| 1 | #include "duckdb/optimizer/join_order_optimizer.hpp" | 
|---|
| 2 |  | 
|---|
| 3 | #include "duckdb/planner/expression/list.hpp" | 
|---|
| 4 | #include "duckdb/planner/expression_iterator.hpp" | 
|---|
| 5 | #include "duckdb/planner/operator/list.hpp" | 
|---|
| 6 |  | 
|---|
| 7 | using namespace duckdb; | 
|---|
| 8 | using namespace std; | 
|---|
| 9 |  | 
|---|
| 10 | using JoinNode = JoinOrderOptimizer::JoinNode; | 
|---|
| 11 |  | 
|---|
| 12 | //! Returns true if A and B are disjoint, false otherwise | 
|---|
| 13 | template <class T> static bool Disjoint(unordered_set<T> &a, unordered_set<T> &b) { | 
|---|
| 14 | for (auto &entry : a) { | 
|---|
| 15 | if (b.find(entry) != b.end()) { | 
|---|
| 16 | return false; | 
|---|
| 17 | } | 
|---|
| 18 | } | 
|---|
| 19 | return true; | 
|---|
| 20 | } | 
|---|
| 21 |  | 
|---|
| 22 | //! Extract the set of relations referred to inside an expression | 
|---|
| 23 | bool JoinOrderOptimizer::(Expression &expression, unordered_set<idx_t> &bindings) { | 
|---|
| 24 | if (expression.type == ExpressionType::BOUND_COLUMN_REF) { | 
|---|
| 25 | auto &colref = (BoundColumnRefExpression &)expression; | 
|---|
| 26 | assert(colref.depth == 0); | 
|---|
| 27 | assert(colref.binding.table_index != INVALID_INDEX); | 
|---|
| 28 | // map the base table index to the relation index used by the JoinOrderOptimizer | 
|---|
| 29 | assert(relation_mapping.find(colref.binding.table_index) != relation_mapping.end()); | 
|---|
| 30 | bindings.insert(relation_mapping[colref.binding.table_index]); | 
|---|
| 31 | } | 
|---|
| 32 | if (expression.type == ExpressionType::BOUND_REF) { | 
|---|
| 33 | // bound expression | 
|---|
| 34 | bindings.clear(); | 
|---|
| 35 | return false; | 
|---|
| 36 | } | 
|---|
| 37 | assert(expression.type != ExpressionType::SUBQUERY); | 
|---|
| 38 | bool can_reorder = true; | 
|---|
| 39 | ExpressionIterator::EnumerateChildren(expression, [&](Expression &expr) { | 
|---|
| 40 | if (!ExtractBindings(expr, bindings)) { | 
|---|
| 41 | can_reorder = false; | 
|---|
| 42 | return; | 
|---|
| 43 | } | 
|---|
| 44 | }); | 
|---|
| 45 | return can_reorder; | 
|---|
| 46 | } | 
|---|
| 47 |  | 
|---|
| 48 | static unique_ptr<LogicalOperator> PushFilter(unique_ptr<LogicalOperator> node, unique_ptr<Expression> expr) { | 
|---|
| 49 | // push an expression into a filter | 
|---|
| 50 | // first check if we have any filter to push it into | 
|---|
| 51 | if (node->type != LogicalOperatorType::FILTER) { | 
|---|
| 52 | // we don't, we need to create one | 
|---|
| 53 | auto filter = make_unique<LogicalFilter>(); | 
|---|
| 54 | filter->children.push_back(move(node)); | 
|---|
| 55 | node = move(filter); | 
|---|
| 56 | } | 
|---|
| 57 | // push the filter into the LogicalFilter | 
|---|
| 58 | assert(node->type == LogicalOperatorType::FILTER); | 
|---|
| 59 | auto filter = (LogicalFilter *)node.get(); | 
|---|
| 60 | filter->expressions.push_back(move(expr)); | 
|---|
| 61 | return node; | 
|---|
| 62 | } | 
|---|
| 63 |  | 
|---|
| 64 | bool JoinOrderOptimizer::(LogicalOperator &input_op, vector<LogicalOperator *> &filter_operators, | 
|---|
| 65 | LogicalOperator *parent) { | 
|---|
| 66 | LogicalOperator *op = &input_op; | 
|---|
| 67 | while (op->children.size() == 1 && | 
|---|
| 68 | (op->type != LogicalOperatorType::PROJECTION && op->type != LogicalOperatorType::EXPRESSION_GET)) { | 
|---|
| 69 | if (op->type == LogicalOperatorType::FILTER) { | 
|---|
| 70 | // extract join conditions from filter | 
|---|
| 71 | filter_operators.push_back(op); | 
|---|
| 72 | } | 
|---|
| 73 | if (op->type == LogicalOperatorType::AGGREGATE_AND_GROUP_BY || op->type == LogicalOperatorType::WINDOW) { | 
|---|
| 74 | // don't push filters through projection or aggregate and group by | 
|---|
| 75 | JoinOrderOptimizer optimizer; | 
|---|
| 76 | op->children[0] = optimizer.Optimize(move(op->children[0])); | 
|---|
| 77 | return false; | 
|---|
| 78 | } | 
|---|
| 79 | op = op->children[0].get(); | 
|---|
| 80 | } | 
|---|
| 81 | bool non_reorderable_operation = false; | 
|---|
| 82 | if (op->type == LogicalOperatorType::UNION || op->type == LogicalOperatorType::EXCEPT || | 
|---|
| 83 | op->type == LogicalOperatorType::INTERSECT || op->type == LogicalOperatorType::DELIM_JOIN || | 
|---|
| 84 | op->type == LogicalOperatorType::ANY_JOIN) { | 
|---|
| 85 | // set operation, optimize separately in children | 
|---|
| 86 | non_reorderable_operation = true; | 
|---|
| 87 | } | 
|---|
| 88 |  | 
|---|
| 89 | if (op->type == LogicalOperatorType::COMPARISON_JOIN) { | 
|---|
| 90 | LogicalJoin *join = (LogicalJoin *)op; | 
|---|
| 91 | if (join->join_type == JoinType::INNER) { | 
|---|
| 92 | // extract join conditions from inner join | 
|---|
| 93 | filter_operators.push_back(op); | 
|---|
| 94 | } else { | 
|---|
| 95 | // non-inner join, not reordarable yet | 
|---|
| 96 | non_reorderable_operation = true; | 
|---|
| 97 | } | 
|---|
| 98 | } | 
|---|
| 99 | if (non_reorderable_operation) { | 
|---|
| 100 | // we encountered a non-reordable operation (setop or non-inner join) | 
|---|
| 101 | // we do not reorder non-inner joins yet, however we do want to expand the potential join graph around them | 
|---|
| 102 | // non-inner joins are also tricky because we can't freely make conditions through them | 
|---|
| 103 | // e.g. suppose we have (left LEFT OUTER JOIN right WHERE right IS NOT NULL), the join can generate | 
