| 1 | #include "duckdb/execution/operator/join/physical_nested_loop_join.hpp" |
| 2 | |
| 3 | #include "duckdb/common/operator/comparison_operators.hpp" |
| 4 | #include "duckdb/common/vector_operations/vector_operations.hpp" |
| 5 | #include "duckdb/execution/expression_executor.hpp" |
| 6 | #include "duckdb/execution/nested_loop_join.hpp" |
| 7 | |
| 8 | using namespace std; |
| 9 | |
| 10 | namespace duckdb { |
| 11 | |
| 12 | class PhysicalNestedLoopJoinState : public PhysicalComparisonJoinState { |
| 13 | public: |
| 14 | PhysicalNestedLoopJoinState(PhysicalOperator *left, PhysicalOperator *right, vector<JoinCondition> &conditions) |
| 15 | : PhysicalComparisonJoinState(left, right, conditions), right_chunk(0), has_null(false), left_tuple(0), |
| 16 | right_tuple(0) { |
| 17 | } |
| 18 | |
| 19 | idx_t right_chunk; |
| 20 | DataChunk left_join_condition; |
| 21 | ChunkCollection right_data; |
| 22 | ChunkCollection right_chunks; |
| 23 | //! Whether or not the RHS of the nested loop join has NULL values |
| 24 | bool has_null; |
| 25 | |
| 26 | idx_t left_tuple; |
| 27 | idx_t right_tuple; |
| 28 | |
| 29 | unique_ptr<bool[]> left_found_match; |
| 30 | }; |
| 31 | |
| 32 | PhysicalNestedLoopJoin::PhysicalNestedLoopJoin(LogicalOperator &op, unique_ptr<PhysicalOperator> left, |
| 33 | unique_ptr<PhysicalOperator> right, vector<JoinCondition> cond, |
| 34 | JoinType join_type) |
| 35 | : PhysicalComparisonJoin(op, PhysicalOperatorType::NESTED_LOOP_JOIN, move(cond), join_type) { |
| 36 | children.push_back(move(left)); |
| 37 | children.push_back(move(right)); |
| 38 | } |
| 39 | |
| 40 | static bool HasNullValues(DataChunk &chunk) { |
| 41 | for (idx_t col_idx = 0; col_idx < chunk.column_count(); col_idx++) { |
| 42 | VectorData vdata; |
| 43 | chunk.data[col_idx].Orrify(chunk.size(), vdata); |
| 44 | |
| 45 | if (vdata.nullmask->none()) { |
| 46 | continue; |
| 47 | } |
| 48 | for (idx_t i = 0; i < chunk.size(); i++) { |
| 49 | auto idx = vdata.sel->get_index(i); |
| 50 | if ((*vdata.nullmask)[idx]) { |
| 51 | return true; |
| 52 | } |
| 53 | } |
| 54 | } |
| 55 | return false; |
| 56 | } |
| 57 | |
| 58 | template <bool MATCH> |
| 59 | void PhysicalJoin::ConstructSemiOrAntiJoinResult(DataChunk &left, DataChunk &result, bool found_match[]) { |
| 60 | assert(left.column_count() == result.column_count()); |
| 61 | // create the selection vector from the matches that were found |
| 62 | idx_t result_count = 0; |
| 63 | SelectionVector sel(STANDARD_VECTOR_SIZE); |
| 64 | for (idx_t i = 0; i < left.size(); i++) { |
| 65 | if (found_match[i] == MATCH) { |
| 66 | sel.set_index(result_count++, i); |
| 67 | } |
| 68 | } |
| 69 | // construct the final result |
| 70 | if (result_count > 0) { |
| 71 | // we only return the columns on the left side |
| 72 | // project them using the result selection vector |
| 73 | // reference the columns of the left side from the result |
| 74 | result.Slice(left, sel, result_count); |
| 75 | } else { |
| 76 | result.SetCardinality(0); |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | void PhysicalJoin::ConstructMarkJoinResult(DataChunk &join_keys, DataChunk &left, DataChunk &result, bool found_match[], |
| 81 | bool has_null) { |
| 82 | // for the initial set of columns we just reference the left side |
| 83 | result.SetCardinality(left); |
| 84 | for (idx_t i = 0; i < left.column_count(); i++) { |
| 85 | result.data[i].Reference(left.data[i]); |
| 86 | } |
| 87 | auto &mark_vector = result.data.back(); |
| 88 | mark_vector.vector_type = VectorType::FLAT_VECTOR; |
