1 | #include "duckdb/optimizer/join_order_optimizer.hpp" |
2 | |
3 | #include "duckdb/planner/expression/list.hpp" |
4 | #include "duckdb/planner/expression_iterator.hpp" |
5 | #include "duckdb/planner/operator/list.hpp" |
6 | |
7 | using namespace duckdb; |
8 | using namespace std; |
9 | |
10 | using JoinNode = JoinOrderOptimizer::JoinNode; |
11 | |
12 | //! Returns true if A and B are disjoint, false otherwise |
13 | template <class T> static bool Disjoint(unordered_set<T> &a, unordered_set<T> &b) { |
14 | for (auto &entry : a) { |
15 | if (b.find(entry) != b.end()) { |
16 | return false; |
17 | } |
18 | } |
19 | return true; |
20 | } |
21 | |
22 | //! Extract the set of relations referred to inside an expression |
23 | bool JoinOrderOptimizer::(Expression &expression, unordered_set<idx_t> &bindings) { |
24 | if (expression.type == ExpressionType::BOUND_COLUMN_REF) { |
25 | auto &colref = (BoundColumnRefExpression &)expression; |
26 | assert(colref.depth == 0); |
27 | assert(colref.binding.table_index != INVALID_INDEX); |
28 | // map the base table index to the relation index used by the JoinOrderOptimizer |
29 | assert(relation_mapping.find(colref.binding.table_index) != relation_mapping.end()); |
30 | bindings.insert(relation_mapping[colref.binding.table_index]); |
31 | } |
32 | if (expression.type == ExpressionType::BOUND_REF) { |
33 | // bound expression |
34 | bindings.clear(); |
35 | return false; |
36 | } |
37 | assert(expression.type != ExpressionType::SUBQUERY); |
38 | bool can_reorder = true; |
39 | ExpressionIterator::EnumerateChildren(expression, [&](Expression &expr) { |
40 | if (!ExtractBindings(expr, bindings)) { |
41 | can_reorder = false; |
42 | return; |
43 | } |
44 | }); |
45 | return can_reorder; |
46 | } |
47 | |
48 | static unique_ptr<LogicalOperator> PushFilter(unique_ptr<LogicalOperator> node, unique_ptr<Expression> expr) { |
49 | // push an expression into a filter |
50 | // first check if we have any filter to push it into |
51 | if (node->type != LogicalOperatorType::FILTER) { |
52 | // we don't, we need to create one |
53 | auto filter = make_unique<LogicalFilter>(); |
54 | filter->children.push_back(move(node)); |
55 | node = move(filter); |
56 | } |
57 | // push the filter into the LogicalFilter |
58 | assert(node->type == LogicalOperatorType::FILTER); |
59 | auto filter = (LogicalFilter *)node.get(); |
60 | filter->expressions.push_back(move(expr)); |
61 | return node; |
62 | } |
63 | |
64 | bool JoinOrderOptimizer::(LogicalOperator &input_op, vector<LogicalOperator *> &filter_operators, |
65 | LogicalOperator *parent) { |
66 | LogicalOperator *op = &input_op; |
67 | while (op->children.size() == 1 && |
68 | (op->type != LogicalOperatorType::PROJECTION && op->type != LogicalOperatorType::EXPRESSION_GET)) { |
69 | if (op->type == LogicalOperatorType::FILTER) { |
70 | // extract join conditions from filter |
71 | filter_operators.push_back(op); |
72 | } |
73 | if (op->type == LogicalOperatorType::AGGREGATE_AND_GROUP_BY || op->type == LogicalOperatorType::WINDOW) { |
74 | // don't push filters through projection or aggregate and group by |
75 | JoinOrderOptimizer optimizer; |
76 | op->children[0] = optimizer.Optimize(move(op->children[0])); |
77 | return false; |
78 | } |
79 | op = op->children[0].get(); |
80 | } |
81 | bool non_reorderable_operation = false; |
82 | if (op->type == LogicalOperatorType::UNION || op->type == LogicalOperatorType::EXCEPT || |
83 | op->type == LogicalOperatorType::INTERSECT || op->type == LogicalOperatorType::DELIM_JOIN || |
84 | op->type == LogicalOperatorType::ANY_JOIN) { |
85 | // set operation, optimize separately in children |
86 | non_reorderable_operation = true; |
87 | } |
88 | |
89 | if (op->type == LogicalOperatorType::COMPARISON_JOIN) { |
90 | LogicalJoin *join = (LogicalJoin *)op; |
91 | if (join->join_type == JoinType::INNER) { |
92 | // extract join conditions from inner join |
93 | filter_operators.push_back(op); |
94 | } else { |
95 | // non-inner join, not reordarable yet |
96 | non_reorderable_operation = true; |
97 | } |
98 | } |
99 | if (non_reorderable_operation) { |
100 | // we encountered a non-reordable operation (setop or non-inner join) |
101 | // we do not reorder non-inner joins yet, however we do want to expand the potential join graph around them |
102 | // non-inner joins are also tricky because we can't freely make conditions through them |
103 | // e.g. suppose we have (left LEFT OUTER JOIN right WHERE right IS NOT NULL), the join can generate |