|---|
| 104 | // new NULL values in the right side, so pushing this condition through the join leads to incorrect results | 
|---|
| 105 | // for this reason, we just start a new JoinOptimizer pass in each of the children of the join | 
|---|
| 106 | for (idx_t i = 0; i < op->children.size(); i++) { | 
|---|
| 107 | JoinOrderOptimizer optimizer; | 
|---|
| 108 | op->children[i] = optimizer.Optimize(move(op->children[i])); | 
|---|
| 109 | } | 
|---|
| 110 | // after this we want to treat this node as one  "end node" (like e.g. a base relation) | 
|---|
| 111 | // however the join refers to multiple base relations | 
|---|
| 112 | // enumerate all base relations obtained from this join and add them to the relation mapping | 
|---|
| 113 | // also, we have to resolve the join conditions for the joins here | 
|---|
| 114 | // get the left and right bindings | 
|---|
| 115 | unordered_set<idx_t> bindings; | 
|---|
| 116 | LogicalJoin::GetTableReferences(*op, bindings); | 
|---|
| 117 | // now create the relation that refers to all these bindings | 
|---|
| 118 | auto relation = make_unique<SingleJoinRelation>(&input_op, parent); | 
|---|
| 119 | for (idx_t it : bindings) { | 
|---|
| 120 | relation_mapping[it] = relations.size(); | 
|---|
| 121 | } | 
|---|
| 122 | relations.push_back(move(relation)); | 
|---|
| 123 | return true; | 
|---|
| 124 | } | 
|---|
| 125 | if (op->type == LogicalOperatorType::COMPARISON_JOIN || op->type == LogicalOperatorType::CROSS_PRODUCT) { | 
|---|
| 126 | // inner join or cross product | 
|---|
| 127 | bool can_reorder_left = ExtractJoinRelations(*op->children[0], filter_operators, op); | 
|---|
| 128 | bool can_reorder_right = ExtractJoinRelations(*op->children[1], filter_operators, op); | 
|---|
| 129 | return can_reorder_left && can_reorder_right; | 
|---|
| 130 | } else if (op->type == LogicalOperatorType::GET) { | 
|---|
| 131 | // base table scan, add to set of relations | 
|---|
| 132 | auto get = (LogicalGet *)op; | 
|---|
| 133 | auto relation = make_unique<SingleJoinRelation>(&input_op, parent); | 
|---|
| 134 | relation_mapping[get->table_index] = relations.size(); | 
|---|
| 135 | relations.push_back(move(relation)); | 
|---|
| 136 | return true; | 
|---|
| 137 | } else if (op->type == LogicalOperatorType::EXPRESSION_GET) { | 
|---|
| 138 | // base table scan, add to set of relations | 
|---|
| 139 | auto get = (LogicalExpressionGet *)op; | 
|---|
| 140 | auto relation = make_unique<SingleJoinRelation>(&input_op, parent); | 
|---|
| 141 | relation_mapping[get->table_index] = relations.size(); | 
|---|
| 142 | relations.push_back(move(relation)); | 
|---|
| 143 | return true; | 
|---|
| 144 | } else if (op->type == LogicalOperatorType::TABLE_FUNCTION) { | 
|---|
| 145 | // table function call, add to set of relations | 
|---|
| 146 | auto table_function = (LogicalTableFunction *)op; | 
|---|
| 147 | auto relation = make_unique<SingleJoinRelation>(&input_op, parent); | 
|---|
| 148 | relation_mapping[table_function->table_index] = relations.size(); | 
|---|
| 149 | relations.push_back(move(relation)); | 
|---|
| 150 | return true; | 
|---|
| 151 | } else if (op->type == LogicalOperatorType::PROJECTION) { | 
|---|
| 152 | auto proj = (LogicalProjection *)op; | 
|---|
| 153 | // we run the join order optimizer witin the subquery as well | 
|---|
| 154 | JoinOrderOptimizer optimizer; | 
|---|
| 155 | op->children[0] = optimizer.Optimize(move(op->children[0])); | 
|---|
| 156 | // projection, add to the set of relations | 
|---|
| 157 | auto relation = make_unique<SingleJoinRelation>(&input_op, parent); | 
|---|
| 158 | relation_mapping[proj->table_index] = relations.size(); | 
|---|
| 159 | relations.push_back(move(relation)); | 
|---|
| 160 | return true; | 
|---|
| 161 | } | 
|---|
| 162 | return false; | 
|---|
| 163 | } | 
|---|
| 164 |  | 
|---|
| 165 | //! Update the exclusion set with all entries in the subgraph | 
|---|
| 166 | static void UpdateExclusionSet(JoinRelationSet *node, unordered_set<idx_t> &exclusion_set) { | 
|---|
| 167 | for (idx_t i = 0; i < node->count; i++) { | 
|---|
| 168 | exclusion_set.insert(node->relations[i]); | 
|---|
| 169 | } | 
|---|
| 170 | } | 
|---|
| 171 |  | 
|---|
| 172 | //! Create a new JoinTree node by joining together two previous JoinTree nodes | 
|---|
| 173 | static unique_ptr<JoinNode> CreateJoinTree(JoinRelationSet *set, NeighborInfo *info, JoinNode *left, JoinNode *right) { | 
|---|
| 174 | // for the hash join we want the right side (build side) to have the smallest cardinality | 
|---|
| 175 | // also just a heuristic but for now... | 
|---|
| 176 | // FIXME: we should probably actually benchmark that as well | 
|---|
| 177 | // FIXME: should consider different join algorithms, should we pick a join algorithm here as well? (probably) | 
|---|
| 178 | if (left->cardinality < right->cardinality) { | 
|---|
| 179 | return CreateJoinTree(set, info, right, left); | 
|---|
| 180 | } | 
|---|
| 181 | // the expected cardinality is the max of the child cardinalities | 
|---|
| 182 | // FIXME: we should obviously use better cardinality estimation here | 
|---|
| 183 | // but for now we just assume foreign key joins only | 
|---|
| 184 | idx_t expected_cardinality; | 
|---|
| 185 | if (info->filters.size() == 0) { | 
|---|
| 186 | // cross product | 
|---|
| 187 | expected_cardinality = left->cardinality * right->cardinality; | 
