated_scatter<int16_t>(gdata, addresses, sel, count, type_size); |
365 | break; |
366 | case TypeId::INT32: |
367 | templated_scatter<int32_t>(gdata, addresses, sel, count, type_size); |
368 | break; |
369 | case TypeId::INT64: |
370 | templated_scatter<int64_t>(gdata, addresses, sel, count, type_size); |
371 | break; |
372 | case TypeId::FLOAT: |
373 | templated_scatter<float>(gdata, addresses, sel, count, type_size); |
374 | break; |
375 | case TypeId::DOUBLE: |
376 | templated_scatter<double>(gdata, addresses, sel, count, type_size); |
377 | break; |
378 | case TypeId::VARCHAR: { |
379 | auto data = (string_t *)gdata.data; |
380 | auto pointers = FlatVector::GetData<uintptr_t>(addresses); |
381 | |
382 | for (idx_t i = 0; i < count; i++) { |
383 | auto pointer_idx = sel.get_index(i); |
384 | auto group_idx = gdata.sel->get_index(pointer_idx); |
385 | auto ptr = (string_t *)pointers[pointer_idx]; |
386 | |
387 | if ((*gdata.nullmask)[group_idx]) { |
388 | *ptr = NullValue<string_t>(); |
389 | } else if (data[group_idx].IsInlined()) { |
390 | *ptr = data[group_idx]; |
391 | } else { |
392 | *ptr = string_heap.AddString(data[group_idx]); |
393 | } |
394 | pointers[pointer_idx] += type_size; |
395 | } |
396 | break; |
397 | } |
398 | default: |
399 | throw Exception("Unsupported type for group vector" ); |
400 | } |
401 | } |
402 | } |
403 | |
404 | template <class T> |
405 | static void templated_compare_groups(VectorData &gdata, Vector &addresses, SelectionVector &sel, idx_t &count, |
406 | idx_t type_size, SelectionVector &no_match, idx_t &no_match_count) { |
407 | auto data = (T *)gdata.data; |
408 | auto pointers = FlatVector::GetData<uintptr_t>(addresses); |
409 | idx_t match_count = 0; |
410 | if (gdata.nullmask->any()) { |
411 | for (idx_t i = 0; i < count; i++) { |
412 | auto idx = sel.get_index(i); |
413 | auto group_idx = gdata.sel->get_index(idx); |
414 | auto value = (T *)pointers[idx]; |
415 | |
416 | if ((*gdata.nullmask)[group_idx]) { |
417 | if (IsNullValue<T>(*value)) { |
418 | // match: move to next value to compare |
419 | sel.set_index(match_count++, idx); |
420 | pointers[idx] += type_size; |
421 | } else { |
422 | no_match.set_index(no_match_count++, idx); |
423 | } |
424 | } else { |
425 | if (Equals::Operation<T>(data[group_idx], *value)) { |
426 | sel.set_index(match_count++, idx); |
427 | pointers[idx] += type_size; |
428 | } else { |
429 | no_match.set_index(no_match_count++, idx); |
430 | } |
431 | } |
432 | } |
433 | } else { |
434 | for (idx_t i = 0; i < count; i++) { |
435 | auto idx = sel.get_index(i); |
436 | auto group_idx = gdata.sel->get_index(idx); |
437 | auto value = (T *)pointers[idx]; |
438 | |
439 | if (Equals::Operation<T>(data[group_idx], *value)) { |
440 | sel.set_index(match_count++, idx); |
441 | pointers[idx] += type_size; |
442 | } else { |
443 | no_match.set_index(no_match_count++, idx); |
444 | } |
445 | } |
446 | } |
447 | count = match_count; |
448 | } |
449 | |
450 | static idx_t CompareGroups(DataChunk &groups, unique_ptr<VectorData[]> &group_data, Vector &addresses, |
451 | SelectionVector &sel, idx_t count, SelectionVector &no_match) { |
452 | idx_t no_match_count = 0; |
453 | for (idx_t group_idx = 0; group_idx < groups.column_count(); group_idx++) { |
454 | auto &data = groups.data[group_idx]; |
455 | auto &gdata = group_data[group_idx]; |
456 | auto type_size = GetTypeIdSize(data.type); |
457 | switch (data.type) { |
458 | case TypeId::BOOL: |
