| 1 | #include <cfloat> |
| 2 | #include <limits.h> |
| 3 | #include <cstring> // strlen() on Solaris |
| 4 | |
| 5 | #include "duckdb/execution/index/art/art_key.hpp" |
| 6 | #include "duckdb/execution/index/art/art.hpp" |
| 7 | |
| 8 | using namespace duckdb; |
| 9 | |
| 10 | //! these are optimized and assume a particular byte order |
| 11 | #define BSWAP16(x) ((uint16_t)((((uint16_t)(x)&0xff00) >> 8) | (((uint16_t)(x)&0x00ff) << 8))) |
| 12 | |
| 13 | #define BSWAP32(x) \ |
| 14 | ((uint32_t)((((uint32_t)(x)&0xff000000) >> 24) | (((uint32_t)(x)&0x00ff0000) >> 8) | \ |
| 15 | (((uint32_t)(x)&0x0000ff00) << 8) | (((uint32_t)(x)&0x000000ff) << 24))) |
| 16 | |
| 17 | #define BSWAP64(x) \ |
| 18 | ((uint64_t)((((uint64_t)(x)&0xff00000000000000ull) >> 56) | (((uint64_t)(x)&0x00ff000000000000ull) >> 40) | \ |
| 19 | (((uint64_t)(x)&0x0000ff0000000000ull) >> 24) | (((uint64_t)(x)&0x000000ff00000000ull) >> 8) | \ |
| 20 | (((uint64_t)(x)&0x00000000ff000000ull) << 8) | (((uint64_t)(x)&0x0000000000ff0000ull) << 24) | \ |
| 21 | (((uint64_t)(x)&0x000000000000ff00ull) << 40) | (((uint64_t)(x)&0x00000000000000ffull) << 56))) |
| 22 | |
| 23 | static uint8_t FlipSign(uint8_t key_byte) { |
| 24 | return key_byte ^ 128; |
| 25 | } |
| 26 | |
| 27 | uint32_t Key::EncodeFloat(float x) { |
| 28 | unsigned long buff; |
| 29 | |
| 30 | //! zero |
| 31 | if (x == 0) { |
| 32 | buff = 0; |
| 33 | buff |= (1u << 31); |
| 34 | return buff; |
| 35 | } |
| 36 | //! infinity |
| 37 | if (x > FLT_MAX) { |
| 38 | return UINT_MAX; |
| 39 | } |
| 40 | //! -infinity |
| 41 | if (x < -FLT_MAX) { |
| 42 | return 0; |
| 43 | } |
| 44 | buff = reinterpret_cast<uint32_t *>(&x)[0]; |
| 45 | if ((buff & (1u << 31)) == 0) { //! +0 and positive numbers |
| 46 | buff |= (1u << 31); |
| 47 | } else { //! negative numbers |
| 48 | buff = ~buff; //! complement 1 |
| 49 | } |
| 50 | |
| 51 | return buff; |
| 52 | } |
| 53 | |
| 54 | uint64_t Key::EncodeDouble(double x) { |
| 55 | uint64_t buff; |
| 56 | //! zero |
| 57 | if (x == 0) { |
| 58 | buff = 0; |
| 59 | buff += (1ull << 63); |
| 60 | return buff; |
| 61 | } |
| 62 | //! infinity |
| 63 | if (x > DBL_MAX) { |
| 64 | return ULLONG_MAX; |
| 65 | } |
| 66 | //! -infinity |
| 67 | if (x < -DBL_MAX) { |
| 68 | return 0; |
| 69 | } |
| 70 | buff = reinterpret_cast<uint64_t *>(&x)[0]; |
| 71 | if (buff < (1ull << 63)) { //! +0 and positive numbers |
| 72 | buff += (1ull << 63); |
| 73 | } else { //! negative numbers |
| 74 | buff = ~buff; //! complement 1 |
| 75 | } |
| 76 | return buff; |
| 77 | } |
| 78 | |
| 79 | Key::Key(unique_ptr<data_t[]> data, idx_t len) : len(len), data(move(data)) { |
| 80 | } |
| 81 | |
| 82 | template <> unique_ptr<data_t[]> Key::CreateData(bool value, bool is_little_endian) { |
| 83 | auto data = unique_ptr<data_t[]>(new data_t[sizeof(value)]); |
| 84 | data[0] = value ? 1 : 0; |
| 85 | return data; |
| 86 | } |
| 87 | |
| 88 | template <> unique_ptr<data_t[]> Key::CreateData(int8_t value, bool is_little_endian) { |
| 89 | auto data = unique_ptr<data_t[]>(new data_t[sizeof(value)]); |
| 90 | reinterpret_cast<uint8_t *>(data.get())[0] = value; |
| 91 | data[0] = FlipSign(data[0]); |
| 92 | return data; |
| 93 | } |
| 94 | |
| 95 | template <> unique_ptr<data_t[]> Key::CreateData(int16_t value, bool is_little_endian) { |
| 96 | auto data = unique_ptr<data_t[]>(new data_t[sizeof(value)]); |