|---|
| 188 | } else { | 
|---|
| 189 | // normal join, expect foreign key join | 
|---|
| 190 | expected_cardinality = std::max(left->cardinality, right->cardinality); | 
|---|
| 191 | } | 
|---|
| 192 | // cost is expected_cardinality plus the cost of the previous plans | 
|---|
| 193 | idx_t cost = expected_cardinality; | 
|---|
| 194 | return make_unique<JoinNode>(set, info, left, right, expected_cardinality, cost); | 
|---|
| 195 | } | 
|---|
| 196 |  | 
|---|
| 197 | JoinNode *JoinOrderOptimizer::EmitPair(JoinRelationSet *left, JoinRelationSet *right, NeighborInfo *info) { | 
|---|
| 198 | // get the left and right join plans | 
|---|
| 199 | auto &left_plan = plans[left]; | 
|---|
| 200 | auto &right_plan = plans[right]; | 
|---|
| 201 | auto new_set = set_manager.Union(left, right); | 
|---|
| 202 | // create the join tree based on combining the two plans | 
|---|
| 203 | auto new_plan = CreateJoinTree(new_set, info, left_plan.get(), right_plan.get()); | 
|---|
| 204 | // check if this plan is the optimal plan we found for this set of relations | 
|---|
| 205 | auto entry = plans.find(new_set); | 
|---|
| 206 | if (entry == plans.end() || new_plan->cost < entry->second->cost) { | 
|---|
| 207 | // the plan is the optimal plan, move it into the dynamic programming tree | 
|---|
| 208 | auto result = new_plan.get(); | 
|---|
| 209 | plans[new_set] = move(new_plan); | 
|---|
| 210 | return result; | 
|---|
| 211 | } | 
|---|
| 212 | return entry->second.get(); | 
|---|
| 213 | } | 
|---|
| 214 |  | 
|---|
| 215 | bool JoinOrderOptimizer::TryEmitPair(JoinRelationSet *left, JoinRelationSet *right, NeighborInfo *info) { | 
|---|
| 216 | pairs++; | 
|---|
| 217 | if (pairs >= 2000) { | 
|---|
| 218 | // when the amount of pairs gets too large we exit the dynamic programming and resort to a greedy algorithm | 
|---|
| 219 | // FIXME: simple heuristic currently | 
|---|
| 220 | // at 10K pairs stop searching exactly and switch to heuristic | 
|---|
| 221 | return false; | 
|---|
| 222 | } | 
|---|
| 223 | EmitPair(left, right, info); | 
|---|
| 224 | return true; | 
|---|
| 225 | } | 
|---|
| 226 |  | 
|---|
| 227 | bool JoinOrderOptimizer::EmitCSG(JoinRelationSet *node) { | 
|---|
| 228 | // create the exclusion set as everything inside the subgraph AND anything with members BELOW it | 
|---|
| 229 | unordered_set<idx_t> exclusion_set; | 
|---|
| 230 | for (idx_t i = 0; i < node->relations[0]; i++) { | 
|---|
| 231 | exclusion_set.insert(i); | 
|---|
| 232 | } | 
|---|
| 233 | UpdateExclusionSet(node, exclusion_set); | 
|---|
| 234 | // find the neighbors given this exclusion set | 
|---|
| 235 | auto neighbors = query_graph.GetNeighbors(node, exclusion_set); | 
|---|
| 236 | if (neighbors.size() == 0) { | 
|---|
| 237 | return true; | 
|---|
| 238 | } | 
|---|
| 239 | // we iterate over the neighbors ordered by their first node | 
|---|
| 240 | sort(neighbors.begin(), neighbors.end()); | 
|---|
| 241 | for (auto neighbor : neighbors) { | 
|---|
| 242 | // since the GetNeighbors only returns the smallest element in a list, the entry might not be connected to | 
|---|
| 243 | // (only!) this neighbor,  hence we have to do a connectedness check before we can emit it | 
|---|
| 244 | auto neighbor_relation = set_manager.GetJoinRelation(neighbor); | 
|---|
| 245 | auto connection = query_graph.GetConnection(node, neighbor_relation); | 
|---|
| 246 | if (connection) { | 
|---|
| 247 | if (!TryEmitPair(node, neighbor_relation, connection)) { | 
|---|
| 248 | return false; | 
|---|
| 249 | } | 
|---|
| 250 | } | 
|---|
| 251 | if (!EnumerateCmpRecursive(node, neighbor_relation, exclusion_set)) { | 
|---|
| 252 | return false; | 
|---|
| 253 | } | 
|---|
| 254 | } | 
|---|
| 255 | return true; | 
|---|
| 256 | } | 
|---|
| 257 |  | 
|---|
| 258 | bool JoinOrderOptimizer::EnumerateCmpRecursive(JoinRelationSet *left, JoinRelationSet *right, | 
|---|
| 259 | unordered_set<idx_t> exclusion_set) { | 
|---|
| 260 | // get the neighbors of the second relation under the exclusion set | 
|---|
| 261 | auto neighbors = query_graph.GetNeighbors(right, exclusion_set); | 
|---|
| 262 | if (neighbors.size() == 0) { | 
|---|
| 263 | return true; | 
|---|
| 264 | } | 
|---|
| 265 | vector<JoinRelationSet *> union_sets; | 
|---|
| 266 | union_sets.resize(neighbors.size()); | 
|---|
| 267 | for (idx_t i = 0; i < neighbors.size(); i++) { | 
|---|
| 268 | auto neighbor = set_manager.GetJoinRelation(neighbors[i]); | 
|---|
| 269 | // emit the combinations of this node and its neighbors | 
|---|
| 270 | auto combined_set = set_manager.Union(right, neighbor); | 
|---|
| 271 | if (plans.find(combined_set) != plans.end()) { | 
|---|
| 272 | auto connection = query_graph.GetConnection(left, combined_set); | 
|---|
| 273 | if (connection) { | 
|---|
| 274 | if (!TryEmitPair(left, combined_set, connection)) { | 
|---|
| 275 | return false; | 
|---|
| 276 | } | 
|---|
| 277 | } | 
|---|
| 278 | } | 
|---|
| 279 | union_sets[i] = combined_set; | 
|---|
| 280 | } | 
|---|
| 281 | // recursively enumerate the sets | 
|---|
| 282 | for (idx_t i = 0; i < neighbors.size(); i++) { | 
|---|
| 283 | // updated the set of excluded entries with this neighbor | 
|---|
| 284 | unordered_set<idx_t> new_exclusion_set = exclusion_set; | 
|---|
| 285 | new_exclusion_set.insert(neighbors[i]); | 
|---|
| 286 | if (!EnumerateCmpRecursive(left, union_sets[i], new_exclusion_set)) { | 