104 | // new NULL values in the right side, so pushing this condition through the join leads to incorrect results |
105 | // for this reason, we just start a new JoinOptimizer pass in each of the children of the join |
106 | for (idx_t i = 0; i < op->children.size(); i++) { |
107 | JoinOrderOptimizer optimizer; |
108 | op->children[i] = optimizer.Optimize(move(op->children[i])); |
109 | } |
110 | // after this we want to treat this node as one "end node" (like e.g. a base relation) |
111 | // however the join refers to multiple base relations |
112 | // enumerate all base relations obtained from this join and add them to the relation mapping |
113 | // also, we have to resolve the join conditions for the joins here |
114 | // get the left and right bindings |
115 | unordered_set<idx_t> bindings; |
116 | LogicalJoin::GetTableReferences(*op, bindings); |
117 | // now create the relation that refers to all these bindings |
118 | auto relation = make_unique<SingleJoinRelation>(&input_op, parent); |
119 | for (idx_t it : bindings) { |
120 | relation_mapping[it] = relations.size(); |
121 | } |
122 | relations.push_back(move(relation)); |
123 | return true; |
124 | } |
125 | if (op->type == LogicalOperatorType::COMPARISON_JOIN || op->type == LogicalOperatorType::CROSS_PRODUCT) { |
126 | // inner join or cross product |
127 | bool can_reorder_left = ExtractJoinRelations(*op->children[0], filter_operators, op); |
128 | bool can_reorder_right = ExtractJoinRelations(*op->children[1], filter_operators, op); |
129 | return can_reorder_left && can_reorder_right; |
130 | } else if (op->type == LogicalOperatorType::GET) { |
131 | // base table scan, add to set of relations |
132 | auto get = (LogicalGet *)op; |
133 | auto relation = make_unique<SingleJoinRelation>(&input_op, parent); |
134 | relation_mapping[get->table_index] = relations.size(); |
135 | relations.push_back(move(relation)); |
136 | return true; |
137 | } else if (op->type == LogicalOperatorType::EXPRESSION_GET) { |
138 | // base table scan, add to set of relations |
139 | auto get = (LogicalExpressionGet *)op; |
140 | auto relation = make_unique<SingleJoinRelation>(&input_op, parent); |
141 | relation_mapping[get->table_index] = relations.size(); |
142 | relations.push_back(move(relation)); |
143 | return true; |
144 | } else if (op->type == LogicalOperatorType::TABLE_FUNCTION) { |
145 | // table function call, add to set of relations |
146 | auto table_function = (LogicalTableFunction *)op; |
147 | auto relation = make_unique<SingleJoinRelation>(&input_op, parent); |
148 | relation_mapping[table_function->table_index] = relations.size(); |
149 | relations.push_back(move(relation)); |
150 | return true; |
151 | } else if (op->type == LogicalOperatorType::PROJECTION) { |
152 | auto proj = (LogicalProjection *)op; |
153 | // we run the join order optimizer witin the subquery as well |
154 | JoinOrderOptimizer optimizer; |
155 | op->children[0] = optimizer.Optimize(move(op->children[0])); |
156 | // projection, add to the set of relations |
157 | auto relation = make_unique<SingleJoinRelation>(&input_op, parent); |
158 | relation_mapping[proj->table_index] = relations.size(); |
159 | relations.push_back(move(relation)); |
160 | return true; |
161 | } |
162 | return false; |
163 | } |
164 | |
165 | //! Update the exclusion set with all entries in the subgraph |
166 | static void UpdateExclusionSet(JoinRelationSet *node, unordered_set<idx_t> &exclusion_set) { |
167 | for (idx_t i = 0; i < node->count; i++) { |
168 | exclusion_set.insert(node->relations[i]); |
169 | } |
170 | } |
171 | |
172 | //! Create a new JoinTree node by joining together two previous JoinTree nodes |
173 | static unique_ptr<JoinNode> CreateJoinTree(JoinRelationSet *set, NeighborInfo *info, JoinNode *left, JoinNode *right) { |
174 | // for the hash join we want the right side (build side) to have the smallest cardinality |
175 | // also just a heuristic but for now... |
176 | // FIXME: we should probably actually benchmark that as well |
177 | // FIXME: should consider different join algorithms, should we pick a join algorithm here as well? (probably) |
178 | if (left->cardinality < right->cardinality) { |
179 | return CreateJoinTree(set, info, right, left); |
180 | } |
181 | // the expected cardinality is the max of the child cardinalities |
182 | // FIXME: we should obviously use better cardinality estimation here |
183 | // but for now we just assume foreign key joins only |
184 | idx_t expected_cardinality; |
185 | if (info->filters.size() == 0) { |
186 | // cross product |