| 97 | reinterpret_cast<uint16_t *>(data.get())[0] = is_little_endian ? BSWAP16(value) : value; |
| 98 | data[0] = FlipSign(data[0]); |
| 99 | return data; |
| 100 | } |
| 101 | |
| 102 | template <> unique_ptr<data_t[]> Key::CreateData(int32_t value, bool is_little_endian) { |
| 103 | auto data = unique_ptr<data_t[]>(new data_t[sizeof(value)]); |
| 104 | reinterpret_cast<uint32_t *>(data.get())[0] = is_little_endian ? BSWAP32(value) : value; |
| 105 | data[0] = FlipSign(data[0]); |
| 106 | return data; |
| 107 | } |
| 108 | |
| 109 | template <> unique_ptr<data_t[]> Key::CreateData(int64_t value, bool is_little_endian) { |
| 110 | auto data = unique_ptr<data_t[]>(new data_t[sizeof(value)]); |
| 111 | reinterpret_cast<uint64_t *>(data.get())[0] = is_little_endian ? BSWAP64(value) : value; |
| 112 | data[0] = FlipSign(data[0]); |
| 113 | return data; |
| 114 | } |
| 115 | |
| 116 | template <> unique_ptr<data_t[]> Key::CreateData(float value, bool is_little_endian) { |
| 117 | uint32_t converted_value = EncodeFloat(value); |
| 118 | auto data = unique_ptr<data_t[]>(new data_t[sizeof(converted_value)]); |
| 119 | reinterpret_cast<uint32_t *>(data.get())[0] = is_little_endian ? BSWAP32(converted_value) : converted_value; |
| 120 | return data; |
| 121 | } |
| 122 | template <> unique_ptr<data_t[]> Key::CreateData(double value, bool is_little_endian) { |
| 123 | uint64_t converted_value = EncodeDouble(value); |
| 124 | auto data = unique_ptr<data_t[]>(new data_t[sizeof(converted_value)]); |
| 125 | reinterpret_cast<uint64_t *>(data.get())[0] = is_little_endian ? BSWAP64(converted_value) : converted_value; |
| 126 | return data; |
| 127 | } |
| 128 | |
| 129 | template <> unique_ptr<Key> Key::CreateKey(string_t value, bool is_little_endian) { |
| 130 | idx_t len = value.GetSize() + 1; |
| 131 | auto data = unique_ptr<data_t[]>(new data_t[len]); |
| 132 | memcpy(data.get(), value.GetData(), len); |
| 133 | return make_unique<Key>(move(data), len); |
| 134 | } |
| 135 | |
| 136 | template <> unique_ptr<Key> Key::CreateKey(const char *value, bool is_little_endian) { |
| 137 | return Key::CreateKey(string_t(value, strlen(value)), is_little_endian); |
| 138 | } |
| 139 | |
| 140 | bool Key::operator>(const Key &k) const { |
| 141 | for (idx_t i = 0; i < std::min(len, k.len); i++) { |
| 142 | if (data[i] > k.data[i]) { |
| 143 | return true; |
| 144 | } else if (data[i] < k.data[i]) { |
| 145 | return false; |
| 146 | } |
| 147 | } |
| 148 | return len > k.len; |
| 149 | } |
| 150 | |
| 151 | bool Key::operator<(const Key &k) const { |
| 152 | for (idx_t i = 0; i < std::min(len, k.len); i++) { |
| 153 | if (data[i] < k.data[i]) { |
| 154 | return true; |
| 155 | } else if (data[i] > k.data[i]) { |
| 156 | return false; |
| 157 | } |
| 158 | } |
| 159 | return len < k.len; |
| 160 | } |
| 161 | |
| 162 | bool Key::operator>=(const Key &k) const { |
| 163 | for (idx_t i = 0; i < std::min(len, k.len); i++) { |
| 164 | if (data[i] > k.data[i]) { |
| 165 | return true; |
| 166 | } else if (data[i] < k.data[i]) { |
| 167 | return false; |
| 168 | } |
| 169 | } |
| 170 | return len >= k.len; |
| 171 | } |
| 172 | |
| 173 | bool Key::operator==(const Key &k) const { |
| 174 | if (len != k.len) { |
| 175 | return false; |
| 176 | } |
| 177 | for (idx_t i = 0; i < len; i++) { |
| 178 | if (data[i] != k.data[i]) { |
| 179 | return false; |
| 180 | } |
| 181 | } |
| 182 | return true; |
| 183 | } |
| 184 | |