|---|
| 287 | return false; | 
|---|
| 288 | } | 
|---|
| 289 | } | 
|---|
| 290 | return true; | 
|---|
| 291 | } | 
|---|
| 292 |  | 
|---|
| 293 | bool JoinOrderOptimizer::EnumerateCSGRecursive(JoinRelationSet *node, unordered_set<idx_t> &exclusion_set) { | 
|---|
| 294 | // find neighbors of S under the exlusion set | 
|---|
| 295 | auto neighbors = query_graph.GetNeighbors(node, exclusion_set); | 
|---|
| 296 | if (neighbors.size() == 0) { | 
|---|
| 297 | return true; | 
|---|
| 298 | } | 
|---|
| 299 | // now first emit the connected subgraphs of the neighbors | 
|---|
| 300 | vector<JoinRelationSet *> union_sets; | 
|---|
| 301 | union_sets.resize(neighbors.size()); | 
|---|
| 302 | for (idx_t i = 0; i < neighbors.size(); i++) { | 
|---|
| 303 | auto neighbor = set_manager.GetJoinRelation(neighbors[i]); | 
|---|
| 304 | // emit the combinations of this node and its neighbors | 
|---|
| 305 | auto new_set = set_manager.Union(node, neighbor); | 
|---|
| 306 | if (plans.find(new_set) != plans.end()) { | 
|---|
| 307 | if (!EmitCSG(new_set)) { | 
|---|
| 308 | return false; | 
|---|
| 309 | } | 
|---|
| 310 | } | 
|---|
| 311 | union_sets[i] = new_set; | 
|---|
| 312 | } | 
|---|
| 313 | // recursively enumerate the sets | 
|---|
| 314 | for (idx_t i = 0; i < neighbors.size(); i++) { | 
|---|
| 315 | // updated the set of excluded entries with this neighbor | 
|---|
| 316 | unordered_set<idx_t> new_exclusion_set = exclusion_set; | 
|---|
| 317 | new_exclusion_set.insert(neighbors[i]); | 
|---|
| 318 | if (!EnumerateCSGRecursive(union_sets[i], new_exclusion_set)) { | 
|---|
| 319 | return false; | 
|---|
| 320 | } | 
|---|
| 321 | } | 
|---|
| 322 | return true; | 
|---|
| 323 | } | 
|---|
| 324 |  | 
|---|
| 325 | bool JoinOrderOptimizer::SolveJoinOrderExactly() { | 
|---|
| 326 | // now we perform the actual dynamic programming to compute the final result | 
|---|
| 327 | // we enumerate over all the possible pairs in the neighborhood | 
|---|
| 328 | for (idx_t i = relations.size(); i > 0; i--) { | 
|---|
| 329 | // for every node in the set, we consider it as the start node once | 
|---|
| 330 | auto start_node = set_manager.GetJoinRelation(i - 1); | 
|---|
| 331 | // emit the start node | 
|---|
| 332 | if (!EmitCSG(start_node)) { | 
|---|
| 333 | return false; | 
|---|
| 334 | } | 
|---|
| 335 | // initialize the set of exclusion_set as all the nodes with a number below this | 
|---|
| 336 | unordered_set<idx_t> exclusion_set; | 
|---|
| 337 | for (idx_t j = 0; j < i - 1; j++) { | 
|---|
| 338 | exclusion_set.insert(j); | 
|---|
| 339 | } | 
|---|
| 340 | // then we recursively search for neighbors that do not belong to the banned entries | 
|---|
| 341 | if (!EnumerateCSGRecursive(start_node, exclusion_set)) { | 
|---|
| 342 | return false; | 
|---|
| 343 | } | 
|---|
| 344 | } | 
|---|
| 345 | return true; | 
|---|
| 346 | } | 
|---|
| 347 |  | 
|---|
| 348 | void JoinOrderOptimizer::SolveJoinOrderApproximately() { | 
|---|
| 349 | // at this point, we exited the dynamic programming but did not compute the final join order because it took too | 
|---|
| 350 | // long instead, we use a greedy heuristic to obtain a join ordering now we use Greedy Operator Ordering to | 
|---|
| 351 | // construct the result tree first we start out with all the base relations (the to-be-joined relations) | 
|---|
| 352 | vector<JoinRelationSet *> T; | 
|---|
| 353 | for (idx_t i = 0; i < relations.size(); i++) { | 
|---|
| 354 | T.push_back(set_manager.GetJoinRelation(i)); | 
|---|
| 355 | } | 
|---|
| 356 | while (T.size() > 1) { | 
|---|
| 357 | // now in every step of the algorithm, we greedily pick the join between the to-be-joined relations that has the | 
|---|
| 358 | // smallest cost. This is O(r^2) per step, and every step will reduce the total amount of relations to-be-joined | 
|---|
| 359 | // by 1, so the total cost is O(r^3) in the amount of relations | 
|---|
| 360 | idx_t best_left = 0, best_right = 0; | 
|---|
| 361 | JoinNode *best_connection = nullptr; | 
|---|
| 362 | for (idx_t i = 0; i < T.size(); i++) { | 
|---|
| 363 | auto left = T[i]; | 
|---|
| 364 | for (idx_t j = i + 1; j < T.size(); j++) { | 
|---|
| 365 | auto right = T[j]; | 
|---|
| 366 | // check if we can connect these two relations | 
|---|
| 367 | auto connection = query_graph.GetConnection(left, right); | 
|---|
| 368 | if (connection) { | 
|---|
| 369 | // we can! check the cost of this connection | 
|---|
| 370 | auto node = EmitPair(left, right, connection); | 
|---|
| 371 | if (!best_connection || node->cost < best_connection->cost) { | 
|---|
| 372 | // best pair found so far | 
|---|
| 373 | best_connection = node; | 
|---|
| 374 | best_left = i; | 
|---|
| 375 | best_right = j; | 
|---|
| 376 | } | 
|---|
| 377 | } | 
|---|
| 378 | } | 
|---|
| 379 | } | 
|---|
| 380 | if (!best_connection) { | 
|---|
| 381 | // could not find a connection, but we were not done with finding a completed plan | 
|---|
| 382 | // we have to add a cross product; we add it between the two smallest relations | 
|---|
| 383 | JoinNode *smallest_plans[2] = {nullptr}; | 
|---|
| 384 | idx_t smallest_index[2]; | 
|---|
| 385 | for (idx_t i = 0; i < T.size(); i++) { | 
|---|
| 386 | // get the plan for this relation | 
|---|
| 387 | auto current_plan = plans[T[i]].get(); | 
|---|
| 388 | // check if the cardinality is smaller than the smallest two found so far | 