187 | expected_cardinality = left->cardinality * right->cardinality; |
188 | } else { |
189 | // normal join, expect foreign key join |
190 | expected_cardinality = std::max(left->cardinality, right->cardinality); |
191 | } |
192 | // cost is expected_cardinality plus the cost of the previous plans |
193 | idx_t cost = expected_cardinality; |
194 | return make_unique<JoinNode>(set, info, left, right, expected_cardinality, cost); |
195 | } |
196 | |
197 | JoinNode *JoinOrderOptimizer::EmitPair(JoinRelationSet *left, JoinRelationSet *right, NeighborInfo *info) { |
198 | // get the left and right join plans |
199 | auto &left_plan = plans[left]; |
200 | auto &right_plan = plans[right]; |
201 | auto new_set = set_manager.Union(left, right); |
202 | // create the join tree based on combining the two plans |
203 | auto new_plan = CreateJoinTree(new_set, info, left_plan.get(), right_plan.get()); |
204 | // check if this plan is the optimal plan we found for this set of relations |
205 | auto entry = plans.find(new_set); |
206 | if (entry == plans.end() || new_plan->cost < entry->second->cost) { |
207 | // the plan is the optimal plan, move it into the dynamic programming tree |
208 | auto result = new_plan.get(); |
209 | plans[new_set] = move(new_plan); |
210 | return result; |
211 | } |
212 | return entry->second.get(); |
213 | } |
214 | |
215 | bool JoinOrderOptimizer::TryEmitPair(JoinRelationSet *left, JoinRelationSet *right, NeighborInfo *info) { |
216 | pairs++; |
217 | if (pairs >= 2000) { |
218 | // when the amount of pairs gets too large we exit the dynamic programming and resort to a greedy algorithm |
219 | // FIXME: simple heuristic currently |
220 | // at 10K pairs stop searching exactly and switch to heuristic |
221 | return false; |
222 | } |
223 | EmitPair(left, right, info); |
224 | return true; |
225 | } |
226 | |
227 | bool JoinOrderOptimizer::EmitCSG(JoinRelationSet *node) { |
228 | // create the exclusion set as everything inside the subgraph AND anything with members BELOW it |
229 | unordered_set<idx_t> exclusion_set; |
230 | for (idx_t i = 0; i < node->relations[0]; i++) { |
231 | exclusion_set.insert(i); |
232 | } |
233 | UpdateExclusionSet(node, exclusion_set); |
234 | // find the neighbors given this exclusion set |
235 | auto neighbors = query_graph.GetNeighbors(node, exclusion_set); |
236 | if (neighbors.size() == 0) { |
237 | return true; |
238 | } |
239 | // we iterate over the neighbors ordered by their first node |
240 | sort(neighbors.begin(), neighbors.end()); |
241 | for (auto neighbor : neighbors) { |
242 | // since the GetNeighbors only returns the smallest element in a list, the entry might not be connected to |
243 | // (only!) this neighbor, hence we have to do a connectedness check before we can emit it |
244 | auto neighbor_relation = set_manager.GetJoinRelation(neighbor); |
245 | auto connection = query_graph.GetConnection(node, neighbor_relation); |
246 | if (connection) { |
247 | if (!TryEmitPair(node, neighbor_relation, connection)) { |
248 | return false; |
249 | } |
250 | } |
251 | if (!EnumerateCmpRecursive(node, neighbor_relation, exclusion_set)) { |
252 | return false; |
253 | } |
254 | } |
255 | return true; |
256 | } |
257 | |
258 | bool JoinOrderOptimizer::EnumerateCmpRecursive(JoinRelationSet *left, JoinRelationSet *right, |
259 | unordered_set<idx_t> exclusion_set) { |
260 | // get the neighbors of the second relation under the exclusion set |
261 | auto neighbors = query_graph.GetNeighbors(right, exclusion_set); |
262 | if (neighbors.size() == 0) { |
263 | return true; |
264 | } |
265 | vector<JoinRelationSet *> union_sets; |
266 | union_sets.resize(neighbors.size()); |
267 | for (idx_t i = 0; i < neighbors.size(); i++) { |
268 | auto neighbor = set_manager.GetJoinRelation(neighbors[i]); |
269 | // emit the combinations of this node and its neighbors |
270 | auto combined_set = set_manager.Union(right, neighbor); |
271 | if (plans.find(combined_set) != plans.end()) { |
272 | auto connection = query_graph.GetConnection(left, combined_set); |
273 | if (connection) { |
274 | if (!TryEmitPair(left, combined_set, connection)) { |
275 | return false; |
276 | } |
277 | } |
278 | } |
279 | union_sets[i] = combined_set; |
280 | } |
281 | // recursively enumerate the sets |
282 | for (idx_t i = 0; i < neighbors.size(); i++) { |
283 | // updated the set of excluded entries with this neighbor |
284 | unordered_set<idx_t> new_exclusion_set = exclusion_set; |
285 | new_exclusion_set.insert(neighbors[i]); |
286 | if (!EnumerateCmpRecursive(left, union_sets[i], new_exclusion_set)) { |