459 | case TypeId::INT8: |
460 | templated_compare_groups<int8_t>(gdata, addresses, sel, count, type_size, no_match, no_match_count); |
461 | break; |
462 | case TypeId::INT16: |
463 | templated_compare_groups<int16_t>(gdata, addresses, sel, count, type_size, no_match, no_match_count); |
464 | break; |
465 | case TypeId::INT32: |
466 | templated_compare_groups<int32_t>(gdata, addresses, sel, count, type_size, no_match, no_match_count); |
467 | break; |
468 | case TypeId::INT64: |
469 | templated_compare_groups<int64_t>(gdata, addresses, sel, count, type_size, no_match, no_match_count); |
470 | break; |
471 | case TypeId::FLOAT: |
472 | templated_compare_groups<float>(gdata, addresses, sel, count, type_size, no_match, no_match_count); |
473 | break; |
474 | case TypeId::DOUBLE: |
475 | templated_compare_groups<double>(gdata, addresses, sel, count, type_size, no_match, no_match_count); |
476 | break; |
477 | case TypeId::VARCHAR: |
478 | templated_compare_groups<string_t>(gdata, addresses, sel, count, type_size, no_match, no_match_count); |
479 | break; |
480 | default: |
481 | throw Exception("Unsupported type for group vector" ); |
482 | } |
483 | } |
484 | return no_match_count; |
485 | } |
486 | |
487 | // this is to support distinct aggregations where we need to record whether we |
488 | // have already seen a value for a group |
489 | idx_t SuperLargeHashTable::FindOrCreateGroups(DataChunk &groups, Vector &addresses, SelectionVector &new_groups) { |
490 | // resize at 50% capacity, also need to fit the entire vector |
491 | if (entries > capacity / 2 || capacity - entries <= STANDARD_VECTOR_SIZE) { |
492 | Resize(capacity * 2); |
493 | } |
494 | |
495 | // we need to be able to fit at least one vector of data |
496 | assert(capacity - entries > STANDARD_VECTOR_SIZE); |
497 | assert(addresses.type == TypeId::POINTER); |
498 | |
499 | // hash the groups to get the addresses |
500 | HashGroups(groups, addresses); |
501 | |
502 | addresses.Normalify(groups.size()); |
503 | auto data_pointers = FlatVector::GetData<data_ptr_t>(addresses); |
504 | |
505 | data_ptr_t group_pointers[STANDARD_VECTOR_SIZE]; |
506 | Vector pointers(TypeId::POINTER, (data_ptr_t)group_pointers); |
507 | |
508 | // set up the selection vectors |
509 | SelectionVector v1(STANDARD_VECTOR_SIZE); |
510 | SelectionVector v2(STANDARD_VECTOR_SIZE); |
511 | SelectionVector empty_vector(STANDARD_VECTOR_SIZE); |
512 | |
513 | // we start out with all entries [0, 1, 2, ..., groups.size()] |
514 | const SelectionVector *sel_vector = &FlatVector::IncrementalSelectionVector; |
515 | SelectionVector *next_vector = &v1; |
516 | SelectionVector *no_match_vector = &v2; |
517 | idx_t remaining_entries = groups.size(); |
518 | |
519 | // orrify all the groups |
520 | auto group_data = unique_ptr<VectorData[]>(new VectorData[groups.column_count()]); |
521 | for (idx_t grp_idx = 0; grp_idx < groups.column_count(); grp_idx++) { |
522 | groups.data[grp_idx].Orrify(groups.size(), group_data[grp_idx]); |
523 | } |
524 | |
525 | idx_t new_group_count = 0; |
526 | while (remaining_entries > 0) { |
527 | idx_t entry_count = 0; |
528 | idx_t empty_count = 0; |
529 | |
530 | // first figure out for each remaining whether or not it belongs to a full or empty group |
531 | for (idx_t i = 0; i < remaining_entries; i++) { |
532 | idx_t index = sel_vector->get_index(i); |
533 | auto entry = data_pointers[index]; |
534 | if (*entry == EMPTY_CELL) { |