|---|
| 389 | for (idx_t j = 0; j < 2; j++) { | 
|---|
| 390 | if (!smallest_plans[j] || smallest_plans[j]->cardinality > current_plan->cardinality) { | 
|---|
| 391 | smallest_plans[j] = current_plan; | 
|---|
| 392 | smallest_index[j] = i; | 
|---|
| 393 | break; | 
|---|
| 394 | } | 
|---|
| 395 | } | 
|---|
| 396 | } | 
|---|
| 397 | assert(smallest_plans[0] && smallest_plans[1]); | 
|---|
| 398 | assert(smallest_index[0] != smallest_index[1]); | 
|---|
| 399 | auto left = smallest_plans[0]->set, right = smallest_plans[1]->set; | 
|---|
| 400 | // create a cross product edge (i.e. edge with empty filter) between these two sets in the query graph | 
|---|
| 401 | query_graph.CreateEdge(left, right, nullptr); | 
|---|
| 402 | // now emit the pair and continue with the algorithm | 
|---|
| 403 | auto connection = query_graph.GetConnection(left, right); | 
|---|
| 404 | assert(connection); | 
|---|
| 405 |  | 
|---|
| 406 | best_connection = EmitPair(left, right, connection); | 
|---|
| 407 | best_left = smallest_index[0]; | 
|---|
| 408 | best_right = smallest_index[1]; | 
|---|
| 409 | // the code below assumes best_right > best_left | 
|---|
| 410 | if (best_left > best_right) { | 
|---|
| 411 | swap(best_left, best_right); | 
|---|
| 412 | } | 
|---|
| 413 | } | 
|---|
| 414 | // now update the to-be-checked pairs | 
|---|
| 415 | // remove left and right, and add the combination | 
|---|
| 416 |  | 
|---|
| 417 | // important to erase the biggest element first | 
|---|
| 418 | // if we erase the smallest element first the index of the biggest element changes | 
|---|
| 419 | assert(best_right > best_left); | 
|---|
| 420 | T.erase(T.begin() + best_right); | 
|---|
| 421 | T.erase(T.begin() + best_left); | 
|---|
| 422 | T.push_back(best_connection->set); | 
|---|
| 423 | } | 
|---|
| 424 | } | 
|---|
| 425 |  | 
|---|
| 426 | void JoinOrderOptimizer::SolveJoinOrder() { | 
|---|
| 427 | // first try to solve the join order exactly | 
|---|
| 428 | if (!SolveJoinOrderExactly()) { | 
|---|
| 429 | // otherwise, if that times out we resort to a greedy algorithm | 
|---|
| 430 | SolveJoinOrderApproximately(); | 
|---|
| 431 | } | 
|---|
| 432 | } | 
|---|
| 433 |  | 
|---|
| 434 | void JoinOrderOptimizer::GenerateCrossProducts() { | 
|---|
| 435 | // generate a set of cross products to combine the currently available plans into a full join plan | 
|---|
| 436 | // we create edges between every relation with a high cost | 
|---|
| 437 | for (idx_t i = 0; i < relations.size(); i++) { | 
|---|
| 438 | auto left = set_manager.GetJoinRelation(i); | 
|---|
| 439 | for (idx_t j = 0; j < relations.size(); j++) { | 
|---|
| 440 | if (i != j) { | 
|---|
| 441 | auto right = set_manager.GetJoinRelation(j); | 
|---|
| 442 | query_graph.CreateEdge(left, right, nullptr); | 
|---|
| 443 | query_graph.CreateEdge(right, left, nullptr); | 
|---|
| 444 | } | 
|---|
| 445 | } | 
|---|
| 446 | } | 
|---|
| 447 | } | 
|---|
| 448 |  | 
|---|
| 449 | static unique_ptr<LogicalOperator> (SingleJoinRelation &rel) { | 
|---|
| 450 | auto &children = rel.parent->children; | 
|---|
| 451 | for (idx_t i = 0; i < children.size(); i++) { | 
|---|
| 452 | if (children[i].get() == rel.op) { | 
|---|
| 453 | // found it! take ownership of it from the parent | 
|---|
| 454 | auto result = move(children[i]); | 
|---|
| 455 | children.erase(children.begin() + i); | 
|---|
| 456 | return result; | 
|---|
| 457 | } | 
|---|
| 458 | } | 
|---|
| 459 | throw Exception( "Could not find relation in parent node (?)"); | 
|---|
| 460 | } | 
|---|
| 461 |  | 
|---|
| 462 | pair<JoinRelationSet *, unique_ptr<LogicalOperator>> | 
|---|
| 463 | JoinOrderOptimizer::GenerateJoins(vector<unique_ptr<LogicalOperator>> &, JoinNode *node) { | 
|---|
| 464 | JoinRelationSet *left_node = nullptr, *right_node = nullptr; | 
|---|
| 465 | JoinRelationSet *result_relation; | 
|---|
| 466 | unique_ptr<LogicalOperator> result_operator; | 
|---|
| 467 | if (node->left && node->right) { | 
|---|
| 468 | // generate the left and right children | 
|---|
| 469 | auto left = GenerateJoins(extracted_relations, node->left); | 
|---|
| 470 | auto right = GenerateJoins(extracted_relations, node->right); | 
|---|
| 471 |  | 
|---|
| 472 | if (node->info->filters.size() == 0) { | 
|---|
| 473 | // no filters, create a cross product | 
|---|
| 474 | auto join = make_unique<LogicalCrossProduct>(); | 
|---|
| 475 | join->children.push_back(move(left.second)); | 
|---|
| 476 | join->children.push_back(move(right.second)); | 
|---|
| 477 | result_operator = move(join); | 
|---|
| 478 | } else { | 
|---|
| 479 | // we have filters, create a join node | 
|---|
| 480 | auto join = make_unique<LogicalComparisonJoin>(JoinType::INNER); | 
|---|
| 481 | join->children.push_back(move(left.second)); | 
|---|
| 482 | join->children.push_back(move(right.second)); | 
|---|
| 483 | // set the join conditions from the join node | 
|---|
| 484 | for (auto &f : node->info->filters) { | 
|---|
| 485 | // extract the filter from the operator it originally belonged to | 
|---|
| 486 | assert(filters[f->filter_index]); | 
|---|
| 487 | auto condition = move(filters[f->filter_index]); | 
|---|
| 488 | // now create the actual join condition | 
|---|
| 489 | assert((JoinRelationSet::IsSubset(left.first, f->left_set) && | 
|---|
| 490 | JoinRelationSet::IsSubset(right.first, f->right_set)) || | 