287 | return false; |
288 | } |
289 | } |
290 | return true; |
291 | } |
292 | |
293 | bool JoinOrderOptimizer::EnumerateCSGRecursive(JoinRelationSet *node, unordered_set<idx_t> &exclusion_set) { |
294 | // find neighbors of S under the exlusion set |
295 | auto neighbors = query_graph.GetNeighbors(node, exclusion_set); |
296 | if (neighbors.size() == 0) { |
297 | return true; |
298 | } |
299 | // now first emit the connected subgraphs of the neighbors |
300 | vector<JoinRelationSet *> union_sets; |
301 | union_sets.resize(neighbors.size()); |
302 | for (idx_t i = 0; i < neighbors.size(); i++) { |
303 | auto neighbor = set_manager.GetJoinRelation(neighbors[i]); |
304 | // emit the combinations of this node and its neighbors |
305 | auto new_set = set_manager.Union(node, neighbor); |
306 | if (plans.find(new_set) != plans.end()) { |
307 | if (!EmitCSG(new_set)) { |
308 | return false; |
309 | } |
310 | } |
311 | union_sets[i] = new_set; |
312 | } |
313 | // recursively enumerate the sets |
314 | for (idx_t i = 0; i < neighbors.size(); i++) { |
315 | // updated the set of excluded entries with this neighbor |
316 | unordered_set<idx_t> new_exclusion_set = exclusion_set; |
317 | new_exclusion_set.insert(neighbors[i]); |
318 | if (!EnumerateCSGRecursive(union_sets[i], new_exclusion_set)) { |
319 | return false; |
320 | } |
321 | } |
322 | return true; |
323 | } |
324 | |
325 | bool JoinOrderOptimizer::SolveJoinOrderExactly() { |
326 | // now we perform the actual dynamic programming to compute the final result |
327 | // we enumerate over all the possible pairs in the neighborhood |
328 | for (idx_t i = relations.size(); i > 0; i--) { |
329 | // for every node in the set, we consider it as the start node once |
330 | auto start_node = set_manager.GetJoinRelation(i - 1); |
331 | // emit the start node |
332 | if (!EmitCSG(start_node)) { |
333 | return false; |
334 | } |
335 | // initialize the set of exclusion_set as all the nodes with a number below this |
336 | unordered_set<idx_t> exclusion_set; |
337 | for (idx_t j = 0; j < i - 1; j++) { |
338 | exclusion_set.insert(j); |
339 | } |
340 | // then we recursively search for neighbors that do not belong to the banned entries |
341 | if (!EnumerateCSGRecursive(start_node, exclusion_set)) { |
342 | return false; |
343 | } |
344 | } |
345 | return true; |
346 | } |
347 | |
348 | void JoinOrderOptimizer::SolveJoinOrderApproximately() { |
349 | // at this point, we exited the dynamic programming but did not compute the final join order because it took too |
350 | // long instead, we use a greedy heuristic to obtain a join ordering now we use Greedy Operator Ordering to |
351 | // construct the result tree first we start out with all the base relations (the to-be-joined relations) |
352 | vector<JoinRelationSet *> T; |
353 | for (idx_t i = 0; i < relations.size(); i++) { |
354 | T.push_back(set_manager.GetJoinRelation(i)); |
355 | } |
356 | while (T.size() > 1) { |
357 | // now in every step of the algorithm, we greedily pick the join between the to-be-joined relations that has the |
358 | // smallest cost. This is O(r^2) per step, and every step will reduce the total amount of relations to-be-joined |
359 | // by 1, so the total cost is O(r^3) in the amount of relations |
360 | idx_t best_left = 0, best_right = 0; |
361 | JoinNode *best_connection = nullptr; |
362 | for (idx_t i = 0; i < T.size(); i++) { |
363 | auto left = T[i]; |
364 | for (idx_t j = i + 1; j < T.size(); j++) { |
365 | auto right = T[j]; |
366 | // check if we can connect these two relations |
367 | auto connection = query_graph.GetConnection(left, right); |
368 | if (connection) { |
369 | // we can! check the cost of this connection |
370 | auto node = EmitPair(left, right, connection); |
371 | if (!best_connection || node->cost < best_connection->cost) { |
372 | // best pair found so far |
373 | best_connection = node; |
374 | best_left = i; |
375 | best_right = j; |
376 | } |
377 | } |
378 | } |
379 | } |
380 | if (!best_connection) { |
381 | // could not find a connection, but we were not done with finding a completed plan |
382 | // we have to add a cross product; we add it between the two smallest relations |
383 | JoinNode *smallest_plans[2] = {nullptr}; |
384 | idx_t smallest_index[2]; |
385 | for (idx_t i = 0; i < T.size(); i++) { |
386 | // get the plan for this relation |
387 | auto current_plan = plans[T[i]].get(); |
388 | // check if the cardinality is smaller than the smallest two found so far |
389 | for (idx_t j = 0; j < 2; j++) { |