| 89 | // first we set the NULL values from the join keys |
| 90 | // if there is any NULL in the keys, the result is NULL |
| 91 | auto bool_result = FlatVector::GetData<bool>(mark_vector); |
| 92 | auto &nullmask = FlatVector::Nullmask(mark_vector); |
| 93 | for (idx_t col_idx = 0; col_idx < join_keys.column_count(); col_idx++) { |
| 94 | VectorData jdata; |
| 95 | join_keys.data[col_idx].Orrify(join_keys.size(), jdata); |
| 96 | if (jdata.nullmask->any()) { |
| 97 | for (idx_t i = 0; i < join_keys.size(); i++) { |
| 98 | auto jidx = jdata.sel->get_index(i); |
| 99 | nullmask[i] = (*jdata.nullmask)[jidx]; |
| 100 | } |
| 101 | } |
| 102 | } |
| 103 | // now set the remaining entries to either true or false based on whether a match was found |
| 104 | if (found_match) { |
| 105 | for (idx_t i = 0; i < left.size(); i++) { |
| 106 | bool_result[i] = found_match[i]; |
| 107 | } |
| 108 | } else { |
| 109 | memset(bool_result, 0, sizeof(bool) * left.size()); |
| 110 | } |
| 111 | // if the right side contains NULL values, the result of any FALSE becomes NULL |
| 112 | if (has_null) { |
| 113 | for (idx_t i = 0; i < left.size(); i++) { |
| 114 | if (!bool_result[i]) { |
| 115 | nullmask[i] = true; |
| 116 | } |
| 117 | } |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | void PhysicalNestedLoopJoin::GetChunkInternal(ClientContext &context, DataChunk &chunk, PhysicalOperatorState *state_) { |
| 122 | auto state = reinterpret_cast<PhysicalNestedLoopJoinState *>(state_); |
| 123 | |
| 124 | // first we fully materialize the right child, if we haven't done that yet |
| 125 | if (state->right_chunks.column_count() == 0) { |
| 126 | vector<TypeId> condition_types; |
| 127 | for (auto &cond : conditions) { |
| 128 | assert(cond.left->return_type == cond.right->return_type); |
| 129 | condition_types.push_back(cond.left->return_type); |
| 130 | } |
| 131 | |
| 132 | auto right_state = children[1]->GetOperatorState(); |
| 133 | auto types = children[1]->GetTypes(); |
| 134 | |
| 135 | DataChunk new_chunk, right_condition; |
| 136 | new_chunk.Initialize(types); |
| 137 | right_condition.Initialize(condition_types); |
| 138 | do { |
| 139 | children[1]->GetChunk(context, new_chunk, right_state.get()); |
| 140 | if (new_chunk.size() == 0) { |
| 141 | break; |
| 142 | } |
| 143 | // resolve the join expression of the right side |
| 144 | state->rhs_executor.Execute(new_chunk, right_condition); |
| 145 | |
| 146 | state->right_data.Append(new_chunk); |
| 147 | state->right_chunks.Append(right_condition); |
| 148 | } while (new_chunk.size() > 0); |
| 149 | |
| 150 | if (state->right_chunks.count == 0) { |
| 151 | if ((type == JoinType::INNER || type == JoinType::SEMI)) { |
| 152 | // empty RHS with INNER or SEMI join means empty result set |
| 153 | return; |
| 154 | } |
| 155 | } else { |
| 156 | // for the MARK join, we check if there are null values in any of the right chunks |
| 157 | if (type == JoinType::MARK) { |
| 158 | for (idx_t i = 0; i < state->right_chunks.chunks.size(); i++) { |
| 159 | if (HasNullValues(*state->right_chunks.chunks[i])) { |
| 160 | state->has_null = true; |
| 161 | } |
| 162 | } |
| 163 | } |
| 164 | // initialize the chunks for the join conditions |
| 165 | state->left_join_condition.Initialize(condition_types); |
| 166 | state->right_chunk = state->right_chunks.chunks.size() - 1; |
| 167 | state->right_tuple = state->right_chunks.chunks[state->right_chunk]->size(); |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | if (state->right_chunks.count == 0) { |