|---|
| 491 | (JoinRelationSet::IsSubset(left.first, f->right_set) && | 
|---|
| 492 | JoinRelationSet::IsSubset(right.first, f->left_set))); | 
|---|
| 493 | JoinCondition cond; | 
|---|
| 494 | assert(condition->GetExpressionClass() == ExpressionClass::BOUND_COMPARISON); | 
|---|
| 495 | auto &comparison = (BoundComparisonExpression &)*condition; | 
|---|
| 496 | // we need to figure out which side is which by looking at the relations available to us | 
|---|
| 497 | bool invert = JoinRelationSet::IsSubset(left.first, f->left_set) ? false : true; | 
|---|
| 498 | cond.left = !invert ? move(comparison.left) : move(comparison.right); | 
|---|
| 499 | cond.right = !invert ? move(comparison.right) : move(comparison.left); | 
|---|
| 500 | cond.comparison = condition->type; | 
|---|
| 501 | if (invert) { | 
|---|
| 502 | // reverse comparison expression if we reverse the order of the children | 
|---|
| 503 | cond.comparison = FlipComparisionExpression(cond.comparison); | 
|---|
| 504 | } | 
|---|
| 505 | join->conditions.push_back(move(cond)); | 
|---|
| 506 | } | 
|---|
| 507 | assert(join->conditions.size() > 0); | 
|---|
| 508 | result_operator = move(join); | 
|---|
| 509 | } | 
|---|
| 510 | left_node = left.first; | 
|---|
| 511 | right_node = right.first; | 
|---|
| 512 | result_relation = set_manager.Union(left_node, right_node); | 
|---|
| 513 | } else { | 
|---|
| 514 | // base node, get the entry from the list of extracted relations | 
|---|
| 515 | assert(node->set->count == 1); | 
|---|
| 516 | assert(extracted_relations[node->set->relations[0]]); | 
|---|
| 517 | result_relation = node->set; | 
|---|
| 518 | result_operator = move(extracted_relations[node->set->relations[0]]); | 
|---|
| 519 | } | 
|---|
| 520 | // check if we should do a pushdown on this node | 
|---|
| 521 | // basically, any remaining filter that is a subset of the current relation will no longer be used in joins | 
|---|
| 522 | // hence we should push it here | 
|---|
| 523 | for (idx_t i = 0; i < filter_infos.size(); i++) { | 
|---|
| 524 | // check if the filter has already been extracted | 
|---|
| 525 | auto info = filter_infos[i].get(); | 
|---|
| 526 | if (filters[info->filter_index]) { | 
|---|
| 527 | // now check if the filter is a subset of the current relation | 
|---|
| 528 | // note that infos with an empty relation set are a special case and we do not push them down | 
|---|
| 529 | if (info->set->count > 0 && JoinRelationSet::IsSubset(result_relation, info->set)) { | 
|---|
| 530 | auto filter = move(filters[info->filter_index]); | 
|---|
| 531 | // if it is, we can push the filter | 
|---|
| 532 | // we can push it either into a join or as a filter | 
|---|
| 533 | // check if we are in a join or in a base table | 
|---|
| 534 | if (!left_node || !info->left_set) { | 
|---|
| 535 | // base table or non-comparison expression, push it as a filter | 
|---|
| 536 | result_operator = PushFilter(move(result_operator), move(filter)); | 
|---|
| 537 | continue; | 
|---|
| 538 | } | 
|---|
| 539 | // the node below us is a join or cross product and the expression is a comparison | 
|---|
| 540 | // check if the nodes can be split up into left/right | 
|---|
| 541 | bool found_subset = false; | 
|---|
| 542 | bool invert = false; | 
|---|
| 543 | if (JoinRelationSet::IsSubset(left_node, info->left_set) && | 
|---|
| 544 | JoinRelationSet::IsSubset(right_node, info->right_set)) { | 
|---|
| 545 | found_subset = true; | 
|---|
| 546 | } else if (JoinRelationSet::IsSubset(right_node, info->left_set) && | 
|---|
| 547 | JoinRelationSet::IsSubset(left_node, info->right_set)) { | 
|---|
| 548 | invert = true; | 
|---|
| 549 | found_subset = true; | 
|---|
| 550 | } | 
|---|
| 551 | if (!found_subset) { | 
|---|
| 552 | // could not be split up into left/right | 
|---|
| 553 | result_operator = PushFilter(move(result_operator), move(filter)); | 
|---|
| 554 | continue; | 
|---|
| 555 | } | 
|---|
| 556 | // create the join condition | 
|---|
| 557 | JoinCondition cond; | 
|---|
| 558 | assert(filter->GetExpressionClass() == ExpressionClass::BOUND_COMPARISON); | 
|---|
| 559 | auto &comparison = (BoundComparisonExpression &)*filter; | 
|---|
| 560 | // we need to figure out which side is which by looking at the relations available to us | 
|---|
| 561 | cond.left = !invert ? move(comparison.left) : move(comparison.right); | 
|---|
| 562 | cond.right = !invert ? move(comparison.right) : move(comparison.left); | 
|---|
| 563 | cond.comparison = comparison.type; | 
|---|
| 564 | if (invert) { | 
|---|
| 565 | // reverse comparison expression if we reverse the order of the children | 
|---|
| 566 | cond.comparison = FlipComparisionExpression(comparison.type); | 
|---|
| 567 | } | 
|---|
| 568 | // now find the join to push it into | 
|---|
| 569 | auto node = result_operator.get(); | 
|---|
| 570 | if (node->type == LogicalOperatorType::FILTER) { | 
|---|
| 571 | node = node->children[0].get(); | 
|---|
| 572 | } | 
|---|
| 573 | if (node->type == LogicalOperatorType::CROSS_PRODUCT) { | 
|---|
| 574 | // turn into comparison join | 
|---|
| 575 | auto comp_join = make_unique<LogicalComparisonJoin>(JoinType::INNER); | 
|---|
| 576 | comp_join->children.push_back(move(node->children[0])); | 
|---|
| 577 | comp_join->children.push_back(move(node->children[1])); | 
|---|
| 578 | comp_join->conditions.push_back(move(cond)); | 
|---|