390 | if (!smallest_plans[j] || smallest_plans[j]->cardinality > current_plan->cardinality) { |
391 | smallest_plans[j] = current_plan; |
392 | smallest_index[j] = i; |
393 | break; |
394 | } |
395 | } |
396 | } |
397 | assert(smallest_plans[0] && smallest_plans[1]); |
398 | assert(smallest_index[0] != smallest_index[1]); |
399 | auto left = smallest_plans[0]->set, right = smallest_plans[1]->set; |
400 | // create a cross product edge (i.e. edge with empty filter) between these two sets in the query graph |
401 | query_graph.CreateEdge(left, right, nullptr); |
402 | // now emit the pair and continue with the algorithm |
403 | auto connection = query_graph.GetConnection(left, right); |
404 | assert(connection); |
405 | |
406 | best_connection = EmitPair(left, right, connection); |
407 | best_left = smallest_index[0]; |
408 | best_right = smallest_index[1]; |
409 | // the code below assumes best_right > best_left |
410 | if (best_left > best_right) { |
411 | swap(best_left, best_right); |
412 | } |
413 | } |
414 | // now update the to-be-checked pairs |
415 | // remove left and right, and add the combination |
416 | |
417 | // important to erase the biggest element first |
418 | // if we erase the smallest element first the index of the biggest element changes |
419 | assert(best_right > best_left); |
420 | T.erase(T.begin() + best_right); |
421 | T.erase(T.begin() + best_left); |
422 | T.push_back(best_connection->set); |
423 | } |
424 | } |
425 | |
426 | void JoinOrderOptimizer::SolveJoinOrder() { |
427 | // first try to solve the join order exactly |
428 | if (!SolveJoinOrderExactly()) { |
429 | // otherwise, if that times out we resort to a greedy algorithm |
430 | SolveJoinOrderApproximately(); |
431 | } |
432 | } |
433 | |
434 | void JoinOrderOptimizer::GenerateCrossProducts() { |
435 | // generate a set of cross products to combine the currently available plans into a full join plan |
436 | // we create edges between every relation with a high cost |
437 | for (idx_t i = 0; i < relations.size(); i++) { |
438 | auto left = set_manager.GetJoinRelation(i); |
439 | for (idx_t j = 0; j < relations.size(); j++) { |
440 | if (i != j) { |
441 | auto right = set_manager.GetJoinRelation(j); |
442 | query_graph.CreateEdge(left, right, nullptr); |
443 | query_graph.CreateEdge(right, left, nullptr); |
444 | } |
445 | } |
446 | } |
447 | } |
448 | |
449 | static unique_ptr<LogicalOperator> (SingleJoinRelation &rel) { |
450 | auto &children = rel.parent->children; |
451 | for (idx_t i = 0; i < children.size(); i++) { |
452 | if (children[i].get() == rel.op) { |
453 | // found it! take ownership of it from the parent |
454 | auto result = move(children[i]); |
455 | children.erase(children.begin() + i); |
456 | return result; |
457 | } |
458 | } |
459 | throw Exception("Could not find relation in parent node (?)" ); |
460 | } |
461 | |
462 | pair<JoinRelationSet *, unique_ptr<LogicalOperator>> |
463 | JoinOrderOptimizer::GenerateJoins(vector<unique_ptr<LogicalOperator>> &, JoinNode *node) { |
464 | JoinRelationSet *left_node = nullptr, *right_node = nullptr; |
465 | JoinRelationSet *result_relation; |
466 | unique_ptr<LogicalOperator> result_operator; |
467 | if (node->left && node->right) { |
468 | // generate the left and right children |
469 | auto left = GenerateJoins(extracted_relations, node->left); |
470 | auto right = GenerateJoins(extracted_relations, node->right); |
471 | |
472 | if (node->info->filters.size() == 0) { |
473 | // no filters, create a cross product |
474 | auto join = make_unique<LogicalCrossProduct>(); |
475 | join->children.push_back(move(left.second)); |
476 | join->children.push_back(move(right.second)); |
477 | result_operator = move(join); |
478 | } else { |
479 | // we have filters, create a join node |
480 | auto join = make_unique<LogicalComparisonJoin>(JoinType::INNER); |
481 | join->children.push_back(move(left.second)); |
482 | join->children.push_back(move(right.second)); |
483 | // set the join conditions from the join node |
484 | for (auto &f : node->info->filters) { |
485 | // extract the filter from the operator it originally belonged to |
486 | assert(filters[f->filter_index]); |
487 | auto condition = move(filters[f->filter_index]); |
488 | // now create the actual join condition |
489 | assert((JoinRelationSet::IsSubset(left.first, f->left_set) && |
490 | JoinRelationSet::IsSubset(right.first, f->right_set)) || |
491 | (JoinRelationSet::IsSubset(left.first, f->right_set) && |
492 | JoinRelationSet::IsSubset(right.first, f->left_set))); |
