| 1 | #include "duckdb/common/vector_operations/vector_operations.hpp" |
| 2 | #include "duckdb/execution/expression_executor.hpp" |
| 3 | #include "duckdb/planner/expression/bound_conjunction_expression.hpp" |
| 4 | #include "duckdb/execution/adaptive_filter.hpp" |
| 5 | |
| 6 | #include <chrono> |
| 7 | #include <random> |
| 8 | #include <vector> |
| 9 | |
| 10 | using namespace duckdb; |
| 11 | using namespace std; |
| 12 | using namespace chrono; |
| 13 | |
| 14 | struct ConjunctionState : public ExpressionState { |
| 15 | ConjunctionState(Expression &expr, ExpressionExecutorState &root) |
| 16 | : ExpressionState(expr, root) { |
| 17 | adaptive_filter = make_unique<AdaptiveFilter>(expr); |
| 18 | } |
| 19 | unique_ptr<AdaptiveFilter> adaptive_filter; |
| 20 | }; |
| 21 | |
| 22 | unique_ptr<ExpressionState> ExpressionExecutor::InitializeState(BoundConjunctionExpression &expr, |
| 23 | ExpressionExecutorState &root) { |
| 24 | auto result = make_unique<ConjunctionState>(expr, root); |
| 25 | for (auto &child : expr.children) { |
| 26 | result->AddChild(child.get()); |
| 27 | } |
| 28 | return move(result); |
| 29 | } |
| 30 | |
| 31 | void ExpressionExecutor::Execute(BoundConjunctionExpression &expr, ExpressionState *state, const SelectionVector *sel, |
| 32 | idx_t count, Vector &result) { |
| 33 | // execute the children |
| 34 | for (idx_t i = 0; i < expr.children.size(); i++) { |
| 35 | Vector current_result(TypeId::BOOL); |
| 36 | Execute(*expr.children[i], state->child_states[i].get(), sel, count, current_result); |
| 37 | if (i == 0) { |
| 38 | // move the result |
| 39 | result.Reference(current_result); |
| 40 | } else { |
| 41 | Vector intermediate(TypeId::BOOL); |
| 42 | // AND/OR together |
| 43 | switch (expr.type) { |
| 44 | case ExpressionType::CONJUNCTION_AND: |
| 45 | VectorOperations::And(current_result, result, intermediate, count); |
| 46 | break; |
| 47 | case ExpressionType::CONJUNCTION_OR: |
| 48 | VectorOperations::Or(current_result, result, intermediate, count); |
| 49 | break; |
| 50 | default: |
| 51 | throw NotImplementedException("Unknown conjunction type!" ); |
| 52 | } |
| 53 | result.Reference(intermediate); |
| 54 | } |
| 55 | } |
| 56 | } |
| 57 | |
| 58 | idx_t ExpressionExecutor::Select(BoundConjunctionExpression &expr, ExpressionState *state_, const SelectionVector *sel, |
| 59 | idx_t count, SelectionVector *true_sel, SelectionVector *false_sel) { |
| 60 | auto state = (ConjunctionState *)state_; |
| 61 | |
| 62 | if (expr.type == ExpressionType::CONJUNCTION_AND) { |
| 63 | // get runtime statistics |
| 64 | auto start_time = high_resolution_clock::now(); |
| 65 | |
| 66 | const SelectionVector *current_sel = sel; |
| 67 | idx_t current_count = count; |
| 68 | idx_t false_count = 0; |
| 69 | |
| 70 | unique_ptr<SelectionVector> temp_true, temp_false; |
| 71 | if (false_sel) { |
| 72 | temp_false = make_unique<SelectionVector>(STANDARD_VECTOR_SIZE); |
| 73 | } |
| 74 | if (!true_sel) { |
| 75 | temp_true = make_unique<SelectionVector>(STANDARD_VECTOR_SIZE); |
| 76 | true_sel = temp_true.get(); |
| 77 | } |
| 78 | for (idx_t i = 0; i < expr.children.size(); i++) { |
| 79 | idx_t tcount = |
| 80 | Select(*expr.children[state->adaptive_filter->permutation[i]], state->child_states[state->adaptive_filter->permutation[i]].get(), |
| 81 | current_sel, current_count, true_sel, temp_false.get()); |
| 82 | idx_t fcount = current_count - tcount; |
| 83 | if (fcount > 0 && false_sel) { |
| 84 | // move failing tuples into the false_sel |
| 85 | // tuples passed, move them into the actual result vector |
| 86 | for (idx_t i = 0; i < fcount; i++) { |
| 87 | false_sel->set_index(false_count++, temp_false->get_index(i)); |
| 88 | } |
| 89 | } |
| 90 | current_count = tcount; |
| 91 | if (current_count == 0) { |
| 92 | break; |
| 93 | } |
| 94 | if (current_count < count) { |
| 95 | // tuples were filtered out: move on to using the true_sel to only evaluate passing tuples in subsequent |
| 96 | // iterations |
| 97 | current_sel = true_sel; |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | // adapt runtime statistics |
| 102 | auto end_time = high_resolution_clock::now(); |
| 103 | state->adaptive_filter->AdaptRuntimeStatistics( |
| 104 | duration_cast<duration<double>>(end_time - start_time).count()); |
| 105 | return current_count; |
| 106 | } else { |
| 107 | // get runtime statistics |
| 108 | auto start_time = high_resolution_clock::now(); |
| 109 | |
| 110 | const SelectionVector *current_sel = sel; |
| 111 | idx_t current_count = count; |
| 112 | idx_t result_count = 0; |
| 113 | |
| 114 | unique_ptr<SelectionVector> temp_true, temp_false; |
| 115 | if (true_sel) { |
| 116 | temp_true = make_unique<SelectionVector>(STANDARD_VECTOR_SIZE); |
| 117 | } |
| 118 | if (!false_sel) { |
| 119 | temp_false = make_unique<SelectionVector>(STANDARD_VECTOR_SIZE); |
| 120 | false_sel = temp_false.get(); |
| 121 | } |
| 122 | for (idx_t i = 0; i < expr.children.size(); i++) { |
| 123 | idx_t tcount = |
| 124 | Select(*expr.children[state->adaptive_filter->permutation[i]], state->child_states[state->adaptive_filter->permutation[i]].get(), |
| 125 | current_sel, current_count, temp_true.get(), false_sel); |
| 126 | if (tcount > 0) { |
| 127 | if (true_sel) { |
| 128 | // tuples passed, move them into the actual result vector |
| 129 | for (idx_t i = 0; i < tcount; i++) { |
| 130 | true_sel->set_index(result_count++, temp_true->get_index(i)); |
| 131 | } |
| 132 | } |
| 133 | // now move on to check only the non-passing tuples |
| 134 | current_count -= tcount; |
| 135 | current_sel = false_sel; |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | // adapt runtime statistics |
| 140 | auto end_time = high_resolution_clock::now(); |
| 141 | state->adaptive_filter->AdaptRuntimeStatistics( |
| 142 | duration_cast<duration<double>>(end_time - start_time).count()); |
| 143 | return result_count; |
| 144 | } |
| 145 | } |
| 146 | |