| 579 | if (node == result_operator.get()) { | 
|---|
| 580 | result_operator = move(comp_join); | 
|---|
| 581 | } else { | 
|---|
| 582 | assert(result_operator->type == LogicalOperatorType::FILTER); | 
|---|
| 583 | result_operator->children[0] = move(comp_join); | 
|---|
| 584 | } | 
|---|
| 585 | } else { | 
|---|
| 586 | assert(node->type == LogicalOperatorType::COMPARISON_JOIN); | 
|---|
| 587 | auto &comp_join = (LogicalComparisonJoin &)*node; | 
|---|
| 588 | comp_join.conditions.push_back(move(cond)); | 
|---|
| 589 | } | 
|---|
| 590 | } | 
|---|
| 591 | } | 
|---|
| 592 | } | 
|---|
| 593 | return make_pair(result_relation, move(result_operator)); | 
|---|
| 594 | } | 
|---|
| 595 |  | 
|---|
| 596 | unique_ptr<LogicalOperator> JoinOrderOptimizer::RewritePlan(unique_ptr<LogicalOperator> plan, JoinNode *node) { | 
|---|
| 597 | // now we have to rewrite the plan | 
|---|
| 598 | bool root_is_join = plan->children.size() > 1; | 
|---|
| 599 |  | 
|---|
| 600 | // first we will extract all relations from the main plan | 
|---|
| 601 | vector<unique_ptr<LogicalOperator>> ; | 
|---|
| 602 | for (idx_t i = 0; i < relations.size(); i++) { | 
|---|
| 603 | extracted_relations.push_back(ExtractJoinRelation(*relations[i])); | 
|---|
| 604 | } | 
|---|
| 605 | // now we generate the actual joins | 
|---|
| 606 | auto join_tree = GenerateJoins(extracted_relations, node); | 
|---|
| 607 | // perform the final pushdown of remaining filters | 
|---|
| 608 | for (idx_t i = 0; i < filters.size(); i++) { | 
|---|
| 609 | // check if the filter has already been extracted | 
|---|
| 610 | if (filters[i]) { | 
|---|
| 611 | // if not we need to push it | 
|---|
| 612 | join_tree.second = PushFilter(move(join_tree.second), move(filters[i])); | 
|---|
| 613 | } | 
|---|
| 614 | } | 
|---|
| 615 |  | 
|---|
| 616 | // find the first join in the relation to know where to place this node | 
|---|
| 617 | if (root_is_join) { | 
|---|
| 618 | // first node is the join, return it immediately | 
|---|
| 619 | return move(join_tree.second); | 
|---|
| 620 | } | 
|---|
| 621 | assert(plan->children.size() == 1); | 
|---|
| 622 | // have to move up through the relations | 
|---|
| 623 | auto op = plan.get(); | 
|---|
| 624 | auto parent = plan.get(); | 
|---|
| 625 | while (op->type != LogicalOperatorType::CROSS_PRODUCT && op->type != LogicalOperatorType::COMPARISON_JOIN) { | 
|---|
| 626 | assert(op->children.size() == 1); | 
|---|
| 627 | parent = op; | 
|---|
| 628 | op = op->children[0].get(); | 
|---|
| 629 | } | 
|---|
| 630 | // have to replace at this node | 
|---|
| 631 | parent->children[0] = move(join_tree.second); | 
|---|
| 632 | return plan; | 
|---|
| 633 | } | 
|---|
| 634 |  | 
|---|
| 635 | // the join ordering is pretty much a straight implementation of the paper "Dynamic Programming Strikes Back" by Guido | 
|---|
| 636 | // Moerkotte and Thomas Neumannn, see that paper for additional info/documentation bonus slides: | 
|---|
| 637 | // https://db.in.tum.de/teaching/ws1415/queryopt/chapter3.pdf?lang=de | 
|---|
| 638 | // FIXME: incorporate cardinality estimation into the plans, possibly by pushing samples? | 
|---|
| 639 | unique_ptr<LogicalOperator> JoinOrderOptimizer::Optimize(unique_ptr<LogicalOperator> plan) { | 
|---|
| 640 | assert(filters.size() == 0 && relations.size() == 0); // assert that the JoinOrderOptimizer has not been used before | 
|---|
| 641 | LogicalOperator *op = plan.get(); | 
|---|
| 642 | // now we optimize the current plan | 
|---|
| 643 | // we skip past until we find the first projection, we do this because the HAVING clause inserts a Filter AFTER the | 
|---|
| 644 | // group by and this filter cannot be reordered | 
|---|
| 645 | // extract a list of all relations that have to be joined together | 
|---|
| 646 | // and a list of all conditions that is applied to them | 
|---|
| 647 | vector<LogicalOperator *> filter_operators; | 
|---|
| 648 | if (!ExtractJoinRelations(*op, filter_operators)) { | 
|---|
| 649 | // do not support reordering this type of plan | 
|---|
| 650 | return plan; | 
|---|
| 651 | } | 
|---|
| 652 | if (relations.size() <= 1) { | 
|---|
| 653 | // at most one relation, nothing to reorder | 
|---|
| 654 | return plan; | 
|---|
| 655 | } | 
|---|
| 656 | // now that we know we are going to perform join ordering we actually extract the filters, eliminating duplicate | 
|---|
| 657 | // filters in the process | 
|---|
| 658 | expression_set_t filter_set; | 
|---|
| 659 | for (auto &op : filter_operators) { | 
|---|
| 660 | if (op->type == LogicalOperatorType::COMPARISON_JOIN) { | 
|---|
| 661 | auto &join = (LogicalComparisonJoin &)*op; | 
|---|
| 662 | assert(join.join_type == JoinType::INNER); | 
|---|
| 663 | assert(join.expressions.size() == 0); | 
|---|
| 664 | for (auto &cond : join.conditions) { | 
|---|
| 665 | auto comparison = | 
|---|
| 666 | make_unique<BoundComparisonExpression>(cond.comparison, move(cond.left), move(cond.right)); | 
|---|
| 667 | if (filter_set.find(comparison.get()) == filter_set.end()) { | 
|---|
| 668 | filter_set.insert(comparison.get()); | 
|---|
| 669 | filters.push_back(move(comparison)); | 
|---|
| 670 | } | 
|---|
| 671 | } | 
|---|
| 672 | join.conditions.clear(); | 
|---|
| 673 | } else { | 
|---|
| 674 | for (idx_t i = 0; i < op->expressions.size(); i++) { | 
|---|
| 675 | if (filter_set.find(op->expressions[i].get()) == filter_set.end()) { | 