535 | // cell is empty; mark the cell as filled |
536 | *entry = FULL_CELL; |
537 | empty_vector.set_index(empty_count++, index); |
538 | new_groups.set_index(new_group_count++, index); |
539 | // initialize the payload info for the column |
540 | memcpy(entry + FLAG_SIZE + group_width, empty_payload_data.get(), payload_width); |
541 | } else { |
542 | // cell is occupied: add to check list |
543 | next_vector->set_index(entry_count++, index); |
544 | } |
545 | group_pointers[index] = entry + FLAG_SIZE; |
546 | data_pointers[index] = entry + FLAG_SIZE + group_width; |
547 | } |
548 | |
549 | if (empty_count > 0) { |
550 | // for each of the locations that are empty, serialize the group columns to the locations |
551 | ScatterGroups(groups, group_data, pointers, empty_vector, empty_count); |
552 | entries += empty_count; |
553 | } |
554 | // now we have only the tuples remaining that might match to an existing group |
555 | // start performing comparisons with each of the groups |
556 | idx_t no_match_count = CompareGroups(groups, group_data, pointers, *next_vector, entry_count, *no_match_vector); |
557 | |
558 | // each of the entries that do not match we move them to the next entry in the HT |
559 | for (idx_t i = 0; i < no_match_count; i++) { |
560 | idx_t index = no_match_vector->get_index(i); |
561 | data_pointers[index] += payload_width; |
562 | assert(((uint64_t)(data_pointers[index] - data)) % tuple_size == 0); |
563 | if (data_pointers[index] >= endptr) { |
564 | data_pointers[index] = data; |
565 | } |
566 | } |
567 | sel_vector = no_match_vector; |
568 | std::swap(next_vector, no_match_vector); |
569 | remaining_entries = no_match_count; |
570 | } |
571 | return new_group_count; |
572 | } |
573 | |
574 | void SuperLargeHashTable::FindOrCreateGroups(DataChunk &groups, Vector &addresses) { |
575 | // create a dummy new_groups sel vector |
576 | SelectionVector new_groups(STANDARD_VECTOR_SIZE); |
577 | FindOrCreateGroups(groups, addresses, new_groups); |
578 | } |
579 | |
580 | idx_t SuperLargeHashTable::Scan(idx_t &scan_position, DataChunk &groups, DataChunk &result) { |
581 | data_ptr_t ptr; |
582 | data_ptr_t start = data + scan_position; |
583 | data_ptr_t end = data + capacity * tuple_size; |
584 | if (start >= end) { |
585 | return 0; |
586 | } |
587 | |
588 | Vector addresses(TypeId::POINTER); |
589 | auto data_pointers = FlatVector::GetData<data_ptr_t>(addresses); |
590 | |
591 | // scan the table for full cells starting from the scan position |
592 | idx_t entry = 0; |
593 | for (ptr = start; ptr < end && entry < STANDARD_VECTOR_SIZE; ptr += tuple_size) { |
594 | if (*ptr == FULL_CELL) { |
595 | // found entry |
596 | data_pointers[entry++] = ptr + FLAG_SIZE; |
597 | } |
598 | } |
599 | if (entry == 0) { |
600 | return 0; |
601 | } |
602 | groups.SetCardinality(entry); |
603 | result.SetCardinality(entry); |
604 | // fetch the group columns |
605 | for (idx_t i = 0; i < groups.column_count(); i++) { |
606 | auto &column = groups.data[i]; |
607 | VectorOperations::Gather::Set(addresses, column, groups.size()); |
608 | } |
609 | |
610 | for (idx_t i = 0; i < aggregates.size(); i++) { |
611 | auto &target = result.data[i]; |
612 | auto &aggr = aggregates[i]; |
613 | aggr.function.finalize(addresses, target, groups.size()); |
614 | |
615 | VectorOperations::AddInPlace(addresses, aggr.payload_size, groups.size()); |
616 | } |
617 | scan_position = ptr - data; |
618 | return entry; |
619 | } |
620 | |