493 | JoinCondition cond; |
494 | assert(condition->GetExpressionClass() == ExpressionClass::BOUND_COMPARISON); |
495 | auto &comparison = (BoundComparisonExpression &)*condition; |
496 | // we need to figure out which side is which by looking at the relations available to us |
497 | bool invert = JoinRelationSet::IsSubset(left.first, f->left_set) ? false : true; |
498 | cond.left = !invert ? move(comparison.left) : move(comparison.right); |
499 | cond.right = !invert ? move(comparison.right) : move(comparison.left); |
500 | cond.comparison = condition->type; |
501 | if (invert) { |
502 | // reverse comparison expression if we reverse the order of the children |
503 | cond.comparison = FlipComparisionExpression(cond.comparison); |
504 | } |
505 | join->conditions.push_back(move(cond)); |
506 | } |
507 | assert(join->conditions.size() > 0); |
508 | result_operator = move(join); |
509 | } |
510 | left_node = left.first; |
511 | right_node = right.first; |
512 | result_relation = set_manager.Union(left_node, right_node); |
513 | } else { |
514 | // base node, get the entry from the list of extracted relations |
515 | assert(node->set->count == 1); |
516 | assert(extracted_relations[node->set->relations[0]]); |
517 | result_relation = node->set; |
518 | result_operator = move(extracted_relations[node->set->relations[0]]); |
519 | } |
520 | // check if we should do a pushdown on this node |
521 | // basically, any remaining filter that is a subset of the current relation will no longer be used in joins |
522 | // hence we should push it here |
523 | for (idx_t i = 0; i < filter_infos.size(); i++) { |
524 | // check if the filter has already been extracted |
525 | auto info = filter_infos[i].get(); |
526 | if (filters[info->filter_index]) { |
527 | // now check if the filter is a subset of the current relation |
528 | // note that infos with an empty relation set are a special case and we do not push them down |
529 | if (info->set->count > 0 && JoinRelationSet::IsSubset(result_relation, info->set)) { |
530 | auto filter = move(filters[info->filter_index]); |
531 | // if it is, we can push the filter |
532 | // we can push it either into a join or as a filter |
533 | // check if we are in a join or in a base table |
534 | if (!left_node || !info->left_set) { |
535 | // base table or non-comparison expression, push it as a filter |
536 | result_operator = PushFilter(move(result_operator), move(filter)); |
537 | continue; |
538 | } |
539 | // the node below us is a join or cross product and the expression is a comparison |
540 | // check if the nodes can be split up into left/right |
541 | bool found_subset = false; |
542 | bool invert = false; |
543 | if (JoinRelationSet::IsSubset(left_node, info->left_set) && |
544 | JoinRelationSet::IsSubset(right_node, info->right_set)) { |
545 | found_subset = true; |
546 | } else if (JoinRelationSet::IsSubset(right_node, info->left_set) && |
547 | JoinRelationSet::IsSubset(left_node, info->right_set)) { |
548 | invert = true; |
549 | found_subset = true; |
550 | } |
551 | if (!found_subset) { |
552 | // could not be split up into left/right |
553 | result_operator = PushFilter(move(result_operator), move(filter)); |
554 | continue; |
555 | } |
556 | // create the join condition |
557 | JoinCondition cond; |
558 | assert(filter->GetExpressionClass() == ExpressionClass::BOUND_COMPARISON); |
559 | auto &comparison = (BoundComparisonExpression &)*filter; |
560 | // we need to figure out which side is which by looking at the relations available to us |
561 | cond.left = !invert ? move(comparison.left) : move(comparison.right); |
562 | cond.right = !invert ? move(comparison.right) : move(comparison.left); |
563 | cond.comparison = comparison.type; |
564 | if (invert) { |
565 | // reverse comparison expression if we reverse the order of the children |
566 | cond.comparison = FlipComparisionExpression(comparison.type); |
567 | } |
568 | // now find the join to push it into |
569 | auto node = result_operator.get(); |
570 | if (node->type == LogicalOperatorType::FILTER) { |
571 | node = node->children[0].get(); |
572 | } |
573 | if (node->type == LogicalOperatorType::CROSS_PRODUCT) { |
574 | // turn into comparison join |
575 | auto comp_join = make_unique<LogicalComparisonJoin>(JoinType::INNER); |
576 | comp_join->children.push_back(move(node->children[0])); |
577 | comp_join->children.push_back(move(node->children[1])); |
578 | comp_join->conditions.push_back(move(cond)); |
579 | if (node == result_operator.get()) { |