| 172 | // empty join, switch on type |
| 173 | if (type == JoinType::MARK) { |
| 174 | // pull a chunk from the LHS |
| 175 | children[0]->GetChunk(context, state->child_chunk, state->child_state.get()); |
| 176 | if (state->child_chunk.size() == 0) { |
| 177 | return; |
| 178 | } |
| 179 | // RHS empty: set FOUND MATCh vector to false |
| 180 | chunk.Reference(state->child_chunk); |
| 181 | auto &mark_vector = chunk.data.back(); |
| 182 | mark_vector.vector_type = VectorType::CONSTANT_VECTOR; |
| 183 | mark_vector.SetValue(0, Value::BOOLEAN(false)); |
| 184 | } else if (type == JoinType::ANTI) { |
| 185 | // ANTI join, just pull chunk from RHS |
| 186 | children[0]->GetChunk(context, chunk, state->child_state.get()); |
| 187 | } else if (type == JoinType::LEFT) { |
| 188 | children[0]->GetChunk(context, state->child_chunk, state->child_state.get()); |
| 189 | if (state->child_chunk.size() == 0) { |
| 190 | return; |
| 191 | } |
| 192 | chunk.Reference(state->child_chunk); |
| 193 | for (idx_t idx = state->child_chunk.column_count(); idx < chunk.column_count(); idx++) { |
| 194 | chunk.data[idx].vector_type = VectorType::CONSTANT_VECTOR; |
| 195 | ConstantVector::SetNull(chunk.data[idx], true); |
| 196 | } |
| 197 | } else { |
| 198 | throw Exception("Unhandled type for empty NL join" ); |
| 199 | } |
| 200 | return; |
| 201 | } |
| 202 | if ((type == JoinType::INNER || type == JoinType::LEFT) && |
| 203 | state->right_chunk >= state->right_chunks.chunks.size()) { |
| 204 | return; |
| 205 | } |
| 206 | // now that we have fully materialized the right child |
| 207 | // we have to perform the nested loop join |
| 208 | do { |
| 209 | // first check if we have to move to the next child on the right isde |
| 210 | assert(state->right_chunk < state->right_chunks.chunks.size()); |
| 211 | if (state->right_tuple >= state->right_chunks.chunks[state->right_chunk]->size()) { |
| 212 | // we exhausted the chunk on the right |
| 213 | state->right_chunk++; |
| 214 | if (state->right_chunk >= state->right_chunks.chunks.size()) { |
| 215 | // we exhausted all right chunks! |
| 216 | // move to the next left chunk |
| 217 | do { |
| 218 | if (type == JoinType::LEFT) { |
| 219 | // left join: before we move to the next chunk, see if we need to output any vectors that didn't |
| 220 | // have a match found |
| 221 | if (state->left_found_match) { |
| 222 | SelectionVector remaining_sel(STANDARD_VECTOR_SIZE); |
| 223 | idx_t remaining_count = 0; |
| 224 | for (idx_t i = 0; i < state->child_chunk.size(); i++) { |
| 225 | if (!state->left_found_match[i]) { |
| 226 | remaining_sel.set_index(remaining_count++, i); |
| 227 | } |
| 228 | } |
| 229 | state->left_found_match.reset(); |
| 230 | chunk.Slice(state->child_chunk, remaining_sel, remaining_count); |
| 231 | for (idx_t idx = state->child_chunk.column_count(); idx < chunk.column_count(); idx++) { |
| 232 | chunk.data[idx].vector_type = VectorType::CONSTANT_VECTOR; |
| 233 | ConstantVector::SetNull(chunk.data[idx], true); |
| 234 | } |
| 235 | } else { |
| 236 | state->left_found_match = unique_ptr<bool[]>(new bool[STANDARD_VECTOR_SIZE]); |
| 237 | memset(state->left_found_match.get(), 0, sizeof(bool) * STANDARD_VECTOR_SIZE); |
| 238 | } |
| 239 | } |
| 240 | children[0]->GetChunk(context, state->child_chunk, state->child_state.get()); |
| 241 | if (state->child_chunk.size() == 0) { |
| 242 | return; |
| 243 | } |
| 244 | |
| 245 | // resolve the left join condition for the current chunk |