|---|
| 676 | filter_set.insert(op->expressions[i].get()); | 
|---|
| 677 | filters.push_back(move(op->expressions[i])); | 
|---|
| 678 | } | 
|---|
| 679 | } | 
|---|
| 680 | op->expressions.clear(); | 
|---|
| 681 | } | 
|---|
| 682 | } | 
|---|
| 683 | // create potential edges from the comparisons | 
|---|
| 684 | for (idx_t i = 0; i < filters.size(); i++) { | 
|---|
| 685 | auto &filter = filters[i]; | 
|---|
| 686 | auto info = make_unique<FilterInfo>(); | 
|---|
| 687 | auto filter_info = info.get(); | 
|---|
| 688 | filter_infos.push_back(move(info)); | 
|---|
| 689 | // first extract the relation set for the entire filter | 
|---|
| 690 | unordered_set<idx_t> bindings; | 
|---|
| 691 | ExtractBindings(*filter, bindings); | 
|---|
| 692 | filter_info->set = set_manager.GetJoinRelation(bindings); | 
|---|
| 693 | filter_info->filter_index = i; | 
|---|
| 694 | // now check if it can be used as a join predicate | 
|---|
| 695 | if (filter->GetExpressionClass() == ExpressionClass::BOUND_COMPARISON) { | 
|---|
| 696 | auto comparison = (BoundComparisonExpression *)filter.get(); | 
|---|
| 697 | // extract the bindings that are required for the left and right side of the comparison | 
|---|
| 698 | unordered_set<idx_t> left_bindings, right_bindings; | 
|---|
| 699 | ExtractBindings(*comparison->left, left_bindings); | 
|---|
| 700 | ExtractBindings(*comparison->right, right_bindings); | 
|---|
| 701 | if (left_bindings.size() > 0 && right_bindings.size() > 0) { | 
|---|
| 702 | // both the left and the right side have bindings | 
|---|
| 703 | // first create the relation sets, if they do not exist | 
|---|
| 704 | filter_info->left_set = set_manager.GetJoinRelation(left_bindings); | 
|---|
| 705 | filter_info->right_set = set_manager.GetJoinRelation(right_bindings); | 
|---|
| 706 | // we can only create a meaningful edge if the sets are not exactly the same | 
|---|
| 707 | if (filter_info->left_set != filter_info->right_set) { | 
|---|
| 708 | // check if the sets are disjoint | 
|---|
| 709 | if (Disjoint(left_bindings, right_bindings)) { | 
|---|
| 710 | // they are disjoint, we only need to create one set of edges in the join graph | 
|---|
| 711 | query_graph.CreateEdge(filter_info->left_set, filter_info->right_set, filter_info); | 
|---|
| 712 | query_graph.CreateEdge(filter_info->right_set, filter_info->left_set, filter_info); | 
|---|
| 713 | } else { | 
|---|
| 714 | continue; | 
|---|
| 715 | // the sets are not disjoint, we create two sets of edges | 
|---|
| 716 | // auto left_difference = set_manager.Difference(filter_info->left_set, filter_info->right_set); | 
|---|
| 717 | // auto right_difference = set_manager.Difference(filter_info->right_set, | 
|---|
| 718 | // filter_info->left_set); | 
|---|
| 719 | // // -> LEFT <-> RIGHT \ LEFT | 
|---|
| 720 | // query_graph.CreateEdge(filter_info->left_set, right_difference, filter_info); | 
|---|
| 721 | // query_graph.CreateEdge(right_difference, filter_info->left_set, filter_info); | 
|---|
| 722 | // // -> RIGHT <-> LEFT \ RIGHT | 
|---|
| 723 | // query_graph.CreateEdge(left_difference, filter_info->right_set, filter_info); | 
|---|
| 724 | // query_graph.CreateEdge(filter_info->right_set, left_difference, filter_info); | 
|---|
| 725 | } | 
|---|
| 726 | continue; | 
|---|
| 727 | } | 
|---|
| 728 | } | 
|---|
| 729 | } | 
|---|
| 730 | } | 
|---|
| 731 | // now use dynamic programming to figure out the optimal join order | 
|---|
| 732 | // First we initialize each of the single-node plans with themselves and with their cardinalities these are the leaf | 
|---|
| 733 | // nodes of the join tree NOTE: we can just use pointers to JoinRelationSet* here because the GetJoinRelation | 
|---|
| 734 | // function ensures that a unique combination of relations will have a unique JoinRelationSet object. | 
|---|
| 735 | for (idx_t i = 0; i < relations.size(); i++) { | 
|---|
| 736 | auto &rel = *relations[i]; | 
|---|
| 737 | auto node = set_manager.GetJoinRelation(i); | 
|---|
| 738 | plans[node] = make_unique<JoinNode>(node, rel.op->EstimateCardinality()); | 
|---|
| 739 | } | 
|---|
| 740 | // now we perform the actual dynamic programming to compute the final result | 
|---|
| 741 | SolveJoinOrder(); | 
|---|
| 742 | // now the optimal join path should have been found | 
|---|
| 743 | // get it from the node | 
|---|
| 744 | unordered_set<idx_t> bindings; | 
|---|
| 745 | for (idx_t i = 0; i < relations.size(); i++) { | 
|---|
| 746 | bindings.insert(i); | 
|---|
| 747 | } | 
|---|
| 748 | auto total_relation = set_manager.GetJoinRelation(bindings); | 
|---|
| 749 | auto final_plan = plans.find(total_relation); | 
|---|
| 750 | if (final_plan == plans.end()) { | 
|---|
| 751 | // could not find the final plan | 
|---|
| 752 | // this should only happen in case the sets are actually disjunct | 
|---|
| 753 | // in this case we need to generate cross product to connect the disjoint sets | 
|---|
| 754 | GenerateCrossProducts(); | 
|---|
| 755 | //! solve the join order again | 
|---|
| 756 | SolveJoinOrder(); | 
|---|
| 757 | // now we can obtain the final plan! | 
|---|
| 758 | final_plan = plans.find(total_relation); | 
|---|
| 759 | assert(final_plan != plans.end()); | 
|---|
| 760 | } | 
|---|
| 761 | // now perform the actual reordering | 
|---|
| 762 | return RewritePlan(move(plan), final_plan->second.get()); | 
|---|
| 763 | } | 
|---|
| 764 |  | 
|---|