580 | result_operator = move(comp_join); |
581 | } else { |
582 | assert(result_operator->type == LogicalOperatorType::FILTER); |
583 | result_operator->children[0] = move(comp_join); |
584 | } |
585 | } else { |
586 | assert(node->type == LogicalOperatorType::COMPARISON_JOIN); |
587 | auto &comp_join = (LogicalComparisonJoin &)*node; |
588 | comp_join.conditions.push_back(move(cond)); |
589 | } |
590 | } |
591 | } |
592 | } |
593 | return make_pair(result_relation, move(result_operator)); |
594 | } |
595 | |
596 | unique_ptr<LogicalOperator> JoinOrderOptimizer::RewritePlan(unique_ptr<LogicalOperator> plan, JoinNode *node) { |
597 | // now we have to rewrite the plan |
598 | bool root_is_join = plan->children.size() > 1; |
599 | |
600 | // first we will extract all relations from the main plan |
601 | vector<unique_ptr<LogicalOperator>> ; |
602 | for (idx_t i = 0; i < relations.size(); i++) { |
603 | extracted_relations.push_back(ExtractJoinRelation(*relations[i])); |
604 | } |
605 | // now we generate the actual joins |
606 | auto join_tree = GenerateJoins(extracted_relations, node); |
607 | // perform the final pushdown of remaining filters |
608 | for (idx_t i = 0; i < filters.size(); i++) { |
609 | // check if the filter has already been extracted |
610 | if (filters[i]) { |
611 | // if not we need to push it |
612 | join_tree.second = PushFilter(move(join_tree.second), move(filters[i])); |
613 | } |
614 | } |
615 | |
616 | // find the first join in the relation to know where to place this node |
617 | if (root_is_join) { |
618 | // first node is the join, return it immediately |
619 | return move(join_tree.second); |
620 | } |
621 | assert(plan->children.size() == 1); |
622 | // have to move up through the relations |
623 | auto op = plan.get(); |
624 | auto parent = plan.get(); |
625 | while (op->type != LogicalOperatorType::CROSS_PRODUCT && op->type != LogicalOperatorType::COMPARISON_JOIN) { |
626 | assert(op->children.size() == 1); |
627 | parent = op; |
628 | op = op->children[0].get(); |
629 | } |
630 | // have to replace at this node |
631 | parent->children[0] = move(join_tree.second); |
632 | return plan; |
633 | } |
634 | |
635 | // the join ordering is pretty much a straight implementation of the paper "Dynamic Programming Strikes Back" by Guido |
636 | // Moerkotte and Thomas Neumannn, see that paper for additional info/documentation bonus slides: |
637 | // https://db.in.tum.de/teaching/ws1415/queryopt/chapter3.pdf?lang=de |
638 | // FIXME: incorporate cardinality estimation into the plans, possibly by pushing samples? |
639 | unique_ptr<LogicalOperator> JoinOrderOptimizer::Optimize(unique_ptr<LogicalOperator> plan) { |
640 | assert(filters.size() == 0 && relations.size() == 0); // assert that the JoinOrderOptimizer has not been used before |
641 | LogicalOperator *op = plan.get(); |
642 | // now we optimize the current plan |
643 | // we skip past until we find the first projection, we do this because the HAVING clause inserts a Filter AFTER the |
644 | // group by and this filter cannot be reordered |
645 | // extract a list of all relations that have to be joined together |
646 | // and a list of all conditions that is applied to them |
647 | vector<LogicalOperator *> filter_operators; |
648 | if (!ExtractJoinRelations(*op, filter_operators)) { |
649 | // do not support reordering this type of plan |
650 | return plan; |
651 | } |
652 | if (relations.size() <= 1) { |
653 | // at most one relation, nothing to reorder |
654 | return plan; |
655 | } |
656 | // now that we know we are going to perform join ordering we actually extract the filters, eliminating duplicate |
657 | // filters in the process |
658 | expression_set_t filter_set; |
659 | for (auto &op : filter_operators) { |
660 | if (op->type == LogicalOperatorType::COMPARISON_JOIN) { |
661 | auto &join = (LogicalComparisonJoin &)*op; |
662 | assert(join.join_type == JoinType::INNER); |
663 | assert(join.expressions.size() == 0); |
664 | for (auto &cond : join.conditions) { |
665 | auto comparison = |
666 | make_unique<BoundComparisonExpression>(cond.comparison, move(cond.left), move(cond.right)); |
667 | if (filter_set.find(comparison.get()) == filter_set.end()) { |
668 | filter_set.insert(comparison.get()); |
669 | filters.push_back(move(comparison)); |
670 | } |
671 | } |
672 | join.conditions.clear(); |
673 | } else { |
674 | for (idx_t i = 0; i < op->expressions.size(); i++) { |
675 | if (filter_set.find(op->expressions[i].get()) == filter_set.end()) { |
676 | filter_set.insert(op->expressions[i].get()); |