| 246 | state->lhs_executor.Execute(state->child_chunk, state->left_join_condition); |
| 247 | } while (state->left_join_condition.size() == 0); |
| 248 | |
| 249 | state->right_chunk = 0; |
| 250 | } |
| 251 | // move to the start of this chunk |
| 252 | state->left_tuple = 0; |
| 253 | state->right_tuple = 0; |
| 254 | } |
| 255 | |
| 256 | switch (type) { |
| 257 | case JoinType::SEMI: |
| 258 | case JoinType::ANTI: |
| 259 | case JoinType::MARK: { |
| 260 | // MARK, SEMI and ANTI joins are handled separately because they scan the whole RHS in one go |
| 261 | bool found_match[STANDARD_VECTOR_SIZE] = {false}; |
| 262 | NestedLoopJoinMark::Perform(state->left_join_condition, state->right_chunks, found_match, conditions); |
| 263 | if (type == JoinType::MARK) { |
| 264 | // now construct the mark join result from the found matches |
| 265 | PhysicalJoin::ConstructMarkJoinResult(state->left_join_condition, state->child_chunk, chunk, |
| 266 | found_match, state->has_null); |
| 267 | } else if (type == JoinType::SEMI) { |
| 268 | // construct the semi join result from the found matches |
| 269 | PhysicalJoin::ConstructSemiOrAntiJoinResult<true>(state->child_chunk, chunk, found_match); |
| 270 | } else if (type == JoinType::ANTI) { |
| 271 | PhysicalJoin::ConstructSemiOrAntiJoinResult<false>(state->child_chunk, chunk, found_match); |
| 272 | } |
| 273 | // move to the next LHS chunk in the next iteration |
| 274 | state->right_tuple = state->right_chunks.chunks[state->right_chunk]->size(); |
| 275 | state->right_chunk = state->right_chunks.chunks.size() - 1; |
| 276 | if (chunk.size() > 0) { |
| 277 | return; |
| 278 | } else { |
| 279 | continue; |
| 280 | } |
| 281 | } |
| 282 | default: |
| 283 | break; |
| 284 | } |
| 285 | |
| 286 | auto &left_chunk = state->child_chunk; |
| 287 | auto &right_chunk = *state->right_chunks.chunks[state->right_chunk]; |
| 288 | auto &right_data = *state->right_data.chunks[state->right_chunk]; |
| 289 | |
| 290 | // sanity check |
| 291 | left_chunk.Verify(); |
| 292 | right_chunk.Verify(); |
| 293 | right_data.Verify(); |
| 294 | |
| 295 | // now perform the join |
| 296 | switch (type) { |
| 297 | case JoinType::LEFT: |
| 298 | case JoinType::INNER: { |
| 299 | SelectionVector lvector(STANDARD_VECTOR_SIZE), rvector(STANDARD_VECTOR_SIZE); |
| 300 | idx_t match_count = |
| 301 | NestedLoopJoinInner::Perform(state->left_tuple, state->right_tuple, state->left_join_condition, |
| 302 | right_chunk, lvector, rvector, conditions); |
| 303 | // we have finished resolving the join conditions |
| 304 | if (match_count == 0) { |
| 305 | // if there are no results, move on |
| 306 | continue; |
| 307 | } |
| 308 | // we have matching tuples! |
| 309 | // construct the result |
| 310 | if (state->left_found_match) { |
| 311 | for (idx_t i = 0; i < match_count; i++) { |
| 312 | state->left_found_match[lvector.get_index(i)] = true; |
| 313 | } |
| 314 | } |
| 315 | chunk.Slice(state->child_chunk, lvector, match_count); |
| 316 | chunk.Slice(right_data, rvector, match_count, state->child_chunk.column_count()); |
| 317 | break; |
| 318 | } |
| 319 | default: |
| 320 | throw NotImplementedException("Unimplemented type for nested loop join!" ); |
| 321 | } |
| 322 | } while (chunk.size() == 0); |
| 323 | } |
| 324 | |
| 325 | unique_ptr<PhysicalOperatorState> PhysicalNestedLoopJoin::GetOperatorState() { |
| 326 | return make_unique<PhysicalNestedLoopJoinState>(children[0].get(), children[1].get(), conditions); |
| 327 | } |
| 328 | |
| 329 | } // namespace duckdb |
| 330 | |