677 | filters.push_back(move(op->expressions[i])); |
678 | } |
679 | } |
680 | op->expressions.clear(); |
681 | } |
682 | } |
683 | // create potential edges from the comparisons |
684 | for (idx_t i = 0; i < filters.size(); i++) { |
685 | auto &filter = filters[i]; |
686 | auto info = make_unique<FilterInfo>(); |
687 | auto filter_info = info.get(); |
688 | filter_infos.push_back(move(info)); |
689 | // first extract the relation set for the entire filter |
690 | unordered_set<idx_t> bindings; |
691 | ExtractBindings(*filter, bindings); |
692 | filter_info->set = set_manager.GetJoinRelation(bindings); |
693 | filter_info->filter_index = i; |
694 | // now check if it can be used as a join predicate |
695 | if (filter->GetExpressionClass() == ExpressionClass::BOUND_COMPARISON) { |
696 | auto comparison = (BoundComparisonExpression *)filter.get(); |
697 | // extract the bindings that are required for the left and right side of the comparison |
698 | unordered_set<idx_t> left_bindings, right_bindings; |
699 | ExtractBindings(*comparison->left, left_bindings); |
700 | ExtractBindings(*comparison->right, right_bindings); |
701 | if (left_bindings.size() > 0 && right_bindings.size() > 0) { |
702 | // both the left and the right side have bindings |
703 | // first create the relation sets, if they do not exist |
704 | filter_info->left_set = set_manager.GetJoinRelation(left_bindings); |
705 | filter_info->right_set = set_manager.GetJoinRelation(right_bindings); |
706 | // we can only create a meaningful edge if the sets are not exactly the same |
707 | if (filter_info->left_set != filter_info->right_set) { |
708 | // check if the sets are disjoint |
709 | if (Disjoint(left_bindings, right_bindings)) { |
710 | // they are disjoint, we only need to create one set of edges in the join graph |
711 | query_graph.CreateEdge(filter_info->left_set, filter_info->right_set, filter_info); |
712 | query_graph.CreateEdge(filter_info->right_set, filter_info->left_set, filter_info); |
713 | } else { |
714 | continue; |
715 | // the sets are not disjoint, we create two sets of edges |
716 | // auto left_difference = set_manager.Difference(filter_info->left_set, filter_info->right_set); |
717 | // auto right_difference = set_manager.Difference(filter_info->right_set, |
718 | // filter_info->left_set); |
719 | // // -> LEFT <-> RIGHT \ LEFT |
720 | // query_graph.CreateEdge(filter_info->left_set, right_difference, filter_info); |
721 | // query_graph.CreateEdge(right_difference, filter_info->left_set, filter_info); |
722 | // // -> RIGHT <-> LEFT \ RIGHT |
723 | // query_graph.CreateEdge(left_difference, filter_info->right_set, filter_info); |
724 | // query_graph.CreateEdge(filter_info->right_set, left_difference, filter_info); |
725 | } |
726 | continue; |
727 | } |
728 | } |
729 | } |
730 | } |
731 | // now use dynamic programming to figure out the optimal join order |
732 | // First we initialize each of the single-node plans with themselves and with their cardinalities these are the leaf |
733 | // nodes of the join tree NOTE: we can just use pointers to JoinRelationSet* here because the GetJoinRelation |
734 | // function ensures that a unique combination of relations will have a unique JoinRelationSet object. |
735 | for (idx_t i = 0; i < relations.size(); i++) { |
736 | auto &rel = *relations[i]; |
737 | auto node = set_manager.GetJoinRelation(i); |
738 | plans[node] = make_unique<JoinNode>(node, rel.op->EstimateCardinality()); |
739 | } |
740 | // now we perform the actual dynamic programming to compute the final result |
741 | SolveJoinOrder(); |
742 | // now the optimal join path should have been found |
743 | // get it from the node |
744 | unordered_set<idx_t> bindings; |
745 | for (idx_t i = 0; i < relations.size(); i++) { |
746 | bindings.insert(i); |
747 | } |
748 | auto total_relation = set_manager.GetJoinRelation(bindings); |
749 | auto final_plan = plans.find(total_relation); |
750 | if (final_plan == plans.end()) { |
751 | // could not find the final plan |
752 | // this should only happen in case the sets are actually disjunct |
753 | // in this case we need to generate cross product to connect the disjoint sets |
754 | GenerateCrossProducts(); |
755 | //! solve the join order again |
756 | SolveJoinOrder(); |
757 | // now we can obtain the final plan! |
758 | final_plan = plans.find(total_relation); |
759 | assert(final_plan != plans.end()); |
760 | } |
761 | // now perform the actual reordering |
762 | return RewritePlan(move(plan), final_plan->second.get()); |
763 | } |
764 | |